1
|
Xiao Y, Huang C, Wang J, Lin Y, Quan D, Zheng H. Neurobiological differences in early-onset obsessive-compulsive disorder: A study of the glutamatergic system based on functional magnetic resonance spectroscopy. J Affect Disord 2025; 379:755-763. [PMID: 40107458 DOI: 10.1016/j.jad.2025.03.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/20/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
In this study, the combination of functional state magnetic resonance spectroscopy (fMRS) and cognitive tasks was used to conduct subgroup analyses on early-onset OCD (EO) and non-early-onset OCD (non-EO) and explore differences in the glutamatergic system and cognitive function among OCD subtypes. A total of 70 OCD and 30 healthy controls (HCs) underwent clinical evaluation and were subsequently divided into the EO or non-EO groups. Next, both resting and functional state MRS data were collected, with the anterior cingulate cortex (ACC) serving as the region of interest. Quantitative analysis of MRS data yielded precise neurometabolic concentrations, which were then statistically analyzed alongside inhibitory function, as measured by the Go-nogo task. The final analysis included 92 participants (22 EO-OCD, 41 non-EO OCD, and 29 HCs). EO-OCD patients had significantly higher Glx levels (p = 0.044) and lower GSH levels (p = 0.009) in the functional state compared to the non-EO group. Moreover, in the EO group, correlation analysis revealed a positive correlation between the functional state Glx levels and the average response time for errors in the nogo task (r = 0.526, p = 0.014). Additionally, resting-state GSH levels were positively correlated with total Y-BOCS scores (r = 0.854, p < 0.001). Overall, early-onset OCD may represent a distinct subtype that requires targeted interventions, as evidenced by the imbalance in the glutamatergic system observed in early-onset OCD patients. Additionally, in early-onset patients, Glx concentration during activation was related to cognitive impairment.
Collapse
Affiliation(s)
- Yuqing Xiao
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510180, China; The Second Clinical School of Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cigui Huang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510180, China; The Second Clinical School of Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jian Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510180, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yuqiao Lin
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510180, China; Guangdong Institute of Cardiovascular Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510180, China
| | - Dongming Quan
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510180, China
| | - Huirong Zheng
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510180, China; The Second Clinical School of Medicine, Southern Medical University, Guangzhou 510515, China; School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Hou X, Li Y, Wang P, Liu Y, He F, Yu A, Yang X. Altered glutamate concentration in the subcortical nuclei and its correlation with resting-state functional connectivity in unmedicated obsessive-compulsive disorder. J Psychiatr Res 2025; 186:379-386. [PMID: 40306005 DOI: 10.1016/j.jpsychires.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 03/06/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025]
Abstract
The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) in the cortico-striatal-thalamo-cortical (CSTC) circuit is closely related to the onset of obsessive-compulsive disorder (OCD). The caudate nucleus and thalamus are the critical hubs of the CSTC circuit; however, few studies have explored the correlation between the neurochemical changes of subcortical nuclei and the resting-state functional connectivity (rsFC) within the CSTC circuit in OCD patients. In this study, 24 OCD patients and 17 healthy controls (HCs) underwent resting-state functional MRI (rs-fMRI) scans and proton magnetic resonance spectroscopy (1H-MRS) acquisition. The bilateral caudate nucleus and thalamus were used as the regions of interest (ROIs) for ROI-to-ROI rsFC analysis within CSTC circuit and Glu/GABA calculation to explore altered metabolite concentration in the subcortical nuclei and its correlation with rsFC. A significant increase of Glu in the left thalamus (Thalamus_L), an increase of Glu/GABA in the right thalamus (Thalamus_R), and a decrease of GABA in Thalamus_R were observed in the OCD patients compared to HCs. The rsFC showed widespread reductions among CSTC core nodes (caudate-thalamus-orbitofrontal cortex (OFC)). Furthermore, correlation analysis revealed a significant positive correlation between left caudate Glu levels and left caudate-right OFC rsFC. These findings provided the new evidence of glutamatergic modulation in this pathway's functional integration.
Collapse
Affiliation(s)
- Ximan Hou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yuepeng Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Pengchong Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yue Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Fang He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Aihong Yu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Xiangyun Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Grassi G, Scillitani E, Cecchelli C. New horizons for obsessive-compulsive disorder drug discovery: is targeting glutamate receptors the answer? Expert Opin Drug Discov 2024; 19:1235-1245. [PMID: 39105546 DOI: 10.1080/17460441.2024.2387127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Over the past decade, glutamate has emerged as a prominent focus in the field of obsessive-compulsive disorder (OCD) pathophysiology. A convergence of evidence from genetic, preclinical, and clinical studies points to glutamatergic dysfunction as a key feature of this condition. In light of these findings, there has been a growing interest in exploring the potential of glutamatergic agents in the treatment of OCD. AREAS COVERED This paper reviews the literature on glutamate transmission in OCD. In addition, the authors examine the results of clinical trials investigating the efficacy of glutamatergic agents in the treatment of OCD patients. EXPERT OPINION Along with the recognition of neuroinflammation in the brain in OCD, the evidence of glutamate dysfunction represents one of the most promising recent discoveries for understanding the mechanisms involved in OCD. The importance of this discovery lies primarily in its pharmacological implications and has led to intense research activity in the field of glutamatergic agents. While this research has not yet had a substantial clinical impact, targeting glutamate receptors remains a promising horizon for the successful treatment of OCD patients.
Collapse
Affiliation(s)
- Giacomo Grassi
- Department of Psychiatry, Brain Center Firenze, Florence, Italy
| | | | | |
Collapse
|
4
|
Subaşı Turgut F, Bulut M, Hattapoğlu S, Güneş M, Cemal Kaya M, Ekici F, Guli Çetinçakmak M, Kaplan İ, Atmaca M. The relationship between oxidative stress markers and 1H-Magnetic resonance spectroscopy findings in obsessive compulsive disorder. Brain Res 2024; 1833:148852. [PMID: 38494099 DOI: 10.1016/j.brainres.2024.148852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION The purpose of this study was to examine N-acetyl aspartate (NAA)/creatine (Cr) and glutamate, glutamine, and gamma-aminobutyric acid complex (Glx)/Cr levels in patients with obsessive compulsive disorder (OCD) and healthy controls' orbitofrontal cortex (OFC) and caudate nucleus (CN) by proton magnetic resonance spectroscopy (1H-MRS) method and to investigate their relationship with oxidative stress markers glutathione peroxidase (GPx) and superoxide dismutase (SOD). METHODS This study included patients with OCD (n = 25) and healthy controls (n = 25) ranging in age from 18 to 65. We used the ELISA method to evaluate serum SOD and GPx levels. Levels of NAA/Cr and Glx/Cr in the orbitofrontal cortex and caudate nucleus were measured using the 1H-MRS method. RESULTS Our study did not detect statistically significant differences in the orbitofrontal cortex Glx/Cr and NAA/Cr levels between the OCD patients and the control group. OCD patients exhibited a decrease in NAA/Cr levels, consistent with impaired neuronal integration, and an increase in Glx/Cr levels, consistent with hyperactivation, in the caudate nucleus compared to the control group. We observed a negative correlation between NAA/Cr levels in the caudate nucleus and the levels of SOD and GPx. CONCLUSIONS Our study is the first to assess CN and OFC together in OCD patients using 3 T MR, investigating the relationship between neurometabolite concentrations and oxidative stress parameters. The negative correlation we observed between NAA/Cr levels and SOD and GPx in the caudate nucleus suggests that increased oxidative stress in this brain region in OCD patients may contribute to impaired neuronal integration and functionality.
Collapse
Affiliation(s)
- Fatma Subaşı Turgut
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Mahmut Bulut
- Department of Psychiatry, Faculty of Medicine, Dicle University, Diyarbakır, Turkey.
| | - Salih Hattapoğlu
- Department of Radiology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Mehmet Güneş
- Department of Psychiatry, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Mehmet Cemal Kaya
- Department of Psychiatry, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Faysal Ekici
- Department of Radiology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | | | - İbrahim Kaplan
- Department of Biochemistry, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Murad Atmaca
- Department of Psychiatry, Faculty of Medicine, Fırat University, Elazığ, Turkey
| |
Collapse
|
5
|
Instrella R, Juchem C. Uncertainty propagation in absolute metabolite quantification for in vivo MRS of the human brain. Magn Reson Med 2024; 91:1284-1300. [PMID: 38029371 PMCID: PMC11062627 DOI: 10.1002/mrm.29903] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE Absolute spectral quantification is the standard method for deriving estimates of the concentration from metabolite signals measured using in vivo proton MRS (1 H-MRS). This method is often reported with minimum variance estimators, specifically the Cramér-Rao lower bound (CRLB) of the metabolite signal amplitude's scaling factor from linear combination modeling. This value serves as a proxy for SD and is commonly reported in MRS experiments. Characterizing the uncertainty of absolute quantification, however, depends on more than simply the CRLB. The uncertainties of metabolite-specific (T1m , T2m ), reference-specific (T1ref , T2ref ), and sequence-specific (TR , TE ) parameters are generally ignored, potentially leading to an overestimation of precision. In this study, the propagation of uncertainty is used to derive a comprehensive estimate of the overall precision of concentrations from an internal reference. METHODS The propagated uncertainty is calculated using analytical derivations and Monte Carlo simulations and subsequently analyzed across a set of commonly measured metabolites and macromolecules. The effect of measurement error from experimentally obtained quantification parameters is estimated using published uncertainties and CRLBs from in vivo 1 H-MRS literature. RESULTS The additive effect of propagated measurement uncertainty from applied quantification correction factors can result in up to a fourfold increase in the concentration estimate's coefficient of variation compared to the CRLB alone. A case study analysis reveals similar multifold increases across both metabolites and macromolecules. CONCLUSION The precision of absolute metabolite concentrations derived from 1 H-MRS experiments is systematically overestimated if the uncertainties of commonly applied corrections are neglected as sources of error.
Collapse
Affiliation(s)
- Ronald Instrella
- Department of Biomedical Engineering, Columbia University,
New York, NY, USA
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University,
New York, NY, USA
- Department of Radiology, Columbia University Irving Medical
Center, New York, NY, USA
| |
Collapse
|
6
|
Bellia F, Girella A, Annunzi E, Benatti B, Vismara M, Priori A, Festucci F, Fanti F, Compagnone D, Adriani W, Dell'Osso B, D'Addario C. Selective alterations of endocannabinoid system genes expression in obsessive compulsive disorder. Transl Psychiatry 2024; 14:118. [PMID: 38409080 PMCID: PMC10897168 DOI: 10.1038/s41398-024-02829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Obsessive Compulsive Disorder (OCD) is listed as one of the top 10 most disabling neuropsychiatric conditions in the world. The neurobiology of OCD has not been completely understood and efforts are needed in order to develop new treatments. Beside the classical neurotransmitter systems and signalling pathways implicated in OCD, the possible involvement of the endocannabinoid system (ECS) has emerged in pathophysiology of OCD. We report here selective downregulation of the genes coding for enzymes allowing the synthesis of the endocannabinoids. We found reduced DAGLα and NAPE-PLD in blood samples of individuals with OCD (when compared to healthy controls) as well as in the amygdala complex and prefrontal cortex of dopamine transporter (DAT) heterozygous rats, manifesting compulsive behaviours. Also mRNA levels of the genes coding for cannabinoid receptors type 1 and type 2 resulted downregulated, respectively in the rat amygdala and in human blood. Moreover, NAPE-PLD changes in gene expression resulted to be associated with an increase in DNA methylation at gene promoter, and the modulation of this gene in OCD appears to be correlated to the progression of the disease. Finally, the alterations observed in ECS genes expression appears to be correlated with the modulation in oxytocin receptor gene expression, consistently with what recently reported. Overall, we confirm here a role for ECS in OCD at both preclinical and clinical level. Many potential biomarkers are suggested among its components, in particular NAPE-PLD, that might be of help for a prompt and clear diagnosis.
Collapse
Affiliation(s)
- Fabio Bellia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Antonio Girella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Eugenia Annunzi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d' Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Beatrice Benatti
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
- "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy
| | - Matteo Vismara
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
| | - Alberto Priori
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
| | - Fabiana Festucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Walter Adriani
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161, Rome, Italy
| | - Bernardo Dell'Osso
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy.
- "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy.
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
- Department of Clinical Neuroscience, Karolinska Institute, 10316, Stockholm, Sweden.
| |
Collapse
|
7
|
Goikolea-Vives A, Fernandes C, Thomas MSC, Thornton C, Stolp HB. Sex-Specific Behavioural Deficits in Adulthood following Acute Activation of the GABAA Receptor in the Neonatal Mouse. Dev Neurosci 2024; 46:386-400. [PMID: 38325353 DOI: 10.1159/000536641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
INTRODUCTION Sex differences exist in the prevalence of neurodevelopmental disorders (NDDs). Part of the aetiology of NDDs has been proposed to be alterations in the balance between excitatory and inhibitory neurotransmission, leading to the question of whether males and females respond differently to altered neurotransmitter balance. We investigated whether pharmacological alteration of GABAA signalling in early development results in sex-dependent changes in adult behaviours associated with NDDs. METHODS Male and female C57BL/6J mice received intraperitoneal injections of 0.5 mg/kg muscimol or saline on postnatal days (P) 3-5 and were subjected to behavioural testing, specifically open field, light/dark box, marble-burying, sucralose preference, social interaction, and olfactory habituation/dishabituation tests between P60 and P90. RESULTS Early postnatal administration of muscimol resulted in reduced anxiety in the light/dark box test in both male and female adult mice. Muscimol reduced sucralose preference in males, but not females, whereas female mice showed reduced social behaviours. Regional alterations in cortical thickness were observed in the weeks following GABAA receptor activation, pointing to an evolving structural difference in the brain underlying adult behaviour. CONCLUSIONS We conclude that activation of the GABAA receptor in the first week of life resulted in long-lasting changes in a range of behaviours in adulthood following altered neurodevelopment. Sex of the individual affected the nature and severity of these abnormalities, explaining part of the varied pathophysiology and neurodevelopmental diagnosis that derive from excitatory/inhibitory imbalance.
Collapse
Affiliation(s)
- Ane Goikolea-Vives
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Cathy Fernandes
- SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Michael S C Thomas
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Helen B Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
8
|
Biria M, Banca P, Keser E, Healy MP, Sawiak SJ, Frota Lisbôa Pereira de Souza AM, Marzuki AA, Sule A, Robbins TW. Excessive Checking in Obsessive-Compulsive Disorder: Neurochemical Correlates Revealed by 7T Magnetic Resonance Spectroscopy. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:363-373. [PMID: 38298778 PMCID: PMC10829650 DOI: 10.1016/j.bpsgos.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 02/02/2024] Open
Abstract
Background Compulsive checking, a common symptom of obsessive-compulsive disorder (OCD), has been difficult to capture experimentally. Therefore, determination of its neural basis remains challenging despite some evidence suggesting that it is linked to dysfunction of cingulostriatal systems. This study introduces a novel experimental paradigm to measure excessive checking and its neurochemical correlates. Methods Thirty-one patients with OCD and 29 healthy volunteers performed a decision-making task requiring them to decide whether 2 perceptually similar visual representations were the same or different under a high-uncertainty condition without feedback. Both groups underwent 7T magnetic resonance spectroscopy scans on the same day. Correlations between out-of-scanner experimental measures of checking and the glutamate/GABA (gamma-aminobutyric acid) ratio in the anterior cingulate cortex, supplementary motor area, and occipital cortex were assessed. Their relationship with subjective ratings of doubt, anxiety, and confidence was also investigated. Results Patients with OCD exhibited excessive and dysfunctional checking, which was significantly correlated with changes in the glutamate/GABA ratio within the anterior cingulate cortex. No behavioral/neurochemical relationships were evident for either the supplementary motor area or occipital cortex. The excessive checking observed in patients was negatively correlated with their confidence levels and positively related to doubt, anxiety, and compulsivity traits. Conclusions We conclude that experimental measures of excessive and dysfunctional checking in OCD, which have been linked to increased doubt, anxiety, and lack of confidence, are related to an imbalance between excitatory and inhibitory neural activity within the anterior cingulate cortex. This study adds to our understanding of the role of this region in OCD by providing a laboratory model of the possible development of compulsive checking.
Collapse
Affiliation(s)
- Marjan Biria
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Division of Psychiatry and Division of Psychology and Language Sciences, University College London, London, United Kingdom
| | - Paula Banca
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Engin Keser
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Máiréad P. Healy
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J. Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ana Maria Frota Lisbôa Pereira de Souza
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Aleya A. Marzuki
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | - Akeem Sule
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Hans G, Sharma U, Gupte N, Ganesh R, Patil V, Sharan P. Proton magnetic resonance spectroscopy-based evaluation of metabolic abnormalities in the right dorsolateral prefrontal cortex and caudate nucleus in treatment-naïve patients with obsessive-compulsive disorder. Indian J Psychiatry 2023; 65:1151-1157. [PMID: 38249138 PMCID: PMC10795662 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_663_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 01/23/2024] Open
Abstract
Background Obsessive-compulsive disorder (OCD) is a common psychiatric disorder whose underlying pathophysiology is insufficiently understood. The pathophysiology of OCD may be related to abnormalities in the biochemistry of neurotransmitters. Aim The aim of the present study was to measure the absolute concentration of various metabolites in the right dorsolateral prefrontal cortex (DLPFC) and caudate nucleus (CN) in treatment-naive patients with OCD and compare it with healthy controls (HCs). Methods The present study investigated the metabolic profile of two brain regions, namely right DLPFC and CN, by using single voxel in-vivo proton magnetic resonance spectroscopy (1H MRS) in drug-naive patients with OCD (n = 17, mean age = 30.71 ± 10.104 years) and compared it with healthy controls (n = 13, mean age = 30.77 ± 5.449 years). The patients with OCD were recruited after appropriate psychometric assessments. The 1H-MRS experiments were performed using the 3 Tesla (3T) human MR scanner, and absolute concentrations of metabolites were estimated using the LC model. Results Significantly lower concentration of tNAA in the right DLPFC was observed in the patients with OCD compared to the controls, which may be indicative of neurodegeneration in this region. However, no significant differences were observed in the concentrations of the metabolites between the patients and controls in the CN region. The level of tNAA in DLPFC significantly correlated with the disability level (WHO-DAS) of the patients. Conclusions The present study demonstrates abnormalities in the metabolic profile of an important region, DLPFC of the CSTC circuit, which is suggestive of neurodegeneration in the region in OCD patients.
Collapse
Affiliation(s)
- Gagan Hans
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Uma Sharma
- Department of Nuclear Magnetic Resonance and MRI Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Novy Gupte
- Department of Pharmacology, Army College of Medical Sciences, New Delhi, India
| | - Ragul Ganesh
- Department of Psychiatry, All India Institute of Medical Sciences, Jammu, India
| | - Vaibhav Patil
- Cardiothoracic and Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Pratap Sharan
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Ismail A, Ab Razak A, Sayuti KA, Phoa PKA. Benzodiazepines for Treatment-Resistant Major Depressive Disorder and Obsessive-Compulsive Disorder With Comorbid Mega Cisterna Magna. Cureus 2023; 15:e46670. [PMID: 37942372 PMCID: PMC10628914 DOI: 10.7759/cureus.46670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/10/2023] Open
Abstract
This article discusses the case of an adult woman with comorbid major depressive disorder (MDD) and obsessive-compulsive disorder (OCD). Due to her poor response to initial treatment regimens, a brain computed tomography (CT) was performed, revealing mega cisterna magna (MCM). Subsequently, she responded well to the addition of lorazepam, a benzodiazepine, along with fluvoxamine and quetiapine XR. The clinical significance of MCM and MDD-OCD remains partially understood. Thus, this case report aims to contribute to the literature and review the treatment of benzodiazepines in relation to MCM, MDD, and OCD comorbidities.
Collapse
Affiliation(s)
- Arifah Ismail
- Department of Psychiatry, Hospital Universiti Sains Malaysia, Kota Bharu, MYS
- Department of Psychiatry, Universiti Sains Malaysia School of Medical Sciences, Kota Bharu, MYS
| | - Asrenee Ab Razak
- Department of Psychiatry, Hospital Universiti Sains Malaysia, Kota Bharu, MYS
- Department of Psychiatry, Universiti Sains Malaysia School of Medical Sciences, Kota Bharu, MYS
| | - Khairil Amir Sayuti
- Department of Radiology, Hospital Universiti Sains Malaysia, Kota Bharu, MYS
- Department of Radiology, Universiti Sains Malaysia School of Medical Sciences, Kota Bharu, MYS
| | - Picholas Kian Ann Phoa
- Department of Psychiatry, Universiti Sains Malaysia School of Medical Sciences, Kota Bharu, MYS
| |
Collapse
|
11
|
Kosová E, Pajuelo D, Greguš D, Brunovský M, Stopková P, Fajnerová I, Horáček J. Glutamatergic abnormalities in the pregenual anterior cingulate cortex in obsessive-compulsive disorder using magnetic resonance spectroscopy: A controlled study. Psychiatry Res Neuroimaging 2023; 335:111721. [PMID: 37832259 DOI: 10.1016/j.pscychresns.2023.111721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
In this study, we utilized proton magnetic resonance spectroscopy (MRS) to understand the role of glutamate (Glu), glutamine (Gln), and gamma-aminobutyric acid (GABA) of OCD patients in the pregenual anterior cingulate cortex (pgACC). In total, 54 patients with OCD and 54 healthy controls (HC) matched for age and sex were included in the study. They underwent MRS in the pgACC region to calculate the concentrations of Glu, Gln, GABA, and Glu + Gln (Glx). After quality control of the MRS data, 21 OCD and 21 HC were statistically analyzed. The severity of symptoms were evaluated using the Yale-Brown Obsessive-Compulsive Scale (YBOCS). In the statistical analysis, we compared differences between groups for the metabolites; in the OCD we analyzed the correlations with symptom severity, medication status, age, and duration of illness. A significant decrease in Glx, in Glu, and in Gln in the pgACC were observed in the OCD compared to HC. The correlation statistics showed a significant positive correlation between Glu levels and the YBOCS compulsions subscale. The results indicate that patients with OCD present a disturbance in glutamatergic metabolism in the pgACC. The results also demonstrate that these changes correlate with the severity of compulsions.
Collapse
Affiliation(s)
- Eliška Kosová
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Dita Pajuelo
- National Institute of Mental Health, Klecany, Czech Republic; MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - David Greguš
- National Institute of Mental Health, Klecany, Czech Republic
| | - Martin Brunovský
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavla Stopková
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Iveta Fajnerová
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiří Horáček
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Biria M, Banca P, Healy MP, Keser E, Sawiak SJ, Rodgers CT, Rua C, de Souza AMFLP, Marzuki AA, Sule A, Ersche KD, Robbins TW. Cortical glutamate and GABA are related to compulsive behaviour in individuals with obsessive compulsive disorder and healthy controls. Nat Commun 2023; 14:3324. [PMID: 37369695 DOI: 10.1038/s41467-023-38695-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
There has been little analysis of neurochemical correlates of compulsive behaviour to illuminate its underlying neural mechanisms. We use 7-Tesla proton magnetic resonance spectroscopy (1H-MRS) to assess the balance of excitatory and inhibitory neurotransmission by measuring glutamate and GABA levels in anterior cingulate cortex (ACC) and supplementary motor area (SMA) of healthy volunteers and participants with Obsessive-Compulsive Disorder (OCD). Within the SMA, trait and clinical measures of compulsive behaviour are related to glutamate levels, whereas a behavioural index of habitual control correlates with the glutamate:GABA ratio. Participants with OCD also show the latter relationship in the ACC while exhibiting elevated glutamate and lower GABA levels in that region. This study highlights SMA mechanisms of habitual control relevant to compulsive behaviour, common to the healthy sub-clinical and OCD populations. The results also demonstrate additional involvement of anterior cingulate in the balance between goal-directed and habitual responding in OCD.
Collapse
Affiliation(s)
- Marjan Biria
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - Paula Banca
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Máiréad P Healy
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Engin Keser
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Stephen J Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Christopher T Rodgers
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Catarina Rua
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Ana Maria Frota Lisbôa Pereira de Souza
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Aleya A Marzuki
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Akeem Sule
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Karen D Ersche
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| |
Collapse
|
13
|
Pang EW, Hammill C, Taylor MJ, Near J, Schachar R, Crosbie J, Arnold PD, Anagnostou E, Lerch JP. Cerebellar gamma-aminobutyric acid: Investigation of group effects in neurodevelopmental disorders. Autism Res 2023; 16:535-542. [PMID: 36626308 DOI: 10.1002/aur.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023]
Abstract
Neurodevelopmental disorders (NDDs) including autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD) are thought to arise in part from the disruption in the excitatory/inhibitory balance of gamma-aminobutyric acid (GABA) and glutamate in the brain. Recent evidence has shown the involvement of the cerebellum in cognition and affect regulation, and cerebellar atypical function or damage is reported frequently in NDDs. Magnetic resonance spectroscopy studies have reported decreases in GABA in cortical brain areas in the NDDs, however, GABA levels in the cerebellum have not been examined. To determine possible group effects, we used a MEGA-PRESS acquisition to investigate GABA+ levels in a cerebellar voxel in 343 individuals (aged 2.5-22 years) with ASD, ADHD, OCD and controls. Using a mixed effects model, we found no significant differences between groups in GABA+ concentration. Our findings suggest that cerebellar GABA+ levels do not differentiate NDD groups.
Collapse
Affiliation(s)
- Elizabeth W Pang
- Division of Neurology/Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Chris Hammill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada
| | - Margot J Taylor
- Diagnostic Imaging/Neuroscience and Mental Health, Hospital for Sick Children, Toronto and Departments of Medical Imaging and Psychology, University of Toronto, Toronto, Canada
| | - Jamie Near
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Russell Schachar
- Department of Psychiatry/Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Jennifer Crosbie
- Department of Psychiatry/Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Poli A, Pozza A, Orrù G, Conversano C, Ciacchini R, Pugi D, Angelo NL, Angeletti LL, Miccoli M, Gemignani A. Neurobiological outcomes of cognitive behavioral therapy for obsessive-compulsive disorder: A systematic review. Front Psychiatry 2022; 13:1063116. [PMID: 36569616 PMCID: PMC9780289 DOI: 10.3389/fpsyt.2022.1063116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Obsessive-compulsive disorder (OCD) is characterized by recurrent distressing thoughts and repetitive behaviors, or mental rituals performed to reduce anxiety. Recent neurobiological techniques have been particularly convincing in suggesting that cortico-striatal-thalamic-cortico (CSTC) circuits, including orbitofrontal cortex (OFC) and striatum regions (caudate nucleus and putamen), are responsible for mediation of OCD symptoms. However, it is still unclear how these regions are affected by OCD treatments in adult patients. To address this yet open question, we conducted a systematic review of all studies examining neurobiological changes before and after first-line psychological OCD treatment, i.e., cognitive-behavioral therapy (CBT). Methods Studies were included if they were conducted in adults with OCD and they assessed the neurobiological effects of CBT before and after treatment. Two databases were searched: PsycINFO and PubMed for the time frame up to May 2022. Results We obtained 26 pre-post CBT treatment studies performed using different neurobiological techniques, namely functional magnetic resonance imaging (fMRI), Positron emission tomography (PET), regional cerebral blood flow (rCBF), 5-HT concentration, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), Electroencephalography (EEG). Neurobiological data show the following after CBT intervention: (i) reduced activations in OFC across fMRI, EEG, and rCBF; (ii) decreased activity in striatum regions across fMRI, rCBF, PET, and MRI; (iii) increased activations in cerebellum (CER) across fMRI and MRI; (iv) enhanced neurochemical concentrations in MRS studies in OFC, anterior cingulate cortex (ACC) and striatum regions. Most of these neurobiological changes are also accompanied by an improvement in symptom severity as assessed by a reduction in the Y-BOCS scores. Conclusion Cognitive-behavioral therapy seems to be able to restructure, modify, and transform the neurobiological component of OCD, in addition to the clinical symptoms. Nevertheless, further studies are necessary to frame the OCD spectrum in a dimensional way.
Collapse
Affiliation(s)
- Andrea Poli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Pozza
- Department of Medical Sciences, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Graziella Orrù
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ciro Conversano
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Rebecca Ciacchini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Daniele Pugi
- Department of Medical Sciences, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Nicole Loren Angelo
- Department of Medical Sciences, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | | | - Mario Miccoli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Rodrigues da Silva D, Maia A, Cotovio G, Oliveira J, Oliveira-Maia AJ, Barahona-Corrêa JB. Motor cortical inhibitory deficits in patients with obsessive-compulsive disorder-A systematic review and meta-analysis of transcranial magnetic stimulation literature. Front Psychiatry 2022; 13:1050480. [PMID: 36569621 PMCID: PMC9770010 DOI: 10.3389/fpsyt.2022.1050480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Obsessive-compulsive disorder (OCD) is a highly prevalent chronic disorder, often refractory to treatment. While remaining elusive, a full understanding of the pathophysiology of OCD is crucial to optimize treatment. Transcranial magnetic stimulation (TMS) is a non-invasive technique that, paired with other neurophysiological techniques, such as electromyography, allows for in vivo assessment of human corticospinal neurophysiology. It has been used in clinical populations, including comparisons of patients with OCD and control volunteers. Results are often contradictory, and it is unclear if such measures change after treatment. Here we summarize research comparing corticospinal excitability between patients with OCD and control volunteers, and explore the effects of treatment with repetitive TMS (rTMS) on these excitability measures. Methods We conducted a systematic review and meta-analysis of case-control studies comparing various motor cortical excitability measures in patients with OCD and control volunteers. Whenever possible, we meta-analyzed motor cortical excitability changes after rTMS treatment. Results From 1,282 articles, 17 reporting motor cortex excitability measures were included in quantitative analyses. Meta-analysis regarding cortical silent period shows inhibitory deficits in patients with OCD, when compared to control volunteers. We found no statistically significant differences in the remaining meta-analyses, and no evidence, in patients with OCD, of pre- to post-rTMS changes in resting motor threshold, the only excitability measure for which longitudinal data were reported. Discussion Our work suggests an inhibitory deficit of motor cortex excitability in patients with OCD when compared to control volunteers. Cortical silent period is believed to reflect activity of GABAB receptors, which is in line with neuroimaging research, showing GABAergic deficits in patients with OCD. Regardless of its effect on OCD symptoms, rTMS apparently does not modify Resting Motor Threshold, possibly because this measure reflects glutamatergic synaptic transmission, while rTMS is believed to mainly influence GABAergic function. Our meta-analyses are limited by the small number of studies included, and their methodological heterogeneity. Nonetheless, cortical silent period is a reliable and easily implementable measurement to assess neurophysiology in humans, in vivo. The present review illustrates the importance of pursuing the study of OCD pathophysiology using cortical silent period and other easily accessible, non-invasive measures of cortical excitability. Systematic review registration [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020201764], identifier [CRD42020201764].
Collapse
Affiliation(s)
| | - Ana Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - José Oliveira
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Albino J. Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - J. Bernardo Barahona-Corrêa
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
16
|
Luttenbacher I, Phillips A, Kazemi R, Hadipour AL, Sanghvi I, Martinez J, Adamson MM. Transdiagnostic role of glutamate and white matter damage in neuropsychiatric disorders: A Systematic Review. J Psychiatr Res 2022; 147:324-348. [PMID: 35151030 DOI: 10.1016/j.jpsychires.2021.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 12/09/2022]
Abstract
Neuropsychiatric disorders including generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) have been considered distinct categories of diseases despite their overlapping characteristics and symptomatology. We aimed to provide an in-depth review elucidating the role of glutamate/Glx and white matter (WM) abnormalities in these disorders from a transdiagnostic perspective. The PubMed online database was searched for studies published between 2010 and 2021. After careful screening, 401 studies were included. The findings point to decreased levels of glutamate in the Anterior Cingulate Cortex in both SZ and BD, whereas Glx is elevated in the Hippocampus in SZ and MDD. With regard to WM abnormalities, the Corpus Callosum and superior Longitudinal Fascicle were the most consistently identified brain regions showing decreased fractional anisotropy (FA) across all the reviewed disorders, except GAD. Additionally, the Uncinate Fasciculus displayed decreased FA in all disorders, except OCD. Decreased FA was also found in the inferior Longitudinal Fasciculus, inferior Fronto-Occipital Fasciculus, Thalamic Radiation, and Corona Radiata in SZ, BD, and MDD. Decreased FA in the Fornix and Corticospinal Tract were found in BD and SZ patients. The Cingulum and Anterior Limb of Internal Capsule exhibited decreased FA in MDD and SZ patients. The results suggest a gradual increase in severity from GAD to SZ defined by the number of brain regions with WM abnormality which may be partially caused by abnormal glutamate levels. WM damage could thus be considered a potential marker of some of the main neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ines Luttenbacher
- Department of Social & Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands; Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Angela Phillips
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Reza Kazemi
- Department of Cognitive Psychology, Institute for Cognitive Science Studies, Tehran, Iran
| | - Abed L Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| | - Isha Sanghvi
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neuroscience, University of Southern California, Los Angeles, CA, USA
| | - Julian Martinez
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Palo Alto University, Palo Alto, CA, USA
| | - Maheen M Adamson
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
17
|
Pittenger C, Brennan BP, Koran L, Mathews CA, Nestadt G, Pato M, Phillips KA, Rodriguez CI, Simpson HB, Skapinakis P, Stein DJ, Storch EA. Specialty knowledge and competency standards for pharmacotherapy for adult obsessive-compulsive disorder. Psychiatry Res 2021; 300:113853. [PMID: 33975093 PMCID: PMC8536398 DOI: 10.1016/j.psychres.2021.113853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Obsessive-compulsive disorder (OCD) affects approximately one person in 40 and causes substantial suffering. Evidence-based treatments can benefit many; however, optimal treatment can be difficult to access. Diagnosis is frequently delayed, and pharmacological and psychotherapeutic interventions often fail to follow evidence-based guidelines. To ameliorate this distressing situation, the International OCD Accreditation Task Force of the Canadian Institute for Obsessive-Compulsive Disorders has developed knowledge and competency standards for specialized treatments for OCD through the lifespan. These are foundational to evidence-based practice and will form the basis for upcoming ATF development of certification/accreditation programs. Here, we present specialty standards for the pharmacological treatment of adult OCD. We emphasize the importance of integrating pharmacotherapy with clear diagnosis, appreciation of complicating factors, and evidence-based cognitive behavioral therapy. Clear evidence exists to inform first- and second-line pharmacological treatments. In disease refractory to these initial efforts, multiple strategies have been investigated, but the evidence is more equivocal. These standards summarize this limited evidence to give the specialist practitioner a solid basis on which to make difficult decisions in complex cases. It is hoped that further research will lead to development of a clear, multi-step treatment algorithm to support each step in clinical decision-making.
Collapse
Affiliation(s)
- Christopher Pittenger
- Department of Psychiatry and Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States.
| | - Brian P Brennan
- Biological Psychiatry Laboratory and Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Lorrin Koran
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Carol A Mathews
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michele Pato
- Institute for Genomic Health and Department of Psychiatry, SUNY Downstate College of Medicine, Brooklyn, NY, United States
| | - Katharine A Phillips
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, and Department of Psychiatry, Weill Cornell Medical College, New York, NY, United States
| | - Carolyn I Rodriguez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - H Blair Simpson
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States; Office of Mental Health, Research Foundation for Mental Hygiene, New York Psychiatric Institute, New York, NY, United States
| | - Petros Skapinakis
- Department of Psychiatry, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Eric A Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
18
|
Piantadosi SC, Chamberlain BL, Glausier JR, Lewis DA, Ahmari SE. Lower excitatory synaptic gene expression in orbitofrontal cortex and striatum in an initial study of subjects with obsessive compulsive disorder. Mol Psychiatry 2021; 26:986-998. [PMID: 31168067 DOI: 10.1038/s41380-019-0431-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/04/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022]
Abstract
Obsessive compulsive disorder (OCD) is a severe illness that affects 2-3% of people worldwide. OCD neuroimaging studies have consistently shown abnormal activity in brain regions involved in decision-making (orbitofrontal cortex [OFC]) and action selection (striatum). However, little is known regarding molecular changes that may contribute to abnormal function. We therefore examined expression of synaptic genes in post-mortem human brain samples of these regions from eight pairs of unaffected comparison and OCD subjects. Total grey matter tissue samples were obtained from medial OFC (BA11), lateral OFC (BA47), head of caudate, and nucleus accumbens (NAc). Quantitative polymerase chain reaction (qPCR) was then performed on a panel of transcripts encoding proteins related to excitatory synaptic structure, excitatory synaptic receptors/transporters, and GABA synapses. Relative to unaffected comparison subjects, OCD subjects had significantly lower levels of several transcripts related to excitatory signaling in both cortical and striatal regions. However, a majority of transcripts encoding excitatory synaptic proteins were lower in OFC but not significantly different in striatum of OCD subjects. Composite transcript level measures supported these findings by revealing that reductions in transcripts encoding excitatory synaptic structure proteins and excitatory synaptic receptors/transporters occurred primarily in OFC of OCD subjects. In contrast, transcripts associated with inhibitory synaptic neurotransmission showed minor differences between groups. The observed lower levels of multiple glutamatergic transcripts across both medial and lateral OFC may suggest an upstream causal event. Together, these data provide the first evidence of molecular abnormalities in brain regions consistently implicated in OCD human imaging studies.
Collapse
Affiliation(s)
- Sean C Piantadosi
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susanne E Ahmari
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Batistuzzo MC, Sottili BA, Shavitt RG, Lopes AC, Cappi C, de Mathis MA, Pastorello B, Diniz JB, Silva RMF, Miguel EC, Hoexter MQ, Otaduy MC. Lower Ventromedial Prefrontal Cortex Glutamate Levels in Patients With Obsessive-Compulsive Disorder. Front Psychiatry 2021; 12:668304. [PMID: 34168581 PMCID: PMC8218991 DOI: 10.3389/fpsyt.2021.668304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Recent studies using magnetic resonance spectroscopy (1H-MRS) indicate that patients with obsessive-compulsive disorder (OCD) present abnormal levels of glutamate (Glu) and gamma aminobutyric acid (GABA) in the frontal and striatal regions of the brain. These abnormalities could be related to the hyperactivation observed in cortico-striatal circuits of patients with OCD. However, most of the previous 1H-MRS studies were not capable of differentiating the signal from metabolites that overlap in the spectrum, such as Glu and glutamine (Gln), and referred to the detected signal as the composite measure-Glx (sum of Glu and Gln). In this study, we used a two-dimensional JPRESS 1H-MRS sequence that allows the discrimination of overlapping metabolites by observing the differences in J-coupling, leading to higher accuracy in the quantification of all metabolites. Our objective was to identify possible alterations in the neurometabolism of OCD, focusing on Glu and GABA, which are key neurotransmitters in the brain that could provide insights into the underlying neurochemistry of a putative excitatory/inhibitory imbalance. Secondary analysis was performed including metabolites such as Gln, creatine (Cr), N-acetylaspartate, glutathione, choline, lactate, and myo-inositol. Methods: Fifty-nine patients with OCD and 42 healthy controls (HCs) underwent 3T 1H-MRS in the ventromedial prefrontal cortex (vmPFC, 30 × 25 × 25 mm3). Metabolites were quantified using ProFit (version 2.0) and Cr as a reference. Furthermore, Glu/GABA and Glu/Gln ratios were calculated. Generalized linear models (GLMs) were conducted using each metabolite as a dependent variable and age, sex, and gray matter fraction (fGM) as confounding factors. GLM analysis was also used to test for associations between clinical symptoms and neurometabolites. Results: The GLM analysis indicated lower levels of Glu/Cr in patients with OCD (z = 2.540; p = 0.011). No other comparisons reached significant differences between groups for all the metabolites studied. No associations between metabolites and clinical symptoms were detected. Conclusions: The decreased Glu/Cr concentrations in the vmPFC of patients with OCD indicate a neurochemical imbalance in the excitatory neurotransmission that could be associated with the neurobiology of the disease and may be relevant for the pathophysiology of OCD.
Collapse
Affiliation(s)
- Marcelo C Batistuzzo
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Department of Methods and Techniques in Psychology, Pontifical Catholic University, São Paulo, Brazil
| | - Bruna A Sottili
- Laboratory of Magnetic Resonance (LIM44), Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), São Paulo, Brazil
| | - Roseli G Shavitt
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Antonio C Lopes
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Carolina Cappi
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Maria Alice de Mathis
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Bruno Pastorello
- Laboratory of Magnetic Resonance (LIM44), Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), São Paulo, Brazil
| | - Juliana B Diniz
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Renata M F Silva
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Euripedes C Miguel
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Marcelo Q Hoexter
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Maria C Otaduy
- Laboratory of Magnetic Resonance (LIM44), Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), São Paulo, Brazil
| |
Collapse
|
20
|
Abstract
Effective pharmacological and psychotherapeutic treatments are well established for obsessive-compulsive disorder (OCD). Serotonin reuptake inhibitors (SRIs) are first-line treatment and are of benefit to about half of patients. Augmentation of SRI treatment with low-dose neuroleptics is an evidence-based second-line strategy. Specialty psychotherapy is also used as both first-line and second-line treatment and can benefit many. However, a substantial number of patients do not respond to these treatments. New alternatives are urgently needed. This review summarizes evidence for these established pharmacotherapeutic strategies, and for others that have been investigated in refractory disease but are not supported by the same level of evidence. We focus on three neurotransmitter systems in the brain: serotonin, dopamine, and glutamate. We summarize evidence from genetic, neuroimaging, animal model, and other lines of investigation that probe these three systems in patients with OCD. We also review recent work on predictors of response to current treatments. While many studies suggest abnormalities that may provide insight into the pathophysiology of the disorder, most studies have been small, and non-replication of reported findings has been common. Nevertheless, the gradual accrual of evidence for neurotransmitter dysregulation may in time lead the way to new pharmacological strategies.
Collapse
|
21
|
Biria M, Cantonas LM, Banca P. Magnetic Resonance Spectroscopy (MRS) and Positron Emission Tomography (PET) Imaging in Obsessive-Compulsive Disorder. Curr Top Behav Neurosci 2021; 49:231-268. [PMID: 33751502 DOI: 10.1007/7854_2020_201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Obsessive-compulsive disorder (OCD) is characterised by structural and functional deficits in the cortico-striato-thalamic-cortical (CSTC) circuitry and abnormal neurochemical changes are thought to modulate these deficits. The hypothesis that an imbalanced concentration of the brain neurotransmitters, in particular glutamate (Glu) and gamma-amino-butyric acid (GABA), could impair the normal functioning of the CSTC, thus leading to OCD symptoms, has been tested in humans using magnetic resonance spectroscopy (MRS) and positron emission tomography (PET). This chapter summarises these neurochemical findings and represents an attempt to condense such scattered literature. We also discuss potential challenges in the field that may explain the inconsistent findings and suggest ways to overcome them. There is some convergent research from MRS pointing towards abnormalities in the brain concentration of neurometabolite markers of neuronal integrity, such as N-acetylaspartate (NAA) and choline (Cho). Lower NAA levels have been found in dorsal and rostral ACC of OCD patients (as compared to healthy volunteers), which increase after CBT and SSRI treatment, and higher Cho concentration has been reported in the thalamus of the OCD brain. However, findings for other neurometabolites are very inconsistent. Studies have reported abnormalities in the concentrations of creatine (Cr), GABA, glutamate (Glu), glutamine (Gln), Ins (myo-inositol), and serotonin (5-HT), but most of the results were not replicated. The question remains whether the NAA and Cho findings are genuinely the only neurochemical abnormalities in OCD or whether the lack of consistent findings for the other neurometabolites is caused by the lower magnetic field (1-3 Tesla (T)) used by the studies conducted so far, their small sample sizes or a lack of proper control for medication effects. To answer these questions and to further inform the biological underpinning of the symptoms and the cognitive problems at the basis of OCD we need better controlled studies using clear medicated vs unmedicated groups, larger sample sizes, stronger magnetic fields (e.g. at 7 T), and more consistency in the definition of the regions of interest.
Collapse
Affiliation(s)
- Marjan Biria
- Department of Psychology, University of Cambridge, Cambridge, UK.
| | | | - Paula Banca
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Giménez M, Cano M, Martínez-Zalacaín I, Real E, Alonso P, Segalàs C, Munuera J, Kegeles LS, Weinstein JJ, Xu X, Menchón JM, Cardoner N, Soriano-Mas C, Fullana MA. Is glutamate associated with fear extinction and cognitive behavior therapy outcome in OCD? A pilot study. Eur Arch Psychiatry Clin Neurosci 2020; 270:1003-1014. [PMID: 31432262 DOI: 10.1007/s00406-019-01056-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 08/07/2019] [Indexed: 12/15/2022]
Abstract
Cognitive behavioral therapy (CBT) including exposure and response prevention is a well-established treatment for obsessive-compulsive disorder (OCD) and is based on the principles of fear extinction. Fear extinction is linked to structural and functional variability in the ventromedial prefrontal cortex (vmPFC) and has been consistently associated with glutamate neurotransmission. The relationship between vmPFC glutamate and fear extinction and its effects on CBT outcome have not yet been explored in adults with OCD. We assessed glutamate levels in the vmPFC using 3T magnetic resonance spectroscopy, and fear extinction (learning and recall) using skin conductance responses during a 2-day experimental paradigm in OCD patients (n = 17) and in healthy controls (HC; n = 13). Obsessive-compulsive patients (n = 12) then received manualized CBT. Glutamate in the vmPFC was negatively associated with fear extinction recall and positively associated with CBT outcome (with higher glutamate levels predicting a better outcome) in OCD patients. Glutamate levels in the vmPFC in OCD patients were not significantly different from those in HC, and were not associated with OCD severity. Our results suggest that glutamate in the vmPFC is associated with fear extinction recall and CBT outcome in adult OCD patients.
Collapse
Affiliation(s)
- M Giménez
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Feixa Llarga s/n, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Carlos III Health Institute, Centro de Investigación Biomédica en Red de Salud Mental-CIBERSAM, Av. de Monforte de Lemos 5, 28029, Madrid, Spain
| | - M Cano
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Feixa Llarga s/n, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Carlos III Health Institute, Centro de Investigación Biomédica en Red de Salud Mental-CIBERSAM, Av. de Monforte de Lemos 5, 28029, Madrid, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - I Martínez-Zalacaín
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Feixa Llarga s/n, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - E Real
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Feixa Llarga s/n, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Carlos III Health Institute, Centro de Investigación Biomédica en Red de Salud Mental-CIBERSAM, Av. de Monforte de Lemos 5, 28029, Madrid, Spain
| | - P Alonso
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Feixa Llarga s/n, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Carlos III Health Institute, Centro de Investigación Biomédica en Red de Salud Mental-CIBERSAM, Av. de Monforte de Lemos 5, 28029, Madrid, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - C Segalàs
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Feixa Llarga s/n, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Carlos III Health Institute, Centro de Investigación Biomédica en Red de Salud Mental-CIBERSAM, Av. de Monforte de Lemos 5, 28029, Madrid, Spain
| | - J Munuera
- Diagnostic Imaging Department, Fundació de Recerca Hospital Sant Joan de Déu, Passeig Sant Joan de Déu, 2, Esplugues de Llobregat, 08950, Barcelona, Spain
| | - L S Kegeles
- Department of Psychiatry and Radiology, Columbia University, 622 W 168th St, New York, 10032, USA.,New York State Psychiatric Institute, 1051 Riverside Dr, New York, 10032, USA
| | - J J Weinstein
- Department of Psychiatry and Radiology, Columbia University, 622 W 168th St, New York, 10032, USA.,New York State Psychiatric Institute, 1051 Riverside Dr, New York, 10032, USA.,Department of Psychiatry, Stony Brook University, Stony Brook, 101 Nicolls Rd, Stony Brook, New York, 11794, USA
| | - X Xu
- Department of Psychiatry and Radiology, Columbia University, 622 W 168th St, New York, 10032, USA.,New York State Psychiatric Institute, 1051 Riverside Dr, New York, 10032, USA
| | - J M Menchón
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Feixa Llarga s/n, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Carlos III Health Institute, Centro de Investigación Biomédica en Red de Salud Mental-CIBERSAM, Av. de Monforte de Lemos 5, 28029, Madrid, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - N Cardoner
- Depression and Anxiety Program, Department of Mental Health, Parc Taulí Sabadell, Hospital Universitari, Parc Taulí 1, 08208, Sabadell, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Av. de Can Domènech, 737, 08193, Cerdanyola Del Vallès Barcelona, Barcelona, Spain
| | - C Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Feixa Llarga s/n, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Carlos III Health Institute, Centro de Investigación Biomédica en Red de Salud Mental-CIBERSAM, Av. de Monforte de Lemos 5, 28029, Madrid, Spain.,Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Building B1, Ca n'Altayó, s/n, Bellaterra, 08193, Barcelona, Spain
| | - M A Fullana
- Carlos III Health Institute, Centro de Investigación Biomédica en Red de Salud Mental-CIBERSAM, Av. de Monforte de Lemos 5, 28029, Madrid, Spain. .,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Av. de Can Domènech, 737, 08193, Cerdanyola Del Vallès Barcelona, Barcelona, Spain. .,Psychiatry Department, Hospital Clínic-Institute of Neurosciences, CIBERSAM, C/Rosselló 140, 08036, Barcelona, Spain.
| |
Collapse
|
23
|
Beneficial effects of physical activity on depressive and OCD-like behaviors in the male offspring of morphine-abstinent rats. Brain Res 2020; 1744:146908. [DOI: 10.1016/j.brainres.2020.146908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022]
|
24
|
Tang L, Zhao Y, Li Y, Guo R, Clifford B, El Fakhri G, Ma C, Liang ZP, Luo J. Accelerated J-resolved 1 H-MRSI with limited and sparse sampling of ( k , t 1 , t 2 -space. Magn Reson Med 2020; 85:30-41. [PMID: 32726510 DOI: 10.1002/mrm.28413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023]
Abstract
PURPOSE To accelerate the acquisition of J-resolved proton magnetic resonance spectroscopic imaging (1 H-MRSI) data for high-resolution mapping of brain metabolites and neurotransmitters. METHODS The proposed method used a subspace model to represent multidimensional spatiospectral functions, which significantly reduced the number of parameters to be determined from J-resolved 1 H-MRSI data. A semi-LASER-based (Localization by Adiabatic SElective Refocusing) echo-planar spectroscopic imaging (EPSI) sequence was used for data acquisition. The proposed data acquisition scheme sampled k , t 1 , t 2 -space in variable density, where t1 and t2 specify the J-coupling and chemical-shift encoding times, respectively. Selection of the J-coupling encoding times (or, echo time values) was based on a Cramer-Rao lower bound analysis, which were optimized for gamma-aminobutyric acid (GABA) detection. In image reconstruction, parameters of the subspace-based spatiospectral model were determined by solving a constrained optimization problem. RESULTS Feasibility of the proposed method was evaluated using both simulated and experimental data from a spectroscopic phantom. The phantom experimental results showed that the proposed method, with a factor of 12 acceleration in data acquisition, could determine the distribution of J-coupled molecules with expected accuracy. In vivo study with healthy human subjects also showed that 3D maps of brain metabolites and neurotransmitters can be obtained with a nominal spatial resolution of 3.0 × 3.0 × 4.8 mm3 from J-resolved 1 H-MRSI data acquired in 19.4 min. CONCLUSIONS This work demonstrated the feasibility of highly accelerated J-resolved 1 H-MRSI using limited and sparse sampling of k , t 1 , t 2 -space and subspace modeling. With further development, the proposed method may enable high-resolution mapping of brain metabolites and neurotransmitters in clinical applications.
Collapse
Affiliation(s)
- Lihong Tang
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yibo Zhao
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yudu Li
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rong Guo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Bryan Clifford
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Georges El Fakhri
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chao Ma
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhi-Pei Liang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jie Luo
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Zheng H, Yang W, Zhang B, Hua G, Wang S, Jia F, Guo G, Wang W, Quan D. Reduced anterior cingulate glutamate of comorbid skin-picking disorder in adults with obsessive-compulsive disorder. J Affect Disord 2020; 265:193-199. [PMID: 32090741 DOI: 10.1016/j.jad.2020.01.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Obsessive Compulsive Disorder (OCD) is characterized by hyperactivity in a network of forebrain structures, including the anterior cingulate cortex (ACC). Convergent evidence suggests that glutamatergic dysfunction may contribute to the disorder. Skin picking disorder (SPD) was listed as one of the obsessive-compulsive and related disorders, which is often comorbid with OCD and share overlapping phenomenology and pathophysiology. However, potential confounding effects between the two diagnostic effects on neurotransmitter levels remain largely unexamined. METHODS We examined the pregenual anterior cingulate cortex (pACC) glutamate and other neurochemicals in 62 subjects using a single-voxel acquisition 1H MRS at 3Tesla; of these, 47 subjects yielded usable measurements of both glutamate and glutamine and were included in the analysis (17 medicated with OCD alone, 13 medicated with comorbid OCD + SPD, 17 healthy control). RESULTS OCD with comorbid SPD showed significantly lower pACC glutamate than in patients without SPD (p = 0.001) or control subjects (p = 0.035). OCD without SPD subjects showed pACC glutamate levels indistinguishable from controls (p = 0.501). In the OCD with SPD subjects, glutamate was correlated with Y-BOCS total score in female patients (n = 9, r = 0.69, p = 0.041). LIMITATIONS The main limitation of the study was the cross-sectional data. Our patients were on SSRI medication which may have modified the effect of SPD and OCD interaction on glutamate activity. CONCLUSION Our results suggest that alterations of the glutamatergic system may play an important role in the pathophysiology of a subgroup of OCD and reduced pACC glutamate may be a biomarker of a distinct subset of OCD patients.
Collapse
Affiliation(s)
- Huirong Zheng
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Affliated School of Medicine of South China University of Technology, Guangzhou, China.
| | - Wanqun Yang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bin Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for, Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Guanmin Hua
- Guangzhou Yuexiu District Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Shibin Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Affliated School of Medicine of South China University of Technology, Guangzhou, China
| | - Fujun Jia
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Affliated School of Medicine of South China University of Technology, Guangzhou, China
| | - Guangquan Guo
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Affliated School of Medicine of South China University of Technology, Guangzhou, China
| | - Wenjing Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Affliated School of Medicine of South China University of Technology, Guangzhou, China
| | - Dongming Quan
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Affliated School of Medicine of South China University of Technology, Guangzhou, China
| |
Collapse
|
26
|
Cox RC, Olatunji BO. Sleep in the anxiety-related disorders: A meta-analysis of subjective and objective research. Sleep Med Rev 2020; 51:101282. [PMID: 32109832 DOI: 10.1016/j.smrv.2020.101282] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 02/04/2023]
Abstract
Although sleep disturbance is implicated in psychopathology, its role in anxiety-related disorders remains unclear. The present meta-analysis characterizes sleep disturbance in anxiety-related disorders collectively and individually. Subjective measures of total sleep time and sleep continuity were included with objective measures. Results indicate a large effect for increased subjective sleep disturbance (g = 2.16), medium effects for decreased total sleep time (g = -.40) and sleep continuity (g = -.49), and a small effect for decreased sleep depth (g = -.20) in anxiety-related disorders compared to healthy controls. Each anxiety-related disorder exhibited a distinct sleep disturbance pattern, suggesting that sleep may facilitate identification of unique biopsychological underpinnings. Effects were not moderated by comorbid depression and were similar in magnitude to those found for depression. Sleep disturbances, particularly decreased sleep continuity, may be a key pathology in the anxiety-related disorders that could highlight novel etiological mechanisms and intervention targets.
Collapse
Affiliation(s)
- Rebecca C Cox
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Avenue South, Nashville, TN 37240, USA.
| | - Bunmi O Olatunji
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Avenue South, Nashville, TN 37240, USA
| |
Collapse
|
27
|
Karthik S, Sharma LP, Narayanaswamy JC. Investigating the Role of Glutamate in Obsessive-Compulsive Disorder: Current Perspectives. Neuropsychiatr Dis Treat 2020; 16:1003-1013. [PMID: 32368062 PMCID: PMC7173854 DOI: 10.2147/ndt.s211703] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Glutamate is a ubiquitous excitatory neurotransmitter, which is involved in normal physiology, a variety of central nervous system (CNS) functions, including excitotoxicity and neuronal migration. It is implicated in the pathogenesis of various neuropsychiatric disorders including epilepsy, Parkinson's disease, Alzheimer's dementia, schizophrenia and obsessive compulsive disorder (OCD). Over the years, a growing body of evidence has helped researchers understand the mechanisms underlying glutamatergic involvement in the pathogenesis of these disorders. In this review, we attempt to elucidate the role of glutamate in OCD, which is a chronic psychiatric condition with significant morbidity. This article provides current perspectives on the role played by glutamate in the pathogenesis, clinical symptoms and treatment response in OCD, a critical analysis of existing and emerging evidence, both clinical and preclinical, followed by a summary and future directions.
Collapse
Affiliation(s)
- Sheshachala Karthik
- OCD Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Lavanya P Sharma
- OCD Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Janardhanan C Narayanaswamy
- OCD Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| |
Collapse
|
28
|
Levitt JG, Kalender G, O’Neill J, Diaz JP, Cook IA, Ginder N, Krantz D, Minzenberg MJ, Vince-Cruz N, Nguyen LD, Alger JR, Leuchter AF. Dorsolateral prefrontal γ-aminobutyric acid in patients with treatment-resistant depression after transcranial magnetic stimulation measured with magnetic resonance spectroscopy. J Psychiatry Neurosci 2019; 44:386-394. [PMID: 31199104 PMCID: PMC6821508 DOI: 10.1503/jpn.180230] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The therapeutic mechanism of repetitive transcranial magnetic stimulation (rTMS) for treatment-resistant depression (TRD) may involve modulation of γ-aminobutyric acid (GABA) levels. We used proton magnetic resonance spectroscopy (MRS) to assess changes in GABA levels at the site of rTMS in the left dorsolateral prefrontal cortex (DLPFC). METHODS In 26 adults with TRD, we used Mescher–Garwood point-resolved spectroscopy (MEGA-PRESS) spectral-editing MRS to measure GABA in the left DLPFC before and after standard clinical treatment with rTMS. All participants but 1 were medicated, including 12 patients on GABA agonist agents. RESULTS Mean GABA in the DLPFC increased 10.0% (p = 0.017) post-rTMS in the overall sample. As well, GABA increased significantly in rTMS responders (n = 12; 23.6%, p = 0.015) but not in nonresponders (n = 14; 4.1%, p = not significant). Changes in GABA were not significantly affected by GABAergic agonists, but clinical response was less frequent (p = 0.005) and weaker (p = 0.035) in the 12 participants who were receiving GABA agonists concomitant with rTMS treatment. LIMITATIONS This study had an open-label design in a population receiving naturalistic treatment. CONCLUSION Treatment using rTMS was associated with increases in GABA levels at the stimulation site in the left DLPFC, and the degree of GABA change was related to clinical improvement. Participants receiving concomitant treatment with a GABA agonist were less likely to respond to rTMS. These findings were consistent with earlier studies showing the effects of rTMS on GABA levels and support a GABAergic model of depression.
Collapse
Affiliation(s)
- Jennifer G. Levitt
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Guldamla Kalender
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Joseph O’Neill
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Joel P. Diaz
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Ian A. Cook
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Nathaniel Ginder
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - David Krantz
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Michael J. Minzenberg
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Nikita Vince-Cruz
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Lydia D. Nguyen
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Jeffry R. Alger
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Andrew F. Leuchter
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| |
Collapse
|
29
|
Li Y, Zhang CC, Kathrin Weidacker, Zhang Y, He N, Jin H, Chen W, Voon V, Edden RAE, Yan F. Investigation of anterior cingulate cortex gamma-aminobutyric acid and glutamate-glutamine levels in obsessive-compulsive disorder using magnetic resonance spectroscopy. BMC Psychiatry 2019; 19:164. [PMID: 31146727 PMCID: PMC6543571 DOI: 10.1186/s12888-019-2160-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/23/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a relatively common and disabling psychiatric disorder whose pathophysiology is incompletely understood. In this study, we utilized magnetic resonance spectroscopy (MRS) in an effort to provide a better understanding of the role of brain gamma-aminobutyric acid (GABA) and glutamate in the pathophysiology of OCD. We hypothesized that beyond the separate effects of these neurotransmitter systems, a disruption in the balance between GABA and glutamate could be particularly relevant to OCD. METHODS We obtained MRS measures of GABA and glutamate concentrations in the anterior cingulate cortex from 23 adult patients with OCD and 20 sex- and age-matched healthy community volunteers. Established clinical rating scales were used to assess the severities of OCD, anxiety, and depression symptoms. Statistical analysis involved the assessment of patient-control group differences in the individual measures of GABA and glutamate, as well as in the ratio of the GABA to glutamate measures. Additionally, we explored whether differences in the MRS measures existed between two subgroups of patients formed according to the severity of their OCD symptoms. Finally, we assessed the relations of demographic and clinical variables to the MRS measures. RESULTS Patients with OCD displayed a higher estimated GABA level and a higher GABA to glutamate ratio than healthy participants, but no significant group differences were observed in the measure of glutamate. The MRS measures did not vary by subgroup and showed no correlations with demographic and clinical variables. CONCLUSIONS These results indicate that GABA abnormalities within the anterior cingulate cortex contribute to the pathophysiology of OCD. The results fail to provide evidence that glutamate abnormalities alone are involved in adult OCD. Yet, it seems that a disruption in the balance between glutamate and GABA neurotransmission may have a particularly important role to play in OCD pathophysiology.
Collapse
Affiliation(s)
- Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chen Cheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Yingying Zhang
- Department of Functional Neurosurgery, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haiyan Jin
- Department of Psychiatry, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Richard A E Edden
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
Chen Y, Meng Z, Zhang Z, Zhu Y, Gao R, Cao X, Tan L, Wang Z, Zhang H, Li Y, Fan Q. The right thalamic glutamate level correlates with functional connectivity with right dorsal anterior cingulate cortex/middle occipital gyrus in unmedicated obsessive-compulsive disorder: A combined fMRI and 1H-MRS study. Aust N Z J Psychiatry 2019; 53:207-218. [PMID: 30354192 DOI: 10.1177/0004867418806370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The imbalance in neurotransmitter and neuronal metabolite concentration within cortico-striato-thalamo-cortical (CSTC) circuit contributes to obsessive-compulsive disorder's (OCD) onset. Previous studies showed that glutamate mediated upregulation of resting-state activity in healthy people. However, there have been few studies investigating the correlational features between functional and neurochemical alterations in OCD. METHODS We utilize a combined resting-state functional magnetic resonance imaging (rs-fMRI) and proton magnetic resonance spectroscopy (1H-MRS) approach to investigate the altered functional connectivity (FC) in association with glutamatergic dysfunction in OCD pathophysiology. Three regions of interest are investigated, i.e., medial prefrontal cortex and bilateral thalamus, for seed-based whole-brain FC analysis as well as MRS data acquisition. There are 23 unmedicated adult OCD patients and 23 healthy controls recruited for brain FC analysis. Among them, 12 OCD and 8 controls are performed MRS data acquisition. RESULTS Besides abnormal FC within CSTC circuit, we also find altered FCs in large-scale networks outside CSTC circuit, including occipital area and limbic and motor systems. The decreased FC between right thalamus and right middle occipital gyrus (MOG) is correlated with glutamatergic signal within right thalamus in OCD patients. Moreover, the FC between right thalamus and right dorsal anterior cingulate cortex (dACC) is associated with glutamate level in right thalamus, specifically in patient's group. Finally, the FC between right thalamus and right MOG is correlated with patient's Yale-Brown Obsessive Compulsive Scale (YBOCS) compulsion and total scores, while the right thalamic glutamatergic signal is associated with YBOCS-compulsion score. CONCLUSION Our findings showed that the coupled intrinsic functional-biochemical alterations existed both within CSTC circuit and from CSTC to occipital lobe in OCD pathophysiology.
Collapse
Affiliation(s)
- Yongjun Chen
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- 2 Department of Developmental Behavioral Pediatric and Children Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyu Meng
- 3 School of Biomedical Engineering and Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Zongfeng Zhang
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajing Zhu
- 3 School of Biomedical Engineering and Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Gao
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Cao
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Tan
- 4 Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyin Zhang
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Li
- 3 School of Biomedical Engineering and Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Fan
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Boloc D, Mas S, Rodriguez N, Ortiz AE, Morer A, Plana MT, Lafuente A, Lazaro L, Gassó P. Genetic Associations of Serotoninergic and GABAergic Genes in an Extended Collection of Early-Onset Obsessive-Compulsive Disorder Trios. J Child Adolesc Psychopharmacol 2019; 29:152-157. [PMID: 30351181 DOI: 10.1089/cap.2018.0073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric disorder whose etiology includes important genetic contributions. In a previous transmission disequilibrium study in which 75 complete trios were included, single-nucleotide polymorphisms (SNPs) in serotoninergic and GABAergic genes were associated with early-onset OCD. Our aim was to assess those findings in an extended collection of early-onset OCD trios. METHODS A transmission disequilibrium test for SNPs in HTR1B (rs2000292), SLC18A1 (rs6586896), GAD1 (rs3791860), and GAD2 (rs8190748) was performed in a total of 101 early-onset OCD trios, from which 26 trios were newly recruited for the purpose of the present analysis. RESULTS All the SNPs were overtransmitted from parents to OCD probands (p < 0.012, significant after Bonferroni correction). CONCLUSIONS These results are consistent with the previous findings and constitute more evidence of the role of genetic factors related to serotoninergic and GABAergic pathways in the pathophysiology of early-onset OCD.
Collapse
Affiliation(s)
- Daniel Boloc
- 1 Department of Medicine, University of Barcelona , Barcelona, Spain
| | - Sergi Mas
- 2 Department of Basic Clinical Practice, University of Barcelona , Barcelona, Spain .,3 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona, Spain .,4 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Barcelona, Spain
| | - Natalia Rodriguez
- 2 Department of Basic Clinical Practice, University of Barcelona , Barcelona, Spain
| | - Ana E Ortiz
- 5 Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences , Hospital Clinic de Barcelona, Barcelona, Spain
| | - Astrid Morer
- 3 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona, Spain .,4 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Barcelona, Spain .,5 Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences , Hospital Clinic de Barcelona, Barcelona, Spain .,6 Department of Medicine, University of Barcelona , Barcelona, Spain
| | - Maria Teresa Plana
- 5 Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences , Hospital Clinic de Barcelona, Barcelona, Spain
| | - Amalia Lafuente
- 2 Department of Basic Clinical Practice, University of Barcelona , Barcelona, Spain .,3 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona, Spain .,4 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Barcelona, Spain
| | - Luisa Lazaro
- 3 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona, Spain .,4 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Barcelona, Spain .,5 Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences , Hospital Clinic de Barcelona, Barcelona, Spain .,6 Department of Medicine, University of Barcelona , Barcelona, Spain
| | - Patricia Gassó
- 2 Department of Basic Clinical Practice, University of Barcelona , Barcelona, Spain .,3 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona, Spain
| |
Collapse
|
32
|
Abstract
Proven treatment strategies for obsessive-compulsive disorder (OCD) include pharmacotherapy with serotonin reuptake inhibitors and cognitive behavior therapy (CBT). A significant proportion of patients (25%-30%) fail to respond to these treatment options, necessitating the need for additional treatment options to improve treatment outcomes and quality of life in patients with OCD. Augmentation strategies using various glutamatergic agents have been explored, with diverse outcomes. The aim of this review is to give an overview of the glutamatergic system in the brain with a focus on glutamatergic abnormalities in OCD and to review the existing evidence for various glutamatergic agents used for augmentation.
Collapse
Affiliation(s)
- Karthik Sheshachala
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | | |
Collapse
|
33
|
Dougherty DD, Brennan BP, Stewart SE, Wilhelm S, Widge AS, Rauch SL. Neuroscientifically Informed Formulation and Treatment Planning for Patients With Obsessive-Compulsive Disorder: A Review. JAMA Psychiatry 2018; 75:1081-1087. [PMID: 30140845 DOI: 10.1001/jamapsychiatry.2018.0930] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE Obsessive-compulsive disorder (OCD) is a common and often debilitating psychiatric illness. Recent advances in the understanding of the neuroscience of OCD have provided valuable insights that have begun to transform the way we think about the management of this disorder. This educational review provides an integrated neuroscience perspective on formulation and treatment planning for patients with OCD. The article is organized around key neuroscience themes most relevant for OCD. OBSERVATIONS An integrated neuroscience formulation of OCD is predicated on a fundamental understanding of phenomenology and symptom dimensions, fear conditioning and extinction, neurochemistry, genetics and animal models, as well as neurocircuitry and neurotherapeutics. Symptom dimensions provide a means to better understand the phenotypic heterogeneity within OCD with an eye toward more personalized treatments. The concept of abnormal fear extinction is central to OCD and to the underlying therapeutic mechanism of exposure and response prevention. A framework for understanding the neurochemistry of OCD focuses on both traditional monoaminergic systems and more recent evidence of glutamatergic and γ-aminobutyric acid-ergic dysfunction. Obsessive-compulsive disorder is highly heritable, and future work is needed to understand the contribution of genes to underlying pathophysiology. A circuit dysregulation framework focuses on cortico-striato-thalamo-cortical circuit dysfunction and the development of neurotherapeutic approaches targeting this circuit. The impact of these concepts on how we think about OCD diagnosis and treatment is discussed. Suggestions for future investigations that have the potential to further enhance the clinical management of OCD are presented. CONCLUSIONS AND RELEVANCE These key neuroscience themes collectively inform formulation and treatment planning for patients with OCD. The ultimate goal is to increase crosstalk between clinicians and researchers in an effort to facilitate translation of advances in neuroscience research to improved care for patients with OCD.
Collapse
Affiliation(s)
- Darin D Dougherty
- Division of Neurotherapeutics, Massachusetts General Hospital, Boston.,Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, Massachusetts.,Obsessive-Compulsive and Related Disorders Program, Massachusetts General Hospital, Boston.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Brian P Brennan
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Biological Psychiatry Laboratory, McLean Hospital, Belmont, Massachusetts
| | - S Evelyn Stewart
- BC Mental Health & Addictions Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sabine Wilhelm
- Obsessive-Compulsive and Related Disorders Program, Massachusetts General Hospital, Boston.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Alik S Widge
- Division of Neurotherapeutics, Massachusetts General Hospital, Boston.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Picower Institute for Learning and Memory, Massachusetts Institute for Technology, Cambridge
| | - Scott L Rauch
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Pregenual Anterior Cingulate Dysfunction Associated with Depression in OCD: An Integrated Multimodal fMRI/ 1H MRS Study. Neuropsychopharmacology 2018; 43:1146-1155. [PMID: 29052616 PMCID: PMC5854805 DOI: 10.1038/npp.2017.249] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 09/18/2017] [Accepted: 10/15/2017] [Indexed: 11/08/2022]
Abstract
Depression is a commonly occurring symptom in obsessive-compulsive disorder (OCD), and is associated with worse functional impairment, poorer quality of life, and poorer treatment response. Understanding the underlying neurochemical and connectivity-based brain mechanisms of this important symptom domain in OCD is necessary for development of novel, more globally effective treatments. To investigate biopsychological mechanisms of comorbid depression in OCD, we examined effective connectivity and neurochemical signatures in the pregenual anterior cingulate cortex (pACC), a structure known to be involved in both OCD and depression. Resting-state functional magnetic resonance imaging (fMRI) and 1H magnetic resonance spectroscopy (MRS) data were obtained from participants with OCD (n=49) and healthy individuals of equivalent age and sex (n=25). Granger causality-based effective (directed) connectivity was used to define causal networks involving the right and left pACC. The interplay between fMRI connectivity, 1H MRS and clinical data was explored by applying moderation and mediation analyses. We found that the causal influence of the right dorsal anterior midcingulate cortex (daMCC) on the right pACC was significantly lower in the OCD group and showed significant correlation with depressive symptom severity in the OCD group. Lower and moderate levels of glutamate (Glu) in the right pACC significantly moderated the interaction between right daMCC-pACC connectivity and depression severity. Our results suggest a biochemical-connectivity-psychological model of pACC dysfunction contributing to depression in OCD, particularly involving intracingulate connectivity and glutamate levels in the pACC. These findings have implications for potential molecular and network targets for treatment of this multi-faceted psychiatric condition.
Collapse
|
35
|
Tiwari V, An Z, Wang Y, Choi C. Distinction of the GABA 2.29 ppm resonance using triple refocusing at 3 T in vivo. Magn Reson Med 2018; 80:1307-1319. [PMID: 29446149 DOI: 10.1002/mrm.27142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop 1 H MR spectroscopy that provides distinction of γ-aminobutyric acid (GABA) signal at 3 T in vivo. METHODS Triple-refocusing was tailored at 3 T, with numerical simulations and phantom validation, for distinction of the GABA 2.29-ppm resonance from the neighboring glutamate resonance. The optimization was performed on the inter-RF pulse time delays and the duration and carrier frequency of a non-slice-selective RF pulse. The optimized triple refocusing was tested in multiple regions in 6 healthy subjects, including hippocampus. The in vivo spectra were analyzed with the LCModel using in-house basis spectra. After normalization of the metabolite signal estimates to water, the metabolite concentrations were quantified with reference to medial-occipital creatine at 8 mM. RESULTS A triple-refocusing scheme with optimized inter-RF pulse time delays (TE = 74 ms) was obtained for GABA detection. With optimized duration (14 ms) and carrier frequency (4.5 ppm) of the non-slice-selective RF pulse, the triple refocusing gave rise to distinction between the GABA 2.29-ppm and glutamate 2.35-ppm signals. The GABA 2.29-ppm signal was clearly discernible in spectra in vivo (voxel size 4 to 12 mL; scan times 4.3 to 17 minutes). With a total of 24 spectra from 6 gray or white matter-dominant regions, the GABA concentration was measured to be 0.62 to 1.15 mM (Cramer-Rao lower bound of 8 to 14%), and the glutamate level 5.8 to 11.2 mM (Cramer-Rao lower bound of 3 to 6%). CONCLUSION The optimized triple refocusing provided distinction between GABA and glutamate signals and permitted direct codetection of these metabolites in the human brain at 3 T in vivo.
Collapse
Affiliation(s)
- Vivek Tiwari
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhongxu An
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yiming Wang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Changho Choi
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
36
|
Ristow I, Li M, Colic L, Marr V, Födisch C, von Düring F, Schiltz K, Drumkova K, Witzel J, Walter H, Beier K, Kruger THC, Ponseti J, Schiffer B, Walter M. Pedophilic sex offenders are characterised by reduced GABA concentration in dorsal anterior cingulate cortex. NEUROIMAGE-CLINICAL 2018; 18:335-341. [PMID: 29876253 PMCID: PMC5987735 DOI: 10.1016/j.nicl.2018.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/14/2017] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
A pedophilic disorder is characterised by abnormal sexual urges towards prepubescent children. Child abusive behavior is frequently a result of lack of behavioral inhibition and current treatment options entail, next to suppressing unchangeable sexual orientation, measures to increase cognitive and attentional control. We tested, if in brain regions subserving attentional control of behavior and perception of salient stimuli, such inhibition deficit can be observed also on the level of inhibitory neurotransmitters. We measured GABA concentration in the dorsal anterior cingulate cortex (dACC) and in a control region, the pregenual anterior cingulate cortex (pgACC) in pedophilic sex offenders (N = 13) and matched controls (N = 13) using a 7 Tesla STEAM magnetic resonance spectroscopy (MRS). In dACC but not in the control region pedophilic sex offenders showed reduced GABA/Cr concentrations compared to healthy controls. The reduction was robust after controlling for potential influence of age and gray matter proportion within the MRS voxel (p < 0.04). Importantly, reduced GABA/Cr in patients was correlated with lower self-control measured with the Barratt Impulsiveness Scale (p = 0.028, r = -0.689). In a region related to cognitive control and salience mapping, pedophilic sex offenders showed reduction of the inhibitory neurotransmitter GABA which may be seen as a neuronal correlate of inhibition and behavioral control.
Collapse
Affiliation(s)
- Inka Ristow
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Leibniz Insitute for Neurobiology, Department for Behavioral Neurology, Magdeburg, Germany
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Department of Neurology, Otto von Guericke University of Magdeburg, Magdeburg, Germany
| | - Lejla Colic
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Leibniz Insitute for Neurobiology, Department for Behavioral Neurology, Magdeburg, Germany
| | - Vanessa Marr
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Leibniz Insitute for Neurobiology, Department for Behavioral Neurology, Magdeburg, Germany
| | - Carina Födisch
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Leibniz Insitute for Neurobiology, Department for Behavioral Neurology, Magdeburg, Germany
| | - Felicia von Düring
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Leibniz Insitute for Neurobiology, Department for Behavioral Neurology, Magdeburg, Germany
| | - Kolja Schiltz
- Section of Forensic Psychiatry, Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany; Department of Psychiatry and Psychotherapy, Otto von Guericke University of Magdeburg, Magdeburg, Germany
| | - Krasimira Drumkova
- Forensic Psychiatric State Hospital of Saxony-Anhalt, Stendal-Uchtspringe, Germany
| | - Joachim Witzel
- Forensic Psychiatric State Hospital of Saxony-Anhalt, Stendal-Uchtspringe, Germany
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Klaus Beier
- Institute of Sexology and Sexual Medicine, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Tillmann H C Kruger
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Jorge Ponseti
- Institute of Sexual Medicine and Forensic Psychiatry and Psychotherapy, Kiel University, Medical School, Kiel, Germany
| | - Boris Schiffer
- University of Duisburg-Essen, Institute of Forensic Psychiatry, Essen, Germany; LWL-University Hospital, Division of Forensic Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, Bochum, Germany
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Leibniz Insitute for Neurobiology, Department for Behavioral Neurology, Magdeburg, Germany; Department of Neurology, Otto von Guericke University of Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Psychiatry and Psychotherapy, Otto von Guericke University of Magdeburg, Magdeburg, Germany; Department of Psychiatry, Eberhard Karls University, Tübingen, Germany; Max Planck Institute for Biological Cybernetics Tübingen, Germany.
| |
Collapse
|
37
|
O'Neill J, Piacentini J, Chang S, Ly R, Lai TM, Armstrong CC, Bergman L, Rozenman M, Peris T, Vreeland A, Mudgway R, Levitt JG, Salamon N, Posse S, Hellemann GS, Alger JR, McCracken JT, Nurmi EL. Glutamate in Pediatric Obsessive-Compulsive Disorder and Response to Cognitive-Behavioral Therapy: Randomized Clinical Trial. Neuropsychopharmacology 2017; 42:2414-2422. [PMID: 28409563 PMCID: PMC5645751 DOI: 10.1038/npp.2017.77] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 02/04/2023]
Abstract
Cognitive-behavioral therapy (CBT) is effective for pediatric obsessive-compulsive disorder (OCD), but non-response is common. Brain glutamate (Glu) signaling may contribute to OCD pathophysiology and moderate CBT outcomes. We assessed whether Glu measured with magnetic resonance spectroscopy (MRS) was associated with OCD and/or CBT response. Youths aged 7-17 years with DSM-IV OCD and typically developing controls underwent 3 T proton echo-planar spectroscopic imaging (PEPSI) MRS scans of pregenual anterior cingulate cortex (pACC) and ventral posterior cingulate cortex (vPCC)-regions possibly affected by OCD-at baseline. Controls returned for re-scan after 8 weeks. OCD youth-in a randomized rater-blinded trial-were re-scanned after 12-14 weeks of CBT or after 8 weeks of minimal-contact waitlist; waitlist participants underwent a third scan after crossover to 12-14 weeks of CBT. Forty-nine children with OCD (mean age 12.2±2.9 years) and 29 controls (13.2±2.2 years) provided at least one MRS scan. At baseline, Glu did not differ significantly between OCD and controls in pACC or vPCC. Within controls, Glu was stable from scan-to-scan. Within OCD subjects, a treatment-by-scan interaction (p=0.034) was observed, driven by pACC Glu dropping 19.5% from scan-to-scan for patients randomized to CBT, with minor increases (3.8%) for waitlist participants. The combined OCD participants (CBT-only plus waitlist-CBT) also showed a 16.2% (p=0.004) post-CBT decrease in pACC Glu. In the combined OCD group, within vPCC, lower pre-CBT Glu predicted greater post-CBT improvement in symptoms (CY-BOCS; r=0.81, p=0.00025). Glu may be involved in the pathophysiology of OCD and may moderate response to CBT.
Collapse
Affiliation(s)
- Joseph O'Neill
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA,Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, 760 Westwood Plaza 58-557A, Los Angeles, CA 90024-1759, USA, Tel: 310 825 5709, Fax: 310 206 4446, E-mail:
| | - John Piacentini
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Susanna Chang
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Ronald Ly
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Tsz M Lai
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Casey C Armstrong
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Lindsey Bergman
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Michelle Rozenman
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Tara Peris
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Allison Vreeland
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Ross Mudgway
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Jennifer G Levitt
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Noriko Salamon
- UCLA Department of Radiological Sciences, UCLA Medical Center, Los Angeles, CA, USA
| | - Stefan Posse
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA,Department of Physics & Astronomy, University of New Mexico, Albuquerque, NM, USA,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Gerhard S Hellemann
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Jeffry R Alger
- UCLA Department of Radiological Sciences, UCLA Medical Center, Los Angeles, CA, USA,UCLA Department of Neurology, UCLA Medical Center, Los Angeles, CA, USA
| | - James T McCracken
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Erika L Nurmi
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA
| |
Collapse
|
38
|
Metabolic abnormality in the right dorsolateral prefrontal cortex in patients with obsessive-compulsive disorder: proton magnetic resonance spectroscopy. Acta Neuropsychiatr 2017; 29:164-169. [PMID: 27748207 DOI: 10.1017/neu.2016.48] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Proton magnetic resonance spectroscopy (1H-MRS) was used to evaluate metabolic changes in the dorsolateral prefrontal cortex (DLPFC) in patients with obsessive-compulsive disorder (OCD). METHODS In total, 14 OCD patients (mean age 28.9±7.2 years) and 14 healthy controls (mean age 32.6±7.1 years) with no history of neurological and psychiatric illness participated in this study. Brain metabolite concentrations were measured from a localised voxel on the right DLPFC using a 3-Tesla 1H-MRS. RESULTS The metabolic concentration of myo-inositol in patients with OCD increased significantly by 52% compared with the healthy controls, whereas glutamine/glutamate was decreased by 11%. However, there were no significant differences in N-acetylaspartate, choline, lactate and lipid between the two groups. CONCLUSION These findings would be helpful to understand the pathophysiology of OCD associated with the brain metabolic abnormalities in the right DLPFC.
Collapse
|
39
|
Gu M, Hurd R, Noeske R, Baltusis L, Hancock R, Sacchet MD, Gotlib IH, Chin FT, Spielman DM. GABA editing with macromolecule suppression using an improved MEGA-SPECIAL sequence. Magn Reson Med 2017; 79:41-47. [PMID: 28370458 DOI: 10.1002/mrm.26691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 02/15/2017] [Accepted: 03/05/2017] [Indexed: 01/08/2023]
Abstract
PURPOSE The most common γ-aminobutyric-acid (GABA) editing approach, MEGA-PRESS, uses J-editing to measure GABA distinct from larger overlapping metabolites, but suffers contamination from coedited macromolecules (MMs) comprising 40 to 60% of the observed signal. MEGA-SPECIAL is an alternative method with better MM suppression, but is not widely used primarily because of its relatively poor spatial localization. Our goal was to develop an improved MM-suppressed GABA editing sequence at 3 Tesla. METHODS We modified a single-voxel MEGA-SPECIAL sequence with an oscillating readout gradient for improved spatial localization, and used very selective 30-ms editing pulses for improved suppression of coedited MMs. RESULTS Simulation and in vivo experiments confirmed excellent MM suppression, insensitive to the range of B0 frequency drifts typically encountered in vivo. Both intersubject and intrasubject studies showed that MMs, when suppressed by the improved MEGA-SPECIAL method, contributed approximately 40% to the corresponding MEGA-PRESS measurements. From the intersubject study, the coefficient of variation for GABA+/Cre (MEGA-PRESS) was 11.2% versus 7% for GABA/Cre (improved MEGA-SPECIAL), demonstrating significantly reduced variance (P = 0.005), likely coming from coedited MMs. CONCLUSIONS This improved MEGA-SPECIAL sequence provides unbiased GABA measurements with reduced variance as compared with conventional MEGA-PRESS. This approach is also relatively insensitive to the range of B0 drifts typically observed in in vivo human studies. Magn Reson Med 79:41-47, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Meng Gu
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Ralph Hurd
- GE Healthcare, Menlo Park, California, USA
| | | | - Laima Baltusis
- Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, California, USA
| | - Roeland Hancock
- Department of Psychiatry, University of California, San Francisco, California, USA
| | - Matthew D Sacchet
- Neurosciences Program and Psychology, Stanford University, Stanford, California, USA
| | - Ian H Gotlib
- Neurosciences Program and Psychology, Stanford University, Stanford, California, USA
| | - Frederick T Chin
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Daniel M Spielman
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
40
|
Toxoplasma-infected subjects report an Obsessive-Compulsive Disorder diagnosis more often and score higher in Obsessive-Compulsive Inventory. Eur Psychiatry 2016; 40:82-87. [PMID: 27992837 DOI: 10.1016/j.eurpsy.2016.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Latent toxoplasmosis, the life-long presence of dormant stages of Toxoplasma in immunoprivileged organs and of anamnestic IgG antibodies in blood, affects about 30% of humans. Infected subjects have an increased incidence of various disorders, including schizophrenia. Several studies, as well as the character of toxoplasmosis-associated disturbance of neurotransmitters, suggest that toxoplasmosis could also play an etiological role in Obsessive-Compulsive Disorder (OCD). METHODS The aim of the present cross-sectional study performed on a population of 7471 volunteers was to confirm the association between toxoplasmosis and OCD, and toxoplasmosis and psychological symptoms of OCD estimated by the standard Obsessive-Compulsive Inventory-Revised (OCI-R). RESULTS Incidence of OCD was 2.18% (n=39) in men and 2.28% (n=83) in women. Subjects with toxoplasmosis had about a 2.5 times higher odds of OCD and about a 2.7 times higher odds of learning disabilities. The incidence of 18 other neuropsychiatric disorders did not differ between Toxoplasma-infected and Toxoplasma-free subjects. The infected subjects, even the OCD-free subjects, scored higher on the OCI-R. LIMITATIONS Examined subjects provided the information about their toxoplasmosis and OCD statuses themselves, which could result in underrating the strength of observed associations. CONCLUSIONS The results confirmed earlier reports of the association between toxoplasmosis and OCD. They also support recent claims that latent toxoplasmosis is in fact a serious disease with many impacts on quality of life of patients.
Collapse
|
41
|
Decreased Anterior Cingulate Cortex γ-Aminobutyric Acid in Youth With Tourette's Disorder. Pediatr Neurol 2016; 65:64-70. [PMID: 27743746 DOI: 10.1016/j.pediatrneurol.2016.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/15/2016] [Accepted: 08/21/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND γ-Aminobutyric acid has been implicated in the pathophysiology of Tourette's disorder. The present study primarily sought to examine in vivo γ-aminobutyric acid levels in the anterior cingulate cortex in psychotropic medication-free adolescents and young adults. Secondarily, we sought to determine associations between γ-aminobutyric acid in the anterior cingulate cortex and measures of tic severity, tic-related impairment, and anxiety and depression symptoms. METHODS γ-Aminobutyric acid levels were measured using proton magnetic resonance spectroscopy. Analysis of covariance compared γ-aminobutyric acid levels in 15 youth with Tourette's disorder (mean age = 15.0, S.D. = 2.7) and 36 healthy comparison subjects (mean age = 15.9, S.D. = 2.1). Within the Tourette disorder group, we examined correlations between γ-aminobutyric acid levels and tic severity and tic-related impairment, as well as anxiety and depression severity. RESULTS Anterior cingulate cortex γ-aminobutyric acid levels were lower in participants with Tourette's disorder compared with control subjects. Within the Tourette disorder group, γ-aminobutyric acid levels did not correlate with any clinical measures. CONCLUSIONS Our findings support a role for γ-aminobutyric acid in Tourette's disorder. Larger prospective studies will further elucidate this role.
Collapse
|
42
|
Chagraoui A, Skiba M, Thuillez C, Thibaut F. To what extent is it possible to dissociate the anxiolytic and sedative/hypnotic properties of GABAA receptors modulators? Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:189-202. [PMID: 27495357 DOI: 10.1016/j.pnpbp.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 01/16/2023]
Abstract
The relatively common view indicates a possible dissociation between the anxiolytic and sedative/hypnotic properties of benzodiazepines (BZs). Indeed, GABAA receptor (GABAAR) subtypes have specific cerebral distribution in distinct neural circuits. Thus, GABAAR subtype-selective drugs may be expected to perform distinct functions. However, standard behavioral test assays provide limited direction towards highlighting new action mechanisms of ligands targeting GABAARs. Automated behavioral tests, lack sensitivity as some behavioral characteristics or subtle behavioral changes of drug effects or that are not considered in the overall analysis (Ohl et al., 2001) and observation-based analyses are not always performed. In addition, despite the use of genetically engineered mice, any possible dissociation between the anxiolytic and sedative properties of BZs remains controversial. Moreover, the involvement the different subtypes of GABAAR subtypes in the anxious behavior and the mechanism of action of anxiolytic agents remains unclear since there has been little success in the pharmacological investigations so far. This raises the question of the involvement of the different subunits in anxiolytic-like and/or sedative effects; and the actual implication of these subunits, particularly, α-subunits in the modulation of sedation and/or anxiety-related disorders. This present review was prompted by several conflicting studies on the degree of involvement of these subunits in anxiolytic-like and/or sedative effects. To this end, we explored the GABAergic system, particularly, the role of different subunits containing synaptic GABAARs. We report herein the targeting gene encoding the different subunits and their contribution in anxiolytic-like and/or sedative actions, as well as, the mechanism underlying tolerance to BZs.
Collapse
Affiliation(s)
- A Chagraoui
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedecine, Normandy University, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France.
| | - M Skiba
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedecine, Normandy University, France
| | - C Thuillez
- Department of Pharmacology, Rouen University Hospital, Rouen, and INSERM U1096, Laboratory of New Pharmacological Targets for Endothelial Protection and Heart Failure, Institute for Research and Innovation in Biomedicine, Normandy University, France
| | - F Thibaut
- Department of Psychiatry, University Hospital Cochin (site Tarnier), University of Paris-Descartes and INSERM U 894 Laboratory of Psychiatry and Neurosciences, Paris, France
| |
Collapse
|
43
|
ZHANG Z, FAN Q, BAI Y, WANG Z, ZHANG H, XIAO Z. Brain Gamma-Aminobutyric Acid (GABA) Concentration of the Prefrontal Lobe in Unmedicated Patients with Obsessive-Compulsive Disorder: A Research of Magnetic Resonance Spectroscopy. SHANGHAI ARCHIVES OF PSYCHIATRY 2016; 28:263-270. [PMID: 28638200 PMCID: PMC5434282 DOI: 10.11919/j.issn.1002-0829.216043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND In recent years, a large number of neuroimaging studies found that the Cortico-Striato- Thalamo-Cortical circuit (CSTC), including the prefrontal lobe, a significant part of CSTC, has disturbance metabolically in patients with Obsessive-Compulsive Disorder (OCD). AIM Explore the correlation between the neuro-metabolic features and clinical characteristics of OCD patients using magnetic resonance spectroscopy technology. METHODS 88 patients with OCD who were not received medication and outpatient treatment for 8 weeks and 76 health controls were enrolled, there was no significant difference in gender, age or education level between the two groups. SIEMENS 3.0T MRI scanner was used to measure the spectral wave of Orbito Frontal Cortex (OFC) and Anterior Cingulate Cortex (ACC) of participants, setting mega-press sequences. Meanwhile, the concentrations of gamma-aminobutyric acid (GABA), glutamine/glutamate complex (Glx) and N-Acetyl Aspartate (NAA) were measured relative to concentration of water, on the ACC and OFC of participants, for statistical analysis via LC model version 6.3 software. The concentration of metabolic substances of the OCD group compared to the healthy control group was analyzed using two sample t-test. The correlation between substance concentration and scores on the scales, including Yale-Brown Obsessive Compulsive Scale (Y-BOCS), Hamilton Anxiety scale (HAMA) and Hamilton Depression scale (HAMD) was carried out using the Pearson correlation method. RESULTS Compared with healthy controls, the GABA/W and NAA/W concentration in individuals with OCD are significantly decreased (p=0.031, t=2.193, p=0.002, t=3.223). Also, the concentration of GABA/W had a trend of decrease in the ACC. The GABA/W of the OFC had a negative correlation with Y-BOCS-O, Y-BOCS-C and Y-BOCS-T scores (p=0.037, r=0.221; p=0.007, r=0.283; p=0.014, r=0.259). CONCLUSIONS These results support that GABA concentration in the OFC area of patients with OCD is significantly decreased and the concentration in the ACC has a trend of decreasing. All of these indicate that there is a relationship between the GABA concentration and the psychopathology of OCD.
Collapse
Affiliation(s)
| | | | | | | | | | - Zeping XIAO
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
O'Neill J, Lai TM, Sheen C, Salgari GC, Ly R, Armstrong C, Chang S, Levitt JG, Salamon N, Alger JR, Feusner JD. Cingulate and thalamic metabolites in obsessive-compulsive disorder. Psychiatry Res 2016; 254:34-40. [PMID: 27317876 PMCID: PMC5780184 DOI: 10.1016/j.pscychresns.2016.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/28/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022]
Abstract
Focal brain metabolic effects detected by proton magnetic resonance spectroscopy (MRS) in obsessive-compulsive disorder (OCD) represent prospective indices of clinical status and guides to treatment design. Sampling bilateral pregenual anterior cingulate cortex (pACC), anterior middle cingulate cortex (aMCC), and thalamus in 40 adult patients and 16 healthy controls, we examined relationships of the neurometabolites glutamate+glutamine (Glx), creatine+phosphocreatine (Cr), and choline-compounds (Cho) with OCD diagnosis and multiple symptom types. The latter included OC core symptoms (Yale-Brown Obsessive-Compulsive Scale - YBOCS), depressive symptoms (Montgomery-Åsberg Depression Rating Scale - MADRS), and general functioning (Global Assessment Scale - GAS). pACC Glx was 9.7% higher in patients than controls. Within patients, Cr and Cho correlated negatively with YBOCS and MADRS, while Cr correlated positively with the GAS. In aMCC, Cr and Cho correlated negatively with MADRS, while Cr in thalamus correlated positively with GAS. These findings present moderate support for glutamatergic and cingulocentric perspectives on OCD. Based on our prior metabolic model of OCD, we offer one possible interpretation of these group and correlational effects as consequences of a corticothalamic state of elevated glutamatergic receptor activity alongside below-normal glutamatergic transporter activity.
Collapse
Affiliation(s)
- Joseph O'Neill
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States.
| | - Tsz M Lai
- Division of Adult Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| | - Courtney Sheen
- Division of Adult Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| | - Giulia C Salgari
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| | - Ronald Ly
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| | - Casey Armstrong
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| | - Susanna Chang
- Division of Adult Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| | - Jennifer G Levitt
- Division of Adult Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| | - Noriko Salamon
- UCLA Department of Radiological Sciences, Los Angeles, CA, United States
| | - Jeffry R Alger
- UCLA Department of Radiological Sciences, Los Angeles, CA, United States; UCLA Department of Neurology, Los Angeles, CA, United States
| | - Jamie D Feusner
- Division of Adult Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| |
Collapse
|
45
|
Shungu DC, Mao X, Gonzales R, Soones TN, Dyke JP, van der Veen JW, Kegeles LS. Brain γ-aminobutyric acid (GABA) detection in vivo with the J-editing (1) H MRS technique: a comprehensive methodological evaluation of sensitivity enhancement, macromolecule contamination and test-retest reliability. NMR IN BIOMEDICINE 2016; 29:932-42. [PMID: 27173449 PMCID: PMC4909570 DOI: 10.1002/nbm.3539] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 05/21/2023]
Abstract
Abnormalities in brain γ-aminobutyric acid (GABA) have been implicated in various neuropsychiatric and neurological disorders. However, in vivo GABA detection by (1) H MRS presents significant challenges arising from the low brain concentration, overlap by much stronger resonances and contamination by mobile macromolecule (MM) signals. This study addresses these impediments to reliable brain GABA detection with the J-editing difference technique on a 3-T MR system in healthy human subjects by: (i) assessing the sensitivity gains attainable with an eight-channel phased-array head coil; (ii) determining the magnitude and anatomic variation of the contamination of GABA by MM; and (iii) estimating the test-retest reliability of the measurement of GABA with this method. Sensitivity gains and test-retest reliability were examined in the dorsolateral prefrontal cortex (DLPFC), whereas MM levels were compared across three cortical regions: DLPFC, the medial prefrontal cortex (MPFC) and the occipital cortex (OCC). A three-fold higher GABA detection sensitivity was attained with the eight-channel head coil compared with the standard single-channel head coil in DLPFC. Despite significant anatomical variation in GABA + MM and MM across the three brain regions (p < 0.05), the contribution of MM to GABA + MM was relatively stable across the three voxels, ranging from 41% to 49%, a non-significant regional variation (p = 0.58). The test-retest reliability of GABA measurement, expressed as either the ratio to voxel tissue water (W) or to total creatine, was found to be very high for both the single-channel coil and the eight-channel phased-array coil. For the eight-channel coil, for example, Pearson's correlation coefficient of test vs. retest for GABA/W was 0.98 (R(2) = 0.96, p = 0.0007), the percentage coefficient of variation (CV) was 1.25% and the intraclass correlation coefficient (ICC) was 0.98. Similar reliability was also found for the co-edited resonance of combined glutamate and glutamine (Glx) for both coils. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dikoma C. Shungu
- Department of Radiology, Weill Cornell Medical College, New York, NY
| | - Xiangling Mao
- Department of Radiology, Weill Cornell Medical College, New York, NY
| | - Robyn Gonzales
- Department of Psychiatry, Columbia University, New York, NY
| | | | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medical College, New York, NY
| | | | - Lawrence S. Kegeles
- Department of Psychiatry, Columbia University, New York, NY
- Department of Radiology, Columbia University, New York, NY
| |
Collapse
|
46
|
Schür RR, Draisma LWR, Wijnen JP, Boks MP, Koevoets MGJC, Joëls M, Klomp DW, Kahn RS, Vinkers CH. Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of (1) H-MRS studies. Hum Brain Mapp 2016; 37:3337-52. [PMID: 27145016 DOI: 10.1002/hbm.23244] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022] Open
Abstract
The inhibitory gamma-aminobutyric acid (GABA) system is involved in the etiology of most psychiatric disorders, including schizophrenia, autism spectrum disorder (ASD) and major depressive disorder (MDD). It is therefore not surprising that proton magnetic resonance spectroscopy ((1) H-MRS) is increasingly used to investigate in vivo brain GABA levels. However, integration of the evidence for altered in vivo GABA levels across psychiatric disorders is lacking. We therefore systematically searched the clinical (1) H-MRS literature and performed a meta-analysis. A total of 40 studies (N = 1,591) in seven different psychiatric disorders were included in the meta-analysis: MDD (N = 437), schizophrenia (N = 517), ASD (N = 150), bipolar disorder (N = 129), panic disorder (N = 81), posttraumatic stress disorder (PTSD) (N = 104), and attention deficit/hyperactivity disorder (ADHD) (N = 173). Brain GABA levels were lower in ASD (standardized mean difference [SMD] = -0.74, P = 0.001) and in depressed MDD patients (SMD = -0.52, P = 0.005), but not in remitted MDD patients (SMD = -0.24, P = 0.310) compared with controls. In schizophrenia this finding did not reach statistical significance (SMD = -0.23, P = 0.089). No significant differences in GABA levels were found in bipolar disorder, panic disorder, PTSD, and ADHD compared with controls. In conclusion, this meta-analysis provided evidence for lower brain GABA levels in ASD and in depressed (but not remitted) MDD patients compared with healthy controls. Findings in schizophrenia were more equivocal. Even though future (1) H-MRS studies could greatly benefit from a longitudinal design and consensus on the preferred analytical approach, it is apparent that (1) H-MRS studies have great potential in advancing our understanding of the role of the GABA system in the pathogenesis of psychiatric disorders. Hum Brain Mapp 37:3337-3352, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Remmelt R Schür
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Luc W R Draisma
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Jannie P Wijnen
- Department of Radiology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Marco P Boks
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Martijn G J C Koevoets
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Dennis W Klomp
- Department of Radiology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| |
Collapse
|
47
|
Figee M, Pattij T, Willuhn I, Luigjes J, van den Brink W, Goudriaan A, Potenza MN, Robbins TW, Denys D. Compulsivity in obsessive-compulsive disorder and addictions. Eur Neuropsychopharmacol 2016; 26:856-68. [PMID: 26774279 DOI: 10.1016/j.euroneuro.2015.12.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/17/2015] [Accepted: 12/01/2015] [Indexed: 01/05/2023]
Abstract
Compulsive behaviors are driven by repetitive urges and typically involve the experience of limited voluntary control over these urges, a diminished ability to delay or inhibit these behaviors, and a tendency to perform repetitive acts in a habitual or stereotyped manner. Compulsivity is not only a central characteristic of obsessive-compulsive disorder (OCD) but is also crucial to addiction. Based on this analogy, OCD has been proposed to be part of the concept of behavioral addiction along with other non-drug-related disorders that share compulsivity, such as pathological gambling, skin-picking, trichotillomania and compulsive eating. In this review, we investigate the neurobiological overlap between compulsivity in substance-use disorders, OCD and behavioral addictions as a validation for the construct of compulsivity that could be adopted in the Research Domain Criteria (RDoC). The reviewed data suggest that compulsivity in OCD and addictions is related to impaired reward and punishment processing with attenuated dopamine release in the ventral striatum, negative reinforcement in limbic systems, cognitive and behavioral inflexibility with diminished serotonergic prefrontal control, and habitual responding with imbalances between ventral and dorsal frontostriatal recruitment. Frontostriatal abnormalities of compulsivity are promising targets for neuromodulation and other interventions for OCD and addictions. We conclude that compulsivity encompasses many of the RDoC constructs in a trans-diagnostic fashion with a common brain circuit dysfunction that can help identifying appropriate prevention and treatment targets.
Collapse
Affiliation(s)
- Martijn Figee
- Academic Medical Center, Department of Psychiatry, Amsterdam, The Netherlands
| | - Tommy Pattij
- Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Ingo Willuhn
- Academic Medical Center, Department of Psychiatry, Amsterdam, The Netherlands; The Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Judy Luigjes
- Academic Medical Center, Department of Psychiatry, Amsterdam, The Netherlands
| | - Wim van den Brink
- Academic Medical Center, Department of Psychiatry, Amsterdam, The Netherlands; Amsterdam Institute for Addiction Research, Amsterdam, The Netherlands
| | - Anneke Goudriaan
- Academic Medical Center, Department of Psychiatry, Amsterdam, The Netherlands; Amsterdam Institute for Addiction Research, Amsterdam, The Netherlands
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Department of Neurobiology, Yale University School of Medicine, New Haven, CT, United States; Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Trevor W Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Damiaan Denys
- Academic Medical Center, Department of Psychiatry, Amsterdam, The Netherlands; The Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Nespoli E, Rizzo F, Boeckers TM, Hengerer B, Ludolph AG. Addressing the Complexity of Tourette's Syndrome through the Use of Animal Models. Front Neurosci 2016; 10:133. [PMID: 27092043 PMCID: PMC4824761 DOI: 10.3389/fnins.2016.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/16/2016] [Indexed: 01/06/2023] Open
Abstract
Tourette's syndrome (TS) is a neurodevelopmental disorder characterized by fluctuating motor and vocal tics, usually preceded by sensory premonitions, called premonitory urges. Besides tics, the vast majority—up to 90%—of TS patients suffer from psychiatric comorbidities, mainly attention deficit/hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). The etiology of TS remains elusive. Genetics is believed to play an important role, but it is clear that other factors contribute to TS, possibly altering brain functioning and architecture during a sensitive phase of neural development. Clinical brain imaging and genetic studies have contributed to elucidate TS pathophysiology and disease mechanisms; however, TS disease etiology still is poorly understood. Findings from genetic studies led to the development of genetic animal models, but they poorly reflect the pathophysiology of TS. Addressing the role of neurotransmission, brain regions, and brain circuits in TS disease pathomechanisms is another focus area for preclinical TS model development. We are now in an interesting moment in time when numerous innovative animal models are continuously brought to the attention of the public. Due to the diverse and largely unknown etiology of TS, there is no single preclinical model featuring all different aspects of TS symptomatology. TS has been dissected into its key symptomst hat have been investigated separately, in line with the Research Domain Criteria concept. The different rationales used to develop the respective animal models are critically reviewed, to discuss the potential of the contribution of animal models to elucidate TS disease mechanisms.
Collapse
Affiliation(s)
- Ester Nespoli
- Competence in Neuro Spine Department, Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der Riss, Germany; Department of Child and Adolescence Psychiatry/Psychotherapy, University of UlmUlm, Germany
| | - Francesca Rizzo
- Department of Child and Adolescence Psychiatry/Psychotherapy, University of UlmUlm, Germany; Institute of Anatomy and Cell Biology, University of UlmUlm, Germany
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, University of Ulm Ulm, Germany
| | - Bastian Hengerer
- Competence in Neuro Spine Department, Boehringer Ingelheim Pharma GmbH & Co. KG Biberach an der Riss, Germany
| | - Andrea G Ludolph
- Department of Child and Adolescence Psychiatry/Psychotherapy, University of Ulm Ulm, Germany
| |
Collapse
|
49
|
Goddard AW. Cortical and subcortical gamma amino acid butyric acid deficits in anxiety and stress disorders: Clinical implications. World J Psychiatry 2016; 6:43-53. [PMID: 27014597 PMCID: PMC4804267 DOI: 10.5498/wjp.v6.i1.43] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/18/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
Anxiety and stress disorders are a major public health issue. However, their pathophysiology is still unclear. The gamma amino acid butyric acid (GABA) neurochemical system has been strongly implicated in their pathogenesis and treatment by numerous preclinical and clinical studies, the most recent of which have been highlighted and critical review in this paper. Changes in cortical GABA appear related to normal personality styles and responses to stress. While there is accumulating animal and human neuroimaging evidence of cortical and subcortical GABA deficits across a number of anxiety conditions, a clear pattern of findings in specific brain regions for a given disorder is yet to emerge. Neuropsychiatric conditions with anxiety as a clinical feature may have GABA deficits as an underlying feature. Different classes of anxiolytic therapies support GABA function, and this may be an area in which newer GABA neuroimaging techniques could soon offer more personalized therapy. Novel GABAergic pharmacotherapies in development offer potential improvements over current therapies in reducing sedative and physiologic dependency effects, while offering rapid anxiolysis.
Collapse
|
50
|
Ratai EM, Gilberto González R. Clinical magnetic resonance spectroscopy of the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2016; 135:93-116. [PMID: 27432661 DOI: 10.1016/b978-0-444-53485-9.00005-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proton magnetic resonance spectroscopy (1H MRS) is a noninvasive imaging technique that can easily be added to the conventional magnetic resonance (MR) imaging sequences. Using MRS one can directly compare spectra from pathologic or abnormal tissue and normal tissue. Metabolic changes arising from pathology that can be visualized by MRS may not be apparent from anatomy that can be visualized by conventional MR imaging. In addition, metabolic changes may precede anatomic changes. Thus, MRS is used for diagnostics, to observe disease progression, monitor therapeutic treatments, and to understand the pathogenesis of diseases. MRS may have an important impact on patient management. The purpose of this chapter is to provide practical guidance in the clinical application of MRS of the brain. This chapter provides an overview of MRS-detectable metabolites and their significance. In addition some specific current clinical applications of MRS will be discussed, including brain tumors, inborn errors of metabolism, leukodystrophies, ischemia, epilepsy, and neurodegenerative diseases. The chapter concludes with technical considerations and challenges of clinical MRS.
Collapse
Affiliation(s)
- Eva-Maria Ratai
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, and Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA.
| | - R Gilberto González
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, and Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA
| |
Collapse
|