1
|
Liu H, Ma J, Xie M, Yang W, Wan S, Hong D, Wei Z, Tian Y. Sensitive Detection of Acoustic Vibration at Nanometer Scale. ACS Sens 2025; 10:3610-3616. [PMID: 40275509 DOI: 10.1021/acssensors.5c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The detection of vibrations at nanometer scale is crucial for a variety of applications. The spatial resolution of acoustic detection is limited to micrometers due to its long wavelength. Single-molecule probes with a gold nanorod (GNR) have been proposed to detect an acoustic wave at the nanometer scale at room temperature. However, the detection efficiency is extremely low due to the random distribution of probe molecules and GNRs, and the detection can be used only in solid phases. In this work, we chemically linked the GNR and probe molecules using dsDNA, which provided precise distance control. Compared to the previous work, the detection sensitivity was improved by 2 orders of magnitude, approaching the theoretical detection limit, and the detection efficiency was improved from below 1% to over 95%. Furthermore, such a dsDNA connection allows sensitive detection of acoustic wave under water by a single nanodetector for "listening" to musical sounds covering two octaves. These results suggest that our achievement in precise distance control represents a significant step toward the practical application of single molecule detection of acoustic wave.
Collapse
Affiliation(s)
- Hanyu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jinling Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mingcai Xie
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weiqing Yang
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sushu Wan
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Daocheng Hong
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhihong Wei
- Department of Forensic Science and Technology, Zhengzhou Police University, Zhengzhou, Henan 450000, China
| | - Yuxi Tian
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Chen L, Liu B, Markwell C, Liu J, He XD, Ghassemlooy Z, Torun H, Fu YQ, Yuan J, Liu Q, Farrell G, Wu Q. A nanonewton force sensor using a U-shape tapered microfiber interferometer. SCIENCE ADVANCES 2024; 10:eadk8357. [PMID: 38809971 PMCID: PMC11135392 DOI: 10.1126/sciadv.adk8357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Nanomechanical measurements, especially the detection of weak contact forces, play a vital role in many fields, such as material science, micromanipulation, and mechanobiology. However, it remains a challenging task to realize the measurement of ultraweak force levels as low as nanonewtons with a simple sensing configuration. In this work, an ultrasensitive all-fiber nanonewton force sensor structure based on a single-mode-tapered U-shape multimode-single-mode fiber probe is proposed and experimentally demonstrated with a limit of detection of ~5.4 nanonewtons. The use of the sensor is demonstrated by force measurement on a human hair sample to determine the spring constant of the hair. The results agree well with measurements using an atomic force microscope for the spring constant of the hair. Compared with other force sensors based on optical fiber in the literature, the proposed all-fiber force sensor provides a substantial advancement in the minimum detectable force possible, with the advantages of a simple configuration, ease of fabrication, and low cost.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China
- Optical Communications Research Group, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Bin Liu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China
| | - Christopher Markwell
- Optical Communications Research Group, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Juan Liu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China
| | - Xing-Dao He
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China
| | - Zabih Ghassemlooy
- Optical Communications Research Group, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Hamdi Torun
- Optical Communications Research Group, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Yong-Qing Fu
- Optical Communications Research Group, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Jinhui Yuan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Qiang Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Gerald Farrell
- School of Electrical and Electronic Engineering, City Campus, Technological University Dublin, Dublin D07 ADY7, Ireland
| | - Qiang Wu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China
- Optical Communications Research Group, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| |
Collapse
|
3
|
Zou M, Liao C, Chen Y, Gan Z, Liu S, Liu D, Liu L, Wang Y. Measurement of Interfacial Adhesion Force with a 3D-Printed Fiber-Tip Microforce Sensor. BIOSENSORS 2022; 12:629. [PMID: 36005024 PMCID: PMC9406145 DOI: 10.3390/bios12080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 05/27/2023]
Abstract
With the current trend of device miniaturization, the measurement and control of interfacial adhesion forces are increasingly important in fields such as biomechanics and cell biology. However, conventional fiber optic force sensors with high Young’s modulus (>70 GPa) are usually unable to measure adhesion forces on the micro- or nano-Newton level on the surface of micro/nanoscale structures. Here, we demonstrate a method for interfacial adhesion force measurement in micro/nanoscale structures using a fiber-tip microforce sensor (FTMS). The FTMS, with microforce sensitivity of 1.05 nm/μN and force resolution of up to 19 nN, is fabricated using femtosecond laser two-photon polymerization nanolithography to program a clamped-beam probe on the end face of a single-mode fiber. As a typical verification test, the micronewton-level contact and noncontact adhesion forces on the surfaces of hydrogels were measured by FTMS. In addition, the noncontact adhesion of human hair was successfully measured with the sensor.
Collapse
Affiliation(s)
- Mengqiang Zou
- Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Changrui Liao
- Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanping Chen
- Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zongsong Gan
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Shen Liu
- Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dejun Liu
- Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Li Liu
- Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong, China
| | - Yiping Wang
- Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Gudavadze I, Florin EL. Normal capillary forces on a spherical particle protruding from a thin liquid film and its application to swarming bacteria. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Li B, Wei Y, Li Q, Chen N, Li J, Liu L, Zhang J, Wang Y, Sun Y, Shi J, Wang L, Shao Z, Hu J, Fan C. Nanomechanical Induction of Autophagy-Related Fluorescence in Single Cells with Atomic Force Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102989. [PMID: 34708576 PMCID: PMC8693060 DOI: 10.1002/advs.202102989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/10/2021] [Indexed: 05/25/2023]
Abstract
Mechanistic understanding of how living systems sense, transduce, and respond to mechanical cues has important implications in development, physiology, and therapy. Here, the authors use an integrated atomic force microscope (AFM) and brightfield/epifluorescent microscope platform to precisely simulate living single cells or groups of cells under physiological conditions, in real time, concomitantly measuring the single-cell autophagic response and its transmission to neighboring cells. Dual-color fluorescence monitoring of the cellular autophagic response reveals the dynamics of autophagosome formation, degradation, and induction in neighboring contacting and noncontacting cells. Autophagosome formation is dependent on both the applied force and contact area of the AFM tip. More importantly, the enhancement of the autophagic responses in neighboring cells via a gap junction-dependent mechanism is observed. This AFM-based nanoacupuncture platform can serve as a tool for elucidating the primary mechanism underlying mechanical stimulation of living systems and other biomechanical therapeutics.
Collapse
Affiliation(s)
- Bin Li
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- Shanghai Synchrotron Radiation FacilityZhanjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Yuhui Wei
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- Shanghai Synchrotron Radiation FacilityZhanjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qian Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative Molecules and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Nan Chen
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
| | - Jiang Li
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- Shanghai Synchrotron Radiation FacilityZhanjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Lin Liu
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
| | - Jinjin Zhang
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- Shanghai Synchrotron Radiation FacilityZhanjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Ying Wang
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- Shanghai Synchrotron Radiation FacilityZhanjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Yanhong Sun
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- Shanghai Synchrotron Radiation FacilityZhanjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Jiye Shi
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
| | - Lihua Wang
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- Shanghai Synchrotron Radiation FacilityZhanjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Zhifeng Shao
- State Key Laboratory for Oncogenes and Bio‐ID CenterSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Jun Hu
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- Shanghai Synchrotron Radiation FacilityZhanjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative Molecules and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
6
|
Niroui F, Saravanapavanantham M, Han J, Patil JJ, Swager TM, Lang JH, Bulović V. Hybrid Approach to Fabricate Uniform and Active Molecular Junctions. NANO LETTERS 2021; 21:1606-1612. [PMID: 33534584 DOI: 10.1021/acs.nanolett.0c04043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molecules can serve as ultimate building blocks for extreme nanoscale devices. This requires their precise integration into functional heterojunctions, most commonly in the form of metal-molecule-metal architectures. Structural damage and nonuniformities caused by current fabrication techniques, however, limit their effective incorporation. Here, we present a hybrid fabrication approach enabling uniform and active molecular junctions. A template-stripping technique is developed to form electrodes with sub-nanometer smooth surfaces. Combined with dielectrophoretic trapping of colloidal nanorods, uniform sub-5 nm junctions are achieved. Uniquely, in our design, the top contact is mechanically free to move under an applied stimulus. Using this, we investigate the electromechanical tuning of the junction and its tunneling conduction. Here, the molecules help control sub-nanometer mechanical modulation, which is conventionally challenging due to instabilities caused by surface adhesive forces. Our versatile approach provides a platform to develop and study active molecular junctions for emerging applications in electronics, plasmonics, and electromechanical devices.
Collapse
Affiliation(s)
- Farnaz Niroui
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mayuran Saravanapavanantham
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinchi Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jatin J Patil
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey H Lang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vladimir Bulović
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Tang Y, Liu H, Pan J, Zhang Z, Xu Y, Yao N, Zhang L, Tong L. Optical Micro/Nanofiber-Enabled Compact Tactile Sensor for Hardness Discrimination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4560-4566. [PMID: 33435667 DOI: 10.1021/acsami.0c20392] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Optical micro/nanofibers (MNFs) can be applied for ultrasensitive tactile sensing with fast response and compact size, which are attractive for restoring tactile information in minimally invasive robotic surgery and tissue palpation. Herein, we present a compact tactile sensor (CTS) with a diameter of 1.5 mm enabled by an optical MNF. The CTS provides continuous readouts for high-fidelity transduction of touch and pressure stimuli into interpretable optical signals, which permit instantaneous sensing of contact and pressure with pressure-sensing sensitivity as high as 0.108 mN-1 and a resolution of 0.031 mN. Working in pressing mode, the CTS can discriminate the difference in the hardness of two poly(dimethylsiloxane) (PDMS) slats (with shore A of 36 and 40) directly, a hardness resolving ability even beyond the human hands. Benefitting from the fast response feature, the CTS can also be operated in either scanning or tapping mode, making it feasible for hardness identification by analyzing the shape of the response curve. As a proof of concept, the hardness discrimination of a pork liver and an adductor muscle was experimentally demonstrated. Such MNF-enabled compact tactile sensors may pave the way for hardness sensing in tissue palpation, surgical robotics, and object identification.
Collapse
Affiliation(s)
- Yao Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haitao Liu
- Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311121, China
| | - Jing Pan
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhang Zhang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yue Xu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ni Yao
- Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311121, China
| | - Lei Zhang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311121, China
| | - Limin Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Sero JE, Stevens MM. Nanoneedle-Based Materials for Intracellular Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:191-219. [PMID: 33543461 DOI: 10.1007/978-3-030-58174-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoneedles, defined as high aspect ratio structures with tip diameters of 5 to approximately 500 nm, are uniquely able to interface with the interior of living cells. Their nanoscale dimensions mean that they are able to penetrate the plasma membrane with minimal disruption of normal cellular functions, allowing researchers to probe the intracellular space and deliver or extract material from individual cells. In the last decade, a variety of strategies have been developed using nanoneedles, either singly or as arrays, to investigate the biology of cancer cells in vitro and in vivo. These include hollow nanoneedles for soluble probe delivery, nanocapillaries for single-cell biopsy, nano-AFM for direct physical measurements of cytosolic proteins, and a wide range of fluorescent and electrochemical nanosensors for analyte detection. Nanofabrication has improved to the point that nanobiosensors can detect individual vesicles inside the cytoplasm, delineate tumor margins based on intracellular enzyme activity, and measure changes in cell metabolism almost in real time. While most of these applications are currently in the proof-of-concept stage, nanoneedle technology is poised to offer cancer biologists a powerful new set of tools for probing cells with unprecedented spatial and temporal resolution.
Collapse
Affiliation(s)
- Julia E Sero
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath, UK
| | - Molly M Stevens
- Institute for Biomedical Engineering, Imperial College London, London, UK.
| |
Collapse
|
9
|
Lipomi DJ, Fenning DP, Ong SP, Shah NJ, Tao AR, Zhang L. Exploring Frontiers in Research and Teaching: NanoEngineering and Chemical Engineering at UC San Diego. ACS NANO 2020; 14:9203-9216. [PMID: 32806076 DOI: 10.1021/acsnano.0c06256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
10
|
Abstract
Mechanotransduction, a conversion of mechanical forces into biochemical signals, is essential for human development and physiology. It is observable at all levels ranging from the whole body, organs, tissues, organelles down to molecules. Dysregulation results in various diseases such as muscular dystrophies, hypertension-induced vascular and cardiac hypertrophy, altered bone repair and cell deaths. Since mechanotransduction occurs at nanoscale, nanosciences and applied nanotechnology are powerful for studying molecular mechanisms and pathways of mechanotransduction. Atomic force microscopy, magnetic and optical tweezers are commonly used for force measurement and manipulation at the single molecular level. Force is also used to control cells, topographically and mechanically by specific types of nano materials for tissue engineering. Mechanotransduction research will become increasingly important as a sub-discipline under nanomedicine. Here we review nanotechnology approaches using force measurements and manipulations at the molecular and cellular levels during mechanotransduction, which has been increasingly play important role in the advancement of nanomedicine.
Collapse
Affiliation(s)
- Xiaowei Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Polarization-Dependent Lateral Optical Force of Subwavelength-Diameter Optical Fibers. MICROMACHINES 2019; 10:mi10100630. [PMID: 31546605 PMCID: PMC6843790 DOI: 10.3390/mi10100630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 11/30/2022]
Abstract
It is highly desirable to design optical devices with diverse optomechanical functions. Here, we investigate lateral optical force exerted on subwavelength-diameter (SD) optical fibers harnessed by input light modes with different polarizations. It is interesting to find that input light modes of circular or elliptical polarizations would bring about lateral optical force in new directions, which has not been observed in previous studies. By means of finite-difference time-domain (FDTD) simulations, detailed spatial distributions of the asymmetric transverse force density are revealed, meanwhile dependence of optical force on input light polarizations, fiber diameters, and inclination angles of fiber endfaces are all carefully discussed. It is believed that polarization-sensitive reflection, refraction, and diffraction of optical fields occur at the interface, i.e., fiber oblique endfaces, resulting in asymmetrically distributed optical fields and thereafter non-zero transverse optical force. We believe our new findings could be helpful for constructing future steerable optomechanical devices with more flexibility.
Collapse
|
12
|
Recent Advances in Plasmonic Sensor-Based Fiber Optic Probes for Biological Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9050949] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The survey focuses on the most significant contributions in the field of fiber optic plasmonic sensors (FOPS) in recent years. FOPSs are plasmonic sensor-based fiber optic probes that use an optical field to measure the biological agents. Owing to their high sensitivity, high resolution, and low cost, FOPS turn out to be potential alternatives to conventional biological fiber optic sensors. FOPS use optical transduction mechanisms to enhance sensitivity and resolution. The optical transduction mechanisms of FOPS with different geometrical structures and the photonic properties of the geometries are discussed in detail. The studies of optical properties with a combination of suitable materials for testing the biosamples allow for diagnosing diseases in the medical field.
Collapse
|
13
|
Li Y, Miao Y, Wang F, Wang J, Ma Z, Wang L, Di X, Zhang K. Serial-tilted-tapered fiber with high sensitivity for low refractive index range. OPTICS EXPRESS 2018; 26:34776-34788. [PMID: 30650896 DOI: 10.1364/oe.26.034776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
We propose an optical fiber sensor for low refractive index (RI) based on a serial-tilted-tapered fiber (STTF), which can be considered as two tightly concatenated micro Mach-Zehnder interferometers (MZIs). The STTF has a compact length of 959.8 μm, and can realize point detection and sensing in limited space. Numerical simulations reveal that a significantly strong evanescent field occurs around the STTF, making it to have the high sensitivity for surrounding RI. In the experiments, the interference dips show the nonlinear wavelength and intensity responses with increasing RI from 1.3395 to 1.3538. In the RI range of 1.3532~1.3538, the RI sensitivities reach the highest value of 2300 nm/RIU and -16183.33 dB/RIU. Moreover, the transmission spectrum of the STTF is low sensitive to temperature. These results indicate that our proposed sensor can be an appropriate candidate in most chemical and biological applications.
Collapse
|
14
|
Nanoscale fiber-optic force sensors for mechanical probing at the molecular and cellular level. Nat Protoc 2018; 13:2714-2739. [PMID: 30367169 DOI: 10.1038/s41596-018-0059-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is an ongoing need to develop ultrasensitive nanomechanical instrumentation that has high spatial and force resolution, as well as an ability to operate in various biological environments. Here, we present a compact nanofiber optic force transducer (NOFT) with sub-piconewton force sensitivity and a nanoscale footprint that paves the way to the probing of complex mechanical phenomena inside biomolecular systems. The NOFT platform comprises a SnO2 nanofiber optic equipped with a thin, compressible polymer cladding layer studded with plasmonic nanoparticles (NPs). This combination allows angstrom-level movements of the NPs to be quantified by tracking the optical scattering of the NPs as they interact with the near-field of the fiber. The distance-dependent optical signals can be converted to force once the mechanical properties of the compressible cladding are fully characterized. In this protocol, the details of the synthesis, characterization, and calibration of the NOFT system are described. The overall protocol, from the synthesis of the nanofiber optic devices to acquisition of nanomechanical data, takes ~72 h.
Collapse
|
15
|
Xiao T, Yu H, Zhang Y, Li Z. Transverse optical forces and sideways deflections in subwavelength-diameter optical fibers. OPTICS EXPRESS 2018; 26:6499-6506. [PMID: 29609338 DOI: 10.1364/oe.26.006499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
We investigate transverse optical forces exerted on the endface of subwavelength-diameter (SD) optical fiber by using a finite-difference time-domain (FDTD) method. Detailed spatial distributions of transverse optical force along the fiber axis can now be accessible, based on which the dependence of transverse optical force on transverse cross sections, oblique-cut endfaces and high-order mode are carefully studied. Our numerical results demonstrate that either asymmetric cross section or oblique-cut endface would dominantly contribute to the transverse optical force and the corresponding sideways deflection of SD fiber, which is in good agreement with previous experimental observations. The novel behavior of transverse optical force by the high-order mode would give rise to new guidelines for constructing high-performance optomechanical devices.
Collapse
|