1
|
Bolden NC, Pavchinskiy RG, Melikian HE. Dopamine transporter endocytic trafficking: Neuronal mechanisms and potential impact on DA-dependent behaviors. J Neurochem 2025; 169:e16284. [PMID: 39655745 PMCID: PMC11631176 DOI: 10.1111/jnc.16284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
The dopamine (DA) transporter (DAT) is a major determinant of DAergic neurotransmission, and is a primary target for addictive and therapeutic psychostimulants. Evidence accumulated over decades in cell lines and in vitro preparations revealed that DAT function is acutely regulated by membrane trafficking. Many of these findings have recently been validated in vivo and in situ, and several behavioral and physiological findings raise the possibility that regulated DAT trafficking may impact DA signaling and DA-dependent behaviors. Here we review key DAT trafficking findings across multiple systems, and discuss the cellular mechanisms that mediate DAT trafficking, as well as the endogenous receptors and signaling pathways that drive regulated DAT trafficking. We additionally discuss recent findings that DAT trafficking dysfunction correlates to perturbations in DA signaling and DA-dependent behaviors.
Collapse
Affiliation(s)
- Nicholas C. Bolden
- Department of Neurobiology, UMASS Chan Medical School, Worcester, MA 01605
- Morningside Graduate School of Biomedical Sciences, UMASS Chan Medical School, Worcester, MA 01605
- Brudnick Neuropsychiatric Research Institute, UMASS Chan Medical School, Worcester, MA 01605
| | - Rebecca G. Pavchinskiy
- Department of Neurobiology, UMASS Chan Medical School, Worcester, MA 01605
- Morningside Graduate School of Biomedical Sciences, UMASS Chan Medical School, Worcester, MA 01605
- Brudnick Neuropsychiatric Research Institute, UMASS Chan Medical School, Worcester, MA 01605
| | - Haley E. Melikian
- Department of Neurobiology, UMASS Chan Medical School, Worcester, MA 01605
- Brudnick Neuropsychiatric Research Institute, UMASS Chan Medical School, Worcester, MA 01605
| |
Collapse
|
2
|
Bumrungthai S, Buddhisa S, Duangjit S, Passorn S, Sumala S, Prakobkaew N. Association of HHV‑6 reactivation and SLC6A3 (C>T, rs40184), BDNF (C>T, rs6265), and JARID2 (G>A, rs9383046) single nucleotide polymorphisms in depression. Biomed Rep 2024; 21:181. [PMID: 39420919 PMCID: PMC11484186 DOI: 10.3892/br.2024.1869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Major depressive disorder (MDD) is a global health concern with a complex etiology involving genetic, environmental and infectious factors. The exact cause of MDD remains unknown. The present study explored the association between genetic factors, human herpesvirus 6 (HHV-6) and MDD. The present study analyzed single nucleotide polymorphisms (SNPs) and HHV-6 viral load in oral buccal samples from patients with MDD (with and without blood relatives with MDD) and healthy controls. The study used high-resolution melt analysis to examine rs40184 (C>T) in the solute carrier family 6 member 3 (SLC6A31) gene, rs6265 (C>T) in the brain-derived neurotrophic factor (BDNF) gene and rs9383046 (G>A) in the jumonji and AT-rich interaction domain-containing 2 (JARID2) gene. HHV-6 infection and viral load was assessed using the quantitative PCR. Whole-exome sequencing was used to examine SNPs. The variant alleles of SNPs rs40184 [18/40 (45.00) vs. 29/238 (12.55%)] and rs6265 [30/54 (55.46) vs. 117/292 (40.06%)] were significantly more common in patients with MDD than in healthy controls, indicating they may be probable hereditary risk factors for MDD. HHV-6 positivity was significantly more common in carriers of the G/A genotype (12/15, 80%) than carriers of the G/G genotype (75/363, 20.7%) for rs9383046, implying that genetic variations may affect HHV-6 risk and MDD onset. Similarly, HHV-6 viral loads were significantly higher in carriers of the G/A genotype (99,990.85±118,392.64 copies/ng DNA) than carriers of the G/G genotype (48,249.30±101,216.28 copies/ng DNA) for rs9383046. Whole-exome sequencing identified two SNPs in JARID2 (rs11757092 and rs9383050) associated with MDD, highlighting its genetic complexity. The present study helps explain the complex interactions between HHV-6 infection, genetics and MDD onset, improving understanding of how SNPs in JARID2 contribute to HHV-6 infection and MDD onset; these findings may impact future approaches to diagnosing and treating MDD.
Collapse
Affiliation(s)
- Sureewan Bumrungthai
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Surachat Buddhisa
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Sureewan Duangjit
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Supaporn Passorn
- Division of Biotechnology, School of Agriculture and Natural resources, University of Phayao, Phayao 56000, Thailand
| | - Sasiwimon Sumala
- Division of Biotechnology, School of Agriculture and Natural resources, University of Phayao, Phayao 56000, Thailand
| | - Nattaphol Prakobkaew
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
3
|
Zhang Y, Wang Z. The interplay of dopaminergic genotype and parent-child relationship in relation to intra-individual response time variability in preschoolers: A replication study. Dev Sci 2024; 27:e13561. [PMID: 39162657 DOI: 10.1111/desc.13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 06/12/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Intra-individual response time variability (IIRTV) during cognitive performance is increasingly recognized as an important indicator of attentional control (AC) and related brain region function. However, what determinants contribute to preschoolers' IIRTV received little attention. The present study explored the interaction of dopaminergic polygenic composite score (DPCS) and the parent-child relationship in relation to preschoolers' IIRTV. In the initial sample, 452 preschoolers (M age = 5.17, SD = 0.92) participated in the study. The modified Flanker task was used to evaluate children's IIRTV and their parents were requested to complete the Parent-Child Relationship Scale to assess the parent-child relationship (closeness/conflict). DNA data were extracted from children's saliva samples, and a DPCS was created by the number of COMT, DAT1, and DRD2 alleles associated with lower dopamine levels. Results showed that DPCS significantly interacted with the parent-child closeness to impact preschoolers' IIRTV. Specifically, preschoolers with higher DPCS exhibited lower IIRTV under higher levels of the parent-child closeness, and greater IIRTV under lower levels of the parent-child closeness compared to those with lower DPCS, which supported the differential susceptibility theory (DST). A direct replication attempt with 280 preschoolers (M age = 4.80, SD = 0.86) was conducted to investigate whether the results were in accordance with our exploratory outcomes. The interactive effect of DPCS and the parent-child closeness on IIRTV was confirmed. Additionally, the significant interactive effect of DPCS and the parent-child conflict on IIRTV was found in the replication study. The findings indicate that preschoolers' IIRTV, as an indicator of AC and related brain region function, is influenced by the interactions of dopaminergic genotypes and the parent-child relationship. RESEARCH HIGHLIGHTS: We investigated the Gene × Environment mechanism to underline the intra-individual response time variability as an indicator of attentional control (AC) in Chinese preschoolers. Dopaminergic polygenic composite score (COMT, DAT1, and DRD2) interacted with the parent-child relationship to predict preschoolers' intra-individual reaction time variability. A direct replication attempt has been conducted, and the results were in accordance with our exploratory outcomes, which increased the credibility of the present findings. The findings highlight the importance of considering precursors, including polygenic and environmental factors, which contribute to the development of early cognitive performance such as AC.
Collapse
Affiliation(s)
- Yuewen Zhang
- School of Psychology, Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Shaanxi Normal University, Xi'an, China
- School of Psychology, Northwest Normal University, Lanzhou, China
| | - Zhenhong Wang
- School of Psychology, Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
4
|
Moctezuma B, Santiago Á, Burguete-García A, Martínez-Barnetche J, Morales-Gómez C, Hernandez-Chavez C, Gil G, Peterson KE, Tellez-Rojo MM, Lamadrid-Figueroa H. Single nucleotide polymorphisms of ANKK1, DDR4, and GRIN2B genes predict behavior in a prospective cohort of Mexican children and adolescents. Int J Dev Neurosci 2024; 84:638-650. [PMID: 38530142 DOI: 10.1002/jdn.10326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 03/27/2024] Open
Abstract
Numerous studies have established associations between single nucleotide polymorphisms (SNPs) and various behavioral and neurodevelopmental conditions. This study explores the links between SNPs in candidate genes involved in central nervous system (CNS) physiology and their implications for the behavioral and emotional aspects in children and teenagers. A total of 590 participants, aged 7-15 years, from the Early Life Exposures In Mexico To Environmental Toxicants (ELEMENT) cohort study in Mexico City, underwent genotyping for at least one of 15 CNS gene-related SNPs at different timepoints. We employed multiple linear regression models to assess the potential impact of genetic variations on behavioral and cognitive traits, as measured by the Behavioral Assessment System for Children (BASC) and Conners parent rating scales. Significant associations were observed, including the rs1800497 TC genotype (ANKK1) with the Cognitive Problems/Inattention variable (p value = 0.003), the rs1800955 CT genotype (DDR4) with the Emotional Lability Global index variable (p value = 0.01), and the rs10492138 GA and rs7970177 TC genotypes (GRIN2B) with the Depression variable (p values 0.007 and 0.012, respectively). These finds suggest potential genetic profiles associated with "risk" and "protective" behaviors for these SNPs. Our results provide valuable insights into the role of genetic variations in neurobehavior and highlight the need for further research in the early identification and intervention in individuals at risk for these conditions.
Collapse
Affiliation(s)
- Barbara Moctezuma
- School of Public Health of Mexico, National Institute of Public Health, Cuernavaca, Mexico
| | - Ángel Santiago
- Department of Perinatal Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Ana Burguete-García
- Center for Population Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | | | - Claudia Morales-Gómez
- Epidemiologic Surveillance, Mexican Institute of Social Security-Bienestar, Mexico City, Mexico
| | - Carmen Hernandez-Chavez
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico
| | - Gabriela Gil
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico
| | - Karen E Peterson
- Nutritional Sciences Department, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Martha M Tellez-Rojo
- Center for Research in Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | | |
Collapse
|
5
|
Chaves-Filho AJM, Soares MVR, Jucá PM, Oliveira TDQ, Clemente DCDS, Monteiro CEDS, Silva FGO, de Aquino PEA, Macedo DS. Doxycycline reversal of amphetamine-induced mania-like behavior is related to adjusting brain monoamine abnormalities and antioxidant effects in primary hippocampal neurons. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6017-6035. [PMID: 38386042 DOI: 10.1007/s00210-024-03009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Mania is associated with disturbed dopaminergic transmission in frontotemporal regions. D-amphetamine (AMPH) causes increased extracellular DA levels, considered an acknowledged mania model in rodents. Doxycycline (DOXY) is a second-generation tetracycline with promising neuroprotective properties. Here, we tested the hypothesis that DOXY alone or combined with Lithium (Li) could reverse AMPH-induced mania-like behavioral alterations in mice by the modulation of monoamine levels in brain areas related to mood regulation, as well as cytoprotective and antioxidant effects in hippocampal neurons. Male Swiss mice received AMPH or saline intraperitoneal (IP) injections for 14 days. Between days 8-14, mice receive further IP doses of DOXY, Li, or their combination. For in vitro studies, we exposed hippocampal neurons to DOXY in the presence or absence of AMPH. DOXY alone or combined with Li reversed AMPH-induced risk-taking behavior and hyperlocomotion. DOXY also reversed AMPH-induced hippocampal and striatal hyperdopaminergia. In AMPH-exposed hippocampal neurons, DOXY alone and combined with Li presented cytoprotective and antioxidant effects, while DOXY+Li also increased the expression of phospho-Ser133-CREB. Our results add novel evidence for DOXY's ability to reverse mania-like features while revealing that antidopaminergic activity in some brain areas, such as the hippocampus and striatum, as well as hippocampal cytoprotective effects may account for this drug's antimanic action. This study provides additional rationale for designing clinical trials investigating its potential as a mood stabilizer agent.
Collapse
Affiliation(s)
- Adriano José Maia Chaves-Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Michele Verde-Ramo Soares
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Paloma Marinho Jucá
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Tatiana de Queiroz Oliveira
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Dino Cesar da Silva Clemente
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Carlos Eduardo da Silva Monteiro
- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Francisca Géssica Oliveira Silva
- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Pedro Everson Alexandre de Aquino
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq), São Paulo, Brazil.
| |
Collapse
|
6
|
Mayer FP, Stewart A, Varman DR, Moritz AE, Foster JD, Owens AW, Areal LB, Gowrishankar R, Velez M, Wickham K, Phelps H, Katamish R, Rabil M, Jayanthi LD, Vaughan RA, Daws LC, Blakely RD, Ramamoorthy S. Kappa Opioid Receptor Antagonism Restores Phosphorylation, Trafficking and Behavior induced by a Disease Associated Dopamine Transporter Variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.03.539310. [PMID: 37205452 PMCID: PMC10187322 DOI: 10.1101/2023.05.03.539310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Aberrant dopamine (DA) signaling is implicated in schizophrenia, bipolar disorder (BPD), autism spectrum disorder (ASD), substance use disorder, and attention-deficit/hyperactivity disorder (ADHD). Treatment of these disorders remains inadequate, as exemplified by the therapeutic use of d-amphetamine and methylphenidate for the treatment of ADHD, agents with high abuse liability. In search for an improved and non-addictive therapeutic approach for the treatment of DA-linked disorders, we utilized a preclinical mouse model expressing the human DA transporter (DAT) coding variant DAT Val559, previously identified in individuals with ADHD, ASD, or BPD. DAT Val559, like several other disease-associated variants of DAT, exhibits anomalous DA efflux (ADE) that can be blocked by d-amphetamine and methylphenidate. Kappa opioid receptors (KORs) are expressed by DA neurons and modulate DA release and clearance, suggesting that targeting KORs might also provide an alternative approach to normalizing DA-signaling disrupted by perturbed DAT function. Here we demonstrate that KOR stimulation leads to enhanced surface trafficking and phosphorylation of Thr53 in wildtype DAT, effects achieved constitutively by the Val559 mutant. Moreover, these effects can be rescued by KOR antagonism of DAT Val559 in ex vivo preparations. Importantly, KOR antagonism also corrected in vivo DA release as well as sex-dependent behavioral abnormalities observed in DAT Val559 mice. Given their low abuse liability, our studies with a construct valid model of human DA associated disorders reinforce considerations of KOR antagonism as a pharmacological strategy to treat DA associated brain disorders.
Collapse
Affiliation(s)
- Felix P. Mayer
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Amy E. Moritz
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Anthony W. Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Lorena B. Areal
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Raajaram Gowrishankar
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Michelle Velez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Kyria Wickham
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Hannah Phelps
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Rania Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Maximilian Rabil
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Lankupalle D. Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Roxanne A. Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
7
|
Canzian J, Borba JV, Ames J, Silva RM, Resmim CM, Pretzel CW, Duarte MCF, Storck TR, Mohammed KA, Adedara IA, Loro VL, Gerlai R, Rosemberg DB. The influence of acute dopamine transporter inhibition on manic-, depressive-like phenotypes, and brain oxidative status in adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110961. [PMID: 38325745 DOI: 10.1016/j.pnpbp.2024.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Functional changes in dopamine transporter (DAT) are related to various psychiatric conditions, including bipolar disorder (BD) symptoms. In experimental research, the inhibition of DAT induces behavioral alterations that recapitulate symptoms found in BD patients, including mania and depressive mood. Thus, developing novel animal models that mimic BD-related conditions by pharmacologically modulating the dopaminergic signaling is relevant. The zebrafish (Danio rerio) has been considered a suitable vertebrate system for modeling BD-like responses, due to the well-characterized behavioral responses and evolutionarily conservation of the dopaminergic system of this species. Here, we investigate whether GBR 12909, a selective inhibitor of DAT, causes neurobehavioral alterations in zebrafish similar to those observed in BD patients. Behaviors were recorded after a single intraperitoneal (i.p.) administration of GBR 12909 at different doses (3.75, 7.5, 15 and 30 mg/kg). To observe temporal effects on behavior, swim path parameters were measured immediately after the administration period during 30 min. Locomotion, anxiety-like behavior, social preference, aggression, despair-like behavior, and oxidative stress-related biomarkers in the brain were measured 30 min post administration. GBR 12909 induced prominent effects on locomotor activity and vertical exploration during the 30-min period. Hyperactivity was observed in GBR 30 group after 25 min, while all doses markedly reduced vertical drifts. GBR 12909 elicited hyperlocomotion, anxiety-like behavior, decreased social preference, aggression, and induced depressive-like behavior in a behavioral despair task. Depending on the dose, GBR 12909 also decreased SOD activity and TBARS levels, as well as increased GR activity and NPSH content. Collectively, our novel findings show that a single GBR 12909 administration evokes neurobehavioral changes that recapitulate manic- and depressive-like states observed in rodents, fostering the use of zebrafish models to explore BD-like responses in translational neuroscience research.
Collapse
Affiliation(s)
- Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil.
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Jaíne Ames
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Laboratory of Aquatic Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rossano M Silva
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Camilla W Pretzel
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Maria Cecília F Duarte
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Tamiris R Storck
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Khadija A Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Vania L Loro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Laboratory of Aquatic Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada; Department of Cell and System Biology, University of Toronto, Toronto, ON, Canada
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
8
|
Seymari A, Naseh A, Rezaei S, Salehi Z, Kousha M. The Relationship between Gene SLC6A3 Variable Number of Tandem Repeat (VNTR) and Attention-Deficit/Hyperactivity Disorder. IRANIAN JOURNAL OF PSYCHIATRY 2024; 19:99-106. [PMID: 38420272 PMCID: PMC10896761 DOI: 10.18502/ijps.v19i1.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/14/2023] [Accepted: 06/21/2023] [Indexed: 03/02/2024]
Abstract
Objective : This research investigates the alleles of Variable Number of Tandem Repeats (VNTR) intron 8 of the gene SLC6A3 with attention-deficit / hyperactivity disorder (ADHD) in children and adolescents. Method : The study's target population consisted of children and adolescents referred to the specialized clinic, as well as students attending school in Rasht city during 2021-2022. A sample of 95 children between the ages of 6 and 10 with ADHD was selected as the ADHD group, and 95 healthy children were selected as the control group using purposive sampling. The subjects completed the Child Symptom Inventory-4 (CSI-4) checklist after a clinical interview, and demographic information was collected. Genetic sampling was carried out through hair follicles. The sequence of interest was proliferated using the Polymerase Chain Reaction technique )PCR(; afterward, the samples were used for genotype identification on polyacrylamide gel electrophoresis. Results: The chi-square test results indicated that the 5R / 5R genotype (P = 0.026, χ2 = 7.26) and the 5R allele (P = 0.002, χ2 = 9.35) had a higher frequency compared to the control group. Additionally, the odds ratio test indicated that, compared to other genotypes and alleles, the 5R / 5R genotype (OR = 2.75, 95% CI = 1.29-5.82, P = 0.01) and the 5R allele (OR = 2.02, 95% CI = 1.28-3.19, P = 0.002) increase the odds of developing ADHD by 2.7 and 2 times higher, respectively. Conclusion: The present study successfully showed the association between intron 8 gene polymorphism, which is responsible for encoding the dopamine transporter as well as ADHD in children and adolescents in Iran.
Collapse
Affiliation(s)
- Abbas Seymari
- Department of Psychology, Faculty of Humanities, Guilan University, Rasht, Iran
| | - Ashkan Naseh
- Department of Psychology, Faculty of Humanities, Guilan University, Rasht, Iran
| | - Sajjad Rezaei
- Department of Psychology, Faculty of Humanities, Guilan University, Rasht, Iran
| | - Zivar Salehi
- Department of Biology, Faculty of Science, Guilan University, Rasht, Iran
| | - Maryam Kousha
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
9
|
Rocchetti J, Fasano C, Dal-Bo G, Guma E, El Mestikawy S, Wong TP, Fakhfouri G, Giros B. Persistent extrasynaptic hyperdopaminergia in the mouse hippocampus induces plasticity and recognition memory deficits reversed by the atypical antipsychotic sulpiride. PLoS One 2023; 18:e0289770. [PMID: 37624765 PMCID: PMC10456148 DOI: 10.1371/journal.pone.0289770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Evidence suggests that subcortical hyperdopaminergia alters cognitive function in schizophrenia and antipsychotic drugs (APD) fail at rescuing cognitive deficits in patients. In a previous study, we showed that blocking D2 dopamine receptors (D2R), a core action of APD, led to profound reshaping of mesohippocampal fibers, deficits in synaptic transmission and impairments in learning and memory in the mouse hippocampus (HP). However, it is currently unknown how excessive dopamine affects HP-related cognitive functions, and how APD would impact HP functions in such a state. After verifying the presence of DAT-positive neuronal projections in the ventral (temporal), but not in the dorsal (septal), part of the HP, GBR12935, a blocker of dopamine transporter (DAT), was infused in the CA1 of adult C57Bl/6 mice to produce local hyperdopaminergia. Chronic GBR12935 infusion in temporal CA1 induced a mild learning impairment in the Morris Water Maze and abolished long-term recognition memory in novel-object (NORT) and object-place recognition tasks (OPRT). Deficits were accompanied by a significant decrease in DAT+ mesohippocampal fibers. Intrahippocampal or systemic treatment with sulpiride during GBR infusions improved the NORT deficit but not that of OPRT. In vitro application of GBR on hippocampal slices abolished long-term depression (LTD) of fEPSP in temporal CA1. LTD was rescued by co-application with sulpiride. In conclusion, chronic DAT blockade in temporal CA1 profoundly altered mesohippocampal modulation of hippocampal functions. Contrary to previous observations in normodopaminergic mice, antagonising D2Rs was beneficial for cognitive functions in the context of hippocampal hyperdopaminergia.
Collapse
Affiliation(s)
- Jill Rocchetti
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Caroline Fasano
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Gregory Dal-Bo
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Elisa Guma
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Salah El Mestikawy
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
- Sorbonne Université, INSERM, CNRS, NPS – IBPS, Paris, France
| | - Tak-Pan Wong
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Gohar Fakhfouri
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
- Université Paris-Cité, INCC UMR 8002, CNRS, Paris, France
| |
Collapse
|
10
|
Boroń A, Śmiarowska M, Grzywacz A, Chmielowiec K, Chmielowiec J, Masiak J, Pawłowski T, Larysz D, Ciechanowicz A. Association of Polymorphism within the Putative miRNA Target Site in the 3'UTR Region of the DRD2 Gene with Neuroticism in Patients with Substance Use Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9955. [PMID: 36011589 PMCID: PMC9408599 DOI: 10.3390/ijerph19169955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The study aims at looking into associations between the polymorphism rs6276 that occurs in the putative miRNA target site in the 3'UTR region of the DRD2 gene in patients with substance use disorder (SUD) comorbid with a maniacal syndrome (SUD MANIA). In our study, we did not state any essential difference in DRD2 rs6276 genotype frequencies in the studied samples of SUD MANIA, SUD, and control subjects. A significant result was found for the SUD MANIA group vs. SUD vs. controls on the Neuroticism Scale of NEO FFI test, and DRD2 rs6276 (p = 0.0320) accounted for 1.7% of the variance. The G/G homozygous variants were linked with lower results on the neuroticism scale in the SUD MANIA group because G/G alleles may serve a protective role in the expression of neuroticism in patients with SUD MANIA. So far, there have been no data in the literature on the relationship between the miRSNP rs6276 region in the DRD2 gene and neuroticism (personal traits) in patients with a diagnosis of substance use disorder comorbid with the affective, maniacal type disturbances related to SUD. This is the first report on this topic.
Collapse
Affiliation(s)
- Agnieszka Boroń
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Aleja Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Małgorzata Śmiarowska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Aleja Powstańcόw Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Aleja Powstańcόw Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland
| | - Jolanta Masiak
- Second Department of Psychiatry and Psychiatric Rehabilitation, Medical University of Lublin, Głuska 1 St., 20-059 Lublin, Poland
| | - Tomasz Pawłowski
- Division of Psychotherapy and Psychosomatic Medicine, Wroclaw Medical University, Wyb. L. Pasteura 10 St., 50-367 Wroclaw, Poland
| | - Dariusz Larysz
- 109 Military Hospital with Cutpatient Cinic in Szczecin, Piotra Skargi 9-11 St., 70-965 Szczecin, Poland
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Aleja Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| |
Collapse
|
11
|
Quintero J, Gutiérrez-Casares JR, Álamo C. Molecular Characterisation of the Mechanism of Action of Stimulant Drugs Lisdexamfetamine and Methylphenidate on ADHD Neurobiology: A Review. Neurol Ther 2022; 11:1489-1517. [PMID: 35951288 DOI: 10.1007/s40120-022-00392-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset neurodevelopmental disorder characterised by persistent inattention, hyperactivity and impulsivity. Moreover, ADHD is commonly associated with other comorbid diseases (depression, anxiety, bipolar disorder, etc.). The ADHD symptomatology interferes with subject function and development. The treatment of ADHD requires a multidisciplinary approach based on a combination of non-pharmacological and pharmacological treatments with the aim of ameliorating the symptomatology; among first-line pharmacological treatments are stimulants [such as methylphenidate (MPH) and lisdexamfetamine dimesylate (LDX)]. In this review we explored recent ADHD- and stimulants-related literature, with the aim of compiling available descriptions of molecular pathways altered in ADHD, and molecular mechanisms of current first-line stimulants MPH and LDX. While conducting the narrative review, we applied structured search strategies covering PubMed/MEDLINE database and performed handsearching of reference lists on the results of those searches. The aetiology and pathophysiology of ADHD are incompletely understood; both genetic and environmental factors have been associated with the disorder and its grade of burden, and also the relationship between the molecular mechanisms of pharmacological treatments and their clinical implications. The lack of comprehensive understanding of the underlying molecular pathology makes both the diagnosis and treatment difficult. Few published studies evaluating molecular data on the mechanism of action (MoA) of MPH and LDX on ADHD are available and most of them are based on animal models. Further studies are necessary to improve the knowledge of ADHD pathophysiology and how the MoAs of MPH and LDX differentially modulate ADHD pathophysiology and control ADHD symptomatology.
Collapse
Affiliation(s)
- Javier Quintero
- Servicio de Psiquiatría y Salud Mental, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain
| | - José R Gutiérrez-Casares
- Unidad Ambulatoria de Psiquiatría y Salud Mental de la Infancia, Niñez y Adolescencia, Hospital Perpetuo Socorro, Badajoz, Spain.
| | - Cecilio Álamo
- Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
12
|
Zhu K, Liu Q, Xie X, Jiang Q, Feng Y, Xiao P, Wu X, Zhu B, Song R. Interaction between manganese and SLC6A3 genetic polymorphisms in relation to dyslexia. Neurotoxicology 2022; 92:102-109. [DOI: 10.1016/j.neuro.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 12/09/2022]
|
13
|
Assessing positive and negative valence systems to refine animal models of bipolar disorders: the example of GBR 12909-induced manic phenotype. Sci Rep 2022; 12:7364. [PMID: 35513683 PMCID: PMC9072677 DOI: 10.1038/s41598-022-10965-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
Bipolar disorders are defined by recurrences of depressive and manic episodes. The pathophysiology is still unknown, and translating clinical symptoms into behaviors explorable in animal models is challenging. Animal models of bipolar disorder do not exist because cyclicity of the disease is impossible to mimic, and it is therefore necessary to study mania and depression models separately. Beyond mood, emotional biases differentiate bipolar states in humans. Mania is associated with positive biases, e.g. emotional stimuli become more rewarding and less aversive, and the opposite for depression. We propose to assess behavioral hedonic responses to innately appetitive and aversive olfactory and gustatory cues in mice as proxies for the assigned emotional valence. A mania model is therefore supposed to exhibit positive hedonic bias. Using the GBR 12909 mania model, we observed the classical hyperactivity phenotype, along with low depressive-like but high anxiety-like behaviors. Unexpectedly, GBR 12909-treated mice exhibited strong negative hedonic biases. Consequently, the GBR 12909 model of mania might not be appropriate for studying emotional disturbances associated with mania states. We propose olfactory and gustatory preference tests as crucial assessment for positive and negative valence biases, necessary for precisely characterizing animal models of bipolar disorders.
Collapse
|
14
|
Koller EJ, Ibanez KR, Vo Q, McFarland KN, De La Cruz EG, Zobel L, Williams T, Xu G, Ryu D, Patel P, Giasson BI, Prokop S, Chakrabarty P. Combinatorial model of amyloid β and tau reveals synergy between amyloid deposits and tangle formation. Neuropathol Appl Neurobiol 2022; 48:e12779. [PMID: 34825397 PMCID: PMC8810717 DOI: 10.1111/nan.12779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/13/2021] [Indexed: 02/03/2023]
Abstract
AIMS To illuminate the pathological synergy between Aβ and tau leading to emergence of neurofibrillary tangles (NFT) in Alzheimer's disease (AD), here, we have performed a comparative neuropathological study utilising three distinctive variants of human tau (WT tau, P301L mutant tau and S320F mutant tau). Previously, in non-transgenic mice, we showed that WT tau or P301L tau does not form NFT while S320F tau can spontaneously aggregate into NFT, allowing us to test the selective vulnerability of these different tau conformations to the presence of Aβ plaques. METHODS We injected recombinant AAV-tau constructs into neonatal APP transgenic TgCRND8 mice or into 3-month-old TgCRND8 mice; both cohorts were aged 3 months post injection. This allowed us to test how different tau variants synergise with soluble forms of Aβ (pre-deposit cohort) or with frank Aβ deposits (post-deposit cohort). RESULTS Expression of WT tau did not produce NFT or altered Aβ in either cohort. In the pre-deposit cohort, S320F tau induced Aβ plaque deposition, neuroinflammation and synaptic abnormalities, suggesting that early tau tangles affect the amyloid cascade. In the post-deposit cohort, contemporaneous expression of S320F tau did not exacerbate amyloid pathology, showing a dichotomy in Aβ-tau synergy based on the nature of Aβ. P301L tau produced NFT-type inclusions in the post-deposit cohort, but not in the pre-deposit cohort, indicating pathological synergy with pre-existing Aβ deposits. CONCLUSIONS Our data show that different tau mutations representing specific folding variants of tau synergise with Aβ to different extents, depending on the presence of cerebral deposits.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Kristen R Ibanez
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Quan Vo
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Karen N McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Elsa Gonzalez De La Cruz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Lillian Zobel
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Tristan Williams
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Guilian Xu
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Daniel Ryu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Preya Patel
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
15
|
Reith MEA, Kortagere S, Wiers CE, Sun H, Kurian MA, Galli A, Volkow ND, Lin Z. The dopamine transporter gene SLC6A3: multidisease risks. Mol Psychiatry 2022; 27:1031-1046. [PMID: 34650206 PMCID: PMC9008071 DOI: 10.1038/s41380-021-01341-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 02/02/2023]
Abstract
The human dopamine transporter gene SLC6A3 has been consistently implicated in several neuropsychiatric diseases but the disease mechanism remains elusive. In this risk synthesis, we have concluded that SLC6A3 represents an increasingly recognized risk with a growing number of familial mutants associated with neuropsychiatric and neurological disorders. At least five loci were related to common and severe diseases including alcohol use disorder (high activity variant), attention-deficit/hyperactivity disorder (low activity variant), autism (familial proteins with mutated networking) and movement disorders (both regulatory variants and familial mutations). Association signals depended on genetic markers used as well as ethnicity examined. Strong haplotype selection and gene-wide epistases support multimarker assessment of functional variations and phenotype associations. Inclusion of its promoter region's functional markers such as DNPi (rs67175440) and 5'VNTR (rs70957367) may help delineate condensate-based risk action, testing a locus-pathway-phenotype hypothesis for one gene-multidisease etiology.
Collapse
Affiliation(s)
- Maarten E A Reith
- Department of Psychiatry, New York University School of Medicine, New York City, NY, 10016, USA
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20817, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hui Sun
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20817, USA
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Diseases in Children, UCL Great Ormond Street Institute of Child Health, and Department of Neurology, Great Ormond Street Hospital, London, WC1N 1EH, UK
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20817, USA
- National Institute on Drug Abuse, Bethesda, MD, 20817, USA
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, and Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
16
|
Saha S, Chatterjee M, Shom S, Sinha S, Mukhopadhyay K. Functional SLC6A3 polymorphisms differentially affect autism spectrum disorder severity: a study on Indian subjects. Metab Brain Dis 2022; 37:397-410. [PMID: 34845656 DOI: 10.1007/s11011-021-00876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
Imbalance in dopamine (DA) signaling is proposed to play a potential role in the etiology of Autism spectrum disorder (ASD) since, as a neuromodulator, DA regulates executive function, motor activity, social peering, attention as well as perception and subjects with ASD often exhibit deficit in these traits. Level of DA in the synaptic cleft is maintained by dopamine transporter (DAT) and hence, to identify the role of DAT in ASD, we have analyzed four functional genetic variants, rs28363170, rs3836790, rs2652511, rs27072, in nuclear families with ASD probands. Subjects were diagnosed based on Diagnostic and Statistical Manual for Mental Disorders and trait severity was assessed by Childhood Autism Rating Scale 2-Standard test. Informed written consent was obtained from the parents/care givers before recruitment followed by collection of peripheral blood for genomic DNA isolation. Target sites were investigated by PCR-based methods and data obtained was analyzed by population- as well as family-based statistical methods. Case-control analysis revealed significant higher frequencies of 9 repeat (9R) and 5 repeat (5R) alleles of rs28363170 and rs3836790 respectively in the ASD probands. Family-based analysis showed statistically significant higher paternal transmission of rs28363170 9R and rs2652511 T alleles. In the presence of rs28363170 9R, rs27072 C, rs3836790 6R6R, and rs2652511 CC variants, trait scores were higher. Studied variants showed independent as well as interactive effects, which varied based on gender of the probands. We infer that altered DA availability mediated through DAT may affect autistic traits warranting further in depth investigation in the field.
Collapse
Affiliation(s)
- Sharmistha Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Mahasweta Chatterjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Sayanti Shom
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India.
| |
Collapse
|
17
|
Xiao X, Zhang CY, Zhang Z, Hu Z, Li M, Li T. Revisiting tandem repeats in psychiatric disorders from perspectives of genetics, physiology, and brain evolution. Mol Psychiatry 2022; 27:466-475. [PMID: 34650204 DOI: 10.1038/s41380-021-01329-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 01/28/2023]
Abstract
Genome-wide association studies (GWASs) have revealed substantial genetic components comprised of single nucleotide polymorphisms (SNPs) in the heritable risk of psychiatric disorders. However, genetic risk factors not covered by GWAS also play pivotal roles in these illnesses. Tandem repeats, which are likely functional but frequently overlooked by GWAS, may account for an important proportion in the "missing heritability" of psychiatric disorders. Despite difficulties in characterizing and quantifying tandem repeats in the genome, studies have been carried out in an attempt to describe impact of tandem repeats on gene regulation and human phenotypes. In this review, we have introduced recent research progress regarding the genomic distribution and regulatory mechanisms of tandem repeats. We have also summarized the current knowledge of the genetic architecture and biological underpinnings of psychiatric disorders brought by studies of tandem repeats. These findings suggest that tandem repeats, in candidate psychiatric risk genes or in different levels of linkage disequilibrium (LD) with psychiatric GWAS SNPs and haplotypes, may modulate biological phenotypes related to psychiatric disorders (e.g., cognitive function and brain physiology) through regulating alternative splicing, promoter activity, enhancer activity and so on. In addition, many tandem repeats undergo tight natural selection in the human lineage, and likely exert crucial roles in human brain evolution. Taken together, the putative roles of tandem repeats in the pathogenesis of psychiatric disorders is strongly implicated, and using examples from previous literatures, we wish to call for further attention to tandem repeats in the post-GWAS era of psychiatric disorders.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhonghua Hu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
18
|
Guglielmo R, Miskowiak KW, Hasler G. Evaluating endophenotypes for bipolar disorder. Int J Bipolar Disord 2021; 9:17. [PMID: 34046710 PMCID: PMC8160068 DOI: 10.1186/s40345-021-00220-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phenotypic heterogeneity is a major impediment to the elucidation of the neurobiology and genetics of bipolar disorder. Endophenotype could help in reducing heterogeneity by defining biological traits that are more direct expressions of gene effects. The aim of this review is to examine the recent literature on clinical, epidemiological, neurobiological, and genetic findings and to select and evaluate candidate endophenotypes for bipolar disorder. Evaluating putative endophenotype could be helpful in better understanding the neurobiology of bipolar disorder by improving the definition of bipolar-related phenotypes in genetic studies. In this manner, research on endophenotypes could be useful to improve psychopathological diagnostics in the long-run by dissecting psychiatric macro phenotypes into biologically valid components. MAIN BODY The associations among the psychopathological and biological endophenotypes are discussed with respect to specificity, temporal stability, heritability, familiarity, and clinical and biological plausibility. Numerous findings regarding brain function, brain structure, neuropsychology and altered neurochemical pathways in patients with bipolar disorder and their relatives deserve further investigation. Overall, major findings suggest a developmental origin of this disorder as all the candidate endophenotypes that we have been able to select are present both in the early stages of the disorder as well as in subjects at risk. CONCLUSIONS Among the stronger candidate endophenotypes, we suggest circadian rhythm instability, dysmodulation of emotion and reward, altered neuroimmune state, attention and executive dysfunctions, anterior cingulate cortex thickness and early white matter abnormalities. In particular, early white matter abnormalities could be the result of a vulnerable brain on which new stressors are added in young adulthood which favours the onset of the disorder. Possible pathways that lead to a vulnerable brain are discussed starting from the data about molecular and imaging endophenotypes of bipolar disorder.
Collapse
Affiliation(s)
- Riccardo Guglielmo
- Psychiatry Research Unit, Fribourg Network for Mental Health (RFSM), University of Fribourg, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.,Department of Neuroscience, Institute of Psychiatry, Catholic University Medical School, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gregor Hasler
- Psychiatry Research Unit, Fribourg Network for Mental Health (RFSM), University of Fribourg, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.
| |
Collapse
|
19
|
Cope ZA, Kenton JA, Minassian A, Martin MV, Perry W, Bundgaard C, Arnt J, van Enkhuizen J, Geyer MA, Young JW. Chronic antipsychotic treatment exerts limited effects on the mania-like behavior of dopamine transporter knockdown mice. Behav Brain Res 2021; 405:113167. [PMID: 33577882 PMCID: PMC10729608 DOI: 10.1016/j.bbr.2021.113167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Bipolar disorder is a life-threatening disorder linked to dopamine transporter (DAT) polymorphisms, with reduced DAT levels seen in positron emission tomography and postmortem brains. AIMS The purpose of this study was to examine the effects of approved antipsychotics on DAT dysfunction-mediated mania behavior in mice. METHODS DAT knockdown mice received either D2-family receptor antagonist risperidone or asenapine and mania-related behaviors were assessed in the clinically-relevant behavioral pattern monitor to assess spontaneous exploration. RESULTS Chronic risperidone did not reverse mania-like behavior in DAT knockdown mice. Chronic asenapine reduced mania behavior but this effect was more pronounced in wild-type littermates than in DAT knockdown mice. CONCLUSION Taken together, these findings suggest that while acute antipsychotic treatment may be beneficial in management of bipolar mania, more targeted therapeutics may be necessary for long-term treatment. Specific investigation into DAT-targeting drugs could improve future treatment of bipolar mania.
Collapse
Affiliation(s)
- Zackary A Cope
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States
| | - Johnny A Kenton
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States; Center of Excellence for Stress and Mental Health and Research Service, VA San Diego Healthcare System, United States
| | - Maureen V Martin
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States
| | - William Perry
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States
| | - Christoffer Bundgaard
- H. Lundbeck A/S. Neuroscience Research, Ottiliavej 9, DK-2500, Copenhagen, Valby, Denmark
| | - Jørn Arnt
- Sunred Pharma Consulting, Solrød Strand, Denmark
| | - Jordy van Enkhuizen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States.
| |
Collapse
|
20
|
Ruchkin V, Koposov R, Oreland L, af.Klinteberg B, Grigorenko EL. Dopamine-related receptors, substance dependence, behavioral problems and personality among juvenile delinquents. PERSONALITY AND INDIVIDUAL DIFFERENCES 2021. [DOI: 10.1016/j.paid.2020.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
DAT1 and Its Psychological Correlates in Children with Avoidant/Restrictive Food Intake Disorder: A Cross-Sectional Pilot Study. Behav Sci (Basel) 2021; 11:bs11010009. [PMID: 33466618 PMCID: PMC7828669 DOI: 10.3390/bs11010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 12/02/2022] Open
Abstract
International research has underlined the role played by children’s and maternal psychopathological symptoms on the onset of avoidant/restrictive food intake disorder (ARFID) in early childhood. No study has considered the possible interplay between children’s dopamine transporter (DAT1) genotype and methylation, dysregulation problems and maternal psychopathological risk. This study aimed to investigate the complex relationship between these variables, considering the possible mediation role played by children’s DAT1 methylation on the relationship between mothers’ psychopathological risk and children’s dysregulation problems, moderated by children’s DAT1 genotype. Our sample consisted of 94 early children and their mothers, divided into four subgroups, based on children’s ARFID subtypes (irritable/impulsive (I/I), sensory food aversions (SFA), post-traumatic feeding disorders subtypes (PTFD), and a non-clinical group (NC)). We addressed children’s dysregulation problems and maternal psychopathological risk, and collected children’s DNA through buccal swabs. Results showed that children’s 9/x genotype was associated with PTFD and NC groups, whereas the 10/10 genotype was associated with the SFA group, with large effect size. There were significant large differences in the study groups on children’s DAT1 total methylation, children’s dysregulation problems, and maternal psychopathological risk. Children’s DAT1 methylation did not mediate the relationship between mother’s psychopathological risk and children’s dysregulation problems, but there was a significant large direct effect. Children’s 9/x genotype moderated the relationship between maternal psychopathological risk and children’s DAT1 methylation but, respectively, with a large and small effect. Our pilot study suggested that the relationship between children’s DAT1 genotype and methylation, dysregulation problems, and maternal psychopathological risk has a crucial contribution to ARFID.
Collapse
|
22
|
Kwiatkowski MA, Roberts BZ, van Enkhuizen J, Ji B, Zhou X, Young JW. Chronic nicotine, but not suramin or resveratrol, partially remediates the mania-like profile of dopamine transporter knockdown mice. Eur Neuropsychopharmacol 2021; 42:75-86. [PMID: 33191077 PMCID: PMC8853461 DOI: 10.1016/j.euroneuro.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 10/19/2020] [Accepted: 11/02/2020] [Indexed: 01/17/2023]
Abstract
Bipolar disorder (BD) is a severe mental illness affecting 2% of the global population. Current pharmacotherapies provide incomplete symptom remediation, highlighting the need for novel therapeutics. BD is characterized by fluctuations between mania and depression, likely driven by shifts between hyperdopaminergia and hypercholinergia, respectively. Hyperdopaminergia may result from insufficient activity of the dopamine transporter (DAT), the primary mediator of synaptic dopamine clearance. The DAT knockdown (DAT KD) mouse recreates this mechanism and exhibits a highly reproducible hyperexploratory profile in the cross-species translatable Behavioral Pattern Monitor (BPM) that is: (a) consistent with that observed in BD mania patients; and (b) partially normalized by chronic lithium and valproate treatment. The DAT KD/BPM model of mania therefore exhibits high levels of face-, construct-, and predictive-validity for the pre-clinical assessment of putative anti-mania drugs. Three different drug regimens - chronic nicotine (nicotinic acetylcholine receptor (nAChR) agonist; 40 mg/kg/d, 26 d), subchronic suramin (anti-purinergic; 20 mg/kg, 1 × /wk, 4 wks), and subchronic resveratrol (striatal DAT upregulator; 20 mg/kg/d, 4 d) - were administered to separate cohorts of male and female DAT KD- and wildtype (WT) littermate mice, and exploration was assessed in the BPM. Throughout, DAT KD mice exhibited robust hyperexploratory profiles relative to WTs. Nicotine partially normalized this behavior. Resveratrol modestly upregulated DAT expression but did not normalize DAT KD behavior. These results support the mania-like profile of DAT KD mice, which may be partially remediated by nAChR agonists via restoration of disrupted catecholaminergic/cholinergic equilibrium. Delineating the precise mechanism of action of nicotine could identify more selective therapeutic targets.
Collapse
Affiliation(s)
- Molly A Kwiatkowski
- Department of Psychiatry, UC San Diego School of Medicine, University of California, San Diego, CA 92093-0804, United States
| | - Benjamin Z Roberts
- Department of Psychiatry, UC San Diego School of Medicine, University of California, San Diego, CA 92093-0804, United States
| | - Jordy van Enkhuizen
- Department of Psychiatry, UC San Diego School of Medicine, University of California, San Diego, CA 92093-0804, United States
| | - Baohu Ji
- Department of Psychiatry, UC San Diego School of Medicine, University of California, San Diego, CA 92093-0804, United States
| | - Xianjin Zhou
- Department of Psychiatry, UC San Diego School of Medicine, University of California, San Diego, CA 92093-0804, United States
| | - Jared W Young
- Department of Psychiatry, UC San Diego School of Medicine, University of California, San Diego, CA 92093-0804, United States; Research Service, VA San Diego Healthcare System, United States.
| |
Collapse
|
23
|
Ruzilawati AB, Islam MA, Muhamed SKS, Ahmad I. Smoking Genes: A Case-Control Study of Dopamine Transporter Gene ( SLC6A3) and Dopamine Receptor Genes ( DRD1, DRD2 and DRD3) Polymorphisms and Smoking Behaviour in a Malay Male Cohort. Biomolecules 2020; 10:E1633. [PMID: 33287325 PMCID: PMC7761729 DOI: 10.3390/biom10121633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Dopamine receptor and dopamine transporter genes polymorphisms have been associated with cigarette smoking behaviour in different populations. The aim of this case-control study was to evaluate polymorphisms in the dopamine transporter gene (SLC6A3 (rs27072)) and the dopamine receptor genes (DRD1 (rs686), DRD2 (rs1800497) and DRD3 (rs7653787)) and their contribution to smoking behaviour in a Malay male population. We identified 476 participants over the age of 18 years comprising 238 smokers and 238 non-smokers. Information such as age, height, weight, body mass index, systolic and diastolic blood pressures, marital status, and smoking status of close family members were taken. For the genetic study, we genotyped four genes (SLC6A3 (rs27072), DRD1 (rs686), DRD2 (rs1800497) and DRD3 (rs7653787)) using the polymerase chain reaction-restriction fragment length polymorphism method and further confirmed our findings with sequencing. Dopamine receptor genes (DRD1, DRD2 and DRD3) were found to be associated with smoking behaviour in a Malay male population. The dopamine transporter gene (SLC6A3) did not show this association. Significant differences were observed between smokers' and non-smokers' age, systolic blood pressure, marital status and family members who smoke. Smoking behaviour is significantly influenced by genetic variations of DRD1, DRD2 and DRD3 in a Malay male population.
Collapse
Affiliation(s)
- Abu Bakar Ruzilawati
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.B.R.); (S.K.S.M.)
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Siti Khariem Sophia Muhamed
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.B.R.); (S.K.S.M.)
| | - Imran Ahmad
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
24
|
Asth L, Tiago PRF, Costa LRF, Holanda VAD, Pacifico S, Zaveri NT, Calo' G, Ruzza C, Gavioli EC. Effects of non-peptide nociceptin/orphanin FQ receptor ligands on methylphenidate-induced hyperactivity in mice: Implications for bipolar disorders. Neuropeptides 2020; 82:102059. [PMID: 32600667 DOI: 10.1016/j.npep.2020.102059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 01/11/2023]
Abstract
Bipolar disorder is a psychiatric pathology characterized by biphasic mood episodes of mania or hypomania and depression. The pharmacotherapy of bipolar disorder has significant adverse effects impairing treatment adherence and patient quality of life. The N/OFQ-NOP receptor system has been widely implicated with mood disorders. Clinical and preclinical findings suggest antidepressants actions for NOP antagonists. More recently, the administration of NOP agonists has shown to promote depressant states. The present study aimed to investigate the effects of non-peptide NOP ligands in methylphenidate-induced manic-like behavior in mice. The NOP agonist Ro 65-6570 (0.01-1 mg/kg, ip), at the higher dose, did not affect spontaneous locomotion per se, but prevented the methylphenidate (10 mg/kg, sc)-induced hyperlocomotion. The NOP partial agonist AT-090 (0.001-0.03 mg/kg, ip) and the NOP antagonist SB-612111 (1-10 mg/kg, ip) did not significantly affect the psychostimulant-induced hyperactivity. Experiments performed with mice lacking the NOP receptor (NOP(-/-)) demonstrated that the treatment with methylphenidate induced similar hyperlocomotion in NOP(-/-) and NOP(+/+) mice. In conclusion, these findings suggest a potential role for NOP agonists in the prevention of manic states, especially by counteracting the hyperactivity symptom of bipolar patients. However, more studies are necessary in order to evaluate these compounds in other features of bipolar disorder.
Collapse
Affiliation(s)
- Laila Asth
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Pamella R F Tiago
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Layse R F Costa
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Victor A D Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Nurulain T Zaveri
- Astraea Therapeutics, LLC., 320 Logue Avenue, Mountain View, CA 94043, United States
| | - Girolamo Calo'
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Ruzza
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
25
|
Kwiatkowski MA, Cope ZA, Lavadia ML, van de Cappelle CJA, Dulcis D, Young JW. Short-active photoperiod gestation induces psychiatry-relevant behavior in healthy mice but a resiliency to such effects are seen in mice with reduced dopamine transporter expression. Sci Rep 2020; 10:10217. [PMID: 32576854 PMCID: PMC7311429 DOI: 10.1038/s41598-020-66873-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/13/2020] [Indexed: 01/02/2023] Open
Abstract
A higher incidence of multiple psychiatric disorders occurs in people born in late winter/early spring. Reduced light exposure/activity level impacts adult rodent behavior and neural mechanisms, yet few studies have investigated such light exposure on gestating fetuses. A dysfunctional dopamine system is implicated in most psychiatric disorders, and genetic polymorphisms reducing expression of the dopamine transporter (DAT) are associated with some conditions. Furthermore, adult mice with reduced DAT expression (DAT-HT) were hypersensitive to short active (SA; 19:5 L:D) photoperiod exposure versus their wildtype (WT) littermates. Effects of SA photoperiod exposure during gestation in these mice have not been examined. We confirmed adult females exhibit a heightened corticosterone response when in SA photoperiod. We then tested DAT-HT mice and WT littermates in psychiatry-relevant behavioral tests after SA or normal active (NA; 12:12 L:D) photoperiod exposure during gestation and early life. SA-born WT mice exhibited sensorimotor gating deficits (males), increased reward preference, less immobility, open arm avoidance (females), less motivation to obtain a reward, and reversal learning deficits, vs. NA-born WT mice. DAT-HT mice were largely resilient to these effects, however. Future studies will determine the mechanism(s) by which SA photoperiod exposure influences brain development to predispose toward emergence of psychiatry-relevant behaviors.
Collapse
Affiliation(s)
- Molly A Kwiatkowski
- Department of Psychiatry, University of California, San Diego, San Diego, USA
| | - Zackary A Cope
- Department of Medicine, Aging Institute, University of Pittsburgh, Pittsburgh, USA
| | - Maria L Lavadia
- Department of Psychiatry, University of California, San Diego, San Diego, USA
| | - Chuck J A van de Cappelle
- Department of Psychiatry, University of California, San Diego, San Diego, USA.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Davide Dulcis
- Department of Psychiatry, University of California, San Diego, San Diego, USA
| | - Jared W Young
- Department of Psychiatry, University of California, San Diego, San Diego, USA. .,Research Service, VA San Diego Healthcare System, San Diego, USA.
| |
Collapse
|
26
|
Koijam AS, Hijam AC, Singh AS, Jaiswal P, Mukhopadhyay K, Rajamma U, Haobam R. Association of Dopamine Transporter Gene with Heroin Dependence in an Indian Subpopulation from Manipur. J Mol Neurosci 2020; 71:122-136. [PMID: 32557146 DOI: 10.1007/s12031-020-01633-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/11/2020] [Indexed: 01/11/2023]
Abstract
Dopamine transporter (DAT) or solute carrier family 6 member 3 (SLC6A3) is a transmembrane protein regulating dopaminergic neurotransmission. It has been implicated in playing important roles in the dopaminergic reward pathways, and thus, DAT1 is a strong candidate gene for association studies with heroin dependence. A case-control study involving 279 individuals (147 controls and 132 heroin-dependent cases) was conducted. Ten polymorphisms of the DAT1 (SLC6A3) gene were analysed for its association with heroin dependence. Following the Hardy-Weinberg equilibrium (HWE) test, genetic association analyses were performed for the study groups. The post hoc statistical power of the study was 0.655 (65.5%). Single-nucleotide polymorphism (SNP) rs246997 was found to be significantly associated with heroin dependence at allelic, genotypic, and haplotypic levels. A significant difference in the distribution of 11R allele and 10R/11R genotype of rs28363170 between heroin-dependent cases and controls was also observed. Nominal significance at degrees of freedom (df) = 5 was also observed for rs28363170. Five bimarker-based haplotype combinations were also found to be associated with heroin dependence. For the first time, 13R allele (7R/13R genotype) and 14R allele (7R/14R genotype) were identified for rs3836790 in the population. The study also reports that the 11R allele and 10R/11R genotype of rs28363170 is associated with protection against heroin dependence. 7R and 6R alleles were also found to be the common alleles of rs3836790 in the study population. The study provides evidence for the association of polymorphisms of DAT1 (SLC6A3) with heroin dependence.
Collapse
Affiliation(s)
- Arunkumar Singh Koijam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur, 795003, India
| | - Aruna Chanu Hijam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur, 795003, India
| | - Asem Surindro Singh
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Preeti Jaiswal
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Usha Rajamma
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India.,Centre for Development & Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, MG University Campus, Thalappady, Rubber Board PO, Kottayam, Kerala, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur, 795003, India.
| |
Collapse
|
27
|
The effect of SLC6A3 variable number of tandem repeats and methylation levels on individual susceptibility to start tobacco smoking and on the ability of smokers to quit smoking. Pharmacogenet Genomics 2020; 30:117-123. [PMID: 32371614 DOI: 10.1097/fpc.0000000000000403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Nicotine acts through the dopamine pathway in the brain affecting reward processing through cigarette consumption. Thus, both genetic and epigenetic factors related to dopamine metabolism may influence individual's smoking behavior. MATERIALS AND METHODS We studied variations of two variable numbers of tandem repeats (VNTRs), 40 and 30 bp in length, in SLC6A3 gene together with six DNA methylation sites located in a first intron of the gene in relation to several smoking-related phenotypes in a study population consisting of 1230 Whites of Russian origin. RESULTS Both the 5R allele of 30 bp VNTR and the 9R allele of 40 bp VNTR in SLC6A3 were associated with a reduced risk to tobacco smoking [odds ratio (OR) 0.53, 95% confidence interval (CI) 0.37-0.75; OR 0.62, 95% CI 0.43-0.88]. Although the carriers of 9R allele also had high Fagerström test for nicotine dependence scores (OR 1.65, 95% CI 1.04-2.60), they were still more likely to succeed in smoking cessation (OR 0.59, 95% CI 0.40-0.88). Also, current smokers had more than 2.5-fold likelihood to have increased SLC6A3 methylation levels than former smokers (OR 2.72, 95% CI 1.63-4.53). CONCLUSION The SLC6A3 5R of 30 bp and 9R of 40 bp VNTR variants may lead to a reduced risk to start smoking through decreased dopamine availability, and can also affect the success in subsequent smoking cessation attempts. Moreover, the elevated mean methylation values in the first intron of SLC6A3 may be related to nicotine dependence via a more active dopamine transporter.
Collapse
|
28
|
Carbone C, Brancato A, Adinolfi A, Lo Russo SLM, Alleva E, Cannizzaro C, Adriani W. Motor Transitions' Peculiarity of Heterozygous DAT Rats When Offspring of an Unconventional KOxWT Mating. Neuroscience 2020; 433:108-120. [PMID: 32171819 DOI: 10.1016/j.neuroscience.2020.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/23/2022]
Abstract
Causal factors of psychiatric diseases are unclear, due to gene × environment interactions. Evaluation of consequences, after a dopamine-transporter (DAT) gene knock-out (DAT-KO), has enhanced our understanding into the pathological dynamics of several brain disorders, such as Attention-Deficit/Hyperactivity and Bipolar-Affective disorders. Recently, our attention has shifted to DAT hypo-functional (heterozygous, HET) rodents: HET dams display less maternal care and HET females display marked hypo-locomotion if cared by HET dams (Mariano et al., 2019). We assessed phenotypes of male DAT-heterozygous rats as a function of their parents: we compared "maternal" origin (MAT-HET, obtained by breeding KO-male rats with WT-female dams) to "mixed" origin (MIX-HET, obtained by classical breeding, both heterozygous parents) of the allele. MAT-HET subjects had significantly longer rhythms of daily locomotor activity than MIX-HET and WT-control subjects. Furthermore, acute methylphenidate (MPH: 0, 1, 2 mg/kg) revealed elevated threshold for locomotor stimulation in MAT-HETs, with no response to the lower dose. Finally, by Porsolt-Test, MAT-HETs showed enhanced escape-seeking (diving) with more transitions towards behavioral despair (floating). When comparing both MAT- and MIX-HET to WT-control rats, decreased levels of DAT and HDAC4 were evident in the ventral-striatum; moreover, with respect to MIX-HET subjects, MAT-HET ones displayed increased DAT density in dorsal-striatum. MAT-HET rats displayed region-specific changes in DAT expression, compared to "classical" MIX-HET subjects: greater DAT availability may elevate threshold for dopamine action. Further behavioral and epigenetic characterizations of MAT-HETs, together with deeper characterization of maternal roles, could help to explore parent-of-origin mechanisms for such a peculiar phenotype.
Collapse
Affiliation(s)
- Cristiana Carbone
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Brancato
- Dept Sciences of Health Promotion & Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Annalisa Adinolfi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Enrico Alleva
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Cannizzaro
- Dept Sciences of Health Promotion & Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Walter Adriani
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
29
|
Divergence of an association between depressive symptoms and a dopamine polygenic score in Caucasians and Asians. Eur Arch Psychiatry Clin Neurosci 2020; 270:229-235. [PMID: 31289926 DOI: 10.1007/s00406-019-01040-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
A recent study reported a negative association between a putatively functional dopamine (DA) polygenic score, indexing higher levels of DA signaling, and depressive symptoms. We attempted to replicate this association using data from the Duke Neurogenetics Study. Our replication attempt was made in a subsample of 520 non-Hispanic Caucasian volunteers (277 women, mean age 19.78 ± 1.24 years). The DA polygenic score was based on the following five loci: rs27072 (SLC6A3/DAT1), rs4532 (DRD1), rs1800497 (DRD2/ANKK1), rs6280 (DRD3), and rs4680 (COMT). Because the discovery sample in the original study consisted mostly of Asian participants, we also conducted a post hoc analysis in a smaller subsample of Asian volunteers (N = 316, 179 women, mean age 19.61 ± 1.32 years). In the primary sample of non-Hispanic Caucasians, a linear regression analysis controlling for sex, age, socioeconomic status (SES), body mass index, genetic ancestry, and both early and recent life stress, revealed that higher DA polygenic scores were associated with higher self-reported symptoms of depression. This was in contrast to the original association of higher DA polygenic scores and lower depressive symptoms. However, the direction of the association in our Asian subsample was consistent with this original finding. Our results also suggested that compared to the Asian subsample, the non-Hispanic Caucasian subsample was characterized by higher SES, lower early and recent life stress, and lower depressive symptoms. These differences may have contributed to the observed divergence in associations. Collectively, the current findings add to evidence that specific genetic associations may differ between populations and further encourage explicit modeling of race/ethnicity in examining the polygenic nature of depressive symptoms and depression.
Collapse
|
30
|
Chang PK, Chu J, Tsai YT, Lai YH, Chen JC. Dopamine D 3 receptor and GSK3β signaling mediate deficits in novel object recognition memory within dopamine transporter knockdown mice. J Biomed Sci 2020; 27:16. [PMID: 31900153 PMCID: PMC6942274 DOI: 10.1186/s12929-019-0613-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over-stimulation of dopamine signaling is thought to underlie the pathophysiology of a list of mental disorders, such as psychosis, mania and attention-deficit/hyperactivity disorder. These disorders are frequently associated with cognitive deficits in attention or learning and memory, suggesting that persistent activation of dopamine signaling may change neural plasticity to induce cognitive or emotional malfunction. METHODS Dopamine transporter knockdown (DAT-KD) mice were used to mimic a hyper-dopamine state. Novel object recognition (NOR) task was performed to assess the recognition memory. To test the role of dopamine D3 receptor (D3R) on NOR, DAT-KD mice were treated with either a D3R antagonist, FAUC365 or by deletion of D3R. Total or phospho-GSK3 and -ERK1/2 signals in various brain regions were measured by Western blot analyses. To examine the impact of GSK3 signal on NOR, wild-type mice were systemically treated with GSK3 inhibitor SB216763 or, micro-injected with lentiviral shRNA of GSK3β or GSK3α in the medial prefrontal cortex (mPFC). RESULTS We confirmed our previous findings that DAT-KD mice displayed a deficit in NOR memory, which could be prevented by deletion of D3R or exposure to FAUC365. In WT mice, p-GSK3α and p-GSK3β were significantly decreased in the mPFC after exposure to novel objects; however, the DAT-KD mice exhibited no such change in mPFC p-GSK3α/β levels. DAT-KD mice treated with FAUC365 or with D3R deletion exhibited restored novelty-induced GSK3 dephosphorylation in the mPFC. Moreover, inhibition of GSK3 in WT mice diminished NOR performance and impaired recognition memory. Lentiviral shRNA knockdown of GSK3β, but not GSK3α, in the mPFC of WT mice also impaired NOR. CONCLUSION These findings suggest that D3R acts via GSK3β signaling in the mPFC to play a functional role in NOR memory. In addition, treatment with D3R antagonists may be a reasonable approach for ameliorating cognitive impairments or episodic memory deficits in bipolar disorder patients.
Collapse
Affiliation(s)
- Pi-Kai Chang
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jung Chu
- Department of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ting Tsai
- Department of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Heng Lai
- Department of Medical Imaging and Radiological Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Healthy Ageing Research Center, Chang Gung University, Taoyuan, Taiwan. .,Neuroscience Research Center, Chang Gung Memorial Hospital, Linko, Taiwan.
| |
Collapse
|
31
|
The influence of dopaminergic genetic variants and maternal parenting on adolescent depressive symptoms: A multilocus genetic study. ACTA PSYCHOLOGICA SINICA 2019. [DOI: 10.3724/sp.j.1041.2019.01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Castellani G, Contarini G, Mereu M, Albanesi E, Devroye C, D'Amore C, Ferretti V, De Martin S, Papaleo F. Dopamine-mediated immunomodulation affects choroid plexus function. Brain Behav Immun 2019; 81:138-150. [PMID: 31175999 DOI: 10.1016/j.bbi.2019.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/11/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Immune system alterations have been implicated in various dopamine-related disorders, such as schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder (ADHD). How immunity might be influenced by dopaminergic dysfunction and impact on clinically-relevant behaviors is still uncertain. We performed a peripheral and cerebral immunophenotyping in mice bearing dopaminergic alteration produced by genetic liability (hypofunction of the dopamine transporter DAT) and psychostimulant (amphetamine) administration. We found that DAT hypofunction influences immune tolerance by increasing functional Tregs and adrenomedullin levels in the thymus and spleen, while reducing microglia activation and infiltration of brain monocyte-derived macrophages (mo-MΦ). Remarkably, both DAT hypofunction and amphetamine treatment are associated with a weaker activation of the choroid plexus (CP) gateway. Conversely, amphetamine reactivated the CP in the setting of DAT hypofunction, paralleling its paradoxical ADHD-relevant behavioral effects. These findings add new knowledge on dopaminergic immunopharmacology and support the immunomodulation of CP functionality as a promising therapeutic strategy for neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Giulia Castellani
- Genetics of Cognition Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti, 2, 35131 Padova, Italy
| | - Gabriella Contarini
- Genetics of Cognition Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti, 2, 35131 Padova, Italy
| | - Maddalena Mereu
- Genetics of Cognition Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti, 2, 35131 Padova, Italy
| | - Ennio Albanesi
- Genetics of Cognition Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Céline Devroye
- Genetics of Cognition Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Claudio D'Amore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti, 2, 35131 Padova, Italy
| | - Valentina Ferretti
- Genetics of Cognition Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti, 2, 35131 Padova, Italy.
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy.
| |
Collapse
|
33
|
Valvassori SS, Dal-Pont GC, Tonin PT, Varela RB, Ferreira CL, Gava FF, Andersen ML, Soares JC, Quevedo J. Coadministration of lithium and celecoxib attenuates the behavioral alterations and inflammatory processes induced by amphetamine in an animal model of mania. Pharmacol Biochem Behav 2019; 183:56-63. [PMID: 31158395 DOI: 10.1016/j.pbb.2019.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
Abstract
The present study evaluated the effects of the coadministration of lithium (Li) and Cel on inflammatory parameters in an animal model of mania induced by dextroamphetamine (D-amph). It was used Wistar rats 60 days old (250-350 g). The animals (n = 10 per group) received D-amph (2 mg/kg) or saline solution of NaCl 0.9% (Sal) intraperitoneally once a day for 14 days. From day eight until 14, the animals from the D-amph and Sal groups received Li (24 mg/kg), Cel (20 mg/kg), Li + Cel or water via gavage. Behavioral analyses were performed using the open-field test. The levels of IL-1β, IL-4, IL-10, and TNF-α were evaluated. The administration of D-amph induced hyperactivity in the rats, as well increased the IL-4, IL-10, and TNF-α levels in the serum, frontal cortex, and striatum of rats compared to those of the controls, and treatment with Li plus Cel reversed these alterations. In general, the administration of Li or Cel per se did not have effects on the behavioral and biochemical parameters. However, the treatment with Cel per se decreased only the IL-10 levels in the serum of animals. Besides, the treatment with Li or Cel decreased the IL-4 levels in the serum and reversed the effects of D-amph on this parameter in the frontal cortex. The treatment with Li reversed the effects of D-amph on the TNF-α levels in all tissues evaluated, and the administration of Cel reversed this alteration only in the striatum. It can be observed that treatment with Li plus Cel was more effective against damages caused by D-amph when compared to the administration of both treatments per se, suggesting that the coadministration can be more effective to treat BD rather than Li or Cel itself. The treatment with Li plus Cel was effective against the inflammation induced by D-amph.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Paula T Tonin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Departamento de Enfermagem, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Roger B Varela
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Camila L Ferreira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jair C Soares
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
34
|
Grünblatt E, Werling AM, Roth A, Romanos M, Walitza S. Association study and a systematic meta-analysis of the VNTR polymorphism in the 3'-UTR of dopamine transporter gene and attention-deficit hyperactivity disorder. J Neural Transm (Vienna) 2019; 126:517-529. [PMID: 30923918 PMCID: PMC6456487 DOI: 10.1007/s00702-019-01998-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/24/2019] [Indexed: 01/21/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) has been postulated to associate with dopaminergic dysfunction, including the dopamine transporter (DAT1). Several meta-analyses showed small but significant association between the 10-repeat allele in the DAT1 gene in 3'-untranslated region variant number tandem repeat polymorphism and child and adolescent ADHD, whereas in adult ADHD the 9-repeat allele was suggested to confer as risk allele. Interestingly, recent evidence indicated that the long-allele variants (10 repeats and longer) might confer to lower expression of the transporter in comparison to the short-allele. Therefore, we assessed here the association in samples consisting of families with child and adolescent ADHD as well as a case-control sample, using either the 10- versus 9-repeat or the long- versus short-allele approach. Following, we conducted a systematic review and meta-analysis, including family and case-control studies, using the two aforementioned approaches as well as stratifying to age and ethnicity. The first approach (10-repeat) resulted in nominal significant association in child and adolescent ADHD (OR 1.1050 p = 0.0128), that became significant stratifying to European population (OR 1.1301 p = 0.0085). The second approach (long-allele) resulted in significant association with the whole ADHD population (OR 1.1046 p = 0.0048), followed by significant association for child and adolescent ADHD (OR 1.1602 p = 0.0006) and in Caucasian and in European child and adolescent ADHD (OR 1.1310 p = 0.0114; OR 1.1661 p = 0.0061; respectively). We were not able to confirm the association reported in adults using both approaches. In conclusion, we found further indication for a possible DAT1 gene involvement; however, further studies should be conducted with stringent phenotyping to reduce heterogeneity, a limitation observed in most included studies.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
- Translational Molecular Psychiatry, Department of Child and Adolescent Psychiatry and Psychotherapy, Centre for Child and Adolescent Psychiatry Research, University Hospital of Psychiatry Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland.
| | - Anna Maria Werling
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Roth
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Wuerzburg, Würzburg, Germany
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Landolt HP, Holst SC, Valomon A. Clinical and Experimental Human Sleep-Wake Pharmacogenetics. Handb Exp Pharmacol 2019; 253:207-241. [PMID: 30443785 DOI: 10.1007/164_2018_175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sleep and wakefulness are highly complex processes that are elegantly orchestrated by fine-tuned neurochemical changes among neuronal and non-neuronal ensembles, nuclei, and networks of the brain. Important neurotransmitters and neuromodulators regulating the circadian and homeostatic facets of sleep-wake physiology include melatonin, γ-aminobutyric acid, hypocretin, histamine, norepinephrine, serotonin, dopamine, and adenosine. Dysregulation of these neurochemical systems may cause sleep-wake disorders, which are commonly classified into insomnia disorder, parasomnias, circadian rhythm sleep-wake disorders, central disorders of hypersomnolence, sleep-related movement disorders, and sleep-related breathing disorders. Sleep-wake disorders can have far-reaching consequences on physical, mental, and social well-being and health and, thus, need be treated with effective and rational therapies. Apart from behavioral (e.g., cognitive behavioral therapy for insomnia), physiological (e.g., chronotherapy with bright light), and mechanical (e.g., continuous positive airway pressure treatment of obstructive sleep apnea) interventions, pharmacological treatments often are the first-line clinical option to improve disturbed sleep and wake states. Nevertheless, not all patients respond to pharmacotherapy in uniform and beneficial fashion, partly due to genetic differences. The improved understanding of the neurochemical mechanisms regulating sleep and wakefulness and the mode of action of sleep-wake therapeutics has provided a conceptual framework, to search for functional genetic variants modifying individual drug response phenotypes. This article will summarize the currently known genetic polymorphisms that modulate drug sensitivity and exposure, to partly determine individual responses to sleep-wake pharmacotherapy. In addition, a pharmacogenetic strategy will be outlined how based upon classical and opto-/chemogenetic strategies in animals, as well as human genetic associations, circuit mechanisms regulating sleep-wake functions in humans can be identified. As such, experimental human sleep-wake pharmacogenetics forms a bridge spanning basic research and clinical medicine and constitutes an essential step for the search and development of novel sleep-wake targets and therapeutics.
Collapse
Affiliation(s)
- Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
- Zürich Center for Interdisciplinary Sleep Research (ZiS), University of Zürich, Zürich, Switzerland.
| | - Sebastian C Holst
- Neurobiology Research Unit and Neuropharm, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Amandine Valomon
- Wisconsin Institute for Sleep and Consciousness, University of Wisconsin Madison, Madison, WI, USA
| |
Collapse
|
36
|
Vizeli P, Liechti ME. No Influence of Dopamine System Gene Variations on Acute Effects of MDMA. Front Psychiatry 2019; 10:755. [PMID: 31708815 PMCID: PMC6821788 DOI: 10.3389/fpsyt.2019.00755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a recreational substance also investigated as medication for posttraumatic stress disorder. Dopamine (DA) system stimulation likely contributes to the acute mood effects of amphetamines, including MDMA. Genetic variants, such as single-nucleotide polymorphisms (SNPs), and polymorphic regions of the DA system genes may in part explain interindividual differences in the acute responses to MDMA in humans. We characterized the effects of common genetic variants within genes coding for key players in the DA system including the dopamine D2 receptor (DRD2/ANKK1 rs1800497, DRD2 rs6277, and rs107959), the dopamine transporter (DAT1 rs28363170, rs3836790, rs6347, rs11133767, rs11564774, rs460000, and rs463379), and dopamine D4 receptor [DRD4, variable-number tandem repeat (VNTR)] on the subjective and autonomic response to MDMA (125 mg) in pooled data from randomized, placebo-controlled, crossover studies in a total of 149 healthy subjects. Plasma concentrations of MDMA were used as covariate in the analysis to control for individual pharmacokinetic (metabolic and weight) differences. None of the tested genetic polymorphisms within the DA system altered effects of MDMA when adjusting for multiple comparisons. Genetic variations in genes coding for players of the DA system are unlikely to explain interindividual variations in the acute effects of MDMA in humans.
Collapse
Affiliation(s)
- Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
37
|
Guo X, Yang J, Huang J, Chen Z, Wu X, Zhu L, Huang G, Long J, Su L. Influence of CTNNB1 rs2953 polymorphism on schizophrenia susceptibility in Chinese Han population through modifying miR-485 binding to CTNNB1. GENES BRAIN AND BEHAVIOR 2018; 18:e12524. [PMID: 30280518 DOI: 10.1111/gbb.12524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) are two major neuropsychiatric diseases that are the most substantial causes of disability and mortality worldwide. CTNNB1 encodes beta-catenin, an important protein in canonical Wnt signaling. We aimed to investigate the association between the rs2953 of CTNNB1 and the risk of SCZ and BD and to further explore the function of rs2953. A total of 1658 samples (548 SCZ cases, 512 BD cases, and 598 controls) were examined in terms of the genotype of CTNNB1 rs2953. The mRNA expression level of CTNNB1 significantly increased in the SCZ and BD groups compared with that in the control group. Significant association remained between CTNNB1 3'-untranslated region (UTR) variant rs2953 and SCZ susceptibility (additive and dominant model) after gender and age were adjusted. rs2953 disrupted the binding of CTNNB1 and miR-485. miR-485 significantly suppressed the luciferase activity of CTNNB1-T vector by binding to the CTNNB1 3'-UTR containing the T allele of rs2953. The mRNA expression of CTNNB1 can be used as a biomarker for the diagnosis of SCZ and BD. The 3'-UTR variant rs2953 in CTNNB1 influences the risk of SCZ in the Han Chinese population and modifies the binding of miR-485 to CTNNB1.
Collapse
Affiliation(s)
- Xiaojing Guo
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Jialei Yang
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiao Huang
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhaoxia Chen
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Xulong Wu
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Zhu
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Guifeng Huang
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianxiong Long
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Li Su
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
38
|
Cao Y, Lin X, Chen L, Ji L, Zhang W. The Catechol-O-Methyltransferase and Dopamine Transporter Genes Moderated the Impact of Peer Relationships on Adolescent Depressive Symptoms: A Gene-Gene-Environment Study. J Youth Adolesc 2018; 47:2468-2480. [PMID: 30242586 DOI: 10.1007/s10964-018-0925-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/01/2018] [Indexed: 01/28/2023]
Abstract
Behavioral genetics studies and new empirical evidence suggest that depression cannot simply be explained by the influence of single genes but that gene-gene-environment interactions are important to better understanding the etiology of depression. The present study investigated the main and interactive effects of COMT gene Val158Met polymorphism, DAT1 gene rs27072 polymorphism, and peer relationships (i.e., peer acceptance and rejection) on adolescent depressive symptoms. In a sample of 1045 Chinese Han adolescents (Mage = 12.34 ± 0.47 years, 50.1% girls), saliva samples, self-reported depressive symptoms and within-classroom peer nominations were collected. After controlling for gender, age, and SES, the three-way interaction of COMT, DAT1, and peer acceptance significantly concurrently predicted adolescent depressive symptoms. Adolescents with ValVal genotype of COMT and CC genotype of DAT1 were more sensitive to acceptance, compared to their counterparts carrying other combined genotypes. However, a similar three-way interaction was not significant in the case of peer rejection. Additionally, the split-half validation generally replicated these findings. More importantly, this study underscores complex polygenic underpinnings of depression and lends support for the gene-gene-environment interactions implicated in the etiology of depressive symptoms.
Collapse
Affiliation(s)
- Yanmiao Cao
- Department of psychology, Shandong Normal University, Jinan, China
| | - Xiaonan Lin
- Department of psychology, Shandong Normal University, Jinan, China
| | - Liang Chen
- Department of psychology, Shandong Normal University, Jinan, China
| | - Linqin Ji
- Department of psychology, Shandong Normal University, Jinan, China
| | - Wenxin Zhang
- Department of psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
39
|
Yip SW, Potenza MN. Application of Research Domain Criteria to childhood and adolescent impulsive and addictive disorders: Implications for treatment. Clin Psychol Rev 2018; 64:41-56. [PMID: 27876165 PMCID: PMC5423866 DOI: 10.1016/j.cpr.2016.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 03/18/2016] [Accepted: 11/07/2016] [Indexed: 12/30/2022]
Abstract
The Research Domain Criteria (RDoC) initiative provides a large-scale, dimensional framework for the integration of research findings across traditional diagnoses, with the long-term aim of improving existing psychiatric treatments. A neurodevelopmental perspective is essential to this endeavor. However, few papers synthesizing research findings across childhood and adolescent disorders exist. Here, we discuss how the RDoC framework may be applied to the study of childhood and adolescent impulsive and addictive disorders in order to improve neurodevelopmental understanding and to enhance treatment development. Given the large scope of RDoC, we focus on a single construct highly relevant to addictive and impulsive disorders - initial responsiveness to reward attainment. Findings from genetic, molecular, neuroimaging and other translational research methodologies are highlighted.
Collapse
Affiliation(s)
- Sarah W Yip
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; The National Center on Addiction and Substance Abuse, Yale University School of Medicine, New Haven, CT, United States
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; The National Center on Addiction and Substance Abuse, Yale University School of Medicine, New Haven, CT, United States; Child Study Center, Yale University School of Medicine, New Haven, CT, United States; Department of Neurobiology, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
40
|
Barrie ES, Pinsonneault JK, Sadee W, Hollway JA, Handen BL, Smith T, Arnold LE, Butter E, Hansen-Kiss E, Herman GE, Aman MG. Testing genetic modifiers of behavior and response to atomoxetine in autism spectrum disorder with ADHD. JOURNAL OF DEVELOPMENTAL AND PHYSICAL DISABILITIES 2018; 30:355-371. [PMID: 30197492 PMCID: PMC6128165 DOI: 10.1007/s10882-018-9590-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Frequent non-pathogenic genetic variants may act as moderators of phenotypic severity for complex disorders such as autism spectrum disorder (ASD). We previously identified polymorphisms affecting mRNA expression of candidate genes, including tryptophan hydroxylase 2 (TPH2), dopamine beta hydroxylase (DBH), and dopamine transporter (DAT, SLC6A3). METHOD We compare genotypes and (1) clinical response to atomoxetine, (2) scores from the Autism Diagnostic Interview-Revised (ADI-R), and (3) severity of Attention Deficit Hyperactivity Disorder (ADHD) symptoms in a cohort of patients with ASD from multiple study sites. RESULTS There was no association between CYP2D6 metabolizer status and atomoxetine response. TPH2 rs7305115 genotype was associated with ADI-R Restrictive/Repetitive Behavior score (p=0.03). DBH rs1611115 genotype was associated with ADI-R Social score (p=0.002) and Restrictive/Repetitive Behavior score (p=0.04). The DAT intron 8 5/6 repeat was associated with ADHD symptoms (ABC Hyperactivity p=0.01 and SNAP ADHD p=0.03), replicating a previous finding. CONCLUSIONS We find associations between ASD phenotypes and regulatory variants in catecholamine biosynthesis genes. This work may help guide future genetics studies related to ASD.
Collapse
Affiliation(s)
- Elizabeth S. Barrie
- The Ohio State University
- Institute for Genomic Medicine, Nationwide Children’s Hospital
| | | | | | | | - Benjamin L. Handen
- Departments of Psychiatry and Pediatrics, University of Pittsburgh School of Medicine
| | - Tristram Smith
- Department of Pediatrics, University of Rochester Medical Center
| | | | - Eric Butter
- The Ohio State University
- Department of Psychology, Nationwide Children’s Hospital
| | | | - Gail E. Herman
- The Ohio State University
- Institute for Genomic Medicine, Nationwide Children’s Hospital
| | | |
Collapse
|
41
|
Magalhães F, Rocha K, Marinho V, Ribeiro J, Oliveira T, Ayres C, Bento T, Leite F, Gupta D, Bastos VH, Velasques B, Ribeiro P, Orsini M, Teixeira S. Neurochemical changes in basal ganglia affect time perception in parkinsonians. J Biomed Sci 2018; 25:26. [PMID: 29554962 PMCID: PMC5858149 DOI: 10.1186/s12929-018-0428-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/08/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Parkinson's disease is described as resulting from dopaminergic cells progressive degeneration, specifically in the substantia nigra pars compacta that influence the voluntary movements control, decision making and time perception. AIM This review had a goal to update the relation between time perception and Parkinson's Disease. METHODOLOGY We used the PRISMA methodology for this investigation built guided for subjects dopaminergic dysfunction in the time judgment, pharmacological models with levodopa and new studies on the time perception in Parkinson's Disease. We researched on databases Scielo, Pubmed / Medline and ISI Web of Knowledge on August 2017 and repeated in September 2017 and February 2018 using terms and associations relevant for obtaining articles in English about the aspects neurobiology incorporated in time perception. No publication status or restriction of publication date was imposed, but we used as exclusion criteria: dissertations, book reviews, conferences or editorial work. RESULTS/DISCUSSION We have demonstrated that the time cognitive processes are underlying to performance in cognitive tasks and that many are the brain areas and functions involved and the modulators in the time perception performance. CONCLUSIONS The influence of dopaminergic on Parkinson's Disease is an important research tool in Neuroscience while allowing for the search for clarifications regarding behavioral phenotypes of Parkinson's disease patients and to study the areas of the brain that are involved in the dopaminergic circuit and their integration with the time perception mechanisms.
Collapse
Affiliation(s)
- Francisco Magalhães
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil. .,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil.
| | - Kaline Rocha
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Victor Marinho
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Jéssica Ribeiro
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil
| | - Thomaz Oliveira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil
| | - Carla Ayres
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil
| | - Thalys Bento
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil
| | - Francisca Leite
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil
| | - Daya Gupta
- Department of Biology, Camden County College, Blackwood, NJ, USA
| | - Victor Hugo Bastos
- Laboratory of Brain Mapping and Functionality, Federal University of Piauí, Parnaíba, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory-Motor Integration Laboratory, Psychiatry Institute of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Av. Venceslau Braz, 71 - Botafogo, Rio de Janeiro, RJ, 22290-140, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory-Motor Integration Laboratory, Psychiatry Institute of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Av. Venceslau Braz, 71 - Botafogo, Rio de Janeiro, RJ, 22290-140, Brazil
| | - Marco Orsini
- Rehabilitation Science Program, Analysis of Human Movement Laboratory, Augusto Motta University Center, Rio de Janeiro, Brazil.,Program Professional Master in Applied Science in Health/UNISUAM, Av. Paris, 84, Bonsucesso, Rio de Janeiro, RJ, 21041-020, Brazil
| | - Silmar Teixeira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
42
|
Dubol M, Trichard C, Leroy C, Sandu AL, Rahim M, Granger B, Tzavara ET, Karila L, Martinot JL, Artiges E. Dopamine Transporter and Reward Anticipation in a Dimensional Perspective: A Multimodal Brain Imaging Study. Neuropsychopharmacology 2018; 43:820-827. [PMID: 28829051 PMCID: PMC5809789 DOI: 10.1038/npp.2017.183] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/09/2017] [Accepted: 08/13/2017] [Indexed: 12/12/2022]
Abstract
Dopamine function and reward processing are highly interrelated and involve common brain regions afferent to the nucleus accumbens, within the mesolimbic pathway. Although dopamine function and reward system neural activity are impaired in most psychiatric disorders, it is unknown whether alterations in the dopamine system underlie variations in reward processing across a continuum encompassing health and these disorders. We explored the relationship between dopamine function and neural activity during reward anticipation in 27 participants including healthy volunteers and psychiatric patients with schizophrenia, depression, or cocaine addiction, using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) multimodal imaging with a voxel-based statistical approach. Dopamine transporter (DAT) availability was assessed with PET and [11C]PE2I as a marker of presynaptic dopamine function, and reward-related neural response was assessed using fMRI with a modified Monetary Incentive Delay task. Across all the participants, DAT availability in the midbrain correlated positively with the neural response to anticipation of reward in the nucleus accumbens. Moreover, this relationship was conserved in each clinical subgroup, despite the heterogeneity of mental illnesses examined. For the first time, a direct link between DAT availability and reward anticipation was detected within the mesolimbic pathway in healthy and psychiatric participants, and suggests that dopaminergic dysfunction is a common mechanism underlying the alterations of reward processing observed in patients across diagnostic categories. The findings support the use of a dimensional approach in psychiatry, as promoted by the Research Domain Criteria project to identify neurobiological signatures of core dysfunctions underling mental illnesses.
Collapse
Affiliation(s)
- Manon Dubol
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
| | - Christian Trichard
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
- EPS Barthelemy Durand, Etampes, France
| | - Claire Leroy
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
- Laboratoire Imagerie Moléculaire In Vivo (IMIV), CEA, INSERM, CNRS, Paris Sud University—Paris Saclay University, Orsay, France
| | - Anca-Larisa Sandu
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Mehdi Rahim
- Parietal Project Team—INRIA, CEA, Neurospin, Gif-Sur-Yvette, France
| | - Bernard Granger
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
- Tarnier Psychiatry Department, AP-HP, Cochin Hospital, Paris, France
| | - Eleni T Tzavara
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
- Tarnier Psychiatry Department, AP-HP, Cochin Hospital, Paris, France
- INSERM U1130 Research Unit, CNRS UMR 8246, UPMC UM CR18, Paris, France
| | - Laurent Karila
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
- AP-HP, Addiction Research and Treatment Center, Paul Brousse Hospital, Villejuif, France
| | - Jean-Luc Martinot
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
| | - Eric Artiges
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
- Groupe Hospitalier Nord Essonne, Psychiatry Department, Orsay, France
| |
Collapse
|
43
|
Salatino-Oliveira A, Rohde LA, Hutz MH. The dopamine transporter role in psychiatric phenotypes. Am J Med Genet B Neuropsychiatr Genet 2018; 177:211-231. [PMID: 28766921 DOI: 10.1002/ajmg.b.32578] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 01/06/2023]
Abstract
The dopamine transporter (DAT) is one of the most relevant and investigated neurotransmitter transporters. DAT is a plasma membrane protein which plays a homeostatic role, controlling both extracellular and intracellular concentrations of dopamine (DA). Since unbalanced DA levels are known to be involved in numerous mental disorders, a wealth of investigations has provided valuable insights concerning DAT role into normal brain functioning and pathological processes. Briefly, this extensive but non-systematic review discusses what is recently known about the role of SLC6A3 gene which encodes the dopamine transporter in psychiatric phenotypes. DAT protein, SLC6A3 gene, animal models, neuropsychology, and neuroimaging investigations are also concisely discussed. To conclude, current challenges are reviewed in order to provide perspectives for future studies.
Collapse
Affiliation(s)
| | - Luis A Rohde
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Institute for Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Mara H Hutz
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
44
|
Chang PK, Yu L, Chen JC. Dopamine D3 receptor blockade rescues hyper-dopamine activity-induced deficit in novel object recognition memory. Neuropharmacology 2018; 133:216-223. [PMID: 29407766 DOI: 10.1016/j.neuropharm.2018.01.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/07/2017] [Accepted: 01/29/2018] [Indexed: 12/29/2022]
Abstract
Patients afflicted with bipolar disorder demonstrate significant impairments in recognition and episodic memory during acute depressive and manic episodes. These impairments and the related pathophysiology may result from over-activation of the brain dopamine (DA) system. In order to model overactive DA transmission in a well-established novel object recognition (NOR) memory test, we used DA transporter knockdown (DAT-KD) mice, which exhibit reduced DAT expression and display hyper-dopaminergic phenotypes. DAT-KD mice exhibited impaired NOR memory compared to wild-type (WT) mice. This impairment was prevented by administration of FAUC365, a DA D3 receptor (D3R) selective antagonist, prior to object learning. Similarly, D3R knockout (KO)/DAT-KD double mutant mice displayed performance in the NOR test that was comparable to WT mice, suggesting that deficiencies in NOR performance in DAT-KD mice can be compensated by diminishing D3R signaling. GBR12909, a DAT blocker, also impaired NOR performance in WT mice, but not in D3R KO mice. Impaired NOR performance in GBR12909-treated WT mice was also prevented by pretreatment with FAUC365. Together, these findings indicate that reduced DAT activity can impair recognition memory in the NOR test, and D3R appears to be necessary to mediate this effect.
Collapse
Affiliation(s)
- Pi-Kai Chang
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences and Healthy Ageing Reserch Center, Chang Gung University, Taoyuan City 33302, Taiwan, ROC.
| | - Lung Yu
- Department of Physiology and Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan, ROC.
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences and Healthy Ageing Reserch Center, Chang Gung University, Taoyuan City 33302, Taiwan, ROC; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan and Chang Gung Memorial Hospital, Keelung 204, Taiwan, ROC.
| |
Collapse
|
45
|
de Queiroz AIG, Chaves Filho AJM, Araújo TDS, Lima CNC, Machado MDJS, Carvalho AF, Vasconcelos SMM, de Lucena DF, Quevedo J, Macedo D. Antimanic activity of minocycline in a GBR12909-induced model of mania in mice: Possible role of antioxidant and neurotrophic mechanisms. J Affect Disord 2018; 225:40-51. [PMID: 28783519 DOI: 10.1016/j.jad.2017.07.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Mania/hypomania is the cardinal feature of bipolar disorder. Recently, single administration of the dopamine transporter (DAT) inhibitor, GBR12909, was related to mania-like alterations. In the present study we aimed at testing behavioral and brain oxidant/neurotrophic alterations induced by the repeated administration of GBR12909 and its prevention/reversal by the mood stabilizing drugs, lithium (Li) and valproate (VAL) as well as by the neuroprotective drug, minocycline (Mino). METHODS Adult Swiss mice were submitted to 14 days protocols namely prevention and reversal. In the reversal protocol mice were given GBR12909 or saline and between days 8 and 14 received Li, VAL, Mino (25 or 50mg/kg) or saline. In the prevention treatment, mice were pretreated with Li, VAL, Mino or saline prior to GBR12909. RESULTS GBR12909 repeated administration induced hyperlocomotion and increased risk taking behavior that were prevented and reversed by the mood stabilizers and both doses of Mino. Li, VAL or Mino were more effective in the reversal of striatal GSH alterations induced by GBR12909. Regarding lipid peroxidation Mino was more effective in the prevention and reversal of lipid peroxidation in the hippocampus whereas Li and VAL prevented this alteration in the striatum and PFC. Li, VAL and Mino25 reversed the decrease in BDNF levels induced by GBR12909. CONCLUSION GBR12909 repeated administration resembles manic phenotype. Similarly to classical mood-stabilizing agents, Mino prevented and reversed GBR12909 manic-like behavior in mice. Thus, our data provide preclinical support to the design of trials investigating Mino's possible antimanic effects.
Collapse
Affiliation(s)
- Ana Isabelle G de Queiroz
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Tatiane da Silva Araújo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Camila Nayane Carvalho Lima
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Michel de Jesus Souza Machado
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group and the Department of Clinical Medicine, Faculty of Medicine, Fortaleza, CE, Brazil
| | - Silvania Maria Mendes Vasconcelos
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - David Freitas de Lucena
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Danielle Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
46
|
Li L, Zhang L, Binkley PF, Sadee W, Wang D. Regulatory Variants Modulate Protein Kinase C α (PRKCA) Gene Expression in Human Heart. Pharm Res 2017; 34:1648-1657. [PMID: 28120175 PMCID: PMC7315374 DOI: 10.1007/s11095-017-2102-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/06/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE Protein kinase C α (PRKCA) is involved in multiple functions and has been implicated in heart failure risks and treatment outcomes. This study aims to identify regulatory variants affecting PRKCA expression in human heart, and evaluate attributable risk of heart disease. METHODS mRNA expression quantitative trait loci (eQTLs) were extracted from the Genotype and Tissue Expression Project (GTEx). Allelic mRNA ratios were measured in 51 human heart tissues to identify cis-acting regulatory variants. Potential regulatory regions were tested with luciferase reporter gene assays and further evaluated in GTEx and genome-wide association studies. RESULTS Located in a region with robust enhancer activity in luciferase reporter assays, rs9909004 (T > C, minor allele frequency =0.47) resides in a haplotype displaying strong eQTLs for PRKCA in heart (p = 1.2 × 10-23). The minor C allele is associated with both decreased PRKCA mRNA expression and decreased risk of phenotypes characteristic of heart failure in GWAS analyses (QT interval p = 3.0 × 10-14). While rs9909004 is the likely regulatory variant, other variants in high linkage disequilibrium cannot be excluded. Distinct regulatory variants appear to affect expression in other tissues. CONCLUSIONS The haplotype carrying rs9909004 influences PRKCA expression in the heart and is associated with traits linked to heart failure, potentially affecting therapy of heart failure.
Collapse
Affiliation(s)
- Liang Li
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 West 12th Ave, Columbus, Ohio, 43210, USA
| | - Lizhi Zhang
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 West 12th Ave, Columbus, Ohio, 43210, USA
| | - Philip F Binkley
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Wolfgang Sadee
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 West 12th Ave, Columbus, Ohio, 43210, USA
| | - Danxin Wang
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 West 12th Ave, Columbus, Ohio, 43210, USA.
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 W 12th Avenue, Columbus, Ohio, 43210, USA.
| |
Collapse
|
47
|
Dopamine transporter (DAT1/SLC6A3) polymorphism and the association between being born small for gestational age and symptoms of ADHD. Behav Brain Res 2017; 333:90-97. [PMID: 28666839 DOI: 10.1016/j.bbr.2017.06.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/17/2017] [Accepted: 06/26/2017] [Indexed: 01/10/2023]
Abstract
Being small for gestational age (SGA) has been established as a risk factor for Attention Deficit Hyperactivity Disorder (ADHD). Likewise, several molecular genetic studies have found a link between DAT1 and ADHD. This study investigated whether SGA moderates the effect of dopamine transporter gene variants on the risk of ADHD. A total of 546 children of European descent were genotyped at age 11 for seven DAT1 SNPs (rs6347, rs11564774, rs40184, rs1042098, rs2702, rs8179029 and rs3863145). The Strengths and Difficulties Questionnaire was used to measure symptoms of ADHD at ages 3.5, 7 and 11. We found significant gene-environment interactions between birth weight and DAT1 SNPs (rs6347, rs40184, rs1042098, rs3863145) on ADHD symptoms at 3.5 years only. Results suggest that genotypic variation of DAT1 may confer a relative protective effect against ADHD in SGA individuals. This study supports the idea that being born SGA moderates the effect of the DAT1 gene on ADHD symptoms in the preschool years and may help to explain some of the heterogeneity in ADHD outcomes.
Collapse
|
48
|
Mereu M, Contarini G, Buonaguro EF, Latte G, Managò F, Iasevoli F, de Bartolomeis A, Papaleo F. Dopamine transporter (DAT) genetic hypofunction in mice produces alterations consistent with ADHD but not schizophrenia or bipolar disorder. Neuropharmacology 2017; 121:179-194. [PMID: 28454982 DOI: 10.1016/j.neuropharm.2017.04.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/13/2017] [Accepted: 04/24/2017] [Indexed: 01/02/2023]
Abstract
ADHD, schizophrenia and bipolar disorder are psychiatric diseases with a strong genetic component which share dopaminergic alterations. Dopamine transporter (DAT) genetics might be potentially implicated in all these disorders. However, in contrast to DAT absence, the effects of DAT hypofunction especially in developmental trajectories have been scarcely addressed. Thus, we comprehensively studied DAT hypofunctional mice (DAT+/-) from adolescence to adulthood to disentangle DAT-dependent alterations in the development of psychiatric-relevant phenotypes. From pre-adolescence onward, DAT+/- displayed a hyperactive phenotype, while responses to external stimuli and sensorimotor gating abilities were unaltered. General cognitive impairments in adolescent DAT+/- were partially ameliorated during adulthood in males but not in females. Despite this, attentional and impulsivity deficits were evident in DAT+/- adult males. At the molecular level, DAT+/- mice showed a reduced expression of Homer1a in the prefrontal cortex, while other brain regions as well as Arc and Homer1b expression were mostly unaffected. Amphetamine treatments reverted DAT+/- hyperactivity and rescued cognitive deficits. Moreover, amphetamine shifted DAT-dependent Homer1a altered expression from prefrontal cortex to striatal regions. These behavioral and molecular phenotypes indicate that a genetic-driven DAT hypofunction alters neurodevelopmental trajectories consistent with ADHD, but not with schizophrenia and bipolar disorders.
Collapse
Affiliation(s)
- M Mereu
- Department of Pharmaceutical Science, University of Padua, Padua, Italy
| | - G Contarini
- Department of Pharmaceutical Science, University of Padua, Padua, Italy
| | - E F Buonaguro
- Section of Psychiatry. Department of Neuroscience, Reproductive and Odontostomatological Science, University School of Medicine "Federico II", Naples, Italy
| | - G Latte
- Section of Psychiatry. Department of Neuroscience, Reproductive and Odontostomatological Science, University School of Medicine "Federico II", Naples, Italy
| | - F Managò
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - F Iasevoli
- Section of Psychiatry. Department of Neuroscience, Reproductive and Odontostomatological Science, University School of Medicine "Federico II", Naples, Italy
| | - A de Bartolomeis
- Section of Psychiatry. Department of Neuroscience, Reproductive and Odontostomatological Science, University School of Medicine "Federico II", Naples, Italy
| | - F Papaleo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
49
|
Valvassori SS, Resende WR, Varela RB, Arent CO, Gava FF, Peterle BR, Dal-Pont GC, Carvalho AF, Andersen ML, Quevedo J. The Effects of Histone Deacetylase Inhibition on the Levels of Cerebral Cytokines in an Animal Model of Mania Induced by Dextroamphetamine. Mol Neurobiol 2017; 55:1430-1439. [PMID: 28168425 DOI: 10.1007/s12035-017-0384-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023]
Abstract
Studies have suggested the involvement of inflammatory processes in the physiopathology of bipolar disorder. Preclinical evidences have shown that histone deacetylase inhibitors may act as mood-stabilizing agents and protect the brain in models of mania and depression. The aim of the present study was to evaluate the effects of sodium butyrate (SB) and valproate (VPA) on behavioral changes, histone deacetylase activity, and the levels of cytokines in an animal model of mania induced by dextroamphetamine (d-AMPH). Wistar rats were first given d-AMPH or saline (Sal) for a period of 14 days, and then, between the 8th and 14th days, the rats were treated with SB, VPA, or Sal. The activity of histone deacetylase and the levels of cytokines (interleukin (IL) IL-4, IL-6, and IL-10 and tumor necrosis factor-alpha (TNF-α)) were evaluated in the frontal cortex and striatum of the rats. The administration of d-AMPH increased the activity of histone deacetylase in the frontal cortex. Administration of SB or VPA decreased the levels of histone deacetylase activity in the frontal cortex and striatum of rats. SB per se increased the levels of cytokines in both of the brain structures evaluated. AMPH increased the levels of cytokines in both of the brain structures evaluated, and VPA reversed this alteration. The effects of SB on d-AMPH-induced cytokine alterations were dependent on the brain structure and the cytokine evaluated. Despite VPA and SB having a similar mechanism of action, both being histone deacetylase inhibitors, they showed different effects on the levels of cytokines. The present study reinforces the need for more research into histone deacetylase inhibitors being used as a possible target for new medications in the treatment of bipolar disorder.
Collapse
Affiliation(s)
- Samira S Valvassori
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil. .,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Wilson R Resende
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Roger B Varela
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Camila O Arent
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil
| | - Bruna R Peterle
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo C Dal-Pont
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.,Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) Medical School, Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) Medical School, Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
50
|
Taranov AO, Puchkova AN, Slominsky PA, Tupitsyna TV, Dementiyenko VV, Dorokhov VB. Associations between chronotype, road accidents and polymorphisms in genes linked with biological clock and dopaminergic system. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:28-33. [DOI: 10.17116/jnevro20171174228-33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|