1
|
al'Absi M, DeAngelis BN, Nakajima M, Hodges JS, Budney A, Hatsukami D, Allen S. Biobehavioral and affective stress responses during nicotine withdrawal: Influence of regular cannabis co-use. Psychopharmacology (Berl) 2024; 241:253-262. [PMID: 37897498 DOI: 10.1007/s00213-023-06481-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Co-use of cannabis is increasing in nicotine users and presents additional challenges in addressing nicotine dependence. This study examined the links between regular co-use of cannabis and nicotine with biobehavioral and affective changes in response to stress during nicotine withdrawal and ad libitum use. METHODS Participants (N = 79) who regularly used nicotine-only, cannabis-only, both substances, or neither substance were invited to attend two laboratory stress assessment sessions. For nicotine users, one session occurred during ad libitum nicotine use and one occurred after abstinence from nicotine. During the stress sessions, participants provided saliva samples for cortisol assay and completed measures of subjective states. Cardiovascular measures were collected during resting baseline, exposure to acute stressors, and a recovery rest period. RESULTS Nicotine-only users had higher average cortisol levels in the second lab session (nicotine withdrawal) relative to the first lab session (ad libitum nicotine use). Compared to nicotine non-users, nicotine users reported less positive affect and exhibited attenuated cortisol and systolic blood pressure (BP) stress responses. Cannabis users exhibited exaggerated diastolic BP responses to stress compared to cannabis non-users, and co-users of nicotine and cannabis had higher levels of cannabis craving than cannabis-only users (p < .01). CONCLUSIONS This study partially replicated earlier findings on the effects of chronic nicotine use and provided novel results regarding the influence of cannabis co-use on physiological and affective responses to stress in nicotine users during nicotine withdrawal.
Collapse
Affiliation(s)
- Mustafa al'Absi
- Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA.
| | - Briana N DeAngelis
- Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
| | - Motohiro Nakajima
- Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
- Eikei University of Hiroshima, Hiroshima, Japan
| | - James S Hodges
- School of Public Health, University of Minnesota, Twin Cities. Minneapolis, MN, USA
| | | | - Dorothy Hatsukami
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Twin Cities. Minneapolis, MN, USA
| | - Sharon Allen
- Department of Family Medicine and Community Health, University of Minnesota, Twin Cities. Minneapolis, MN, USA
| |
Collapse
|
2
|
Xu H, Owens MM, Farncombe T, Noseworthy M, MacKillop J. Molecular brain differences and cannabis involvement: A systematic review of positron emission tomography studies. J Psychiatr Res 2023; 162:44-56. [PMID: 37088043 DOI: 10.1016/j.jpsychires.2023.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND An increasing number of studies have used positron emission tomography (PET) to investigate molecular neurobiological differences in individuals who use cannabis. This study aimed to systematically review PET imaging research in individuals who use cannabis or have cannabis use disorder (CUD). METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria, a comprehensive systematic review was undertaken using the PubMed, Scopus, PsycINFO and Web of Science databases. RESULTS In total, 20 studies were identified and grouped into three themes: (1) studies of the dopamine system primarily found that cannabis use was associated with abnormal striatal dopamine synthesis capacity, which was in turn correlated with clinical symptoms; (2) studies of the endocannabinoid system found that cannabis use and CUD are associated with lower cannabinoid receptor type 1 availability and global reductions in fatty acid amide hydrolase binding; (3) studies of brain metabolism found that individuals who use cannabis exhibit lower normalized glucose metabolism in both cortical and subcortical brain regions, and reduced cerebral blood flow in the lateral prefrontal cortex during experimental tasks. Heterogeneity across studies prevented meta-analysis. CONCLUSION Existing PET imaging research reveals substantive molecular differences in cannabis users in the dopamine and endocannabinoid systems, and in global brain metabolism, although the heterogeneity of designs and approaches is very high, and whether these differences are causal versus consequential is largely unclear.
Collapse
Affiliation(s)
- Hui Xu
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, ON, Canada
| | - Max M Owens
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, ON, Canada
| | - Troy Farncombe
- Department of Radiology, McMaster University, 1280 Main St W, Hamilton, L8S 4L8, ON, Canada
| | - Michael Noseworthy
- School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, L8S 4L8, ON, Canada
| | - James MacKillop
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, ON, Canada; Michael G. DeGroote Centre for Medicinal Cannabis Research, St. Joseph's Healthcare Hamilton, McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, ON, Canada.
| |
Collapse
|
3
|
Augustin SM, Lovinger DM. Synaptic changes induced by cannabinoid drugs and cannabis use disorder. Neurobiol Dis 2022; 167:105670. [DOI: 10.1016/j.nbd.2022.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022] Open
|
4
|
al’Absi M, DeAngelis B, Fiecas M, Budney A, Allen S. Effects of regular cannabis and nicotine use on acute stress responses: chronic nicotine, but not cannabis use, is associated with blunted adrenocortical and cardiovascular responses to stress. Psychopharmacology (Berl) 2022; 239:1551-1561. [PMID: 35275227 PMCID: PMC9248975 DOI: 10.1007/s00213-022-06087-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE Cannabis is one of the most prevalent substances used by tobacco smokers and, in light of the growing list of states and territories legalizing cannabis, it is expected that co-use of cannabis and nicotine will escalate significantly and will lead to continuing challenges with tobacco use. OBJECTIVES This study was conducted to examine the interactive effects of chronic cannabis and nicotine use on adrenocortical, cardiovascular, and psychological responses to stress and to explore sex differences in these effects. METHODS Participants (N = 231) included cannabis-only users, nicotine-only users, co-users of both substances, and a non/light-user comparison group. After attending a medical screening session, participants completed a laboratory stress session during which they completed measures of subjective states, cardiovascular responses, and salivary cortisol during baseline (rest) and after exposure to acute stress challenges. RESULTS Nicotine use, but not cannabis use, was associated with blunted cortisol and cardiovascular responses to stress across both men and women. Men exhibited larger cortisol responses to stress than women. Co-users had significantly larger stress-related increases in cannabis craving than cannabis-only users. Cannabis users reported smaller increases in anxiety during stress than cannabis non/light-users, and both male nicotine-only users and male cannabis-only users experienced significantly smaller increases in stress than their non/light-user control counterparts. CONCLUSIONS This study replicates and extends earlier research on the impacts of sex and nicotine use on stress responses, and it provides novel findings suggesting that when co-used with nicotine, cannabis use may not confer additional alterations to physiological nor subjective responses to stress. Co-use, however, was associated with enhanced stress-related craving for cannabis.
Collapse
Affiliation(s)
- Mustafa al’Absi
- Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA
| | - Briana DeAngelis
- Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA
| | - Mark Fiecas
- School of Public Health, Division of Biostatistics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | | | - Sharon Allen
- Department of Family Medicine and Community Health, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
5
|
Gunasekera B, Diederen K, Bhattacharyya S. Cannabinoids, reward processing, and psychosis. Psychopharmacology (Berl) 2022; 239:1157-1177. [PMID: 33644820 PMCID: PMC9110536 DOI: 10.1007/s00213-021-05801-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Evidence suggests that an overlap exists between the neurobiology of psychotic disorders and the effects of cannabinoids on neurocognitive and neurochemical substrates involved in reward processing. AIMS We investigate whether the psychotomimetic effects of delta-9-tetrahydrocannabinol (THC) and the antipsychotic potential of cannabidiol (CBD) are underpinned by their effects on the reward system and dopamine. METHODS This narrative review focuses on the overlap between altered dopamine signalling and reward processing induced by cannabinoids, pre-clinically and in humans. A systematic search was conducted of acute cannabinoid drug-challenge studies using neuroimaging in healthy subjects and those with psychosis RESULTS: There is evidence of increased striatal presynaptic dopamine synthesis and release in psychosis, as well as abnormal engagement of the striatum during reward processing. Although, acute THC challenges have elicited a modest effect on striatal dopamine, cannabis users generally indicate impaired presynaptic dopaminergic function. Functional MRI studies have identified that a single dose of THC may modulate regions involved in reward and salience processing such as the striatum, midbrain, insular, and anterior cingulate, with some effects correlating with the severity of THC-induced psychotic symptoms. CBD may modulate brain regions involved in reward/salience processing in an opposite direction to that of THC. CONCLUSIONS There is evidence to suggest modulation of reward processing and its neural substrates by THC and CBD. Whether such effects underlie the psychotomimetic/antipsychotic effects of these cannabinoids remains unclear. Future research should address these unanswered questions to understand the relationship between endocannabinoid dysfunction, reward processing abnormalities, and psychosis.
Collapse
Affiliation(s)
- Brandon Gunasekera
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Kelly Diederen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK.
| |
Collapse
|
6
|
van Hooijdonk CF, Drukker M, van de Giessen E, Booij J, Selten JP, van Amelsvoort TA. Dopaminergic alterations in populations at increased risk for psychosis: a systematic review of imaging findings. Prog Neurobiol 2022; 213:102265. [DOI: 10.1016/j.pneurobio.2022.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
7
|
D3 Receptors and PET Imaging. Curr Top Behav Neurosci 2022; 60:251-275. [PMID: 35711027 DOI: 10.1007/7854_2022_374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This chapter encapsulates a short introduction to positron emission tomography (PET) imaging and the information gained by using this technology to detect changes of the dopamine 3 receptor (D3R) at the molecular level in vivo. We will discuss available D3R radiotracers, emphasizing [11C]PHNO. The focus, however, will be on PET findings in conditions including substance abuse, obesity, traumatic brain injury, schizophrenia, Parkinson's disease, and aging. Finally, there is a discussion about progress in producing next-generation selective D3R radiotracers.
Collapse
|
8
|
McCutcheon RA, Merritt K, Howes OD. Dopamine and glutamate in individuals at high risk for psychosis: a meta-analysis of in vivo imaging findings and their variability compared to controls. World Psychiatry 2021; 20:405-416. [PMID: 34505389 PMCID: PMC8429330 DOI: 10.1002/wps.20893] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dopaminergic and glutamatergic dysfunction is believed to play a central role in the pathophysiology of schizophrenia. However, it is unclear if abnormalities predate the onset of schizophrenia in individuals at high clinical or genetic risk for the disorder. We systematically reviewed and meta-analyzed studies that have used neuroimaging to investigate dopamine and glutamate function in individuals at increased clinical or genetic risk for psychosis. EMBASE, PsycINFO and Medline were searched form January 1, 1960 to November 26, 2020. Inclusion criteria were molecular imaging measures of striatal presynaptic dopaminergic function, striatal dopamine receptor availability, or glutamate function. Separate meta-analyses were conducted for genetic high-risk and clinical high-risk individuals. We calculated standardized mean differences between high-risk individuals and controls, and investigated whether the variability of these measures differed between the two groups. Forty-eight eligible studies were identified, including 1,288 high-risk individuals and 1,187 controls. Genetic high-risk individuals showed evidence of increased thalamic glutamate + glutamine (Glx) concentrations (Hedges' g=0.36, 95% CI: 0.12-0.61, p=0.003). There were no significant differences between high-risk individuals and controls in striatal presynaptic dopaminergic function, striatal D2/D3 receptor availability, prefrontal cortex glutamate or Glx, hippocampal glutamate or Glx, or basal ganglia Glx. In the meta-analysis of variability, genetic high-risk individuals showed reduced variability of striatal D2/D3 receptor availability compared to controls (log coefficient of variation ratio, CVR=-0.24, 95% CI: -0.46 to -0.02, p=0.03). Meta-regressions of publication year against effect size demonstrated that the magnitude of differences between clinical high-risk individuals and controls in presynaptic dopaminergic function has decreased over time (estimate=-0.06, 95% CI: -0.11 to -0.007, p=0.025). Thus, other than thalamic glutamate concentrations, no neurochemical measures were significantly different between individuals at risk for psychosis and controls. There was also no evidence of increased variability of dopamine or glutamate measures in high-risk individuals compared to controls. Significant heterogeneity, however, exists between studies, which does not allow to rule out the existence of clinically meaningful differences.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
al'Absi M, Allen AM. Impact of Acute and Chronic Cannabis Use on Stress Response Regulation: Challenging the Belief That Cannabis Is an Effective Method for Coping. Front Psychol 2021; 12:687106. [PMID: 34276511 PMCID: PMC8283823 DOI: 10.3389/fpsyg.2021.687106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Although research has only recently started to examine the impact of cannabis use on stress response, there is some evidence that indicates acute and chronic impacts of cannabis on these processes. In this paper, we review processes involved in regulating the stress response and we review the influence of acute and chronic exposure to cannabis on patterns and regulation of the stress response. We also highlight the role of stress as a risk factor for initiation and maintenance of cannabis use. In this context, we examine moderating variables, including sex and life adversity. In light of recent observations indicating increasing prevalence of cannabis use during pregnancy, we provide additional focus on cannabis use in this vulnerable population, including how acute and chronic stress may predispose some individuals to use cannabis during pregnancy. While this line of research is in its infancy, we review available articles that focus on the perinatal period and that examined the association between cannabis use and various life stressors, including partner violence, job loss, and lack of housing. We also review psychiatric co-morbidities (e.g., post-traumatic stress disorder, anxiety). A better understanding of the way stress and cannabis use relate within the general population, as well as within certain subgroups that may be at a greater risk of using and/or at greater risk for adverse outcomes of use, may lead to the development of novel prevention and intervention approaches.
Collapse
Affiliation(s)
- Mustafa al'Absi
- Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, Duluth, MN, United States
| | - Alicia M Allen
- Department of Family and Community Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
10
|
Schifani C, Pruessner J, Tseng H, Rao N, Tagore A, Wilson AA, Houle S, Rusjan PM, Mizrahi R. Stress-induced cortical dopamine response is altered in subjects at clinical high risk for psychosis using cannabis. Addict Biol 2020; 25:e12812. [PMID: 31389139 DOI: 10.1111/adb.12812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/10/2019] [Accepted: 06/26/2019] [Indexed: 01/01/2023]
Abstract
Stress and cannabis use are risk factors for the development of psychosis. We have previously shown that subjects at clinical high risk for psychosis (CHR) exhibit a higher striatal dopamine response to stress compared with healthy volunteers (HV), with chronic cannabis use blunting this response. However, it is unknown if this abnormal dopamine response extends to the prefrontal cortex (PFC). Here, we investigated dorsolateral PFC (dlPFC) and medial PFC (mPFC) dopamine release using [11 C]FLB457 positron emission tomography (PET) and a validated stress task. Thirty-three participants completed two PET scans (14 CHR without cannabis use, eight CHR regular cannabis users [CHR-CUs] and 11 HV) while performing a Sensory Motor Control Task (control scan) and the Montreal Imaging Stress Task (stress scan). Stress-induced dopamine release (ΔBPND ) was defined as percent change in D2/3 receptor binding potential between both scans using a novel correction for injected mass of [11 C]FLB457. ΔBPND was significantly different between groups in mPFC (F(2,30) = 5.40, .010), with CHR-CUs exhibiting lower ΔBPND compared with CHR (.008). Similarly, salivary cortisol response (ΔAUCI ) was significantly lower in CHR-CU compared with CHR (F(2,29) = 5.08, .013; post hoc .018) and positively associated with ΔBPND . Furthermore, CHR-CUs had higher attenuated psychotic symptoms than CHR following the stress task, which were negatively associated with ΔBPND . Length of cannabis use was negatively associated with ΔBPND in mPFC when controlling for current cannabis use. Given the global trend to legalize cannabis, this study is important as it highlights the effects of regular cannabis use on cortical dopamine function in high-risk youth.
Collapse
Affiliation(s)
- Christin Schifani
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
| | - Jens Pruessner
- Departments of Psychology, Psychiatry, Neurology and Neurosurgery, Douglas Institute McGill University Montreal Quebec Canada
- Department of Psychology University of Constance Constance Germany
| | - Huai‐Hsuan Tseng
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
| | - Naren Rao
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
| | - Abanti Tagore
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
| | - Alan A. Wilson
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
| | - Sylvain Houle
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
| | - Pablo M. Rusjan
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
| | - Romina Mizrahi
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
| |
Collapse
|
11
|
Welcome MO, Mastorakis NE. Stress-induced blood brain barrier disruption: Molecular mechanisms and signaling pathways. Pharmacol Res 2020; 157:104769. [PMID: 32275963 DOI: 10.1016/j.phrs.2020.104769] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Stress is a nonspecific response to a threat or noxious stimuli with resultant damaging consequences. Stress is believed to be an underlying process that can trigger central nervous system disorders such as depression, anxiety, and post-traumatic stress disorder. Though the pathophysiological basis is not completely understood, data have consistently shown a pivotal role of inflammatory mediators and hypothalamo-pituitary-adrenal (HPA) axis activation in stress induced disorders. Indeed emerging experimental evidences indicate a concurrent activation of inflammatory signaling pathways and not only the HPA axis, but also, peripheral and central renin-angiotensin system (RAS). Furthermore, recent experimental data indicate that the HPA and RAS are coupled to the signaling of a range of central neuro-transmitter, -mediator and -peptide molecules that are also regulated, at least in part, by inflammatory signaling cascades and vice versa. More recently, experimental evidences suggest a critical role of stress in disruption of the blood brain barrier (BBB), a neurovascular unit that regulates the movement of substances and blood-borne immune cells into the brain parenchyma, and prevents peripheral injury to the brain substance. However, the mechanisms underlying stress-induced BBB disruption are not exactly known. In this review, we summarize studies conducted on the effects of stress on the BBB and integrate recent data that suggest possible molecular mechanisms and signaling pathways underlying stress-induced BBB disruption. Key molecular targets and pharmacological candidates for treatment of stress and related illnesses are also summarized.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria.
| | | |
Collapse
|
12
|
McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 2020; 19:15-33. [PMID: 31922684 PMCID: PMC6953551 DOI: 10.1002/wps.20693] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate and dopamine systems play distinct roles in terms of neuronal signalling, yet both have been proposed to contribute significantly to the pathophysiology of schizophrenia. In this paper we assess research that has implicated both systems in the aetiology of this disorder. We examine evidence from post-mortem, preclinical, pharmacological and in vivo neuroimaging studies. Pharmacological and preclinical studies implicate both systems, and in vivo imaging of the dopamine system has consistently identified elevated striatal dopamine synthesis and release capacity in schizophrenia. Imaging of the glutamate system and other aspects of research on the dopamine system have produced less consistent findings, potentially due to methodological limitations and the heterogeneity of the disorder. Converging evidence indicates that genetic and environmental risk factors for schizophrenia underlie disruption of glutamatergic and dopaminergic function. However, while genetic influences may directly underlie glutamatergic dysfunction, few genetic risk variants directly implicate the dopamine system, indicating that aberrant dopamine signalling is likely to be predominantly due to other factors. We discuss the neural circuits through which the two systems interact, and how their disruption may cause psychotic symptoms. We also discuss mechanisms through which existing treatments operate, and how recent research has highlighted opportunities for the development of novel pharmacological therapies. Finally, we consider outstanding questions for the field, including what remains unknown regarding the nature of glutamate and dopamine function in schizophrenia, and what needs to be achieved to make progress in developing new treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| | - John H Krystal
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| |
Collapse
|
13
|
al'Absi M. The influence of stress and early life adversity on addiction: Psychobiological mechanisms of risk and resilience. STRESS AND BRAIN HEALTH: IN CLINICAL CONDITIONS 2020; 152:71-100. [DOI: 10.1016/bs.irn.2020.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Colom M, Vidal B, Zimmer L. Is There a Role for GPCR Agonist Radiotracers in PET Neuroimaging? Front Mol Neurosci 2019; 12:255. [PMID: 31680859 PMCID: PMC6813225 DOI: 10.3389/fnmol.2019.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
Positron emission tomography (PET) is a molecular imaging modality that enables in vivo exploration of metabolic processes and especially the pharmacology of neuroreceptors. G protein-coupled receptors (GPCRs) play an important role in numerous pathophysiologic disorders of the central nervous system. Thus, they are targets of choice in PET imaging to bring proof concept of change in density in pathological conditions or in pharmacological challenge. At present, most radiotracers are antagonist ligands. In vitro data suggest that properties differ between GPCR agonists and antagonists: antagonists bind to receptors with a single affinity, whereas agonists are characterized by two different affinities: high affinity for receptors that undergo functional coupling to G-proteins, and low affinity for those that are not coupled. In this context, agonist radiotracers may be useful tools to give functional images of GPCRs in the brain, with high sensitivity to neurotransmitter release. Here, we review all existing PET radiotracers used from animals to humans and their role for understanding the ligand-receptor paradigm of GPCR in comparison with corresponding antagonist radiotracers.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France.,Institut National des Sciences et Techniques Nucléaires, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
15
|
Cohen K, Weizman A, Weinstein A. Modulatory effects of cannabinoids on brain neurotransmission. Eur J Neurosci 2019; 50:2322-2345. [DOI: 10.1111/ejn.14407] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Koby Cohen
- Department of Behavioral Science Ariel University Science Park 40700 Ariel Israel
| | | | - Aviv Weinstein
- Department of Behavioral Science Ariel University Science Park 40700 Ariel Israel
| |
Collapse
|
16
|
Shalgunov V, van Waarde A, Booij J, Michel MC, Dierckx RAJO, Elsinga PH. Hunting for the high-affinity state of G-protein-coupled receptors with agonist tracers: Theoretical and practical considerations for positron emission tomography imaging. Med Res Rev 2018; 39:1014-1052. [PMID: 30450619 PMCID: PMC6587759 DOI: 10.1002/med.21552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
The concept of the high‐affinity state postulates that a certain subset of G‐protein‐coupled receptors is primarily responsible for receptor signaling in the living brain. Assessing the abundance of this subset is thus potentially highly relevant for studies concerning the responses of neurotransmission to pharmacological or physiological stimuli and the dysregulation of neurotransmission in neurological or psychiatric disorders. The high‐affinity state is preferentially recognized by agonists in vitro. For this reason, agonist tracers have been developed as tools for the noninvasive imaging of the high‐affinity state with positron emission tomography (PET). This review provides an overview of agonist tracers that have been developed for PET imaging of the brain, and the experimental paradigms that have been developed for the estimation of the relative abundance of receptors configured in the high‐affinity state. Agonist tracers appear to be more sensitive to endogenous neurotransmitter challenge than antagonists, as was originally expected. However, other expectations regarding agonist tracers have not been fulfilled. Potential reasons for difficulties in detecting the high‐affinity state in vivo are discussed.
Collapse
Affiliation(s)
- Vladimir Shalgunov
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine, Ghent University, University Hospital, Ghent, Belgium
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Bloomfield MAP, Hindocha C, Green SF, Wall MB, Lees R, Petrilli K, Costello H, Ogunbiyi MO, Bossong MG, Freeman TP. The neuropsychopharmacology of cannabis: A review of human imaging studies. Pharmacol Ther 2018; 195:132-161. [PMID: 30347211 PMCID: PMC6416743 DOI: 10.1016/j.pharmthera.2018.10.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The laws governing cannabis are evolving worldwide and associated with changing patterns of use. The main psychoactive drug in cannabis is Δ9-tetrahydrocannabinol (THC), a partial agonist at the endocannabinoid CB1 receptor. Acutely, cannabis and THC produce a range of effects on several neurocognitive and pharmacological systems. These include effects on executive, emotional, reward and memory processing via direct interactions with the endocannabinoid system and indirect effects on the glutamatergic, GABAergic and dopaminergic systems. Cannabidiol, a non-intoxicating cannabinoid found in some forms of cannabis, may offset some of these acute effects. Heavy repeated cannabis use, particularly during adolescence, has been associated with adverse effects on these systems, which increase the risk of mental illnesses including addiction and psychosis. Here, we provide a comprehensive state of the art review on the acute and chronic neuropsychopharmacology of cannabis by synthesizing the available neuroimaging research in humans. We describe the effects of drug exposure during development, implications for understanding psychosis and cannabis use disorder, and methodological considerations. Greater understanding of the precise mechanisms underlying the effects of cannabis may also give rise to new treatment targets.
Collapse
Affiliation(s)
- Michael A P Bloomfield
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, United Kingdom.
| | - Chandni Hindocha
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom
| | - Sebastian F Green
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matthew B Wall
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine, Imperial College London, United Kingdom; Invicro UK, Hammersmith Hospital, London, United Kingdom
| | - Rachel Lees
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, United Kingdom
| | - Katherine Petrilli
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, United Kingdom
| | - Harry Costello
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - M Olabisi Ogunbiyi
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matthijs G Bossong
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Tom P Freeman
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Department of Psychology, University of Bath, United Kingdom; National Addiction Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| |
Collapse
|
18
|
Sami MB, Bhattacharyya S. Are cannabis-using and non-using patients different groups? Towards understanding the neurobiology of cannabis use in psychotic disorders. J Psychopharmacol 2018; 32:825-849. [PMID: 29591635 PMCID: PMC6058406 DOI: 10.1177/0269881118760662] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A substantial body of credible evidence has accumulated that suggest that cannabis use is an important potentially preventable risk factor for the development of psychotic illness and its worse prognosis following the onset of psychosis. Here we summarize the relevant evidence to argue that the time has come to investigate the neurobiological effects of cannabis in patients with psychotic disorders. In the first section we summarize evidence from longitudinal studies that controlled for a range of potential confounders of the association of cannabis use with increased risk of developing psychotic disorders, increased risk of hospitalization, frequent and longer hospital stays, and failure of treatment with medications for psychosis in those with established illness. Although some evidence has emerged that cannabis-using and non-using patients with psychotic disorders may have distinct patterns of neurocognitive and neurodevelopmental impairments, the biological underpinnings of the effects of cannabis remain to be fully elucidated. In the second and third sections we undertake a systematic review of 70 studies, including over 3000 patients with psychotic disorders or at increased risk of psychotic disorder, in order to delineate potential neurobiological and neurochemical mechanisms that may underlie the effects of cannabis in psychotic disorders and suggest avenues for future research.
Collapse
Affiliation(s)
- Musa Basseer Sami
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Lambeth Early Onset Inpatient Unit, Lambeth Hospital, South London and Maudsley NHS Foundation Trust, UK
| | - Sagnik Bhattacharyya
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Lambeth Early Onset Inpatient Unit, Lambeth Hospital, South London and Maudsley NHS Foundation Trust, UK
| |
Collapse
|
19
|
Schifani C, Tseng HH, Kenk M, Tagore A, Kiang M, Wilson AA, Houle S, Rusjan PM, Mizrahi R. Cortical stress regulation is disrupted in schizophrenia but not in clinical high risk for psychosis. Brain 2018; 141:2213-2224. [PMID: 29860329 PMCID: PMC6022671 DOI: 10.1093/brain/awy133] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022] Open
Abstract
While alterations in striatal dopamine in psychosis and stress have been well studied, the role of dopamine in prefrontal cortex is poorly understood. To date, no study has investigated the prefrontocortical dopamine response to stress in the psychosis spectrum, even though the dorsolateral and medial prefrontal cortices are key regions in cognitive and emotional regulation, respectively. The present study uses the high-affinity dopamine D2/3 receptor radiotracer 11C-FLB457 and PET together with a validated psychosocial stress challenge to investigate the dorsolateral and medial prefrontocortical dopamine response to stress in schizophrenia and clinical high risk for psychosis. Forty participants completed two 11C-FLB457 PET scans (14 antipsychotic-free schizophrenia, 14 clinical high risk for psychosis and 12 matched healthy volunteers), one while performing a Sensory Motor Control Task (control) and another while performing the Montreal Imaging Stress Task (stress). Binding potential (BPND) was estimated using Simplified Reference Tissue Model with cerebellar cortex as reference region. Dopamine release was defined as per cent change in BPND between control and stress scans (ΔBPND) using a novel correction for injected mass. Salivary cortisol response (ΔAUCI) was assessed throughout the tasks and its relationship with dopamine release examined. 11C-FLB457 binding at control conditions was significantly different between groups in medial [F(2,37) = 7.98, P = 0.0013] and dorsolateral [F(2,37) = 6.97, P = 0.0027] prefrontal cortex with schizophrenia patients having lower BPND than participants at clinical high risk for psychosis and healthy volunteers, but there was no difference in ΔBPND among groups [dorsolateral prefrontal cortex: F(2,37) = 1.07, P = 0.35; medial prefrontal cortex: F(2,37) = 0.54, P = 0.59]. We report a positive relationship between ΔAUCI and 11C-FLB457 ΔBPND in dorsolateral and medial prefrontal cortex in healthy volunteers (r = 0.72, P = 0.026; r = 0.76, P = 0.014, respectively) and in participants at clinical high risk for psychosis (r = 0.76, P = 0.0075; r = 0.72, P = 0.018, respectively), which was absent in schizophrenia (r = 0.46, P = 1.00; r = 0.19, P = 1.00, respectively). Furthermore, exploratory associations between ΔBPND or ΔAUCI and stress or anxiety measures observed in clinical high risk for psychosis were absent in schizophrenia. These findings provide first direct evidence of a disrupted prefrontocortical dopamine-stress regulation in schizophrenia.
Collapse
Affiliation(s)
- Christin Schifani
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Huai-Hsuan Tseng
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Miran Kenk
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Abanti Tagore
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Michael Kiang
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Alan A Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pablo M Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Tseng HH, Watts JJ, Kiang M, Suridjan I, Wilson AA, Houle S, Rusjan PM, Mizrahi R. Nigral Stress-Induced Dopamine Release in Clinical High Risk and Antipsychotic-Naïve Schizophrenia. Schizophr Bull 2018; 44:542-551. [PMID: 29036383 PMCID: PMC5890468 DOI: 10.1093/schbul/sbx042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Striatal dopamine (DA) synthesis capacity and release are elevated in schizophrenia (SCZ) and its putative prodrome, the clinical high risk (CHR) state. Striatal DA function results from the activity of midbrain DA neurons projecting mainly from the substantia nigra (SN). Elevated stress-induced DA release in SCZ and CHR was observed in the striatum; however, whether it is also elevated in the SN is unclear. The current study aims to determine whether nigral DA release in response to a validated stress task is altered in CHR and in antipsychotic-naïve SCZ. Further, we explore how DA release in the SN and striatum might be related. Methods 24 CHR subjects, 9 antipsychotic-naïve SCZ and 25 healthy volunteers (HV) underwent 2 positron emission tomography (PET) scans using the DA D2/3 agonist radiotracer, [11C]-(+)-PHNO, which allows simultaneous investigations of DA in the SN and striatum. Psychosocial stress-induced DA release was estimated as the percentage differences in BPND (%[11C]-(+)-PHNO displacement) between stress and sensory-motor control sessions. Results We observed a significant diagnostic group by session interaction, such that SCZ exhibited greater stress-induced [11C]-(+)-PHNO % displacement (25.90% ± 32.2%; mean ± SD), as compared to HVs (-10.94% ± 27.1%). Displacement in CHRs (-1.13% ± 32.2%) did not differ significantly from either HV or SCZ. Conclusion Our findings suggest that elevated nigral DA responsiveness to stress is observed in antipsychotic-naïve SCZ.
Collapse
Affiliation(s)
- Huai-Hsuan Tseng
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jeremy J Watts
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Michael Kiang
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ivonne Suridjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan A Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Pablo M Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Tournier BB, Dimiziani A, Tsartsalis S, Millet P, Ginovart N. Different effects of chronic THC on the neuroadaptive response of dopamine D2/3 receptor-mediated signaling in roman high- and roman low-avoidance rats. Synapse 2018; 72. [DOI: 10.1002/syn.22023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/01/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Benjamin B. Tournier
- Department of Mental Health and Psychiatry, Laboratory for Translational Imaging in Psychiatric Neuroscience; University Hospitals of Geneva; Geneva Switzerland
| | - Andrea Dimiziani
- Department of Mental Health and Psychiatry, Laboratory for Translational Imaging in Psychiatric Neuroscience; University Hospitals of Geneva; Geneva Switzerland
- Department of Psychiatry; University of Geneva; Geneva Switzerland
| | - Stergios Tsartsalis
- Department of Mental Health and Psychiatry, Laboratory for Translational Imaging in Psychiatric Neuroscience; University Hospitals of Geneva; Geneva Switzerland
- Department of Psychiatry; University of Geneva; Geneva Switzerland
| | - Philippe Millet
- Department of Mental Health and Psychiatry, Laboratory for Translational Imaging in Psychiatric Neuroscience; University Hospitals of Geneva; Geneva Switzerland
- Department of Psychiatry; University of Geneva; Geneva Switzerland
| | - Nathalie Ginovart
- Department of Mental Health and Psychiatry, Laboratory for Translational Imaging in Psychiatric Neuroscience; University Hospitals of Geneva; Geneva Switzerland
- Department of Psychiatry; University of Geneva; Geneva Switzerland
| |
Collapse
|
22
|
Kokkinou M, Ashok AH, Howes OD. The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Mol Psychiatry 2018; 23:59-69. [PMID: 28972576 PMCID: PMC5754467 DOI: 10.1038/mp.2017.190] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/16/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022]
Abstract
Ketamine is a non-competitive antagonist at the N-methyl-d-aspartate receptor. It has recently been found to have antidepressant effects and is a drug of abuse, suggesting it may have dopaminergic effects. To examine the effect of ketamine on the dopamine systems, we carried out a systematic review and meta-analysis of dopamine measures in the rodent, human and primate brain following acute and chronic ketamine administration relative to a drug-free baseline or control condition. Systematic search of PubMed and PsychInfo electronic databases yielded 40 original peer-reviewed studies. There were sufficient rodent studies of the acute effects of ketamine at sub-anaesthetic doses for meta-analysis. Acute ketamine administration in rodents is associated with significantly increased dopamine levels in the cortex (Hedge's g= 1.33, P<0.01), striatum (Hedge's g=0.57, P<0.05) and the nucleus accumbens (Hedge's g=1.30, P<0.05) compared to control conditions, and 62-180% increases in dopamine neuron population activity. Sub-analysis indicated elevations were more marked in in vivo (g=1.93) than ex vivo (g=0.50) studies. There were not enough studies for meta-analysis in other brain regions studied (hippocampus, ventral pallidum and cerebellum), or of the effects of chronic ketamine administration, although consistent increases in cortical dopamine levels (from 88 to 180%) were reported in the latter studies. In contrast, no study showed an effect of anaesthetic doses (>100 mg kg-1) of ketamine on dopamine levels ex vivo, although this remains to be tested in vivo. Findings in non-human primates and in human studies using positron emission tomography were not consistent. The studies reviewed here provide evidence that acute ketamine administration leads to dopamine release in the rodent brain. We discuss the inter-species variation in the ketamine induced dopamine release as well as the implications for understanding psychiatric disorders, in particular substance abuse, schizophrenia, and the potential antidepressant properties of ketamine, and comparisons with stimulants and other NMDA antagonists. Finally we identify future research needs.
Collapse
Affiliation(s)
- M Kokkinou
- Robert Steiner MR Unit, Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, London, UK,Psychiatric Imaging Group, Faculty of Medicine, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK
| | - A H Ashok
- Robert Steiner MR Unit, Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, London, UK,Psychiatric Imaging Group, Faculty of Medicine, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - O D Howes
- Robert Steiner MR Unit, Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, London, UK,Psychiatric Imaging Group, Faculty of Medicine, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK,Psychiatric Imaging Group, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, Du Cane Road, London W12 0NN, UK. E-mail:
| |
Collapse
|
23
|
Wiers CE, Cabrera EA, Tomasi D, Wong CT, Demiral ŞB, Kim SW, Wang GJ, Volkow ND. Striatal Dopamine D2/D3 Receptor Availability Varies Across Smoking Status. Neuropsychopharmacology 2017; 42:2325-2332. [PMID: 28643800 PMCID: PMC5645737 DOI: 10.1038/npp.2017.131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/07/2017] [Accepted: 06/11/2017] [Indexed: 12/18/2022]
Abstract
To assess how tobacco smoking status affects baseline dopamine D2/D3 (D2R) receptor availability and methylphenidate-induced dopamine (DA) release, we retrospectively analyzed D2R availability measures of 8 current smokers, 10 ex-smokers, and 18 nonsmokers who were scanned with positron emission tomography and [11C]raclopride, after administration of an injection of placebo or 0.5 mg/kg i.v. methylphenidate. There was a significant effect of smoking status on baseline striatal D2R availability; with current smokers showing lower striatal D2R availability compared with nonsmokers (caudate, putamen, and ventral striatum) and with ex-smokers (caudate and putamen). Baseline striatal D2R did not differ between nonsmokers and ex-smokers. The effect of smoking status on methylphenidate-induced DA release tended to be lower in smokers but the difference was not significant (p=0.08). For behavioral measures, current smokers showed significantly higher aggression scores compared with both nonsmokers and ex-smokers. These results suggest that with abstinence ex-smokers may recover from low striatal D2R availability and from increased behavioral aggression seen in active smokers. However, longitudinal studies are needed to assess this within abstaining smokers.
Collapse
Affiliation(s)
- Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth A Cabrera
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Christopher T Wong
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Şükrü B Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Sung Won Kim
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Cuttler C, Spradlin A, Nusbaum AT, Whitney P, Hinson JM, McLaughlin RJ. Blunted stress reactivity in chronic cannabis users. Psychopharmacology (Berl) 2017; 234:2299-2309. [PMID: 28567696 DOI: 10.1007/s00213-017-4648-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/07/2017] [Indexed: 01/01/2023]
Abstract
RATIONALE One of the most commonly cited reasons for chronic cannabis use is to cope with stress. Consistent with this, cannabis users have shown reduced emotional arousal and dampened stress reactivity in response to negative imagery. OBJECTIVES To our knowledge, the present study represents the first to examine the effects of an acute stress manipulation on subjective stress and salivary cortisol in chronic cannabis users compared to non-users. METHODS Forty cannabis users and 42 non-users were randomly assigned to complete either the stress or no stress conditions of the Maastricht Acute Stress Test (MAST). The stress condition of the MAST manipulates both physiological (placing hand in ice bath) and psychosocial stress (performing math under conditions of social evaluation). Participants gave baseline subjective stress ratings before, during, and after the stress manipulation. Cortisol was measured from saliva samples obtained before and after the stress manipulation. Further, cannabis cravings and symptoms of withdrawal were measured. RESULTS Subjective stress ratings and cortisol levels were significantly higher in non-users in the stress condition relative to non-users in the no stress condition. In contrast, cannabis users demonstrated blunted stress reactivity; specifically, they showed no increase in cortisol and a significantly smaller increase in subjective stress ratings. The stress manipulation had no impact on cannabis users' self-reported cravings or withdrawal symptoms. CONCLUSION Chronic cannabis use is associated with blunted stress reactivity. Future research is needed to determine whether this helps to confer resiliency or vulnerability to stress-related psychopathology as well as the mechanisms underlying this effect.
Collapse
Affiliation(s)
- Carrie Cuttler
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA.
- Translational Addiction Research Center, Washington State University, Pullman, WA, USA.
| | - Alexander Spradlin
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA
| | - Amy T Nusbaum
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA
| | - Paul Whitney
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA
| | - John M Hinson
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA
| | - Ryan J McLaughlin
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA
- Translational Addiction Research Center, Washington State University, Pullman, WA, USA
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164-7620, USA
| |
Collapse
|
25
|
van de Giessen E, Weinstein JJ, Cassidy CM, Haney M, Dong Z, Ghazzaoui R, Ojeil N, Kegeles LS, Xu X, Vadhan NP, Volkow ND, Slifstein M, Abi-Dargham A. Deficits in striatal dopamine release in cannabis dependence. Mol Psychiatry 2017; 22:68-75. [PMID: 27001613 PMCID: PMC5033654 DOI: 10.1038/mp.2016.21] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 12/13/2022]
Abstract
Most drugs of abuse lead to a general blunting of dopamine release in the chronic phase of dependence, which contributes to poor outcome. To test whether cannabis dependence is associated with a similar dopaminergic deficit, we examined striatal and extrastriatal dopamine release in severely cannabis-dependent participants (CD), free of any comorbid conditions, including nicotine use. Eleven CD and 12 healthy controls (HC) completed two positron emission tomography scans with [11C]-(+)-PHNO, before and after oral administration of d-amphetamine. CD stayed inpatient for 5-7 days prior to the scans to standardize abstinence. Magnetic resonance spectroscopy (MRS) measures of glutamate in the striatum and hippocampus were obtained in the same subjects. Percent change in [11C]-(+)-PHNO-binding potential (ΔBPND) was compared between groups and correlations with MRS glutamate, subclinical psychopathological and neurocognitive parameters were examined. CD had significantly lower ΔBPND in the striatum (P=0.002, effect size (ES)=1.48), including the associative striatum (P=0.003, ES=1.39), sensorimotor striatum (P=0.003, ES=1.41) and the pallidus (P=0.012, ES=1.16). Lower dopamine release in the associative striatum correlated with inattention and negative symptoms in CD, and with poorer working memory and probabilistic category learning performance in both CD and HC. No relationships to MRS glutamate and amphetamine-induced subclinical positive symptoms were detected. In conclusion, this study provides evidence that severe cannabis dependence-without the confounds of any comorbidity-is associated with a deficit in striatal dopamine release. This deficit extends to other extrastriatal areas and predicts subclinical psychopathology.
Collapse
Affiliation(s)
- Elsmarieke van de Giessen
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Jodi J. Weinstein
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Clifford M. Cassidy
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Margaret Haney
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Zhengchao Dong
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Rassil Ghazzaoui
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Najate Ojeil
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Lawrence S. Kegeles
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Xiaoyan Xu
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Nehal P. Vadhan
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
- Department of Psychiatry, Stony Brook University School of Medicine, New York
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Mark Slifstein
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Anissa Abi-Dargham
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| |
Collapse
|
26
|
Howes OD, McCutcheon R, Owen MJ, Murray RM. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia. Biol Psychiatry 2017; 81:9-20. [PMID: 27720198 PMCID: PMC5675052 DOI: 10.1016/j.biopsych.2016.07.014] [Citation(s) in RCA: 360] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 02/06/2023]
Abstract
The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia. Because it was initially based on indirect evidence and findings in patients with established schizophrenia, it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also affect presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis, and psychosocial stress. Included among the many genes associated with risk of schizophrenia are the gene encoding the dopamine D2 receptor and those involved in the upstream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acidergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitize the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients.
Collapse
Affiliation(s)
- Oliver D Howes
- Psychosis Studies, King's College London, London, United Kingdom; MRC Clinical Sciences Centre, Imperial College Hammersmith Hospital, London, United Kingdom.
| | - Robert McCutcheon
- Psychosis Studies, King's College London, London, United Kingdom; MRC Clinical Sciences Centre, Imperial College Hammersmith Hospital, London, United Kingdom
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, and Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, Wales, United Kingdom
| | - Robin M Murray
- Psychosis Studies, King's College London, London, United Kingdom
| |
Collapse
|
27
|
Bloomfield MAP, Ashok AH, Volkow ND, Howes OD. The effects of Δ 9-tetrahydrocannabinol on the dopamine system. Nature 2016; 539:369-377. [PMID: 27853201 PMCID: PMC5123717 DOI: 10.1038/nature20153] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022]
Abstract
The effects of Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, are a pressing concern for global mental health. Patterns of cannabis use are changing drastically owing to legalization, the availability of synthetic analogues (commonly termed spice), cannavaping and an emphasis on the purported therapeutic effects of cannabis. Many of the reinforcing effects of THC are mediated by the dopamine system. Owing to the complexity of the cannabinoid-dopamine interactions that take place, there is conflicting evidence from human and animal studies concerning the effects of THC on the dopamine system. Acute THC administration causes increased dopamine release and neuron activity, whereas long-term use is associated with blunting of the dopamine system. Future research must examine the long-term and developmental dopaminergic effects of THC.
Collapse
Affiliation(s)
- Michael A P Bloomfield
- Psychiatric Imaging Group, Robert Steiner MR Unit, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London WC1T 7NF, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, 1-19 Torrington Place, London WC1E 6BT, UK
| | - Abhishekh H Ashok
- Psychiatric Imaging Group, Robert Steiner MR Unit, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK
| | - Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, 6001 Executive Boulevard, Bethesda, Maryland 20892-9561, USA
| | - Oliver D Howes
- Psychiatric Imaging Group, Robert Steiner MR Unit, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
28
|
Tournier BB, Tsartsalis S, Dimiziani A, Millet P, Ginovart N. Time-dependent effects of repeated THC treatment on dopamine D2/3 receptor-mediated signalling in midbrain and striatum. Behav Brain Res 2016; 311:322-329. [DOI: 10.1016/j.bbr.2016.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/17/2016] [Accepted: 05/21/2016] [Indexed: 02/07/2023]
|
29
|
Wiers CE, Shokri-Kojori E, Wong CT, Abi-Dargham A, Demiral ŞB, Tomasi D, Wang GJ, Volkow ND. Cannabis Abusers Show Hypofrontality and Blunted Brain Responses to a Stimulant Challenge in Females but not in Males. Neuropsychopharmacology 2016; 41:2596-605. [PMID: 27156854 PMCID: PMC4987858 DOI: 10.1038/npp.2016.67] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/27/2016] [Accepted: 04/30/2016] [Indexed: 12/14/2022]
Abstract
The extent to which cannabis is deleterious to the human brain is not well understood. Here, we test whether cannabis abusers (CA) have impaired frontal function and reactivity to dopaminergic signaling, which are fundamental to relapse in addiction. We measured brain glucose metabolism using PET and [(18)F]FDG both at baseline (placebo) and after challenge with methylphenidate (MP), a dopamine-enhancing drug, in 24 active CA (50% female) and 24 controls (HC; 50% female). Results show that (i) CA had lower baseline glucose metabolism than HC in frontal cortex including anterior cingulate, which was associated with negative emotionality. (ii) MP increased whole-brain glucose metabolism in HC but not in CA; and group by challenge effects were most profound in putamen, caudate, midbrain, thalamus, and cerebellum. In CA, MP-induced metabolic increases in putamen correlated negatively with addiction severity. (iii) There were significant gender effects, such that both the group differences at baseline in frontal metabolism and the attenuated regional brain metabolic responses to MP were observed in female CA but not in male CA. As for other drug addictions, reduced baseline frontal metabolism is likely to contribute to relapse in CA. The attenuated responses to MP in midbrain and striatum are consistent with decreased brain reactivity to dopamine stimulation and might contribute to addictive behaviors in CA. The gender differences suggest that females are more sensitive than males to the adverse effects of cannabis in brain.
Collapse
Affiliation(s)
- Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA,National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD 20892, USA, Tel: +1 301 451 3021 or +1 301 402 0868, Fax: +1 301 496 5568, E-mail: or
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Christopher T Wong
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Anissa Abi-Dargham
- Division of Translational Imaging, Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, USA
| | - Şükrü B Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA,National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA,National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD 20892, USA, Tel: +1 301 451 3021 or +1 301 402 0868, Fax: +1 301 496 5568, E-mail: or
| |
Collapse
|
30
|
Sami MB, Rabiner EA, Bhattacharyya S. Does cannabis affect dopaminergic signaling in the human brain? A systematic review of evidence to date. Eur Neuropsychopharmacol 2015; 25:1201-24. [PMID: 26068702 DOI: 10.1016/j.euroneuro.2015.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/23/2015] [Accepted: 03/22/2015] [Indexed: 12/21/2022]
Abstract
A significant body of epidemiological evidence has linked psychotic symptoms with both acute and chronic use of cannabis. Precisely how these effects of THC are mediated at the neurochemical level is unclear. While abnormalities in multiple pathways may lead to schizophrenia, an abnormality in dopamine neurotransmission is considered to be the final common abnormality. One would thus expect cannabis use to be associated with dopamine signaling alterations. This is the first systematic review of all studies, both observational as well as experimental, examining the acute as well as chronic effect of cannabis or its main psychoactive ingredient, THC, on the dopamine system in man. We aimed to review all studies conducted in man, with any reported neurochemical outcomes related to the dopamine system after cannabis, cannabinoid or endocannabinoid administration or use. We identified 25 studies reporting outcomes on over 568 participants, of which 244 participants belonged to the cannabis/cannabinoid exposure group. In man, there is as yet little direct evidence to suggest that cannabis use affects acute striatal dopamine release or affects chronic dopamine receptor status in healthy human volunteers. However some work has suggested that acute cannabis exposure increases dopamine release in striatal and pre-frontal areas in those genetically predisposed for, or at clinical high risk of psychosis. Furthermore, recent studies are suggesting that chronic cannabis use blunts dopamine synthesis and dopamine release capacity. Further well-designed studies are required to definitively delineate the effects of cannabis use on the dopaminergic system in man.
Collapse
Affiliation(s)
- Musa Basser Sami
- Kent and Medway Partnership, NHS Trust, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King׳s College London, De Crespigny Park, London SE5 8AF, UK
| | - Eugenii A Rabiner
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King׳s College London, UK; Imanova, Centre for Imaging Sciences, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King׳s College London, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
31
|
Vaessen T, Hernaus D, Myin-Germeys I, van Amelsvoort T. The dopaminergic response to acute stress in health and psychopathology: A systematic review. Neurosci Biobehav Rev 2015. [PMID: 26196459 DOI: 10.1016/j.neubiorev.2015.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Previous work in animals has shown that dopamine (DA) in cortex and striatum plays an essential role in stress processing. For the first time, we systematically reviewed the in vivo evidence for DAergic stress processing in health and psychopathology in humans. All studies included (n studies=25, n observations=324) utilized DA D2/3 positron emission tomography and measured DAergic activity during an acute stress challenge. The evidence in healthy volunteers (HV) suggests that physiological, but not psychological, stress consistently increases striatal DA release. Instead, increased medial prefrontal cortex (mPFC) DAergic activity in HV was observed during psychological stress. Across brain regions, stress-related DAergic activity was correlated with the physiological and psychological intensity of the stressor. The magnitude of stress-induced DA release was dependent on rearing conditions, personality traits and genetic variations in several SNPs. In psychopathology, preliminary evidence was found for stress-related dorsal striatal DAergic hyperactivity in psychosis spectrum and a blunted response in chronic cannabis use and pain-related disorders, but results were inconsistent. Physiological stress-induced DAergic activity in striatum in HV may reflect somatosensory properties of the stressor and readiness for active fight-or-flight behavior. DAergic activity in HV in the ventral striatum and mPFC may be more related to expectations about the stressor and threat evaluation, respectively. Future studies with increased sample size in HV and psychopathology assessing the functional relevance of stress-induced DAergic activity, the association between cortical and subcortical DAergic activity and the direct comparison of different stressors are necessary to conclusively elucidate the role of the DA system in the stress response.
Collapse
Affiliation(s)
- Thomas Vaessen
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and Neuroscience MHeNS, Maastricht University, The Netherlands.
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and Neuroscience MHeNS, Maastricht University, The Netherlands
| | - Inez Myin-Germeys
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and Neuroscience MHeNS, Maastricht University, The Netherlands
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and Neuroscience MHeNS, Maastricht University, The Netherlands
| |
Collapse
|
32
|
Ghazzaoui R, Abi-Dargham A. Imaging dopamine transmission parameters in cannabis dependence. Prog Neuropsychopharmacol Biol Psychiatry 2014; 52:28-32. [PMID: 24513022 DOI: 10.1016/j.pnpbp.2013.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023]
Abstract
Low striatal dopamine D2/3 receptor (D2/3) availability and low ventrostriatal dopamine release have been observed in alcoholism, cocaine and heroin dependence. Multiple studies to date have examined D2 availability in cannabis dependence and have consistently failed to demonstrate alterations. In addition, the response of the dopamine system to an amphetamine challenge and to a stress challenge has also been examined, and did not show alterations. We review these studies here and conclude that cannabis dependence is an exception among commonly abused drugs in that it is not associated with blunting of the dopamine system.
Collapse
Affiliation(s)
- Rassil Ghazzaoui
- Department of Psychiatry at New York State and Columbia University, NY, USA
| | - Anissa Abi-Dargham
- Department of Psychiatry at New York State and Columbia University, NY, USA; Department of Radiology at New York State and Columbia University, NY, USA.
| |
Collapse
|
33
|
Mizrahi R, Kenk M, Suridjan I, Boileau I, George TP, McKenzie K, Wilson AA, Houle S, Rusjan P. Stress-induced dopamine response in subjects at clinical high risk for schizophrenia with and without concurrent cannabis use. Neuropsychopharmacology 2014; 39:1479-89. [PMID: 24385130 PMCID: PMC3988552 DOI: 10.1038/npp.2013.347] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/26/2013] [Accepted: 11/30/2013] [Indexed: 01/08/2023]
Abstract
Research on the environmental risk factors for schizophrenia has focused on either psychosocial stress or drug exposure, with limited investigation of their interaction. A heightened dopaminergic stress response in patients with schizophrenia and individuals at clinical high risk (CHR) supports the dopaminergic sensitization hypothesis. Cannabis is believed to contribute to the development of schizophrenia, possibly through a cross-sensitization with stress. Twelve CHR and 12 cannabis-using CHR (CHR-CU, 11 dependent) subjects underwent [(11)C]-(+)-PHNO positron emission tomography scans, while performing a Sensorimotor Control Task (SMCT) and a stress condition (Montreal Imaging Stress task). The simplified reference tissue model was used to obtain binding potential relative to non-displaceable binding (BPND) in the whole striatum, its functional subdivisions (limbic striatum (LST), associative striatum (AST), and sensorimotor striatum (SMST)), globus pallidus (GP), and substantia nigra (SN). Changes in BPND, reflecting alterations in synaptic dopamine (DA) levels, were tested with analysis of variance. SMCT BPND was not significantly different between groups in any brain region (p>0.21). Although stress elicited a significant reduction in BPND in the CHR group, CHR-CU group exhibited an increase in BPND. Stress-induced changes in regional BPND between CHR-CU and CHR were significantly different in AST (p<0.001), LST (p=0.007), SMST (p=0.002), SN (p=0.021), and whole striatum (p=0.001), with trend level in the GP (p=0.099). All subjects experienced an increase in positive (attenuated) psychotic symptoms (p=0.001) following the stress task. Our results suggest altered DA stress reactivity in CHR subjects who concurrently use cannabis, as compared with CHR subjects. Our finding does not support the cross-sensitization hypothesis, which posits greater dopaminergic reactivity to stress in CHR cannabis users, but adds to the growing body of literature showing reduced DA (stress) response in addiction.
Collapse
Affiliation(s)
- Romina Mizrahi
- PET Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Faculty of Medicine, Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada,PET Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada, Tel: +1 416 535 8501 (ext 4508), Fax: +1 416 979 4656, E-mail:
| | - Miran Kenk
- PET Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ivonne Suridjan
- PET Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Isabelle Boileau
- PET Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Faculty of Medicine, Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Tony P George
- Faculty of Medicine, Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kwame McKenzie
- Faculty of Medicine, Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Alan A Wilson
- PET Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Faculty of Medicine, Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Sylvain Houle
- PET Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Faculty of Medicine, Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Pablo Rusjan
- PET Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
34
|
van Winkel R, Kuepper R. Epidemiological, neurobiological, and genetic clues to the mechanisms linking cannabis use to risk for nonaffective psychosis. Annu Rev Clin Psychol 2014; 10:767-91. [PMID: 24471373 DOI: 10.1146/annurev-clinpsy-032813-153631] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epidemiological studies have shown that the association between cannabis and psychosis is robust and consistent across different samples, with compelling evidence for a dose-response relationship. Because longitudinal work indicates that cannabis use precedes psychotic symptoms, it seems reasonable to assume a causal relationship. However, more work is needed to address the possibility of gene-environment correlation (for example, genetic risk for psychosis causing onset of cannabis use). Moreover, knowledge about underlying biological mechanisms linking cannabis use and psychosis is still relatively limited. In order to understand how cannabis use may lead to an increased risk for psychosis, in the present article we (a) review the epidemiological, neurobiological, and genetic evidence linking cannabinoids and psychosis, (b) assess the quality of the evidence, and finally (c) try to integrate the most robust findings into a neurodevelopmental model of cannabis-induced psychosis and identify the gaps in knowledge that are in need of further investigation.
Collapse
Affiliation(s)
- Ruud van Winkel
- Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, European Graduate School of Neuroscience (EURON), South Limburg Mental Health Research and Teaching Network (SEARCH), Maastricht University Medical Center, Maastricht, The Netherlands;
| | | |
Collapse
|
35
|
Abstract
Neuroimaging, including PET, MRI, and MRS, is a powerful approach to the study of brain function. This article reviews neuroimaging findings related to alcohol and other drugs of abuse that have been published since 2011. Uses of neuroimaging are to characterize patients to determine who will fare better in treatment and to investigate the reasons underlying the effect on outcomes. Neuroimaging is also used to characterize the acute and chronic effects of substances on the brain and how those effects are related to dependence, relapse, and other drug effects. The data can be used to provide encouraging information for patients, as several studies have shown that long-term abstinence is associated with at least partial normalization of neurological abnormalities.
Collapse
Affiliation(s)
- Mark J Niciu
- National Institutes of Health and Department of Health and Human Services, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, 10 Center Dr., Building 10/CRC, Room 7-5545, Bethesda, MD 20892, USA
| | - Graeme F Mason
- Yale University Department of Diagnostic Radiology and Psychiatry, New Haven, CT, USA
| |
Collapse
|