1
|
Sharbati M, Asefpour Vakilian K, Azadbakht M. What do microRNA concentrations tell us about the mechanical damage and storage period of strawberry fruits? FOOD CHEMISTRY. MOLECULAR SCIENCES 2025; 10:100250. [PMID: 40084087 PMCID: PMC11903943 DOI: 10.1016/j.fochms.2025.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 03/16/2025]
Abstract
Although much research has been performed to investigate the effects of storage conditions, such as mechanical damage and storage period, on the morphological and physiological properties of strawberry fruits, almost all of them have considered severe stress conditions. Finding fruit characteristics that exert significant changes even toward mild and moderate stress conditions can help provide valuable information about the fruit quality during storage. This study aims to investigate various characteristics of strawberry fruits during storage to determine which type of fruit characteristics exert such significant changes toward stress conditions. Identical strawberry samples were subjected to mechanical loading at three levels (1, 2, and 3 N) and then stored at 6 °C for 13 days. Morphological and physiological features, as well as the concentration of several microRNAs involved in strawberry storage, were measured at three-day intervals. The effects of mechanical loading on morphological and physiological characteristics were not significant, while their effects were significant on miR-164, miR-167, and miR-399a. Moreover, while low correlation coefficients were observed between the fruit morphophysiological traits (< 0.6) toward storage conditions, high correlations were obtained between the concentrations of microRNAs. Instead of measuring the morphological and physiological characteristics of fruits, whose behavior is not generally specific toward the stresses, the results show that microRNA concentrations, which can be measured by an electrochemical biosensor, provide us with noteworthy information about fruit quality during storage. These small non-coding molecules exhibited remarkable responses even in mild and moderate stress conditions, making them reliable markers of fruit quality assessment.
Collapse
Affiliation(s)
- Mahdieh Sharbati
- Department of Biosystems Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Keyvan Asefpour Vakilian
- Department of Biosystems Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohsen Azadbakht
- Department of Biosystems Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
2
|
Yao JL. Bitterness and seedlessness decoded. NATURE PLANTS 2025; 11:153-154. [PMID: 39824996 DOI: 10.1038/s41477-025-01912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Affiliation(s)
- Jia-Long Yao
- New Zealand Institute for Plant and Food Research, Auckland, New Zealand.
| |
Collapse
|
3
|
Hu ZC, Majda M, Sun HR, Zhang Y, Ding YN, Yuan Q, Su TB, Lü TF, Gao F, Xu GX, Smith RS, Østergaard L, Dong Y. Evolution of a SHOOTMERISTEMLESS transcription factor binding site promotes fruit shape determination. NATURE PLANTS 2025; 11:23-35. [PMID: 39668212 PMCID: PMC11757149 DOI: 10.1038/s41477-024-01854-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/18/2024] [Indexed: 12/14/2024]
Abstract
In animals and plants, organ shape is primarily determined during primordium development by carefully coordinated growth and cell division1-3. Rare examples of post-primordial change in morphology (reshaping) exist that offer tractable systems for the study of mechanisms required for organ shape determination and diversification. One such example is morphogenesis in Capsella fruits whose heart-shaped appearance emerges by reshaping of the ovate spheroid gynoecium upon fertilization4. Here we use whole-organ live-cell imaging and single-cell RNA sequencing (scRNA-seq) analysis to show that Capsella fruit shape determination is based on dynamic changes in cell growth and cell division coupled with local maintenance of meristematic identity. At the molecular level, we reveal an auxin-induced mechanism that is required for morphological alteration and ultimately determined by a single cis-regulatory element. This element resides in the promoter of the Capsella rubella SHOOTMERISTEMLESS5 (CrSTM) gene. The CrSTM meristem identity factor positively regulates its own expression through binding to this element, thereby providing a feed-forward loop at the position and time of protrusion emergence to form the heart. Independent evolution of the STM-binding element in STM promoters across Brassicaceae species correlates with those undergoing a gynoecium-to-fruit shape change. Accordingly, genetic and phenotypic studies show that the STM-binding element is required to facilitate the shape transition and suggest a conserved molecular mechanism for organ morphogenesis.
Collapse
Affiliation(s)
- Zhi-Cheng Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Mateusz Majda
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Computational and Systems Biology Department, John Innes Centre, Norwich, UK
| | - Hao-Ran Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yao Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yi-Ning Ding
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Quan Yuan
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Tong-Bing Su
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Tian-Feng Lü
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Feng Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Gui-Xia Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Richard S Smith
- Computational and Systems Biology Department, John Innes Centre, Norwich, UK
| | - Lars Østergaard
- Crop Genetics Department, John Innes Centre, Norwich, UK.
- Department of Biology, University of Oxford, Oxford, UK.
| | - Yang Dong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
4
|
Li BJ, Shi YN, Xiao YN, Jia HR, Yang XF, Dai ZR, Sun YF, Shou JH, Jiang GH, Grierson D, Chen KS. AUXIN RESPONSE FACTOR 2 mediates repression of strawberry receptacle ripening via auxin-ABA interplay. PLANT PHYSIOLOGY 2024; 196:2638-2653. [PMID: 39405162 PMCID: PMC11638727 DOI: 10.1093/plphys/kiae510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/23/2024] [Indexed: 12/14/2024]
Abstract
Cultivated strawberry (Fragaria × ananassa) is a popular, economically important fruit. The ripening of the receptacle (pseudocarp), the main edible part, depends on endogenously produced abscisic acid (ABA) and is suppressed by the high level of auxin produced from achenes (true fruit) during early development. However, the mechanism whereby auxin regulates receptacle ripening through inhibiting ABA biosynthesis remains unclear. Here, we identified AUXIN RESPONSE FACTOR 2 (FaARF2), which showed decreased expression with reduced auxin content in the receptacle, leading to increased ABA levels and accelerated ripening. Dual-luciferase, yeast one-hybrid, and electrophoretic mobility shift assays demonstrated that FaARF2 could bind to the AuxRE element in the promoter of 9-CIS-EPOXYCAROT-ENOID DIOXYGENASE 1 (FaNCED1), a key ABA biosynthetic gene, to suppress its transcriptional activity. Transiently overexpressing FaARF2 in the receptacles decreased FaNCED1 expression and ABA levels, resulting in inhibition of receptacle ripening and of development of quality attributes, such as pigmentation, aroma, and sweetness. This inhibition caused by overexpressing FaARF2 was partially recovered by the injection of exogenous ABA; conversely, transient silencing of FaARF2 using RNA interference produced the opposite results. The negative targeting of FaNCED1 by FaARF2 is a key link between auxin-ABA interactions and regulation of strawberry ripening.
Collapse
Affiliation(s)
- Bai-Jun Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yan-Na Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yan-Ning Xiao
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Hao-Ran Jia
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiao-Fang Yang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, China
| | - Zheng-Rong Dai
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yun-Fan Sun
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jia-Han Shou
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Gui-Hua Jiang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, China
| | - Donald Grierson
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Kun-Song Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
5
|
Moya-Cuevas J, Ortiz-Gutiérrez E, López-Sánchez P, Simón-Moya M, Ballester P, Álvarez-Buylla ER, Ferrándiz C. A Model for the Gene Regulatory Network Along the Arabidopsis Fruit Medio-Lateral Axis: Rewiring the Pod Shatter Process. PLANTS (BASEL, SWITZERLAND) 2024; 13:2927. [PMID: 39458874 PMCID: PMC11511003 DOI: 10.3390/plants13202927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Different convergent evolutionary strategies adopted by angiosperm fruits lead to diverse functional seed dispersal units. Dry dehiscent fruits are a common type of fruit, characterized by their lack of fleshy pericarp and the release of seeds at maturity through openings (dehiscence zones, DZs) in their structure. In previous decades, a set of core players in DZ formation have been intensively characterized in Arabidopsis and integrated in a gene regulatory network (GRN) that explains the morphogenesis of these tissues. In this work, we compile all the experimental data available to date to build a discrete Boolean model as a mechanistic approach to validate the network and, if needed, to identify missing components of the GRN and/or propose new hypothetical regulatory interactions, but also to provide a new formal framework to feed further work in Brassicaceae fruit development and the evolution of seed dispersal mechanisms. Hence, by means of exhaustive in-silico validations and experimental evidence, we are able to incorporate both the NO TRANSMITTING TRACT (NTT) transcription factor as a new additional node, and a new set of regulatory hypothetical rules to uncover the dynamics of Arabidopsis DZ specification.
Collapse
Affiliation(s)
- José Moya-Cuevas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, 46022 Valencia, Spain; (J.M.-C.); (M.S.-M.); (P.B.)
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, 29071 Málaga, Spain
| | - Elizabeth Ortiz-Gutiérrez
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Mexico City 05348, Mexico; (E.O.-G.); (P.L.-S.)
| | - Patricio López-Sánchez
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Mexico City 05348, Mexico; (E.O.-G.); (P.L.-S.)
| | - Miguel Simón-Moya
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, 46022 Valencia, Spain; (J.M.-C.); (M.S.-M.); (P.B.)
| | - Patricia Ballester
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, 46022 Valencia, Spain; (J.M.-C.); (M.S.-M.); (P.B.)
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, 46022 Valencia, Spain; (J.M.-C.); (M.S.-M.); (P.B.)
| |
Collapse
|
6
|
Neysanian M, Iranbakhsh A, Ahmadvand R, Ardebili ZO, Ebadi M. Selenium nanoparticles conferred drought tolerance in tomato plants by altering the transcription pattern of microRNA-172 (miR-172), bZIP, and CRTISO genes, upregulating the antioxidant system, and stimulating secondary metabolism. PROTOPLASMA 2024; 261:735-747. [PMID: 38291258 DOI: 10.1007/s00709-024-01929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024]
Abstract
Drought stress is one of the major limiting factors for the production of tomato in Iran. In this study, the efficiency of selenate and Se nanoparticle (SeNP) foliar application on tomato plants was assessed to vestigate mitigating the risk associated with water-deficit conditions. Tomato plants were treated with SeNPs at the concentrations of 0 and 4 mg L-1; after the third sprays, the plants were exposed to water-deficit conditions. The foliar spraying with SeNPs not only improved growth, yield, and developmental switch to the flowering phase but also noticeably mitigated the detrimental risk associated with the water-deficit conditions. Gene expression experiments showed a slight increase in expression of microRNA-172 (miR-172) in the SeNP-treated plants in normal irrigation, whereas miR-172 displayed a downregulation trend in response to drought stress. The bZIP transcription factor and CRTISO genes were upregulated following the SeNP and drought treatments. Drought stress significantly increased the H2O2 accumulation that is mitigated with SeNPs. The foliar spraying with Se or SeNPs shared a similar trend to alleviate the negative effect of drought stress on the membrane integrity. The applied supplements also conferred drought tolerance through noticeable improvements in the non-enzymatic (ascorbate and glutathione) and enzymatic (catalase and peroxidase) antioxidants. The SeNP-mediated improvement in drought stress tolerance correlated significantly with increases in the activity of phenylalanine ammonia-lyase, proline, non-protein thiols, and flavonoid concentrations. SeNPs also improved the fruit quality regarding K, Mg, Fe, and Se concentrations. It was concluded that foliar spraying with SeNPs could mitigate the detrimental risk associated with the water-deficit conditions.
Collapse
Affiliation(s)
- Maryam Neysanian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Rahim Ahmadvand
- Department of Vegetables Research, Seed and Plant Improvement Institute, Agricultural Research, Education & Extension Organization, Karaj, Iran
| | | | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
7
|
Domínguez-Figueroa J, Gómez-Rojas A, Escobar C. Functional studies of plant transcription factors and their relevance in the plant root-knot nematode interaction. FRONTIERS IN PLANT SCIENCE 2024; 15:1370532. [PMID: 38784063 PMCID: PMC11113014 DOI: 10.3389/fpls.2024.1370532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Root-knot nematodes are polyphagous parasitic nematodes that cause severe losses in the agriculture worldwide. They enter the root in the elongation zone and subtly migrate to the root meristem where they reach the vascular cylinder and establish a feeding site called gall. Inside the galls they induce a group of transfer cells that serve to nurture them along their parasitic stage, the giant cells. Galls and giant cells develop through a process of post-embryogenic organogenesis that involves manipulating different genetic regulatory networks within the cells, some of them through hijacking some molecular transducers of established plant developmental processes, such as lateral root formation or root regeneration. Galls/giant cells formation involves different mechanisms orchestrated by the nematode´s effectors that generate diverse plant responses in different plant tissues, some of them include sophisticated mechanisms to overcome plant defenses. Yet, the plant-nematode interaction is normally accompanied to dramatic transcriptomic changes within the galls and giant cells. It is therefore expected a key regulatory role of plant-transcription factors, coordinating both, the new organogenesis process induced by the RKNs and the plant response against the nematode. Knowing the role of plant-transcription factors participating in this process becomes essential for a clear understanding of the plant-RKNs interaction and provides an opportunity for the future development and design of directed control strategies. In this review, we present the existing knowledge of the TFs with a functional role in the plant-RKN interaction through a comprehensive analysis of current scientific literature and available transcriptomic data.
Collapse
Affiliation(s)
- Jose Domínguez-Figueroa
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- Centro de Biotecnologia y Genomica de Plantas (CBGP), Universidad Politecnica de Madrid and Instituto de Investigacion y Tecnologia Agraria y Alimentaria-Consejo Superior de investigaciones Cientificas (UPM-INIA/CSIC), Madrid, Spain
| | - Almudena Gómez-Rojas
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
8
|
Wei X, Chen M, Zhang X, Wang Y, Li L, Xu L, Wang H, Jiang M, Wang C, Zeng L, Xu J. The haplotype-resolved autotetraploid genome assembly provides insights into the genomic evolution and fruit divergence in wax apple ( Syzygium samarangense (Blume) Merr. and Perry). HORTICULTURE RESEARCH 2023; 10:uhad214. [PMID: 38077494 PMCID: PMC10709546 DOI: 10.1093/hr/uhad214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/16/2023] [Indexed: 01/19/2025]
Abstract
Wax apple (Syzygium samarangense) is an economically important fruit crop with great potential value to human health because of its richness in antioxidant substances. Here, we present a haplotype-resolved autotetraploid genome assembly of the wax apple with a size of 1.59 Gb. Comparative genomic analysis revealed three rounds of whole-genome duplication (WGD) events, including two independent WGDs after WGT-γ. Resequencing analysis of 35 accessions partitioned these individuals into two distinct groups, including 28 landraces and seven cultivated species, and several genes subject to selective sweeps possibly contributed to fruit growth, including the KRP1-like, IAA17-like, GME-like, and FLACCA-like genes. Transcriptome analysis of three different varieties during flower and fruit development identified key genes related to fruit size, sugar content, and male sterility. We found that AP2 also affected fruit size by regulating sepal development in wax apples. The expression of sugar transport-related genes (SWEETs and SUTs) was high in 'ZY', likely contributing to its high sugar content. Male sterility in 'Tub' was associated with tapetal abnormalities due to the decreased expression of DYT1, TDF1, and AMS, which affected early tapetum development. The chromosome-scale genome and large-scale transcriptome data presented in this study offer new valuable resources for biological research on S. samarangense and shed new light on fruit size control, sugar metabolism, and male sterility regulatory metabolism in wax apple.
Collapse
Affiliation(s)
- Xiuqing Wei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Min Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xijuan Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| | - Yinghao Wang
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Liang Li
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| | - Ling Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| | - Huanhuan Wang
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Mengwei Jiang
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Caihui Wang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| | - Lihui Zeng
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jiahui Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| |
Collapse
|
9
|
Xie P, Wu Y, Xie Q. Evolution of cereal floral architecture and threshability. TRENDS IN PLANT SCIENCE 2023; 28:1438-1450. [PMID: 37673701 DOI: 10.1016/j.tplants.2023.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/07/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Hulled grains, while providing natural protection for seeds, pose a challenge to manual threshing due to the pair of glumes tightly encasing them. Based on natural evolution and artificial domestication, gramineous crops evolved various hull-like floral organs. Recently, progress has been made in uncovering novel domesticated genes associated with cereal threshability and deciphering common regulatory modules pertinent to the specification of hull-like floral organs. Here we review morphological similarities, principal regulators, and common mechanisms implicated in the easy-threshing traits of crops. Understanding the shared and unique features in the developmental process of cereal threshability may not only shed light on the convergent evolution of cereals but also facilitate the de novo domestication of wild cereal germplasm resources through genome-editing technologies.
Collapse
Affiliation(s)
- Peng Xie
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yaorong Wu
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, National Center of Technology Innovation for Maize, Syngenta Group China, Beijing 102206, China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
10
|
Dash PK, Gupta P, Sreevathsa R, Pradhan SK, Sanjay TD, Mohanty MR, Roul PK, Singh NK, Rai R. Phylogenomic Analysis of micro-RNA Involved in Juvenile to Flowering-Stage Transition in Photophilic Rice and Its Sister Species. Cells 2023; 12:1370. [PMID: 37408207 DOI: 10.3390/cells12101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 07/07/2023] Open
Abstract
Vegetative to reproductive phase transition in phototropic plants is an important developmental process and is sequentially mediated by the expression of micro-RNA MIR172. To obtain insight into the evolution, adaptation, and function of MIR172 in photophilic rice and its wild relatives, we analyzed the genescape of a 100 kb segment harboring MIR172 homologs from 11 genomes. The expression analysis of MIR172 revealed its incremental accumulation from the 2-leaf to 10-leaf stage, with maximum expression coinciding with the flag-leaf stage in rice. Nonetheless, the microsynteny analysis of MIR172s revealed collinearity within the genus Oryza, but a loss of synteny was observed in (i) MIR172A in O. barthii (AA) and O. glaberima (AA); (ii) MIR172B in O. brachyantha (FF); and (iii) MIR172C in O. punctata (BB). Phylogenetic analysis of precursor sequences/region of MIR172 revealed a distinct tri-modal clade of evolution. The genomic information generated in this investigation through comparative analysis of MIRNA, suggests mature MIR172s to have evolved in a disruptive and conservative mode amongst all Oryza species with a common origin of descent. Further, the phylogenomic delineation provided an insight into the adaptation and molecular evolution of MIR172 to changing environmental conditions (biotic and abiotic) of phototropic rice through natural selection and the opportunity to harness untapped genomic regions from rice wild relatives (RWR).
Collapse
Affiliation(s)
- Prasanta K Dash
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Payal Gupta
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | | | | | - Mihir Ranjan Mohanty
- Department of Genetics & Plant Breeding (RRTTS, Jeypore), Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Pravat K Roul
- Department of Genetics & Plant Breeding (RRTTS, Jeypore), Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Nagendra K Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Rhitu Rai
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
11
|
Arora S, Singh AK, Chaudhary B. Coordination of floral and fiber development in cotton (Gossypium) by hormone- and flavonoid-signalling associated regulatory miRNAs. PLANT MOLECULAR BIOLOGY 2023; 112:1-18. [PMID: 37067671 DOI: 10.1007/s11103-023-01341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/16/2023] [Indexed: 05/09/2023]
Abstract
Various plant development activities and stress responses are tightly regulated by various microRNAs (miRNA) and their target genes, or transcription factors in a spatiotemporal manner. Here, to exemplify how flowering-associated regulatory miRNAs synchronize their expression dynamics during floral and fiber development in cotton, constitutive expression diminution transgenic lines of auxin-signaling regulatory Gh-miR167 (35S-MIM167) were developed through target mimicry approach. 'Moderate' (58% to 80%)- and 'high' (> 80%)-Gh-miR167 diminution mimic lines showed dosage-dependent developmental deformities in anther development, pollen maturation, and fruit (= boll) formation. Cross pollination of 'moderate' 35S-MIM167 mimic lines with wild type (WT) plant partially restored boll formation and emergence of fiber initials on the ovule surface. Gh-miR167 diminution favored organ-specific transcription biases in miR159, miR166 as well as miR160, miR164, and miR172 along with their target genes during anther and petal development, respectively. Similarly, accumulative effect of percent Gh-miR167 diminution, cross regulation of its target ARF6/8 genes, and temporal mis-expression of hormone signaling- and flavonoid biosynthesis-associated regulatory miRNAs at early fiber initiation stage caused irregular fiber formation. Spatial and temporal transcription proportions of regulatory miRNAs were also found crucial for the execution of hormone- and flavonoid-dependent progression of floral and fiber development. These observations discover how assorted regulatory genetic circuits get organized in response to Gh-miR167 diminution and converge upon ensuing episodes of floral and fiber development in cotton.
Collapse
Affiliation(s)
- Sakshi Arora
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201312, India
| | - Amarjeet Kumar Singh
- Center for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201312, India.
| |
Collapse
|
12
|
van Mourik H, Chen P, Smaczniak C, Boeren S, Kaufmann K, Bemer M, Angenent GC, Muino JM. Dual specificity and target gene selection by the MADS-domain protein FRUITFULL. NATURE PLANTS 2023; 9:473-485. [PMID: 36797351 DOI: 10.1038/s41477-023-01351-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/11/2023] [Indexed: 05/18/2023]
Abstract
How transcription factors attain their target gene specificity and how this specificity may be modulated, acquiring different regulatory functions through the development of plant tissues, is an open question. Here we characterized different regulatory roles of the MADS-domain transcription factor FRUITFULL (FUL) in flower development and mechanisms modulating its activity. We found that the dual role of FUL in regulating floral transition and pistil development is associated with its different in vivo patterns of DNA binding in both tissues. Characterization of FUL protein complexes by liquid chromatography-tandem mass spectrometry and SELEX-seq experiments shows that aspects of tissue-specific target site selection can be predicted by tissue-specific variation in the composition of FUL protein complexes with different DNA binding specificities, without considering the chromatin status of the target region. This suggests a role for dynamic changes in FUL TF complex composition in reshaping the regulatory functions of FUL during flower development.
Collapse
Affiliation(s)
- Hilda van Mourik
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Peilin Chen
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cezary Smaczniak
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marian Bemer
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, the Netherlands
- Department of Bioscience, Wageningen University & Research, Wageningen, the Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, the Netherlands
- Department of Bioscience, Wageningen University & Research, Wageningen, the Netherlands
| | - Jose M Muino
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Abril-Urias P, Ruiz-Ferrer V, Cabrera J, Olmo R, Silva AC, Díaz-Manzano FE, Domínguez-Figueroa J, Martínez-Gómez Á, Gómez-Rojas A, Moreno-Risueno MÁ, Fenoll C, Escobar C. Divergent regulation of auxin responsive genes in root-knot and cyst nematodes feeding sites formed in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1024815. [PMID: 36875577 PMCID: PMC9976713 DOI: 10.3389/fpls.2023.1024815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Cysts (CNs) and root-knot nematodes (RKNs) induce specialized feeding cells, syncytia, and giant cells (GCs), respectively, within plant roots. The plant tissues around the GCs usually by respond forming a root swelling called a gall that contains the GCs. The ontogenesis of feeding cells is different. GC formation is a process of new organogenesis from vascular cells, which are still not well characterized, that differentiate into GCs. In contrast, syncytia formation involves the fusion of adjacent cells that have already differentiated. Nonetheless, both feeding sites show an auxin maximum pertinent to feeding site formation. However, data on the molecular divergences and similarities between the formation of both feeding sites regarding auxin-responsive genes are still scarce. We studied genes from the auxin transduction pathways that are crucial during gall and lateral root (LR) development in the CN interaction by using promoter-reporter (GUS/LUC)transgenic lines, as well as loss of function lines of Arabidopsis. The promoters pGATA23 and several deletions of pmiR390a were active in syncytia, as were in galls, but pAHP6 or putative up-stream regulators as ARF5/7/19 were not active in syncytia. Additionally, none of these genes seemed to play a key role during cyst nematode establishment in Arabidopsis, as the infection rates in loss of function lines did not show significant differences compared to control Col-0 plants. Furthermore, the presence of only canonical AuxRe elements in their proximal promoter regions is highly correlated with their activation in galls/GCs (AHP6, LBD16), but those promoters active in syncytia (miR390, GATA23) carry AuxRe overlapping core cis-elements for other transcription factor families (i.e., bHLH, bZIP). Strikingly, in silico transcriptomic analysis showed very few genes upregulated by auxins common to those induced in GCs and syncytia, despite the high number of upregulated IAA responsive genes in syncytia and galls. The complex regulation of auxin transduction pathways, where different members of the auxin response factor (ARF) family may interact with other factors, and the differences in auxin sensitivity, as indicated by the lower induction of the DR5 sensor in syncytia than galls, among other factors, may explain the divergent regulation of auxin responsive genes in the two types of nematode feeding sites.
Collapse
Affiliation(s)
- Patricia Abril-Urias
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Virginia Ruiz-Ferrer
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Javier Cabrera
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid and Instituto de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Rocio Olmo
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Ana Cláudia Silva
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- Centro Tecnológico Nacional Agroalimentario "Extremadura", Badajoz, Spain
| | | | - Jose Domínguez-Figueroa
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- Technical University of Madrid, Madrid, Spain
| | - Ángela Martínez-Gómez
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Almudena Gómez-Rojas
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Miguel Ángel Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid and Instituto de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
14
|
Mahmood U, Li X, Qian M, Fan Y, Yu M, Li S, Shahzad A, Qu C, Li J, Liu L, Lu K. Comparative transcriptome and co-expression network analysis revealed the genes associated with senescence and polygalacturonase activity involved in pod shattering of rapeseed. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:20. [PMID: 36750865 PMCID: PMC9906875 DOI: 10.1186/s13068-023-02275-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND The pod shattering (PS) trait negatively affects the crop yield in rapeseed especially under dry conditions. To better understand the trait and cultivate higher resistance varieties, it's necessary to identify key genes and unravel the PS mechanism thoroughly. RESULTS In this study, we conducted a comparative transcriptome analysis between two materials significantly different in silique shatter resistance lignin deposition and polygalacturonase (PG) activity. Here, we identified 10,973 differentially expressed genes at six pod developmental stages. We found that the late pod development stages might be crucial in preparing the pods for upcoming shattering events. GO enrichment results from K-means clustering and weighed gene correlation network analysis (WGCNA) both revealed senescence-associated genes play an important role in PS. Two hub genes Bna.A05ABI5 and Bna.C03ERF/AP2-3 were selected from the MEyellow module, which possibly regulate the PS through senescence-related mechanisms. Further investigation found that senescence-associated transcription factor Bna.A05ABI5 upregulated the expression of SAG2 and ERF/AP2 to control the shattering process. In addition, the upregulation of Bna.C03ERF/AP2-3 is possibly involved in the transcription of downstream SHP1/2 and LEA proteins to trigger the shattering mechanism. We also analyzed the PS marker genes and found Bna.C07SHP1/2 and Bna.PG1/2 were significantly upregulated in susceptible accession. Furthermore, the role of auxin transport by Bna.WAG2 was also observed, which could reduce the PG activity to enhance the PS resistance through the cell wall loosening process. CONCLUSION Based on comparative transcriptome evaluation, this study delivers insights into the regulatory mechanism primarily underlying the variation of PS in rapeseed. Taken together, these results provide a better understanding to increase the yield of rapeseed by reducing the PS through better engineered crops.
Collapse
Affiliation(s)
- Umer Mahmood
- grid.263906.80000 0001 0362 4044College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Xiaodong Li
- grid.263906.80000 0001 0362 4044College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Mingchao Qian
- grid.263906.80000 0001 0362 4044College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Yonghai Fan
- grid.263906.80000 0001 0362 4044College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Mengna Yu
- grid.263906.80000 0001 0362 4044College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Shengting Li
- grid.263906.80000 0001 0362 4044College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Ali Shahzad
- grid.263906.80000 0001 0362 4044College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Cunmin Qu
- grid.263906.80000 0001 0362 4044College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China ,grid.263906.80000 0001 0362 4044Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China ,grid.419897.a0000 0004 0369 313XEngineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715 China
| | - Jiana Li
- grid.263906.80000 0001 0362 4044College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China ,grid.263906.80000 0001 0362 4044Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China ,grid.419897.a0000 0004 0369 313XEngineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715 China
| | - Liezhao Liu
- grid.263906.80000 0001 0362 4044College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China ,grid.263906.80000 0001 0362 4044Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China ,grid.419897.a0000 0004 0369 313XEngineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715 China
| | - Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China. .,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China. .,Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
15
|
He R, Tang Y, Wang D. Coordinating Diverse Functions of miRNA and lncRNA in Fleshy Fruit. PLANTS (BASEL, SWITZERLAND) 2023; 12:411. [PMID: 36679124 PMCID: PMC9866404 DOI: 10.3390/plants12020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Non-coding RNAs play vital roles in the diverse biological processes of plants, and they are becoming key topics in horticulture research. In particular, miRNAs and long non-coding RNAs (lncRNAs) are receiving increased attention in fruit crops. Recent studies in horticulture research provide both genetic and molecular evidence that miRNAs and lncRNAs regulate biological function and stress responses during fruit development. Here, we summarize multiple regulatory modules of miRNAs and lncRNAs and their biological roles in fruit sets and stress responses, which would guide the development of molecular breeding techniques on horticultural crops.
Collapse
Affiliation(s)
- Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yajun Tang
- Shandong Laboratory of Advanced Agricultural Sciences, Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
16
|
Herrera-Ubaldo H, Campos SE, López-Gómez P, Luna-García V, Zúñiga-Mayo VM, Armas-Caballero GE, González-Aguilera KL, DeLuna A, Marsch-Martínez N, Espinosa-Soto C, de Folter S. The protein-protein interaction landscape of transcription factors during gynoecium development in Arabidopsis. MOLECULAR PLANT 2023; 16:260-278. [PMID: 36088536 DOI: 10.1016/j.molp.2022.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Flowers are composed of organs whose identity is defined by the combinatorial activity of transcription factors (TFs). The interactions between MADS-box TFs and protein complex formation have been schematized in the floral quartet model of flower development. The gynoecium is the flower's female reproductive part, crucial for fruit and seed production and, hence, for reproductive success. After the establishment of carpel identity, many tissues arise to form a mature gynoecium. TFs have been described as regulators of gynoecium development, and some interactions and complexes have been identified. However, broad knowledge about the interactions among these TFs and their participation during development remains scarce. In this study, we used a systems biology approach to understand the formation of a complex reproductive unit-as the gynoecium-by mapping binary interactions between well-characterized TFs. We analyzed almost 4500 combinations and detected more than 250 protein-protein interactions (PPIs), resulting in a process-specific interaction map. Topological analyses suggest hidden functions and novel roles for many TFs. In addition, we observed a close relationship between TFs involved in auxin and cytokinin-signaling pathways and other TFs. Furthermore, we analyzed the network by combining PPI data, expression, and genetic data, which helped us to dissect it into several dynamic spatio-temporal subnetworks related to gynoecium development processes. Finally, we generated an extended PPI network that predicts new players in gynoecium development. Taken together, all these results serve as a valuable resource for the plant community.
Collapse
Affiliation(s)
- Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Sergio E Campos
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Pablo López-Gómez
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Valentín Luna-García
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Víctor M Zúñiga-Mayo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Gerardo E Armas-Caballero
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Karla L González-Aguilera
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Irapuato, Guanajuato 36824, México
| | - Carlos Espinosa-Soto
- Instituto de Física, Universidad de San Luis Potosí, San Luis Potosí, SLP 78290, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México.
| |
Collapse
|
17
|
Jahed KR, Hirst PM. Fruit growth and development in apple: a molecular, genomics and epigenetics perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1122397. [PMID: 37123845 PMCID: PMC10130390 DOI: 10.3389/fpls.2023.1122397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Fruit growth and development are physiological processes controlled by several internal and external factors. This complex regulatory mechanism comprises a series of events occurring in a chronological order over a growing season. Understanding the underlying mechanism of fruit development events, however, requires consideration of the events occurring prior to fruit development such as flowering, pollination, fertilization, and fruit set. Such events are interrelated and occur in a sequential order. Recent advances in high-throughput sequencing technology in conjunction with improved statistical and computational methods have empowered science to identify some of the major molecular components and mechanisms involved in the regulation of fruit growth and have supplied encouraging successes in associating genotypic differentiation with phenotypic observations. As a result, multiple approaches have been developed to dissect such complex regulatory machinery and understand the genetic basis controlling these processes. These methods include transcriptomic analysis, quantitative trait loci (QTLs) mapping, whole-genome approach, and epigenetics analyses. This review offers a comprehensive overview of the molecular, genomic and epigenetics perspective of apple fruit growth and development that defines the final fruit size and provides a detailed analysis of the mechanisms by which fruit growth and development are controlled. Though the main emphasis of this article is on the molecular, genomic and epigenetics aspects of fruit growth and development, we will also deliver a brief overview on events occurring prior to fruit growth.
Collapse
|
18
|
Luo C, Yan J, He C, Liu W, Xie D, Jiang B. Genome-Wide Identification of the SAUR Gene Family in Wax Gourd ( Benincasa hispida) and Functional Characterization of BhSAUR60 during Fruit Development. Int J Mol Sci 2022; 23:ijms232214021. [PMID: 36430500 PMCID: PMC9694812 DOI: 10.3390/ijms232214021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
The wax gourd (Benincasa hispida) is an important vegetable crop whose fruits contain nutrients and metabolites. Small auxin upregulated RNA (SAUR) genes constitute the largest early auxin-responsive gene family and regulate various biological processes in plants, although this gene family has not been studied in the wax gourd. Here, we performed genome-wide identification of the SAUR gene family in wax gourds and analyzed their syntenic and phylogenetic relationships, gene structures, conserved motifs, cis-acting elements, and expression patterns. A total of 68 SAUR (BhSAUR) genes were identified, which were distributed on nine chromosomes with 41 genes in two clusters. More than half of the BhSAUR genes were derived from tandem duplication events. The BhSAUR proteins were classified into seven subfamilies. BhSAUR gene promoters contained cis-acting elements involved in plant hormone and environmental signal responses. Further expression profiles showed that BhSAUR genes displayed different expression patterns. BhSAUR60 was highly expressed in fruits, and overexpression led to longer fruits in Arabidopsis. In addition, the plants with overexpression displayed longer floral organs and wavy stems. In conclusion, our results provide a systematic analysis of the wax gourd SAUR gene family and facilitate the functional study of BhSAUR60 during wax gourd fruit development.
Collapse
Affiliation(s)
- Chen Luo
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Changxia He
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Dasen Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-020-38469441
| |
Collapse
|
19
|
Pasten MC, Carballo J, Gallardo J, Zappacosta D, Selva JP, Rodrigo JM, Echenique V, Garbus I. A combined transcriptome - miRNAome approach revealed that a kinesin gene is differentially targeted by a novel miRNA in an apomictic genotype of Eragrostis curvula. FRONTIERS IN PLANT SCIENCE 2022; 13:1012682. [PMID: 36247597 PMCID: PMC9563718 DOI: 10.3389/fpls.2022.1012682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 06/06/2023]
Abstract
Weeping lovegrass (Eragrostis curvula [Shrad.] Nees) is a perennial grass typically established in semi-arid regions, with good adaptability to dry conditions and sandy soils. This polymorphic complex includes both sexual and apomictic cytotypes, with different ploidy levels (2x-8x). Diploids are known to be sexual, while most polyploids are facultative apomicts, and full apomicts have also been reported. Plant breeding studies throughout the years have focused on achieving the introgression of apomixis into species of agricultural relevance, but, given the complexity of the trait, a deeper understanding of the molecular basis of regulatory mechanisms of apomixis is still required. Apomixis is thought to be associated with silencing or disruption of the sexual pathway, and studies have shown it is influenced by epigenetic mechanisms. In a previous study, we explored the role of miRNA-mRNA interactions using two contrasting E. curvula phenotypes. Here, the sexual OTA-S, the facultative Don Walter and the obligate apomictic Tanganyika cDNA and sRNA libraries were inquired, searching for miRNA discovery and miRNA expression regulation of genes related to the reproductive mode. This allowed for the characterization of seven miRNAs and the validation of their miRNA-target interactions. Interestingly, a kinesin gene was found to be repressed in the apomictic cultivar Tanganyika, targeted by a novel miRNA that was found to be overexpressed in this genotype, suggestive of an involvement in the reproductive mode expression. Our work provided additional evidence of the contribution of the epigenetic regulation of the apomictic pathway.
Collapse
Affiliation(s)
- María Cielo Pasten
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - José Carballo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Jimena Gallardo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Diego Zappacosta
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Juan Pablo Selva
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Juan Manuel Rodrigo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Ingrid Garbus
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
20
|
Jing X, Zhang H, Huai X, An Q, Qiao Y. Identification and characterization of miRNAs and PHAS loci related to the early development of the embryo and endosperm in Fragaria × ananassa. BMC Genomics 2022; 23:638. [PMID: 36076187 PMCID: PMC9454143 DOI: 10.1186/s12864-022-08864-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The strawberry fleshy fruit is actually enlarged receptacle tissue, and the successful development of the embryo and endosperm is essential for receptacle fruit set. MicroRNAs (miRNAs) and phased small interfering RNAs (phasiRNAs) play indispensable regulatory roles in plant growth and development. However, miRNAs and phasiRNAs participating in the regulation of strawberry embryo and endosperm development have yet to be explored. RESULTS Here, we performed genome-wide identification of miRNA and phasiRNA-producing loci (PHAS) in strawberry seeds with a focus on those involved in the development of the early embryo and endosperm. We found that embryos and endosperm have different levels of small RNAs. After bioinformatics analysis, the results showed that a total of 404 miRNAs (352 known and 52 novel) and 156 PHAS genes (81 21-nt and 75 24-nt genes) could be found in strawberry seed-related tissues, of which four and nine conserved miRNA families displayed conserved expression in the endosperm and embryo, respectively. Based on refined putative annotation of PHAS loci, some auxin signal-related genes, such as CM3, TAR2, AFB2, ASA1, NAC and TAS3, were found, which demonstrates that IAA biosynthesis is important for endosperm and embryo development during early fruit growth. Additionally, some auxin signal-related conserved (miR390-TAS3) and novel (miR156-ASA1) trigger-PHAS pairs were identified. CONCLUSIONS Taken together, these results expand our understanding of sRNAs in strawberry embryo and endosperm development and provide a genomic resource for early-stage fruit development.
Collapse
Affiliation(s)
- Xiaotong Jing
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Hong Zhang
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Xinjia Huai
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Qi An
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yushan Qiao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
21
|
Zhang F, Yang J, Zhang N, Wu J, Si H. Roles of microRNAs in abiotic stress response and characteristics regulation of plant. FRONTIERS IN PLANT SCIENCE 2022; 13:919243. [PMID: 36092392 PMCID: PMC9459240 DOI: 10.3389/fpls.2022.919243] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/08/2022] [Indexed: 05/27/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding endogenous small RNAs (long 20-24 nucleotides) that negatively regulate eukaryotes gene expression at post-transcriptional level via cleavage or/and translational inhibition of targeting mRNA. Based on the diverse roles of miRNA in regulating eukaryotes gene expression, research on the identification of miRNA target genes has been carried out, and a growing body of research has demonstrated that miRNAs act on target genes and are involved in various biological functions of plants. It has an important influence on plant growth and development, morphogenesis, and stress response. Recent case studies indicate that miRNA-mediated regulation pattern may improve agronomic properties and confer abiotic stress resistance of plants, so as to ensure sustainable agricultural production. In this regard, we focus on the recent updates on miRNAs and their targets involved in responding to abiotic stress including low temperature, high temperature, drought, soil salinity, and heavy metals, as well as plant-growing development. In particular, this review highlights the diverse functions of miRNAs on achieving the desirable agronomic traits in important crops. Herein, the main research strategies of miRNAs involved in abiotic stress resistance and crop traits improvement were summarized. Furthermore, the miRNA-related challenges and future perspectives of plants have been discussed. miRNA-based research lays the foundation for exploring miRNA regulatory mechanism, which aims to provide insights into a potential form of crop improvement and stress resistance breeding.
Collapse
Affiliation(s)
- Feiyan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Plant Genomics/Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics/Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
22
|
Advances in the regulation of plant salt-stress tolerance by miRNA. Mol Biol Rep 2022; 49:5041-5055. [PMID: 35381964 DOI: 10.1007/s11033-022-07179-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
Abstract
Salt stress significantly affects the growth, development, yield, and quality of plants. MicroRNAs (miRNAs) are involved in various stress responses via target gene regulation. Their role in regulating salt stress has also received significant attention from researchers. Various transcription factor families are the common target genes of plant miRNAs. Thus, regulating the expression of miRNAs is a novel method for developing salt-tolerant crops. This review summarizes plant miRNAs that mediate salt tolerance, specifically miRNAs that have been utilized in genetic engineering to modify plant salinity tolerance. The molecular mechanism by which miRNAs mediate salt stress tolerance merits elucidation, and this knowledge will promote the development of miRNA-mediated salt-tolerant crops and provide new strategies against increasingly severe soil salinization.
Collapse
|
23
|
Huang X, Xia R, Liu Y. microRNA mediated regulation in fruit quality. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Di Marzo M, Viana VE, Banfi C, Cassina V, Corti R, Herrera-Ubaldo H, Babolin N, Guazzotti A, Kiegle E, Gregis V, de Folter S, Sampedro J, Mantegazza F, Colombo L, Ezquer I. Cell wall modifications by α-XYLOSIDASE1 are required for control of seed and fruit size in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1499-1515. [PMID: 34849721 DOI: 10.1093/jxb/erab514] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Cell wall modifications are of pivotal importance during plant development. Among cell wall components, xyloglucans are the major hemicellulose polysaccharide in primary cell walls of dicots and non-graminaceous monocots. They can connect the cellulose microfibril surface to affect cell wall mechanical properties. Changes in xyloglucan structure are known to play an important role in regulating cell growth. Therefore, the degradation of xyloglucan is an important modification that alters the cell wall. The α-XYLOSIDASE1 (XYL1) gene encodes the only α-xylosidase acting on xyloglucans in Arabidopsis thaliana. Here, we showed that mutation of XYL1 strongly influences seed size, seed germination, and fruit elongation. We found that the expression of XYL1 is directly regulated in developing seeds and fruit by the MADS-box transcription factor SEEDSTICK. We demonstrated that XYL1 complements the stk smaller seed phenotype. Finally, by atomic force microscopy, we investigated the role of XYL1 activity in maintaining cell stiffness and growth, confirming the importance of cell wall modulation in shaping organs.
Collapse
Affiliation(s)
- Maurizio Di Marzo
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Vívian Ebeling Viana
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
- Plant Genomics and Breeding Center, Federal University of Pelotas, Capão do Leão-RS, Brazil
| | - Camilla Banfi
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Valeria Cassina
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milan-Bicocca, Monza, Italy
| | - Roberta Corti
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milan-Bicocca, Monza, Italy
- Department of Materials Science, University of Milan-Bicocca, Milan, Italy
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36824 Irapuato, Guanajuato, México
| | - Nicola Babolin
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Andrea Guazzotti
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Edward Kiegle
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Veronica Gregis
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36824 Irapuato, Guanajuato, México
| | - Javier Sampedro
- Universidad de Santiago de Compostela, Departamento de Fisiología Vegetal, Facultad de Biología, Rúa Lope Gómez de Marzoa, s/n. Campus sur, 15782 Santiago de Compostela, A Coruña, Spain
| | - Francesco Mantegazza
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milan-Bicocca, Monza, Italy
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| |
Collapse
|
25
|
Abstract
Flowering plants produce flowers and one of the most complex floral structures is the pistil or the gynoecium. All the floral organs differentiate from the floral meristem. Various reviews exist on molecular mechanisms controlling reproductive development, but most focus on a short time window and there has been no recent review on the complete developmental time frame of gynoecium and fruit formation. Here, we highlight recent discoveries, including the players, interactions and mechanisms that govern gynoecium and fruit development in Arabidopsis. We also present the currently known gene regulatory networks from gynoecium initiation until fruit maturation.
Collapse
Affiliation(s)
- Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, México
| |
Collapse
|
26
|
Nowak K, Morończyk J, Grzyb M, Szczygieł-Sommer A, Gaj MD. miR172 Regulates WUS during Somatic Embryogenesis in Arabidopsis via AP2. Cells 2022; 11:718. [PMID: 35203367 PMCID: PMC8869827 DOI: 10.3390/cells11040718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
In plants, the embryogenic transition of somatic cells requires the reprogramming of the cell transcriptome, which is under the control of genetic and epigenetic factors. Correspondingly, the extensive modulation of genes encoding transcription factors and miRNAs has been indicated as controlling the induction of somatic embryogenesis in Arabidopsis and other plants. Among the MIRNAs that have a differential expression during somatic embryogenesis, members of the MIRNA172 gene family have been identified, which implies a role of miR172 in controlling the embryogenic transition in Arabidopsis. In the present study, we found a disturbed expression of both MIRNA172 and candidate miR172-target genes, including AP2, TOE1, TOE2, TOE3, SMZ and SNZ, that negatively affected the embryogenic response of transgenic explants. Next, we examined the role of AP2 in the miR172-mediated mechanism that controls the embryogenic response. We found some evidence that by controlling AP2, miR172 might repress the WUS that has an important function in embryogenic induction. We showed that the mechanism of the miR172-AP2-controlled repression of WUS involves histone acetylation. We observed the upregulation of the WUS transcripts in an embryogenic culture that was overexpressing AP2 and treated with trichostatin A (TSA), which is an inhibitor of HDAC histone deacetylases. The increased expression of the WUS gene in the embryogenic culture of the hdac mutants further confirmed the role of histone acetylation in WUS control during somatic embryogenesis. A chromatin-immunoprecipitation analysis provided evidence about the contribution of HDA6/19-mediated histone deacetylation to AP2-controlled WUS repression during embryogenic induction. The upstream regulatory elements of the miR172-AP2-WUS pathway might involve the miR156-controlled SPL9/SPL10, which control the level of mature miR172 in an embryogenic culture.
Collapse
Affiliation(s)
- Katarzyna Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| | - Joanna Morończyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| | - Małgorzata Grzyb
- Polish Academy of Sciences Botanical Garden—Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland;
| | - Aleksandra Szczygieł-Sommer
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| | - Małgorzata D. Gaj
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| |
Collapse
|
27
|
Zhou Z, Zhu Y, Zhang H, Zhang R, Gao Q, Ding T, Wang H, Yan Z, Yao JL. Transcriptome analysis of transgenic apple fruit overexpressing microRNA172 reveals candidate transcription factors regulating apple fruit development at early stages. PeerJ 2022; 9:e12675. [PMID: 35036153 PMCID: PMC8710058 DOI: 10.7717/peerj.12675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background MicroRNA172 (miR172) has been proven to be critical for fruit growth, since elevated miR172 activity blocks the growth of apple (Malus x domestica Borkh.) fruit. However, it is not clear how overexpression of miR172 affects apple fruit developmental processes. Methods To answer this question, the present study, analyzed global transcriptional changes in miR172-overexpressing (miR172OX) and nongenetically modified wild-type (WT) apple fruit at two developmental stages and in different fruit tissues via RNA-seq. In addition, two cultivars, ‘Hanfu’ and ‘M9’, which have naturally fruit size variation, were included to identify miR172-dependent DEGs. qRT–PCRwas used to verify the reliability of our RNA-seq data. Results Overexpression of miR172 altered the expression levels of many cell proliferation- and cell expansion-related genes. Twenty-four libraries were generated, and 10,338 differentially expressed genes (DEGs) were detected between miR172OX and WT fruit tissues. ‘Hanfu’ and ‘M9’ are two common cultivars that bear fruit of different sizes (250 g and 75 g, respectively). Six libraries were generated, and 3,627 DEGs were detected between ‘Hanfu’ and ‘M9’. After merging the two datasets, 6,888 candidate miR172-specific DEGs were identified. The potential networks associated with fruit size triggered traits were defined among genes belonging to the families of hormone synthesis, signaling pathways, and transcription factors. Our comparative transcriptome analysis provides insights into transcriptome responses to miR172 overexpression in apple fruit and a valuable database for future studies to validate functional genes and elucidate the fruit developmental mechanisms in apple.
Collapse
Affiliation(s)
- Zhe Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanmin Zhu
- Tree Fruit Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Wenatchee, WA, USA
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ruiping Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiming Gao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Tiyu Ding
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Huan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhenli Yan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.,The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| |
Collapse
|
28
|
Yao JL, Kang C, Gu C, Gleave AP. The Roles of Floral Organ Genes in Regulating Rosaceae Fruit Development. FRONTIERS IN PLANT SCIENCE 2022; 12:644424. [PMID: 35069608 PMCID: PMC8766977 DOI: 10.3389/fpls.2021.644424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
The function of floral organ identity genes, APETALA1/2/3, PISTILLATA, AGAMOUS, and SEPALLATA1/2/3, in flower development is highly conserved across angiosperms. Emerging evidence shows that these genes also play important roles in the development of the fruit that originates from floral organs following pollination and fertilization. However, their roles in fruit development may vary significantly between species depending on the floral organ types contributing to the fruit tissues. Fruits of the Rosaceae family develop from different floral organ types depending on the species, for example, peach fruit flesh develops from carpellary tissues, whereas apple and strawberry fruit flesh develop from extra-carpellary tissues, the hypanthium and receptacle, respectively. In this review, we summarize recent advances in understanding floral organ gene function in Rosaceae fruit development and analyze the similarities and diversities within this family as well as between Rosaceae and the model plant species Arabidopsis and tomato. We conclude by suggesting future research opportunities using genomics resources to rapidly dissect gene function in this family of perennial plants.
Collapse
Affiliation(s)
- Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Chunying Kang
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Chao Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Andrew Peter Gleave
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
29
|
Hoshikawa K, Pham D, Ezura H, Schafleitner R, Nakashima K. Genetic and Molecular Mechanisms Conferring Heat Stress Tolerance in Tomato Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:786688. [PMID: 35003175 PMCID: PMC8739973 DOI: 10.3389/fpls.2021.786688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 05/17/2023]
Abstract
Climate change is a major threat to global food security. Changes in climate can directly impact food systems by reducing the production and genetic diversity of crops and their wild relatives, thereby restricting future options for breeding improved varieties and reducing the ability to adapt crops to future challenges. The global surface temperature is predicted to rise by an average of 0.3°C during the next decade, and the Paris Agreement (Paris Climate Accords) aims to limit global warming to below an average of 2°C, preferably to 1.5°C compared to pre-industrial levels. Even if the goal of the Paris Agreement can be met, the predicted rise in temperatures will increase the likelihood of extreme weather events, including heatwaves, making heat stress (HS) a major global abiotic stress factor for many crops. HS can have adverse effects on plant morphology, physiology, and biochemistry during all stages of vegetative and reproductive development. In fruiting vegetables, even moderate HS reduces fruit set and yields, and high temperatures may result in poor fruit quality. In this review, we emphasize the effects of abiotic stress, especially at high temperatures, on crop plants, such as tomatoes, touching upon key processes determining plant growth and yield. Specifically, we investigated the molecular mechanisms involved in HS tolerance and the challenges of developing heat-tolerant tomato varieties. Finally, we discuss a strategy for effectively improving the heat tolerance of vegetable crops.
Collapse
Affiliation(s)
- Ken Hoshikawa
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
- Vegetable Diversity and Improvement, World Vegetable Center, Tainan, Taiwan
| | - Dung Pham
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Hiroshi Ezura
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | | | - Kazuo Nakashima
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| |
Collapse
|
30
|
Ma Y, Wolf S, Lohmann JU. Casting the Net-Connecting Auxin Signaling to the Plant Genome. Cold Spring Harb Perspect Biol 2021; 13:a040006. [PMID: 33903151 PMCID: PMC8559546 DOI: 10.1101/cshperspect.a040006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin represents one of the most potent and most versatile hormonal signals in the plant kingdom. Built on a simple core of only a few dedicated components, the auxin signaling system plays important roles for diverse aspects of plant development, physiology, and defense. Key to the diversity of context-dependent functional outputs generated by cells in response to this small molecule are gene duplication events and sub-functionalization of signaling components on the one hand, and a deep embedding of the auxin signaling system into complex regulatory networks on the other hand. Together, these evolutionary innovations provide the mechanisms to allow each cell to display a highly specific auxin response that suits its individual requirements. In this review, we discuss the regulatory networks connecting auxin with a large number of diverse pathways at all relevant levels of the signaling system ranging from biosynthesis to transcriptional response.
Collapse
Affiliation(s)
- Yanfei Ma
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Sebastian Wolf
- Cell Wall Signalling Group, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
31
|
Wang P, Xuan X, Su Z, Wang W, Abdelrahman M, Jiu S, Zhang X, Liu Z, Wang X, Wang C, Fang J. Identification of miRNAs-mediated seed and stone-hardening regulatory networks and their signal pathway of GA-induced seedless berries in grapevine (V. vinifera L.). BMC PLANT BIOLOGY 2021; 21:442. [PMID: 34587914 PMCID: PMC8480016 DOI: 10.1186/s12870-021-03188-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Stone-hardening stage is crucial to the development of grape seed and berry quality. A significant body of evidence supports the important roles of MicroRNAs in grape-berry development, but their specific molecular functions during grape stone-hardening stage remain unclear. RESULTS Here, a total of 161 conserved and 85 species-specific miRNAs/miRNAs* (precursor) were identified in grape berries at stone-hardening stage using Solexa sequencing. Amongst them, 30 VvmiRNAs were stone-hardening stage-specific, whereas 52 exhibited differential expression profiles during berry development, potentially participating in the modulation of berry development as verified by their expression patterns. GO and KEGG pathway analysis showed that 13 VvmiRNAs might be involved in the regulation of embryo development, another 11 in lignin and cellulose biosynthesis, and also 28 in the modulation of hormone signaling, sugar, and proline metabolism. Furthermore, the target genes for 4 novel VvmiRNAs related to berry development were validated using RNA Ligase-Mediated (RLM)-RACE and Poly(A) Polymerase-Mediated (PPM)-RACE methods, and their cleavage mainly occurred at the 9th-11th sites from the 5' ends of miRNAs at their binding regions. In view of the regulatory roles of GA in seed embryo development and stone-hardening in grape, we investigated the expression modes of VvmiRNAs and their target genes during GA-induced grape seedless-berry development, and we validated that GA induced the expression of VvmiR31-3p and VvmiR8-5p to negatively regulate the expression levels of CAFFEOYL COENZYME A-3-O-METHYLTRANSFERASE (VvCCoAOMT), and DDB1-CUL4 ASSOCIATED FACTOR1 (VvDCAF1). The series of changes might repress grape stone hardening and embryo development, which might be a potential key molecular mechanism in GA-induced grape seedless-berry development. Finally, a schematic model of miRNA-mediated grape seed and stone-hardening development was proposed. CONCLUSION This work identified 30 stone-hardening stage-specific VvmiRNAs and 52 significant differential expression ones, and preliminary interpreted the potential molecular mechanism of GA-induced grape parthenocarpy. GA negatively manipulate the expression of VvCCoAOMT and VvDCAF1 by up-regulation the expression of VvmiR31-3p and VvmiR8-5p, thereby repressing seed stone and embryo development to produce grape seedless berries.
Collapse
Affiliation(s)
- Peipei Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuxian Xuan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziwen Su
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wenran Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mostafa Abdelrahman
- Department of Botany, Faculty of Sciences, Aswan University, Aswan, 81528, Egypt
- Arid Land Research Center, Tottori University, Tottori, 680-001, Japan
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xicheng Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
32
|
Li Y, Luo W, Sun Y, Chang H, Ma K, Zhao Z, Lu L. Identification and Expression Analysis of miR160 and Their Target Genes in Cucumber. Biochem Genet 2021; 60:127-152. [PMID: 34117971 DOI: 10.1007/s10528-021-10093-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
miR160 plays a crucial role in various biological processes by regulating their target gene auxin response factor (ARF) in plants. However, little is known about miR160 and ARF in cucumber fruit expansion. Here, 4 Csa-MIR160 family members and 17 CsARFs were identified through a genome-wide search. Csa-miR160 showed a closer relationship with those in melon. Phylogenetic analysis revealed that CsARFs were divided into four classes and most of CsARFs presented a closer evolutionary relationship with those from tomato. Putative cis-elements analysis predicted that Csa-MIR160 and CsARFs were involved in light, phytohormone and stress response, which proved that they might take part in light, phytohormone and stress signaling pathway by the miR160-ARF module. In addition, CsARF5, CsARF11, CsARF13 and CsARF14 were predicted as the target genes of Csa-miR160. qRT-PCR revealed that Csa-miR160 and their target gene CsARFs were differentially expressed in differential cucumber tissues and developmental stages. Csa-miR160d was only expressed in the expanded cucumber fruit. CsARF5, CsARF11 and CsARF13 exhibited the lower expression in the expanded fruit than those in the ovary, while, CsARF14 showed the reverse trend. Our results suggested that Csa-miR160d might play a crucial role in cucumber fruit expansion by negatively targeting CsARF5, CsARF11 and CsARF13. This is the first genome-wide analysis of miR160 in cucumber. These findings provide useful information and resources for further studying the role of miR160 and ARF in cucumber fruit expansion.
Collapse
Affiliation(s)
- Yaoyao Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Weirong Luo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Yongdong Sun
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China. .,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China.
| | - Huaicheng Chang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Kai Ma
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhenxiang Zhao
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Lin Lu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| |
Collapse
|
33
|
Li S, Chen K, Grierson D. Molecular and Hormonal Mechanisms Regulating Fleshy Fruit Ripening. Cells 2021; 10:1136. [PMID: 34066675 PMCID: PMC8151651 DOI: 10.3390/cells10051136] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
This article focuses on the molecular and hormonal mechanisms underlying the control of fleshy fruit ripening and quality. Recent research on tomato shows that ethylene, acting through transcription factors, is responsible for the initiation of tomato ripening. Several other hormones, including abscisic acid (ABA), jasmonic acid (JA) and brassinosteroids (BR), promote ripening by upregulating ethylene biosynthesis genes in different fruits. Changes to histone marks and DNA methylation are associated with the activation of ripening genes and are necessary for ripening initiation. Light, detected by different photoreceptors and operating through ELONGATED HYPOCOTYL 5(HY5), also modulates ripening. Re-evaluation of the roles of 'master regulators' indicates that MADS-RIN, NAC-NOR, Nor-like1 and other MADS and NAC genes, together with ethylene, promote the full expression of genes required for further ethylene synthesis and change in colour, flavour, texture and progression of ripening. Several different types of non-coding RNAs are involved in regulating expression of ripening genes, but further clarification of their diverse mechanisms of action is required. We discuss a model that integrates the main hormonal and genetic regulatory interactions governing the ripening of tomato fruit and consider variations in ripening regulatory circuits that operate in other fruits.
Collapse
Affiliation(s)
- Shan Li
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Donald Grierson
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
34
|
Di Marzo M, Herrera-Ubaldo H, Caporali E, Novák O, Strnad M, Balanzà V, Ezquer I, Mendes MA, de Folter S, Colombo L. SEEDSTICK Controls Arabidopsis Fruit Size by Regulating Cytokinin Levels and FRUITFULL. Cell Rep 2021; 30:2846-2857.e3. [PMID: 32101756 DOI: 10.1016/j.celrep.2020.01.101] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/13/2019] [Accepted: 01/29/2020] [Indexed: 12/29/2022] Open
Abstract
Upon fertilization, the ovary increases in size and undergoes a complex developmental process to become a fruit. We show that cytokinins (CKs), which are required to determine ovary size before fertilization, have to be degraded to facilitate fruit growth. The expression of CKX7, which encodes a cytosolic CK-degrading enzyme, is directly positively regulated post-fertilization by the MADS-box transcription factor STK. Similar to stk, two ckx7 mutants possess shorter fruits than wild type. Quantification of CKs reveals that stk and ckx7 mutants have high CK levels, which negatively control cell expansion during fruit development, compromising fruit growth. Overexpression of CKX7 partially complements the stk fruit phenotype, confirming a role for CK degradation in fruit development. Finally, we show that STK is required for the expression of FUL, which is essential for valve elongation. Overall, we provide insights into the link between CKs and molecular pathways that control fruit growth.
Collapse
Affiliation(s)
- Maurizio Di Marzo
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Milan 20133, Italy
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Elisabetta Caporali
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Milan 20133, Italy
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Olomouc 78371, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Olomouc 78371, Czech Republic
| | - Vicente Balanzà
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Milan 20133, Italy; Instituto de Biologia Molecular y Celular de Plantas, Consejo Superior de Investigacione Cientificas, Universidad Politecnica de Valencia, Valencia, Valencia 46022, Spain
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Milan 20133, Italy
| | - Marta A Mendes
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Milan 20133, Italy
| | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36824, México
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Milan 20133, Italy.
| |
Collapse
|
35
|
Lanctot A, Nemhauser JL. It's Morphin' time: how multiple signals converge on ARF transcription factors to direct development. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:1-7. [PMID: 32480312 PMCID: PMC7704782 DOI: 10.1016/j.pbi.2020.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 05/06/2023]
Abstract
Plant development programs are constantly updated by information about environmental conditions, currently available resources, and sites of active organogenesis. Much of this information is encoded in modifications of transcription factors that lead to changes in their relative abundance, activity and localization. Recent work on the Auxin Response Factor family of transcription factors has highlighted the large diversity of such modifications, as well as how they may work synergistically or antagonistically to regulate downstream responses. ARFs can be regulated by alternative splicing, post-translational modification, and subcellular localization, among many other mechanisms. Beyond the many ways ARFs themselves can be regulated, they can also act cooperatively with other transcription factors to enable highly complex genetic networks with distinct developmental outcomes. Multi-level regulation like what has been documented for ARFs has the capacity to generate flexibility in transcriptional outputs, as well as resilience to short-term perturbations.
Collapse
Affiliation(s)
- Amy Lanctot
- Department of Biology, University of Washington, Seattle, WA 98195, United States; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, United States
| | - Jennifer L Nemhauser
- Department of Biology, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
36
|
Abstract
Epigenetic mechanisms play fundamental roles in regulating numerous biological processes in various developmental and environmental contexts. Three highly interconnected epigenetic control mechanisms, including small noncoding RNAs, DNA methylation, and histone modifications, contribute to the establishment of plant epigenetic profiles. During the past decade, a growing body of experimental work has revealed the intricate, diverse, and dynamic roles that epigenetic modifications play in plant-nematode interactions. In this review, I summarize recent progress regarding the functions of small RNAs in mediating plant responses to infection by cyst and root-knot nematodes, with a focus on the functions of microRNAs. I also recapitulate recent advances in genome-wide DNA methylation analysis and discuss how cyst nematodes induce extensive and dynamic changes in the plant methylome that impact the transcriptional activity of genes and transposable elements. Finally, the potential role of nematode effector proteins in triggering such epigenome changes is discussed.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA;
| |
Collapse
|
37
|
Rodríguez-Cazorla E, Ripoll JJ, Ortuño-Miquel S, Martínez-Laborda A, Vera A. Dissection of the Arabidopsis HUA-PEP gene activity reveals that ovule fate specification requires restriction of the floral A-function. THE NEW PHYTOLOGIST 2020; 227:1222-1234. [PMID: 32259283 DOI: 10.1111/nph.16589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Ovules are essential for sexual plant reproduction and seed formation, and are fundamental for agriculture. However, our understanding of the molecular mechanisms governing ovule development is far from complete. In Arabidopsis, ovule identity is determined by homeotic MADS-domain proteins that define the floral C- (AG) and D- (SHP1/SHP2, STK) functions. Pre-mRNA processing of these genes is critical and mediated by HUA-PEP activity, composed of genes encoding RNA-binding proteins. In strong hua-pep mutants, functional transcripts for C- and D-function genes are reduced, resulting in homeotic transformation of ovules. Thus, hua-pep mutants provide an unique sensitized background to study ovule morphogenesis when C- and D-functions are simultaneously compromised. We found that hua-pep ovules are morphologically sepaloid and show ectopic expression of the homeotic class-A gene AP1. Inactivation of AP1 or AP2 (A-function genes) in hua-pep mutants reduced homeotic conversions, rescuing ovule identity while promoting carpelloid traits in transformed ovules. Interestingly, increased AG dosage led to similar results. Our findings strongly suggest that HUA-PEP activity is required for correct C and D floral functions, which in turn prevents ectopic expression of class-A genes in ovules for their proper morphogenesis, evoking the classic A-C antagonism of the ABC model for floral organ development.
Collapse
Affiliation(s)
| | - Juan-José Ripoll
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
- TATA Institute for Genetics and Society (TIGS), University of California San Diego, La Jolla, CA, 92093, USA
| | - Samanta Ortuño-Miquel
- Area de Genética, Universidad Miguel Hernández, Campus de Sant Joan, Alicante, 03550, Spain
| | | | - Antonio Vera
- Area de Genética, Universidad Miguel Hernández, Campus de Sant Joan, Alicante, 03550, Spain
| |
Collapse
|
38
|
Bai S, Tian Y, Tan C, Bai S, Hao J, Hasi A. Genome-wide identification of microRNAs involved in the regulation of fruit ripening and climacteric stages in melon ( Cucumis melo). HORTICULTURE RESEARCH 2020; 7:106. [PMID: 32637134 PMCID: PMC7327070 DOI: 10.1038/s41438-020-0331-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 05/31/2023]
Abstract
Fruit ripening is influenced by multiple plant hormones and the regulation of genes. However, studies on posttranscriptional regulators (e.g., miRNAs) of fruit growth and ripening are limited. We used miRNA sequencing and degradome methods to identify miRNAs and their target genes in melon (Cucumis melo cv. Hetao melon). A total of 61 conserved miRNAs and 36 novel miRNAs were identified from fruit growth, ripening, climacteric, and postclimacteric developmental stage samples, of which 32 conserved miRNAs were differentially expressed between developmental stage samples. Sixty-two target genes of 43 conserved miRNAs and 1 novel miRNA were identified from degradome sequencing. To further investigate miRNA influencing fruit ripening, transgenic melon plants overexpressing pre-cme-miR393 (cme-miR393-OE) were generated and characterized. The results showed that fruit ripening was delayed in cme-miR393-OE transgenic lines compared to nontransgenic fruits. The target of cme-miR393 was also identified, and the expression of CmAFB2 was repressed in transgenic plants. These results provide evidence that miRNA regulates melon fruit ripening and provide potential targets to improve the horticultural traits of melon fruit.
Collapse
Affiliation(s)
- Selinge Bai
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, 010070 Hohhot, China
| | - Yunyun Tian
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, 010070 Hohhot, China
| | - Chao Tan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, 010070 Hohhot, China
| | - Shunbuer Bai
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, 010070 Hohhot, China
| | - Jinfeng Hao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, 010070 Hohhot, China
| | - Agula Hasi
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, 010070 Hohhot, China
| |
Collapse
|
39
|
Hussain Q, Shi J, Scheben A, Zhan J, Wang X, Liu G, Yan G, King GJ, Edwards D, Wang H. Genetic and signalling pathways of dry fruit size: targets for genome editing-based crop improvement. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1124-1140. [PMID: 31850661 PMCID: PMC7152616 DOI: 10.1111/pbi.13318] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/20/2019] [Accepted: 12/08/2019] [Indexed: 05/24/2023]
Abstract
Fruit is seed-bearing structures specific to angiosperm that form from the gynoecium after flowering. Fruit size is an important fitness character for plant evolution and an agronomical trait for crop domestication/improvement. Despite the functional and economic importance of fruit size, the underlying genes and mechanisms are poorly understood, especially for dry fruit types. Improving our understanding of the genomic basis for fruit size opens the potential to apply gene-editing technology such as CRISPR/Cas to modulate fruit size in a range of species. This review examines the genes involved in the regulation of fruit size and identifies their genetic/signalling pathways, including the phytohormones, transcription and elongation factors, ubiquitin-proteasome and microRNA pathways, G-protein and receptor kinases signalling, arabinogalactan and RNA-binding proteins. Interestingly, different plant taxa have conserved functions for various fruit size regulators, suggesting that common genome edits across species may have similar outcomes. Many fruit size regulators identified to date are pleiotropic and affect other organs such as seeds, flowers and leaves, indicating a coordinated regulation. The relationships between fruit size and fruit number/seed number per fruit/seed size, as well as future research questions, are also discussed.
Collapse
Affiliation(s)
- Quaid Hussain
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Armin Scheben
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaPerthWAAustralia
| | - Jiepeng Zhan
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Guihua Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Guijun Yan
- UWA School of Agriculture and EnvironmentThe UWA Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Graham J. King
- Southern Cross Plant ScienceSouthern Cross UniversityLismoreNSWAustralia
| | - David Edwards
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaPerthWAAustralia
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| |
Collapse
|
40
|
Smit ME, Llavata-Peris CI, Roosjen M, van Beijnum H, Novikova D, Levitsky V, Sevilem I, Roszak P, Slane D, Jürgens G, Mironova V, Brady SM, Weijers D. Specification and regulation of vascular tissue identity in the Arabidopsis embryo. Development 2020; 147:dev186130. [PMID: 32198154 DOI: 10.1242/dev.186130] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/05/2020] [Indexed: 12/30/2022]
Abstract
Development of plant vascular tissues involves tissue identity specification, growth, pattern formation and cell-type differentiation. Although later developmental steps are understood in some detail, it is still largely unknown how the tissue is initially specified. We used the early Arabidopsis embryo as a simple model to study this process. Using a large collection of marker genes, we found that vascular identity was specified in the 16-cell embryo. After a transient precursor state, however, there was no persistent uniform tissue identity. Auxin is intimately connected to vascular tissue development. We found that, although an AUXIN RESPONSE FACTOR5/MONOPTEROS (ARF5/MP)-dependent auxin response was required, it was not sufficient for tissue specification. We therefore used a large-scale enhanced yeast one-hybrid assay to identify potential regulators of vascular identity. Network and functional analysis of candidate regulators suggest that vascular identity is under robust, complex control. We found that one candidate regulator, the G-class bZIP transcription factor GBF2, can modulate vascular gene expression by tuning MP output through direct interaction. Our work uncovers components of a gene regulatory network that controls the initial specification of vascular tissue identity.
Collapse
Affiliation(s)
- Margot E Smit
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Cristina I Llavata-Peris
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Henriette van Beijnum
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Daria Novikova
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Victor Levitsky
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Iris Sevilem
- Institute of Biotechnology, HiLIFE/Organismal and Evolurionary Biology Research Programma, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Pawel Roszak
- Institute of Biotechnology, HiLIFE/Organismal and Evolurionary Biology Research Programma, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Daniel Slane
- Max Planck Institute for Developmental Biology, Cell Biology, Tübingen, 72076, Germany
| | - Gerd Jürgens
- Max Planck Institute for Developmental Biology, Cell Biology, Tübingen, 72076, Germany
| | - Victoria Mironova
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| |
Collapse
|
41
|
Li S, Zhu B, Pirrello J, Xu C, Zhang B, Bouzayen M, Chen K, Grierson D. Roles of RIN and ethylene in tomato fruit ripening and ripening-associated traits. THE NEW PHYTOLOGIST 2020; 226:460-475. [PMID: 31814125 PMCID: PMC7154718 DOI: 10.1111/nph.16362] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/01/2019] [Indexed: 05/13/2023]
Abstract
RIPENING INHIBITOR (RIN)-deficient fruits generated by CRISPR/Cas9 initiated partial ripening at a similar time to wild-type (WT) fruits but only 10% WT concentrations of carotenoids and ethylene (ET) were synthesized. RIN-deficient fruit never ripened completely, even when supplied with exogenous ET. The low amount of endogenous ET that they did produce was sufficient to enable ripening initiation and this could be suppressed by the ET perception inhibitor 1-MCP. The reduced ET production by RIN-deficient tomatoes was due to an inability to induce autocatalytic system-2 ET synthesis, a characteristic feature of climacteric ripening. Production of volatiles and transcripts of key volatile biosynthetic genes also were greatly reduced in the absence of RIN. By contrast, the initial extent and rates of softening in the absence of RIN were similar to WT fruits, although detailed analysis showed that the expression of some cell wall-modifying enzymes was delayed and others increased in the absence of RIN. These results support a model where RIN and ET, via ERFs, are required for full expression of ripening genes. Ethylene initiates ripening of mature green fruit, upregulates RIN expression and other changes, including system-2 ET production. RIN, ET and other factors are required for completion of the full fruit-ripening programme.
Collapse
Affiliation(s)
- Shan Li
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Benzhong Zhu
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijing100083China
| | - Julien Pirrello
- GBF LaboratoryUniversity of ToulouseINRACastanet‐Tolosan31320France
| | - Changjie Xu
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Bo Zhang
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Mondher Bouzayen
- GBF LaboratoryUniversity of ToulouseINRACastanet‐Tolosan31320France
| | - Kunsong Chen
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityZijingang CampusHangzhou310058China
- Plant and Crop Sciences DivisionSchool of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLE12 5RDUK
| |
Collapse
|
42
|
Ma J, Zhao P, Liu S, Yang Q, Guo H. The Control of Developmental Phase Transitions by microRNAs and Their Targets in Seed Plants. Int J Mol Sci 2020; 21:E1971. [PMID: 32183075 PMCID: PMC7139601 DOI: 10.3390/ijms21061971] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Seed plants usually undergo various developmental phase transitions throughout their lifespan, mainly including juvenile-to-adult and vegetative-to-reproductive transitions, as well as developmental transitions within organ/tissue formation. MicroRNAs (miRNAs), as a class of small endogenous non-coding RNAs, are involved in the developmental phase transitions in plants by negatively regulating the expression of their target genes at the post-transcriptional level. In recent years, cumulative evidence has revealed that five miRNAs, miR156, miR159, miR166, miR172, and miR396, are key regulators of developmental phase transitions in plants. In this review, the advanced progress of the five miRNAs and their targets in regulating plant developmental transitions, especially in storage organ formation, are summarized and discussed, combining our own findings with the literature. In general, the functions of the five miRNAs and their targets are relatively conserved, but their functional divergences also emerge to some extent. In addition, potential research directions of miRNAs in regulating plant developmental phase transitions are prospected.
Collapse
Affiliation(s)
- Jingyi Ma
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| | - Pan Zhao
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| | - Shibiao Liu
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China;
| | - Qi Yang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| | - Huihong Guo
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| |
Collapse
|
43
|
Powers SK, Strader LC. Regulation of auxin transcriptional responses. Dev Dyn 2019; 249:483-495. [PMID: 31774605 PMCID: PMC7187202 DOI: 10.1002/dvdy.139] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 01/27/2023] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate a vast number of developmental responses throughout all stages of plant growth. Tight control and coordination of auxin signaling is required for the generation of specific auxin‐response outputs. The nuclear auxin signaling pathway controls auxin‐responsive gene transcription through the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F‐BOX pathway. Recent work has uncovered important details into how regulation of auxin signaling components can generate unique and specific responses to determine auxin outputs. In this review, we discuss what is known about the core auxin signaling components and explore mechanisms important for regulating auxin response specificity. A review of recent updates to our understanding of auxin signaling.
Collapse
Affiliation(s)
- Samantha K Powers
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Lucia C Strader
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri.,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri.,Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
44
|
Ripoll JJ, Zhu M, Brocke S, Hon CT, Yanofsky MF, Boudaoud A, Roeder AHK. Growth dynamics of the Arabidopsis fruit is mediated by cell expansion. Proc Natl Acad Sci U S A 2019; 116:25333-25342. [PMID: 31757847 PMCID: PMC6911193 DOI: 10.1073/pnas.1914096116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fruit have evolved a sophisticated tissue and cellular architecture to secure plant reproductive success. Postfertilization growth is perhaps the most dramatic event during fruit morphogenesis. Several studies have proposed that fertilized ovules and developing seeds initiate signaling cascades to coordinate and promote the growth of the accompanying fruit tissues. This dynamic process allows the fruit to conspicuously increase its size and acquire its final shape and means for seed dispersal. All these features are key for plant survival and crop yield. Despite its importance, we lack a high-resolution spatiotemporal map of how postfertilization fruit growth proceeds at the cellular level. In this study, we have combined live imaging, mutant backgrounds in which fertilization can be controlled, and computational modeling to monitor and predict postfertilization fruit growth in Arabidopsis We have uncovered that, unlike leaves, sepals, or roots, fruit do not exhibit a spatial separation of cell division and expansion domains; instead, there is a separation into temporal stages with fertilization as the trigger for transitioning to cell expansion, which drives postfertilization fruit growth. We quantified the coordination between fertilization and fruit growth by imaging no transmitting tract (ntt) mutants, in which fertilization fails in the bottom half of the fruit. By combining our experimental data with computational modeling, we delineated the mobility properties of the seed-derived signaling cascades promoting growth in the fruit. Our study provides the basis for generating a comprehensive understanding of the molecular and cellular mechanisms governing fruit growth and shape.
Collapse
Affiliation(s)
- Juan-José Ripoll
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116;
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093-0116
| | - Mingyuan Zhu
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Stephanie Brocke
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Cindy T Hon
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116
| | - Martin F Yanofsky
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093-0116
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieur de Lyon, Claud Bernard University Lyon 1, CNRS, Institut National de la Recherche Agronomique, F-69342 Lyon, France
| | - Adrienne H K Roeder
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853;
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
45
|
Ectopic Expression of Litsea cubeba LcMADS20 Modifies Silique Architecture. G3-GENES GENOMES GENETICS 2019; 9:4139-4147. [PMID: 31615834 PMCID: PMC6893193 DOI: 10.1534/g3.119.400611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Litsea cubeba (Lour.) Pers. (mountain pepper, Lauraceae) is an important woody essential oil crop that produces fragrant oils in its fruits, especially in its peels. Identification of genes involved in the regulation of fruits and peel architecture is of economic significance for L. cubeba industry. It has been well known that the MADS-box genes are essential transcription factors that control flowers and fruits development. Here, we obtained 33 MADS-box genes first from the RNA-seq data in L. cubeba, and 27 of these genes were of the MIKC-type. LcMADS20, an AGAMOUS-like gene, was highly expressed in the developing stages of fruits, particularly at 85 days after full bloom. The ectopic expression of LcMADS20 in Arabidopsis resulted in not only curved leaves, early flowering and early full-opened inflorescences, but also shorter siliques and decreased percentage of peel thickness. Moreover, in the LcMADS20 transgenic Arabidopsis, the expression modes of several intrinsic ABC model class genes were influenced, among which the expression of FUL was significantly reduced and AP3, AG, and STK were significantly increased. This study systematically analyzed the MADS-box genes in L. cubeba at the transcriptional level and showed that LcMADS20 plays important roles in the regulation of fruit architecture.
Collapse
|
46
|
Łangowski Ł, Goñi O, Quille P, Stephenson P, Carmody N, Feeney E, Barton D, Østergaard L, O'Connell S. A plant biostimulant from the seaweed Ascophyllum nodosum (Sealicit) reduces podshatter and yield loss in oilseed rape through modulation of IND expression. Sci Rep 2019; 9:16644. [PMID: 31719578 PMCID: PMC6851122 DOI: 10.1038/s41598-019-52958-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/25/2019] [Indexed: 01/17/2023] Open
Abstract
The yield of podded crops such as oilseed rape (OSR) is limited by evolutionary adaptations of the plants for more efficient and successful seed dispersal for survival. These plants have evolved dehiscent dry fruits that shatter along a specifically developed junction at carpel margins. A number of strategies such as pod sealants, GMOs and hybrids have been developed to mitigate the impact of pod shatter on crop yield with limited success. Plant biostimulants have been shown to influence plant development. A challenge in plant biostimulant research is elucidating the mechanisms of action. Here we have focused on understanding the effect of an Ascophyllum nodosum based biostimulant (Sealicit) on fruit development and seed dispersal trait in Arabidopsis and OSR at genetic and physiological level. The results indicate that Sealicit is affecting the expression of the major regulator of pod shattering, INDEHISCENT, as well as disrupting the auxin minimum. Both factors influence the formation of the dehiscence zone and consequently reduce pod shattering. Unravelling the mode of action of this unique biostimulant provides data to support its effectiveness in reducing pod shatter and highlights its potential for growers to increase seed yield in a number of OSR varieties.
Collapse
Affiliation(s)
| | - Oscar Goñi
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Clash, Tralee, Co., Kerry, Ireland
| | - Patrick Quille
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Clash, Tralee, Co., Kerry, Ireland
| | - Pauline Stephenson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, NR4 7UH Norfolk, Norwich, United Kingdom
| | | | - Ewan Feeney
- Brandon Bioscience, Centrepoint, Tralee, Co., Kerry, Ireland
| | - David Barton
- Brandon Bioscience, Centrepoint, Tralee, Co., Kerry, Ireland
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, NR4 7UH Norfolk, Norwich, United Kingdom
| | - Shane O'Connell
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Clash, Tralee, Co., Kerry, Ireland.
| |
Collapse
|
47
|
Sabbione A, Daurelio L, Vegetti A, Talón M, Tadeo F, Dotto M. Genome-wide analysis of AGO, DCL and RDR gene families reveals RNA-directed DNA methylation is involved in fruit abscission in Citrus sinensis. BMC PLANT BIOLOGY 2019; 19:401. [PMID: 31510935 PMCID: PMC6739940 DOI: 10.1186/s12870-019-1998-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/29/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Small RNAs regulate a wide variety of processes in plants, from organ development to both biotic and abiotic stress response. Being master regulators in genetic networks, their biogenesis and action is a fundamental aspect to characterize in order to understand plant growth and development. Three main gene families are critical components of RNA silencing: DICER-LIKE (DCL), ARGONAUTE (AGO) and RNA-DEPENDENT RNA POLYMERASE (RDR). Even though they have been characterized in other plant species, there is no information about these gene families in Citrus sinensis, one of the most important fruit species from both economical and nutritional reasons. While small RNAs have been implicated in the regulation of multiple aspects of plant growth and development, their role in the abscission process has not been characterized yet. RESULTS Using genome-wide analysis and a phylogenetic approach, we identified a total of 13 AGO, 5 DCL and 7 RDR genes. We characterized their expression patterns in root, leaf, flesh, peel and embryo samples using RNA-seq data. Moreover, we studied their role in fruit abscission through gene expression analysis in fruit rind compared to abscission zone from samples obtained by laser capture microdissection. Interestingly, we determined that the expression of several RNA silencing factors are down-regulated in fruit abscission zone, being particularly represented gene components of the RNA-dependent DNA Methylation pathway, indicating that repression of this process is necessary for fruit abscission to take place in Citrus sinensis. CONCLUSIONS The members of these 3 families present characteristic conserved domains and distinct expression patterns. We provide a detailed analysis of the members of these families and improved the annotation of some of these genes based on RNA-seq data. Our data suggests that the RNA-dependent DNA Methylation pathway is involved in the important fruit abscission process in C. sinensis.
Collapse
Affiliation(s)
- Agustín Sabbione
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucas Daurelio
- Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Abelardo Vegetti
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Manuel Talón
- Centre de Genómica, Institut Valencià d’Investigacions Agràries (IVIA), Montcada, València, Spain
| | - Francisco Tadeo
- Centre de Genómica, Institut Valencià d’Investigacions Agràries (IVIA), Montcada, València, Spain
| | - Marcela Dotto
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
48
|
|
49
|
Na G, Mu X, Grabowski P, Schmutz J, Lu C. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:346-358. [PMID: 30604453 DOI: 10.1111/tpj.14223] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 05/20/2023]
Abstract
Despite well established roles of microRNAs in plant development, few aspects have been addressed to understand their effects in seeds especially on lipid metabolism. In this study, we showed that overexpressing microRNA167A (miR167OE) in camelina (Camelina sativa) under a seed-specific promoter changed fatty acid composition and increased seed size. Specifically, the miR167OE seeds had a lower α-linolenic acid with a concomitantly higher linoleic acid content than the wild-type. This decreased level of fatty acid desaturation corresponded to a decreased transcriptional expression of the camelina fatty acid desaturase3 (CsFAD3) in developing seeds. MiR167 targeted the transcription factor auxin response factor (CsARF8) in camelina, as had been reported previously in Arabidopsis. Chromatin immunoprecipitation experiments combined with transcriptome analysis indicated that CsARF8 bound to promoters of camelina bZIP67 and ABI3 genes. These transcription factors directly or through the ABI3-bZIP12 pathway regulate CsFAD3 expression and affect α-linolenic acid accumulation. In addition, to decipher the miR167A-CsARF8 mediated transcriptional cascade for CsFAD3 suppression, transcriptome analysis was conducted to implicate mechanisms that regulate seed size in camelina. Expression levels of many genes were altered in miR167OE, including orthologs that have previously been identified to affect seed size in other plants. Most notably, genes for seed coat development such as suberin and lignin biosynthesis were down-regulated. This study provides valuable insights into the regulatory mechanism of fatty acid metabolism and seed size determination, and suggests possible approaches to improve these important traits in camelina.
Collapse
Affiliation(s)
- GunNam Na
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Xiaopeng Mu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Paul Grabowski
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, 35806, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, 35806, USA
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
50
|
Matthes MS, Best NB, Robil JM, Malcomber S, Gallavotti A, McSteen P. Auxin EvoDevo: Conservation and Diversification of Genes Regulating Auxin Biosynthesis, Transport, and Signaling. MOLECULAR PLANT 2019; 12:298-320. [PMID: 30590136 DOI: 10.1016/j.molp.2018.12.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/02/2018] [Accepted: 12/16/2018] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin has been shown to be of pivotal importance in growth and development of land plants. The underlying molecular players involved in auxin biosynthesis, transport, and signaling are quite well understood in Arabidopsis. However, functional characterizations of auxin-related genes in economically important crops, specifically maize and rice, are still limited. In this article, we comprehensively review recent functional studies on auxin-related genes in both maize and rice, compared with what is known in Arabidopsis, and highlight conservation and diversification of their functions. Our analysis is illustrated by phylogenetic analysis and publicly available gene expression data for each gene family, which will aid in the identification of auxin-related genes for future research. Current challenges and future directions for auxin research in maize and rice are discussed. Developments in gene editing techniques provide powerful tools for overcoming the issue of redundancy in these gene families and will undoubtedly advance auxin research in crops.
Collapse
Affiliation(s)
- Michaela Sylvia Matthes
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Norman Bradley Best
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Janlo M Robil
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Simon Malcomber
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA; Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA.
| |
Collapse
|