1
|
Cetindag S, Bellini B, Li R, Tsai EHR, Nykypanchuk D, Doerk GS. On-Demand Selection of the Latent Domain Orientation in Spray-Deposited Block Copolymer Thin Films. ACS NANO 2025; 19:3726-3739. [PMID: 39794154 DOI: 10.1021/acsnano.4c14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
With their ability to self-assemble spontaneously into well-defined nanoscale morphologies, block copolymer (BCP) thin films are a versatile platform to fabricate functional nanomaterials. An important challenge to wider deployment of BCPs in nanofabrication is combining precise control over the nanoscale domain orientation in BCP assemblies with scalable deposition techniques that are applicable to large-area, curved, and flexible substrates. Here, we show that spray-deposited smooth films of a nominally disordered BCP exhibit latent orientations, which can be prescriptively selected by controlling solvent evaporation during spray casting. Subsequent solvent vapor annealing triggers assembly toward highly ordered cylindrical morphologies along the pathway determined by solvent evaporation in the prior spray deposition stage. Faster evaporation promotes assembly of vertically oriented cylinders spanning the entire film thickness (100-300 nm). In comparison, slow solvent evaporation permits intermicellar aggregation and incipient cylinder formation in solution, which induces horizontal cylinder assembly upon annealing. The evaporatively controlled latent orientation mechanism presented herein elucidates how nonequilibrium phenomena during casting govern successive self-assembly pathways and facilitates a versatile method to dictate the domain orientation of BCP thin films on demand on flexible and highly curved substrates or in distinct pattern areas on the same substrate.
Collapse
Affiliation(s)
- Semih Cetindag
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Beatrice Bellini
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Gregory S Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
2
|
Gu S, Chen B, Xu X, Han F, Chen S. 3D Nanofabrication via Directed Material Assembly: Mechanism, Method, and Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312915. [PMID: 39623887 PMCID: PMC11733727 DOI: 10.1002/adma.202312915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/27/2024] [Indexed: 01/16/2025]
Abstract
Fabrication of complex three-dimensional (3D) structures at nanoscale is the core of nanotechnology, as it enables the creation of various micro-/nano-devices such as micro-robots, metamaterials, sensors, photonic devices, etc. Among most 3D nanofabrication strategies, the guided material assembly, an efficient bottom-up approach capable of directly constructing designed structures from precise integration of material building blocks, possesses compelling advantages in diverse material compatibility, sufficient driving forces, facile processing steps, and nanoscale resolution. In this review, we focus on assembly-based fabrication methods capable of creating complex 3D nanostructures (instead of periodic or 2.5D-only structures). Recent advances are classified based on the different assembly mechanisms, i.e., assembly driven by chemical reactions, physical interactions, and the synergy of multiple microscopic interactions. The design principles of representative fabrication strategies with an emphasis on their respective advantages, e.g., structural design flexibility, material compatibility, resolution, or applications are analyzed. In the summary and outlook, existing challenges, as well as possible paths to solutions for future development are reviewed. We believe that with recent advances in assembly-based nanofabrication strategies, 3D nanofabrication has achieved tremendous progress in resolution, material generality, and manufacturing cost, for it to make a greater impact in the near future.
Collapse
Affiliation(s)
- Songyun Gu
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SAR
| | - Bingxu Chen
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SAR
| | - Xiayi Xu
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SAR
- School of Biomedical Sciences and EngineeringGuangzhou International CampusSouth China University of TechnologyGuangzhou511442P. R. China
| | - Fei Han
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SAR
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Shih‐Chi Chen
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SAR
| |
Collapse
|
3
|
Shang R, Deng Y, Bao W, Cai X, Cao L, Liu Y, Cong F, Zhang H, Wang X, Yan X, Xie J. Diffusion Behavior and Kinetics for the Vapor Phase Infiltration of Trimethylaluminum in Poly(ethylene oxide): An In Situ Quartz Crystal Microgravimetry Study. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64907-64915. [PMID: 39535500 DOI: 10.1021/acsami.4c16107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vapor phase infiltration (VPI) facilitates the incorporation of inorganic components into organic polymers, emerging as an effective technique for fabricating organic-inorganic hybrid materials. However, the complexity of diffusion behavior during the VPI process presents challenges in studying diffusion kinetics, particularly for highly reactive precursor-polymer systems such as trimethylaluminum (TMA) and poly(ethylene oxide) (PEO). In this study, we investigate the VPI process of TMA in PEO using in situ quartz crystal microgravimetry (QCM), which enables measurement of diffusion behavior and kinetics with high precision due to its high temporal resolution. Our results indicate that the VPI process consists of two main regions: a rapid diffusion process, corresponding to the initial penetration of the precursor into the film, followed by a slower relaxation process, attributed to the ongoing chemical reaction. The equivalent diffusion coefficient (De) was estimated to be on the order of 10-9 cm2/s and decreased with increasing aluminum content. Using energy application as a proof-of-concept, when optimized, VPI-modified PEO films were successfully utilized as solid polymer electrolytes (SPEs) for lithium metal batteries (LMBs), showcasing superior performance in mitigating lithium dendrite growth. This study offers valuable insights into the VPI process for PEO-TMA systems and provides guidance for optimizing VPI conditions to enhance the performance of advanced materials.
Collapse
Affiliation(s)
- Rongliang Shang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yingdong Deng
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Wenda Bao
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Xincan Cai
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Lei Cao
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yixiao Liu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Fufei Cong
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Haoye Zhang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Xingzhi Wang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Xiao Yan
- Zhijiang College, Zhejiang University of Technology, Shaoxing, 312030, China
| | - Jin Xie
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
4
|
Park Y, Song SW, Hong J, Jang H, Lee GR, Kim GY, Jung YS. Si-Containing Reverse-Gradient Block Copolymer for Inorganic Pattern Amplification in EUV Lithography. ACS Macro Lett 2024; 13:943-950. [PMID: 39008631 DOI: 10.1021/acsmacrolett.4c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Although extreme ultraviolet lithography (EUVL) has emerged as a leading technology for achieving high quality sub-10 nm patterns, the insufficient pattern height of photoresist patterns remains a challenge. Directed self-assembly (DSA) of block copolymers (BCPs) is expected to be a complementary technology for EUVL due to its ability to form periodic nanostructures. However, for a combination with EUV patterns, it is essential to develop advanced BCP systems that are suited to inorganic-containing EUV photoresists and offer improved resolution limits, pattern quality, and etch resistance. Here, we report a reverse-gradient BCP system, poly[(styrene-gradient-pentafluorostyrene)-b-4-tert-butyldimetilsiloxystyrene] [P(S-g-PFS)-b-P4BDSS] BCP, which enables universally vertically oriented lamellae even in the absence of a neutral layer, while also containing a Si-containing block with high etch resistance. The gradient block, characterized by a gradual compositional transition from the block junction to the tail, plays a crucial role in creating an adequate surface energy contrast that energetically drives the formation of perpendicular lamellae without neutral layer. When used as a pattern height enhancement layer in EUVL, a high aspect ratio (3.29) of patterns was achieved, thereby offering a supplementary solution for next-generation EUVL.
Collapse
Affiliation(s)
- Yemin Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seung Won Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeehyun Hong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gyu Rac Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Geon Yeong Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Song Q, Zhou J, Dong Q, Tian S, Chen Y, Ji S, Xiong S, Li W. Directed Self-Assembly by Sparsely Prepatterned Substrates with Self-Responsive Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39034851 DOI: 10.1021/acs.langmuir.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The guiding pattern in the chemoepitaxially directed self-assembly (DSA) of block copolymers is often fabricated by periodically functionalizing homogeneously random copolymer brushes tethered on a substrate. The prepatterned copolymer brushes constitute a soft penetrable surface, and their two components can in principle locally segregate in response to the overlying self-assembly process of block copolymers. To reveal how the self-responsive behavior of the copolymer brushes affects the directing effect, we develop a dissipative particle dynamics model to explicitly include the prepatterned polymer brushes and implement it to simulate the DSA of a cylinder-forming diblock copolymer melt on the sparse pattern of polymer brushes. Through large-scale dynamic simulations, we identify the windows of the content of the random copolymer, the film thickness, and the diameter of the patterned spot, for the formation of perfectly ordered hexagonal patterns composed of perpendicular cylinders. Our dynamic simulations reveal that the random copolymer brushes grafted on the unpatterned area exhibit a remarkable self-responsive ability with respect to the self-assembly of the diblock copolymers overlying them, which may widen the effective window of the content of the random copolymer. Within the processing windows of these key parameters, defect-free patterns are successfully achieved both in simulations and in experiments with sizes as large as a few micrometers for 4-fold density multiplications. This work demonstrates that highly efficient computer simulations based on an effective model can provide helpful guidance for experiments to optimize the critical parameters and even may promote the application of DSA.
Collapse
Affiliation(s)
- Qingliang Song
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jing Zhou
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Qingshu Dong
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Shuoqiu Tian
- Nanolithography and Application Research Group, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Yifang Chen
- Nanolithography and Application Research Group, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Shengxiang Ji
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Shisheng Xiong
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Hillery K, Hendeniya N, Abtahi S, Chittick C, Chang B. Substrate Neutrality for Obtaining Block Copolymer Vertical Orientation. Polymers (Basel) 2024; 16:1740. [PMID: 38932090 PMCID: PMC11207976 DOI: 10.3390/polym16121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Nanopatterning methods utilizing block copolymer (BCP) self-assembly are attractive for semiconductor fabrication due to their molecular precision and high resolution. Grafted polymer brushes play a crucial role in providing a neutral surface conducive for the orientational control of BCPs. These brushes create a non-preferential substrate, allowing wetting of the distinct chemistries from each block of the BCP. This vertically aligns the BCP self-assembled lattice to create patterns that are useful for semiconductor nanofabrication. In this review, we aim to explore various methods used to tune the substrate and BCP interface toward a neutral template. This review takes a historical perspective on the polymer brush methods developed to achieve substrate neutrality. We divide the approaches into copolymer and blended homopolymer methods. Early attempts to obtain neutral substrates utilized end-grafted random copolymers that consisted of monomers from each block. This evolved into side-group-grafted chains, cross-linked mats, and block cooligomer brushes. Amidst the augmentation of the chain architecture, homopolymer blends were developed as a facile method where polymer chains with each chemistry were mixed and grafted onto the substrate. This was largely believed to be challenging due to the macrophase separation of the chemically incompatible chains. However, innovative methods such as sequential grafting and BCP compatibilizers were utilized to circumvent this problem. The advantages and challenges of each method are discussed in the context of neutrality and feasibility.
Collapse
Affiliation(s)
| | | | | | | | - Boyce Chang
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Putranto AF, Petit-Etienne C, Cavalaglio S, Cabannes-Boué B, Panabiere M, Forcina G, Fleury G, Kogelschatz M, Zelsmann M. Controlled Anisotropic Wetting by Plasma Treatment for Directed Self-Assembly of High-χ Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27841-27849. [PMID: 38758246 DOI: 10.1021/acsami.4c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The directed self-assembly (DSA) of block copolymers (BCPs) is a promising next-generation lithography technique for high-resolution patterning. However, achieving lithographically applicable BCP organization such as out-of-plane lamellae requires proper tuning of interfacial energies between the BCP domains and the substrate, which remains difficult to address effectively and efficiently with high-χ BCPs. Here, we present the successful generation of anisotropic wetting by plasma treatment on patterned spin-on-carbon (SOC) substrates and its application to the DSA of a high-χ Si-containing material, poly(1,1-dimethylsilacyclobutane)-block-polystyrene (PDMSB-b-PS), with a 9 nm half pitch. Exposing the SOC substrate to different plasma chemistries promotes the vertical alignment of the PDMSB-b-PS lamellae within the trenches. In particular, a patterned substrate treated with HBr/O2 plasma gives both a neutral wetting at the bottom interface and a strong PS-affine wetting at the sidewalls of the SOC trenches to efficiently guide the vertical BCP lamellae. Furthermore, prolonged exposure to HBr/O2 plasma enables an adjustment of the trench width and an increased density of BCP lines on the substrate. Experimental observations are in agreement with a free energy configurational model developed to describe the system. These advances, which could be easily implemented in industry, could contribute to the wider adoption of self-assembly techniques in microelectronics, and beyond to applications such as metasurfaces, surface-enhanced Raman spectroscopy, and sensing technologies.
Collapse
Affiliation(s)
- Achmad Fajar Putranto
- CNRS, CEA/LETI Minatec, Laboratoire des Technologies de la Microélectronique (LTM), Université Grenoble Alpes, 38000 Grenoble, France
| | - Camille Petit-Etienne
- CNRS, CEA/LETI Minatec, Laboratoire des Technologies de la Microélectronique (LTM), Université Grenoble Alpes, 38000 Grenoble, France
| | - Sébastien Cavalaglio
- CNRS, CEA/LETI Minatec, Laboratoire des Technologies de la Microélectronique (LTM), Université Grenoble Alpes, 38000 Grenoble, France
| | | | - Marie Panabiere
- CNRS, CEA/LETI Minatec, Laboratoire des Technologies de la Microélectronique (LTM), Université Grenoble Alpes, 38000 Grenoble, France
| | - Gianluca Forcina
- CNRS, CEA/LETI Minatec, Laboratoire des Technologies de la Microélectronique (LTM), Université Grenoble Alpes, 38000 Grenoble, France
| | - Guillaume Fleury
- CNRS, Bordeaux INP, LCPO, UMR 5629, Univ. Bordeaux, F-33600 Pessac, France
| | - Martin Kogelschatz
- CNRS, CEA/LETI Minatec, Laboratoire des Technologies de la Microélectronique (LTM), Université Grenoble Alpes, 38000 Grenoble, France
| | - Marc Zelsmann
- CNRS, CEA/LETI Minatec, Laboratoire des Technologies de la Microélectronique (LTM), Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
8
|
Eftekhari K, Parakhonskiy BV, Grigoriev D, Skirtach AG. Advances in Nanoarchitectonics: A Review of "Static" and "Dynamic" Particle Assembly Methods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1051. [PMID: 38473523 PMCID: PMC10935451 DOI: 10.3390/ma17051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Particle assembly is a promising technique to create functional materials and devices from nanoscale building blocks. However, the control of particle arrangement and orientation is challenging and requires careful design of the assembly methods and conditions. In this study, the static and dynamic methods of particle assembly are reviewed, focusing on their applications in biomaterial sciences. Static methods rely on the equilibrium interactions between particles and substrates, such as electrostatic, magnetic, or capillary forces. Dynamic methods can be associated with the application of external stimuli, such as electric fields, magnetic fields, light, or sound, to manipulate the particles in a non-equilibrium state. This study discusses the advantages and limitations of such methods as well as nanoarchitectonic principles that guide the formation of desired structures and functions. It also highlights some examples of biomaterials and devices that have been fabricated by particle assembly, such as biosensors, drug delivery systems, tissue engineering scaffolds, and artificial organs. It concludes by outlining the future challenges and opportunities of particle assembly for biomaterial sciences. This review stands as a crucial guide for scholars and professionals in the field, fostering further investigation and innovation. It also highlights the necessity for continuous research to refine these methodologies and devise more efficient techniques for nanomaterial synthesis. The potential ramifications on healthcare and technology are substantial, with implications for drug delivery systems, diagnostic tools, disease treatments, energy storage, environmental science, and electronics.
Collapse
Affiliation(s)
- Karaneh Eftekhari
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Bogdan V. Parakhonskiy
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Dmitry Grigoriev
- Multifunctional Colloids and Coatings, Division Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam-Golm, Germany;
| | - Andre G. Skirtach
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
9
|
Gleason KK. Designing Organic and Hybrid Surfaces and Devices with Initiated Chemical Vapor Deposition (iCVD). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306665. [PMID: 37738605 DOI: 10.1002/adma.202306665] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/05/2023] [Indexed: 09/24/2023]
Abstract
The initiated chemical vapor deposition (iCVD) technique is an all-dry method for designing organic and hybrid polymers. Unlike methods utilizing liquids or line-of-sight arrival, iCVD provides conformal surface modification over intricate geometries. Uniform, high-purity, and pinhole-free iCVD films can be grown with thicknesses ranging from >15 µm to <5 nm. The mild conditions permit damage-free growth directly onto flexible substrates, 2D materials, and liquids. Novel iCVD polymer morphologies include nanostructured surfaces, nanoporosity, and shaped particles. The well-established fundamentals of iCVD facilitate the systematic design and optimization of polymers and copolymers. The functional groups provide fine-tuning of surface energy, surface charge, and responsive behavior. Further reactions of the functional groups in the polymers can yield either surface modification, compositional gradients through the layer thickness, or complete chemical conversion of the bulk film. The iCVD polymers are integrated into multilayer device structures as desired for applications in sensing, electronics, optics, electrochemical energy storage, and biotechnology. For these devices, hybrids offer higher values of refractive index and dielectric constant. Multivinyl monomers typically produce ultrasmooth and pinhole-free and mechanically deformable layers and robust interfaces which are especially promising for electronic skins and wearable optoelectronics.
Collapse
Affiliation(s)
- Karen K Gleason
- Department of Chemical Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA, 02138, USA
| |
Collapse
|
10
|
Ji Y, Yu H. Manipulation of photoresponsive liquid-crystalline polymers and their applications: from nanoscale to macroscale. JOURNAL OF MATERIALS CHEMISTRY C 2024; 12:10246-10266. [DOI: 10.1039/d4tc02213k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
We summarize the molecular design of photoresponsive liquid-crystalline polymers, manipulation at multiple scales and various applications based on their intrinsic properties, providing an opportunity for future development in this field.
Collapse
Affiliation(s)
- Yufan Ji
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Haifeng Yu
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
11
|
Pan B, Su P, Jin M, Huang X, Wang Z, Zhang R, Xu H, Liu W, Ye Y. Ultrathin hierarchical hydrogel-carbon nanocomposite for highly stretchable fast-response water-proof wearable humidity sensors. MATERIALS HORIZONS 2023; 10:5263-5276. [PMID: 37750039 DOI: 10.1039/d3mh01093g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Wearable humidity sensors play an important role in human health monitoring. However, challenges persist in realizing high performance wearable humidity sensors with fast response and good stretchability and durability. Here we report wearable humidity sensors employing an ultrathin micro-nano hierarchical hydrogel-carbon nanocomposite. The nanocomposite is synthesized on polydimethylsiloxane (PDMS) films via a facile two-step solvent-free approach, which creates a hierarchical architecture consisting of periodic microscale wrinkles and vapor-deposited nanoporous hydrogel-candle-soot nanocoating. The hierarchical surface topography results in a significantly enlarged specific surface area (>107 times that of planar hydrogel), which along with the ultrathin hydrogel endow the sensor with high sensitivity and a fast response/recovery (13/0.48 s) over a wide humidity range (11-96%). Owing to the wrinkle structure and interpenetrating network between the hydrogel and PDMS, the sensor is stable and durable against repeated 180° bending, 100% strain, and even scratching. Furthermore, encapsulation of the sensor imparts excellent resistance to water, sweat, and bacteria without influencing its performance. The sensor is then successfully used to monitor different human respiratory behaviors and skin humidity in real time. The reported method is convenient and cost-effective, which could bring exciting new opportunities in the fabrication of next-generation wearable humidity sensors.
Collapse
Affiliation(s)
- Bingqi Pan
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Peipei Su
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Minghui Jin
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Xiaocheng Huang
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Zhenbo Wang
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Ruhao Zhang
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - He Xu
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Wenna Liu
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Yumin Ye
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| |
Collapse
|
12
|
Feng H, Kash B, Yim S, Bagchi K, Craig GSW, Chen W, Rowan SJ, Nealey PF. Wetting Behavior of A -block-(B- random-C) Copolymers with Equal Block Surface Energies on Surfaces Functionalized with B- random-C Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14688-14698. [PMID: 37782843 PMCID: PMC10586369 DOI: 10.1021/acs.langmuir.3c02065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Indexed: 10/04/2023]
Abstract
To form nanopatterns with self-assembled block copolymers (BCPs), it is desirable to have through-film domains that are oriented perpendicular to the substrate. The domain orientation is determined by the interfacial interactions of the BCP domains with the substrate and with the free surface. Here, we use thin films of two different sets of BCPs with A-block-(B-random-C) architecture matched with a corresponding B-random-C copolymer nanocoating on the substrate to demonstrate two distinct wetting behaviors. The two sets of A-b-(B-r-C) BCPs are made by using thiol-epoxy click chemistry to functionalize polystyrene-block-poly(glycidyl methacrylate) with trifluoroethanethiol (TFET) and either 2-mercaptopyridine (2MP) or methyl thioglycolate (MTG). For each set of BCPs, the composition ratio of the two thiols in the BCP (φ1) is found that results in the two blocks of the modified BCP having equal surface energies (Δγair = 0). The corresponding B-r-C random copolymers were synthesized and used to modify the substrate, and the composition ratio (φ2) values that resulted in the two blocks of the BCP having equal interfacial energy with the substrate (Δγsub = 0) were determined with scanning electron microscopy. The correlation between each block's γsub value and the interaction parameter, χ, is employed to explain the different wetting behaviors of the two sets of BCPs. For the thiol pair 2MP and TFET, the values of φ1 and φ2 that lead to Δγair = 0 and Δγsub = 0, respectively, are significantly different. A similar difference was observed between the φ1 and φ2 values that lead to Δγair = 0 and Δγsub = 0 for the BCPs made with the thiol pair MTG and TFET. In the latter case, for Δγsub = 0 two windows of φ2 are identified, which can be explained by the thermodynamic interactions of the specific thiol pair and the A-b-(B-r-C) architecture.
Collapse
Affiliation(s)
- Hongbo Feng
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Benjamin Kash
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Soonmin Yim
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Kushal Bagchi
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Gordon S. W. Craig
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Wen Chen
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
- Department
of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Paul F. Nealey
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
13
|
Wang Q, Vockenhuber M, Cui H, Wang X, Tao P, Hu Z, Zhao J, Wang J, Ekinci Y, Xu H, He X. Theoretical Insights into the Solubility Polarity Switch of Metal-Organic Nanoclusters for Nanoscale Patterning. SMALL METHODS 2023; 7:e2300309. [PMID: 37337380 DOI: 10.1002/smtd.202300309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Metal-organic nanoclusters(MOCs) are being increasingly used as prospective photoresist candidates for advanced nanoscale lithography technologies. However, insight into the irradiation-induced solubility switching process remains unclear. Hereby, the theoretical study employing density functional theory (DFT) calculations of the alkene-containing zirconium oxide MOC photoresists is reported, which is rationally synthesized accordingly, to disclose the mechanism of the nanoscale patterning driven by the switch of solubility from the acid-catalyzed or electron-triggered ligand dissociation. By evaluating the dependence of MOCs' imaging process on photoacid, lithographies of photoresists with and without photoacid generators after exposure to ultraviolet (UV), electron beam, and soft X-ray, it is revealed that photoacid is essential in UV lithography, but it demonstrates little effect on exposure dose in high-energy lithography. Furthermore, theoretical studies using DFT simulations to investigate the plausible photoacid-catalyzed, electron-triggered dissociation, and accompanying radical reaction are performed, and a mechanism is demonstrated that the nanoscale patterning of this type of MOCs is driven by the solubility switch resulting from dissociation-induced strong electrostatic interaction and low-energy barrier radical polymerization with other species. This study can give insights into the chemical mechanisms of patterning, and guide the rational design of photoresists to realize high resolution and high sensitivity.
Collapse
Affiliation(s)
- Qianqian Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | | | - Hao Cui
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Xiaolin Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Peipei Tao
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Ziyu Hu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jun Zhao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yasin Ekinci
- Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Baumgarten N, Mumtaz M, Merino DH, Solano E, Halila S, Bernard J, Drockenmuller E, Fleury G, Borsali R. Interface Manipulations Using Cross-Linked Underlayers and Surface-Active Diblock Copolymers to Extend Morphological Diversity in High-χ Diblock Copolymer Thin Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23736-23748. [PMID: 37134266 DOI: 10.1021/acsami.3c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Top and bottom interfaces of high-χ cylinder-forming polystyrene-block-maltoheptaose (PS-b-MH) diblock copolymer (BCP) thin films are manipulated using cross-linked copolymer underlayers and a fluorinated phase-preferential surface-active polymer (SAP) additive to direct the self-assembly (both morphology and orientation) of BCP microdomains into sub-10 nm patterns. A series of four photo-cross-linkable statistical copolymers with various contents of styrene, a 4-vinylbenzyl azide cross-linker, and a carbohydrate-based acrylamide are processed into 15 nm-thick cross-linked passivation layers on silicon substrates. A partially fluorinated analogue of the PS-b-MH phase-preferential SAP additive is designed to tune the surface energy of the top interface. The self-assembly of PS-b-MH thin films on top of different cross-linked underlayers and including 0-20 wt % of SAP additive is investigated by atomic force microscopy and synchrotron grazing incidence small-angle X-ray scattering analysis. The precise manipulation of the interfaces of ca. 30 nm thick PS-b-MH films not only allows the control of the in-plane/out-of-plane orientation of hexagonally packed (HEX) cylinders but also promotes epitaxial order-order transitions from HEX cylinders to either face-centered orthorhombic or body-centered cubic spheres without modifying the volume fraction of both blocks. This general approach paves the way for the controlled self-assembly of other high-χ BCP systems.
Collapse
Affiliation(s)
- Noémie Baumgarten
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003, Lyon, France
| | | | - Daniel Hermida Merino
- Dutch-Belgian Beamline, Netherlands Organization for Scientific Research, European Synchrotron Radiation Facility, F-38000 Grenoble, France
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, E36310 Vigo, Galicia, Spain
| | - Eduardo Solano
- NCD-SWEET Beamline, ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain
| | - Sami Halila
- Univ Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Julien Bernard
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003, Lyon, France
| | - Eric Drockenmuller
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003, Lyon, France
| | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | |
Collapse
|
15
|
Hung CJ, Panda AS, Lee YC, Liu SY, Lin JW, Wang HF, Avgeropoulos A, Tseng FG, Chen FR, Ho RM. Direct Visualization of the Self-Alignment Process for Nanostructured Block Copolymer Thin Films by Transmission Electron Microscopy. ACS Macro Lett 2023; 12:570-576. [PMID: 37053545 DOI: 10.1021/acsmacrolett.3c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Herein, this work aims to directly visualize the morphological evolution of the controlled self-assembly of star-block polystyrene-block-polydimethylsiloxane (PS-b-PDMS) thin films via in situ transmission electron microscopy (TEM) observations. With an environmental chip, possessing a built-in metal wire-based microheater fabricated by the microelectromechanical system (MEMS) technique, in situ TEM observations can be conducted under low-dose conditions to investigate the development of film-spanning perpendicular cylinders in the block copolymer (BCP) thin films via a self-alignment process. Owing to the free-standing condition, a symmetric condition of the BCP thin films can be formed for thermal annealing under vacuum with neutral air surface, whereas an asymmetric condition can be formed by an air plasma treatment on one side of the thin film that creates an end-capped neutral layer. A systematic comparison of the time-resolved self-alignment process in the symmetric and asymmetric conditions can be carried out, giving comprehensive insights for the self-alignment process via the nucleation and growth mechanism.
Collapse
Affiliation(s)
- Chen-Jung Hung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Aum Sagar Panda
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-Chien Lee
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shih-Yi Liu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Electron Microscopy Development and Application, Material and Chemical Research Laboratories, Industrial Technology Research Institute (ITRI), Hsinchu, 30013, Taiwan
| | - Jheng-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsiao-Fang Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Apostolos Avgeropoulos
- Department of Materials Science Engineering, University of Ioannina, University Campus, Ioannina 45110, Greece
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Fu-Rong Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, 518057, Hong Kong
| | - Rong-Ming Ho
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
16
|
Chen M, Chen Y, Zhu Y, Jiang Y, Andelman D, Man X. Chain Flexibility Effects on the Self-Assembly of Diblock Copolymer in Thin Films. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Mingyang Chen
- Center of Soft Matter Physics and its Applications, Beihang University, Beijing 100191, China
- School of Physics, Beihang University, Beijing 100191, China
| | - Yuguo Chen
- Center of Soft Matter Physics and its Applications, Beihang University, Beijing 100191, China
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Yanyan Zhu
- Center of Soft Matter Physics and its Applications, Beihang University, Beijing 100191, China
- School of Physics, Beihang University, Beijing 100191, China
| | - Ying Jiang
- Center of Soft Matter Physics and its Applications, Beihang University, Beijing 100191, China
- School of Chemistry, Beihang University, Beijing 100191, China
| | - David Andelman
- School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Xingkun Man
- Center of Soft Matter Physics and its Applications, Beihang University, Beijing 100191, China
- School of Physics, Beihang University, Beijing 100191, China
- Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China
| |
Collapse
|
17
|
Kong X, Qin J. Microphase Separation in Neutral Homopolymer Blends Induced by Salt-Doping. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xian Kong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou510640, China
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
18
|
Angelopoulou PP, Moutsios I, Manesi GM, Ivanov DA, Sakellariou G, Avgeropoulos A. Designing high χ copolymer materials for nanotechnology applications: A systematic bulk vs. thin films approach. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Feng H, Dolejsi M, Zhu N, Yim S, Loo W, Ma P, Zhou C, Craig GSW, Chen W, Wan L, Ruiz R, de Pablo JJ, Rowan SJ, Nealey PF. Optimized design of block copolymers with covarying properties for nanolithography. NATURE MATERIALS 2022; 21:1426-1433. [PMID: 36357686 DOI: 10.1038/s41563-022-01392-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The ability to impart multiple covarying properties into a single material represents a grand challenge in manufacturing. In the design of block copolymers (BCPs) for directed self-assembly and nanolithography, materials often balance orthogonal properties to meet constraints related to processing, structure and defectivity. Although iterative synthesis strategies deliver BCPs with attractive properties, identifying materials with all the required attributes has been difficult. Here we report a high-throughput synthesis and characterization platform for the discovery and optimization of BCPs with A-block-(B-random-C) architectures for lithographic patterning in semiconductor manufacturing. Starting from a parent BCP and using thiol-epoxy 'click' chemistry, we synthesize a library of BCPs that cover a large and complex parameter space. This allows us to readily identify feature-size-dependent BCP chemistries for 8-20-nm-pitch patterns. These blocks have similar surface energies for directed self-assembly, and control over the segregation strength to optimize the structure (favoured at higher segregation strengths) and defectivity (favoured at lower segregation strengths).
Collapse
Affiliation(s)
- Hongbo Feng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Moshe Dolejsi
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Soonmin Yim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Whitney Loo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Peiyuan Ma
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Chun Zhou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Gordon S W Craig
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Wen Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Lei Wan
- Western Digital Corporation, San Jose, CA, USA
| | - Ricardo Ruiz
- The Molecular Foundry, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
| | - Paul F Nealey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Li X, Wang Z, Hong C, Feng F, Yu K, Liu H. Geometry-Modulated Self-Assembly Structures of Covalent Polyoxometalate–Polymer Hybrid in Bulk and Thin-Film States. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiangqian Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Ze Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Chengyang Hong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Fengfeng Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Kun Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Hao Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
21
|
Lovikka VA, Airola K, McGuinness E, Zhang C, Vehkamäki M, Kemell M, Losego M, Ritala M, Leskelä M. Toposelective vapor deposition of hybrid and inorganic materials inside nanocavities by polymeric templating and vapor phase infiltration. NANOSCALE ADVANCES 2022; 4:4102-4113. [PMID: 36285221 PMCID: PMC9514560 DOI: 10.1039/d2na00291d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Selective deposition of hybrid and inorganic materials inside nanostructures could enable major nanotechnological advances. However, inserting ready-made composites inside nanocavities may be difficult, and therefore, stepwise approaches are needed. In this paper, a poly(ethyl acrylate) template is grown selectively inside cavities via condensation-controlled toposelective vapor deposition, and the polymer is then hybridized by alumina, titania, or zinc oxide. The hybridization is carried out by infiltrating the polymer with a vapor-phase metalorganic precursor and water vapor either via a short-pulse (atomic layer deposition, ALD) or a long-pulse (vapor phase infiltration, VPI) sequence. When the polymer-MO x hybrid material is calcined at 450 °C in air, an inorganic phase is left as the residue. Various suspected confinement effects are discussed. The infiltration of inorganic materials is reduced in deeper layers of the cavity-grown polymer and is dependent on the cavity geometry. The structure of the inorganic deposition after calcination varies from scattered particles and their aggregates to cavity-capping films or cavity-filling low-density porous deposition, and the inorganic deposition is often anisotropically cracked. A large part of the infiltration is achieved already during the short-pulse experiments with a commercial ALD reactor. Furthermore, the infiltrated polymer is more resistant to dissolution in acetone whereas the inorganic component can still be heavily affected by phosphoric acid.
Collapse
Affiliation(s)
- Ville A Lovikka
- Department of Chemistry, University of Helsinki A.I. Virtasen Aukio 1, P.O. Box 55 FI-00014 Helsinki Finland
| | - Konsta Airola
- Department of Chemistry, University of Helsinki A.I. Virtasen Aukio 1, P.O. Box 55 FI-00014 Helsinki Finland
| | - Emily McGuinness
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Chao Zhang
- Department of Chemistry, University of Helsinki A.I. Virtasen Aukio 1, P.O. Box 55 FI-00014 Helsinki Finland
| | - Marko Vehkamäki
- Department of Chemistry, University of Helsinki A.I. Virtasen Aukio 1, P.O. Box 55 FI-00014 Helsinki Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki A.I. Virtasen Aukio 1, P.O. Box 55 FI-00014 Helsinki Finland
| | - Mark Losego
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki A.I. Virtasen Aukio 1, P.O. Box 55 FI-00014 Helsinki Finland
| | - Markku Leskelä
- Department of Chemistry, University of Helsinki A.I. Virtasen Aukio 1, P.O. Box 55 FI-00014 Helsinki Finland
| |
Collapse
|
22
|
Panda AS, Lee YC, Hung CJ, Liu KP, Chang CY, Manesi GM, Avgeropoulos A, Tseng FG, Chen FR, Ho RM. Vacuum-Driven Orientation of Nanostructured Diblock Copolymer Thin Films. ACS NANO 2022; 16:12686-12694. [PMID: 35905494 DOI: 10.1021/acsnano.2c04368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This work aims to demonstrate a facile method for the controlled orientation of nanostructures of block copolymer (BCP) thin films. A simple diblock copolymer system, polystyrene-block-polydimethylsiloxane (PS-b-PDMS), is chosen to demonstrate vacuum-driven orientation for solving the notorious low-surface-energy problem of silicon-based BCP nanopatterning. By taking advantage of the pressure dependence of the surface tension of polymeric materials, a neutral air surface for the PS-b-PDMS thin film can be formed under a high vacuum degree (∼10-4 Pa), allowing the formation of the film-spanning perpendicular cylinders and lamellae upon thermal annealing. In contrast to perpendicular lamellae, a long-range lateral order for forming perpendicular cylinders can be efficiently achieved through the self-alignment mechanism for induced ordering from the top and bottom of the free-standing thin film.
Collapse
Affiliation(s)
- Aum Sagar Panda
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-Chien Lee
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chen-Jung Hung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kang-Ping Liu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Yen Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Gkreti-Maria Manesi
- Department of Materials Science Engineering, University of Ioannina, University Campus, Ioannina 45110, Greece
| | - Apostolos Avgeropoulos
- Department of Materials Science Engineering, University of Ioannina, University Campus, Ioannina 45110, Greece
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Fu-Rong Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Rong-Ming Ho
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
23
|
Chen Y, Yang C, Zhu Z, Sun W. Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays. Nat Commun 2022; 13:2707. [PMID: 35577805 PMCID: PMC9110747 DOI: 10.1038/s41467-022-30441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
While DNA-directed nano-fabrication enables the high-resolution patterning for conventional electronic materials and devices, the intrinsic self-assembly defects of DNA structures present challenges for further scaling into sub-1 nm technology nodes. The high-dimensional crystallographic defects, including line dislocations and grain boundaries, typically lead to the pattern defects of the DNA lattices. Using periodic line arrays as model systems, we discover that the sequence periodicity mainly determines the formation of line defects, and the defect rate reaches 74% at 8.2-nm line pitch. To suppress high-dimensional defects rate, we develop an effective approach by assigning the orthogonal sequence sets into neighboring unit cells, reducing line defect rate by two orders of magnitude at 7.5-nm line pitch. We further demonstrate densely aligned metal nano-line arrays by depositing metal layers onto the assembled DNA templates. The ultra-scaled critical pitches in the defect-free DNA arrays may further promote the dimension-dependent properties of DNA-templated materials.
Collapse
Affiliation(s)
- Yahong Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing, 100871, China
| | - Chaoyong Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhi Zhu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Wei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing, 100871, China.
| |
Collapse
|
24
|
Kim YC, Kim SY. A Single Crystal 2D Hexagonal Array in a Centimeter Scale with a Self-Directed Assembly of Diblock Copolymer Spheres. ACS NANO 2022; 16:3870-3880. [PMID: 35179365 DOI: 10.1021/acsnano.1c08862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The creation of a single-grain two-dimensional (2D) nanoarray over a large area (∼1 cm2) has been only realized with expensive lithographic fabrication involving a complicated multichemical process. In this work, we report the production of a highly aligned single-grain 2D crystalline nanoarray over a centimeter-scale large area with a concept of self-directed assembly (SDA) in block copolymer (BCP) thin films. No lithographic guiding pattern is employed in SDA. A sphere-forming BCP is first transformed to transient-cylinders and aligned with shear. The aligned cylinders act as a guiding pattern to restore the sphere-morphology producing a single-grain 2D crystalline array with the following solvent vapor annealing. The SDA process has two governing parameters: orientational order of guiding patterns in the first step and the lattice matching between the transient guiding cylinders and the restored spheres. The successful application of SDA yields a single-grain of 2D crystalline hexagonal nanoarray with an exceptional long-range order, which is confirmed by employing image treating algorithms and grazing incidence small-angle X-ray scattering (GISAXS) measurements. The suggested SDA strategy is found to be effective for large-scale nanopatterning with no lithographic tools.
Collapse
Affiliation(s)
- Ye Chan Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - So Youn Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
25
|
Singh M, Agrawal A, Wu W, Masud A, Armijo E, Gonzalez D, Zhou S, Terlier T, Zhu C, Strzalka J, Matyjaszewski K, Bockstaller M, Douglas JF, Karim A. Soft-Shear-Aligned Vertically Oriented Lamellar Block Copolymers for Template-Free Sub-10 nm Patterning and Hybrid Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12824-12835. [PMID: 35245016 DOI: 10.1021/acsami.1c23865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The template-free unidirectional alignment of lamellar block copolymers (l-BCPs) for sub-10 nm high-resolution patterning and hybrid multicomponent nanostructures is important for technological applications. We demonstrate a modified soft-shear-directed self-assembly (SDSA) approach for aligning pristine l-BCPs and l-BCPs with incorporated polymer-grafted nanoparticles (PGNPs), as well as the l-BCP conversion to aligned gold nanowires, and hybrid of metallic gold nanowire and dielectric silica nanoparticle in the form of line-dot nanostructures. The smallest patterns have a half-pitch as small as 9.8 nm. In all cases, soft-shear is achieved using a high-molecular-mass polymer topcoat layer, with support on a neutral bottom layer. We also show that the hybrid line-dot nanostructures have a red-shifted plasmonic response in comparison to neat gold nanowires. These template-free aligned BCPs and nanowires have potential use in nanopatterning applications, and the line-dot nanostructures should be useful in the sensing of biomolecules and other molecular species based on the plasmonic response of the nanowires.
Collapse
Affiliation(s)
- Maninderjeet Singh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Aman Agrawal
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Wenjie Wu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ali Masud
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Edward Armijo
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Damian Gonzalez
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Shenghui Zhou
- Materials Science Program, University of Houston, Houston, Texas 77204, United States
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, Texas 77005, United States
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jack F Douglas
- Material Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
26
|
Yang GG, Choi HJ, Han KH, Kim JH, Lee CW, Jung EI, Jin HM, Kim SO. Block Copolymer Nanopatterning for Nonsemiconductor Device Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12011-12037. [PMID: 35230079 DOI: 10.1021/acsami.1c22836] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Block copolymer (BCP) nanopatterning has emerged as a versatile nanoscale fabrication tool for semiconductor devices and other applications, because of its ability to organize well-defined, periodic nanostructures with a critical dimension of 5-100 nm. While the most promising application field of BCP nanopatterning has been semiconductor devices, the versatility of BCPs has also led to enormous interest from a broad spectrum of other application areas. In particular, the intrinsically low cost and straightforward processing of BCP nanopatterning have been widely recognized for their large-area parallel formation of dense nanoscale features, which clearly contrasts that of sophisticated processing steps of the typical photolithographic process, including EUV lithography. In this Review, we highlight the recent progress in the field of BCP nanopatterning for various nonsemiconductor applications. Notable examples relying on BCP nanopatterning, including nanocatalysts, sensors, optics, energy devices, membranes, surface modifications and other emerging applications, are summarized. We further discuss the current limitations of BCP nanopatterning and suggest future research directions to open up new potential application fields.
Collapse
Affiliation(s)
- Geon Gug Yang
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hee Jae Choi
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Kyu Hyo Han
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jang Hwan Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Chan Woo Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Edwin Ino Jung
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hyeong Min Jin
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
27
|
Jin HM, Lee SE, Kim S, Kim JY, Han Y, Kim BH. Directed high‐χ block copolymer
self‐assembly
by laser writing on silicon substrate. J Appl Polym Sci 2022. [DOI: 10.1002/app.52291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hyeong Min Jin
- Department of Organic Materials Engineering Chungnam National University Daejeon Republic of Korea
- Neutron Science Center Korea Atomic Energy Research Institute (KAERI) Daejeon Republic of Korea
| | - Su Eon Lee
- Department of Robotics and Mechatronics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Republic of Korea
| | - Simon Kim
- Department of Robotics and Mechatronics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Republic of Korea
| | - Ju Young Kim
- Reality Devices Research Division Electronics and Telecommunications Research Institute (ETRI) Daejeon Republic of Korea
| | - Young‐Soo Han
- Neutron Science Center Korea Atomic Energy Research Institute (KAERI) Daejeon Republic of Korea
| | - Bong Hoon Kim
- Department of Robotics and Mechatronics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Republic of Korea
| |
Collapse
|
28
|
Park J, Staiger A, Mecking S, Winey KI. Sub-3-Nanometer Domain Spacings of Ultrahigh-χ Multiblock Copolymers with Pendant Ionic Groups. ACS NANO 2021; 15:16738-16747. [PMID: 34617441 DOI: 10.1021/acsnano.1c06734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We investigated the temperature-dependent phase behavior and interaction parameter of polyethylene-based multiblock copolymers with pendant ionic groups. These step-growth polymers contain short polyester blocks with a single Li+SO3- group strictly alternating with polyethylene blocks of x-carbons (PESxLi, x = 12, 18, 23). At room temperature, these polymers exhibit layered morphologies with semicrystalline polyethylene blocks. Upon heating above the melting point (∼130 °C), PES18Li shows two order-to-order transitions involving Ia3̅d gyroid and hexagonal morphologies. For PES12Li, an order-to-disorder transition accompanies the melting of the polyethylene blocks. Notably, a Flory-Huggins interaction parameter was determined from the disordered morphologies of PES12Li using mean-field theory: χ(T) = 77.4/T + 2.95 (T in Kelvin) and χ(25 °C) ≈ 3.21. This ultrahigh χ indicates that the polar ionic and nonpolar polyethylene segments are highly incompatible and affords well-ordered morphologies even when the combined length of the alternating blocks is just 18-29 backbone atoms. This combination of ultrahigh χ and short multiblocks produces sub-3-nm domain spacings that facilitate the control of block copolymer self-assembly for various fields of study, including nanopatterning.
Collapse
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anne Staiger
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
29
|
Liu R, Huang H, Sun Z, Alexander-Katz A, Ross CA. Metallic Nanomeshes Fabricated by Multimechanism Directed Self-Assembly. ACS NANO 2021; 15:16266-16276. [PMID: 34647737 DOI: 10.1021/acsnano.1c05315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The directed self-assembly of block copolymers (BCPs) is a powerful motif for the continued scaling of feature sizes for nanoscale devices. A multimechanism directed self-assembly (MMDSA) method is described that generates orthogonal meshes from a polystyrene-b-poly-2-vinylpyridine BCP that is subsequently metallized with Pt. The MMDSA process takes advantage of three different mechanisms, trench wall guidance, edge nucleation, and underlayer guidance, to align the mesh with respect to substrate features. The mechanisms and their interactions are investigated via both experiments and dissipative particle dynamics simulations. MMDSA is applied to produce well-aligned conductive nanomeshes and then is extended to fabricate multicomponent metallic structures with 2D/3D hybrid morphologies.
Collapse
Affiliation(s)
- Runze Liu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hejin Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zehao Sun
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Pound-Lana G, Bézard P, Petit-Etienne C, Cavalaglio S, Cunge G, Cabannes-Boué B, Fleury G, Chevalier X, Zelsmann M. Dry-Etching Processes for High-Aspect-Ratio Features with Sub-10 nm Resolution High-χ Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49184-49193. [PMID: 34636239 DOI: 10.1021/acsami.1c13503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Directed self-assembly of block copolymers (BCP) is a very attractive technique for the realization of functional nanostructures at high resolution. In this work, we developed full dry-etching strategies for BCP nanolithography using an 18 nm pitch lamellar silicon-containing block copolymer. Both an oxidizing Ar/O2 plasma and a nonoxidizing H2/N2 plasma are used to remove the topcoat material of our BCP stack and reveal the perpendicular lamellae. Under Ar/O2 plasma, an interfacial layer stops the etch process at the topcoat/BCP interface, which provides an etch-stop but also requires an additional CF4-based breakthrough plasma for further etching. This interfacial layer is not present in H2/N2. Increasing the H2/N2 ratio leads to more profound modifications of the silicon-containing lamellae, for which a chemistry in He/N2/O2 rather than Ar/O2 plasma produces a smoother and more regular lithographic mask. Finally, these features are successfully transferred into silicon, silicon-on-insulator, and silicon nitride substrates. This work highlights the performance of a silicon-containing block copolymer at 18 nm pitch to pattern relevant hard-mask materials for various applications, including microelectronics.
Collapse
Affiliation(s)
- Gwenaelle Pound-Lana
- Univ. Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Philippe Bézard
- Univ. Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Camille Petit-Etienne
- Univ. Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Sébastien Cavalaglio
- Univ. Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Gilles Cunge
- Univ. Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | | | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Xavier Chevalier
- ARKEMA FRANCE, GRL, Route Nationale 117, BP34, 64170 Lacq, France
| | - Marc Zelsmann
- Univ. Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| |
Collapse
|
31
|
Qiu M, Du W, Luo X, Zhu S, Luo Y, Zhao J. Vapor-Phase Molecular Doping in Covalent Organosiloxane Network Thin Films Via a Lewis Acid-Base Interaction for Enhanced Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 14:22719-22727. [PMID: 34652900 DOI: 10.1021/acsami.1c13257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Incorporating inorganic components in organosiloxane polymer thin films for enhanced mechanical properties could enable better durability and longevity of functional coatings for a multitude of applications. However, molecularly dispersing the inorganic dopants while preserving the cyclosiloxane rings represents a challenge for cross-linked organosiloxane networks. Here, we report a molecular doping strategy using vapor-phase infiltration. On the basis of the proper Lewis acid-base interaction between diethyl zinc (DEZ) and cyclotrisiloxane rings, we achieved a complete infiltration of the organometallic precursors and well-distributed Zn-OH terminal groups formed in the initiated chemical vapor deposited poly(1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane) (PV3D3) films. X-ray photoelectron spectroscopy and nanoscale infrared spectroscopy together with density functional theory simulation reveal that the formation of a Lewis acid-base adduct rather than a ring-opening process is possibly involved in anchoring DEZ in the cross-linked network of PV3D3. Because of the incorporation of Zn-OH components, the organic-inorganic hybrid films obtained via our vapor-phase molecular doping exhibit a 10.2% larger elastic modulus and 67.0% higher hardness than the pristine PV3D3. Unveiling the reaction mechanisms between organometallic precursors and cross-linked organic networks provides new insights for expanding the vapor-phase processing strategies for engineering hybrid materials at the nanoscale.
Collapse
Affiliation(s)
- Mingjun Qiu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weiwei Du
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinyu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Siyuan Zhu
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, China
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yingwu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Junjie Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
32
|
Affiliation(s)
- Brian A. Collins
- Physics and Astronomy Washington State University Pullman Washington USA
| | - Eliot Gann
- Material Measurement Laboratory National Institute of Standards and Technology Gaithersburg Maryland USA
| |
Collapse
|
33
|
Roy D, Naskar B, Bala T. Exploring Langmuir-Blodgett technique to investigate effect of various subphase conditions on monolayers formed by amphiphilic block co-polymers tetronic 701 and tetronic 90R4. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Robertson M, Zhou Q, Ye C, Qiang Z. Developing Anisotropy in Self-Assembled Block Copolymers: Methods, Properties, and Applications. Macromol Rapid Commun 2021; 42:e2100300. [PMID: 34272778 DOI: 10.1002/marc.202100300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Indexed: 01/03/2023]
Abstract
Block copolymers (BCPs) self-assembly has continually attracted interest as a means to provide bottom-up control over nanostructures. While various methods have been demonstrated for efficiently ordering BCP nanodomains, most of them do not generically afford control of nanostructural orientation. For many applications of BCPs, such as energy storage, microelectronics, and separation membranes, alignment of nanodomains is a key requirement for enabling their practical use or enhancing materials performance. This review focuses on summarizing research progress on the development of anisotropy in BCP systems, covering a variety of topics from established aligning techniques, resultant material properties, and the associated applications. Specifically, the significance of aligning nanostructures and the anisotropic properties of BCPs is discussed and highlighted by demonstrating a few promising applications. Finally, the challenges and outlook are presented to further implement aligned BCPs into practical nanotechnological applications, where exciting opportunities exist.
Collapse
Affiliation(s)
- Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Qingya Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Changhuai Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
35
|
Ginige G, Song Y, Olsen BC, Luber EJ, Yavuz CT, Buriak JM. Solvent Vapor Annealing, Defect Analysis, and Optimization of Self-Assembly of Block Copolymers Using Machine Learning Approaches. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28639-28649. [PMID: 34100583 DOI: 10.1021/acsami.1c05056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly of block copolymers (BCPs) is an alternative patterning technique that promises high resolution and density multiplication with lower costs. The defectivity of the resulting nanopatterns remains too high for many applications in microelectronics and is exacerbated by small variations of processing parameters, such as film thickness, and fluctuations of solvent vapor pressure and temperature, among others. In this work, a solvent vapor annealing (SVA) flow-controlled system is combined with design of experiments (DOE) and machine learning (ML) approaches. The SVA flow-controlled system enables precise optimization of the conditions of self-assembly of the high Flory-Huggins interaction parameter (χ) hexagonal dot-array forming BCP, poly(styrene-b-dimethylsiloxane) (PS-b-PDMS). The defects within the resulting patterns at various length scales are then characterized and quantified. The results show that the defectivity of the resulting nanopatterned surfaces is highly dependent upon very small variations of the initial film thicknesses of the BCP, as well as the degree of swelling under the SVA conditions. These parameters also significantly contribute to the quality of the resulting pattern with respect to grain coarsening, as well as the formation of different macroscale phases (single and double layers and wetting layers). The results of qualitative and quantitative defect analyses are then compiled into a single figure of merit (FOM) and are mapped across the experimental parameter space using ML approaches, which enable the identification of the narrow region of optimum conditions for SVA for a given BCP. The result of these analyses is a faster and less resource intensive route toward the production of low-defectivity BCP dot arrays via rational determination of the ideal combination of processing factors. The DOE and machine learning-enabled approach is generalizable to the scale-up of self-assembly-based nanopatterning for applications in electronic microfabrication.
Collapse
Affiliation(s)
- Gayashani Ginige
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Youngdong Song
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Brian C Olsen
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Erik J Luber
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Cafer T Yavuz
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Advanced Membranes and Porous Materials Center (AMPM), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jillian M Buriak
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
36
|
Oh J, Shin M, Kim IS, Suh HS, Kim Y, Kim JK, Bang J, Yeom B, Son JG. Shear-Rolling Process for Unidirectionally and Perpendicularly Oriented Sub-10-nm Block Copolymer Patterns on the 4 in Scale. ACS NANO 2021; 15:8549-8558. [PMID: 33979144 DOI: 10.1021/acsnano.1c00358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shear alignment of the block copolymer (BCP) thin film is one of the promising directed self-assembly (DSA) methodologies for the unidirectional alignment of sub-10 nm microdomains of BCPs for next-generation nanolithography and nanowire-grid polarizers. However, because of the differences in the surface/interfacial energies at the top surface/bottom interface, the shear-induced ordering of BCP nanopatterns has been restricted to BCPs with spherical and cylindrical nanopatterns and cannot be realized for high-aspect-ratio perpendicular lamellar structures, which is essential for practical application to semiconductor pattern processes. It is still a difficult challenge to fabricate the unidirectional alignment in a short time over a large area. In this study, we propose an approach for combining the shear-rolling process with the filtered plasma treatment of BCP films for the fabrication of unidirectionally aligned and perpendicularly oriented lamellar nanostructures. This approach enables fabrication within 1 min on a 4 in scale. We treated filtered plasma on the BCP film for perpendicular orientation and executed the hot-rolling process with different roller and stage speeds. Large-scale shear was generated only at the location where the BCP film was in contact with both the roller and stage, effectively applying shear stress to a large area of the BCP film within a short time. The repeated application of this shear-rolling process can achieve a higher level of unidirectional alignment. Our aligned BCP vertical lamellae were used to fabricate a high-aspect-ratio sub-10-nm-wide metallic nanowire array via dry/wet processes. In addition, shear-rolling with chemoepitaxy patterns can achieve higher orientational order and lower defectivity.
Collapse
Affiliation(s)
- Jinwoo Oh
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Minkyung Shin
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - In Soo Kim
- Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | | | - YongJoo Kim
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Jai Kyeong Kim
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Joona Bang
- Department of Chemical & Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jeong Gon Son
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
37
|
Recent Advances in Sequential Infiltration Synthesis (SIS) of Block Copolymers (BCPs). NANOMATERIALS 2021; 11:nano11040994. [PMID: 33924480 PMCID: PMC8069880 DOI: 10.3390/nano11040994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022]
Abstract
In the continuous downscaling of device features, the microelectronics industry is facing the intrinsic limits of conventional lithographic techniques. The development of new synthetic approaches for large-scale nanopatterned materials with enhanced performances is therefore required in the pursuit of the fabrication of next-generation devices. Self-assembled materials as block copolymers (BCPs) provide great control on the definition of nanopatterns, promising to be ideal candidates as templates for the selective incorporation of a variety of inorganic materials when combined with sequential infiltration synthesis (SIS). In this review, we report the latest advances in nanostructured inorganic materials synthesized by infiltration of self-assembled BCPs. We report a comprehensive description of the chemical and physical characterization techniques used for in situ studies of the process mechanism and ex situ measurements of the resulting properties of infiltrated polymers. Finally, emerging optical and electrical properties of such materials are discussed.
Collapse
|
38
|
Kim KH, Kim M, Moon J, Huh J, Bang J. Bottlebrush Copolymer as Surface Neutralizer for Vertical Alignment of Block Copolymer Nanodomains in Thin Films. ACS Macro Lett 2021; 10:346-353. [PMID: 35549064 DOI: 10.1021/acsmacrolett.0c00879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein we designed bottlebrush copolymers for use as a neutral additive to block copolymer (BCP) thin films in which they are segregated to the interfaces via architectural effects and produce nonpreferential interfaces to induce perpendicular orientation of BCP microdomains. Two BCP systems were employed, a conventional poly(styrene-b-methyl methacrylate) (PS-b-PMMA) with relatively low χ and similar surface energies between blocks, and a high χ poly(styrene-b-methacrylic acid) (PS-b-PMAA) with distinct surface energies. The bottlebrushes, with either short side-chains of PS-r-PMMA or PS-r-PMAA random copolymers, were synthesized via ring-opening metathesis polymerization (ROMP). Remarkably, it was observed that the top and bottom interfaces of both BCP films were enriched with bottlebrush copolymers, regardless of the surface energy difference between blocks, hence, vertically oriented microdomains were achieved for both BCP systems. This can be attributed to the screening of polymer interactions by a good solvent during the spin-casting process, allowing architectural effects to play a role in surface segregation of bottlebrush copolymers, as confirmed by contact angle measurements and time-of-flight secondary ion mass spectroscopy (TOF-SIMS). We believe that this concept can be further extended to various applications that require polymer films with functional surfaces.
Collapse
Affiliation(s)
- Ki Hyun Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Mincheol Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Junsoo Moon
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
39
|
Chevalier X, Gomes Correia C, Pound-Lana G, Bézard P, Sérégé M, Petit-Etienne C, Gay G, Cunge G, Cabannes-Boué B, Nicolet C, Navarro C, Cayrefourcq I, Müller M, Hadziioannou G, Iliopoulos I, Fleury G, Zelsmann M. Lithographically Defined Cross-Linkable Top Coats for Nanomanufacturing with High-χ Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11224-11236. [PMID: 33621463 DOI: 10.1021/acsami.1c00694] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The directed self-assembly (DSA) of block copolymers (BCPs) is a powerful method for the manufacture of high-resolution features. Critical issues remain to be addressed for successful implementation of DSA, such as dewetting and controlled orientation of BCP domains through physicochemical manipulations at the BCP interfaces, and the spatial positioning and registration of the BCP features. Here, we introduce novel top-coat (TC) materials designed to undergo cross-linking reactions triggered by thermal or photoactivation processes. The cross-linked TC layer with adjusted composition induces a mechanical confinement of the BCP layer, suppressing its dewetting while promoting perpendicular orientation of BCP domains. The selection of areas of interest with perpendicular features is performed directly on the patternable TC layer via a lithography step and leverages attractive integration pathways for the generation of locally controlled BCP patterns and nanostructured BCP multilayers.
Collapse
Affiliation(s)
- Xavier Chevalier
- ARKEMA FRANCE, GRL, Route Nationale 117, BP34 64170 Lacq, France
| | - Cindy Gomes Correia
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Gwenaelle Pound-Lana
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Philippe Bézard
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Matthieu Sérégé
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Camille Petit-Etienne
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Guillaume Gay
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Gilles Cunge
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | | | - Célia Nicolet
- ARKEMA FRANCE, GRL, Route Nationale 117, BP34 64170 Lacq, France
| | | | - Ian Cayrefourcq
- ARKEMA FRANCE, GRL, Route Nationale 117, BP34 64170 Lacq, France
| | - Marcus Müller
- Georg-August Universität Göttingen, Institute for Theoretical Physics, 37077 Göttingen, Germany
| | - Georges Hadziioannou
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Ilias Iliopoulos
- Laboratoire PIMM, Arts et Métiers Institute of Technology, CNRS, Cnam, HESAM Université, 151 Boulevard de l'Hôpital, 75013 Paris, France
| | - Guillaume Fleury
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Marc Zelsmann
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| |
Collapse
|
40
|
Nowak SR, Lachmayr KK, Yager KG, Sita LR. Stable Thermotropic 3D and 2D Double Gyroid Nanostructures with Sub‐2‐nm Feature Size from Scalable Sugar–Polyolefin Conjugates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Samantha R. Nowak
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kätchen K. Lachmayr
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Lawrence R. Sita
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
41
|
Nowak SR, Lachmayr KK, Yager KG, Sita LR. Stable Thermotropic 3D and 2D Double Gyroid Nanostructures with Sub‐2‐nm Feature Size from Scalable Sugar–Polyolefin Conjugates. Angew Chem Int Ed Engl 2021; 60:8710-8716. [DOI: 10.1002/anie.202016384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Samantha R. Nowak
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kätchen K. Lachmayr
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Lawrence R. Sita
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
42
|
Gleason KK. Controlled Release Utilizing Initiated Chemical Vapor Deposited (iCVD) of Polymeric Nanolayers. Front Bioeng Biotechnol 2021; 9:632753. [PMID: 33634089 PMCID: PMC7902001 DOI: 10.3389/fbioe.2021.632753] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
This review will focus on the controlled release of pharmaceuticals and other organic molecules utilizing polymeric nanolayers grown by initiated chemical vapor deposited (iCVD). The iCVD layers are able conform to the geometry of the underlying substrate, facilitating release from one- and two-dimensional nanostructures with high surface area. The reactors for iCVD film growth can be customized for specific substrate geometries and scaled to large overall dimensions. The absence of surface tension in vapor deposition processes allows the synthesis of pinhole-free layers, even for iCVD layers <10 nm thick. Such ultrathin layers also provide rapid transport of the drug across the polymeric layer. The mild conditions of the iCVD process avoid damage to the drug which is being encapsulated. Smart release is enabled by iCVD hydrogels which are responsive to pH, temperature, or light. Biodegradable iCVD layers have also be demonstrated for drug release.
Collapse
Affiliation(s)
- Karen K Gleason
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
43
|
|
44
|
Franchina Vergel NA, Post LC, Sciacca D, Berthe M, Vaurette F, Lambert Y, Yarekha D, Troadec D, Coinon C, Fleury G, Patriarche G, Xu T, Desplanque L, Wallart X, Vanmaekelbergh D, Delerue C, Grandidier B. Engineering a Robust Flat Band in III-V Semiconductor Heterostructures. NANO LETTERS 2021; 21:680-685. [PMID: 33337891 DOI: 10.1021/acs.nanolett.0c04268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electron states in semiconductor materials can be modified by quantum confinement. Adding to semiconductor heterostructures the concept of lateral geometry offers the possibility to further tailor the electronic band structure with the creation of unique flat bands. Using block copolymer lithography, we describe the design, fabrication, and characterization of multiorbital bands in a honeycomb In0.53Ga0.47As/InP heterostructure quantum well with a lattice constant of 21 nm. Thanks to an optimized surface quality, scanning tunnelling spectroscopy reveals the existence of a strong resonance localized between the lattice sites, signature of a p-orbital flat band. Together with theoretical computations, the impact of the nanopatterning imperfections on the band structure is examined. We show that the flat band is protected against the lateral and vertical disorder, making this industry-standard system particularly attractive for the study of exotic phases of matter.
Collapse
Affiliation(s)
- Nathali A Franchina Vergel
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, 59000 Lille, France
| | - L Christiaan Post
- Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Davide Sciacca
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, 59000 Lille, France
| | - Maxime Berthe
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, 59000 Lille, France
| | - François Vaurette
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, 59000 Lille, France
| | - Yannick Lambert
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, 59000 Lille, France
| | - Dmitri Yarekha
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, 59000 Lille, France
| | - David Troadec
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, 59000 Lille, France
| | - Christophe Coinon
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, 59000 Lille, France
| | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Gilles Patriarche
- CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), University Paris-Saclay, 91120 Palaiseau, France
| | - Tao Xu
- Sino-European School of Technology, Shanghai University, 200444 Shanghai, China
| | - Ludovic Desplanque
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, 59000 Lille, France
| | - Xavier Wallart
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, 59000 Lille, France
| | - Daniel Vanmaekelbergh
- Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Christophe Delerue
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, 59000 Lille, France
| | - Bruno Grandidier
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, 59000 Lille, France
| |
Collapse
|
45
|
Tu KH, Huang H, Lee S, Lee W, Sun Z, Alexander-Katz A, Ross CA. Machine Learning Predictions of Block Copolymer Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2005713. [PMID: 33206426 DOI: 10.1002/adma.202005713] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Directed self-assembly of block copolymers is a key enabler for nanofabrication of devices with sub-10 nm feature sizes, allowing patterning far below the resolution limit of conventional photolithography. Among all the process steps involved in block copolymer self-assembly, solvent annealing plays a dominant role in determining the film morphology and pattern quality, yet the interplay of the multiple parameters during solvent annealing, including the initial thickness, swelling, time, and solvent ratio, makes it difficult to predict and control the resultant self-assembled pattern. Here, machine learning tools are applied to analyze the solvent annealing process and predict the effect of process parameters on morphology and defectivity. Two neural networks are constructed and trained, yielding accurate prediction of the final morphology in agreement with experimental data. A ridge regression model is constructed to identify the critical parameters that determine the quality of line/space patterns. These results illustrate the potential of machine learning to inform nanomanufacturing processes.
Collapse
Affiliation(s)
- Kun-Hua Tu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hejin Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sangho Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wonmoo Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zehao Sun
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
46
|
Huang H, Liu R, Ross CA, Alexander-Katz A. Self-Directed Self-Assembly of 3D Tailored Block Copolymer Nanostructures. ACS NANO 2020; 14:15182-15192. [PMID: 33074654 DOI: 10.1021/acsnano.0c05417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Directed self-assembly (DSA) of block copolymers (BCPs) provides a powerful tool to fabricate various 2D nanostructures. However, it still remains a challenge to extend DSA to make uniform and complex 3D nanostructures through BCP self-assembly. In this paper, we introduce a method to fabricate various nanostructures in 3D and test it using simulations. In particular, we employ dissipative particle dynamics (DPD) simulation to demonstrate that uniform multilayer nanostructures can be achieved by alternating the stacking of two "orthogonal" BCPs films, AB copolymer film and AC copolymer film, without the need to cross-link or etch any of the components. The assembly of a new layer occurs on top of the previous bottom layer, and thus the structural information from the substrate is propagated upward in the film, a process we refer to as self-directed self-assembly (SDSA). If this process is repeated many times, one can have tailored multilayer nanostructures. Furthermore, the natural (bulk) phases of the block copolymers in each layer do not need to be the same, so one can achieve complex 3D assemblies that are not possible with a single-phase 3D system. This method in conjunction with grapho (or chemo) epitaxy is able to evolve a surface pattern into a 3D nanostructure. Here we show several examples of nanostructures fabricated by this process, which include aligned cylinders, spheres on top of cylinders, and orthogonal nanomeshes. Our work should be useful for creating complex 3D nanostructures using self-assembly.
Collapse
Affiliation(s)
- Hejin Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Runze Liu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
47
|
Toth K, Osuji CO, Yager KG, Doerk GS. High-throughput morphology mapping of self-assembling ternary polymer blends. RSC Adv 2020; 10:42529-42541. [PMID: 35516747 PMCID: PMC9057993 DOI: 10.1039/d0ra08491c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/13/2020] [Indexed: 11/23/2022] Open
Abstract
Multicomponent blending is a convenient yet powerful approach to rationally control the material structure, morphology, and functional properties in solution-deposited films of block copolymers and other self-assembling nanomaterials. However, progress in understanding the structural and morphological dependencies on blend composition is hampered by the time and labor required to synthesize and characterize a large number of discrete samples. Here, we report a new method to systematically explore a wide composition space in ternary blends. Specifically, the blend composition space is divided into gradient segments deposited sequentially on a single wafer by a new gradient electrospray deposition tool, and characterized using high-throughput grazing-incidence small-angle X-ray scattering. This method is applied to the creation of a ternary morphology diagram for a cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymer blended with PS and PMMA homopolymers. Using “wet brush” homopolymers of very low molecular weight (∼1 kg mol−1), we identify well-demarcated composition regions comprising highly ordered cylinder, lamellae, and sphere morphologies, as well as a disordered phase at high homopolymer mass fractions. The exquisite granularity afforded by this approach also helps to uncover systematic dependencies among self-assembled morphology, topological grain size, and domain period as functions of homopolymer mass fraction and PS : PMMA ratio. These results highlight the significant advantages afforded by blending low molecular weight homopolymers for block copolymer self-assembly. Meanwhile, the high-throughput, combinatorial approach to investigating nanomaterial blends introduced here dramatically reduces the time required to explore complex process parameter spaces and is a natural complement to recent advances in autonomous X-ray characterization. Compositionally graded electrospray deposition combined with grazing incidence small angle X-ray scattering forms a high-throughput approach for mapping phase behavior in ternary mixtures as demonstrated here using block copolymer blends.![]()
Collapse
Affiliation(s)
- Kristof Toth
- Department of Chemical and Environmental Engineering, Yale University New Haven Connecticut 06520 USA
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Kevin G Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory Upton New York 11973 USA
| | - Gregory S Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory Upton New York 11973 USA
| |
Collapse
|
48
|
Chen K, Hu X, Zhu N, Guo K. Design, Synthesis, and Self-Assembly of Janus Bottlebrush Polymers. Macromol Rapid Commun 2020; 41:e2000357. [PMID: 32844547 DOI: 10.1002/marc.202000357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/02/2020] [Indexed: 12/12/2022]
Abstract
Janus bottlebrush polymers are a class of special molecular brushes, which have two immiscible side chains on the repeating unit of the backbone. The characteristic architectures of Janus bottlebrush polymers enable unique self-assembly properties and broad applications. Recently, remarkable advances of Janus bottlebrush polymers have been achieved for polymer chemistry and material science. This review summarizes the synthetic strategies of Janus bottlebrush polymers, and highlights the self-assembly applications. Finally, the challenges and opportunities are proposed for the further development.
Collapse
Affiliation(s)
- Kerui Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| | - Xin Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,College of Materials Science and Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| |
Collapse
|
49
|
Ferrarese Lupi F, Murataj I, Celegato F, Angelini A, Frascella F, Chiarcos R, Antonioli D, Gianotti V, Tiberto P, Pirri CF, Boarino L, Laus M. Tailored and Guided Dewetting of Block Copolymer/Homopolymer Blends. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- F. Ferrarese Lupi
- Nanoscience and Materials Division, Istituto Nazionale Ricerca Metrologica, Strada Delle Cacce 91, 10135 Torino, Italy
| | - I. Murataj
- Nanoscience and Materials Division, Istituto Nazionale Ricerca Metrologica, Strada Delle Cacce 91, 10135 Torino, Italy
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy
| | - F. Celegato
- Nanoscience and Materials Division, Istituto Nazionale Ricerca Metrologica, Strada Delle Cacce 91, 10135 Torino, Italy
| | - A. Angelini
- Nanoscience and Materials Division, Istituto Nazionale Ricerca Metrologica, Strada Delle Cacce 91, 10135 Torino, Italy
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy
| | - F. Frascella
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy
| | - R. Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università Del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - D. Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università Del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - V. Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università Del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - P. Tiberto
- Nanoscience and Materials Division, Istituto Nazionale Ricerca Metrologica, Strada Delle Cacce 91, 10135 Torino, Italy
| | - C. F. Pirri
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy
| | - L. Boarino
- Nanoscience and Materials Division, Istituto Nazionale Ricerca Metrologica, Strada Delle Cacce 91, 10135 Torino, Italy
| | - M. Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università Del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
50
|
Löfstrand A, Svensson J, Wernersson LE, Maximov I. Feature size control using surface reconstruction temperature in block copolymer lithography for InAs nanowire growth. NANOTECHNOLOGY 2020; 31:325303. [PMID: 32330916 DOI: 10.1088/1361-6528/ab8cef] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Here we present a method to control the size of the openings in hexagonally organized BCP thin films of poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) by using surface reconstruction. The surface reconstruction is based on selective swelling of the P4VP block in ethanol, and its extraction to the surface of the film, resulting in pores upon drying. We found that the BCP pore diameter increases with ethanol immersion temperature. In our case, the temperature range 18 to 60 °C allowed fine-tuning of the pore size between 14 and 22 nm. A conclusion is that even though the molecular weight of the respective polymer blocks is fixed, the PS-b-P4VP pore diameter can be tuned by controlling temperature during surface reconstruction. These results can be used for BCP-based nanofabrication in general, and for vertical nanowire growth in particular, where high pattern density and diameter control are of importance. Finally, we demonstrate successful growth of indium arsenide InAs vertical nanowires by selective-area metal-organic vapor phase epitaxy (MOVPE), using a silicon nitride mask patterned by the proposed PS-b-P4VP surface reconstruction lithography method.
Collapse
|