1
|
Weidenauer A, Garani R, Campos Oller P, Belén Blasco M, Rusjan PM, Mizrahi R. Impact of Stress on the Endocannabinoid System: A [ 11C]-CURB Positron Emission Tomography Study in Early Psychosis: Les effets du stress sur le système endocannabinoïde : étude par tomographie par émission de positons avec l'indicateur radioactif [11C-CURB] dans la psychose précoce. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2025; 70:251-259. [PMID: 39632555 PMCID: PMC11622212 DOI: 10.1177/07067437241300958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Stress and traumatic experiences are well-established risk factors for psychiatric disorders. Stressful events can induce symptoms of anxiety and depression and may lead to overt psychosis, especially when there is an innate biological vulnerability. This study explores the role of the stress-regulating endocannabinoid system, specifically the activity of the enzyme fatty acid amid hydrolase (FAAH), a key regulatory enzyme for endocannabinoids, in association with stress by analysing data from healthy individuals and patients with psychosis. METHODS We performed a post-hoc exploratory analysis on 65 positron emission tomography scans using the selective FAAH radioligand [11C]CURB, encompassing 30 patients with psychosis (6 female) and 35 healthy controls (19 female). The study aimed to examine the association between FAAH activity and stressful life events, assessed through the Recent Life Events, Survey of Life Experiences, and Hassles and Uplifts Scale. RESULTS There was a significant difference regarding the number of recent stressors with higher levels in patients compared to healthy subjects (Survey of Life Experiences: t = 4.88, p < 0.001, hassles: t = 3.14, p = 0.003), however there was no significant relationship of brain FAAH activity and stressful life events in any of the applied scales across groups (Recent Life Events: F1,57 = 0.07, p = 0.80; Survey of Life Experiences: F1,57 = 1.75, p = 0.19; hassles: F1,56 = 1.06, p = 0.31). Linear mixed models performed separately for each group revealed that there was a positive association between FAAH activity and Recent Life Events in patients with psychosis only (F1,25 = 8.07, p = 0.009). CONCLUSIONS Our data reveal a significant disparity in recent stressors between the two groups, and a correlation between brain FAAH activity and stressful life events in patients with psychosis only. This suggests a complex interplay between stress and the endocannabinoid system. PLAIN LANGUAGE SUMMARY TITLE How Stress Affects the Brain’s Endocannabinoid System in Early Psychosis: A PET Study.
Collapse
Affiliation(s)
- Ana Weidenauer
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Ranjini Garani
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Paula Campos Oller
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Maira Belén Blasco
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Pablo M. Rusjan
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Romina Mizrahi
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Chou S, Fish KN, Lewis DA, Sweet RA. Terminal type-specific cannabinoid CB1 receptor alterations in patients with schizophrenia: A pilot study. Neurobiol Dis 2023; 185:106262. [PMID: 37586566 PMCID: PMC10958392 DOI: 10.1016/j.nbd.2023.106262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Individuals with schizophrenia are at elevated genetic risks for comorbid cannabis use, and often experience exacerbations of cognitive and psychotic symptoms when exposed to cannabis. These findings have led a number of investigators to examine cannabinoid CB1 receptor (CB1R) alterations in schizophrenia, though with conflicting results. We recently demonstrated the presence of CB1R in both excitatory and inhibitory boutons in the human prefrontal cortex, with differential levels of the receptor between bouton types. We hypothesized that the differential enrichment of CB1R between bouton types - a factor previously unaccounted for when examining CB1R changes in schizophrenia - may resolve prior discrepant reports and increase our insight into the effects of CB1R alterations on the pathophysiology of schizophrenia. METHODS Using co-labeling immunohistochemistry and fluorescent microscopy, we examined total CB1R levels and CB1R levels within excitatory (vGlut1-positive) and inhibitory (vGAT-positive) boutons of prefrontal cortex samples from ten pairs of individuals (nine male pairs and one female pair) diagnosed with schizophrenia and non-psychiatric comparisons. RESULTS Significantly higher total CB1R levels were found within samples from individuals with schizophrenia. Terminal type-specific analyses identified significantly higher CB1R levels within excitatory boutons in samples from individuals with schizophrenia relative to comparisons. In contrast, CB1R levels within the subset of inhibitory boutons that normally express high CB1R levels (presumptive cholecystokinin neuron boutons) were lower in samples from individuals with schizophrenia relative to comparison samples. CONCLUSION Given CB1R's role in suppressing neurotransmission upon activation, these results suggest an overall shift in excitatory and inhibitory balance regulation toward a net reduction of excitatory activity in schizophrenia.
Collapse
Affiliation(s)
- Shinnyi Chou
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| | - Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| | - Robert A Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
3
|
Chou S, Fish KN, Lewis DA, Sweet RA. Terminal type-specific cannabinoid CB1 receptor alterations in patients with schizophrenia: a pilot study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536217. [PMID: 37090672 PMCID: PMC10120624 DOI: 10.1101/2023.04.11.536217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background Individuals with schizophrenia are at elevated genetic risks for comorbid cannabis use, and often experience exacerbations of cognitive and psychotic symptoms when exposed to cannabis. These findings have led a number of investigators to examine cannabinoid CB1 receptor (CB1R) alterations in schizophrenia, though with conflicting results. We recently demonstrated the presence of CB1R in both excitatory and inhibitory boutons in the human prefrontal cortex, with differential levels of the receptor between bouton types. We hypothesized that the differential enrichment of CB1R between bouton types - a factor previously unaccounted for when examining CB1R changes in schizophrenia - may resolve prior discrepant reports and increase our insight into the effects of CB1R alterations on the pathophysiology of schizophrenia. Methods Using co-labeling immunohistochemistry and fluorescent microscopy, we examined total CB1R levels and CB1R levels within excitatory (vGlut1-positive) and inhibitory (vGAT-positive) boutons of prefrontal cortex samples from ten pairs of individuals diagnosed with schizophrenia and non-psychiatric comparisons. Results Significantly higher total CB1R levels were found within samples from individuals with schizophrenia. Terminal type-specific analyses identified significantly higher CB1R levels within excitatory boutons in samples from individuals with schizophrenia relative to comparisons. In contrast, CB1R levels within the subset of inhibitory boutons that normally express high CB1R levels (presumptive cholecystokinin neuron boutons) were lower in samples from individuals with schizophrenia relative to comparison samples. Conclusion Given CB1R's role in suppressing neurotransmission upon activation, these results suggest an overall shift in excitatory and inhibitory balance regulation toward a net reduction of excitatory activity in schizophrenia.
Collapse
Affiliation(s)
- Shinnyi Chou
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Robert A Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
4
|
D'Souza DC, DiForti M, Ganesh S, George TP, Hall W, Hjorthøj C, Howes O, Keshavan M, Murray RM, Nguyen TB, Pearlson GD, Ranganathan M, Selloni A, Solowij N, Spinazzola E. Consensus paper of the WFSBP task force on cannabis, cannabinoids and psychosis. World J Biol Psychiatry 2022; 23:719-742. [PMID: 35315315 DOI: 10.1080/15622975.2022.2038797] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/09/2023]
Abstract
OBJECTIVES The liberalisation of cannabis laws, the increasing availability and potency of cannabis has renewed concern about the risk of psychosis with cannabis. METHODS The objective of the WFSBP task force was to review the literature about this relationship. RESULTS Converging lines of evidence suggest that exposure to cannabis increases the risk for psychoses ranging from transient psychotic states to chronic recurrent psychosis. The greater the dose, and the earlier the age of exposure, the greater the risk. For some psychosis outcomes, the evidence supports some of the criteria of causality. However, alternate explanations including reverse causality and confounders cannot be conclusively excluded. Furthermore, cannabis is neither necessary nor sufficient to cause psychosis. More likely it is one of the multiple causal components. In those with established psychosis, cannabis has a negative impact on the course and expression of the illness. Emerging evidence also suggests alterations in the endocannabinoid system in psychotic disorders. CONCLUSIONS Given that exposure to cannabis and cannabinoids is modifiable, delaying or eliminating exposure to cannabis or cannabinoids, could potentially impact the rates of psychosis related to cannabis, especially in those who are at high risk for developing the disorder.
Collapse
Affiliation(s)
- Deepak Cyril D'Souza
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Marta DiForti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
- South London and Maudsley NHS Mental Health Foundation Trust, London, UK
| | - Suhas Ganesh
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Tony P George
- Addictions Division and Centre for Complex Interventions, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Wayne Hall
- The National Centre for Youth Substance Use Research, University of Queensland, Brisbane, Australia
| | - Carsten Hjorthøj
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University, Copenhagen, Denmark
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Institute for Clinical Sciences, Imperial College London, London, UK
| | - Matcheri Keshavan
- Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Timothy B Nguyen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
- Institute for Clinical Sciences, Imperial College London, London, UK
| | - Godfrey D Pearlson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Olin Neuropsychiatry Ctr. Institute of Living, Hartford, CT, USA
| | - Mohini Ranganathan
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Alex Selloni
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia
| | - Edoardo Spinazzola
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
5
|
Saumell-Esnaola M, Elejaga-Jimeno A, Echeazarra L, Borrega-Román L, Barrondo S, López de Jesús M, González-Burguera I, Gómez-Caballero A, Goicolea MA, Sallés J, García del Caño G. Design and validation of recombinant protein standards for quantitative Western blot analysis of cannabinoid CB1 receptor density in cell membranes: an alternative to radioligand binding methods. Microb Cell Fact 2022; 21:192. [PMID: 36109736 PMCID: PMC9479267 DOI: 10.1186/s12934-022-01914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background Replacement of radioligand binding assays with antibody-antigen interaction-based approaches for quantitative analysis of G protein-coupled receptor (GPCR) levels requires the use of purified protein standards containing the antigen. GPCRs in general and cannabinoid CB1 receptor in particular show a progressive tendency to aggregate and precipitate in aqueous solution outside of their biological context due to the low solubility that the hydrophobic nature imprinted by their seven transmembrane domains. This renders full-length recombinant GPCRs useless for analytical purposes, a problem that can be overcome by engineering soluble recombinant fragments of the receptor containing the antigen. Results Here we generated highly soluble and stable recombinant protein constructs GST-CB1414–472 and GST-CB1414-442 containing much of the human CB1 receptor C-terminal tail for use as standard and negative control, respectively, in quantitative Western blot analysis of CB1 receptor expression on crude synaptosomes of the adult rat brain cortex. To this end we used three different antibodies, all raised against a peptide comprising the C-terminal residues 443–473 of the mouse CB1 receptor that corresponds to residues 442–472 in the human homolog. Estimated values of CB1 receptor density obtained by quantitative Western blot were of the same order of magnitude but slightly higher than values obtained by the radioligand saturation binding assay. Conclusions Collectively, here we provide a suitable Western blot-based design as a simple, cost-effective and radioactivity-free alternative for the quantitative analysis of CB1 receptor expression, and potentially of any GPCR, in a variety of biological samples. The discrepancies between the results obtained by quantitative Western blot and radioligand saturation binding techniques are discussed in the context of their particular theoretical bases and methodological constraints. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01914-1.
Collapse
|
6
|
Braunscheidel KM, Okas MP, Floresco SB, Woodward JJ. Cannabinoid receptor type 1 antagonists alter aspects of risk/reward decision making independent of toluene-mediated effects. Psychopharmacology (Berl) 2022; 239:1337-1347. [PMID: 34291308 PMCID: PMC9885490 DOI: 10.1007/s00213-021-05914-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/25/2021] [Indexed: 02/02/2023]
Abstract
Drugs of abuse including cannabis and inhalants impair risk/reward decision making. Cannabis use is often concurrent with inhalant intoxication; yet, preclinical studies investigating the role of endocannabinoids in inhalant misuse are limited. To address this gap in the literature, we used the well-validated probabilistic discounting task to assess risk/reward decision making in rodents following combinations of toluene vapor (a common inhalant) and manipulations of cannabinoid receptor type 1 (CB1R) signaling. As reported previously, acute exposure to toluene vapor disrupted behavioral flexibility during probabilistic discounting. Systemic administration of the CB1R inverse agonist AM281 did not prevent toluene-induced alterations in risky choices, but did independently reduce win-stay behavior, increase choice latency, and increase omissions. Toluene-induced deficits in probabilistic discounting are thought to involve impaired medial prefrontal cortex (mPFC) activity. As we previously reported that some of toluene's inhibitory effects on glutamatergic signaling in the mPFC are endocannabinoid-dependent, we tested the hypothesis that mPFC CB1R activity mediates toluene-induced deficits in discounting. However, bilateral injection of the CB1R inverse agonist AM251 prior to toluene vapor exposure had no effect on toluene-induced changes in risk behavior. In a final set of experiments, we injected the CB1R inverse agonist AM251 (5 and 50 ng), the CB1R agonist WIN55,212-2 (50 ng and 500 ng), or vehicle into the mPFC prior to testing. While mPFC CB1R stimulation did not affect any of the measures tested, the CB1R inverse agonist caused a dose-dependent reduction in win-stay behavior without altering any other measures. Together, these studies indicate that toluene-induced deficits in probabilistic discounting are largely distinct from CB1R-dependent effects that include decreased effectiveness of positive reinforcement (mPFC CB1Rs), decision making speed, and task engagement (non-mPFC CB1Rs).
Collapse
Affiliation(s)
- Kevin M Braunscheidel
- Department of Neuroscience, Medical University of South Carolina, MSC 861, 30 Courtenay Drive, Charleston, SC, 29425-5712, USA
| | - Michael P Okas
- Department of Neuroscience, Medical University of South Carolina, MSC 861, 30 Courtenay Drive, Charleston, SC, 29425-5712, USA
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Colombia, V6T 1Z4, Canada
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, MSC 861, 30 Courtenay Drive, Charleston, SC, 29425-5712, USA.
| |
Collapse
|
7
|
Ceccarini J, Koole M, Van Laere K. Cannabinoid receptor availability modulates the magnitude of dopamine release in vivo in the human reward system: A preliminary multitracer positron emission tomography study. Addict Biol 2022; 27:e13167. [PMID: 35470551 DOI: 10.1111/adb.13167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
Abstract
The established role of dopamine (DA) in the mediation of reward and positive reinforcement, reward processing is strongly influenced by the type 1 cannabinoid receptors (CB1 Rs). Although considerable preclinical evidence has demonstrated several functional CB1 R-DA interactions, the relation between human CB1 R availability, DA release capacity and drug-reinforcing effects has been never investigated so far. Here, we perform a multitracer [18 F]MK-9470 and [18 F]fallypride positron emission tomography (PET) study in 10 healthy male subjects using a placebo-controlled and single-blinded amphetamine (AMPH) (30 mg) administration paradigm to (1) investigate possible functional interactions between CB1 R expression levels and DA release capacity in a normo-DAergic state, relating in vivo AMPH-induced DA release to CB1 R availability, and (2) to test the hypothesis that the influence of striatal DAergic signalling on the positive reinforcing effects of AMPH may be regulated by prefrontal CB1 R levels. Compared with placebo, AMPH significantly reduced [18 F]fallypride binding potential (hence increase DA release; ΔBPND ranging from -6.1% to -9.6%) in both striatal (p < 0.005, corrected for multiple comparisons) and limbic extrastriatal regions (p ≤ 0.04, uncorrected). Subjects who reported a greater dopaminergic response in the putamen also showed higher CB1 R availability in the medial and dorsolateral prefrontal cortex (r = 0.72; p = 0.02), which are regions involved in salience attribution, motivation and decision making. On the other hand, the magnitude of DA release was greater in those subjects with lower CB1 R availability in the anterior cingulate cortex (ACC) (r = -0.66; p = 0.03). Also, the correlation between the DA release in the nucleus accumbens with the subjective AMPH effect liking was mediated through the CB1 R availability in the ACC (c' = -0.76; p = 0.01). Our small preliminary study reports for the first time that the human prefrontal CB1 R availability is a determinant of DA release within both the ventral and dorsal reward corticostriatal circuit, contributing to a number of studies supporting the existence of an interaction between CB1 R and DA receptors at the molecular and behavioural level. These preliminary findings warrant further investigation in pathological conditions characterized by hypo/hyper excitability to DA release such as addiction and schizophrenia.
Collapse
Affiliation(s)
- Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology KU Leuven Leuven Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology KU Leuven Leuven Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology KU Leuven Leuven Belgium
- Nuclear Medicine University Hospitals Leuven Leuven Belgium
| |
Collapse
|
8
|
Gunasekera B, Diederen K, Bhattacharyya S. Cannabinoids, reward processing, and psychosis. Psychopharmacology (Berl) 2022; 239:1157-1177. [PMID: 33644820 PMCID: PMC9110536 DOI: 10.1007/s00213-021-05801-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Evidence suggests that an overlap exists between the neurobiology of psychotic disorders and the effects of cannabinoids on neurocognitive and neurochemical substrates involved in reward processing. AIMS We investigate whether the psychotomimetic effects of delta-9-tetrahydrocannabinol (THC) and the antipsychotic potential of cannabidiol (CBD) are underpinned by their effects on the reward system and dopamine. METHODS This narrative review focuses on the overlap between altered dopamine signalling and reward processing induced by cannabinoids, pre-clinically and in humans. A systematic search was conducted of acute cannabinoid drug-challenge studies using neuroimaging in healthy subjects and those with psychosis RESULTS: There is evidence of increased striatal presynaptic dopamine synthesis and release in psychosis, as well as abnormal engagement of the striatum during reward processing. Although, acute THC challenges have elicited a modest effect on striatal dopamine, cannabis users generally indicate impaired presynaptic dopaminergic function. Functional MRI studies have identified that a single dose of THC may modulate regions involved in reward and salience processing such as the striatum, midbrain, insular, and anterior cingulate, with some effects correlating with the severity of THC-induced psychotic symptoms. CBD may modulate brain regions involved in reward/salience processing in an opposite direction to that of THC. CONCLUSIONS There is evidence to suggest modulation of reward processing and its neural substrates by THC and CBD. Whether such effects underlie the psychotomimetic/antipsychotic effects of these cannabinoids remains unclear. Future research should address these unanswered questions to understand the relationship between endocannabinoid dysfunction, reward processing abnormalities, and psychosis.
Collapse
Affiliation(s)
- Brandon Gunasekera
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Kelly Diederen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK.
| |
Collapse
|
9
|
Endocannabinoid system in psychotic and mood disorders, a review of human studies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110096. [PMID: 32898588 PMCID: PMC8582009 DOI: 10.1016/j.pnpbp.2020.110096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Despite widespread evidence of endocannabinoid system involvement in the pathophysiology of psychiatric disorders, our understanding remains rudimentary. Here we review studies of the endocannabinoid system in humans with psychotic and mood disorders. Postmortem, peripheral, cerebrospinal fluid and in vivo imaging studies provide evidence for the involvement of the endocannabinoid system in psychotic and mood disorders. Psychotic disorders and major depressive disorder exhibit alterations of brain cannabinoid CB1 receptors and peripheral blood endocannabinoids. Further, these changes may be sensitive to treatment status, disease state, and symptom severity. Evidence from psychotic disorder extend to endocannabinoid metabolizing enzymes in the brain and periphery, whereas these lines of evidence remain poorly developed in mood disorders. A paucity of studies examining this system in bipolar disorder represents a notable gap in the literature. Despite a growing body of productive work in this field of research, there is a clear need for investigation beyond the CB1 receptor in order to more fully elucidate the role of the endocannabinoid system in psychotic and mood disorders.
Collapse
|
10
|
Abstract
There is a growing body of evidence pointing to the co-occurrence of cannabis use and depression. There is also some evidence that the use of cannabis may lead to the onset of depression; however, strong evidence points to the inverse association; i.e. that depression may lead to the onset or increase in cannabis use frequency. Observational and epidemiological studies have not indicated a positive long-term effect of cannabis use on the course and outcome of depression. The association between cannabis use and depression may be stronger among men during adolescence and emerging adulthood and stronger in women during midlife. There is an indication for potential genetic correlation contributing to the comorbidity of cannabis dependence and major depression, namely that serotonin (5-HT) may mediate such association and there is also evidence for specific risk alleles for cannabis addiction. There is preclinical evidence that alteration in the endocannabinoid system could potentially benefit patients suffering from depression. However, the issue of using cannabis as an anti-depressant is at an early stage of examination and there is little evidence to support it. Finally, there has been little support to the notion that selective serotonin reuptake inhibitors (SSRIs) may be effective in decreasing depressive symptoms or rates of substance use in adolescents treated for depression and a co-occurring substance use disorder. In conclusion, despite methodological limitations, research in the past decades has broadened our knowledge on the association between cannabis use and depression from epidemiological, neurological, genetic, and pharmacological perspectives.
Collapse
|
11
|
Beiersdorf J, Hevesi Z, Calvigioni D, Pyszkowski J, Romanov R, Szodorai E, Lubec G, Shirran S, Botting CH, Kasper S, Guy GW, Gray R, Di Marzo V, Harkany T, Keimpema E. Adverse effects of Δ9-tetrahydrocannabinol on neuronal bioenergetics during postnatal development. JCI Insight 2020; 5:135418. [PMID: 33141759 PMCID: PMC7714410 DOI: 10.1172/jci.insight.135418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 10/28/2020] [Indexed: 11/22/2022] Open
Abstract
Ongoing societal changes in views on the medical and recreational roles of cannabis increased the use of concentrated plant extracts with a Δ9-tetrahydrocannabinol (THC) content of more than 90%. Even though prenatal THC exposure is widely considered adverse for neuronal development, equivalent experimental data for young age cohorts are largely lacking. Here, we administered plant-derived THC (1 or 5 mg/kg) to mice daily during P5–P16 and P5–P35 and monitored its effects on hippocampal neuronal survival and specification by high-resolution imaging and iTRAQ proteomics, respectively. We found that THC indiscriminately affects pyramidal cells and both cannabinoid receptor 1+ (CB1R)+ and CB1R– interneurons by P16. THC particularly disrupted the expression of mitochondrial proteins (complexes I–IV), a change that had persisted even 4 months after the end of drug exposure. This was reflected by a THC-induced loss of membrane integrity occluding mitochondrial respiration and could be partially or completely rescued by pH stabilization, antioxidants, bypassed glycolysis, and targeting either mitochondrial soluble adenylyl cyclase or the mitochondrial voltage-dependent anion channel. Overall, THC exposure during infancy induces significant and long-lasting reorganization of neuronal circuits through mechanisms that, in large part, render cellular bioenergetics insufficient to sustain key developmental processes in otherwise healthy neurons. Repeated THC exposure in juvenile mice compromises the limbic circuitry, with life-long impairment to the respiration of neurons.
Collapse
Affiliation(s)
- Johannes Beiersdorf
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Zsofia Hevesi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Calvigioni
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | - Roman Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Edit Szodorai
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Paracelsus Private Medical University, Salzburg, Austria
| | - Sally Shirran
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom
| | | | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | - Roy Gray
- GW Phamaceuticals, Salisbury, Wiltshire, United Kingdom
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Canada Excellence Research Chair, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Québec, Canada
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Biomedikum D7, Karolinska Institutet, Solna, Sweden
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Regulation of cannabinoid CB 1 and CB 2 receptors, neuroprotective mTOR and pro-apoptotic JNK1/2 kinases in postmortem prefrontal cortex of subjects with major depressive disorder. J Affect Disord 2020; 276:626-635. [PMID: 32871695 DOI: 10.1016/j.jad.2020.07.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/26/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dysregulations of endocannabinoids and/or cannabinoid (CB) receptors have been implicated in the pathophysiology and treatment of major depressive disorder (MDD). METHODS CB1 and CB2 receptors, neuroprotective mTOR (mechanistic target of rapamycin) and pro-apoptotic JNK1/2 (c-Jun-N-terminal kinases) were quantified by immunoblotting in postmortem prefrontal cortex of MDD and controls, and further compared in antidepressant (AD)-free and AD-treated subjects. Neuroplastic proteins (PSD-95, Arc, spinophilin) were quantified in MDD brains. RESULTS Total cortical CB1 glycosylated (≈54/64 kDa) receptor was increased in MDD (+20%, n=23, p=0.02) when compared with controls (100%, n=19). This CB1 receptor upregulation was quantified in AD-treated (+23%, n=14, p=0.02) but not in AD-free (+14%, n=9, p=0.34) MDD subjects. In the same MDD cortical samples, CB2 glycosylated (≈45 kDa) receptor was unaltered (all MDD: +11%, n=23, p=0.10; AD-free: +12%, n=9, p=0.31; AD-treated: +10%, n=14, p=0.23). In MDD, mTOR activity (p-Ser2448 TOR/t-TOR) was increased (all MDD: +29%, n=18, p=0.002; AD-free: +33%, n=8, p=0.03; AD-treated: +25%, n=10, p=0.04). In contrast, JNK1/2 activity (p-Thr183/Tyr185/t-JNK) was unaltered in MDD subjects. Cortical PSD-95, Arc, and spinophilin contents were unchanged in MDD. LIMITATIONS A relative limited sample size. Some MDD subjects had been treated with a variety of ADs. The results must be understood in the context of suicide victims with MDD. CONCLUSIONS The upregulation of CB1 receptor density, but not that of CB2 receptor, as well as the increased mTOR activity in PFC/BA9 of subjects with MDD (AD-free/treated) support their contributions in the complex pathophysiology of MDD and in the molecular mechanisms of antidepressant drugs.
Collapse
|
13
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
14
|
Scherma M, Muntoni AL, Riedel G, Fratta W, Fadda P. Cannabinoids and their therapeutic applications in mental disorders
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 22:271-279. [PMID: 33162770 PMCID: PMC7605020 DOI: 10.31887/dcns.2020.22.3/pfadda] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mental disorders represent a significant public health burden worldwide due to their high prevalence, chronically disabling nature, and substantial impact on quality of life. Despite growing knowledge of the pathological mechanisms that underlie the development of these disorders, a high percentage of patients do not respond to first-line clinical treatments; thus, there is a strong need for alternative therapeutic approaches. During the past half-century, after the identification of the endocannabinoid system and its role in multiple physiological processes, both natural and synthetic cannabinoids have attracted considerable interest as putative medications in pathological conditions such as, but not exclusive to, mental disorders. Here, we provide a summary of cannabinoid effects in support of possible therapeutic applications for major depression, bipolar disorder, anxiety, posttraumatic stress disorder, and schizophrenia. Considering this evidence, highlighted benefits and risks of cannabinoid use in the management of these illnesses require further experimental study.
.
Collapse
Affiliation(s)
- Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Paola Fadda
- Author affiliations: Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy; Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom (Gernot Riedel); National Neuroscience Institute, Pisa, Italy
| |
Collapse
|
15
|
Appiah-Kusi E, Wilson R, Colizzi M, Foglia E, Klamerus E, Caldwell A, Bossong MG, McGuire P, Bhattacharyya S. Childhood trauma and being at-risk for psychosis are associated with higher peripheral endocannabinoids. Psychol Med 2020; 50:1862-1871. [PMID: 31422779 DOI: 10.1017/s0033291719001946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Evidence has been accumulating regarding alterations in components of the endocannabinoid system in patients with psychosis. Of all the putative risk factors associated with psychosis, being at clinical high-risk for psychosis (CHR) has the strongest association with the onset of psychosis, and exposure to childhood trauma has been linked to an increased risk of development of psychotic disorder. We aimed to investigate whether being at-risk for psychosis and exposure to childhood trauma were associated with altered endocannabinoid levels. METHOD We compared 33 CHR participants with 58 healthy controls (HC) and collected information about previous exposure to childhood trauma as well as plasma samples to analyse endocannabinoid levels. RESULTS Individuals with both CHR and experience of childhood trauma had higher N-palmitoylethanolamine (p < 0.001) and anandamide (p < 0.001) levels in peripheral blood compared to HC and those with no childhood trauma. There was also a significant correlation between N-palmitoylethanolamine levels and symptoms as well as childhood trauma. CONCLUSIONS Our results suggest an association between CHR and/or childhood maltreatment and elevated endocannabinoid levels in peripheral blood, with a greater alteration in those with both CHR status and history of childhood maltreatment compared to those with either of those risks alone. Furthermore, endocannabinoid levels increased linearly with the number of risk factors and elevated endocannabinoid levels correlated with the severity of CHR symptoms and extent of childhood maltreatment. Further studies in larger cohorts, employing longitudinal designs are needed to confirm these findings and delineate the precise role of endocannabinoid alterations in the pathophysiology of psychosis.
Collapse
Affiliation(s)
- E Appiah-Kusi
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| | - R Wilson
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| | - M Colizzi
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Policlinico 'G. B. Rossi', P.le L.A. Scuro 10, 37134, Verona, Italy
| | - E Foglia
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| | - E Klamerus
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| | - A Caldwell
- King's College London, Mass Spectometry Facility, Franklin Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - M G Bossong
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - P McGuire
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| | - S Bhattacharyya
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Box PO 63, De Crespigny Park, Denmark Hill, LondonSE5 8AF, UK
| |
Collapse
|
16
|
Fernández-Ruiz J, Galve-Roperh I, Sagredo O, Guzmán M. Possible therapeutic applications of cannabis in the neuropsychopharmacology field. Eur Neuropsychopharmacol 2020; 36:217-234. [PMID: 32057592 DOI: 10.1016/j.euroneuro.2020.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Cannabis use induces a plethora of actions on the CNS via its active chemical ingredients, the so-called phytocannabinoids. These compounds have been frequently associated with the intoxicating properties of cannabis preparations. However, not all phytocannabinoids are psychotropic, and, irrespective of whether they are psychotropic or not, they have also shown numerous therapeutic properties. These properties are mostly associated with their ability to modulate the activity of an intercellular communication system, the so-called endocannabinoid system, which is highly active in the CNS and has been found altered in many neurological disorders. Specifically, this includes the neuropsychopharmacology field, with diseases such as schizophrenia and related psychoses, anxiety-related disorders, mood disorders, addiction, sleep disorders, post-traumatic stress disorder, anorexia nervosa and other feeding-related disorders, dementia, epileptic syndromes, as well as autism, fragile X syndrome and other neurodevelopment-related disorders. Here, we gather, from a pharmacological and biochemical standpoint, the recent advances in the study of the therapeutic relevance of the endocannabinoid system in the CNS, with especial emphasis on the neuropsychopharmacology field. We also illustrate the efforts that are currently being made to investigate at the clinical level the potential therapeutic benefits derived from elevating or inhibiting endocannabinoid signaling in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Ismael Galve-Roperh
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Onintza Sagredo
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Manuel Guzmán
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
17
|
Reddy V, Grogan D, Ahluwalia M, Salles ÉL, Ahluwalia P, Khodadadi H, Alverson K, Nguyen A, Raju SP, Gaur P, Braun M, Vale FL, Costigliola V, Dhandapani K, Baban B, Vaibhav K. Targeting the endocannabinoid system: a predictive, preventive, and personalized medicine-directed approach to the management of brain pathologies. EPMA J 2020; 11:217-250. [PMID: 32549916 PMCID: PMC7272537 DOI: 10.1007/s13167-020-00203-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Cannabis-inspired medical products are garnering increasing attention from the scientific community, general public, and health policy makers. A plethora of scientific literature demonstrates intricate engagement of the endocannabinoid system with human immunology, psychology, developmental processes, neuronal plasticity, signal transduction, and metabolic regulation. Despite the therapeutic potential, the adverse psychoactive effects and historical stigma, cannabinoids have limited widespread clinical application. Therefore, it is plausible to weigh carefully the beneficial effects of cannabinoids against the potential adverse impacts for every individual. This is where the concept of "personalized medicine" as a promising approach for disease prediction and prevention may take into the account. The goal of this review is to provide an outline of the endocannabinoid system, including endocannabinoid metabolizing pathways, and will progress to a more in-depth discussion of the therapeutic interventions by endocannabinoids in various neurological disorders.
Collapse
Affiliation(s)
- Vamsi Reddy
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Dayton Grogan
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Katelyn Alverson
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Andy Nguyen
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Srikrishnan P. Raju
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Brown University, Providence, RI USA
| | - Pankaj Gaur
- Georgia Cancer Center, Augusta University, Augusta, GA USA
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, USA
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, USA
| | - Fernando L. Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | | | - Krishnan Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| |
Collapse
|
18
|
Effects of combined 5-HT 2A and cannabinoid receptor modulation on a schizophrenia-related prepulse inhibition deficit in mice. Psychopharmacology (Berl) 2020; 237:1643-1655. [PMID: 32095916 DOI: 10.1007/s00213-020-05485-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE Prepulse inhibition of the startle reflex (PPI) is disrupted in several psychiatric disorders including schizophrenia. Understanding PPI pharmacology may help elucidate the pathophysiology of these disorders and lead to better treatments. Given the advantages of multi-target approaches for complex mental illnesses treatment, we have investigated the interaction between receptors known to modulate PPI (5-HT1A and 5-HT2A) and the neuromodulatory endocannabinoid system. OBJECTIVES To investigate serotonin and cannabinoid receptor (CBR) co-modulation in a model of PPI disruption relevant to schizophrenia METHODS: Male Swiss mice were pretreated with WIN 55,212-2 (CBR agonist), rimonabant (CB1R inverse agonist), 8-OH-DPAT (5-HT1A/7 agonist), and volinanserin (5-HT2A antagonist) or with a combination of a cannabinoid and a serotonergic drug. PPI disruption was induced by acute administration of MK-801. RESULTS WIN 55,212-2 and rimonabant did not change PPI nor block MK-801-induced deficits. 8-OH-DPAT increased PPI in control mice and, in a higher dose, inhibited MK-801-induced impairments. Volinanserin also increased PPI in control and MK-801-treated mice, presenting an inverted U-shaped dose-response curve. Co-administration of either cannabinoid ligand with 8-OH-DPAT did not change PPI; however, the combination of volinanserin with rimonabant increased PPI in both control and MK-801-exposed mice. CONCLUSIONS WIN 55,212-2 and rimonabant had similar effects in PPI. Moreover, serotonin and cannabinoid receptors interact to modulate PPI. While co-modulation of CBR and 5-HT1A receptors did not change PPI, a beneficial effect of 5-HT2A and CB1R antagonist combination was detected, possibly mediated through potentiation of 5-HT2A blockade effects by concomitant CB1R blockade.
Collapse
|
19
|
Seillier A, Martinez AA, Giuffrida A. Differential effects of Δ9-tetrahydrocannabinol dosing on correlates of schizophrenia in the sub-chronic PCP rat model. PLoS One 2020; 15:e0230238. [PMID: 32163506 PMCID: PMC7067407 DOI: 10.1371/journal.pone.0230238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/25/2020] [Indexed: 01/01/2023] Open
Abstract
Social withdrawal in the sub-chronic phencyclidine (PCP) rat model, a behavioral correlate of the negative symptoms of schizophrenia, results from deficits in brain endocannabinoid transmission. As cannabis intake has been shown to affect negatively the course and expression of psychosis, we tested whether the beneficial effects of endocannabinoid-mediated CB1 activation on social withdrawal in PCP-treated rats (5 mg/kg, twice daily for 7 days)also occurred after administration of Δ9-tetrahydrocannabinol (THC; 0.1, 0.3, 1.0 mg/kg, i.p.). In addition, we assessed whether THC affected two correlates of positive symptoms: 1) motor activity induced by d-amphetamine (0.5 mg/kg, i.p.), and 2) dopamine neuron population activity in the ventral tegmental area (VTA). After the motor activity test, the brains from d-amphetamine-treated animals were collected and processed for measurements of endocannabinoids and activation of Akt/GSK3β, two molecular markers involved in the pathophysiology of schizophrenia. In control rats, THC dose-dependently produced social interaction deficits and aberrant VTA dopamine neuron population activity similar to those observed in PCP-treated animals. In PCP-treated rats, only the lowest dose of THC reversed PCP-induced deficits, as well as PCP-induced elevation of the endocannabinoid anandamide (AEA) in the nucleus accumbens. Last, THC activated the Akt/GSK3β pathway dose-dependently in both control and PCP-treated animals. Taken together, these data suggest that only low doses of THC have beneficial effects on behavioral, neurochemical and electrophysiological correlates of schizophrenia symptoms. This observation may shed some light on the controversial hypothesis of marijuana use as self-medication in schizophrenic patients.
Collapse
Affiliation(s)
- Alexandre Seillier
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| | - Alex A. Martinez
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Andrea Giuffrida
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
20
|
Funada M, Tomiyama KI. [Dependence and Cytotoxicity of Components of Cannabis]. YAKUGAKU ZASSHI 2020; 140:205-214. [PMID: 32009044 DOI: 10.1248/yakushi.19-00195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cannabis use among the younger population in Japan has been steadily increasing. The aim of the present review is to highlight recent knowledge regarding the molecular mechanisms of action and health risks associated with cannabis and synthetic cannabinoid consumption. We investigated the effects of Δ9-tetrahydrocannabinol (THC) and synthetic cannabinoids on place conditioning in ICR mice. Both Δ9-THC and synthetic cannabinoids produce a significant conditioned place preference. These rewarding effects were completely suppressed by the cannabinoid CB1 receptor type antagonist AM251. The cytotoxicological effects of Δ9-THC and synthetic cannabinoids were also characterized in the limbic forebrain of mice in primary culture in vitro. Δ9-THC and synthetic cannabinoids caused cell death in a dose-dependent manner. The rank order of cytotoxicological potency was synthetic cannabinoids>Δ9-THC and related to the agonistic activities of the CB1 receptor. A recent review on the harmful effects of cannabis use in humans reported that behavioral impairments, especially in terms of attention, memory, and complex information-processing ability, can last for many weeks after cessation of cannabis use among heavy users. In addition, cannabis use could be a risk factor for drug dependence and later psychosis among adolescents. The results of animal and human studies suggest that CB1 receptors play an important role in the expression of harmful effects of cannabis and synthetic cannabinoid use. Moreover, concern regarding increasing concentrations of Δ9-THC in cannabis in many countries has been noted, because more potent cannabis may be associated with worse adverse effects.
Collapse
Affiliation(s)
- Masahiko Funada
- Section of Addictive Drug Research, Department of Drug Dependence Research, National Institute of Mental Health, National Center of Neurology and Psychiatry
| | - Ken-Ichi Tomiyama
- Section of Addictive Drug Research, Department of Drug Dependence Research, National Institute of Mental Health, National Center of Neurology and Psychiatry
| |
Collapse
|
21
|
Cholecystokinin-Expressing Interneurons of the Medial Prefrontal Cortex Mediate Working Memory Retrieval. J Neurosci 2020; 40:2314-2331. [PMID: 32005764 DOI: 10.1523/jneurosci.1919-19.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Distinct components of working memory are coordinated by different classes of inhibitory interneurons in the PFC, but the role of cholecystokinin (CCK)-positive interneurons remains enigmatic. In humans, this major population of interneurons shows histological abnormalities in schizophrenia, an illness in which deficient working memory is a core defining symptom and the best predictor of long-term functional outcome. Yet, CCK interneurons as a molecularly distinct class have proved intractable to examination by typical molecular methods due to widespread expression of CCK in the pyramidal neuron population. Using an intersectional approach in mice of both sexes, we have succeeded in labeling, interrogating, and manipulating CCK interneurons in the mPFC. Here, we describe the anatomical distribution, electrophysiological properties, and postsynaptic connectivity of CCK interneurons, and evaluate their role in cognition. We found that CCK interneurons comprise a larger proportion of the mPFC interneurons compared with parvalbumin interneurons, targeting a wide range of neuronal subtypes with a distinct connectivity pattern. Phase-specific optogenetic inhibition revealed that CCK, but not parvalbumin, interneurons play a critical role in the retrieval of working memory. These findings shine new light on the relationship between cortical CCK interneurons and cognition and offer a new set of tools to investigate interneuron dysfunction and cognitive impairments associated with schizophrenia.SIGNIFICANCE STATEMENT Cholecystokinin-expressing interneurons outnumber other interneuron populations in key brain areas involved in cognition and memory, including the mPFC. However, they have proved intractable to examination as experimental techniques have lacked the necessary selectivity. To the best of our knowledge, the present study is the first to report detailed properties of cortical cholecystokinin interneurons, revealing their anatomical organization, electrophysiological properties, postsynaptic connectivity, and behavioral function in working memory.
Collapse
|
22
|
Cinquina V, Calvigioni D, Farlik M, Halbritter F, Fife-Gernedl V, Shirran SL, Fuszard MA, Botting CH, Poullet P, Piscitelli F, Máté Z, Szabó G, Yanagawa Y, Kasper S, Di Marzo V, Mackie K, McBain CJ, Bock C, Keimpema E, Harkany T. Life-long epigenetic programming of cortical architecture by maternal 'Western' diet during pregnancy. Mol Psychiatry 2020; 25:22-36. [PMID: 31735910 DOI: 10.1038/s41380-019-0580-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023]
Abstract
The evolution of human diets led to preferences toward polyunsaturated fatty acid (PUFA) content with 'Western' diets enriched in ω-6 PUFAs. Mounting evidence points to ω-6 PUFA excess limiting metabolic and cognitive processes that define longevity in humans. When chosen during pregnancy, ω-6 PUFA-enriched 'Western' diets can reprogram maternal bodily metabolism with maternal nutrient supply precipitating the body-wide imprinting of molecular and cellular adaptations at the level of long-range intercellular signaling networks in the unborn fetus. Even though unfavorable neurological outcomes are amongst the most common complications of intrauterine ω-6 PUFA excess, cellular underpinnings of life-long modifications to brain architecture remain unknown. Here, we show that nutritional ω-6 PUFA-derived endocannabinoids desensitize CB1 cannabinoid receptors, thus inducing epigenetic repression of transcriptional regulatory networks controlling neuronal differentiation. We found that cortical neurons lose their positional identity and axonal selectivity when mouse fetuses are exposed to excess ω-6 PUFAs in utero. Conversion of ω-6 PUFAs into endocannabinoids disrupted the temporal precision of signaling at neuronal CB1 cannabinoid receptors, chiefly deregulating Stat3-dependent transcriptional cascades otherwise required to execute neuronal differentiation programs. Global proteomics identified the immunoglobulin family of cell adhesion molecules (IgCAMs) as direct substrates, with DNA methylation and chromatin accessibility profiling uncovering epigenetic reprogramming at >1400 sites in neurons after prolonged cannabinoid exposure. We found anxiety and depression-like behavioral traits to manifest in adult offspring, which is consistent with genetic models of reduced IgCAM expression, to suggest causality for cortical wiring defects. Overall, our data uncover a regulatory mechanism whose disruption by maternal food choices could limit an offspring's brain function for life.
Collapse
Affiliation(s)
- Valentina Cinquina
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Calvigioni
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Halbritter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Fife-Gernedl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sally L Shirran
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom
| | - Matthew A Fuszard
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom.,Faculty of Medicine, Martin-Luther University, Halle-Wittenberg, Halle, Germany
| | | | | | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University School of Medicine, Maebashi, Japan
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy.,Canada Excellence Research Chair, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Ken Mackie
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Chris J McBain
- Program in Developmental Neuroscience, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, NIH, Bethesda, USA
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria. .,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Osborne AL, Solowij N, Babic I, Lum JS, Newell KA, Huang XF, Weston-Green K. Effect of cannabidiol on endocannabinoid, glutamatergic and GABAergic signalling markers in male offspring of a maternal immune activation (poly I:C) model relevant to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109666. [PMID: 31202911 DOI: 10.1016/j.pnpbp.2019.109666] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
The mainstay treatment for schizophrenia is antipsychotic drugs (APDs), which are mostly effective against the positive symptoms (e.g. hallucinations), but provide minimal benefits for the negative symptoms (e.g. social withdrawal) and cognitive deficits. We have recently shown that treatment with the non-intoxicating phytocannabinoid, cannabidiol (CBD), can improve cognition and social interaction deficits in a maternal immune activation (MIA) model relevant to the aetiology of schizophrenia, however, the mechanisms underlying this effect are unknown. An imbalance in the main excitatory (glutamate) and inhibitory (GABA) neurotransmitter systems in the brain plays a role in the pathophysiology of schizophrenia. Therefore, the endocannabinoid system could represent a therapeutic target for schizophrenia as a regulator of glutamate and GABA release via the CB1 receptor (CB1R). This study investigated the effects of chronic CBD treatment on markers of glutamatergic, GABAergic and endocannabinoid signalling in brain regions implicated in social behaviour and cognitive function, including the prefrontal cortex (PFC) and hippocampus (HPC). Time-mated pregnant Sprague-Dawley rats (n = 16) were administered poly I:C (4 mg/kg, i.v.) or saline (control) on gestational day 15. Male offspring were injected with CBD (10 mg/kg, i.p.) or vehicle twice daily from postnatal day 56 for 3 weeks. The prefrontal cortex (PFC) and hippocampus (HPC) were collected for post-mortem receptor binding and Western blot analyses (n = 8 per group). CBD treatment attenuated poly I:C-induced deficits in cannabinoid CB1 receptor binding in the PFC and glutamate decarboxylase 67, the enzyme that converts glutamate to GABA, in the HPC. CBD treatment increased parvalbumin levels in the HPC, regardless of whether offspring were exposed to poly I:C in utero. Conversely, CBD did not affect N-methyl-d-aspartate receptor and gamma-aminobutyric acid (GABA) A receptor binding or protein levels of fatty acid amide hydrolase, the enzyme that degrades the endocannabinoid, anandamide. Overall, these findings show that CBD can restore cannabinoid/GABAergic signalling deficits in regions of the brain implicated in schizophrenia pathophysiology following maternal poly I:C exposure. These findings provide novel evidence for the potential mechanisms underlying the therapeutic effects of CBD treatment in the poly I:C model.
Collapse
Affiliation(s)
- Ashleigh L Osborne
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nadia Solowij
- School of Psychology, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Ilijana Babic
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra and Shoalhaven Health District, Wollongong, NSW 2500, Australia
| | - Jeremy S Lum
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kelly A Newell
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Katrina Weston-Green
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
24
|
Thorpe HHA, Hamidullah S, Jenkins BW, Khokhar JY. Adolescent neurodevelopment and substance use: Receptor expression and behavioral consequences. Pharmacol Ther 2019; 206:107431. [PMID: 31706976 DOI: 10.1016/j.pharmthera.2019.107431] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Adolescence is the transitional period between childhood and adulthood, during which extensive brain development occurs. Since this period also overlaps with the initiation of drug use, it is important to consider how substance use during this time might produce long-term neurobiological alterations, especially against the backdrop of developmental changes in neurotransmission. Alcohol, cannabis, nicotine, and opioids all produce marked changes in the expression and function of the neurotransmitter and receptor systems with which they interact. These acute and chronic alterations also contribute to behavioral consequences ranging from increased addiction risk to cognitive or neuropsychiatric behavioral dysfunctions. The current review provides an in-depth overview and update of the developmental changes in neurotransmission during adolescence, as well as the impact of drug exposure during this neurodevelopmental window. While most of these factors have been studied in animal models, which are the focus of this review, future longitudinal studies in humans that assess neural function and behavior will help to confirm pre-clinical findings. Furthermore, the neural changes induced by each drug should also be considered in the context of other contributing factors, such as sex. Further understanding of these consequences can help in the identification of novel approaches for preventing and reversing the neurobiological effects of adolescent substance use.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Shahnaza Hamidullah
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Bryan W Jenkins
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada.
| |
Collapse
|
25
|
Osborne AL, Solowij N, Babic I, Lum JS, Huang XF, Newell KA, Weston-Green K. Cannabidiol improves behavioural and neurochemical deficits in adult female offspring of the maternal immune activation (poly I:C) model of neurodevelopmental disorders. Brain Behav Immun 2019; 81:574-587. [PMID: 31326506 DOI: 10.1016/j.bbi.2019.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
Cognitive impairment is a major source of disability in schizophrenia and current antipsychotic drugs (APDs) have minimal efficacy for this symptom domain. Cannabidiol (CBD), the major non-intoxicating component of Cannabis sativa L., exhibits antipsychotic and neuroprotective properties. We recently reported the effects of CBD on cognition in male offspring of a maternal immune activation (polyinosinic-polycytidilic acid (poly I:C)) model relevant to the aetiology of schizophrenia; however, the effects of CBD treatment in females are unknown. Sex differences are observed in the onset of schizophrenia symptoms and response to APD treatment. Furthermore, the endogenous cannabinoid system, a direct target of CBD, is sexually dimorphic in humans and rodents. Therefore, the present work aimed to assess the therapeutic impact of CBD treatment on behaviour and neurochemical signalling markers in female poly I:C offspring. Time-mated pregnant Sprague-Dawley rats (n = 16) were administered poly I:C (4 mg/kg; i.v.) or saline (control) on gestational day 15. From postnatal day 56, female offspring received CBD (10 mg/kg, i.p.) or vehicle treatment for approximately 3 weeks. Following 2 weeks of CBD treatment, offspring underwent behavioural testing, including the novel object recognition, rewarded alternation T-maze and social interaction tests to assess recognition memory, working memory and sociability, respectively. After 3 weeks of CBD treatment, the prefrontal cortex (PFC) and hippocampus (HPC) were collected to assess effects on endocannabinoid, glutamatergic and gamma-aminobutyric acid (GABA) signalling markers. CBD attenuated poly I:C-induced deficits in recognition memory, social interaction and glutamatergic N-methyl-d-aspartate receptor (NMDAR) binding in the PFC of poly I:C offspring. Working memory performance was similar between treatment groups. CBD also increased glutamate decarboxylase 67, the rate-limiting enzyme that converts glutamate to GABA, and parvalbumin protein levels in the HPC. In contrast to the CBD treatment effects observed in poly I:C offspring, CBD administration to control rats reduced social interaction, cannabinoid CB1 receptor and NMDAR binding density in the PFC, suggesting that CBD administration to healthy rats may have negative consequences on social behaviour and brain maturation in adulthood. Overall, the findings of this study support the therapeutic benefits of CBD on recognition memory and sociability in female poly I:C offspring, and provide insight into the neurochemical changes that may underlie the therapeutic benefits of CBD in the poly I:C model.
Collapse
Affiliation(s)
- Ashleigh L Osborne
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nadia Solowij
- School of Psychology, Faculty of Social Sciences, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Ilijana Babic
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra and Shoalhaven Local Health District, Wollongong, NSW 2500, Australia
| | - Jeremy S Lum
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Kelly A Newell
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Katrina Weston-Green
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
26
|
Borgan F, Laurikainen H, Veronese M, Marques TR, Haaparanta-Solin M, Solin O, Dahoun T, Rogdaki M, Salokangas RKR, Karukivi M, Di Forti M, Turkheimer F, Hietala J, Howes O. In Vivo Availability of Cannabinoid 1 Receptor Levels in Patients With First-Episode Psychosis. JAMA Psychiatry 2019; 76:1074-1084. [PMID: 31268519 PMCID: PMC6613300 DOI: 10.1001/jamapsychiatry.2019.1427] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMPORTANCE Experimental and epidemiological studies implicate the cannabinoid 1 receptor (CB1R) in the pathophysiology of psychosis. However, whether CB1R levels are altered in the early stages of psychosis and whether they are linked to cognitive function or symptom severity remain unknown. OBJECTIVE To investigate CB1R availability in first-episode psychosis (FEP) without the confounds of illness chronicity or the use of illicit substances or antipsychotics. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional, case-control study of 2 independent samples included participants receiving psychiatric early intervention services at 2 independent centers in Turku, Finland (study 1) and London, United Kingdom (study 2). Study 1 consisted of 18 volunteers, including 7 patients with affective or nonaffective psychoses taking antipsychotic medication and 11 matched controls; study 2, 40 volunteers, including 20 antipsychotic-naive or antipsychotic-free patients with schizophrenia or schizoaffective disorder and 20 matched controls. Data were collected from January 5, 2015, through September 26, 2018, and analyzed from June 20, 2016, through February 12, 2019. MAIN OUTCOMES AND MEASURES The availability of CB1R was indexed using the distribution volume (VT, in milliliters per cubic centimeter) of 2 CB1R-selective positron emission tomography radiotracers: fluoride 18-labeled FMPEP-d2 (study 1) and carbon 11-labeled MePPEP (study 2). Cognitive function was measured using the Wechsler Digit Symbol Coding Test. Symptom severity was measured using the Brief Psychiatric Rating Scale for study 1 and the Positive and Negative Syndrome Scale for study 2. RESULTS A total of 58 male individuals were included in the analyses (mean [SD] age of controls, 27.16 [5.93] years; mean [SD] age of patients, 26.96 [4.55] years). In study 1, 7 male patients with FEP (mean [SD] age, 26.80 [5.40] years) were compared with 11 matched controls (mean [SD] age, 27.18 [5.86] years); in study 2, 20 male patients with FEP (mean [SD] age, 27.00 [5.06] years) were compared with 20 matched controls (mean [SD] age, 27.15 [6.12] years). In study 1, a significant main effect of group on [18F]FMPEP-d2 VT was found in the anterior cingulate cortex (ACC) (t16 = -4.48; P < .001; Hedges g = 1.2), hippocampus (t16 = -2.98; P = .006; Hedges g = 1.4), striatum (t16 = -4.08; P = .001; Hedges g = 1.9), and thalamus (t16 = -4.67; P < .001; Hedges g = 1.4). In study 2, a significant main effect of group on [11C]MePPEP VT was found in the ACC (Hedges g = 0.8), hippocampus (Hedges g = 0.5), striatum (Hedges g = 0.4), and thalamus (Hedges g = 0.7). In patients, [11C]MePPEP VT in the ACC was positively associated with cognitive functioning (R = 0.60; P = .01), and [11C]MePPEP VT in the hippocampus was inversely associated with Positive and Negative Syndrome Scale total symptom severity (R = -0.50; P = .02). CONCLUSIONS AND RELEVANCE The availability of CB1R was lower in antipsychotic-treated and untreated cohorts relative to matched controls. Exploratory analyses indicated that greater reductions in CB1R levels were associated with greater symptom severity and poorer cognitive functioning in male patients. These findings suggest that CB1R may be a potential target for the treatment of psychotic disorders.
Collapse
Affiliation(s)
- Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Heikki Laurikainen
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Tiago Reis Marques
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Merja Haaparanta-Solin
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Olof Solin
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Tarik Dahoun
- MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Maria Rogdaki
- MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Raimo KR Salokangas
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Max Karukivi
- Department of Psychiatry, Turku University, Satakunta Hospital District, Turku, Finland
| | - Marta Di Forti
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Jarmo Hietala
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | |
Collapse
|
27
|
Almeida V, Levin R, Peres FF, Suiama MA, Vendramini AM, Santos CM, Silva ND, Zuardi AW, Hallak JEC, Crippa JA, Abílio VC. Role of the endocannabinoid and endovanilloid systems in an animal model of schizophrenia-related emotional processing/cognitive deficit. Neuropharmacology 2019; 155:44-53. [DOI: 10.1016/j.neuropharm.2019.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
|
28
|
Muguruza C, Morentin B, Meana JJ, Alexander SP, Callado LF. Endocannabinoid system imbalance in the postmortem prefrontal cortex of subjects with schizophrenia. J Psychopharmacol 2019; 33:1132-1140. [PMID: 31237179 DOI: 10.1177/0269881119857205] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The endocannabinoid system - comprising cannabinoid receptors, endocannabinoid ligands and their synthesis and inactivation enzymes - has been widely implicated in the pathophysiology of schizophrenia. However, little is known regarding the status of the different elements of the endocannabinoid system in the brain of schizophrenic patients. We have previously reported altered endocannabinoid levels in the postmortem brain of subjects with schizophrenia compared with matched controls. AIMS Our aim was to further examine the status of the main elements of the endocannabinoid system in the postmortem prefrontal cortex of the same cohort of subjects. METHODS Gene expression and function of the cannabinoid receptor type-1 (CB1) and the endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have been assessed. RESULTS A significant decrease in CB1 mRNA levels in schizophrenia was found, without alteration of FAAH or MAGL mRNA expression. Moreover, positive correlations among mRNA expressions of the three genes studied were found in the prefrontal cortex of controls but not in schizophrenic subjects. No alteration was found in CB1 receptor mediated functional coupling to G-proteins, but a significant increase of FAAH activity was found in schizophrenic subjects compared with controls. 2-arachidonoylglycerol levels and MAGL activity were found to positively correlate in controls but not in schizophrenic subjects. CONCLUSIONS The present findings reveal an imbalance in the expression and function of different elements of the endocannabinoid system in schizophrenia. This outcome highlights the relevance of the endocannabinoid system in the pathophysiology of schizophrenia and emphasises its elements as potential targets in the search for new therapeutic strategies.
Collapse
Affiliation(s)
- Carolina Muguruza
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Benito Morentin
- Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Stephen Ph Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
29
|
Jacobson MR, Watts JJ, Boileau I, Tong J, Mizrahi R. A systematic review of phytocannabinoid exposure on the endocannabinoid system: Implications for psychosis. Eur Neuropsychopharmacol 2019; 29:330-348. [PMID: 30635160 DOI: 10.1016/j.euroneuro.2018.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 07/17/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
Cannabis, the most widely used illicit drug worldwide, produces psychoactive effects through its component cannabinoids, which act on the endocannabinoid system. Research on how cannabinoid exposure affects the endocannabinoid system is limited. Substantial evidence indicates cannabis use as a risk factor for psychosis, and the mechanism(s) by which this is occurring is/are currently unknown. Here, we conduct the first review of the effects of exogenous cannabinoids on the endocannabinoid system in humans with and without psychotic disorders. The most well established finding is the down-regulation of cannabinoid CB1 receptors (CB1R) after chronic and recent cannabis exposure, but it remains uncertain whether this effect is present in cannabis users with schizophrenia. We highlight where cannabis exposure affects the endocannabinoid system in a pattern that may mirror what is seen in psychosis, and how further research can push this field forward. In these times of changing cannabis legislation, research highlighting the biological effects of cannabinoids is greatly needed.
Collapse
Affiliation(s)
- Maya R Jacobson
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Jeremy J Watts
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Isabelle Boileau
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College St., Toronto, Ontario M5T 1R8, Canada; Institute of Medical Science, Faculty of Medicine, 1 King's College Circle, University of Toronto, Ontario M5S 1A8, Canada.
| | - Junchao Tong
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College St., Toronto, Ontario M5T 1R8, Canada.
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College St., Toronto, Ontario M5T 1R8, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Institute of Medical Science, Faculty of Medicine, 1 King's College Circle, University of Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
30
|
The endocannabinoid system in mental disorders: Evidence from human brain studies. Biochem Pharmacol 2018; 157:97-107. [DOI: 10.1016/j.bcp.2018.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023]
|
31
|
Gomes FV, Edelson JR, Volk DW, Grace AA. Altered brain cannabinoid 1 receptor mRNA expression across postnatal development in the MAM model of schizophrenia. Schizophr Res 2018; 201:254-260. [PMID: 29705007 PMCID: PMC6203675 DOI: 10.1016/j.schres.2018.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022]
Abstract
Altered cannabinoid 1 receptor (CB1R) expression has been reported in the brain of subjects with schizophrenia, a developmental mental illness that usually emerges in late adolescence/early adulthood. However, the developmental period at which changes in the CB1R expression appear in schizophrenia is unknown. To gain insight into this factor, we assessed the postnatal developmental trajectory of CB1R expression in the methylazoxymethanol (MAM) model of schizophrenia. Using in situ hybridization with film and grain analyses, CB1R messenger RNA (mRNA) levels were quantified in multiple brain regions, including the medial prefrontal cortex (mPFC), secondary motor cortex, dorsomedial and dorsolateral striatum, dorsal subregions and ventral subiculum of the hippocampus, of MAM-treated rats and normal controls at three developmental periods [juvenile - postnatal day (PD) 30; adolescence - PD45; and adulthood - PD85]. In all brain regions studied, CB1R mRNA levels were highest in juveniles and then decreased progressively toward adolescent and adult levels in control and MAM-treated rats. However, in MAM-treated rats, CB1R mRNA levels were lower in the mPFC at PD85 and higher in the dorsolateral striatum at PD45 and PD85 relative to controls. Cellular analyses confirmed the changes in CB1R mRNA expression in MAM-treated rats. These findings are in accordance with previous studies showing a decrease in the CB1R mRNA expression from juvenile period to adolescence to adulthood in cortical, striatal, and hippocampal regions. Additionally, similar to most of the schizophrenia-like signs observed in the MAM model, embryonic exposure to MAM leads to schizophrenia-related changes in CB1R mRNA expression that only emerge later in development.
Collapse
Affiliation(s)
- Felipe V Gomes
- Department of Neuroscience, University of Pittsburgh, PA, USA.
| | | | - David W Volk
- Department of Psychiatry, University of Pittsburgh, PA, USA
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, PA, USA; Department of Psychology, University of Pittsburgh, PA, USA
| |
Collapse
|
32
|
Scherma M, Masia P, Deidda M, Fratta W, Tanda G, Fadda P. New Perspectives on the Use of Cannabis in the Treatment of Psychiatric Disorders. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E107. [PMID: 30279403 PMCID: PMC6313625 DOI: 10.3390/medicines5040107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 12/11/2022]
Abstract
Following the discovery of the endocannabinoid system and its potential as a therapeutic target for various pathological conditions, growing interest led researchers to investigate the role of cannabis and its derivatives for medical purposes. The compounds Δ9-tetrahydrocannabinol and cannabidiol are the most abundant phytocannabinoids found in cannabis extracts, as well as the most studied. The present review aims to provide an overview of the current evidence for their beneficial effects in treating psychiatric disorders, including schizophrenia, anxiety, and depression. Nevertheless, further investigations are required to clarify many pending issues, especially those relative to the assessment of benefits and risks when using cannabis for therapeutic purposes, thereby also helping national and federal jurisdictions to remain updated.
Collapse
Affiliation(s)
- Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
| | - Paolo Masia
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
| | - Matteo Deidda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
| | - Gianluigi Tanda
- Medication Development program, NIDA-IRP, NIH/DHHS, NIDA suite 3301, Baltimore, MD 21224, USA.
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, 09042 Monserrato, Italy.
- CNR Institute of Neuroscience ⁻ Cagliari, National Research Council, 09042 Monserrato, Italy.
- National Institute of Neuroscience (INN), University of Cagliari, 09042 Monserrato, Italy.
| |
Collapse
|
33
|
de Almeida V, Martins-de-Souza D. Cannabinoids and glial cells: possible mechanism to understand schizophrenia. Eur Arch Psychiatry Clin Neurosci 2018; 268:727-737. [PMID: 29392440 DOI: 10.1007/s00406-018-0874-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/24/2018] [Indexed: 01/03/2023]
Abstract
Clinical and neurobiological findings have reported the involvement of endocannabinoid signaling in the pathophysiology of schizophrenia. This system modulates dopaminergic and glutamatergic neurotransmission that is associated with positive, negative, and cognitive symptoms of schizophrenia. Despite neurotransmitter impairments, increasing evidence points to a role of glial cells in schizophrenia pathobiology. Glial cells encompass three main groups: oligodendrocytes, microglia, and astrocytes. These cells promote several neurobiological functions, such as myelination of axons, metabolic and structural support, and immune response in the central nervous system. Impairments in glial cells lead to disruptions in communication and in the homeostasis of neurons that play role in pathobiology of disorders such as schizophrenia. Therefore, data suggest that glial cells may be a potential pharmacological tool to treat schizophrenia and other brain disorders. In this regard, glial cells express cannabinoid receptors and synthesize endocannabinoids, and cannabinoid drugs affect some functions of these cells that can be implicated in schizophrenia pathobiology. Thus, the aim of this review is to provide data about the glial changes observed in schizophrenia, and how cannabinoids could modulate these alterations.
Collapse
Affiliation(s)
- Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-862, Brazil.
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-862, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
34
|
Seabra G, Falvella ACB, Guest PC, Martins-de-Souza D, de Almeida V. Proteomics and Lipidomics in the Elucidation of Endocannabinoid Signaling in Healthy and Schizophrenia Brains. Proteomics 2018; 18:e1700270. [DOI: 10.1002/pmic.201700270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/09/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Gabriela Seabra
- Laboratory of Neuroproteomics; Department of Biochemistry and Tissue Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas Brazil
| | - Ana Caroline B. Falvella
- Laboratory of Neuroproteomics; Department of Biochemistry and Tissue Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas Brazil
| | - Paul C. Guest
- Laboratory of Neuroproteomics; Department of Biochemistry and Tissue Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics; Department of Biochemistry and Tissue Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico e Tecnológico; São Paulo Brazil
| | - Valéria de Almeida
- Laboratory of Neuroproteomics; Department of Biochemistry and Tissue Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas Brazil
| |
Collapse
|
35
|
Sami MB, Bhattacharyya S. Are cannabis-using and non-using patients different groups? Towards understanding the neurobiology of cannabis use in psychotic disorders. J Psychopharmacol 2018; 32:825-849. [PMID: 29591635 PMCID: PMC6058406 DOI: 10.1177/0269881118760662] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A substantial body of credible evidence has accumulated that suggest that cannabis use is an important potentially preventable risk factor for the development of psychotic illness and its worse prognosis following the onset of psychosis. Here we summarize the relevant evidence to argue that the time has come to investigate the neurobiological effects of cannabis in patients with psychotic disorders. In the first section we summarize evidence from longitudinal studies that controlled for a range of potential confounders of the association of cannabis use with increased risk of developing psychotic disorders, increased risk of hospitalization, frequent and longer hospital stays, and failure of treatment with medications for psychosis in those with established illness. Although some evidence has emerged that cannabis-using and non-using patients with psychotic disorders may have distinct patterns of neurocognitive and neurodevelopmental impairments, the biological underpinnings of the effects of cannabis remain to be fully elucidated. In the second and third sections we undertake a systematic review of 70 studies, including over 3000 patients with psychotic disorders or at increased risk of psychotic disorder, in order to delineate potential neurobiological and neurochemical mechanisms that may underlie the effects of cannabis in psychotic disorders and suggest avenues for future research.
Collapse
Affiliation(s)
- Musa Basseer Sami
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Lambeth Early Onset Inpatient Unit, Lambeth Hospital, South London and Maudsley NHS Foundation Trust, UK
| | - Sagnik Bhattacharyya
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Lambeth Early Onset Inpatient Unit, Lambeth Hospital, South London and Maudsley NHS Foundation Trust, UK
| |
Collapse
|
36
|
Role of the Endocannabinoid System in the Pathophysiology of Schizophrenia: Implications for Pharmacological Intervention. CNS Drugs 2018; 32:605-619. [PMID: 30022465 DOI: 10.1007/s40263-018-0539-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The term schizophrenia describes a group of multifaceted psychiatric conditions causing significant impairment of the quality of life of affected patients. Although multiple pharmacological treatment options exist, e.g. first- or second-generation antipsychotics, these therapeutics often cause disturbing side effects, such as extrapyramidal symptoms, prolactin increase, sexual dysfunction and/or metabolic syndrome. Furthermore, cognitive impairments and negative symptoms, two factors significantly influencing the course and outcome, are not sufficiently addressed by the available antipsychotics. Since its discovery, multiple clinical and preclinical studies have linked the endocannabinoid system to schizophrenia. Both the endocannabinoid anandamide and the cannabinoid CB1 receptor are deeply linked to underlying disease processes. Based hereon, clinical trials in schizophrenia have explored cannabidiol, a primary component of Cannabis sativa, and rimonabant, a partial antagonist to the CB1 receptor. While the latter did not reveal positive results, cannabidiol significantly ameliorated psychotic symptoms, which was associated with an increase in anandamide serum levels. However, the exact mechanisms of the antipsychotic effects of cannabidiol are not fully understood, and, furthermore, only a limited number of clinical trials in humans have been concluded to date. Thus, the level of proof of safety and efficacy required to approve the therapeutic use of cannabidiol in schizophrenia is currently lacking. However, cannabidiol is a promising candidate as an effective and mechanistically different antipsychotic treatment with a favourable side-effect profile. We therefore conclude that further studies are urgently needed to clarify the antipsychotic effects and safety profile of cannabidiol, and to fully explore its potential antipsychotic mechanism.
Collapse
|
37
|
Chesworth R, Long LE, Weickert CS, Karl T. The Endocannabinoid System across Postnatal Development in Transmembrane Domain Neuregulin 1 Mutant Mice. Front Psychiatry 2018; 9:11. [PMID: 29467679 PMCID: PMC5808294 DOI: 10.3389/fpsyt.2018.00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/15/2018] [Indexed: 12/18/2022] Open
Abstract
The use of cannabis is a well-established component risk factor for schizophrenia, particularly in adolescent individuals with genetic predisposition for the disorder. Alterations to the endocannabinoid system have been found in the prefrontal cortex of patients with schizophrenia. Thus, we assessed whether molecular alterations exist in the endocannabinoid signalling pathway during brain development in a mouse model for the schizophrenia risk gene neuregulin 1 (Nrg1). We analysed transcripts encoding key molecules of the endocannabinoid system in heterozygous transmembrane domain Nrg1 mutant mice (Nrg1 TM HET), which is known to have increased sensitivity to cannabis exposure. Tissue from the prelimbic cortex and hippocampus of male and female Nrg1 TM HET mice and wild type-like littermates was collected at postnatal days (PNDs) 7, 10, 14, 21, 28, 35, 49, and 161. Quantitative polymerase chain reaction was conducted to assess mRNA levels of cannabinoid receptor 1 (CB1R) and enzymes for the synthesis and breakdown of the endocannabinoid 2-arachidonoylglycerol [i.e., diacylglycerol lipase alpha (DAGLα), monoglyceride lipase (MGLL), and α/β-hydrolase domain-containing 6 (ABHD6)]. No sex differences were found for any transcripts in either brain region; thus, male and female data were pooled. Hippocampal and cortical mRNA expression of DAGLα, MGLL, and ABHD6 increased until PND 21-35 and then decreased and stabilised for the rest of postnatal development. Hippocampal CB1R mRNA expression increased until PND 21 and decreased after this age. Expression levels of these endocannabinoid markers did not differ in Nrg1 TM HET compared to control mice at any time point. Here, we demonstrate dynamic changes in the developmental trajectory of several key endocannabinoid system transcripts in the mouse brain, which may correspond with periods of endocannabinoid system maturation. Nrg1 TM HET mutation did not alter the developmental trajectory of the endocannabinoid markers assessed, suggesting that other mechanisms may be responsible for the exaggerated cannabinoid susceptibility in these mice.
Collapse
Affiliation(s)
- Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Leonora E Long
- Schizophrenia Research Institute, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia.,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,Schizophrenia Research Institute, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
38
|
Rodríguez-Muñoz M, Sánchez-Blázquez P, Callado LF, Meana JJ, Garzón-Niño J. Schizophrenia and depression, two poles of endocannabinoid system deregulation. Transl Psychiatry 2017; 7:1291. [PMID: 29249810 PMCID: PMC5802629 DOI: 10.1038/s41398-017-0029-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/04/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023] Open
Abstract
The activity of certain G protein-coupled receptors (GPCRs) and of glutamate N-Methyl-D-aspartate receptors (NMDARs) is altered in both schizophrenia and depression. Using postmortem prefrontal cortex samples from subjects with schizophrenia or depression, we observed a series of opposite changes in the expression of signaling proteins that have been implicated in the cross-talk between GPCRs and NMDARs. Thus, the levels of HINT1 proteins and NMDAR NR1 subunits carrying the C1 cytosolic segment were increased in depressives and decreased in schizophrenics, respect to matched controls. The differences in NR1 C1 subunits were compensated for via altered expression of NR1 subunits lacking the C1 segment; thus, the total number of NR1 subunits was comparable among the three groups. GPCRs influence the function of NR1 C1-containing NMDARs via PKC/Src, and thus, the association of mu-opioid and dopamine 2 receptors with NR1 C1 subunits was augmented in depressives and decreased in schizophrenics. However, the association of cannabinoid 1 receptors (CB1Rs) with NR1 C1 remained nearly constant. Endocannabinoids, via CB1Rs, control the presence of NR1 C1 subunits in the neural membrane. Thus, an altered endocannabinoid system may contribute to the pathophysiology of schizophrenia and depression by modifying the HINT1-NR1 C1/GPCR ratio, thereby altering GPCR-NMDAR cross-regulation.
Collapse
Affiliation(s)
- María Rodríguez-Muñoz
- 0000 0001 2177 5516grid.419043.bNeuropharmacology, Department of Translational Neurosciences, Instituto Cajal, CSIC, Madrid, E-28002 Spain
| | - Pilar Sánchez-Blázquez
- 0000 0001 2177 5516grid.419043.bNeuropharmacology, Department of Translational Neurosciences, Instituto Cajal, CSIC, Madrid, E-28002 Spain
| | - Luis F. Callado
- grid.452310.1Department of Pharmacology, University of the Basque Country UPV/EHU, BioCruces Health Research Institute, Barakaldo, Spain
| | - J. Javier Meana
- grid.452310.1Department of Pharmacology, University of the Basque Country UPV/EHU, BioCruces Health Research Institute, Barakaldo, Spain
| | - Javier Garzón-Niño
- Neuropharmacology, Department of Translational Neurosciences, Instituto Cajal, CSIC, Madrid, E-28002, Spain.
| |
Collapse
|
39
|
Delis F, Rosko L, Shroff A, Leonard KE, Thanos PK. Oral haloperidol or olanzapine intake produces distinct and region-specific increase in cannabinoid receptor levels that is prevented by high fat diet. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:268-280. [PMID: 28619471 DOI: 10.1016/j.pnpbp.2017.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/02/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
Abstract
Clinical studies show higher levels of cannabinoid CB1 receptors (CB1R) in the brain of schizophrenic patients while preclinical studies report a significant functional interaction between dopamine D2 receptors and CB1Rs as well as an upregulation of CB1Rs after antipsychotic treatment. These findings prompted us to study the effects of chronic oral intake of a first and a second generation antipsychotic, haloperidol and olanzapine, on the levels and distribution of CB1Rs in the rat brain. Rats consumed either regular chow or high-fat food and drank water, haloperidol drinking solution (1.5mg/kg), or olanzapine drinking solution (10mg/kg) for four weeks. Motor and cognitive functions were tested at the end of treatment week 3 and upon drug discontinuation. Two days after drug discontinuation, rats were euthanized and brains were processed for in vitro receptor autoradiography. In chow-fed animals, haloperidol and olanzapine increased CB1R levels in the basal ganglia and the hippocampus, in a similar, but not identical pattern. In addition, olanzapine had unique effects in CB1R upregulation in higher order cognitive areas, in the secondary somatosensory cortex, in the visual and auditory cortices and the geniculate nuclei, as well as in the hypothalamus. High fat food consumption prevented antipsychotic-induced increase in CB1R levels in all regions examined, with one exception, the globus pallidus, in which they were higher in haloperidol-treated rats. The results point towards the hypothesis that increased CB1R levels could be a confounding effect of antipsychotic medication in schizophrenia that is circumveneted by high fat feeding.
Collapse
Affiliation(s)
- Foteini Delis
- Department of Pharmacology, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | - Lauren Rosko
- Georgetown University Medical Center, Georgetown University, Washington, DC, 20007, USA
| | - Aditya Shroff
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
| | - Kenneth E Leonard
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
40
|
Ruggiero RN, Rossignoli MT, De Ross JB, Hallak JEC, Leite JP, Bueno-Junior LS. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research. Front Pharmacol 2017; 8:399. [PMID: 28680405 PMCID: PMC5478733 DOI: 10.3389/fphar.2017.00399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/06/2017] [Indexed: 01/14/2023] Open
Abstract
Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC) or ameliorate (e.g., cannabidiol, CBD) schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist) on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.
Collapse
Affiliation(s)
- Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jana B De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil.,National Institute for Science and Technology-Translational Medicine, National Council for Scientific and Technological Development (CNPq)Ribeirão Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
41
|
Murray RM, Englund A, Abi-Dargham A, Lewis DA, Di Forti M, Davies C, Sherif M, McGuire P, D'Souza DC. Cannabis-associated psychosis: Neural substrate and clinical impact. Neuropharmacology 2017. [PMID: 28634109 DOI: 10.1016/j.neuropharm.2017.06.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prospective epidemiological studies have consistently demonstrated that cannabis use is associated with an increased subsequent risk of both psychotic symptoms and schizophrenia-like psychoses. Early onset of use, daily use of high-potency cannabis, and synthetic cannabinoids carry the greatest risk. The risk-increasing effects are not explained by shared genetic predisposition between schizophrenia and cannabis use. Experimental studies in healthy humans show that cannabis and its active ingredient, delta-9-tetrahydrocannabinol (THC), can produce transient, dose-dependent, psychotic symptoms, as well as an array of psychosis-relevant behavioral, cognitive and psychophysiological effects; the psychotogenic effects can be ameliorated by cannabidiol (CBD). Findings from structural imaging studies in cannabis users have been inconsistent but functional MRI studies have linked the psychotomimetic and cognitive effects of THC to activation in brain regions implicated in psychosis. Human PET studies have shown that acute administration of THC weakly releases dopamine in the striatum but that chronic users are characterised by low striatal dopamine. We are beginning to understand how cannabis use impacts on the endocannabinoid system but there is much still to learn about the biological mechanisms underlying how cannabis increases risk of psychosis. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- R M Murray
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK.
| | - A Englund
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - A Abi-Dargham
- Department of Psychiatry, School of Medicine, Stony Brook University, New York, USA
| | - D A Lewis
- Department of Psychiatry, University of Pittsburg, PA, USA
| | - M Di Forti
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - C Davies
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - M Sherif
- Department of Psychiatry, Yale University School of Medicine, CT, USA
| | - P McGuire
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - D C D'Souza
- Department of Psychiatry, Yale University School of Medicine, CT, USA
| |
Collapse
|
42
|
Silveira MM, Arnold JC, Laviolette SR, Hillard CJ, Celorrio M, Aymerich MS, Adams WK. Seeing through the smoke: Human and animal studies of cannabis use and endocannabinoid signalling in corticolimbic networks. Neurosci Biobehav Rev 2017; 76:380-395. [PMID: 27639448 PMCID: PMC5350061 DOI: 10.1016/j.neubiorev.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/02/2016] [Accepted: 09/13/2016] [Indexed: 02/07/2023]
Abstract
Public opinion surrounding the recreational use and therapeutic potential of cannabis is shifting. This review describes new work examining the behavioural and neural effects of cannabis and the endocannabinoid system, highlighting key regions within corticolimbic brain circuits. First, we consider the role of human genetic factors and cannabis strain chemotypic differences in contributing to interindividual variation in the response to cannabinoids, such as THC, and review studies demonstrating that THC-induced impairments in decision-making processes are mediated by actions at prefrontal CB1 receptors. We further describe evidence that signalling through prefrontal or ventral hippocampal CB1 receptors modulates mesolimbic dopamine activity, aberrations of which may contribute to emotional processing deficits in schizophrenia. Lastly, we review studies suggesting that endocannabinoid tone in the amygdala is a critical regulator of anxiety, and report new data showing that FAAH activity is integral to this response. Together, these findings underscore the importance of cannabinoid signalling in the regulation of cognitive and affective behaviours, and encourage further research given their social, political, and therapeutic implications.
Collapse
Affiliation(s)
- Mason M Silveira
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Jonathon C Arnold
- The Brain and Mind Centre and Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Steven R Laviolette
- Addiction Research Group and Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marta Celorrio
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain
| | - María S Aymerich
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
| | - Wendy K Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
43
|
Cannabinoid receptors on peripheral leukocytes from patients with schizophrenia: Evidence for defective immunomodulatory mechanisms. J Psychiatr Res 2017; 87:44-52. [PMID: 28011441 DOI: 10.1016/j.jpsychires.2016.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 10/20/2016] [Accepted: 12/01/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVES to evaluate cannabinoid receptors (CBRs) expression on peripheral immune cells, i.e., blood monocytes, neutrophils, lymphocytes, and NK cells, and their relationship to a wide range of serum cytokine levels in subjects with schizophrenia and controls. METHODS A sample of 55 people with chronic schizophrenia and 48 controls were enrolled in the study. The expression of the cannabinoid receptors CB1R and CB2R was evaluated in peripheral blood leukocytes by flow cytometry. Serum levels of cytokines/chemokines were simultaneously analyzed by cytometric bead array. RESULTS We found higher expression of cannabinoid receptors on cells of the innate immune system in subjects with schizophrenia when compared with controls. Serum levels of interleukin-4 (IL-4), IL-6, IL-10, IL-17, interferon (IFN-γ), and (C-X-C motif) ligand 10/interferon gamma-induced protein 10 (CXCL10/IP10) were decreased, while levels of the chemokine (C-C motif) ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1) were increased in the schizophrenia group in comparison with controls. Patients with schizophrenia showed simpler correlation network between cytokines and CBRs expression than controls. CONCLUSION Patients with schizophrenia showed increased CBRs expression in cells of the innate immune system and simpler correlation network between cytokines and CBRs expression when compared with controls. These results suggest a defective endocannabinoid system-mediated immunomodulation in patients with schizophrenia.
Collapse
|
44
|
Chase KA, Feiner B, Rosen C, Gavin DP, Sharma RP. Characterization of peripheral cannabinoid receptor expression and clinical correlates in schizophrenia. Psychiatry Res 2016; 245:346-353. [PMID: 27591408 DOI: 10.1016/j.psychres.2016.08.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 01/13/2023]
Abstract
The relationship between cannabinoid receptor signaling and psychosis vulnerability requires further exploration. The endocannabinoid signaling system is extensive, with receptors exerting regulatory functions in both immune and central nervous systems. In the brain, cannabinoid receptors (CBR) directly modulate neurotransmitter systems. In the peripheral lymphocyte, CBRs mediate cytokine release, with dysregulated cytokine levels demonstrated in schizophrenia. mRNA levels of CBRs were measured in human peripheral blood mononuclear cells (PBMCs) obtained from 70 participants (35 non-clinical controls, 35 participants with schizophrenia), who were recruited for the absence of marijuana use/abuse by self-report. Changes in mRNA expression were measured using qRT-PCR. Clinical measurements collected included the MATRICS Cognitive Battery and the Positive and Negative Syndrome Scale. Levels of CB1R and CB2R mRNA in PBMCs were significantly higher in participants with schizophrenia compared to the non-clinical controls. Additionally, CB1R and CB2R mRNA levels correlated with impairments in cognitive processing and clinical symptom severity in multiple domains. These results continue to support dysregulation of particular aspects of the endocannabinoid signaling system in participants with schizophrenia selected for the self-reported absence of marijuana abuse/dependence.
Collapse
Affiliation(s)
- Kayla A Chase
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St, Chicago, IL 60612, USA; University of California, Department of Psychiatry, 9500 Gilman Drive, MC 8505, La Jolla, San Diego, CA 92037, USA
| | - Benjamin Feiner
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St, Chicago, IL 60612, USA
| | - Cherise Rosen
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St, Chicago, IL 60612, USA
| | - David P Gavin
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St, Chicago, IL 60612, USA; Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA
| | - Rajiv P Sharma
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St, Chicago, IL 60612, USA; Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
| |
Collapse
|
45
|
Matricon J, Seillier A, Giuffrida A. Distinct neuronal activation patterns are associated with PCP-induced social withdrawal and its reversal by the endocannabinoid-enhancing drug URB597. Neurosci Res 2016; 110:49-58. [PMID: 27091613 PMCID: PMC5007165 DOI: 10.1016/j.neures.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Abstract
The fatty acid amide hydrolase inhibitor, URB597, an endocannabinoid enhancing drug, reverses social withdrawal in the sub-chronic PCP rat model of schizophrenia, but reduces social interaction (SI) in controls. To identify the anatomical substrates associated with PCP-induced social withdrawal and the contrasting effects of URB597 on SI in PCP- versus saline-treated rats, we analyzed SI-induced c-Fos expression in 28 brain areas relevant to schizophrenia and/or social behavior following vehicle or URB597 administration. In saline-treated rats, SI was accompanied by changes in c-Fos expression in the infralimbic and orbitofrontal cortices, dorsomedial caudate putamen, ventrolateral nucleus of the septum, dorsolateral periaqueductal gray (dlPAG) and central amygdala. Except for the dlPAG, these changes were not observed in PCP-treated rats or in saline-treated rats receiving URB597. In the dorsomedial part of the bed nucleus of the stria terminalis (dmBNST), SI-induced c-Fos expression was observed only in PCP-treated rats. Interestingly, URB597 in PCP-treated rats restored a similar c-Fos expression pattern as observed in saline-treated rats: activation of the orbitofrontal cortex, inhibition of the central amygdala and suppression of activation of the dmBNST. These data suggest that orbitofrontal cortex, central amygdala and dmBNST play a critical role in the reversal of PCP-induced social withdrawal by URB597.
Collapse
Affiliation(s)
- Julien Matricon
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Alexandre Seillier
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Andrea Giuffrida
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
46
|
Ranganathan M, Cortes-Briones J, Radhakrishnan R, Thurnauer H, Planeta B, Skosnik P, Gao H, Labaree D, Neumeister A, Pittman B, Surti T, Huang Y, Carson RE, D'Souza DC. Reduced Brain Cannabinoid Receptor Availability in Schizophrenia. Biol Psychiatry 2016; 79:997-1005. [PMID: 26432420 PMCID: PMC4884543 DOI: 10.1016/j.biopsych.2015.08.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 07/31/2015] [Accepted: 08/02/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Several lines of evidence suggest the presence of abnormalities in the endocannabinoid (eCB) system in schizophrenia (SCZ). However, there are limited in vivo measures of the eCB system in SCZ. METHODS Twenty five male SCZ subjects (SCZs) (18 antipsychotic treated and 7 antipsychotic free) were compared with 18 age-matched male healthy control subjects (HCs). Subjects underwent one positron emission tomography scan each with the cannabinoid receptor-1 (CB1R) selective radiotracer [(11)C]OMAR on the high resolution research tomography scanner. Regional volume of distribution (VT) values were determined using kinetic modeling of positron emission tomography data as a measure of CB1R availability. Group differences in mean composite [(11)C]OMAR VT values were compared between SCZs and HCs. Exploratory comparisons of CB1R availability within 15 brain regions were also conducted. All analyses were covaried for age and body mass index. RESULTS SCZs showed significantly (p = .02) lower composite [(11)C]OMAR VT relative to HCs (~12% difference, effect size d = .73). [(11)C]OMAR VT was significantly (all ps < .05) lower in SCZs in the amygdala, caudate, posterior cingulate cortex, hippocampus, hypothalamus, and insula. Composite [11]OMAR VT was HCs > antipsychotic treated SZCs > antipsychotic free SZCs. Furthermore, composite [(11)C]OMAR VT was greater in HCs than SCZ smokers (n = 11) and SCZ nonsmokers (n = 14). CONCLUSIONS CB1R availability is lower in male SCZ subjects compared with HCs. Furthermore, antipsychotics and tobacco use may increase CB1R availability in this population. The findings of the study provide further evidence supporting the hypothesis that alterations in the eCB system might contribute to the pathophysiology of SCZ.
Collapse
Affiliation(s)
- Mohini Ranganathan
- Schizophrenia and Neuropharmacology Research Group, Veterans Affairs Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Jose Cortes-Briones
- Schizophrenia and Neuropharmacology Research Group, Veterans Affairs Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Rajiv Radhakrishnan
- Schizophrenia and Neuropharmacology Research Group, Veterans Affairs Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Halle Thurnauer
- Schizophrenia and Neuropharmacology Research Group, Veterans Affairs Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Beata Planeta
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Positron Emission Tomography Center, Yale University School of Medicine, New Haven, Connecticut
| | - Patrick Skosnik
- Schizophrenia and Neuropharmacology Research Group, Veterans Affairs Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Hong Gao
- Positron Emission Tomography Center, Yale University School of Medicine, New Haven, Connecticut
| | - David Labaree
- Positron Emission Tomography Center, Yale University School of Medicine, New Haven, Connecticut
| | - Alexander Neumeister
- Molecular Imaging Program for Mood and Anxiety Disorders, New York University Langone Medical Center, New York, New York
| | - Brian Pittman
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Positron Emission Tomography Center, Yale University School of Medicine, New Haven, Connecticut
| | - Toral Surti
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Yiyun Huang
- Positron Emission Tomography Center, Yale University School of Medicine, New Haven, Connecticut
| | - Richard E Carson
- Positron Emission Tomography Center, Yale University School of Medicine, New Haven, Connecticut
| | - Deepak Cyril D'Souza
- Schizophrenia and Neuropharmacology Research Group, Veterans Affairs Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
47
|
Abstract
Cannabis use has been reported to increase the risk of developing schizophrenia and to worsen symptoms of the illness. Both of these outcomes might be attributable to the disruption by cannabis of the endogenous cannabinoid system's spatiotemporal regulation of the inhibitory circuitry in the prefrontal cortex that is essential for core cognitive processes, such as working memory, which are impaired in schizophrenia. In the healthy brain, the endocannabinoid 2-arachidonylglycerol 1) is synthesized by diacylglycerol lipase in pyramidal neurons; 2) travels retrogradely to nearby inhibitory axon terminals that express the primary type 1 cannabinoid receptor (CB1R); 3) binds to CB1R, which inhibits gamma-aminobutyric acid release from the cholecystokinin-containing population of interneurons; and 4) is metabolized by either monoglyceride lipase, which is located in the inhibitory axon terminal, or by α-β-hydrolase domain 6, which is co-localized presynaptically with diacylglycerol lipase. Investigations of the endogenous cannabinoid system in the prefrontal cortex of subjects with schizophrenia have found evidence of higher metabolism of 2-arachidonylglycerol, as well as both greater CB1R receptor binding and lower levels of CB1R messenger RNA and protein. Current views on the potential pathogenesis of these alterations, including disturbances in the development of the endogenous cannabinoid system, are discussed. In addition, how interactions between these alterations in the endocannabinoid system and those in other inhibitory neurons in the prefrontal cortex in subjects with schizophrenia might increase the liability to adverse outcomes with cannabis use is considered.
Collapse
Affiliation(s)
- David W. Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
48
|
Therapeutic Potential of Cannabinoids in Psychosis. Biol Psychiatry 2016; 79:604-12. [PMID: 26852073 DOI: 10.1016/j.biopsych.2015.11.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 11/22/2022]
Abstract
Over recent years, the interest in the endocannabinoid system (ECS) as a new target for the treatment of schizophrenia has evolved. The ECS represents one of the most relevant neurotransmitter systems in the brain and mainly fulfills a homeostatic role in terms of neurotransmission but also with respect to inflammatory processes. Two main approaches to the modulation of endocannabinoid functioning have been chosen so far. First, the selective blockade or inverse agonism of the type 1 cannabinoid receptor has been tested for the improvement of acute psychotic symptoms, as well as for the improvement of cognitive functions in schizophrenia. This was not effective in either case. Second, the modulation of endocannabinoid levels by use of the phytocannabinoid cannabidiol and selective fatty acid amide hydrolase inhibitors has been proposed, and the antipsychotic properties of cannabidiol are currently being investigated in humans. Unfortunately, for most of these trials that have focused on psychopathological and cognitive effects of cannabidiol, no published data are available. However, there is first evidence that cannabidiol may ameliorate psychotic symptoms with a superior side-effect profile compared with established antipsychotics. In conclusion, several clinical trials targeting the ECS in acute schizophrenia have either been completed or are underway. Although publicly available results are currently limited, preliminary data indicate that selected compounds modulating the ECS may be effective in acute schizophrenia. Nevertheless, so far, sample sizes of patients investigated are not sufficient to come to a final judgment, and no maintenance studies are available to ensure long-term efficacy and safety.
Collapse
|
49
|
Fakhoury M. Role of the Endocannabinoid System in the Pathophysiology of Schizophrenia. Mol Neurobiol 2016; 54:768-778. [DOI: 10.1007/s12035-016-9697-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
|
50
|
Henry RJ, Kerr DM, Finn DP, Roche M. For whom the endocannabinoid tolls: Modulation of innate immune function and implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:167-80. [PMID: 25794989 DOI: 10.1016/j.pnpbp.2015.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) mediate the innate immune response to pathogens and are critical in the host defence, homeostasis and response to injury. However, uncontrolled and aberrant TLR activation can elicit potent effects on neurotransmission and neurodegenerative cascades and has been proposed to trigger the onset of certain neurodegenerative disorders and elicit detrimental effects on the progression and outcome of established disease. Over the past decade, there has been increasing evidence demonstrating that the endocannabinoid system can elicit potent modulatory effects on inflammatory processes, with clinical and preclinical evidence demonstrating beneficial effects on disease severity and symptoms in several inflammatory conditions. This review examines the evidence supporting a modulatory effect of endocannabinoids on TLR-mediated immune responses both peripherally and centrally, and the implications for psychiatric disorders such as depression and schizophrenia.
Collapse
Affiliation(s)
- Rebecca J Henry
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland.
| |
Collapse
|