1
|
Jardon KM, Umanets A, Gijbels A, Trouwborst I, Hul GB, Siebelink E, Vliex LM, Bastings JJ, Argamasilla R, Chenal E, Venema K, Afman LA, Goossens GH, Blaak EE. Distinct gut microbiota and metabolome features of tissue-specific insulin resistance in overweight and obesity. Gut Microbes 2025; 17:2501185. [PMID: 40336254 PMCID: PMC12064058 DOI: 10.1080/19490976.2025.2501185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/24/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
Insulin resistance (IR) is an early marker of cardiometabolic deterioration which may develop heterogeneously in key metabolic organs, including the liver (LIR) and skeletal muscle (MIR). This tissue-specific IR is characterized by distinct metabolic signatures, but the role of the gut microbiota in its etiology remains unclear. Here, we profiled the gut microbiota, its metabolites and the plasma metabolome in individuals with either a LIR or MIR phenotype (n = 233). We observed distinct microbial community structures LIR and MIR, and higher short-chain fatty acid (SCFA) producing bacteria, fecal SCFAs and branched-chain fatty acids and a higher postprandial plasma glucagon-like-peptide-1 response in LIR. In addition, we found variations in metabolome profiles and phenotype-specific associations between microbial taxa and functional metabolite groups. Overall, our study highlights association between gut microbiota and its metabolites composition with IR heterogeneity that can be targeted in precision-based strategies to improve cardiometabolic health. Clinicaltrials.gov registration: NCT03708419.
Collapse
Affiliation(s)
- Kelly M. Jardon
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Alexander Umanets
- Centre for Healthy Eating & Food Innovation, Maastricht University Campus Venlo, Venlo, The Netherlands
- Chair Group Youth Food and Health, Faculty of Science and Engineering, Maastricht University Campus Venlo, Venlo, The Netherlands
| | - Anouk Gijbels
- TiFN, Wageningen, The Netherlands
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Inez Trouwborst
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gabby B. Hul
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Els Siebelink
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Lars M.M. Vliex
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jacco J.A.J. Bastings
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | | | - Koen Venema
- Centre for Healthy Eating & Food Innovation, Maastricht University Campus Venlo, Venlo, The Netherlands
| | - Lydia A. Afman
- TiFN, Wageningen, The Netherlands
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Gijs H. Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ellen E. Blaak
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
2
|
Chen L, Tian L, Zhang Y, Shi Y, Yuan W, Zou Y, Zhang Q, Chen M, Zeng P. Updated Insights into Probiotic Interventions for Metabolic Syndrome: Mechanisms and Evidence. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10554-x. [PMID: 40332670 DOI: 10.1007/s12602-025-10554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/08/2025]
Abstract
Metabolic syndrome (MetS) is a disease with complex and diverse etiologies. Extrinsic factors such as diet and lifestyle can induce dysbiosis of gut microbes, compromising intestinal barrier integrity and leading to inflammation and insulin resistance, thereby advancing MetS. Probiotic interventions have shown potential in ameliorating gut microbiota dysbiosis and regulating host metabolism by assimilating lipids, metabolizing carbohydrates, and producing short-chain fatty acids (SCFA), indole compounds, secondary bile acids, conjugated linoleic acid (CLA), and other active ingredients. An increasing number of new strains are being isolated and validated for their effective roles intervening on MetS in animal and population studies. This review aims to provide updated insights into the pathogenic mechanisms of MetS, highlight the newly identified probiotic strains that have demonstrated improvements in MetS, and elucidate their mechanisms of action, with the aim of offering contemporary perspectives for the future use of probiotics in mitigating MetS.
Collapse
Affiliation(s)
- Lili Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Lvbo Tian
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Yuqi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Ying Shi
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Wenyi Yuan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Yue Zou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Qin Zhang
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong 510070, Guangzhou, China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China.
| |
Collapse
|
3
|
Riva A, Sahin E, Volpedo G, Catania NT, Venara I, Biagioli V, Balagura G, Amadori E, De Caro C, Cerulli Irelli E, Di Bonaventura C, Zara F, Sezerman OU, Russo E, Striano P. Medication-resistant epilepsy is associated with a unique gut microbiota signature. Epilepsia 2025. [PMID: 40119849 DOI: 10.1111/epi.18367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
OBJECTIVE Dysfunction of the microbiota-gut-brain axis is emerging as a new pathogenic mechanism in epilepsy, potentially impacting on medication response and disease outcome. We investigated the composition of the gut microbiota in a cohort of medication-resistant (MR) and medication-sensitive (MS) pediatric patients with epilepsy. METHODS Children with epilepsy of genetic and presumed genetic etiologies were evaluated clinically and subgrouped into MR and MS. Age-matched healthy controls (HCs) were also recruited. A food diary was used to evaluate nutritional habits, and the Rome IV questionnaire was used to record gastrointestinal symptoms. The microbiota composition was assessed in stool samples through 16S rRNA. α-Diversity (AD) and β-diversity (BD) were calculated, and differential abundance analysis was performed using linear multivariable models (significance: p.adj < .05). RESULTS Forty-one patients (MR:MS = 20:21) with a mean age of 7.2 years (±4.6 SD) and 27 age-matched HCs were recruited. No significant differences in AD were found when comparing patients and HCs. Significant positive correlation was found between AD and age (Chao1 p.adj = .0004, Shannon p.adj = .0004, Simpson p.adj = .0028). BD depicted a different bacterial profile in the epilepsy groups compared to HCs (MS vs. HC: Bray-Curtis F = 1.783, p = .001; Jaccard F = 1.24, p = .001; MR vs. HC: Bray-Curtis F = 2.24, p = .001; Jaccard F = 1.364, p = .001). At the genus level, the epilepsy groups were characterized by a significant increase in Hungatella (MS vs. HC: +4.95 log2 change; MR vs. HC: +6.72 log2 change); the [Eubacterium] siraeum group changed between the MR and MS subgroups. SIGNIFICANCE Epileptic patients display unique gut metagenomic signatures compared to HCs. Moreover, a different ratio of the butyrate-producing [Eubacterium] siraeum group suggests dissimilarities between patients based on the response to antiseizure medications.
Collapse
Affiliation(s)
- Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Eray Sahin
- Biostatistics and Bioinformatics PhD Program, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Acibadem, Turkey
| | - Greta Volpedo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Noemi Teresa Catania
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Isabel Venara
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Turin, Italy
| | - Valentina Biagioli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Elisabetta Amadori
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Carmen De Caro
- Department of Science of Health, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | | | | | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Osman Ugur Sezerman
- Biostatistics and Bioinformatics PhD Program, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Acibadem, Turkey
| | - Emilio Russo
- Department of Science of Health, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
4
|
Caesar R. The impact of novel probiotics isolated from the human gut on the gut microbiota and health. Diabetes Obes Metab 2025; 27 Suppl 1:3-14. [PMID: 39726216 PMCID: PMC11894790 DOI: 10.1111/dom.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
The gut microbiota plays a pivotal role in influencing the metabolism and immune responses of the body. A balanced microbial composition promotes metabolic health through various mechanisms, including the production of beneficial metabolites, which help regulate inflammation and support immune functions. In contrast, imbalance in the gut microbiota, known as dysbiosis, can disrupt metabolic processes and increase the risk of developing diseases, such as obesity, type 2 diabetes, and inflammatory disorders. The composition of the gut microbiota is dynamic and can be influenced by environmental factors such as diet, medication, and the consumption of live bacteria. Since the early 1900s, bacteria isolated from food and have been used as probiotics. However, the human gut also offers an enormous reservoir of bacterial strains, and recent advances in microbiota research have led to the discovery of strains with probiotic potentials. These strains, derived from a broad spectrum of microbial taxa, differ in their ecological properties and how they interact with their hosts. For most probiotics bacterial structural components and metabolites, such as short-chain fatty acids, contribute to the maintenance of metabolic and immunological homeostasis by regulating inflammation and reinforcing gut barrier integrity. Metabolites produced by probiotic strains can also be used for bacterial cross-feeding to promote a balanced microbiota. Despite the challenges related to safety, stability, and strain-specific properties, several newly identified strains offer great potential for personalized probiotic interventions, allowing for targeted health strategies.
Collapse
Affiliation(s)
- Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
5
|
Rotevatn AØ, Eagan TM, Tangedal S, Husebø GR, Ostridge K, Nielsen R. Gut microbiota in chronic obstructive pulmonary disease varies by CT-verified emphysema status. Eur Clin Respir J 2025; 12:2470499. [PMID: 40017817 PMCID: PMC11866649 DOI: 10.1080/20018525.2025.2470499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
Background and aim The association of the gut microbiota to chronic obstructive pulmonary disease (COPD) phenotypes is underexplored. We aimed to compare stool samples from patients with COPD and subjects without COPD and relate findings to emphysema status, exacerbation rate, blood eosinophil levels, symptom score, and lung function. Methods We report findings from a single-centre case-control study with 62 current and former smoking patients with COPD and 49 subjects without COPD. DNA was extracted from stool samples, and the V3V4-region of the bacterial 16S-rRNA gene was sequenced. Emphysema was defined based on thoracic computed tomography (CT thorax) low attenuating areas ≥/<10% at threshold -950 and -910 hounsfield units, respectively. Differential abundance of taxa was evaluated using Analysis of Composition of Microbes with Bias Correction (ANCOM-BC). Beta diversity was compared using a distance-based permanova-test. Results The genus Veillonella was decreased and a genus belonging to class Clostridia was increased in COPD compared with controls without COPD. The composition of microbes (beta diversity) differed in emphysema compared to controls, and 27 genera were differentially abundant in emphysema vs. controls. Nine of these genera belonged to the family Lachnospiraceae. Lung function, blood counts and COPD assessment test score correlated with several genera's relative abundance. Of the genera showing significant correlation to lung function, nine belonged to the family Lachnospiraceae. Conclusion The gut microbiota in COPD differs from that in healthy individuals, even more so in emphysema. In particular, future studies should look into the mechanisms and therapeutic potential of dysbiosis affecting the family Lachnospiraceae.
Collapse
Affiliation(s)
- Anders Ørskov Rotevatn
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Tomas Mikal Eagan
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Solveig Tangedal
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Gunnar Reksten Husebø
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kristoffer Ostridge
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rune Nielsen
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Khan MT, Bäckhed F. Development of Next Generation Probiotics for Cardiometabolic Diseases. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:18-22. [PMID: 40313602 PMCID: PMC12040764 DOI: 10.1007/s43657-025-00230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 05/03/2025]
Affiliation(s)
- Muhammed Tanweer Khan
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden 41345
- Biogaia AB, 112 27 Stockholm, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden 41345
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden 41345
| |
Collapse
|
7
|
Hindle VK, Veasley NM, Holscher HD. Microbiota-Focused Dietary Approaches to Support Health: A Systematic Review. J Nutr 2025; 155:381-401. [PMID: 39486521 PMCID: PMC11867136 DOI: 10.1016/j.tjnut.2024.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Diet affects the intestinal microbiota. Increasingly, research is linking the intestinal microbiota to various human health outcomes. Consumption of traditional prebiotics (inulin, fructo-oligosaccharides, and galacto-oligosaccharides) confers health benefits through substrate utilization by select intestinal microorganisms, namely Bifidobacterium and Lactobacilli spp. A similar but distinct concept focused on microorganisms to support human health is through direct consumption of certain live microorganisms recognized as probiotics, which classically include Lactobacilli or Bifidobacterium strains. With advances in sequencing technologies and culturing techniques, other novel functional intestinal microorganisms are being increasingly identified and studied to determine how they may underpin human health benefits. These novel microorganisms are targeted for enrichment within the autochthonous intestinal microbiota through dietary approaches and are also gaining interest as next-generation probiotics because of their purported beneficial properties. Thus, characterizing dietary approaches that nourish select microorganisms in situ is necessary to propel biotic-focused research forward. As such, we reviewed the literature to summarize findings on dietary approaches that nourish the human intestinal microbiota and benefit health to help fill the gap in knowledge on the connections between certain microorganisms, the metabolome, and host physiology. The overall objective of this systematic review was to summarize the impact of dietary interventions with the propensity to nourish certain intestinal bacteria, affect microbial metabolite concentrations, and support gastrointestinal, metabolic, and cognitive health in healthy adults. Findings from the 17 randomized controlled studies identified in this systematic review indicated that dietary interventions providing dietary fibers, phytonutrients, or unsaturated fatty acids differentially enriched Akkermansia, Bacteroides, Clostridium, Eubacterium, Faecalibacterium, Roseburia, and Ruminococcus species, with variable effects on microbial metabolites and subsequent associations with physiologic markers of gastrointestinal and metabolic health. These findings have implications for biotic-focused research on candidate prebiotic substrates as well as next-generation probiotics.
Collapse
Affiliation(s)
- Veronica K Hindle
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Nadine M Veasley
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States; Personalized Nutrition Initiative, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
8
|
Rampanelli E, Romp N, Troise AD, Ananthasabesan J, Wu H, Gül IS, De Pascale S, Scaloni A, Bäckhed F, Fogliano V, Nieuwdorp M, Bui TPN. Gut bacterium Intestinimonas butyriciproducens improves host metabolic health: evidence from cohort and animal intervention studies. MICROBIOME 2025; 13:15. [PMID: 39833973 PMCID: PMC11744835 DOI: 10.1186/s40168-024-02002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND The human gut microbiome strongly influences host metabolism by fermenting dietary components into metabolites that signal to the host. Our previous work has shown that Intestinimonas butyriciproducens is a prevalent commensal bacterium with the unique ability to convert dietary fructoselysine to butyrate, a well-known signaling molecule with proven health benefits. Dietary fructoselysine is an abundant Amadori product formed in foods during thermal treatment and is part of foods rich in dietary advanced glycation end products which have been associated with cardiometabolic disease. It is therefore of interest to investigate the causal role of this bacterium and fructoselysine metabolism in metabolic disorders. RESULTS We assessed associations of I. butyriciproducens with metabolic risk biomarkers at both strain and functional levels using a human cohort characterized by fecal metagenomic analysis. We observed that the level of the bacterial strain as well as fructoselysine fermentation genes were negatively associated with BMI, triglycerides, HbA1c, and fasting insulin levels. We also investigated the fructoselysine degradation capacity within the Intestinimonas genus using a culture-dependent approach and found that I. butyriciproducens is a key player in the butyrogenic fructoselysine metabolism in the gut. To investigate the function of I. butyriciproducens in host metabolism, we used the diet-induced obesity mouse model to mimic the human metabolic syndrome. Oral supplementation with I. butyriciproducens counteracted body weight gain, hyperglycemia, and adiposity. In addition, within the inguinal white adipose tissue, bacterial administration reduced inflammation and promoted pathways involved in browning and insulin signaling. The observed effects may be partly attributable to the formation of the short-chain fatty acids butyrate from dietary fructoselysine, as butyrate plasma and cecal levels were significantly increased by the bacterial strain, thereby contributing to the systemic effects of the bacterial treatment. CONCLUSIONS I. butyriciproducens ameliorates host metabolism in the context of obesity and may therefore be a good candidate for new microbiota-therapeutic approaches to prevent or treat metabolic diseases. Video Abstract.
Collapse
Affiliation(s)
- Elena Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Nadia Romp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Antonio Dario Troise
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055, Portici (Naples), Italy
| | | | - Hao Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan Microbiome Center, and Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | | | - Sabrina De Pascale
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055, Portici (Naples), Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055, Portici (Naples), Italy
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, 41345, Gothenburg, Sweden
| | - Vincenzo Fogliano
- Department of Food Quality and Design, Wageningen University, Wageningen, the Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Thi Phuong Nam Bui
- Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
9
|
Nychas E, Marfil-Sánchez A, Chen X, Mirhakkak M, Li H, Jia W, Xu A, Nielsen HB, Nieuwdorp M, Loomba R, Ni Y, Panagiotou G. Discovery of robust and highly specific microbiome signatures of non-alcoholic fatty liver disease. MICROBIOME 2025; 13:10. [PMID: 39810263 PMCID: PMC11730835 DOI: 10.1186/s40168-024-01990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases. RESULTS Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis. We identified highly specific microbiome signatures through building accurate machine learning models (accuracy = 0.845-0.917) for NAFLD with high portability (generalizable) and low prediction rate (specific) when applied to other metabolic diseases, as well as through a community approach involving differential co-abundance ecological networks. Moreover, using these signatures coupled with further mediation analysis and metabolic dependency modeling, we propose synergistic defined microbial consortia associated with NAFLD phenotype in overweight and lean individuals, respectively. CONCLUSION Our study reveals robust and highly specific NAFLD signatures and offers a more realistic microbiome-therapeutics approach over individual species for this complex disease. Video Abstract.
Collapse
Affiliation(s)
- Emmanouil Nychas
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany
| | - Andrea Marfil-Sánchez
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany
| | - Xiuqiang Chen
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany
| | - Mohammad Mirhakkak
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany
| | - Huating Li
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, 200233, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, 200233, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | | | - Max Nieuwdorp
- Amsterdam UMC, Location AMC, Department of Vascular Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Rohit Loomba
- Department of Medicine, MASLD Research Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yueqiong Ni
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, 200233, China.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, 07745, Germany.
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
10
|
Tiwari A, Ika Krisnawati D, Susilowati E, Mutalik C, Kuo TR. Next-Generation Probiotics and Chronic Diseases: A Review of Current Research and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27679-27700. [PMID: 39588716 DOI: 10.1021/acs.jafc.4c08702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The burgeoning field of microbiome research has profoundly reshaped our comprehension of human health, particularly highlighting the potential of probiotics and fecal microbiota transplantation (FMT) as therapeutic interventions. While the benefits of traditional probiotics are well-recognized, the efficacy and mechanisms remain ambiguous, and FMT's long-term effects are still being investigated. Recent advancements in high-throughput sequencing have identified gut microbes with significant health benefits, paving the way for next-generation probiotics (NGPs). These NGPs, engineered through synthetic biology and bioinformatics, are designed to address specific disease states with enhanced stability and viability. This review synthesizes current research on NGP stability, challenges in delivery, and their applications in preventing and treating chronic diseases such as diabetes, obesity, and cardiovascular diseases. We explore the physiological characteristics, safety profiles, and mechanisms of action of various NGP strains while also addressing the challenges and opportunities presented by their integration into clinical practice. The potential of NGPs to revolutionize microbiome-based therapies and improve clinical outcomes is immense, underscoring the need for further research to optimize their efficacy and ensure their safety.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Dyah Ika Krisnawati
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237 East Java, Indonesia
| | - Erna Susilowati
- Akademi Kesehatan Dharma Husada Kediri, Kediri, 64118 East Java, Indonesia
| | - Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Kumar S, Mahajan S, Kale D, Chourasia N, Khan A, Asati D, Kotnis A, Sharma VK. Insights into the gut microbiome of vitiligo patients from India. BMC Microbiol 2024; 24:440. [PMID: 39468434 PMCID: PMC11514916 DOI: 10.1186/s12866-024-03529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Vitiligo is an autoimmune disease characterized by loss of pigmentation in the skin. It affects 0.4 to 2% of the global population, but the factors that trigger autoimmunity remain elusive. Previous work on several immune-mediated dermatological disorders has illuminated the substantial roles of the gut microbiome in disease pathogenesis. Here, we examined the gut microbiome composition in a cohort of vitiligo patients and healthy controls from India, including patients with a family history of the disease. RESULTS Our results show significant alterations in the gut microbiome of vitiligo patients compared to healthy controls, affecting taxonomic and functional profiles as well as community structure. We observed a reduction in the abundance of several bacterial taxa commonly associated with a healthy gut microbiome and noted a decrease in the abundance of SCFA (Short Chain Fatty Acids) producing taxa in the vitiligo group. Observation of a higher abundance of genes linked to bacteria-mediated degradation of intestinal mucus suggested a potential compromise of the gut mucus barrier in vitiligo. Functional analysis also revealed a higher abundance of fatty acid and lipid metabolism-related genes in the vitiligo group. Combined analysis with data from a French cohort of vitiligo also led to the identification of common genera differentiating healthy and gut microbiome across populations. CONCLUSION Our observations, together with available data, strengthen the role of gut microbiome dysbiosis in symptom exacerbation and possibly pathogenesis in vitiligo. The reported microbiome changes also showed similarities with other autoimmune disorders, suggesting common gut microbiome-mediated mechanisms in autoimmune diseases. Further investigation can lead to the exploration of dietary interventions and probiotics for the management of these conditions.
Collapse
Affiliation(s)
- Sudhir Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Shruti Mahajan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Deeksha Kale
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Nidhi Chourasia
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Anam Khan
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Dinesh Asati
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, India.
| | - Vineet K Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
12
|
Rathaus M, Azem L, Livne R, Ron S, Ron I, Hadar R, Efroni G, Amir A, Braun T, Haberman Y, Tirosh A. Long-term metabolic effects of non-nutritive sweeteners. Mol Metab 2024; 88:101985. [PMID: 38977130 PMCID: PMC11347859 DOI: 10.1016/j.molmet.2024.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVE Excessive consumption of added sugars has been linked to the rise in obesity and associated metabolic abnormalities. Non-nutritive sweeteners (NNSs) offer a potential solution to reduce sugar intake, yet their metabolic safety remains debated. This study aimed to systematically assess the long-term metabolic effects of commonly used NNSs under both normal and obesogenic conditions. METHODS To ensure consistent sweetness level and controlling for the acceptable daily intake (ADI), eight weeks old C57BL/6 male mice were administered with acesulfame K (ace K, 535.25 mg/L), aspartame (411.75 mg/L), sucralose (179.5 mg/L), saccharin (80 mg/L), or steviol glycoside (Reb M, 536.25 mg/L) in the drinking water, on the background of either regular or high-fat diets (in high fat diet 60% of calories from fat). Water or fructose-sweetened water (82.3.gr/L), were used as controls. Anthropometric and metabolic parameters, as well as microbiome composition, were analyzed following 20-weeks of exposure. RESULTS Under a regular chow diet, chronic NNS consumption did not significantly affect body weight, fat mass, or glucose metabolism as compared to water consumption, with aspartame demonstrating decreased glucose tolerance. In diet-induced obesity, NNS exposure did not increase body weight or alter food intake. Exposure to sucralose and Reb M led to improved insulin sensitivity and decreased weight gain. Reb M specifically was associated with increased prevalence of colonic Lachnospiracea bacteria. CONCLUSIONS Long-term consumption of commonly used NNSs does not induce adverse metabolic effects, with Reb M demonstrating a mild improvement in metabolic abnormalities. These findings provide valuable insights into the metabolic impact of different NNSs, aiding in the development of strategies to combat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Moran Rathaus
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Loziana Azem
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rinat Livne
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Sophie Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Idit Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Rotem Hadar
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Gilat Efroni
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Amnon Amir
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Tzipi Braun
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel; Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amir Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
13
|
Yang F, Li J, Wei L, Qin S, Shi Q, Lu S, Chu S. The characteristics of intestinal microbiota in patients with type 2 diabetes and the correlation with the percentage of T-helper cells. Front Microbiol 2024; 15:1443743. [PMID: 39397795 PMCID: PMC11466775 DOI: 10.3389/fmicb.2024.1443743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024] Open
Abstract
Background Type 2 diabetes (T2D) is related to intestinal microflora changes and immune inflammation. We aimed to investigate the pattern of intestinal flora-systematic T helper (Th) cell linkage in T2D patients. Methods Participants with T2D diagnosed by physicians and healthy controls were enrolled in the study. The Th1, Th2, and Th17 cells from the peripheral blood were assessed by flow cytometry. The feces were collected. The V3-V4 variable region of 16S rRNA was sequenced and analyzed using bioinformatics. Principal coordinate analysis (PCoA) and non-metric multidimensional scaling (NMDS) analysis were performed to assess the beta diversity. The linear discriminant analysis (LDA) effect size (LEfSe) method was applied to identify amicrobial taxon specific to T2D. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was conducted to identify the metabolic pathways. A network analysis was conducted by constructing a co-occurrence network. Results The percentages of the Th1 and Th17 cells in the peripheral blood were higher in patients with T2D than in controls. Among the top 30 genera of the intestinal microbiota, the levels of Lachnospiraceae_NK4A136_group, Ruminococcaceae_UCG002, and Eubacterium_hallii_group were lower in the patients with T2D than in controls. In the LEfSe analysis, it was observed that the Lachnospiraceae and Ruminococcaceae families were significantly different between patients with T2D and controls. Moreover, the Th1/Th2 ratio was positively correlated with the abundance of the Lachnoclostridium and Ruminococcus_torques_group genera. In the network analysis, the Th1/Th2 ratio, Ruminococcaceae_UCG-002, and Lachnospiraceae_NK4A136_group were the important nodes. Conclusion This study provided a preliminary picture of the crosstalk between the intestinal microbiome and systematic Th cells in patients with T2D. The findings of the study suggested that the network relationship among the intestinal microbiota, metabolites, and CD4+T lymphocyte immunity was unbalanced in the patients with T2D, which might have promoted the development of T2D. This presents a therapeutic opportunity to modulate gut immune reaction and then chronic inflammation by manipulating microbiome-specific Th-cell response.
Collapse
Affiliation(s)
- Fan Yang
- Department of Endocrinology, Guilin People's Hospital, Guilin, China
- Research Service Department, Guilin People's Hospital, Guilin, China
| | - Jinyan Li
- Department of Endocrinology, Guilin People's Hospital, Guilin, China
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, China
- Medical Department, The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Longqin Wei
- Research Service Department, Guilin People's Hospital, Guilin, China
| | - Shenghua Qin
- Health Management Center, Guilin People's Hospital, Guilin, China
| | - Qingfeng Shi
- Laboratory Department, Guilin People's Hospital, Guilin, China
| | - Siyan Lu
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shuyuan Chu
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
14
|
Jan T, Negi R, Sharma B, Kumar S, Singh S, Rai AK, Shreaz S, Rustagi S, Chaudhary N, Kaur T, Kour D, Sheikh MA, Kumar K, Yadav AN, Ahmed N. Next generation probiotics for human health: An emerging perspective. Heliyon 2024; 10:e35980. [PMID: 39229543 PMCID: PMC11369468 DOI: 10.1016/j.heliyon.2024.e35980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Over recent years, the scientific community has acknowledged the crucial role of certain microbial strains inhabiting the intestinal ecosystem in promoting human health, and participating in various beneficial functions for the host. These microorganisms are now referred to as next-generation probiotics and are currently considered as biotherapeutic products and food or nutraceutical supplements. However, the majority of next-generation probiotic candidates pose nutritional demands and exhibit high sensitivity towards aerobic conditions, leading to numerous technological hurdles in large-scale production. This underscores the need for the development of suitable delivery systems capable of enhancing the viability and functionality of these probiotic strains. Currently, potential candidates for next generation probiotics (NGP) are being sought among gut bacteria linked to health, which include strains from the genera Bacteroids, Faecalibacterium, Akkermansia and Clostridium. In contrast to Lactobacillus spp. and Bifidobacterium spp., NGP, particularly Bacteroids spp. and Clostridium spp., appear to exhibit greater ambiguity regarding their potential to induce infectious diseases. The present review provides a comprehensive overview of NGPs in terms of their health beneficial effects, regulation framework and risk assessment targeting relevant criteria for commercialization in food and pharmaceutical markets.
Collapse
Affiliation(s)
- Tawseefa Jan
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystem Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Sarvesh Rustagi
- Depratment of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Nisha Chaudhary
- Depratment of Food Science and Technology, Agriculture University, Jodhpur, Rajasthan, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Mohd Aaqib Sheikh
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Krishan Kumar
- Department of Food Technology, Rajiv Gandhi University, Doimukh, Arunachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Naseer Ahmed
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| |
Collapse
|
15
|
Shen X, Ma C, Yang Y, Liu X, Wang B, Wang Y, Zhang G, Bian X, Zhang N. The Role and Mechanism of Probiotics Supplementation in Blood Glucose Regulation: A Review. Foods 2024; 13:2719. [PMID: 39272484 PMCID: PMC11394447 DOI: 10.3390/foods13172719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
With economic growth and improved living standards, the incidence of metabolic diseases such as diabetes mellitus caused by over-nutrition has risen sharply worldwide. Elevated blood glucose and complications in patients seriously affect the quality of life and increase the economic burden. There are limitations and side effects of current hypoglycemic drugs, while probiotics, which are safe, economical, and effective, have good application prospects in disease prevention and remodeling of intestinal microecological health and are gradually becoming a research hotspot for diabetes prevention and treatment, capable of lowering blood glucose and alleviating complications, among other things. Probiotic supplementation is a microbiologically based approach to the treatment of type 2 diabetes mellitus (T2DM), which can achieve anti-diabetic efficacy through the regulation of different tissues and metabolic pathways. In this study, we summarize recent findings that probiotic intake can achieve blood glucose regulation by modulating intestinal flora, decreasing chronic low-grade inflammation, modulating glucagon-like peptide-1 (GLP-1), decreasing oxidative stress, ameliorating insulin resistance, and increasing short-chain fatty acids (SCFAs) content. Moreover, the mechanism, application, development prospect, and challenges of probiotics regulating blood glucose were discussed to provide theoretical references and a guiding basis for the development of probiotic preparations and related functional foods regulating blood glucose.
Collapse
Affiliation(s)
- Xinyu Shen
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
16
|
Liu J, Chen Y, Peng C. Causal relationship between gut microbiota and diabetic complications: a two-sample Mendelian randomization study. Diabetol Metab Syndr 2024; 16:202. [PMID: 39164740 PMCID: PMC11334315 DOI: 10.1186/s13098-024-01424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Imbalances in gut microbiota (GM) have been proposed as a potential contributing factor to diabetic complications; however, the causal relationship remains incompletely understood. METHODS Summary statistics were obtained from genome-wide association studies (GWAS) of 196 gut microbial taxa, including 9 phyla, 16 classes, 20 orders, 32 families, and 119 genera. These data were then analyzed using mediation Mendelian randomization (MR) analyses to explore the potential mediating effect of diabetes complications risk factors on the relationship between gut microbiota and specific diabetic complications such as diabetic kidney disease (DKD), ketoacidosis, and diabetic retinopathy (DR). RESULTS In our Mendelian analysis, we observed negative associations between Bifidobacterial order and Actinomycete phylum with DKD in type 1 diabetes (T1D) as well as early DKD in T1D. Conversely, these taxa showed positive associations with ketoacidosis in type 2 diabetes (T2D). In reverse Mendelian analysis, we found that DR in both T1D and T2D as well as ketoacidosis in T2D affected the abundance of Eubacterium fissicaten genus and LachnospiraceaeUCG010 family within the gut microbiota. CONCLUSIONS Our findings provide compelling evidence for causal relationships between specific GM taxa and various diabetes complications. These insights contribute valuable knowledge for developing treatments targeting diabetes-related complications.
Collapse
Affiliation(s)
- Jinya Liu
- Department of Burn and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Yuanyuan Chen
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Cheng Peng
- Department of Burn and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
17
|
Attaye I, Witjes JJ, Koopen AM, van der Vossen EW, Zwirs D, Wortelboer K, Collard D, Kemper EM, Winkelmeijer M, Holst JJ, Hazen SL, Kuipers F, Stroes ES, Groen AK, de Vos WM, Nieuwdorp M, Herrema H. Oral Anaerobutyricum soehngenii augments glycemic control in type 2 diabetes. iScience 2024; 27:110455. [PMID: 39139405 PMCID: PMC11321313 DOI: 10.1016/j.isci.2024.110455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/21/2023] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
This randomized, double-blind, placebo-controlled trial investigated the impact of 14-day Anaerobutyricum soehngenii L2-7 supplementation on postprandial glucose levels in 25 White Dutch males with type 2 diabetes (T2D) on stable metformin therapy. The primary endpoint was the effect of A. soehngenii versus placebo on glucose excursions and variability as determined by continuous glucose monitoring. Secondary endpoints were changes in ambulatory 24-h blood pressure, incretins, circulating metabolites and excursions of plasma short-chain fatty acids (SCFAs) and bile acids upon a standardized meal. Results showed that A. soehngenii supplementation for 14 days significantly improved glycemic variability and mean arterial blood pressure, without notable changes in SCFAs, bile acids, incretin levels, or anthropometric parameters as compared to placebo-treated controls. Although well-tolerated and effective in improving glycemic control in the intervention group, further research in larger and more diverse populations is needed to generalize these findings.
Collapse
Affiliation(s)
- Ilias Attaye
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
| | - Julia J. Witjes
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
| | - Annefleur M. Koopen
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
| | | | - Diona Zwirs
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Koen Wortelboer
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
| | - Didier Collard
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Elles Marleen Kemper
- Department of Pharmacy and Clinical Pharmacology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Maaike Winkelmeijer
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jens J. Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Stanley L. Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Folkert Kuipers
- Department of Pediatrics and European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik S.G. Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Albert K. Groen
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Willem M. de Vos
- Wageningen University, Wageningen, the Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Gryaznova M, Smirnova Y, Burakova I, Syromyatnikov M, Chizhkov P, Popov E, Popov V. Changes in the Human Gut Microbiome Caused by the Short-Term Impact of Lactic Acid Bacteria Consumption in Healthy People. Probiotics Antimicrob Proteins 2024; 16:1240-1250. [PMID: 37365419 DOI: 10.1007/s12602-023-10111-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
The gut microbiome is one of the main factors affecting human health. It has been proven that probiotics can regulate the metabolism in the host body. A large number of people use probiotics not as medicines, but as a prophylactic supplement. The aim of our study was to evaluate the effect of lactic acid bacteria on the gut microbiome of healthy people using the V3 region of the 16S rRNA gene. Our study showed changes in the generic composition in the gut of healthy people when taking the supplement. There was an increase in the members responsible for the production of short-chain fatty acids in the gut of the host (Blautia, Fusicatenibacter, Eubacterium hallii group, Ruminococcus), as well as bacteria that improve intestinal homeostasis (Dorea and Barnesiella). There was also a decrease in the abundance of bacteria in the genera Catenibacterium, Hungatella, Escherichia-Shigella, and Pseudomonas, associated with an unhealthy profile of the human gut microbiome. An increase in members of the phylum Actinobacteriota was also observed, which has a positive effect on the host organism. Our results indicate that short-term prophylactic use of lactic acid bacteria-based supplements can be effective, as it contributes to a beneficial effect on the gut microbiome of healthy people.
Collapse
Affiliation(s)
- Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia.
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia.
| | - Pavel Chizhkov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Evgeny Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| | - Vasily Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| |
Collapse
|
19
|
Wang Y, Zhang Y, Wang Q, Fan Y, Li W, Liu M, Zhang X, Zhou W, Wang M, Jiang S, Shang E, Duan J. Multi-omics combined to explore the purging mechanism of Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124218. [PMID: 38959707 DOI: 10.1016/j.jchromb.2024.124218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex have been used together to treat constipation in the clinical practices for more than 2000 years. Nonetheless, their compatibility mechanism is still unclear. In this study, the amelioration of Rhei Radix et Rhizoma combined with Magnoliae Officinalis Cortex on constipation was systematically and comprehensively evaluated. The results showed that their compatibility could markedly shorten gastrointestinal transport time, increase fecal water content and frequency of defecation, improve gastrointestinal hormone disorders and protect colon tissue of constipation rats compared with the single drug. Furthermore, according to 16S rRNA sequencing in conjunction with UPLC-Q-TOF/MS, the combination of two herbal medications could greatly raise the number of salutary bacteria (Lachnospiraceae, Romboutsia and Subdoligranulum) while decreasing the abundance of pathogenic bacteria (Erysipelatoclostridiaceae). And two herb drugs could markedly improve the disorder of fecal metabolic profiles. A total of 7 different metabolites associated with constipation were remarkably shifted by the compatibility of two herbs, which were mainly related to arachidonic acid metabolism, alpha-linolenic acid metabolism, unsaturated fatty acid biosynthesis and other metabolic ways. Thus, the regulation of intestinal microbiome and its metabolism could be a potential target for Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex herb pair to treat constipation. Furthermore, the multi-omics approach utilized in this study, which integrated the microbiome and metabolome, had potential for investigating the mechanism of traditional Chinese medicines.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Yun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Quyi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Yuwen Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Wenwen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Meijuan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Xiaoxiao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Wenwen Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Mingyang Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| |
Collapse
|
20
|
Bui TPN. The Human Microbiome as a Therapeutic Target for Metabolic Diseases. Nutrients 2024; 16:2322. [PMID: 39064765 PMCID: PMC11280041 DOI: 10.3390/nu16142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The human microbiome functions as a separate organ in a symbiotic relationship with the host. Disruption of this host-microbe symbiosis can lead to serious health problems. Modifications to the composition and function of the microbiome have been linked to changes in host metabolic outcomes. Industrial lifestyles with high consumption of processed foods, alcoholic beverages and antibiotic use have significantly altered the gut microbiome in unfavorable ways. Therefore, understanding the causal relationship between the human microbiome and host metabolism will provide important insights into how we can better intervene in metabolic health. In this review, I will discuss the potential use of the human microbiome as a therapeutic target to improve host metabolism.
Collapse
Affiliation(s)
- Thi Phuong Nam Bui
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
21
|
Hasnain MA, Kang D, Moon GS. Research trends of next generation probiotics. Food Sci Biotechnol 2024; 33:2111-2121. [PMID: 39130671 PMCID: PMC11315851 DOI: 10.1007/s10068-024-01626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024] Open
Abstract
Gut represents one of the largest interfaces for the interaction of host factors and the environmental ones. Gut microbiota, largely dominated by bacterial community, plays a significant role in the health status of the host. The healthy gut microbiota fulfills several vital functions such as energy metabolism, disease protection, and immune modulation. Dysbiosis, characterized by microbial imbalance, can contribute to the development of various disorders, including intestinal, systemic, metabolic, and neurodegenerative conditions. Probiotics offer the potential to address dysbiosis and improve overall health. Advancements in high-throughput sequencing, bioinformatics, and omics have enabled mechanistic studies for the development of bespoke probiotics, referred to as next generation probiotics. These tailor-made probiotics have the potential to ameliorate specific disease conditions and thus fulfill the specific consumer needs. This review discusses recent updates on the most promising next generation probiotics, along with the challenges that must be addressed to translate this concept into reality.
Collapse
Affiliation(s)
- Muhammad Adeel Hasnain
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju, 27469 Republic of Korea
| | - Dae‑Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116 Republic of Korea
| | - Gi-Seong Moon
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju, 27469 Republic of Korea
- Major in Biotechnology, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
| |
Collapse
|
22
|
Ronen D, Rokach Y, Abedat S, Qadan A, Daana S, Amir O, Asleh R. Human Gut Microbiota in Cardiovascular Disease. Compr Physiol 2024; 14:5449-5490. [PMID: 39109979 DOI: 10.1002/cphy.c230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut ecosystem, termed microbiota, is composed of bacteria, archaea, viruses, protozoa, and fungi and is estimated to outnumber human cells. Microbiota can affect the host by multiple mechanisms, including the synthesis of metabolites and toxins, modulating inflammation and interaction with other organisms. Advances in understanding commensal organisms' effect on human conditions have also elucidated the importance of this community for cardiovascular disease (CVD). This effect is driven by both direct CV effects and conditions known to increase CV risk, such as obesity, diabetes mellitus (DM), hypertension, and renal and liver diseases. Cardioactive metabolites, such as trimethylamine N -oxide (TMAO), short-chain fatty acids (SCFA), lipopolysaccharides, bile acids, and uremic toxins, can affect atherosclerosis, platelet activation, and inflammation, resulting in increased CV incidence. Interestingly, this interaction is bidirectional with microbiota affected by multiple host conditions including diet, bile acid secretion, and multiple diseases affecting the gut barrier. This interdependence makes manipulating microbiota an attractive option to reduce CV risk. Indeed, evolving data suggest that the benefits observed from low red meat and Mediterranean diet consumption can be explained, at least partially, by the changes that these diets may have on the gut microbiota. In this article, we depict the current epidemiological and mechanistic understanding of the role of microbiota and CVD. Finally, we discuss the potential therapeutic approaches aimed at manipulating gut microbiota to improve CV outcomes. © 2024 American Physiological Society. Compr Physiol 14:5449-5490, 2024.
Collapse
Affiliation(s)
- Daniel Ronen
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Rokach
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abed Qadan
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samar Daana
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
23
|
Wang L, Gong C, Wang R, Wang J, Yang Z, Wang X. A pilot study on the characterization and correlation of oropharyngeal and intestinal microbiota in children with type 1 diabetes mellitus. Front Pediatr 2024; 12:1382466. [PMID: 38938502 PMCID: PMC11208633 DOI: 10.3389/fped.2024.1382466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Background Type 1 Diabetes Mellitus (T1DM) is one of the most common endocrine disorders of childhood and adolescence, showing a rapidly increasing prevalence worldwide. A study indicated that the composition of the oropharyngeal and gut microbiota changed in T1DM. However, no studies have yet associated the changes between the microbiomes of the oropharyngeal and intestinal sites, nor between the flora and clinical indicators. In this study, we examined the composition and characteristics of oropharyngeal and intestinal flora in patients with T1DM in compared to healthy children. We identified correlations between oropharyngeal and intestinal flora and evaluated their association with clinical laboratory tests in patients with T1DM. Methods The oropharyngeal and fecal samples from 13 T1DM and 20 healthy children were analyzed by high-throughput sequencing of the V3-V4 region of 16S rRNA. The associations between microbes and microorganisms in oropharyngeal and fecal ecological niches, as well as the correlation between these and clinical indicators were further analyzed. Results It was revealed that T1DM children had distinct microbiological characteristics, and the dominant oropharyngeal microbiota genus included Streptococcus, Prevotella, Leptotrichia, and Neisseria; that of intestinal microbiota included Blautia, Fusicatenibacter, Bacteroides, and Eubacterium_hallii_group. Furthermore, oropharyngeal Staphylococcus was significantly positively correlated with intestinal norank_f__Ruminococcaceae and Ruminococcus_torques_group in TIDM children. Moreover, in these children, differential genes in oropharyngeal and intestinal samples were enriched in metabolic pathways such as amino acid generation, fatty acid metabolism, and nucleotide sugar biosynthesis. Additionally, correlation analysis between the oropharyngeal/intestinal microbiome with laboratory tests showed significant correlations between several bacterial taxa in the oropharynx and intestines and glycated hemoglobin and C-peptide. Conclusion Unique microbial characteristics were found in the oropharynx and intestine in children with T1DM compared to healthy children. Positive correlations were found between changes in the relative abundance of oropharyngeal and gut microbiota in children with T1DM. Associations between the oropharyngeal/intestinal microbiota and laboratory investigations in children with T1DM suggest that the composition of the oropharyngeal and intestinal flora in children with T1DM may have some impact on glycemic control.
Collapse
Affiliation(s)
- Limin Wang
- College of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Chao Gong
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, China
| | - Ruiye Wang
- College of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Jinxue Wang
- College of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Zhanshuang Yang
- Jiamusi University Affiliated No. 1 Hospital, Jiamusi, China
| | - Xianhe Wang
- Jiamusi University Affiliated No. 1 Hospital, Jiamusi, China
| |
Collapse
|
24
|
Ma G, Yan H, Tye KD, Tang X, Luo H, Li Z, Xiao X. Effect of probiotic administration during pregnancy on the functional diversity of the gut microbiota in healthy pregnant women. Microbiol Spectr 2024; 12:e0041324. [PMID: 38687069 PMCID: PMC11237737 DOI: 10.1128/spectrum.00413-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Our study aims to investigate the impact of probiotic consumption during pregnancy on gut microbiota functional diversity in healthy pregnant women. Thirty-two pregnant women were randomly assigned to two groups. The probiotic group (PG) consisted of pregnant women who consumed triple viable Bifidobacterium longum, Lactobacillus delbrueckii bulgaricus, and Streptococcus thermophilus tablets from the 32nd week of pregnancy until delivery. The functional profiles of the gut microbiota were predicted through high-throughput 16S rRNA sequencing results using PICRUSt software and referencing the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In the gut microbiota of the PG, the genera Blautia and Ruminococcus, as well as the species Subdoligranulum, showed significantly higher relative abundances compared to the control group (CG) (P < 0.05). At Level 1 of the KEGG signaling pathways, there was a significant reduction in the functional genes of the gut microbiota involved in Organismal Systems in the PG (P < 0.05). In Level 2 of the KEGG signaling pathways, there was a significant reduction in the functional genes of the gut microbiota involved in Infectious Disease in the PG (P < 0.05). In Level 3 of the KEGG signaling pathways, the PG exhibited a significant increase in the functional genes of the gut microbiota involved in ABC transporters, Oxidative phosphorylation, Folate biosynthesis, and Biotin metabolism (P < 0.05). The CG showed a significant increase in the functional genes related to Cysteine and methionine metabolism, Vitamin B6 metabolism, Tuberculosis, and Vibrio cholerae pathogenic cycle (P < 0.05). In conclusion, our findings suggest that probiotic supplementation during pregnancy has a significant impact on functional metabolism in healthy pregnant women. IMPORTANCE Probiotics are considered beneficial to human health. There is limited understanding of how probiotic consumption during pregnancy affects the functional diversity of the gut microbiota. The aim of our study is to investigate the impact of probiotic consumption during pregnancy on the functional diversity of the gut microbiota. Our findings suggest that probiotic supplementation during pregnancy has a significant impact on functional metabolism. This could potentially open up new avenues for preventing various pregnancy-related complications. This also provides new insights into the effects of probiotic consumption during pregnancy on the gut microbiota and offers a convenient method for exploring the potential mechanisms underlying the impact of probiotics on the gut microbiota of pregnant women.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hao Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kian Deng Tye
- Department of Obstetrics and Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhe Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Hutchison ER, Yen MI, Peng HW, Davis CR, Vivas EI, Tallon MM, Bui TPN, de Vos WM, Yen CLE, Nieuwdorp M, Rey FE. The gut microbiome modulates the impact of Anaerobutyricum soehngenii supplementation on glucose homeostasis in mice. RESEARCH SQUARE 2024:rs.3.rs-4324489. [PMID: 38746233 PMCID: PMC11092834 DOI: 10.21203/rs.3.rs-4324489/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background There is growing interest in the development of next-generation probiotics to prevent or treat metabolic syndrome. Previous studies suggested that Anaerobutyricum soehngenii may represent a promising probiotic candidate. A recent human study showed that while A. soehngenii supplementation is well tolerated and safe, it resulted in variable responses among individuals with a subset of the subjects significantly benefiting from the treatment. We hypothesized that gut microbiome variation is linked to the heterogeneous responses to A. soehngenii treatment observed in humans. Results We colonized germ-free mice with fecal microbiota from human subjects that responded to A. soehngenii treatment (R65 and R55) and non-responder subjects (N96 and N40). Colonized mice were fed a high-fat diet (45% kcal from fat) to induce insulin resistance, and orally treated with either live A. soehngenii culture or heat-killed culture. We found that R65-colonized mice received a benefit in glycemic control with live A. soehngenii treatment while mice colonized with microbiota from the other donors did not. The glucose homeostasis improvements observed in R65-colonized mice were positively correlated with levels of cecal propionate, an association that was reversed in N40-colonized mice. To test whether the microbiome modulates the effects of propionate, R65- or N40-colonized mice were treated with tripropionin (TP, glycerol tripropionate), a pro-drug of propionate, or glycerol (control). TP supplementation showed a similar response pattern as that observed in live A. soehngenii treatment, suggesting that propionate may mediate the effects of A. soehngenii. We also found that TP supplementation to conventional mice reduces adiposity, improves glycemic control, and reduces plasma insulin compared to control animals supplemented with glycerol. Conclusions These findings highlight the importance of the microbiome on glycemic control and underscore the need to better understand personal microbiome-by-therapeutic interactions to develop more effective treatment strategies.
Collapse
|
26
|
García-Gavilán JF, Atzeni A, Babio N, Liang L, Belzer C, Vioque J, Corella D, Fitó M, Vidal J, Moreno-Indias I, Torres-Collado L, Coltell O, Toledo E, Clish C, Hernando J, Yun H, Hernández-Cacho A, Jeanfavre S, Dennis C, Gómez-Pérez AM, Martínez MA, Ruiz-Canela M, Tinahones FJ, Hu FB, Salas-Salvadó J. Effect of 1-year lifestyle intervention with energy-reduced Mediterranean diet and physical activity promotion on the gut metabolome and microbiota: a randomized clinical trial. Am J Clin Nutr 2024; 119:1143-1154. [PMID: 38428742 DOI: 10.1016/j.ajcnut.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The health benefits of the Mediterranean diet (MedDiet) have been linked to the presence of beneficial gut microbes and related metabolites. However, its impact on the fecal metabolome remains poorly understood. OBJECTIVES Our goal was to investigate the weight-loss effects of a 1-y lifestyle intervention based on an energy-reduced MedDiet coupled with physical activity (intervention group), compared with an ad libitum MedDiet (control group), on fecal metabolites, fecal microbiota, and their potential association with cardiovascular disease risk factors. METHODS A total of 400 participants (200 from each study group), aged 55-75 y, and at high cardiovascular disease risk, were included. Dietary and lifestyle information, anthropometric measurements, blood biochemical parameters, and stool samples were collected at baseline and after 1 y of follow-up. Liquid chromatography-tandem mass spectrometry was used to profile endogenous fecal metabolites, and 16S amplicon sequencing was employed to profile the fecal microbiota. RESULTS Compared with the control group, the intervention group exhibited greater weight loss and improvement in various cardiovascular disease risk factors. We identified intervention effects on 4 stool metabolites and subnetworks primarily composed of bile acids, ceramides, and sphingosines, fatty acids, carnitines, nucleotides, and metabolites of purine and the Krebs cycle. Some of these were associated with changes in several cardiovascular disease risk factors. In addition, we observed a reduction in the abundance of the genera Eubacterium hallii group and Dorea, and an increase in alpha diversity in the intervention group after 1 y of follow-up. Changes in the intervention-related microbiota profiles were also associated with alterations in different fecal metabolite subnetworks and some cardiovascular disease risk factors. CONCLUSIONS An intervention based on an energy-reduced MedDiet and physical activity promotion, compared with an ad libitum MedDiet, was associated with improvements in cardiometabolic risk factors, potentially through modulation of the fecal microbiota and metabolome. This trial was registered at https://www.isrctn.com/ as ISRCTN89898870 (https://doi.org/10.1186/ISRCTN89898870).
Collapse
Affiliation(s)
- Jesús F García-Gavilán
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Alessandro Atzeni
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| | - Nancy Babio
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Endocrinology, Institut d'Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Isabel Moreno-Indias
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Laura Torres-Collado
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Oscar Coltell
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Computer Languages and Systems, Jaume I University, Castellón, Spain
| | - Estefanía Toledo
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain; Epidemiología y Salud Pública, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Clary Clish
- Metabolomics Platform, The Broad Institute of MIT and Harvard, Boston, MA, United States
| | - Javier Hernando
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Huan Yun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Adrián Hernández-Cacho
- Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Sarah Jeanfavre
- Metabolomics Platform, The Broad Institute of MIT and Harvard, Boston, MA, United States
| | - Courtney Dennis
- Metabolomics Platform, The Broad Institute of MIT and Harvard, Boston, MA, United States
| | - Ana M Gómez-Pérez
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Maria Angeles Martínez
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Miguel Ruiz-Canela
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain; Epidemiología y Salud Pública, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Francisco J Tinahones
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jordi Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| |
Collapse
|
27
|
Chen Y, Xie C, Lei Y, Ye D, Wang L, Xiong F, Wu H, He Q, Zhou H, Li L, Xing J, Wang C, Zheng M. Theabrownin from Qingzhuan tea prevents high-fat diet-induced MASLD via regulating intestinal microbiota. Biomed Pharmacother 2024; 174:116582. [PMID: 38642504 DOI: 10.1016/j.biopha.2024.116582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
The aim of this study was to investigate whether the therapeutic effect of theabrownin extracted from Qingzhuan tea (QTB) on metabolic dysfunction-associated steatosis liver disease (MASLD) is related to the regulation of intestinal microbiota and its metabolite short-chain fatty acids (SCFAs). Mice were divided into four groups and received normal diet (ND), high-fat diet (HFD) and HFD+QTB (180, 360 mg/kg) for 8 weeks. The results showed that QTB significantly reduced the body weight of HFD mice, ameliorated liver lipid and dyslipidemia, and increased the level of intestinal SCFAs in HFD mice. The results of 16 S rRNA showed that the relative abundance of Bacteroides, Blautia and Lachnoclostridium and their main metabolites acetate and propionate were significantly increased after QTB intervention. The relative abundance of Colidextribacter, Faecalibaculum and Lactobacillus was significantly reduced. QTB can also significantly up-regulate the expression of ATGL, PPARα, FFAR2 and FFAR3, and inhibit the expression of LXRα, SREBP-1c, FAS and HMGCR genes. This makes it possible to act as a prebiotic to prevent MASLD.
Collapse
Affiliation(s)
- Yong Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Chen Xie
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China; Obstetrics and Gynecology of the Second Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, China
| | - Yining Lei
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Dan Ye
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Le Wang
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Fang Xiong
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Hui Wu
- Xianning Public Inspection Center of Hubei Province, Xianning 437100, China
| | - Qiang He
- Xianning Public Inspection Center of Hubei Province, Xianning 437100, China
| | - Hongfu Zhou
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Ling Li
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Jun Xing
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Cai Wang
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Min Zheng
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China.
| |
Collapse
|
28
|
Martínez-López YE, Neri-Rosario D, Esquivel-Hernández DA, Padron-Manrique C, Vázquez-Jiménez A, Sánchez-Castañeda JP, Girón-Villalobos D, Mendoza-Ortíz C, Reyes-Escogido MDL, Evia-Viscarra ML, Aguilar-Garcia A, Resendis-Antonio O, Guardado-Mendoza R. Effect of metformin and metformin/linagliptin on gut microbiota in patients with prediabetes. Sci Rep 2024; 14:9678. [PMID: 38678119 PMCID: PMC11055900 DOI: 10.1038/s41598-024-60081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Lifestyle modifications, metformin, and linagliptin reduce the incidence of type 2 diabetes (T2D) in people with prediabetes. The gut microbiota (GM) may enhance such interventions' efficacy. We determined the effect of linagliptin/metformin (LM) vs metformin (M) on GM composition and its relationship to insulin sensitivity (IS) and pancreatic β-cell function (Pβf) in patients with prediabetes. A cross-sectional study was conducted at different times: basal, six, and twelve months in 167 Mexican adults with prediabetes. These treatments increased the abundance of GM SCFA-producing bacteria M (Fusicatenibacter and Blautia) and LM (Roseburia, Bifidobacterium, and [Eubacterium] hallii group). We performed a mediation analysis with structural equation models (SEM). In conclusion, M and LM therapies improve insulin sensitivity and Pβf in prediabetics. GM is partially associated with these improvements since the SEM models suggest a weak association between specific bacterial genera and improvements in IS and Pβf.
Collapse
Affiliation(s)
- Yoscelina Estrella Martínez-López
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, León, Guanajuato, Mexico
| | - Daniel Neri-Rosario
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | | | - Cristian Padron-Manrique
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
| | - Jean Paul Sánchez-Castañeda
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - David Girón-Villalobos
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Cristian Mendoza-Ortíz
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | | | | | | | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico.
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación - Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico.
| | - Rodolfo Guardado-Mendoza
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, León, Guanajuato, Mexico.
| |
Collapse
|
29
|
Al-Fakhrany OM, Elekhnawy E. Next-generation probiotics: the upcoming biotherapeutics. Mol Biol Rep 2024; 51:505. [PMID: 38619680 PMCID: PMC11018693 DOI: 10.1007/s11033-024-09398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/28/2024] [Indexed: 04/16/2024]
Abstract
Recent and continuing advances in gut microbiome research have pointed out the role of the gut microbiota as an unexplored source of potentially beneficial probiotic microbes. Along the lines of these advances, both public awareness and acceptance of probiotics are increasing. That's why; academic and industrial research is dedicated to identifying and investigating new microbial strains for the development of next-generation probiotics (NGPs). At this time, there is a growing interest in NGPs as biotherapeutics that alter the gut microbiome and affect various diseases development. In this work, we have focused on some emergent and promising NGPs, specifically Eubacterium hallii, Faecalibacterium prausnitzii, Roseburia spp., Akkermansia muciniphila, and Bacteroides fragilis, as their presence in the gut can have an impact on the development of various diseases. Emerging studies point out the beneficial roles of these NGPs and open up novel promising therapeutic options. Interestingly, these NGPs were found to enhance gastrointestinal immunity, enhance immunotherapy efficacy in cancer patients, retain the intestinal barrier integrity, generate valuable metabolites, especially short-chain fatty acids, and decrease complications of chemotherapy and radiotherapy. Although many of these NGPs are considered promising for the prevention and treatment of several chronic diseases, research on humans is still lacking. Therefore, approval of these microbes from regulatory agencies is rare. Besides, some issues limit their wide use in the market, such as suitable methods for the culture and storage of these oxygen-sensitive microbes. The present review goes over the main points related to NGPs and gives a viewpoint on the key issues that still hinder their wide application. Furthermore, we have focused on the advancement in NGPs and human healthiness investigations by clarifying the limitations of traditional probiotic microorganisms, discussing the characteristics of emerging NGPs and defining their role in the management of certain ailments. Future research should emphasize the isolation, mechanisms of action of these probiotics, safety, and clinical efficacy in humans.
Collapse
Affiliation(s)
- Omnia Momtaz Al-Fakhrany
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
30
|
Duarte RDC, Iannetta PPM, Gomes AM, Vasconcelos MW. More than a meat- or synthetic nitrogen fertiliser-substitute: a review of legume phytochemicals as drivers of 'One Health' via their influence on the functional diversity of soil- and gut-microbes. FRONTIERS IN PLANT SCIENCE 2024; 15:1337653. [PMID: 38450400 PMCID: PMC10915056 DOI: 10.3389/fpls.2024.1337653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Legumes are essential to healthy agroecosystems, with a rich phytochemical content that impacts overall human and animal well-being and environmental sustainability. While these phytochemicals can have both positive and negative effects, legumes have traditionally been bred to produce genotypes with lower levels of certain plant phytochemicals, specifically those commonly termed as 'antifeedants' including phenolic compounds, saponins, alkaloids, tannins, and raffinose family oligosaccharides (RFOs). However, when incorporated into a balanced diet, such legume phytochemicals can offer health benefits for both humans and animals. They can positively influence the human gut microbiome by promoting the growth of beneficial bacteria, contributing to gut health, and demonstrating anti-inflammatory and antioxidant properties. Beyond their nutritional value, legume phytochemicals also play a vital role in soil health. The phytochemical containing residues from their shoots and roots usually remain in-field to positively affect soil nutrient status and microbiome diversity, so enhancing soil functions and benefiting performance and yield of following crops. This review explores the role of legume phytochemicals from a 'one health' perspective, examining their on soil- and gut-microbial ecology, bridging the gap between human nutrition and agroecological science.
Collapse
Affiliation(s)
- Rafael D. C. Duarte
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Pietro P. M. Iannetta
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
- Ecological Sciences, James Hutton Institute, Dundee, United Kingdom
| | - Ana M. Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
31
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
32
|
Wu K, Luo Q, Liu Y, Li A, Xia D, Sun X. Causal relationship between gut microbiota and gastrointestinal diseases: a mendelian randomization study. J Transl Med 2024; 22:92. [PMID: 38263233 PMCID: PMC10804519 DOI: 10.1186/s12967-024-04894-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Recent research increasingly highlights a strong correlation between gut microbiota and the risk of gastrointestinal diseases. However, whether this relationship is causal or merely coincidental remains uncertain. To address this, a Mendelian randomization (MR) analysis was undertaken to explore the connections between gut microbiota and prevalent gastrointestinal diseases. METHODS Genome-wide association study (GWAS) summary statistics for gut microbiota, encompassing a diverse range of 211 taxa (131 genera, 35 families, 20 orders, 16 classes, and 9 phyla), were sourced from the comprehensive MiBioGen study. Genetic associations with 22 gastrointestinal diseases were gathered from the UK Biobank, FinnGen study, and various extensive GWAS studies. MR analysis was meticulously conducted to assess the causal relationship between genetically predicted gut microbiota and these gastrointestinal diseases. To validate the reliability of our findings, sensitivity analyses and tests for heterogeneity were systematically performed. RESULTS The MR analysis yielded significant evidence for 251 causal relationships between genetically predicted gut microbiota and the risk of gastrointestinal diseases. This included 98 associations with upper gastrointestinal diseases, 81 with lower gastrointestinal diseases, 54 with hepatobiliary diseases, and 18 with pancreatic diseases. Notably, these associations were particularly evident in taxa belonging to the genera Ruminococcus and Eubacterium. Further sensitivity analyses reinforced the robustness of these results. CONCLUSIONS The findings of this study indicate a potential genetic predisposition linking gut microbiota to gastrointestinal diseases. These insights pave the way for designing future clinical trials focusing on microbiome-related interventions, including the use of microbiome-dependent metabolites, to potentially treat or manage gastrointestinal diseases and their associated risk factors.
Collapse
Affiliation(s)
- Kaiwen Wu
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Qiang Luo
- Department of Rheumatology and Immunology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ye Liu
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Aoshuang Li
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Demeng Xia
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaobin Sun
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China.
| |
Collapse
|
33
|
Tintoré M, Cuñé J, Vu LD, Poppe J, Van den Abbeele P, Baudot A, de Lecea C. A Long-Chain Dextran Produced by Weissella cibaria Boosts the Diversity of Health-Related Gut Microbes Ex Vivo. BIOLOGY 2024; 13:51. [PMID: 38248481 PMCID: PMC10813514 DOI: 10.3390/biology13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/19/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Long-chain dextrans are α-glucans that can be produced by lactic acid bacteria. NextDextTM, a specific long-chain dextran with a high degree of polymerisation, produced using Weissella cibaria, was recently shown to exert prebiotic potential in vitro. In this study, the ex vivo SIFR® technology, recently validated to provide predictive insights into gut microbiome modulation down to the species level, was used to investigate the effects of this long-chain dextran on the gut microbiota of six human adults that altogether covered different enterotypes. A novel community modulation score (CMS) was introduced based on the strength of quantitative 16S rRNA gene sequencing and the highly controlled ex vivo conditions. This CMS overcomes the limitations of traditional α-diversity indices and its application in the current study revealed that dextran is a potent booster of microbial diversity compared to the reference prebiotic inulin (IN). Long-chain dextran not only exerted bifidogenic effects but also consistently promoted Bacteroides spp., Parabacteroides distasonis and butyrate-producing species like Faecalibacterium prausnitzii and Anaerobutyricum hallii. Further, long-chain dextran treatment resulted in lower gas production compared to IN, suggesting that long-chain dextran could be better tolerated. The additional increase in Bacteroides for dextran compared to IN is likely related to the higher propionate:acetate ratio, attributing potential to long-chain dextran for improving metabolic health and weight management. Moreover, the stimulation of butyrate by dextran suggests its potential for improving gut barrier function and inflammation. Overall, this study provides a novel tool for assessing gut microbial diversity ex vivo and positions long-chain dextran as a substrate that has unique microbial diversity enhancing properties.
Collapse
Affiliation(s)
- Maria Tintoré
- AB Biotek Human Nutrition and Health, Peterborough PE7 8QJ, UK
| | - Jordi Cuñé
- AB Biotek Human Nutrition and Health, Peterborough PE7 8QJ, UK
| | - Lam Dai Vu
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (L.D.V.)
| | - Jonas Poppe
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (L.D.V.)
| | | | - Aurélien Baudot
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (L.D.V.)
| | - Carlos de Lecea
- AB Biotek Human Nutrition and Health, Peterborough PE7 8QJ, UK
| |
Collapse
|
34
|
Xu X, Zhang F, Ren J, Zhang H, Jing C, Wei M, Jiang Y, Xie H. Dietary intervention improves metabolic levels in patients with type 2 diabetes through the gut microbiota: a systematic review and meta-analysis. Front Nutr 2024; 10:1243095. [PMID: 38260058 PMCID: PMC10800606 DOI: 10.3389/fnut.2023.1243095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Background Poor dietary structure plays a pivotal role in the development and progression of type 2 diabetes and is closely associated with dysbiosis of the gut microbiota. Thus, the objective of this systematic review was to assess the impact of dietary interventions on improving gut microbiota and metabolic levels in patients with type 2 diabetes. Methods We conducted a systematic review and meta-analysis following the PRISMA 2020 guidelines. Results Twelve studies met the inclusion criteria. In comparison to baseline measurements, the high-fiber diet produced substantial reductions in FBG (mean difference -1.15 mmol/L; 95% CI, -2.24 to -0.05; I2 = 94%; P = 0.04), HbA1c (mean difference -0.99%; 95% CI, -1.93 to -0.03; I2 = 89%; P = 0.04), and total cholesterol (mean difference -0.95 mmol/L; 95% CI, -1.57 to -0.33; I2 = 77%; P = 0.003); the high-fat and low-carbohydrate diet led to a significant reduction in HbA1c (mean difference -0.98; 95% CI, -1.50 to -0.46; I2 = 0%; P = 0.0002). Within the experimental group (intervention diets), total cholesterol (mean difference -0.69 mmol/L; 95% CI, -1.27 to -0.10; I2 = 52%; P = 0.02) and LDL-C (mean difference -0.45 mmol/L; 95% CI, -0.68 to -0.22; I2 = 0%; P < 0.0001) experienced significant reductions in comparison to the control group (recommended diets for type 2 diabetes). However, no statistically significant differences emerged in the case of FBG, HbA1c, HOMA-IR, and HDL-C between the experimental and control groups. The high dietary fiber diet triggered an augmented presence of short-chain fatty acid-producing bacteria in the intestines of individuals with T2DM. In addition, the high-fat and low-carbohydrate diet resulted in a notable decrease in Bacteroides abundance while simultaneously increasing the relative abundance of Eubacterium. Compared to a specific dietary pattern, personalized diets appear to result in the production of a greater variety of beneficial bacteria in the gut, leading to more effective blood glucose control in T2D patients. Conclusion Dietary interventions hold promise for enhancing metabolic profiles in individuals with T2D through modulation of the gut microbiota. Tailored dietary regimens appear to be more effective than standard diets in improving glucose metabolism. However, given the limited and highly heterogeneous nature of the current sample size, further well-designed and controlled intervention studies are warranted in the future.
Collapse
Affiliation(s)
- Xiaoyu Xu
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Fan Zhang
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Jiajia Ren
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Haimeng Zhang
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Cuiqi Jing
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Muhong Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Bengbu Medical University, Bengbu, China
| | - Yuhong Jiang
- Department of Epidemiology and Health Statistics, School of Public Health, Bengbu Medical University, Bengbu, China
| | - Hong Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Bengbu Medical University, Bengbu, China
| |
Collapse
|
35
|
Zaplana T, Miele S, Tolonen AC. Lachnospiraceae are emerging industrial biocatalysts and biotherapeutics. Front Bioeng Biotechnol 2024; 11:1324396. [PMID: 38239921 PMCID: PMC10794557 DOI: 10.3389/fbioe.2023.1324396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
The Lachnospiraceae is a family of anaerobic bacteria in the class Clostridia with potential to advance the bio-economy and intestinal therapeutics. Some species of Lachnospiraceae metabolize abundant, low-cost feedstocks such as lignocellulose and carbon dioxide into value-added chemicals. Others are among the dominant species of the human colon and animal rumen, where they ferment dietary fiber to promote healthy gut and immune function. Here, we summarize recent studies of the physiology, cultivation, and genetics of Lachnospiraceae, highlighting their wide substrate utilization and metabolic products with industrial applications. We examine studies of these bacteria as Live Biotherapeutic Products (LBPs), focusing on in vivo disease models and clinical studies using them to treat infection, inflammation, metabolic syndrome, and cancer. We discuss key research areas including elucidation of intra-specific diversity and genetic modification of candidate strains that will facilitate the exploitation of Lachnospiraceae in industry and medicine.
Collapse
Affiliation(s)
| | | | - Andrew C. Tolonen
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
36
|
Xie Z, Xing L, Zhao M, Zhao L, Liu J, Li Y, Gan J, Chen S, Li H. Versatile, vigilance, and gut microbiome support the priority of high-ranking hens. Front Vet Sci 2023; 10:1324937. [PMID: 38179328 PMCID: PMC10764595 DOI: 10.3389/fvets.2023.1324937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Dominance hierarchy exists in social animals and shows profound impacts on animals' survival, physical and mental health, and reproductive success. Aggressive interaction, as the main indicator used to calculate social hierarchy, however, is not found in some female animals. In this study, we aimed to figure out the establishment of social hierarchy in hens that almost perform aggressive behaviors and investigated the interactions of social hierarchy with production performance and gut microbiome. Forty 49-day-old Qingyuan hens were randomly divided into four groups. The social hierarchy of hens was calculated by the relative position around the feeder. The rank 1 (R1), R2, R3, R4, R5, R6, R7, R8, R9, and R10 birds were determined in ascending order. Then, R1 and R2 birds (four duplicates, n = 8) were named as the high-ranking hens (HR) group, while R9 and R10 individuals were named as the low-ranking hens (LR) group (four duplicates, n = 8). The heart index (p = 0.01), number of visits per day, daily feed intake, and occupation time per day were higher in the HR group than LR group, but the LR group had a higher feed intake per visit than the HR group. The alpha diversity was significantly lower in the HR group than the LR group (p = 0.05). The relative abundance of phylum Firmicutes was higher while that of phylum Deferribacterota was lower in the HR group than LR group (p < 0.05). At the genus level, the relative abundance of Succinatimonas, Eubacterium hallii group, and Anaerostipes were higher in HR group than in LR group. The relative abundance of Bacteroides, Mucispirillum, Subdoligranulum, and Barnesiellaceae unclassified was higher in the LR group than HR group (p < 0.05). In conclusion, the rank of hens could be calculated by the relative position around the feeder when they compete for food. The dominant hens have a versatile. Moreover, they are more vigilant and have priority when foraging. Low-ranking hens adopt strategies to get enough food to sustain themselves. Hens of high-rank possess beneficial bacteria that use favorable substances to maintain the balance of the gut environment.
Collapse
Affiliation(s)
- Zhijiang Xie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Limin Xing
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengqiao Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jinling Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yushan Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiankang Gan
- Guangdong Tinoo’s Foods Group Co., Ltd., Qingyuan, China
| | - Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
37
|
Mu J, Lin Q, Liang Y. An update on the effects of food-derived active peptides on the intestinal microecology. Crit Rev Food Sci Nutr 2023; 63:11625-11639. [PMID: 35791779 DOI: 10.1080/10408398.2022.2094889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The intestinal microecology is a research hotspot, and neologisms related to the gut such as gut-brain axis, gut-lung axis, gut-bone axis, gut-skin axis, gut-renal axis, and gut-liver axis have emerged from recent research. Meticulous investigation has discovered that food-derived active peptides (FDAPs) are bioactive substances that optimize the structure of the gut microbiota to improve human health. However, few reviews have summarized and emphasized the nutritional value of FDAPs and their mechanisms of action in regulating the composition of the gut microbiota. We aim to provide an update on the latest research on FDAPs by comparing, summarizing, and discussing the potential food sources of FDAPs, their physiological functions, and regulatory effects on the intestinal microecology. The key findings are that few studies have analyzed the potential mechanisms and molecular pathways through which FDAPs maintain intestinal microecological homeostasis. We found that an imbalance in the ratio of Bacteroidetes and Firmicutes in the gut microbiota and abnormal production of short-chain fatty acids are key to the occurrence and development of various diseases. This review provides theoretical support for future comprehensive research on the digestion, distribution, metabolism, and excretion of FDAPs and the mechanisms underlying the interactions between FDAPs and the intestinal microecology.
Collapse
Affiliation(s)
- Jianfei Mu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
38
|
Cao F, Pan F, Gong X, Wang W, Xu Y, Cao P, Wang Y. Causal relationship between gut microbiota with subcutaneous and visceral adipose tissue: a bidirectional two-sample Mendelian Randomization study. Front Microbiol 2023; 14:1285982. [PMID: 38029216 PMCID: PMC10644100 DOI: 10.3389/fmicb.2023.1285982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background Numerous studies have revealed associations between gut microbiota and adipose tissue. However, the specific functional bacterial taxa and their causal relationships with adipose tissue production in different regions of the body remain unclear. Methods We conducted a bidirectional two-sample Mendelian Randomization (MR) study using aggregated data from genome-wide association studies (GWAS) for gut microbiota and adipose tissue. We employed methods such as inverse variance weighted (IVW), MR Egger, weighted median, simple mode, and weighted mode to assess the causal relationships between gut microbiota and subcutaneous adipose tissue (SAT) as well as visceral adipose tissue (VAT). Cochran's Q test, MR-Egger regression intercept analysis, and MR-PRESSO were used to test for heterogeneity, pleiotropy, and outliers of the instrumental variables, respectively. Reverse MR was employed to evaluate the reverse causal relationships between SAT, VAT, and gut microbiota with significant associations. Results IVW results demonstrated that Betaproteobacteria were protective factors for SAT production (OR = 0.88, 95% CI: 0.80-0.96, p = 0.005) and VAT production (OR = 0.91, 95% CI: 0.83-0.99, p = 0.030). Various bacterial taxa including Ruminococcaceae UCG002 (OR = 0.94, 95% CI: 0.89-0.99, p = 0.017), Methanobacteria class (OR = 0.96, 95% CI: 0.92-1.00, p = 0.029), and Burkholderiales (OR = 0.90, 95% CI: 0.83-0.98, p = 0.012) were associated only with decreased SAT production. Rikenellaceae RC9 gut group (OR = 1.05, 95% CI: 1.02-1.10, p = 0.005), Eubacterium hallii group (OR = 1.08, 95% CI: 1.01-1.15, p = 0.028), Peptococcaceae (OR = 1.08, 95% CI: 1.01-1.17, p = 0.034), and Peptococcus (OR = 1.05, 95% CI: 1.00-1.10, p = 0.047) were risk factors for SAT production. Meanwhile, Eubacterium fissicatena group (OR = 0.95, 95% CI: 0.91-0.99, p = 0.019), Turicibacter (OR = 0.93, 95% CI: 0.88-0.99, p = 0.022), and Defluviitaleaceae UCG011 (OR = 0.94, 95% CI: 0.89-0.99, p = 0.024) were protective factors for VAT production. Furthermore, Bacteroidetes (OR = 1.09, 95% CI: 1.01-1.17, p = 0.018), Eubacterium eligens group (OR = 1.09, 95% CI: 1.01-1.19, p = 0.037), Alloprevotella (OR = 1.05, 95% CI: 1.00-1.10, p = 0.038), and Phascolarctobacterium (OR = 1.07, 95% CI: 1.00-1.15, p = 0.042) were associated with VAT accumulation. Additionally, reverse MR revealed significant associations between SAT, VAT, and Rikenellaceae RC9 gut group (IVW: OR = 1.57, 95% CI: 1.18-2.09, p = 0.002) as well as Betaproteobacteria (IVW: OR = 1.14, 95% CI: 1.01-1.29, p = 0.029), both acting as risk factors. Sensitivity analyzes during bidirectional MR did not identify heterogeneity or pleiotropy. Conclusion This study unveils complex causal relationships between gut microbiota and SAT/VAT, providing novel insights into the diagnostic and therapeutic potential of gut microbiota in obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Feng Cao
- Department of General Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Feng Pan
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Gong
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wen Wang
- Department of General Practice, Anqing Hospital Affiliated Hospital of Anhui Medical University, Anqing, China
| | - Yanyan Xu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Pengwei Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Wang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The Shenzhen Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
39
|
Wang S, Zuo Z, Ye B, Zhang L, Cheng Y, Xie S, Zou J, Xu G. Microbiome-Metabolomic Analysis Reveals Beneficial Effects of Dietary Kelp Resistant Starch on Intestinal Functions of Hybrid Snakeheads ( Channa maculata ♀ × Channa argus ♂). Antioxidants (Basel) 2023; 12:1631. [PMID: 37627626 PMCID: PMC10451247 DOI: 10.3390/antiox12081631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The benefits of resistant starch on hypoglycemia, obesity prevention, antioxidant status and the alleviation of metabolic syndrome have received considerable attention. In this study, we explored how dietary kelp resistant starch (KRS) enhances intestinal morphology and function through a microbiome-metabolomic analysis. Hybrid snakeheads (initial weight: 11.4 ± 0.15 g) were fed experimental diets for 60 days. Fish were fed a basic wheat starch diet and the KRS diet. Dietary KRS improved intestinal morphology and enhanced intestinal antioxidant and digestive capabilities, as evidenced by decreased intestinal damage and upregulated intestinal biochemical markers. The microbiome analysis showed that KRS administration elevated the proportion of butyrate-producing bacteria and the abundance of beneficial bacteria that increases insulin sensitivity. Furthermore, significant alterations in metabolic profiles were observed to mainly associate with the amino acid metabolism (particularly arginine production), the metabolism of cofactors and vitamins, fat metabolism, glutathione metabolism, and the biosynthesis of other secondary metabolites. Additionally, alterations in intestinal microbiota composition were significantly associated with metabolites. Collectively, changes in intestinal microbiota and metabolite profiles produced by the replacement of common starch with dietary KRS appears to play an important role in the development of intestinal metabolism, thus leading to improved intestinal function and homeostasis.
Collapse
Affiliation(s)
- Shaodan Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Zhiheng Zuo
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Bin Ye
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Li Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Yanbo Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| |
Collapse
|
40
|
Calva-Cruz ODJ, Ovando-Vázquez C, De León-Rodríguez A, Veana F, Espitia-Rangel E, Treviño S, Barba-de la Rosa AP. Dietary Supplementation with Popped Amaranth Modulates the Gut Microbiota in Low Height-for-Age Children: A Nonrandomized Pilot Trial. Foods 2023; 12:2760. [PMID: 37509852 PMCID: PMC10379428 DOI: 10.3390/foods12142760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Amaranth has been recognized as a nutraceutical food because it contains high-quality proteins due to its adequate amino acid composition that covers the recommended requirements for children and adults. Since pre-Hispanic times, amaranth has been consumed as popped grain; the popping process improves its nutritive quality and improves its digestibility. Popped amaranth consumption has been associated with the recovery of malnourished children. However, there is no information on the impact that popped amaranth consumption has on gut microbiota composition. A non-randomized pilot trial was conducted to evaluate the changes in composition, structure, and function of the gut microbiota of stunted children who received four grams of popped amaranth daily for three months. Stool and serum were collected at the beginning and at the end of the trial. Short-chain fatty acids (SCFA) were quantified, and gut bacterial composition was analyzed by 16S rRNA gene sequencing. Biometry and hematology results showed that children had no pathology other than low height-for-age. A decrease in the relative abundance of Alistipes putredinis, Bacteroides coprocola, and Bacteroides stercoris bacteria related to inflammation and colitis, and an increase in the relative abundance of Akkermansia muciniphila and Streptococcus thermophiles bacteria associated with health and longevity, was observed. The results demonstrate that popped amaranth is a nutritious food that helps to combat childhood malnutrition through gut microbiota modulation.
Collapse
Affiliation(s)
- Oscar de Jesús Calva-Cruz
- Molecular Biology Division, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, Mexico; (O.d.J.C.-C.); (A.D.L.-R.)
| | - Cesaré Ovando-Vázquez
- CONACYT-Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, Mexico;
| | - Antonio De León-Rodríguez
- Molecular Biology Division, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, Mexico; (O.d.J.C.-C.); (A.D.L.-R.)
| | - Fabiola Veana
- Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Valles, Ciudad Valles 79010, Mexico;
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Texcoco 56250, Mexico;
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio S/N, Ciudad Universitaria, Puebla 72000, Mexico;
| | - Ana Paulina Barba-de la Rosa
- Molecular Biology Division, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, Mexico; (O.d.J.C.-C.); (A.D.L.-R.)
| |
Collapse
|
41
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Maradona MP, Querol A, Sijtsma L, Suarez JE, Sundh I, Barizzone F, Correia S, Herman L. Update of the list of qualified presumption of safety (QPS) recommended microbiological agents intentionally added to food or feed as notified to EFSA 18: Suitability of taxonomic units notified to EFSA until March 2023. EFSA J 2023; 21:e08092. [PMID: 37434788 PMCID: PMC10331572 DOI: 10.2903/j.efsa.2023.8092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, no new information was found that would change the status of previously recommended QPS TUs. Of 38 microorganisms notified to EFSA between October 2022 and March 2023 (inclusive) (28 as feed additives, 5 as food enzymes, food additives and flavourings, 5 as novel foods), 34 were not evaluated because: 8 were filamentous fungi, 4 were Enterococcus faecium and 2 were Escherichia coli (taxonomic units that are excluded from the QPS evaluation) and 20 were taxonomic units (TUs) that already have a QPS status. Three of the other four TUs notified within this period were evaluated for the first time for a possible QPS status: Anaerobutyricum soehngenii, Stutzerimonas stutzeri (former Pseudomonas stutzeri) and Nannochloropsis oculata. Microorganism strain DSM 11798 has also been notified in 2015 and as its taxonomic unit is notified as a strain not a species, it is not suitable for the QPS approach. A. soehngenii and N. oculata are not recommended for the QPS status due to a limited body of knowledge of its use in the food and feed chains. S. stutzeri is not recommended for inclusion in the QPS list based on safety concerns and limited information about the exposure of animals and humans through the food and feed chains.
Collapse
|
42
|
Wang J, Luo R, Zhao X, Xia D, Liu Y, Shen T, Liang Y. Association between gut microbiota and primary ovarian insufficiency: a bidirectional two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1183219. [PMID: 37424857 PMCID: PMC10324962 DOI: 10.3389/fendo.2023.1183219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Background Recent studies have indicated a potential correlation between intestinal bacteria and primary ovarian insufficiency (POI). However, the causal relationship between the gut microbiota (GM) and POI remains unclear. Methods A bidirectional two-sample Mendelian randomization (MR) study was conducted to investigate the relationship between the GM and POI. Data on the GM were based on the MiBioGen consortium's summary statistics from the most comprehensive genome-wide association study meta-analysis to date (n=13,266), and POI data were obtained from the R8 release of the FinnGen consortium, containing a total of 424 cases and 181,796 controls. A variety of analytical methods, including inverse variance weighting, maximum likelihood, MR-Egger, weighted median, and constrained maximum likelihood and model averaging and Bayesian information criterion, were utilized to explore the connection between the GM and POI. The Cochran's Q statistics were used to evaluate the heterogeneity of instrumental variables. The MR-Egger and MR-pleiotropy residual sum and outlier (PRESSO) methods were used to identify the horizontal pleiotropy of instrumental variables. The MR Steiger test was used to evaluate the strength of causal relationships. A reverse MR study was performed to investigate the causal relationship between POI and the targeted GMs which were indicated to have a causal relationship with POI in the forward MR evaluation. Results The inverse variance weighted analysis indicated that Eubacterium (hallii group) (odds ratio [OR]=0.49, 95% confidence interval [CI]: 0.26-0.9, P=0.022) and Eubacterium (ventriosum group) (OR=0.51, 95% CI: 0.27-0.97, P=0.04) had protective effects on POI, and Intestinibacter (OR=1.82, 95% CI: 1.04-3.2, P=0.037) and Terrisporobacter (OR=2.47, 95% CI: 1.14-5.36, P=0.022) had detrimental effects on POI. Results of the reverse MR analysis indicated that POI had no significant influence on the four GMs. No significant heterogeneity or horizontal pleiotropy was observed in the performance of the instrumental variables. Conclusion This bidirectional two-sample MR study revealed a causal link between Eubacterium (hallii group), Eubacterium (ventriosum group), Intestinibacter, and Terrisporobacter and POI. Additional clinical trials are needed to gain a clearer understanding of the beneficial or detrimental effects of the GMs on POI and their mechanisms of action.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Rong Luo
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Xia Zhao
- School of Medicine, Southeast University, Nanjing, China
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Di Xia
- School of Medicine, Southeast University, Nanjing, China
| | - Yi Liu
- School of Medicine, Southeast University, Nanjing, China
| | - Tao Shen
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Yuanjiao Liang
- School of Medicine, Southeast University, Nanjing, China
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| |
Collapse
|
43
|
Cuffaro B, Boutillier D, Desramaut J, Jablaoui A, Werkmeister E, Trottein F, Waligora-Dupriet AJ, Rhimi M, Maguin E, Grangette C. Characterization of Two Parabacteroides distasonis Candidate Strains as New Live Biotherapeutics against Obesity. Cells 2023; 12:cells12091260. [PMID: 37174660 PMCID: PMC10177344 DOI: 10.3390/cells12091260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/03/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023] Open
Abstract
The gut microbiota is now considered as a key player in the development of metabolic dysfunction. Therefore, targeting gut microbiota dysbiosis has emerged as a new therapeutic strategy, notably through the use of live gut microbiota-derived biotherapeutics. We previously highlighted the anti-inflammatory abilities of two Parabacteroides distasonis strains. We herein evaluate their potential anti-obesity abilities and show that the two strains induced the secretion of the incretin glucagon-like peptide 1 in vitro and limited weight gain and adiposity in obese mice. These beneficial effects are associated with reduced inflammation in adipose tissue and the improvement of lipid and bile acid metabolism markers. P. distasonis supplementation also modified the Actinomycetota, Bacillota and Bacteroidota taxa of the mice gut microbiota. These results provide better insight into the capacity of P. distasonis to positively influence host metabolism and to be used as novel source of live biotherapeutics in the treatment and prevention of metabolic-related diseases.
Collapse
Affiliation(s)
- Bernardo Cuffaro
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, MIHA Team, 78350 Jouy-en-Josas, France
| | - Denise Boutillier
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Jérémy Desramaut
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Amin Jablaoui
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, MIHA Team, 78350 Jouy-en-Josas, France
| | - Elisabeth Werkmeister
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
- UMR2014-US41-PLBS-Plateformes Lilloises de Biologie and Santé, 59000 Lille, France
| | - François Trottein
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | | | - Moez Rhimi
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, MIHA Team, 78350 Jouy-en-Josas, France
| | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, MIHA Team, 78350 Jouy-en-Josas, France
| | - Corinne Grangette
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| |
Collapse
|
44
|
Huang W, Lin Z, Sun A, Deng J, Manyande A, Xiang H, Zhao GF, Hong Q. The role of gut microbiota in diabetic peripheral neuropathy rats with cognitive dysfunction. Front Microbiol 2023; 14:1156591. [PMID: 37266023 PMCID: PMC10231493 DOI: 10.3389/fmicb.2023.1156591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/28/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Owing to advancements in non-invasive magnetic resonance imaging, many studies have repeatedly showed that diabetes affects the central nervous system in the presence of peripheral neuropathy, suggesting a common or interacting pathological mechanism for both complications. Methods We aimed to investigate the role of abnormal gut microbiota in rats with diabetic peripheral neuropathy (DPN) combined with cognitive dysfunction. Glucose-compliant rats with nerve conduction deficits were screened as a successful group of DPN rats. The DPN group was then divided into rats with combined cognitive impairment (CD) and rats with normal cognitive function (NCD) based on the results of the Novel object recognition test. Rat feces were then collected for 16S rRNA gene sequencing of the intestinal flora. Results and Discussion The results revealed that abnormalities in Firmicutes, Ruminococcaceae, Bacteroidia, and Actinobacteria-like microorganisms may induce DPN complicated by cognitive dysfunction.
Collapse
Affiliation(s)
- Wei Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziqiang Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ailing Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - JieMin Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Hongbing Xiang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gao Feng Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingxiong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
45
|
Vallianou NG, Kounatidis D, Tsilingiris D, Panagopoulos F, Christodoulatos GS, Evangelopoulos A, Karampela I, Dalamaga M. The Role of Next-Generation Probiotics in Obesity and Obesity-Associated Disorders: Current Knowledge and Future Perspectives. Int J Mol Sci 2023; 24:ijms24076755. [PMID: 37047729 PMCID: PMC10095285 DOI: 10.3390/ijms24076755] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Obesity and obesity-associated disorders pose a major public health issue worldwide. Apart from conventional weight loss drugs, next-generation probiotics (NGPs) seem to be very promising as potential preventive and therapeutic agents against obesity. Candidate NGPs such as Akkermansia muciniphila, Faecalibacterium prausnitzii, Anaerobutyricum hallii, Bacteroides uniformis, Bacteroides coprocola, Parabacteroides distasonis, Parabacteroides goldsteinii, Hafnia alvei, Odoribacter laneus and Christensenella minuta have shown promise in preclinical models of obesity and obesity-associated disorders. Proposed mechanisms include the modulation of gut flora and amelioration of intestinal dysbiosis, improvement of intestinal barrier function, reduction in chronic low-grade inflammation and modulation of gut peptide secretion. Akkermansia muciniphila and Hafnia alvei have already been administered in overweight/obese patients with encouraging results. However, safety issues and strict regulations should be constantly implemented and updated. In this review, we aim to explore (1) current knowledge regarding NGPs; (2) their utility in obesity and obesity-associated disorders; (3) their safety profile; and (4) their therapeutic potential in individuals with overweight/obesity. More large-scale, multicentric and longitudinal studies are mandatory to explore their preventive and therapeutic potential against obesity and its related disorders.
Collapse
Affiliation(s)
- Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
- Department of Microbiology, Sismanogleio General Hospital, 1 Sismanogleiou Street, 15126 Athens, Greece
| | - Angelos Evangelopoulos
- Roche Hellas Diagnostics S.A., 18-20 Amarousiou-Chalandriou Street, 15125 Athens, Greece
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, 12462 Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| |
Collapse
|
46
|
Peluso AA, Lundgaard AT, Babaei P, Mousovich-Neto F, Rocha AL, Damgaard MV, Bak EG, Gnanasekaran T, Dollerup OL, Trammell SAJ, Nielsen TS, Kern T, Abild CB, Sulek K, Ma T, Gerhart-Hines Z, Gillum MP, Arumugam M, Ørskov C, McCloskey D, Jessen N, Herrgård MJ, Mori MAS, Treebak JT. Oral supplementation of nicotinamide riboside alters intestinal microbial composition in rats and mice, but not humans. NPJ AGING 2023; 9:7. [PMID: 37012386 PMCID: PMC10070358 DOI: 10.1038/s41514-023-00106-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
The gut microbiota impacts systemic levels of multiple metabolites including NAD+ precursors through diverse pathways. Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Some bacterial families express the NR-specific transporter, PnuC. We hypothesized that dietary NR supplementation would modify the gut microbiota across intestinal sections. We determined the effects of 12 weeks of NR supplementation on the microbiota composition of intestinal segments of high-fat diet-fed (HFD) rats. We also explored the effects of 12 weeks of NR supplementation on the gut microbiota in humans and mice. In rats, NR reduced fat mass and tended to decrease body weight. Interestingly, NR increased fat and energy absorption but only in HFD-fed rats. Moreover, 16S rRNA gene sequencing analysis of intestinal and fecal samples revealed an increased abundance of species within Erysipelotrichaceae and Ruminococcaceae families in response to NR. PnuC-positive bacterial strains within these families showed an increased growth rate when supplemented with NR. The abundance of species within the Lachnospiraceae family decreased in response to HFD irrespective of NR. Alpha and beta diversity and bacterial composition of the human fecal microbiota were unaltered by NR, but in mice, the fecal abundance of species within Lachnospiraceae increased while abundances of Parasutterella and Bacteroides dorei species decreased in response to NR. In conclusion, oral NR altered the gut microbiota in rats and mice, but not in humans. In addition, NR attenuated body fat mass gain in rats, and increased fat and energy absorption in the HFD context.
Collapse
Affiliation(s)
- A Augusto Peluso
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Agnete T Lundgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Parizad Babaei
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Felippe Mousovich-Neto
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Andréa L Rocha
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Mads V Damgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie G Bak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thiyagarajan Gnanasekaran
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole L Dollerup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Samuel A J Trammell
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Timo Kern
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline B Abild
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev Hospital, Herlev, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Douglas McCloskey
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Markus J Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
- BioInnovation Institute, Copenhagen, Denmark
| | - Marcelo A S Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, SP, Brazil
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
47
|
Loo YT, Howell K, Suleria H, Zhang P, Liu S, Ng K. Fibre fermentation and pig faecal microbiota composition are affected by the interaction between sugarcane fibre and (poly)phenols in vitro. Int J Food Sci Nutr 2023; 74:219-233. [PMID: 36915255 DOI: 10.1080/09637486.2023.2187329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
We investigated the effects of (poly)phenol-rich sugarcane extract (PRSE), sugarcane fibre (SCFiber), and the combination of them (PRSE + SCFiber) on the gut microbiota and short-chain fatty acids (SCFA) production using in vitro digestion and pig faecal fermentation. Measuring total phenolic content and antioxidant activity through the in vitro digestion stages showed that PRSE + SCFiber increased the delivery of (poly)phenols to the in vitro colonic fermentation stage compared to PRSE alone. The PRSE + SCFiber modulated the faecal microbiota profile by enhancing the relative abundances of Prevotella, Lactobacillus, and Blautia, and reducing the relative abundance of Streptococcus. PRSE + SCFiber also mitigated the inhibitory effects of PRSE on SCFA production. These results suggest that the inclusion of sugarcane fibre with PRSE could increase the availability of phenolic compounds in the colon and modulate the gut microbiota towards a more favourable profile.
Collapse
Affiliation(s)
- Yit Tao Loo
- School of Agriculture, Ecosystem, Food & Forest Science, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Kate Howell
- School of Agriculture, Ecosystem, Food & Forest Science, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Hafiz Suleria
- School of Agriculture, Ecosystem, Food & Forest Science, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture, Ecosystem, Food & Forest Science, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Siyao Liu
- School of Agriculture, Ecosystem, Food & Forest Science, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Ken Ng
- School of Agriculture, Ecosystem, Food & Forest Science, Faculty of Science, The University of Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Black Rice Anthocyanidins Regulates Gut Microbiota and Alleviates Related Symptoms through PI3K/AKT Pathway in Type 2 Diabetic Rats. J Food Biochem 2023. [DOI: 10.1155/2023/5876706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Black rice anthocyanins (BRAs) have extremely high nutritional value and health care effects. This study investigated the intervention effect of BRAs on type 2 diabetes mellitus (T2DM) and the regulation effect on intestinal microbiota imbalance in T2DM rats. This study established successfully a T2DM model in a high-fat and high-glucose diet combined with streptozotocin (STZ). BRAs intervention reduced significantly the fasting blood glucose level of T2DM rats, improved the glucose tolerance of rats, reduced the blood lipid level and inflammation state, and repaired liver, oxidative stress, and other injuries. In addition, BRAs’s intervention enhanced the expression of phosphoinositol 3-kinase (PI3K)/protein kinase B (AKT), activated the expression of adenosine 5’-monophosphate-activated protein kinase(AMPK), and the downstream acetyl-CoA carboxylase (ACC) and carnitine palmitoyl transferase (CPT1) in the liver. 16S rRNA sequencing showed that BRAs significantly decreased the abundances of Bifidobacterium and Clostridiaceae_Clostridium, and promoted the abundances of Akkermansia and Lactobacillus. Accelerate the recovery of gut microbiota diversity. BRAs play an antidiabetic role by regulating the PI3K/AKT signaling pathway and intestinal microbiota in T2MD rats.
Collapse
|
49
|
Eun S, Seo H, Suh HJ, Jeong S, Lee S. Modulation of Gut Microbiota and Intestinal Barrier Integrity and Inflammation Profile in High Fat-fed Rats. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
50
|
Zheng M, Wang L, Sun Y, Pi X, Zhang W, Gao P, Lu S, Liu W. Hypoglycemic effect of the Phellinus baumii extract with α-glucosidase-inhibited activity and its modulation to gut microbiota in diabetic patients. Biomed Pharmacother 2023; 158:114130. [PMID: 36577329 DOI: 10.1016/j.biopha.2022.114130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
Phellinus baumii extract (PBE) possesses considerable α-glucosidase-inhibited activity. This study investigated the hypoglycemic effect in vitro and in vivo using a glucose consumption assay in HepG2 cells, intragastric administration for ten weeks in STZ-induced mice, and intestinal flora fermentation in patients with type 2 diabetes to reveal the possible underlying mechanisms. PBE was prepared, including α-glucosidase-inhibited ethanol extract (EE) and aqueous extract (AE). In vitro, PBE promoted glucose consumption and enhanced glycogen content and hexokinase activity but lowered phosphoenolpyruvate carboxylase kinase activity in HepG2 cells. In vivo, PBE treatment significantly reduced the body weight (p < 0.05) and fasting blood glucose levels of diabetic mice (p < 0.01), with the lowest blood glucose level observed in the EE+AE group. Furthermore, the serum insulin levels and insulin resistance index (HOMA) of PBE-treated groups decreased significantly (p < 0.01). Moreover, gene expression levels of the IRS-1/PI3K/AKT pathway were significantly upregulated by PBE treatment (p < 0.01). In vitro fermentation demonstrated that EE significantly inhibited the production of H2S and NH3 in the intestinal flora fermentation model in diabetic patients (p < 0.05). In addition, the ratio of Firmicutes to Bacteroidetes was reduced, the growth of Lactobacillus and Prevotella 9 was promoted, and Pseudomonas aeruginosa was inhibited. This study provides new insights and clues for using PBE as a functional food and clinical drug for glycemic control.
Collapse
Affiliation(s)
- Meiyu Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetable Preservation and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Fruit Post-harvest Handling, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetable Preservation and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Fruit Post-harvest Handling, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuqing Sun
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenjuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetable Preservation and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Fruit Post-harvest Handling, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Pu Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetable Preservation and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Fruit Post-harvest Handling, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetable Preservation and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Fruit Post-harvest Handling, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|