1
|
Adegoke T, Subramanian S, Daunis D, Bick S, Ward HB. A Case of Treatment-Resistant Depression Complicated by Traumatic Brain Injury and Seizure: Implications for Interventional Treatment and Psychiatric Training. Harv Rev Psychiatry 2024; 32:117-125. [PMID: 38728571 PMCID: PMC11525772 DOI: 10.1097/hrp.0000000000000394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Affiliation(s)
- Timothy Adegoke
- From Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN (Drs. Adegoke, Daunis, and Ward); Harvard Medical School, Departments of Psychiatry and Neurology, Beth Israel Deaconess Medical Center, Boston, MA (Dr. Subramanian); Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN (Dr. Bick)
| | | | | | | | | |
Collapse
|
2
|
Solvason HB, Marianayagam NJ, Soltys SG, Schatzberg AF, DeBattista C, Ketter T, Wang P, Chang SD, Spiegel D, Adler JR. Treatment of Refractory Bipolar Depression With Stereotactic Radiosurgery Targeting the Subgenual Cingulate Cortex. Cureus 2024; 16:e57904. [PMID: 38725772 PMCID: PMC11079710 DOI: 10.7759/cureus.57904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Background The subgenual cingulate cortex (SGC) has been identified as a key structure within multiple neural circuits whose dysfunction is implicated in the neurobiology of depression. Deep brain stimulation in the SGC is thought to reduce and normalize local metabolism, causing normalization of circuit behavior and an improvement in depressive symptoms. We hypothesized that nonablative stereotactic radiosurgery (SRS) to the SGC would reduce local metabolism and reduce the severity of depression in patients with treatment-resistant bipolar depression. Methods Under the FDA's Humanitarian Device Exemption program, patients were screened for inclusion and exclusion criteria. Three volunteers meeting the criteria provided informed consent. Bilateral SGC targets were irradiated to a maximum dose of 75 Gy in one fraction. Subjects were followed for one year following the procedure with mood assessments (Hamilton Depression Rating Scale (HDRS), Clinical Global Impression-Improvement, Clinical Global Impression-Severity, and Young Mania Rating Scale), neurocognitive testing (Delis-Kaplan Executive Function System, Wechsler Adult Intelligence Scale III digit span, and California Verbal Learning Test II), and imaging. Further imaging was completed approximately two years after the procedure. Clinical improvement was defined as a ≥50% reduction in HDRS. Results Two of the three subjects showed clinical improvement in depressive symptoms during the follow-up period, while one subject showed no change in symptom severity. One of three subjects was hospitalized for the emergence of an episode of psychotic mania after discontinuing antipsychotic medications against medical advice but promptly recovered with the reinstitution of an antipsychotic. Sequential assessments did not reveal impairment in any cognitive domain assessed. For one of the three subjects, MRI imaging showed evidence of edema at 12 months post-SRS, which resolved at 22 months post-procedure. In a second of three patients, there was evidence of local edema at the target site at long-term follow-up. All imaging changes were asymptomatic. Conclusion Radiosurgical targeting of the SGC may be a noninvasive strategy for the reduction of severe depression in treatment-resistant bipolar disorder. Two out of three patients showed clinical improvement. While these results are promising, further study, including improvements in target selection and dosing considerations, is needed.
Collapse
Affiliation(s)
- Hugh B Solvason
- Department of Psychiatry, Stanford University School of Medicine, Stanford, USA
| | | | - Scott G Soltys
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Alan F Schatzberg
- Department of Psychiatry, Stanford University School of Medicine, Stanford, USA
| | - Charles DeBattista
- Department of Psychiatry, Stanford University School of Medicine, Stanford, USA
| | - Terence Ketter
- Department of Psychiatry, Stanford University School of Medicine, Stanford, USA
| | - Po Wang
- Department of Psychiatry, Stanford University School of Medicine, Stanford, USA
| | - Steven D Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - David Spiegel
- Department of Psychiatry, Stanford University School of Medicine, Stanford, USA
| | - John R Adler
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
3
|
Sanchez SM, Tsuchiyagaito A, Kuplicki R, Park H, Postolski I, Rohan M, Paulus MP, Guinjoan SM. Repetitive Negative Thinking-Specific and -Nonspecific White Matter Tracts Engaged by Historical Psychosurgical Targets for Depression. Biol Psychiatry 2023; 94:661-671. [PMID: 36965550 PMCID: PMC10517085 DOI: 10.1016/j.biopsych.2023.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Repetitive negative thinking (RNT) is a frequent symptom of major depressive disorder (MDD) that is associated with poor outcomes and treatment resistance. While most studies on RNT have focused on structural and functional characteristics of gray matter, this study aimed to examine the association between white matter (WM) tracts and interindividual variability in RNT. METHODS A probabilistic tractography approach was used to characterize differences in the size and anatomical trajectory of WM fibers traversing psychosurgery targets historically useful in the treatment of MDD (anterior capsulotomy, anterior cingulotomy, and subcaudate tractotomy) in patients with MDD and low (n = 53) or high (n = 52) RNT, and healthy control subjects (n = 54). MDD samples were propensity matched on depression and anxiety severity and demographics. RESULTS WM tracts traversing left hemisphere targets and reaching the ventral anterior body of the corpus callosum (thus extending to contralateral regions) were larger in the high-RNT MDD group compared with low-RNT (effect size D = 0.27, p = .042) and healthy control (D = 0.23, p = .02) groups. MDD was associated with greater size of tracts that converge onto the right medial orbitofrontal cortex regardless of RNT intensity. Other RNT-nonspecific findings in MDD involved tracts reaching the left primary motor and right primary somatosensory cortices. CONCLUSIONS This study provides the first evidence to our knowledge that WM connectivity patterns, which could become targets of intervention, differ between high- and low-RNT participants with MDD. These WM differences extend to circuits that are not specific to RNT, possibly subserving reward mechanisms and psychomotor activity.
Collapse
Affiliation(s)
| | - Aki Tsuchiyagaito
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | | | - Heekyeong Park
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychology, University of North Texas, Dallas, Texas
| | - Ivan Postolski
- Institute for Research in Computational Sciences, National Scientific and Technical Research Council-University of Buenos Aires, Buenos Aires, Argentina
| | - Michael Rohan
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma
| | - Salvador M Guinjoan
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychiatry, Oklahoma University Health Sciences Center, Tulsa, Oklahoma.
| |
Collapse
|
4
|
Taylor JJ, Lin C, Talmasov D, Ferguson MA, Schaper FLWVJ, Jiang J, Goodkind M, Grafman J, Etkin A, Siddiqi SH, Fox MD. A transdiagnostic network for psychiatric illness derived from atrophy and lesions. Nat Hum Behav 2023; 7:420-429. [PMID: 36635585 PMCID: PMC10236501 DOI: 10.1038/s41562-022-01501-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/23/2022] [Indexed: 01/13/2023]
Abstract
Psychiatric disorders share neurobiology and frequently co-occur. This neurobiological and clinical overlap highlights opportunities for transdiagnostic treatments. In this study, we used coordinate and lesion network mapping to test for a shared brain network across psychiatric disorders. In our meta-analysis of 193 studies, atrophy coordinates across six psychiatric disorders mapped to a common brain network defined by positive connectivity to anterior cingulate and insula, and by negative connectivity to posterior parietal and lateral occipital cortex. This network was robust to leave-one-diagnosis-out cross-validation and specific to atrophy coordinates from psychiatric versus neurodegenerative disorders (72 studies). In 194 patients with penetrating head trauma, lesion damage to this network correlated with the number of post-lesion psychiatric diagnoses. Neurosurgical ablation targets for psychiatric illness (four targets) also aligned with the network. This convergent brain network for psychiatric illness may partially explain high rates of psychiatric comorbidity and could highlight neuromodulation targets for patients with more than one psychiatric disorder.
Collapse
Affiliation(s)
- Joseph J Taylor
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Christopher Lin
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Talmasov
- Departments of Neurology and Psychiatry, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Michael A Ferguson
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for the Study of World Religions, Harvard Divinity School, Cambridge, MA, USA
| | - Frederic L W V J Schaper
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jing Jiang
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Madeleine Goodkind
- Departments of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
- New Mexico Veterans Affairs Healthcare System, Albuquerque, NM, USA
| | - Jordan Grafman
- Departments of Physical Medicine and Rehabilitation, Neurology, & Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Alto Neuroscience, Los Altos, CA, USA
| | - Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Bullock DN, Hayday EA, Grier MD, Tang W, Pestilli F, Heilbronner SR. A taxonomy of the brain's white matter: twenty-one major tracts for the 21st century. Cereb Cortex 2022; 32:4524-4548. [PMID: 35169827 PMCID: PMC9574243 DOI: 10.1093/cercor/bhab500] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/26/2023] Open
Abstract
The functional and computational properties of brain areas are determined, in large part, by their connectivity profiles. Advances in neuroimaging and network neuroscience allow us to characterize the human brain noninvasively, but a comprehensive understanding of the human brain demands an account of the anatomy of brain connections. Long-range anatomical connections are instantiated by white matter, which itself is organized into tracts. These tracts are often disrupted by central nervous system disorders, and they can be targeted by neuromodulatory interventions, such as deep brain stimulation. Here, we characterized the connections, morphology, traversal, and functions of the major white matter tracts in the brain. There are major discrepancies across different accounts of white matter tract anatomy, hindering our attempts to accurately map the connectivity of the human brain. However, we are often able to clarify the source(s) of these discrepancies through careful consideration of both histological tract-tracing and diffusion-weighted tractography studies. In combination, the advantages and disadvantages of each method permit novel insights into brain connectivity. Ultimately, our synthesis provides an essential reference for neuroscientists and clinicians interested in brain connectivity and anatomy, allowing for the study of the association of white matter's properties with behavior, development, and disorders.
Collapse
Affiliation(s)
- Daniel N Bullock
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elena A Hayday
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark D Grier
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Tang
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA
- Department of Computer Science, Indiana University Bloomington, Bloomington, IN 47408, USA
| | - Franco Pestilli
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Common and differential connectivity profiles of deep brain stimulation and capsulotomy in refractory obsessive-compulsive disorder. Mol Psychiatry 2022; 27:1020-1030. [PMID: 34703025 DOI: 10.1038/s41380-021-01358-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022]
Abstract
Neurosurgical interventions including deep brain stimulation (DBS) and capsulotomy have been demonstrated effective for refractory obsessive-compulsive disorder (OCD), although treatment-shared/-specific network mechanisms remain largely unclear. We retrospectively analyzed resting-state fMRI data from three cohorts: a cross-sectional dataset of 186 subjects (104 OCD and 82 healthy controls), and two longitudinal datasets of refractory patients receiving ventral capsule/ventral striatum DBS (14 OCD) and anterior capsulotomy (27 OCD). We developed a machine learning model predictive of OCD symptoms (indexed by the Yale-Brown Obsessive Compulsive Scale, Y-BOCS) based on functional connectivity profiles and used graphic measures of network communication to characterize treatment-induced profile changes. We applied a linear model on 2 levels treatments (DBS or capsulotomy) and outcome to identify whether pre-surgical network communication was associated with differential treatment outcomes. We identified 54 functional connectivities within fronto-subcortical networks significantly predictive of Y-BOCS score in patients across 3 independent cohorts, and observed a coexisting pattern of downregulated cortico-subcortical and upregulated cortico-cortical network communication commonly shared by DBS and capsulotomy. Furthermore, increased cortico-cortical communication at ventrolateral and centrolateral prefrontal cortices induced by DBS and capsulotomy contributed to improvement of mood and anxiety symptoms, respectively (p < 0.05). Importantly, pretreatment communication of ventrolateral and centrolateral prefrontal cortices were differentially predictive of mood and anxiety improvements by DBS and capsulotomy (effect sizes = 0.45 and 0.41, respectively). These findings unravel treatment-shared and treatment-specific network characteristics induced by DBS and capsulotomy, which may facilitate the search of potential evidence-based markers for optimally selecting among treatment options for a patient.
Collapse
|
7
|
Deep brain stimulation of the "medial forebrain bundle": a strategy to modulate the reward system and manage treatment-resistant depression. Mol Psychiatry 2022; 27:574-592. [PMID: 33903731 DOI: 10.1038/s41380-021-01100-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/21/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023]
Abstract
The medial forebrain bundle-a white matter pathway projecting from the ventral tegmental area-is a structure that has been under a lot of scrutinies recently due to its implications in the modulation of certain affective disorders such as major depression. In the following, we will discuss major depression in the context of being a disorder dependent on multiple relevant networks, the pathological performance of which is responsible for the manifestation of various symptoms of the disease which extend into emotional, motivational, physiological, and also cognitive domains of daily living. We will focus on the reward system, an evolutionarily conserved pathway whose underperformance leads to anhedonia and lack of motivation, which are key traits in depression. In the field of deep brain stimulation (DBS), different "hypothesis-driven" targets have been chosen as the subject of clinical trials on efficacy in the treatment-resistant depressed patient. The "medial forebrain bundle" is one such target for DBS, and has had remarkably rapid success in alleviating depressive symptoms, improving anhedonia and motivation. We will review what we have learned from pre-clinical animal studies on defining this white matter tract, its connectivity, and the complex molecular (i.e., neurotransmitter) mechanisms by which its modulation exerts its effects. Imaging studies in the form of tractographic depictions have elucidated its presence in the human brain. Such has led to ongoing clinical trials of DBS targeting this pathway to assess efficacy, which is promising yet still lack in sufficient numbers. Ultimately, one must confirm the mechanism of action and validate proof of antidepressant effect in order to have such treatment become mainstream, to promote widespread improvement in the quality of life of suffering patients.
Collapse
|
8
|
Georgiev D, Akram H, Jahanshahi M. Deep brain stimulation for psychiatric disorders: role of imaging in identifying/confirming DBS targets, predicting, and optimizing outcome and unravelling mechanisms of action. PSYCHORADIOLOGY 2021; 1:118-151. [PMID: 38665808 PMCID: PMC10917192 DOI: 10.1093/psyrad/kkab012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 04/28/2024]
Abstract
Following the established application of deep brain stimulation (DBS) in the treatment of movement disorders, new non-neurological indications have emerged, such as for obsessive-compulsive disorders, major depressive disorder, dementia, Gilles de la Tourette Syndrome, anorexia nervosa, and addictions. As DBS is a network modulation surgical treatment, the development of DBS for both neurological and psychiatric disorders has been partly driven by advances in neuroimaging, which has helped explain the brain networks implicated. Advances in magnetic resonance imaging connectivity and electrophysiology have led to the development of the concept of modulating widely distributed, complex brain networks. Moreover, the increasing number of targets for treating psychiatric disorders have indicated that there may be a convergence of the effect of stimulating different targets for the same disorder, and the effect of stimulating the same target for different disorders. The aim of this paper is to review the imaging studies of DBS for psychiatric disorders. Imaging, and particularly connectivity analysis, offers exceptional opportunities to better understand and even predict the clinical outcomes of DBS, especially where there is a lack of objective biomarkers that are essential to properly guide DBS pre- and post-operatively. In future, imaging might also prove useful to individualize DBS treatment. Finally, one of the most important aspects of imaging in DBS is that it allows us to better understand the brain through observing the changes of the functional connectome under neuromodulation, which may in turn help explain the mechanisms of action of DBS that remain elusive.
Collapse
Affiliation(s)
- Dejan Georgiev
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
- Artificial Intelligence Laboratory, Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
9
|
Zhu Z, Hubbard E, Guo X, Barbosa DAN, Popal AM, Cai C, Jiang H, Zheng Z, Lin J, Gao W, Zhang J, Bartas K, Macchia D, Derdeyn P, Halpern CH, Mayberg HS, Beier KT, Zhu J, Wu H. A connectomic analysis of deep brain stimulation for treatment-resistant depression. Brain Stimul 2021; 14:1226-1233. [PMID: 34400379 DOI: 10.1016/j.brs.2021.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Deep brain stimulation (DBS) has been used as a treatment of last resort for treatment-resistant depression (TRD) for more than a decade. Many DBS targets have been proposed and tested clinically, but the underlying circuit mechanisms remain unclear. Uncovering white matter tracts (WMT) activated by DBS targets may provide crucial information about the circuit substrates mediating DBS efficacy in ameliorating TRD. METHODS We performed probabilistic tractography using diffusion magnetic resonance imaging datas from 100 healthy volunteers in Human Connectome Project datasets to analyze the structural connectivity patterns of stimulation targeting currently-used DBS target for TRD. We generated mean and binary fiber distribution maps and calculated the numbers of WMT streamlines in the dataset. RESULTS Probabilistic tracking results revealed that activation of distinct DBS targets demonstrated modulation of overlapping but considerably distinct pathways. DBS targets were categorized into 4 groups: Cortical, Striatal, Thalamic, and Medial Forebrain Bundle according to their main modulated WMT and brain areas. Our data also revealed that Brodmann area 10 and amygdala are hub structures that are associated with all DBS targets. CONCLUSIONS Our results together suggest that the distinct mechanism of DBS targets implies individualized target selection and formulation in the future of DBS treatment for TRD. The modulation of Brodmann area 10 and amygdala may be critical for the efficacy of DBS-mediated treatment of TRD.
Collapse
Affiliation(s)
- Zhoule Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Elizabeth Hubbard
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697-4560, USA
| | - Xinxia Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Daniel A N Barbosa
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Abdul Malik Popal
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Chengwei Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Hongjie Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Zhe Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Jingquan Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Wei Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Katrina Bartas
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, CA, 92697-4560, USA
| | - Desiree Macchia
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697-4560, USA
| | - Pieter Derdeyn
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, CA, 92697-4560, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Helen S Mayberg
- Departments of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697-4560, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697-4560, USA; Department of Biomedical Engineering, University of California, Irvine, CA, 92697-4560, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-4560, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA.
| | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China.
| | - Hemmings Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China.
| |
Collapse
|
10
|
De Ridder D, Adhia D, Vanneste S. The anatomy of pain and suffering in the brain and its clinical implications. Neurosci Biobehav Rev 2021; 130:125-146. [PMID: 34411559 DOI: 10.1016/j.neubiorev.2021.08.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage. Chronic pain, with a prevalence of 20-30 % is the major cause of human suffering worldwide, because effective, specific and safe therapies have yet to be developed. It is unevenly distributed among sexes, with women experiencing more pain and suffering. Chronic pain can be anatomically and phenomenologically dissected into three separable but interacting pathways, a lateral 'painfulness' pathway, a medial 'suffering' pathway and a descending pain inhibitory pathway. One may have pain(fullness) without suffering and suffering without pain(fullness). Pain sensation leads to suffering via a cognitive, emotional and autonomic processing, and is expressed as anger, fear, frustration, anxiety and depression. The medial pathway overlaps with the salience and stress networks, explaining that behavioural relevance or meaning determines the suffering associated with painfulness. Genetic and epigenetic influences trigger chronic neuroinflammatory changes which are involved in transitioning from acute to chronic pain. Based on the concept of the Bayesian brain, pain (and suffering) can be regarded as the consequence of an imbalance between the two ascending and the descending pain inhibitory pathways under control of the reward system. The therapeutic clinical implications of this simple pain model are obvious. After categorizing the working mechanisms of each of the available treatments (pain killers, psychopharmacology, psychotherapy, neuromodulation, psychosurgery, spinal cord stimulation) to 1 or more of the 3 pathways, a rational combination can be proposed of activating the descending pain inhibitory pathway in combination with inhibition of the medial and lateral pathway, so as to rebalance the pain (and suffering) pathways.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Divya Adhia
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Guinjoan SM, Bär KJ, Camprodon JA. Cognitive effects of rapid-acting treatments for resistant depression: Just adverse, or contributing to clinical efficacy? J Psychiatr Res 2021; 140:512-521. [PMID: 34157590 PMCID: PMC8319118 DOI: 10.1016/j.jpsychires.2021.06.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/28/2022]
Abstract
Major Depressive Disorder is a major public health problem and has a high rate of treatment resistance. Fear conditioning has been proposed as a potential mechanism sustaining negative affect in mood disorders. With the aim of exploring cognitive effects of rapid-acting antidepressant treatments as a potential mechanism of action that can be targeted by neuromodulation, we performed a narrative review of the extant literature on effects of electroconvulsive therapy, ketamine or esketamine, and sleep deprivation on emotional/fear memory retrieval-reconsolidation. We explore interference with reconsolidation as a potential common pathway that explains in part the efficacy of rapid-acting antidepressant treatments with disparate mechanisms of action. We propose the testable hypothesis that fear learning circuits can be specifically targeted by neuromodulation to attempt rapid amelioration of depressive symptoms (especially repetitive negative thinking) while limiting unspecific, untoward cognitive side effects.
Collapse
Affiliation(s)
- Salvador M. Guinjoan
- Principal Investigator, Laureate Institute for Brain Research, Tulsa, Oklahoma, United States of America,Schools of Medicine and Psychology, University of Buenos Aires, CONICET, Argentina,Mailing Address: Salvador M. Guinjoan, Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, Oklahoma 74136-3326, United States of America,
| | - Karl-Jürgen Bär
- Chief, Departments of Psychosomatic Medicine and Gerontopsychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
| | - Joan A. Camprodon
- Director, Division of Neuropsychiatry, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
12
|
Vanneste S, De Ridder D. Chronic pain as a brain imbalance between pain input and pain suppression. Brain Commun 2021; 3:fcab014. [PMID: 33758824 PMCID: PMC7966784 DOI: 10.1093/braincomms/fcab014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic pain is pain that persists beyond the expected period of healing. The subjective experience of chronic pain results from pathological brain network interactions, rather than from persisting physiological sensory input of nociceptors. We hypothesize that pain is an imbalance between pain evoking dorsal anterior cingulate cortex and somatosensory cortex and pain suppression (i.e. pregenual anterior cingulate cortex). This imbalance can be measured objectively by current density ratios between pain input and pain inhibition. A balance between areas involved in pain input and pain suppression requires communication, which can be objectively identified by connectivity measures, both functional and effective connectivity. In patients with chronic neuropathic pain, electroencephalography is performed with source localization demonstrating that pain is reflected by an abnormal ratio between the dorsal anterior cingulate cortex, somatosensory cortex and pregenual anterior cingulate cortex. Functional connectivity demonstrates decreased communication between these areas, and effective connectivity puts the culprit at the dorsal anterior cingulate cortex, suggesting that the problem is related to abnormal behavioral relevance attached to the pain. In conclusion, chronic pain can be considered as an imbalance between pain input and pain suppression.
Collapse
Affiliation(s)
- Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, 9016 Dunedin, New Zealand
| |
Collapse
|
13
|
Döbrössy MD, Ramanathan C, Ashouri Vajari D, Tong Y, Schlaepfer T, Coenen VA. Neuromodulation in Psychiatric disorders: Experimental and Clinical evidence for reward and motivation network Deep Brain Stimulation: Focus on the medial forebrain bundle. Eur J Neurosci 2020; 53:89-113. [PMID: 32931064 DOI: 10.1111/ejn.14975] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/28/2022]
Abstract
Deep brain stimulation (DBS) in psychiatric illnesses has been clinically tested over the past 20 years. The clinical application of DBS to the superolateral branch of the medial forebrain bundle in treatment-resistant depressed patients-one of several targets under investigation-has shown to be promising in a number of uncontrolled open label trials. However, there are remain numerous questions that need to be investigated to understand and optimize the clinical use of DBS in depression, including, for example, the relationship between the symptoms, the biological substrates/projections and the stimulation itself. In the context of precision and customized medicine, the current paper focuses on clinical and experimental research of medial forebrain bundle DBS in depression or in animal models of depression, demonstrating how clinical and scientific progress can work in tandem to test the therapeutic value and investigate the mechanisms of this experimental treatment. As one of the hypotheses is that depression engenders changes in the reward and motivational networks, the review looks at how stimulation of the medial forebrain bundle impacts the dopaminergic system.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany
| | - Chockalingam Ramanathan
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Danesh Ashouri Vajari
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Yixin Tong
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Thomas Schlaepfer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Deep Brain Stimulation for Treatment-Resistant Depression: Towards a More Personalized Treatment Approach. J Clin Med 2020; 9:jcm9092729. [PMID: 32846987 PMCID: PMC7565181 DOI: 10.3390/jcm9092729] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) affects approximately 4.4% of the world’s population. One third of MDD patients do not respond to routine psychotherapeutic and pharmacotherapeutic treatment and are said to suffer from treatment-resistant depression (TRD). Deep brain stimulation (DBS) is increasingly being investigated as a treatment modality for TRD. Although early case studies showed promising results of DBS, open-label trials and placebo-controlled studies have reported inconsistent outcomes. This has raised discussion about the correct interpretation of trial results as well as the criteria for patient selection, the choice of stimulation target, and the optimal stimulation parameters. In this narrative review, we summarize recent studies of the effectiveness of DBS in TRD and address the relation between the targeted brain structures and clinical outcomes. Elaborating upon that, we hypothesize that the effectiveness of DBS in TRD can be increased by a more personalized and symptom-based approach. This may be achieved by using resting-state connectivity mapping for neurophysiological subtyping of TRD, by using individualized tractography to help decisions about stimulation target and electrode placement, and by using a more detailed registration of symptomatic improvements during DBS, for instance by using ‘experience sampling’ methods.
Collapse
|
15
|
King ML, Manzel K, Bruss J, Tranel D. Neural correlates of improvements in personality and behavior following a neurological event. Neuropsychologia 2020; 145:106579. [PMID: 29166593 PMCID: PMC6494695 DOI: 10.1016/j.neuropsychologia.2017.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/11/2017] [Accepted: 11/18/2017] [Indexed: 11/21/2022]
Abstract
Research on changes in personality and behavior following brain damage has focused largely on negative outcomes, such as increased irritability, moodiness, and social inappropriateness. However, clinical observations suggest that some patients may actually show positive personality and behavioral changes following a neurological event. In the current work, we investigated neuroanatomical correlates of positive personality and behavioral changes following a discrete neurological event (e.g., stroke, benign tumor resection). Patients (N = 97) were rated by a well-known family member or friend on five domains of personality and behavior: social behavior, irascibility, hypo-emotionality, distress, and executive functioning. Ratings were acquired during the chronic epoch of recovery, when psychological status was stabilized. We identified patients who showed positive changes in personality and behavior in one or more domains of functioning. Lesion analyses indicated that positive changes in personality and behavior were most consistently related to damage to the bilateral frontal polar regions and the right anterior dorsolateral prefrontal region. These findings support the conclusion that improvements in personality and behavior can occur after a neurological event, and that such changes have systematic neuroanatomical correlates. Patients who showed positive changes in personality and behavior following a neurological event were rated as having more disturbed functioning prior to the event. Our study may be taken as preliminary evidence that improvements in personality and behavior following a neurological event may involve dampening of (premorbidly) more extreme expressions of emotion.
Collapse
Affiliation(s)
- Marcie L King
- University of Iowa, Department of Psychological and Brain Sciences, W311 Seashore Hall, Iowa City, IA 52242, USA.
| | - Kenneth Manzel
- University of Iowa Carver College of Medicine, Department of Neurology, 2007 Roy Carver Pavilion, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Joel Bruss
- University of Iowa Carver College of Medicine, Department of Neurology, 2007 Roy Carver Pavilion, 200 Hawkins Drive, Iowa City, IA 52242, USA; University of Iowa Carver College of Medicine, Department of Psychiatry, 2007 Roy Carver Pavilion, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Daniel Tranel
- University of Iowa, Department of Psychological and Brain Sciences, W311 Seashore Hall, Iowa City, IA 52242, USA; University of Iowa Carver College of Medicine, Department of Neurology, 2007 Roy Carver Pavilion, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Connectivity-based identification of a potential neurosurgical target for mood disorders. J Psychiatr Res 2020; 125:113-120. [PMID: 32272241 PMCID: PMC7183327 DOI: 10.1016/j.jpsychires.2020.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/22/2020] [Accepted: 03/18/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Stereotactic ablation (cingulotomy) and subcallosal cingulate deep brain stimulation (SCC DBS) of different regions of the cingulum bundle (CB) have been successfully used to treat psychiatric disorders, such as depression and bipolar disorder. They are hypothesized to work by disrupting white matter pathways involved in the clinical manifestation of these disorders. This study aims to compare the connectivity of different CB subregions using tractography to evaluate stereotactic targets for the treatment of mood disorders. METHODS Fourteen healthy volunteers underwent 3T-MR imaging followed by connectivity analysis using probabilistic tractography. Twenty-one anatomic regions of interest were defined for each subject: 10 CB subregions (including the classical cingulotomy and SCC DBS targets) and 11 cortical/subcortical structures implicated in mood disorders. Connectivity results were compared using Friedman and Bonferroni-corrected post-hoc Wilcoxon tests. RESULTS CB connectivity showed a high degree of regional specificity. Both of the traditional stereotactic targets had widespread connectivity with discrete topology. The cingulotomy target connected primarily to the dorsomedial frontal, dorsal anterior cingulate, and posterior cingulate cortices, whereas the SCC DBS target connected mostly to the subgenual anterior cingulate and medial/central orbitofrontal cortices. However, a region of the rostral dorsal CB, lying between these surgical targets, encompassed statistically equivalent connections to all five cortical regions. CONCLUSIONS The CB is associated with brain structures involved in affective disorders, and the rostral dorsal CB demonstrates connectivity that is comparable to the combined connectivity of cingulotomy and SCC DBS neurosurgical interventions. The rostral dorsal CB represents a surgical target worthy of clinical exploration for mood disorders.
Collapse
|
17
|
Coenen VA, Schlaepfer TE, Sajonz B, Döbrössy M, Kaller CP, Urbach H, Reisert M. Tractographic description of major subcortical projection pathways passing the anterior limb of the internal capsule. Corticopetal organization of networks relevant for psychiatric disorders. Neuroimage Clin 2020; 25:102165. [PMID: 31954987 PMCID: PMC6965747 DOI: 10.1016/j.nicl.2020.102165] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/06/2019] [Accepted: 01/09/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Major depression (MD) and obsessive-compulsive disorder (OCD) are psychiatric diseases with a huge impact on individual well-being. Despite optimal treatment regiments a subgroup of patients remains treatment resistant and stereotactic surgery (stereotactic lesion surgery, SLS or Deep Brain Stimulation, DBS) might be an option. Recent research has described four networks related to MD and OCD (affect, reward, cognitive control, default network) but only on a cortical and the adjacent sub-cortical level. Despite the enormous impact of comparative neuroanatomy, animal science and stereotactic approaches a holistic theory of subcortical and cortical network interactions is elusive. Because of the dominant hierarchical rank of the neocortex, corticofugal approaches have been used to identify connections in subcortical anatomy without anatomical priors and in part confusing results. We here propose a different corticopetal approach by identifying subcortical networks and search for neocortical convergences thereby following the principle of phylogenetic and ontogenetic network development. MATERIAL AND METHODS This work used a diffusion tensor imaging data from a normative cohort (Human Connectome Project, HCP; n = 200) to describe eight subcortical fiber projection pathways (PPs) from subthalamic nucleus (STN), substantia nigra (SNR), red nucleus (RN), ventral tegmental area (VTA), ventrolateral thalamus (VLT) and mediodorsal thalamus (MDT) in a normative space (MNI). Subcortical and cortical convergences were described including an assignment of the specific pathways to MD/OCD-related networks. Volumes of activated tissue for different stereotactic stimulation sites and procedures were simulated to understand the role of the distinct networks, with respect to symptoms and treatment of OCD and MD. RESULTS The detailed course of eight subcortical PPs (stnPP, snrPP, rnPP, vlATR, vlATRc, mdATR, mdATRc, vtaPP/slMFB) were described together with their subcortical and cortical convergences. The anterior limb of the internal capsule can be subdivided with respect to network occurrences in ventral-dorsal and medio-lateral gradients. Simulation of stereotactic procedures for OCD and MD showed dominant involvement of mdATR/mdATRc (affect network) and vtaPP/slMFB (reward network). DISCUSSION Corticofugal search strategies for the evaluation of stereotactic approaches without anatomical priors often lead to confusing results which do not allow for a clear assignment of a procedure to an involved network. According to our simulation of stereotactic procedures in the treatment of OCD and MD, most of the target regions directly involve the reward (and affect) networks, while side-effects can in part be explained with a co-modulation of the control network. CONCLUSION The here proposed corticopetal approach of a hierarchical description of 8 subcortical PPs with subcortical and cortical convergences represents a new systematics of networks found in all different evolutionary and distinct parts of the human brain.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty of Freiburg University, Breisacher Strasse 64, Freiburg im Breisgau 79106, Germany; Center for Basics in Neuromodulation, Freiburg University, Germany.
| | - Thomas E Schlaepfer
- Department of Interventional Biological Psychiatry, Freiburg University Medical Center and Medical Faculty of Freiburg University, Germany
| | - Bastian Sajonz
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty of Freiburg University, Breisacher Strasse 64, Freiburg im Breisgau 79106, Germany
| | - Máté Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty of Freiburg University, Breisacher Strasse 64, Freiburg im Breisgau 79106, Germany
| | - Christoph P Kaller
- Department of Neuroradiology, Freiburg University Medical Center and Medical Faculty of Freiburg University, Germany
| | - Horst Urbach
- Department of Neuroradiology, Freiburg University Medical Center and Medical Faculty of Freiburg University, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty of Freiburg University, Breisacher Strasse 64, Freiburg im Breisgau 79106, Germany
| |
Collapse
|
18
|
Coenen VA, Schlaepfer TE, Varkuti B, Schuurman PR, Reinacher PC, Voges J, Zrinzo L, Blomstedt P, Fenoy AJ, Hariz M. Surgical decision making for deep brain stimulation should not be based on aggregated normative data mining. Brain Stimul 2019; 12:1345-1348. [PMID: 31353286 DOI: 10.1016/j.brs.2019.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Medical Faculty of Freiburg University, Germany; Center for Basics in Neuromodulation, Freiburg University, Germany.
| | - Thomas E Schlaepfer
- Department of Interventional Biological Psychiatry, Freiburg University Medical Center, Medical Faculty of Freiburg University, Germany
| | | | - P Rick Schuurman
- Amsterdam UMC, University of Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Medical Faculty of Freiburg University, Germany
| | - Juergen Voges
- Department of Stereotactic Neurosurgery, Otto von Guericke University, Magdeburg, Germany
| | - Ludvic Zrinzo
- Functional Neurosurgery Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Patric Blomstedt
- Department of Clinical Neuroscience, University Hospital, 90185, Umeå, Sweden
| | - Albert J Fenoy
- Department of Neurosurgery, McGovern Medical School, University of Texas, Houston, USA
| | - Marwan Hariz
- Department of Clinical Neuroscience, University Hospital, 90185, Umeå, Sweden
| |
Collapse
|
19
|
Zhang C, Li D, Jin H, Zeljic K, Sun B. Target-specific deep brain stimulation of the ventral capsule/ventral striatum for the treatment of neuropsychiatric disease. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:402. [PMID: 29152502 DOI: 10.21037/atm.2017.07.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deep brain stimulation (DBS) is a well-established therapy for Parkinson's disease and other movement disorders. An accumulating body of evidence supports the extension of DBS application for the treatment of refractory psychiatric disorders. The ventral capsule/ventral striatum (VC/VS) is the most common anatomical target for obsessive-compulsive disorder (OCD), addiction, and depression. However, no specific electrode is available for the clinical targeting of these areas for DBS. According to the anatomical features of the VC/VS, a novel electrode was developed for simultaneous and independently programmed stimulation of the nucleus accumbens (NAc) and the anterior limb of the internal capsule (ALIC). This VC/VS-specific electrode has the potential to enhance stimulus intensity, provide independent and flexible target stimulation.
Collapse
Affiliation(s)
- Chencheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dianyou Li
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiyan Jin
- Department of Psychiatry, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kristina Zeljic
- Institute of Neuroscience, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bomin Sun
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
20
|
Rizzi M, Trezza A, Messina G, De Benedictis A, Franzini A, Marras CE. Exploring the brain through posterior hypothalamus surgery for aggressive behavior. Neurosurg Focus 2017; 43:E14. [DOI: 10.3171/2017.6.focus17231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neurological surgery offers an opportunity to study brain functions, through either resection or implanted neuromodulation devices. Pathological aggressive behavior in patients with intellectual disability is a frequent condition that is difficult to treat using either supportive care or pharmacological therapy. The bulk of the laboratory studies performed throughout the 19th century enabled the formulation of hypotheses on brain circuits involved in the generation of emotions. Aggressive behavior was also studied extensively. Lesional radiofrequency surgery of the posterior hypothalamus, which peaked in the 1970s, was shown to be an effective therapy in many reported series. As with other surgical procedures for the treatment of psychiatric disorders, however, this therapy was abandoned for many reasons, including the risk of its misuse. Deep brain stimulation (DBS) offers the possibility of treating neurological and psychoaffective disorders through relatively reversible and adaptable therapy. Deep brain stimulation of the posterior hypothalamus was proposed and performed successfully in 2005 as a treatment for aggressive behavior. Other groups reported positive outcomes using target and parameter settings similar to those of the original study. Both the lesional and DBS approaches enabled researchers to explore the role of the posterior hypothalamus (or posterior hypothalamic area) in the autonomic and emotional systems.
Collapse
Affiliation(s)
- Michele Rizzi
- 1Functional Neurosurgery Unit, Department of Neurosurgery, IRCCS Foundation “Istituto Neurologico Carlo Besta,” Milan
- 3“Claudio Munari” Center for Epilepsy Surgery, Niguarda Hospital, Milan
| | - Andrea Trezza
- 4Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, Rome; and
- 5Division of Neurosurgery, Department of Surgery and Translational Medicine, Milan Center for Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Giuseppe Messina
- 1Functional Neurosurgery Unit, Department of Neurosurgery, IRCCS Foundation “Istituto Neurologico Carlo Besta,” Milan
| | - Alessandro De Benedictis
- 4Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, Rome; and
| | - Angelo Franzini
- 1Functional Neurosurgery Unit, Department of Neurosurgery, IRCCS Foundation “Istituto Neurologico Carlo Besta,” Milan
| | - Carlo Efisio Marras
- 4Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, Rome; and
| |
Collapse
|
21
|
Sani S, Busnello J, Kochanski R, Cohen Y, Gibbons RD. High-frequency measurement of depressive severity in a patient treated for severe treatment-resistant depression with deep-brain stimulation. Transl Psychiatry 2017; 7:e1207. [PMID: 28809861 PMCID: PMC5611718 DOI: 10.1038/tp.2017.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 01/06/2023] Open
Abstract
Although there have been previous studies of deep-brain stimulation (DBS), we present, to our knowledge, the first example of high-frequency depressive severity measurement-based DBS treatment in particular and psychiatric treatment in general. Daily post-surgical e-mail prompts for a period of 6 months resulted in 93 administrations of a computerized adaptive test (CAT) of depression severity (CAT-Depression Inventory or CAT-DI) via the internet. There was an average of 3.37 weekly measurements with an average separation of 2.12 days. No additional incentive was provided to the patient for completing the adaptive tests. The patient is a 55-year-old female with six psychiatric hospitalizations for depression, two suicide attempts, marginal response to eight electroconvulsive therapy (ECT) treatments and 35 psychotropic medications. We report results after high-frequency stimulation of the superolateral branch of the medial forebrain bundle. The CAT-DI was used for daily assessments before, during and after (remotely in response to an e-mail prompt) the DBS procedure. Two follow-up Hamilton Depression Scales (HAM-Ds) were also collected. Response to treatment varied markedly, with a decrease from severe (>75) to mild (60), which is three times the size of the uncertainty level. Although the HAM-D scores decreased, they missed the more complete temporal pattern identified by CAT-DI daily monitoring. We demonstrated feasibility of daily depressive severity measurement at high levels of precision and compliance. Clinician ratings confirm the general pattern of treatment benefit, but mask the marked variability in mood and more marked periods of benefit and decline.
Collapse
Affiliation(s)
- S Sani
- Department of Neurosurgery, Rush University, Chicago, IL, USA
| | - J Busnello
- Department of Psychiatry, Rush University, Chicago, IL, USA
| | - R Kochanski
- Department of Neurosurgery, Rush University, Chicago, IL, USA
| | - Y Cohen
- Adaptive Testing Technologies, University of Chicago, Chicago, IL, USA
| | - R D Gibbons
- Department of Medicine, Department of Public Health Sciences, University of Chicago, Chicago, IL, USA,Department of Medicine, Department of Public Health Sciences, University of Chicago, 5841 S Maryland Avenue, W260, MC2000, Chicago, IL 60637, USA. E-mail:
| |
Collapse
|
22
|
Volpini M, Giacobbe P, Cosgrove GR, Levitt A, Lozano AM, Lipsman N. The History and Future of Ablative Neurosurgery for Major Depressive Disorder. Stereotact Funct Neurosurg 2017; 95:216-228. [PMID: 28723697 DOI: 10.1159/000478025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/05/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND There is an urgent need to develop safe and effective treatments for patients with treatment-resistant depression (TRD). Several neurosurgical procedures have been developed to treat the dysfunctional brain circuits implicated in major depression. OBJECTIVES This review describes the most common ablative procedures used to treat major depressive disorder: anterior cingulotomy, subcaudate tractotomy, limbic leucotomy, and anterior capsulotomy. The efficacy and safety of each are discussed and compared with other current and emerging modalities, including deep brain stimulation (DBS) and MR-guided focused ultrasound (MRgFUS). METHODS The PubMed and MEDLINE electronic databases were used in this study, through July 2016. Keywords, including "treatment resistant depression," and "ablative neurosurgery," etc. were used to generate reference hits. RESULTS Approximately a third to half of patients who underwent ablative procedures achieved a treatment response and/or remission. The efficacy and safety profiles corresponding to both ablative procedures and DBS were very similar. CONCLUSIONS The longitudinal experience with ablative procedures shows that there remains an important role for accurate, discrete lesions in disrupting affective circuitry in the treatment of TRD. New modalities, such as MRgFUS, have the potential to further improve the accuracy of ablative procedures, while enhancing safety by obviating the need for open brain surgery.
Collapse
Affiliation(s)
- Matthew Volpini
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Beeker T, Schlaepfer TE, Coenen VA. Autonomy in Depressive Patients Undergoing DBS-Treatment: Informed Consent, Freedom of Will and DBS' Potential to Restore It. Front Integr Neurosci 2017; 11:11. [PMID: 28642690 PMCID: PMC5462943 DOI: 10.3389/fnint.2017.00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
According to the World Health Organization, depression is one of the most common and most disabling psychiatric disorders, affecting at any given time approximately 325 million people worldwide. As there is strong evidence that depressive disorders are associated with a dynamic dysregulation of neural circuits involved in emotional processing, recently several attempts have been made to intervene directly in these circuits via deep brain stimulation (DBS) in patients with treatment-resistant major depressive disorder (MDD). Given the promising results of most of these studies, the rising medical interest in this new treatment correlates with a growing sensitivity to ethical questions. One of the most crucial concerns is that DBS might interfere with patients' ability to make autonomous decisions. Thus, the goal of this article is to evaluate the impact DBS presumably has on the capacity to decide and act autonomously in patients with MDD in the light of the autonomy-undermining effects depression has itself. Following the chronological order of the procedure, special attention will first be paid to depression's effects on patients' capacity to make use of their free will in giving valid Informed Consent. We suggest that while the majority of patients with MDD appear capable of autonomous choices, as it is required for Informed Consent, they might still be unable to effectively act according to their own will whenever acting includes significant personal effort. In reducing disabling depressive symptoms like anhedonia and decrease of energy, DBS for treatment resistant MDD thus rather seems to be an opportunity to substantially increase autonomy than a threat to it.
Collapse
Affiliation(s)
- Timo Beeker
- Department of Psychiatry and Psychotherapy, Medical School Brandenburg Theodor FontaneRüdersdorf, Germany
| | - Thomas E. Schlaepfer
- Department of Interventional Biological Psychiatry, Freiburg University Medical CenterFreiburg, Germany
- Medical Faculty, Freiburg UniversityFreiburg, Germany
| | - Volker A. Coenen
- Medical Faculty, Freiburg UniversityFreiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical CenterFreiburg, Germany
| |
Collapse
|
24
|
Abstract
Deep brain stimulation (DBS) is a promising putative modality for the treatment of refractory psychiatric disorders such as major depression and obsessive-compulsive disorder (OCD). Several targets have been posited; however, a clear consensus on differential efficacy and possible modes of action remain unclear. DBS to the supero-lateral branch of the medial forebrain bundle (slMFB) has recently been introduced for major depression (MD). Due to our experience with slMFB stimulation for MD, and because OCD might be related to similar dysfunctions of the reward system, treatment with slMFB DBS seams meaningful. Here we describe our first 2 cases together with a hypothetical mode of action. We describe diffusion tensor imaging (DTI) fiber tractographically (FT)-assisted implantation of the bilateral DBS systems in 2 male patients. In a selected literature overview, we discuss the possible mode of action. Both patients were successfully implanted and stimulated. The follow-up time was 12 months. One patient showed a significant response (Yale-Brown Obsessive-Compulsive Scale [YBOCS] reduction by 35%); the other patient reached remission criteria 3 months after surgery (YBOCS<14) and showed mild OCD just above the remission criterion at 12 months follow-up. While the hypermetabolism theory for OCD involves the cortico-striato-thalamo-cortical (CSTC) network, we think that there is clinical evidence that the reward system plays a crucial role. Our findings suggest an important role of this network in mechanisms of disease development and recovery. In this uncontrolled case series, continuous bilateral DBS to the slMFB led to clinically significant improvements of ratings of OCD severity. Ongoing research focuses on the role of the reward system in OCD, and its yet-underestimated role in this underlying neurobiology of the disease.
Collapse
|
25
|
Abstract
Research on deep brain stimulation (DBS) for treatment-resistant psychiatric disorders has established preliminary efficacy signals for treatment-resistant depression. There are only few studies on DBS that included patients suffering from bipolar disorder. This article gives an overview of these studies concerning DBS targets, antidepressant efficacy, and the occurrence of manic/hypomanic symptoms under stimulation. First, promising results show that all patients experienced significant improvement in depressive symptomatology. In a single case, hypomanic symptoms occurred, but they could be resolved by adjusting stimulation parameters. Furthermore, this article highlights important clinical differences between unipolar and bipolar depression that have to be considered throughout the course of treatment.
Collapse
|
26
|
Subramanian L, Bracht T, Jenkins P, Choppin S, Linden DEJ, Phillips G, Simpson BA. Clinical improvements following bilateral anterior capsulotomy in treatment-resistant depression. Psychol Med 2017; 47:1097-1106. [PMID: 27976600 DOI: 10.1017/s0033291716003159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The purpose of this study was to evaluate a programme of lesion surgery carried out on patients with treatment-resistant depression (TRD). METHOD This was a retrospective study looking at clinical and psychometric data from 45 patients with TRD who had undergone bilateral stereotactic anterior capsulotomy surgery over a period of 15 years, with the approval of the Mental Health Act Commission (37 with unipolar depression and eight with bipolar disorder). The Beck Depression Inventory (BDI) before and after surgery was used as the primary outcome measure. The Montgomery-Asberg Depression Rating Scale was administered and cognitive aspects of executive and memory functions were also examined. We carried out a paired-samples t test on the outcome measures to determine any statistically significant change in the group as a consequence of surgery. RESULTS Patients improved on the clinical measure of depression after surgery by -21.20 points on the BDI with a 52% change. There were no significant cognitive changes post-surgery. Six patients were followed up in 2013 by phone interview and reported a generally positive experience. No major surgical complications occurred. CONCLUSIONS With the limitations of an uncontrolled, observational study, our data suggest that capsulotomy can be an effective treatment for otherwise TRD. Performance on neuropsychological tests did not deteriorate.
Collapse
Affiliation(s)
- L Subramanian
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine & Clinical Neurosciences, School of Medicine, Cardiff University,Cardiff,UK
| | - T Bracht
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University,Cardiff,UK
| | | | - S Choppin
- Universite Pierre et Marie Curie,Paris,France
| | - D E J Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine & Clinical Neurosciences, School of Medicine, Cardiff University,Cardiff,UK
| | - G Phillips
- Cardiff and Vale University Health Board,Cardiff,UK
| | - B A Simpson
- Cardiff and Vale University Health Board,Cardiff,UK
| |
Collapse
|
27
|
Workman CI, Lythe KE, McKie S, Moll J, Gethin JA, Deakin JFW, Elliott R, Zahn R. A novel resting-state functional magnetic resonance imaging signature of resilience to recurrent depression. Psychol Med 2017; 47:597-607. [PMID: 27821193 PMCID: PMC5426313 DOI: 10.1017/s0033291716002567] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/22/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND A high proportion of patients with remitted major depressive disorder (MDD) will experience recurring episodes, whilst some develop resilience and remain in recovery. The neural basis of resilience to recurrence is elusive. Abnormal resting-state connectivity of the subgenual cingulate cortex (sgACC) was previously found in cross-sectional studies of MDD, suggesting its potential pathophysiological importance. The current study aimed to investigate whether resting-state connectivity to a left sgACC seed region distinguishes resilient patients from those developing recurring episodes. METHOD A total of 47 medication-free remitted MDD patients and 38 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) at baseline. Over 14 months, 30 patients remained resilient whilst 17 experienced a recurring episode. RESULTS Attenuated interhemispheric left-to-right sgACC connectivity distinguished the resilient from the recurring-episode and control groups and was not correlated with residual depressive symptoms. CONCLUSIONS The current study revealed a neural signature of resilience to recurrence in MDD and thereby elucidates the role of compensatory adaptation in sgACC networks.
Collapse
Affiliation(s)
- C. I. Workman
- The University of Manchester & Manchester
Academic Health Sciences Centre, Institute of Brain, Behaviour
and Mental Health, Neuroscience & Psychiatry Unit,
Manchester, UK
- The University of Manchester & Manchester
Academic Health Sciences Centre, School of Psychological
Sciences, Neuroscience and Aphasia Research Unit,
Manchester, UK
| | - K. E. Lythe
- The University of Manchester & Manchester
Academic Health Sciences Centre, School of Psychological
Sciences, Neuroscience and Aphasia Research Unit,
Manchester, UK
| | - S. McKie
- The University of Manchester & Manchester
Academic Health Sciences Centre, Institute of Brain, Behaviour
and Mental Health, Neuroscience & Psychiatry Unit,
Manchester, UK
| | - J. Moll
- Cognitive and Behavioral Neuroscience
Unit, D'Or Institute for Research and Education (IDOR),
Rio de Janeiro, RJ,
Brazil
| | - J. A. Gethin
- The University of Manchester & Manchester
Academic Health Sciences Centre, School of Psychological
Sciences, Neuroscience and Aphasia Research Unit,
Manchester, UK
| | - J. F. W. Deakin
- The University of Manchester & Manchester
Academic Health Sciences Centre, Institute of Brain, Behaviour
and Mental Health, Neuroscience & Psychiatry Unit,
Manchester, UK
| | - R. Elliott
- The University of Manchester & Manchester
Academic Health Sciences Centre, Institute of Brain, Behaviour
and Mental Health, Neuroscience & Psychiatry Unit,
Manchester, UK
| | - R. Zahn
- The University of Manchester & Manchester
Academic Health Sciences Centre, School of Psychological
Sciences, Neuroscience and Aphasia Research Unit,
Manchester, UK
- Department of Psychological Medicine,
Institute of Psychiatry, Psychology, and Neuroscience,
Centre for Affective Disorders, King's College
London, London, UK
| |
Collapse
|
28
|
Rahmani F, Aarabi MH. Does apolipoprotein A1 predict microstructural changes in subgenual cingulum in early Parkinson? J Neurol 2017; 264:684-693. [PMID: 28168521 DOI: 10.1007/s00415-017-8403-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 01/17/2023]
Abstract
Higher plasma cholesterol levels are associated with lower Parkinson's disease (PD) risk. Apolipoprotein A-1 (ApoA-1) is a surface marker of brain HDL-like particles associated with the time of PD onset. Clinical correlates of serum Apolipoprotein A1 levels with structural brain connectivity in PD-related disorders remains unclear. Here, we applied a novel diffusion-weighted imaging approach [Diffusion Magnetic Resonance Imaging (MRI) Connectometry] to explore the association between ApoA-1 and structural brain connectivity in PD. Participants involved in this research were recruited from Parkinson's Progression Markers Initiative (PPMI). Diffusion MRI connectometry was conducted using a multiple regression against apoA-1 for 36 patients with DTI measurements available in the baseline visit. Fiber results of the connectometry were then reconstructed for each patient, and diffusion parameters were extracted and regressed against apoA-1 levels. Connectometry results revealed the subgenual cingulum to be associated with ApoA-1, with different FDR yields. This result was further supported by significant negative correlation of Quantitative Anisotropic (QA) of left subgenual cingulum (Pearson's coefficient = -0.398, p = 0.020) and Generalized Fractional Anisotropic (GFA) of right subgenual cingulum (Pearson's coefficient -0.457, p = 0.007) with plasma apoA-1 levels, in a multiple regression model with age and sex. The subgenual cingulum encompasses fibers from the anterior cingulate cortex and anterior thalamus. These structures are involved in PD-associated psychosis and executive cognitive decline. We demonstrated for the first time that apoA-1, as a blood marker, can predict microstructural changes in white matter regions in PD patients with undisturbed cognition and mild motor disability.
Collapse
Affiliation(s)
- Farzaneh Rahmani
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Basir Eye Health Research Center, Vesal'e Shirazi St, Enghelab Sq, Tehran, 14194, Iran.
| |
Collapse
|
29
|
Park SC, Lee JK, Kim CH, Hong JP, Lee DH. Gamma-knife subcaudate tractotomy for treatment-resistant depression and target characteristics: a case report and review. Acta Neurochir (Wien) 2017; 159:113-120. [PMID: 27900544 DOI: 10.1007/s00701-016-3001-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 10/18/2016] [Indexed: 01/01/2023]
Abstract
Stereotactic subcaudate tractotomy has previously been suggested to be an effective treatment for depression. This is the first study to report the use of gamma-knife subcaudate tractotomy for treatment-resistant depression. A 49-year-old woman with major depressive disorder had been treated for 30 years, with nine suicide attempts during that time. The right and left target maximum diameter was 11 mm within 50 % isodose lines. The target was located more posteriorly and inferiorly than the subgenual cingulate target typically used for deep-brain stimulation. The maximum radiation dose was 130 Gy. During the 4 months after surgery, the patient improved gradually from 23 to 4 according to the Hamilton Rating Scale for Depression and antidepressant medication was discontinued. Target-sized focal lesions were identified and no edema was seen postoperatively. No aggravation or neurologic deficit occurred during the 2.5 years of follow-up. Gamma-knife subcaudate tractotomy for depression is a minimally invasive technique. Investigations of the effectiveness and safety profile in a larger group are warranted.
Collapse
Affiliation(s)
- Seong-Cheol Park
- Department of Neurosurgery, Asan Medical Center, 88, Olympic Ro 43-Gil, Songpa-Gu, Seoul, 138-736, Korea
| | - Jung Kyo Lee
- Department of Neurosurgery, Asan Medical Center, 88, Olympic Ro 43-Gil, Songpa-Gu, Seoul, 138-736, Korea.
- College of Medicine, University of Ulsan, 88, Olympic Ro 43-Gil, Songpa-Gu, Seoul, 138-736, Korea.
| | - Chan-Hyung Kim
- Department of Psychiatry, Severance Hospital, Yonsei University, Seoul, Korea
| | - Jin Pyo Hong
- College of Medicine, University of Ulsan, 88, Olympic Ro 43-Gil, Songpa-Gu, Seoul, 138-736, Korea
- Department of Psychiatry, Asan Medical Center, Seoul, Korea
| | - Do Hee Lee
- Department of Neurosurgery, Asan Medical Center, 88, Olympic Ro 43-Gil, Songpa-Gu, Seoul, 138-736, Korea
| |
Collapse
|
30
|
Identification of the stria medullaris thalami using diffusion tensor imaging. NEUROIMAGE-CLINICAL 2016; 12:852-857. [PMID: 27872807 PMCID: PMC5109849 DOI: 10.1016/j.nicl.2016.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/13/2016] [Accepted: 10/23/2016] [Indexed: 01/23/2023]
Abstract
Background Deep brain stimulation (DBS) via anatomical targeting of white matter tracts defined by diffusion tensor imaging (DTI) may be a useful tool in the treatment of pathologic neurophysiologic circuits implicated in certain disease states like treatment resistant depression (TRD). We sought to determine if DTI could be used to define the stria medullaris thalami (SM), the major afferent white matter pathway to the lateral habenula (LHb), a thalamic nucleus implicated in the pathophysiology of TRD. Methods Probabilistic DTI was performed on ten cerebral hemispheres in five patients who underwent preoperative MRI for DBS surgery. Manual identification of the LHb on axial T1 weighted MRI was used for the initial seed region for tractography. Variations in tractography depending on chosen axial slice of the LHb and chosen voxel within the LHb were also assessed. Results In all hemispheres the SM was reliably visualized. Variations in chosen axial seed slice as well as variations in single seed placement did not lead to significant changes in SM tractography. Conclusions Probabilistic DTI can be used to visualize the SM which may ultimately provide utility for direct anatomic targeting in DBS surgery. Diffusion tensor imaging based probabilistic fiber tracking can reliably identify the stria medullaris fiber bundles. The seeding of habenula reliably and consistently identifies the stria medullaris fiber tracks. Identification of the stria medullaris is useful in deep brain stimulation surgery.
Collapse
|
31
|
Anterior Cingulate Implant for Obsessive-Compulsive Disorder. World Neurosurg 2016; 97:754.e7-754.e16. [PMID: 27756670 DOI: 10.1016/j.wneu.2016.10.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a brain disorder with a lifetime prevalence of 2.3%, causing severe functional impairment as a result of anxiety and distress, persistent and repetitive, unwanted, intrusive thoughts (obsessions), and repetitive ritualized behavior (compulsions). Approximately 40%-60% of patients with OCD fail to satisfactorily respond to standard treatments. Intractable OCD has been treated by anterior capsulotomy and cingulotomy, but more recently, neurostimulation approaches have become more popular because of their reversibility. OBJECTIVE Implants for OCD are commonly being used, targeting the anterior limb of the internal capsula or the nucleus accumbens, but an implant on the anterior cingulate cortex has never been reported. METHODS We describe a patient who was primarily treated for alcohol addiction, first with transcranial magnetic stimulation, then by implantation of 2 electrodes overlying the rostrodorsal part of the anterior cingulate cortex bilaterally. RESULTS Her alcohol addiction developed as she was relief drinking to self-treat her OCD, anxiety, and depression. After the surgical implant, she underwent placebo stimulation followed by real stimulation of the dorsal anterior cingulate cortex, which dramatically improved her OCD symptoms (decrease of 65.5% on the Yale-Brown Obsessive Compulsive Drinking Scale) as well as her alcohol craving (decrease of 87.5%) after 36 weeks of treatment. Although there were improvements in all the scores, there was only a modest reduction in the patient's weekly alcohol consumption (from 50 units to 32 units). CONCLUSIONS Based on these preliminary positive results we propose to further study the possible beneficial effect of anterior cingulate cortex stimulation for intractable OCD.
Collapse
|
32
|
Repetitive transcranial magnetic stimulation for treatment resistant depression: Re-establishing connections. Clin Neurophysiol 2016; 127:3394-3405. [PMID: 27672727 DOI: 10.1016/j.clinph.2016.08.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/28/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a relatively recent addition to the neurostimulation armamentarium for treating individuals suffering from treatment refractory depression and has demonstrated efficacy in clinical trials. One of the proposed mechanisms of action underlying the therapeutic effects of rTMS for depression involves the modulation of depression-associated dysfunctional activity in distributed brain networks involving frontal cortical and subcortical limbic regions, via changes to aberrant functional and structural connectivity. Although there is currently a paucity of published data, we review changes to functional and structural connectivity following rTMS for depression. Current evidence suggests an rTMS-induced normalisation of depression-associated dysfunction within and between large scale functional networks, including the default mode, central executive and salience networks, associated with an amelioration of depressive symptoms. Additionally, changes to measures of white matter microstructure, primarily in the dorsolateral prefrontal cortex, have also been reported following rTMS for depression, possibly reversing depression-associated abnormalities. We argue that measures of functional and structural connectivity can be used to optimise rTMS targeting within the dorsolateral prefrontal cortex and also to explore novel rTMS targets for depression. Finally, we discuss the utility of measures of brain connectivity as predictive biomarkers of rTMS treatment response in guiding therapeutic decisions.
Collapse
|
33
|
Sammartino F, Rowland N, Hodaie M, Kalia SK, Lozano AM, Hamani C. Diffusion tensor imaging and deep brain stimulation. Expert Rev Med Devices 2016; 13:615-7. [DOI: 10.1080/17434440.2016.1195259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Nathan Rowland
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Canada
| | - Suneil K. Kalia
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Canada
| | - Andres M. Lozano
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Canada
| | - Clement Hamani
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Canada
- Behavioural Neurobiology Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| |
Collapse
|
34
|
|
35
|
De Ridder D, Vanneste S, Gillett G, Manning P, Glue P, Langguth B. Psychosurgery Reduces Uncertainty and Increases Free Will? A Review. Neuromodulation 2016; 19:239-48. [DOI: 10.1111/ner.12405] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/20/2015] [Accepted: 12/17/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences; Section of Neurosurgery, Dunedin School of Medicine, University of Otago; Dunedin New Zealand
| | - Sven Vanneste
- Laboratory for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences; University of Texas at Dallas; Dallas TX USA
| | - Grant Gillett
- Department of Philosophy; Section of Medical Ethics, Dunedin School of Medicine, University of Otago; Dunedin New Zealand
| | - Patrick Manning
- Department of Internal Medicine; Section of Endocrinology, Dunedin School of Medicine, University of Otago; Dunedin New Zealand
| | - Paul Glue
- Department of Psychological Medicine; Dunedin School of Medicine, University of Otago; Dunedin New Zealand
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy; Interdisciplinary Tinnitus Clinic, University of Regensburg; Regensburg Germany
| |
Collapse
|
36
|
Multi-tensor investigation of orbitofrontal cortex tracts affected in subcaudate tractotomy. Brain Imaging Behav 2016; 9:342-52. [PMID: 25103312 DOI: 10.1007/s11682-014-9314-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Subcaudate tractotomy (SCT) is a neurosurgical lesioning procedure that can reduce symptoms in medically intractable obsessive compulsive disorder (OCD). Due to the putative importance of the orbitofrontal cortex (OFC) in symptomatology, fibers that connect the OFC, SCT lesion, and either the thalamus or brainstem were investigated with two-tensor tractography using an unscented Kalman filter approach. From this dataset, fibers were warped to Montreal Neurological Institute space, and probability maps with center-of-mass analysis were subsequently generated. In comparing fibers from the same OFC region, including medial OFC (mOFC), central OFC (cOFC), and lateral OFC (lOFC), the area of divergence for fibers connected with the thalamus versus the brainstem is posterior to the anterior commissure. At the anterior commissure, fibers connected with the thalamus run dorsal to those connected with the brainstem. As OFC fibers travel through the ventral aspect of the internal capsule, lOFC fibers are dorsal to cOFC and mOFC fibers. Using neuroanatomical comparison, tracts coursing between the OFC and thalamus are likely part of the anterior thalamic radiations, while those between the OFC and brainstem likely belong to the medial forebrain bundle. These data support the involvement of the OFC in OCD and may be relevant to creating differential lesional procedures of specific tracts or to developing deep brain stimulation programming paradigms.
Collapse
|
37
|
Mosley PE, Marsh R, Carter A. Deep brain stimulation for depression: Scientific issues and future directions. Aust N Z J Psychiatry 2015; 49:967-78. [PMID: 26276049 DOI: 10.1177/0004867415599845] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Deep brain stimulation is an experimental intervention for treatment-resistant depression. Open trials have shown a sustained response to chronic stimulation in many subjects. However, two recent randomised, double-blind, placebo-controlled trials failed to replicate these results. This article is a conceptual paper examining potential explanations for these discrepant findings. METHOD We conducted a systematic review of the published studies obtained from PubMed and PsycINFO. Studies were selected if they directly examined the impact of deep brain stimulation on depressive symptoms. We excluded case reports and papers re-describing the same cohort of patients. We compared them with data from the placebo-controlled trials, available from Clinicaltrials.gov and abstracts of the American Society for Stereotactic and Functional Neurosurgery. We supplemented our investigation by reviewing additional publications by the major groups undertaking deep brain stimulation for mood disorders. RESULTS We selected 10 open studies reporting on eight cohorts of patients using four different operative targets. All published studies reported positive results. This was not replicated in data available from the randomised, placebo-controlled trials. Many studies reported suicide or suicide attempts in the postoperative period. CONCLUSION We consider the placebo effect, the pattern of network activation, surgical candidacy and design of a blinded trial including the length of a crossover period. We suggest a greater focus on selecting patients with melancholia. We anticipate that methodological refinements may facilitate further investigation of this technology for intractable depression. We conclude by noting the psychiatric adverse events that have been reported in the literature to date, as these will also influence the design of future trials of deep brain stimulation for depression.
Collapse
Affiliation(s)
- Philip E Mosley
- The Asia-Pacific Centre for Neuromodulation, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia Department of Psychiatry, Royal Brisbane & Women's Hospital, Herston, QLD, Australia Neurosciences Queensland, St Andrew's War Memorial Hospital, Spring Hill, QLD, Australia Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Rodney Marsh
- The Asia-Pacific Centre for Neuromodulation, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia Department of Psychiatry, Royal Brisbane & Women's Hospital, Herston, QLD, Australia Neurosciences Queensland, St Andrew's War Memorial Hospital, Spring Hill, QLD, Australia
| | - Adrian Carter
- School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Hana A, Hana A, Dooms G, Boecher-Schwarz H, Hertel F. Visualization of the medial forebrain bundle using diffusion tensor imaging. Front Neuroanat 2015; 9:139. [PMID: 26581828 PMCID: PMC4628102 DOI: 10.3389/fnana.2015.00139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/15/2015] [Indexed: 12/31/2022] Open
Abstract
Diffusion tensor imaging is a technique that enables physicians the portrayal of white matter tracts in vivo. We used this technique in order to depict the medial forebrain bundle (MFB) in 15 consecutive patients between 2012 and 2015. Men and women of all ages were included. There were six women and nine men. The mean age was 58.6 years (39–77). Nine patients were candidates for an eventual deep brain stimulation. Eight of them suffered from Parkinson‘s disease and one had multiple sclerosis. The remaining six patients suffered from different lesions which were situated in the frontal lobe. These were 2 metastasis, 2 meningiomas, 1 cerebral bleeding, and 1 glioblastoma. We used a 3DT1-sequence for the navigation. Furthermore T2- and DTI- sequences were performed. The FOV was 200 × 200 mm2, slice thickness 2 mm, and an acquisition matrix of 96 × 96 yielding nearly isotropic voxels of 2 × 2 × 2 mm. 3-Tesla-MRI was carried out strictly axial using 32 gradient directions and one b0-image. We used Echo-Planar-Imaging (EPI) and ASSET parallel imaging with an acceleration factor of 2. b-value was 800 s/mm2. The maximal angle was 50°. Additional scanning time was < 9 min. We were able to visualize the MFB in 12 of our patients bilaterally and in the remaining three patients we depicted the MFB on one side. It was the contralateral side of the lesion. These were 2 meningiomas and one metastasis. Portrayal of the MFB is possible for everyday routine for neurosurgical interventions. As part of the reward circuitry it might be of substantial importance for neurosurgeons during deep brain stimulation in patients with psychiatric disorders. Surgery in this part of the brain should always take the preservation of this white matter tract into account.
Collapse
Affiliation(s)
- Ardian Hana
- National Service of Neurosurgery, Centre Hospitalier de Luxembourg Luxembourg City, Luxembourg
| | - Anisa Hana
- Internal Medicine, Erasmus University of Rotterdam Rotterdam, Netherlands
| | - Georges Dooms
- Service of Neuroradiology, Centre Hospitalier de Luxembourg Luxembourg City, Luxembourg
| | - Hans Boecher-Schwarz
- National Service of Neurosurgery, Centre Hospitalier de Luxembourg Luxembourg City, Luxembourg
| | - Frank Hertel
- National Service of Neurosurgery, Centre Hospitalier de Luxembourg Luxembourg City, Luxembourg
| |
Collapse
|
39
|
Sinha S, McGovern RA, Mikell CB, Banks GP, Sheth SA. Ablative Limbic System Surgery: Review and Future Directions. Curr Behav Neurosci Rep 2015; 2:49-59. [PMID: 31745448 PMCID: PMC6863509 DOI: 10.1007/s40473-015-0038-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The limbic system is a network of interconnected brain regions regulating emotion, memory, and behavior. Pathology of the limbic system can manifest as psychiatric disease, including obsessive-compulsive disorder and major depressive disorder. For patients with these disorders who have not responded to standard pharmacological and cognitive behavioral therapy, ablative surgery is a neurosurgical treatment option. The major ablative limbic system procedures currently used are anterior capsulotomy, dorsal anterior cingulotomy, subcaudate tractotomy, and limbic leucotomy. In this review, we include a brief history of ablative limbic system surgery leading up to its current form. Mechanistic justification for these procedures is considered in a discussion of the pathophysiology of psychiatric disease. We then discuss therapeutic efficacy as demonstrated by recent trials. Finally, we consider future directions, including the search for predictors of treatment response, the development of more precise targeting methods, and the use of advances in neuroimaging to track treatment response.
Collapse
Affiliation(s)
- Saurabh Sinha
- Division of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Robert A. McGovern
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY
| | - Charles B. Mikell
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY
| | - Garrett P. Banks
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY
| | - Sameer A. Sheth
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY
| |
Collapse
|
40
|
Benedetti F, Bollettini I, Poletti S, Locatelli C, Lorenzi C, Pirovano A, Smeraldi E, Colombo C. White matter microstructure in bipolar disorder is influenced by the serotonin transporter gene polymorphism 5-HTTLPR. GENES BRAIN AND BEHAVIOR 2015; 14:238-50. [PMID: 25704032 DOI: 10.1111/gbb.12206] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 12/24/2022]
Affiliation(s)
- F. Benedetti
- Department of Clinical Neurosciences, Scientific Institute; Milano Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo); University Vita-Salute San Raffaele; Milano Italy
| | - I. Bollettini
- Department of Clinical Neurosciences, Scientific Institute; Milano Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo); University Vita-Salute San Raffaele; Milano Italy
| | - S. Poletti
- Department of Clinical Neurosciences, Scientific Institute; Milano Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo); University Vita-Salute San Raffaele; Milano Italy
| | - C. Locatelli
- Department of Clinical Neurosciences, Scientific Institute; Milano Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo); University Vita-Salute San Raffaele; Milano Italy
| | - C. Lorenzi
- Department of Clinical Neurosciences, Scientific Institute; Milano Italy
| | - A. Pirovano
- Department of Clinical Neurosciences, Scientific Institute; Milano Italy
| | - E. Smeraldi
- Department of Clinical Neurosciences, Scientific Institute; Milano Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo); University Vita-Salute San Raffaele; Milano Italy
| | - C. Colombo
- Department of Clinical Neurosciences, Scientific Institute; Milano Italy
| |
Collapse
|
41
|
Anthofer JM, Steib K, Fellner C, Lange M, Brawanski A, Schlaier J. DTI-based deterministic fibre tracking of the medial forebrain bundle. Acta Neurochir (Wien) 2015; 157:469-77. [PMID: 25585836 DOI: 10.1007/s00701-014-2335-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 12/24/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the medial forebrain bundle (MFB) was reported to reduce symptoms in psychiatric disorders. The aim of our study was to find standardised parameters for diffusion tensor imaging (DTI) based fibre tracking to reliably visualise the MFB. METHODS Twenty-two cerebral hemispheres in 11 patients were investigated. Three different regions of interest (ROIs) were defined as seed regions for fibre tracking: the ipsilateral and contralateral superior cerebellar peduncle (SCP) and the nucleus raphe dorsalis (NRD). From each seed region the fibres were followed separately through the ventral tegmental area (VTA = second ROI) and their further courses and volumina were documented and compared. Minimal fibre length was set at 30 mm and the FA threshold at 0.12. RESULTS The fibre tracts starting in seed regions in the ipsilateral SCP and the NRD follow a similar course along the lateral wall of the third ventricle (hypothalamus) and the anterior limb of the internal capsule (ALIC) to inferior fronto-medial brain areas. These fibres are in accordance with the course of the MFB as described in various anatomical atlases. Consistently, a branch leaves the main fibre tract laterally to take a course through the capsula externa to the temporo-parietal cortex. Fibre tracts starting from the contralateral SCP follow a more superior and lateral course, including the dentato-rubro-thalamic and the pyramidal tract. CONCLUSIONS Deterministic fibre tracking with standardised ROIs provides constant and reproducible delineations of the medial forebrain bundle. Its visualisation might help to adjust targeting in DBS for psychiatric disorders.
Collapse
Affiliation(s)
- Judith Maria Anthofer
- Department of Neurosurgery, University Hospital of Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany,
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Recent advances in imaging technology and in the understanding of neural circuits relevant to emotion, motivation, and depression have boosted interest and experimental work in neuromodulation for affective disorders. Real-time functional magnetic resonance imaging (fMRI) can be used to train patients in the self regulation of these circuits, and thus complement existing neurofeedback technologies based on electroencephalography (EEG). EEG neurofeedback for depression has mainly been based on models of altered hemispheric asymmetry. fMRI-based neurofeedback (fMRI-NF) can utilize functional localizer scans that allow the dynamic adjustment of the target areas or networks for self-regulation training to individual patterns of emotion processing. An initial application of fMRI-NF in depression has produced promising clinical results, and further clinical trials are under way. Challenges lie in the design of appropriate control conditions for rigorous clinical trials, and in the transfer of neurofeedback protocols from the laboratory to mobile devices to enhance the sustainability of any clinical benefits.
Collapse
Affiliation(s)
- David E J Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, National Centre for Mental Health, Cardiff University, Cardiff, UK
| |
Collapse
|
43
|
Abstract
Major depressive disorder is a worldwide disease with debilitating effects on a patient's life. Common treatments include pharmacotherapy, psychotherapy, and electroconvulsive therapy. Many patients do not respond to these treatments; this has led to the investigation of alternative therapeutic modalities. Deep brain stimulation (DBS) is one of these modalities. It was first used with success for treating movement disorders and has since been extended to the treatment of psychiatric disorders. Although DBS is still an emerging treatment, promising efficacy and safety have been demonstrated in preliminary trials in patients with treatment-resistant depression (TRD). Further, neuroimaging has played a pivotal role in identifying some DBS targets and remains an important tool for evaluating the mechanism of action of this novel intervention. Preclinical animal studies have broadened knowledge about the possible mechanisms of action of DBS for TRD, Given that DBS involves neurosurgery in patients with severe psychiatric impairment, ethical questions concerning capacity to consent arise; these issues must continue to be carefully considered.
Collapse
Affiliation(s)
- Sibylle Delaloye
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Paul E Holtzheimer
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
44
|
Abstract
Patients with bipolar disorder (BD) experience difficulties in information processing and in the cognitive control of emotions. Mood-congruent biases, which parallel illness episodes, find a neural correlate in abnormal reactivity to stimuli in specific brain regions, and in disrupted functional connectivity among brain areas pertaining to corticolimbic circuitries. It is suggested that a reduced integrity of white matter tracts could underpin dysfunctions in networks implicated in the generation and control of affect. Recent studies using diffusion tensor imaging techniques found that (1) independent of drug treatment, patients with BD show widespread signs of disrupted white matter microstructure, suggesting significant demyelination/dysmyelination without axonal loss, and (2) effective long-term treatment with lithium is associated with increased axial connectivity, proportional to the duration of treatment. These findings suggest that changes of white matter microstructure in specific brain networks could parallel disrupted neural connectivity during illness episodes in BD and that these changes might play a major role in the mechanistic explanation of the biological underpinnings of BD psychopathology.
Collapse
|
45
|
Benedetti F, Bollettini I, Radaelli D, Poletti S, Locatelli C, Falini A, Smeraldi E, Colombo C. Adverse childhood experiences influence white matter microstructure in patients with bipolar disorder. Psychol Med 2014; 44:3069-3082. [PMID: 25065766 DOI: 10.1017/s0033291714000506] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is associated with adverse childhood experiences (ACE), which worsen the lifetime course of illness, and with signs of widespread disruption of white matter (WM) integrity in adult life. ACE are associated with changes in WM microstructure in healthy humans. METHOD We tested the effects of ACE on diffusion-tensor imaging (DTI) measures of WM integrity in 80 in-patients affected by a major depressive episode in the course of BD. We used whole-brain tract-based spatial statistics in the WM skeleton with threshold-free cluster enhancement of DTI measures of WM microstructure: axial, radial and mean diffusivity, and fractional anisotropy. RESULTS ACE hastened the onset of illness. We observed an inverse correlation between the severity of ACE and DTI measures of axial diffusivity in several WM fibre tracts contributing to the functional integrity of the brain and including the corona radiata, thalamic radiations, corpus callosum, cingulum bundle, superior longitudinal fasciculus, inferior fronto-occipital fasciculus and uncinate fasciculus. CONCLUSIONS Axial diffusivity reflects the integrity of axons and myelin sheaths, and correlates with functional connectivity and with higher-order abilities such as reasoning and experience of emotions. In patients with BD axial diffusivity is increased by lithium treatment. ACE might contribute to BD pathophysiology by hampering structural connectivity in critical cortico-limbic networks.
Collapse
Affiliation(s)
- F Benedetti
- Department of Clinical Neurosciences,Scientific Institute Ospedale San Raffaele,Milan,Italy
| | - I Bollettini
- Department of Clinical Neurosciences,Scientific Institute Ospedale San Raffaele,Milan,Italy
| | - D Radaelli
- Department of Clinical Neurosciences,Scientific Institute Ospedale San Raffaele,Milan,Italy
| | - S Poletti
- Department of Clinical Neurosciences,Scientific Institute Ospedale San Raffaele,Milan,Italy
| | - C Locatelli
- Department of Clinical Neurosciences,Scientific Institute Ospedale San Raffaele,Milan,Italy
| | - A Falini
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo),University Vita-Salute San Raffaele,Milan,Italy
| | - E Smeraldi
- Department of Clinical Neurosciences,Scientific Institute Ospedale San Raffaele,Milan,Italy
| | - C Colombo
- Department of Clinical Neurosciences,Scientific Institute Ospedale San Raffaele,Milan,Italy
| |
Collapse
|
46
|
Deep brain stimulation of the human reward system for major depression--rationale, outcomes and outlook. Neuropsychopharmacology 2014; 39:1303-14. [PMID: 24513970 PMCID: PMC3988559 DOI: 10.1038/npp.2014.28] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 12/14/2022]
Abstract
Deep brain stimulation (DBS) as a putative approach for treatment-resistant depression (TRD) has now been researched for about a decade. Several uncontrolled studies--all in relatively small patient populations and different target regions-have shown clinically relevant antidepressant effects in about half of the patients and very recently, DBS to a key structure of the reward system, the medial forebrain bundle, has yielded promising results within few days of stimulation and at much lower stimulation intensities. On the downside, DBS procedures in regions are associated with surgical risks (eg, hemorrhage) and psychiatric complications (suicidal attenuation, hypomania) as well as high costs. This overview summarizes research on the mechanisms of brain networks with respect to psychiatric diseases and--as a novelty--extrapolates to the role of the reward system in DBS for patients with treatment-resistant depression. It further evaluates relevant methodological aspects of today's research in DBS for TRD. On the scientific side, the reward system has an important yet clearly under-recognized role in both neurobiology and treatment of depression. On the methodological side of DBS research in TRD, better animal models are clearly needed to explain clinical effects of DBS in TRD. Larger sample sizes, long-term follow-up and designs including blinded sham control are required to draw final conclusions on efficacy and side effects. Practical research issues cover study design, patient tracking, and the discussion of meaningful secondary outcome measures.
Collapse
|
47
|
Linden DEJ. Neurofeedback and networks of depression. DIALOGUES IN CLINICAL NEUROSCIENCE 2014; 16:103-12. [PMID: 24733975 PMCID: PMC3984886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Recent advances in imaging technology and in the understanding of neural circuits relevant to emotion, motivation, and depression have boosted interest and experimental work in neuromodulation for affective disorders. Real-time functional magnetic resonance imaging (fMRI) can be used to train patients in the self regulation of these circuits, and thus complement existing neurofeedback technologies based on electroencephalography (EEG). EEG neurofeedback for depression has mainly been based on models of altered hemispheric asymmetry. fMRI-based neurofeedback (fMRI-NF) can utilize functional localizer scans that allow the dynamic adjustment of the target areas or networks for self-regulation training to individual patterns of emotion processing. An initial application of fMRI-NF in depression has produced promising clinical results, and further clinical trials are under way. Challenges lie in the design of appropriate control conditions for rigorous clinical trials, and in the transfer of neurofeedback protocols from the laboratory to mobile devices to enhance the sustainability of any clinical benefits.
Collapse
Affiliation(s)
- David E. J. Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, National Centre for Mental Health, Cardiff University, Cardiff, UK
| |
Collapse
|
48
|
Bracht T, Horn H, Strik W, Federspiel A, Schnell S, Höfle O, Stegmayer K, Wiest R, Dierks T, Müller TJ, Walther S. White matter microstructure alterations of the medial forebrain bundle in melancholic depression. J Affect Disord 2014; 155:186-93. [PMID: 24252169 DOI: 10.1016/j.jad.2013.10.048] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/01/2013] [Accepted: 10/29/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND The medial forebrain bundle (MFB) is a key structure of the reward system and connects the ventral tegmental area (VTA) with the nucleus accumbens (NAcc), the medial and lateral orbitofrontal cortex (mOFC, lOFC) and the dorsolateral prefrontal cortex (dlPFC). Previous diffusion tensor imaging (DTI) studies in major depressive disorder point to white matter alterations of regions which may be incorporated in the MFB. Therefore, it was the aim of our study to probe white matter integrity of the MFB using a DTI-based probabilistic fibre tracking approach. METHODS 22 patients with major depressive disorder (MDD) (12 melancholic-MDD patients, 10 non-melancholic-MDD patients) and 21 healthy controls underwent DTI scans. We used a bilateral probabilistic fibre tracking approach to extract pathways between the VTA and NACC, mOFC, lOFC, dlPFC respectively. Mean fractional anisotropy (FA) values were used to compare structural connectivity between groups. RESULTS Mean-FA did not differ between healthy controls and all MDD patients. Compared to healthy controls melancholic MDD-patients had reduced mean-FA in right VTA-lOFC and VTA-dlPFC connections. Furthermore, melancholic-MDD patients had lower mean-FA than non-melancholic MDD-patients in the right VTA-lOFC connection. Mean-FA of these pathways correlated negatively with depression scale rating scores. LIMITATIONS Due to the small sample size and heterogeneous age group comparisons between melancholic and non-melancholic MDD-patients should be regarded as preliminary. CONCLUSIONS Our results suggest that the melancholic subtype of MDD is characterized by white matter microstructure alterations of the MFB. White matter microstructure is associated with both depression severity and anhedonia.
Collapse
Affiliation(s)
- Tobias Bracht
- University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland.
| | - Helge Horn
- University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Werner Strik
- University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Andrea Federspiel
- University Hospital of Psychiatry, Department of Psychiatric Neurophysiology, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Susanne Schnell
- Departments of Radiology and Biomedical Engineering, Northwestern University, Feinberg School of Medicine, 737 N. Michigan Ave Suite 1600, Chicago, IL 60611, USA
| | - Oliver Höfle
- University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Katharina Stegmayer
- University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Freiburgstrasse 3010, Bern, Switzerland
| | - Thomas Dierks
- University Hospital of Psychiatry, Department of Psychiatric Neurophysiology, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Thomas J Müller
- University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| |
Collapse
|
49
|
Yang JC, Ginat DT, Dougherty DD, Makris N, Eskandar EN. Lesion analysis for cingulotomy and limbic leucotomy: comparison and correlation with clinical outcomes. J Neurosurg 2014; 120:152-163. [PMID: 24236652 PMCID: PMC3990280 DOI: 10.3171/2013.9.jns13839] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECT Cingulotomy and limbic leucotomy are lesioning surgeries with demonstrated benefit for medically intractable psychiatric illnesses. They represent significant refinements of the prefrontal lobotomy used from the 1930s through the 1950s. However, the associations between anatomical characterization of these lesions and outcome data are not well understood. To elucidate these procedures and associations, the authors sought to define and compare the neuroanatomy of cingulotomy and limbic leucotomy and to test a method that uses neuroanatomical data and voxel-based lesion-symptom mapping (VLSM) to reveal potential refinements to modern psychiatric neurosurgical procedures. METHODS T1-weighted MR images of patients who had undergone cingulotomy and limbic leucotomy were segmented and registered onto the Montreal Neurological Institute T1-weighted template brain MNI152. Using an atlas-based approach, the authors calculated, by case, the percentage of each anatomical structure affected by the lesion. Because of the infrequency of modern lesion procedures and the requirement for higher-resolution clinical imaging, the sample size was small. The pilot study correlated cingulotomy and limbic leucotomy lesion characteristics with clinical outcomes for patients with obsessive-compulsive disorder. For this study, preoperative and postoperative Yale-Brown Obsessive Compulsive Scale scores for 11 cingulotomy patients and 8 limbic leucotomy patients were obtained, and lesion masks were defined and compared anatomically by using an atlas-based method. Statistically significant voxels were additionally calculated by using VLSM techniques that correlated lesion characteristics with postoperative scores. RESULTS Mean lesion volumes were 13.3 ml for cingulotomy and 11.8 ml for limbic leucotomy. As expected, cingulotomy was isolated to the anterior cingulum. The subcaudate tractotomy portion of limbic leucotomy additionally affected Brodmann area 25, the medial orbitofrontal cortex, and the nucleus accumbens. Initial results indicated that the dorsolateral regions of the cingulotomy lesion and the posteroventral regions of the subcaudate tractotomy lesion were associated with improved postoperative Yale-Brown Obsessive Compulsive Scale scores. CONCLUSIONS Cingulotomy and limbic leucotomy are lesioning surgeries that target pathological circuits implicated in psychiatric disease. Lesion analysis and VLSM contextualize outcome data and have the potential to be useful for improving lesioning neurosurgical procedures.
Collapse
Affiliation(s)
- Jimmy C. Yang
- Department of Neurosurgery, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, Massachusetts
| | - Daniel T. Ginat
- Department of Imaging, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Darin D. Dougherty
- Department of Psychiatry, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, Massachusetts
| | - Nikos Makris
- Department of Neurology and Psychiatry, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, Massachusetts
| | - Emad N. Eskandar
- Department of Neurosurgery, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
50
|
Trait anhedonia is associated with reduced reactivity and connectivity of mesolimbic and paralimbic reward pathways. J Psychiatr Res 2013; 47:1319-28. [PMID: 23791396 DOI: 10.1016/j.jpsychires.2013.05.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/31/2022]
Abstract
Anhedonia is the inability to experience pleasure from normally pleasant stimuli. Although anhedonia is a prominent feature of many psychiatric disorders, trait anhedonia is also observed dimensionally in healthy individuals. Currently, the neurobiological basis of anhedonia is poorly understood because it has been mainly investigated in patients with psychiatric disorders. Thus, previous studies have not been able to adequately disentangle the neural correlates of anhedonia from other clinical symptoms. In this study, trait anhedonia was assessed in well-characterized healthy participants with no history of Axis I psychiatric illness. Functional magnetic resonance imaging with musical stimuli was used to examine brain responses and effective connectivity in relation to individual differences in anhedonia. We found that trait anhedonia was negatively correlated with pleasantness ratings of music stimuli and with activation of key brain structures involved in reward processing, including nucleus accumbens (NAc), basal forebrain and hypothalamus which are linked by the medial forebrain bundle to the ventral tegmental area (VTA). Brain regions important for processing salient emotional stimuli, including anterior insula and orbitofrontal cortex were also negatively correlated with trait anhedonia. Furthermore, effective connectivity between NAc, VTA and paralimbic areas, that regulate emotional reactivity to hedonic stimuli, was negatively correlated with trait anhedonia. Our results indicate that trait anhedonia is associated with reduced reactivity and connectivity of mesolimbic and related limbic and paralimbic systems involved in reward processing. Critically, this association can be detected even in individuals without psychiatric illness. Our findings have important implications both for understanding the neurobiological basis of anhedonia and for the treatment of anhedonia in psychiatric disorders.
Collapse
|