1
|
Annis AC, Gunaseelan V, Smith AV, Abecasis GR, Larach DB, Zawistowski M, Frangakis SG, Brummett CM. Genetic Associations of Persistent Opioid Use After Surgery Point to OPRM1 but Not Other Opioid-Related Loci as the Main Driver of Opioid Use Disorder. Genet Epidemiol 2025; 49:e22588. [PMID: 39385445 DOI: 10.1002/gepi.22588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024]
Abstract
Persistent opioid use after surgery is a common morbidity outcome associated with subsequent opioid use disorder, overdose, and death. While phenotypic associations have been described, genetic associations remain unidentified. Here, we conducted the largest genetic study of persistent opioid use after surgery, comprising ~40,000 non-Hispanic, European-ancestry Michigan Genomics Initiative participants (3198 cases and 36,321 surgically exposed controls). Our study primarily focused on the reproducibility and reliability of 72 genetic studies of opioid use disorder phenotypes. Nominal associations (p < 0.05) occurred at 12 of 80 unique (r2 < 0.8) signals from these studies. Six occurred in OPRM1 (most significant: rs79704991-T, OR = 1.17, p = 8.7 × 10-5), with two surviving multiple testing correction. Other associations were rs640561-LRRIQ3 (p = 0.015), rs4680-COMT (p = 0.016), rs9478495 (p = 0.017, intergenic), rs10886472-GRK5 (p = 0.028), rs9291211-SLC30A9/BEND4 (p = 0.043), and rs112068658-KCNN1 (p = 0.048). Two highly referenced genes, OPRD1 and DRD2/ANKK1, had no signals in MGI. Associations at previously identified OPRM1 variants suggest common biology between persistent opioid use and opioid use disorder, further demonstrating connections between opioid dependence and addiction phenotypes. Lack of significant associations at other variants challenges previous studies' reliability.
Collapse
Affiliation(s)
- Aubrey C Annis
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Vidhya Gunaseelan
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Gonçalo R Abecasis
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Daniel B Larach
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew Zawistowski
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Stephan G Frangakis
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Chad M Brummett
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Opioid Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Dunn KE, Huhn AS, Finan PH, Mange A, Bergeria CL, Maher BS, Rabinowitz JA, Strain EC, Antoine D. Polymorphisms in the A118G SNP of the OPRM1 gene produce different experiences of opioids: A human laboratory phenotype-genotype assessment. Addict Biol 2024; 29:e13355. [PMID: 38221808 PMCID: PMC10898793 DOI: 10.1111/adb.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 01/16/2024]
Abstract
Allelic variations in the A118G SNP of the OPRM1 gene change opioid signaling; however, evaluations of how allelic differences may influence opioid effects are lacking. This human laboratory paradigm examined whether the AA versus AG/GG genotypes determined opioid response profiles. Individuals with limited opioid exposure (N = 100) completed a five-day within-subject, double-blind, placebo-controlled, residential study. Participants were admitted (Day 1), received 4 mg hydromorphone (Day 2) and 0 mg, 2 mg and 8 mg hydromorphone in randomized order (Days 3-5) and completed self-reported visual analog scale (VAS) ratings and Likert scales, observed VAS, and physiological responses at baseline and for 6.5 h post-dose. Outcomes were analysed as peak/nadir effects over time as a function of genotype (available for N = 96 individuals; AG/GG = 13.5%, AA = 86.4%). Participants with AG/GG rated low and moderate doses of hydromorphone as significantly more positive (e.g., Good Effects VAS, coasting, drive, friendly, talkative, stimulation) with fewer negative effects (e.g., itchy skin, nausea, sleepiness), and were also observed as being more talkative and energetic relative to persons with AA. Persons with AG/GG were less physiologically reactive as determined by diastolic blood pressure and heart rate, but had more changes in core temperature compared with those with AA. Persons with AA also demonstrated more prototypic agonist effects across doses; persons with AG/GG showed limited response to 2 mg and 4 mg. Data suggest persons with AG/GG genotype experienced more pleasant and fewer unpleasant responses to hydromorphone relative to persons with AA. Future studies should replicate these laboratory findings in clinical populations to support a precision medicine approach to opioid prescribing.
Collapse
Affiliation(s)
- Kelly E. Dunn
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Andrew S. Huhn
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Patrick H. Finan
- Department of AnesthesiologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Ami Mange
- Yale School of MedicineNew HavenConnecticutUSA
| | - Cecilia L. Bergeria
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Brion S. Maher
- Department of Mental HealthJohns Hopkins University School of Public HealthBaltimoreMarylandUSA
| | - Jill A. Rabinowitz
- Department of Mental HealthJohns Hopkins University School of Public HealthBaltimoreMarylandUSA
| | - Eric C. Strain
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Denis Antoine
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
3
|
Arnatkeviciute A, Lemire M, Morrison C, Mooney M, Ryabinin P, Roslin NM, Nikolas M, Coxon J, Tiego J, Hawi Z, Fornito A, Henrik W, Martinot JL, Martinot MLP, Artiges E, Garavan H, Nigg J, Friedman NP, Burton C, Schachar R, Crosbie J, Bellgrove MA. Trans-ancestry meta-analysis of genome wide association studies of inhibitory control. Mol Psychiatry 2023; 28:4175-4184. [PMID: 37500827 PMCID: PMC10827666 DOI: 10.1038/s41380-023-02187-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Deficits in effective executive function, including inhibitory control are associated with risk for a number of psychiatric disorders and significantly impact everyday functioning. These complex traits have been proposed to serve as endophenotypes, however, their genetic architecture is not yet well understood. To identify the common genetic variation associated with inhibitory control in the general population we performed the first trans-ancestry genome wide association study (GWAS) combining data across 8 sites and four ancestries (N = 14,877) using cognitive traits derived from the stop-signal task, namely - go reaction time (GoRT), go reaction time variability (GoRT SD) and stop signal reaction time (SSRT). Although we did not identify genome wide significant associations for any of the three traits, GoRT SD and SSRT demonstrated significant and similar SNP heritability of 8.2%, indicative of an influence of genetic factors. Power analyses demonstrated that the number of common causal variants contributing to the heritability of these phenotypes is relatively high and larger sample sizes are necessary to robustly identify associations. In Europeans, the polygenic risk for ADHD was significantly associated with GoRT SD and the polygenic risk for schizophrenia was associated with GoRT, while in East Asians polygenic risk for schizophrenia was associated with SSRT. These results support the potential of executive function measures as endophenotypes of neuropsychiatric disorders. Together these findings provide the first evidence indicating the influence of common genetic variation in the genetic architecture of inhibitory control quantified using objective behavioural traits derived from the stop-signal task.
Collapse
Affiliation(s)
- Aurina Arnatkeviciute
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Mathieu Lemire
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Claire Morrison
- Department of Psychology and Neuroscience, University of Colorado-Boulder, Boulder, CO, USA
- Institute for Behavioural Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Michael Mooney
- Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Peter Ryabinin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Nicole M Roslin
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Molly Nikolas
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - James Coxon
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Jeggan Tiego
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Ziarih Hawi
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Walter Henrik
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Developmental trajectories & psychiatry" Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Developmental trajectories & psychiatry" Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- AP-HP, Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Developmental trajectories & psychiatry" Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Etablissement Public de Santé (EPS) Barthélemy Durand, 91700, Sainte-Geneviève-des-Bois, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405, Burlington, VT, USA
| | - Joel Nigg
- Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Naomi P Friedman
- Department of Psychology and Neuroscience, University of Colorado-Boulder, Boulder, CO, USA
- Institute for Behavioural Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Christie Burton
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Russell Schachar
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer Crosbie
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mark A Bellgrove
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Graczyk MM, Sahakian BJ, Robbins TW, Ersche KD. Genotype-by-diagnosis interaction influences self-control in human cocaine addiction. Transl Psychiatry 2023; 13:51. [PMID: 36774338 PMCID: PMC9922269 DOI: 10.1038/s41398-023-02347-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 02/13/2023] Open
Abstract
Not everyone who uses drugs loses control over their intake, which is a hallmark of addiction. Although familial risk studies suggest significant addiction heritability, the genetic basis of vulnerability to drug addiction remains largely unknown. In the present study, we investigate the relationship between self-control, cocaine use, and the rs36024 single nucleotide polymorphism of the noradrenaline transporter gene (SLC6A2). We hypothesize that C-allele-carrying adults show impaired self-control, as measured by the stop-signal task and demonstrated previously in adolescents, and further exacerbated by chronic cocaine use. Patients with cocaine use disorder (CUD, n = 79) and healthy unrelated participants with no history of drug abuse (n = 54) completed the stop-signal task. All participants were genotyped for rs36024 allelic variants (CC/TT homozygotes, CT heterozygotes). We measured mean stop-signal reaction time, reflecting the ability to inhibit ongoing motor responses, reaction times to go stimuli, and the proportion of successful stops. CUD patients showed prolonged stop-signal reaction time, however, there was no main effect of rs36024 genotype. Importantly, there was a significant genotype-by-diagnosis interaction such that CUD patients with CC genotype had longer stop-signal reaction time and fewer successful stops compared with CC healthy controls and TT CUD patients. CT CUD patients showed an intermediate performance. Self-control deficits were associated with cocaine use disorder diagnosis, which interacts with the noradrenaline transporter rs36024 polymorphism. Our findings suggest that rs36024 may represent a potential genetic vulnerability marker, which facilitates the transition from first cocaine use to addiction by weakening the inhibitory control over behavior.
Collapse
Affiliation(s)
- Michal M Graczyk
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
5
|
Buitelaar J, Bölte S, Brandeis D, Caye A, Christmann N, Cortese S, Coghill D, Faraone SV, Franke B, Gleitz M, Greven CU, Kooij S, Leffa DT, Rommelse N, Newcorn JH, Polanczyk GV, Rohde LA, Simonoff E, Stein M, Vitiello B, Yazgan Y, Roesler M, Doepfner M, Banaschewski T. Toward Precision Medicine in ADHD. Front Behav Neurosci 2022; 16:900981. [PMID: 35874653 PMCID: PMC9299434 DOI: 10.3389/fnbeh.2022.900981] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) is a complex and heterogeneous neurodevelopmental condition for which curative treatments are lacking. Whilst pharmacological treatments are generally effective and safe, there is considerable inter-individual variability among patients regarding treatment response, required dose, and tolerability. Many of the non-pharmacological treatments, which are preferred to drug-treatment by some patients, either lack efficacy for core symptoms or are associated with small effect sizes. No evidence-based decision tools are currently available to allocate pharmacological or psychosocial treatments based on the patient's clinical, environmental, cognitive, genetic, or biological characteristics. We systematically reviewed potential biomarkers that may help in diagnosing ADHD and/or stratifying ADHD into more homogeneous subgroups and/or predict clinical course, treatment response, and long-term outcome across the lifespan. Most work involved exploratory studies with cognitive, actigraphic and EEG diagnostic markers to predict ADHD, along with relatively few studies exploring markers to subtype ADHD and predict response to treatment. There is a critical need for multisite prospective carefully designed experimentally controlled or observational studies to identify biomarkers that index inter-individual variability and/or predict treatment response.
Collapse
Affiliation(s)
- Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands.,Karakter Child and Adolescent Psychiatry University Center, Nijmegen, Netherlands
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Stockholm, Sweden.,Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, WA, Australia
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Arthur Caye
- Department of Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Nina Christmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Samuele Cortese
- Centre for Innovation in Mental Health, Academic Unit of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom.,Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Solent National Health System Trust, Southampton, United Kingdom.,Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, United States.,Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - David Coghill
- Departments of Paediatrics and Psychiatry, Royal Children's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen V Faraone
- Departments of Psychiatry, Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, NY, United States
| | - Barbara Franke
- Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Markus Gleitz
- Medice Arzneimittel Pütter GmbH & Co. KG, Iserlohn, Germany
| | - Corina U Greven
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.,King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Sandra Kooij
- Amsterdam University Medical Center, Location VUMc, Amsterdam, Netherlands.,PsyQ, Expertise Center Adult ADHD, The Hague, Netherlands
| | - Douglas Teixeira Leffa
- Department of Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Nanda Rommelse
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, Netherlands.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jeffrey H Newcorn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Guilherme V Polanczyk
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil.,ADHD Outpatient Program and Developmental Psychiatry Program, Hospital de Clinica de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Emily Simonoff
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Mark Stein
- Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States
| | - Benedetto Vitiello
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy.,Department of Public Health, Johns Hopkins University, Baltimore, MA, United States
| | - Yanki Yazgan
- GuzelGunler Clinic, Istanbul, Turkey.,Yale Child Study Center, New Haven, CT, United States
| | - Michael Roesler
- Institute for Forensic Psychology and Psychiatry, Neurocenter, Saarland, Germany
| | - Manfred Doepfner
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty of the University of Cologne, Cologne, Germany.,School for Child and Adolescent Cognitive Behavioural Therapy, University Hospital of Cologne, Cologne, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Schröder R, Reuter M, Faßbender K, Plieger T, Poulsen J, Lui SSY, Chan RCK, Ettinger U. The role of the SLC6A3 3' UTR VNTR in nicotine effects on cognitive, affective, and motor function. Psychopharmacology (Berl) 2022; 239:489-507. [PMID: 34854936 PMCID: PMC8638222 DOI: 10.1007/s00213-021-06028-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/11/2021] [Indexed: 01/21/2023]
Abstract
RATIONALE Nicotine has been widely studied for its pro-dopaminergic effects. However, at the behavioural level, past investigations have yielded heterogeneous results concerning effects on cognitive, affective, and motor outcomes, possibly linked to individual differences at the level of genetics. A candidate polymorphism is the 40-base-pair variable number of tandem repeats polymorphism (rs28363170) in the SLC6A3 gene coding for the dopamine transporter (DAT). The polymorphism has been associated with striatal DAT availability (9R-carriers > 10R-homozygotes), and 9R-carriers have been shown to react more strongly to dopamine agonistic pharmacological challenges than 10R-homozygotes. OBJECTIVES In this preregistered study, we hypothesized that 9R-carriers would be more responsive to nicotine due to genotype-related differences in DAT availability and resulting dopamine activity. METHODS N=194 non-smokers were grouped according to their genotype (9R-carriers, 10R-homozygotes) and received either 2-mg nicotine or placebo gum in a between-subject design. Spontaneous blink rate (SBR) was obtained as an indirect measure of striatal dopamine activity and smooth pursuit, stop signal, simple choice and affective processing tasks were carried out in randomized order. RESULTS Reaction times were decreased under nicotine compared to placebo in the simple choice and stop signal tasks, but nicotine and genotype had no effects on any of the other task outcomes. Conditional process analyses testing the mediating effect of SBR on performance and how this is affected by genotype yielded no significant results. CONCLUSIONS Overall, we could not confirm our main hypothesis. Individual differences in nicotine response could not be explained by rs28363170 genotype.
Collapse
Affiliation(s)
| | - Martin Reuter
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Kaja Faßbender
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Thomas Plieger
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Jessie Poulsen
- Nicotine Science Center, Fertin Pharma A/S, Vejle, Denmark
| | - Simon S Y Lui
- Department of Psychiatry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience (NACN) Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Bonn, Germany.
| |
Collapse
|
7
|
Where the genome meets the connectome: Understanding how genes shape human brain connectivity. Neuroimage 2021; 244:118570. [PMID: 34508898 DOI: 10.1016/j.neuroimage.2021.118570] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/10/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
The integration of modern neuroimaging methods with genetically informative designs and data can shed light on the molecular mechanisms underlying the structural and functional organization of the human connectome. Here, we review studies that have investigated the genetic basis of human brain network structure and function through three complementary frameworks: (1) the quantification of phenotypic heritability through classical twin designs; (2) the identification of specific DNA variants linked to phenotypic variation through association and related studies; and (3) the analysis of correlations between spatial variations in imaging phenotypes and gene expression profiles through the integration of neuroimaging and transcriptional atlas data. We consider the basic foundations, strengths, limitations, and discoveries associated with each approach. We present converging evidence to indicate that anatomical connectivity is under stronger genetic influence than functional connectivity and that genetic influences are not uniformly distributed throughout the brain, with phenotypic variation in certain regions and connections being under stronger genetic control than others. We also consider how the combination of imaging and genetics can be used to understand the ways in which genes may drive brain dysfunction in different clinical disorders.
Collapse
|
8
|
The Cocaine and Oxycodone Biobanks, Two Repositories from Genetically Diverse and Behaviorally Characterized Rats for the Study of Addiction. eNeuro 2021; 8:ENEURO.0033-21.2021. [PMID: 33875455 PMCID: PMC8213442 DOI: 10.1523/eneuro.0033-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/21/2022] Open
Abstract
The rat oxycodone and cocaine biobanks contain samples that vary by genotypes (by using genetically diverse genotyped HS rats), phenotypes (by measuring addiction-like behaviors in an advanced SA model), timepoints (samples are collected longitudinally before, during, and after SA, and terminally at three different timepoints in the addiction cycle: intoxication, withdrawal, and abstinence or without exposure to drugs through age-matched naive rats), samples collected (organs, cells, biofluids, feces), preservation (paraformaldehyde-fixed, snap-frozen, or cryopreserved) and application (proteomics, transcriptomics, microbiomics, metabolomics, epigenetics, anatomy, circuitry analysis, biomarker discovery, etc.Substance use disorders (SUDs) are pervasive in our society and have substantial personal and socioeconomical costs. A critical hurdle in identifying biomarkers and novel targets for medication development is the lack of resources for obtaining biological samples with a detailed behavioral characterization of SUD. Moreover, it is nearly impossible to find longitudinal samples. As part of two ongoing large-scale behavioral genetic studies in heterogeneous stock (HS) rats, we have created two preclinical biobanks using well-validated long access (LgA) models of intravenous cocaine and oxycodone self-administration (SA) and comprehensive characterization of addiction-related behaviors. The genetic diversity in HS rats mimics diversity in the human population and includes individuals that are vulnerable or resilient to compulsive-like responding for cocaine or oxycodone. Longitudinal samples are collected throughout the experiment, before exposure to the drug, during intoxication, acute withdrawal, and protracted abstinence, and include naive, age-matched controls. Samples include, but are not limited to, blood plasma, feces and urine, whole brains, brain slices and punches, kidney, liver, spleen, ovary, testis, and adrenal glands. Three preservation methods (fixed in formaldehyde, snap-frozen, or cryopreserved) are used to facilitate diverse downstream applications such as proteomics, metabolomics, transcriptomics, epigenomics, microbiomics, neuroanatomy, biomarker discovery, and other cellular and molecular approaches. To date, >20,000 samples have been collected from over 1000 unique animals and made available free of charge to non-profit institutions through https://www.cocainebiobank.org/ and https://www.oxycodonebiobank.org/.
Collapse
|
9
|
Keidel K, Rramani Q, Weber B, Murawski C, Ettinger U. Individual Differences in Intertemporal Choice. Front Psychol 2021; 12:643670. [PMID: 33935897 PMCID: PMC8085593 DOI: 10.3389/fpsyg.2021.643670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 11/23/2022] Open
Abstract
Intertemporal choice involves deciding between smaller, sooner and larger, later rewards. People tend to prefer smaller rewards that are available earlier to larger rewards available later, a phenomenon referred to as temporal or delay discounting. Despite its ubiquity in human and non-human animals, temporal discounting is subject to considerable individual differences. Here, we provide a critical narrative review of this literature and make suggestions for future work. We conclude that temporal discounting is associated with key socio-economic and health-related variables. Regarding personality, large-scale studies have found steeper temporal discounting to be associated with higher levels of self-reported impulsivity and extraversion; however, effect sizes are small. Temporal discounting correlates negatively with future-oriented cognitive styles and inhibitory control, again with small effect sizes. There are consistent associations between steeper temporal discounting and lower intelligence, with effect sizes exceeding those of personality or cognitive variables, although socio-demographic moderator variables may play a role. Neuroimaging evidence of brain structural and functional correlates is not yet consistent, neither with regard to areas nor directions of effects. Finally, following early candidate gene studies, recent Genome Wide Association Study (GWAS) approaches have revealed the molecular genetic architecture of temporal discounting to be more complex than initially thought. Overall, the study of individual differences in temporal discounting is a maturing field that has produced some replicable findings. Effect sizes are small-to-medium, necessitating future hypothesis-driven work that prioritizes large samples with adequate power calculations. More research is also needed regarding the neural origins of individual differences in temporal discounting as well as the mediating neural mechanisms of associations of temporal discounting with personality and cognitive variables.
Collapse
Affiliation(s)
- Kristof Keidel
- Department of Psychology, University of Bonn, Bonn, Germany
- Department of Finance, The University of Melbourne, Melbourne, VIC, Australia
| | - Qëndresa Rramani
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Bernd Weber
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Carsten Murawski
- Department of Finance, The University of Melbourne, Melbourne, VIC, Australia
| | | |
Collapse
|
10
|
Steep Discounting of Future Rewards as an Impulsivity Phenotype: A Concise Review. Curr Top Behav Neurosci 2020; 47:113-138. [PMID: 32236897 DOI: 10.1007/7854_2020_128] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This chapter provides an overview over the behavioral economic index of impulsivity known as delay discounting. Specifically, delay discounting refers to an individual's preference for smaller immediate rewards over a larger delayed rewards. The more precipitously an individual discounts future rewards, the more impulsive they are considered to be. First, the chapter reviews the nature of delay discounting as a psychological process and juxtaposes it with nominally similar processes, including other facets of impulsivity. Second, the chapter reviews the links between delay discounting and numerous health behaviors, including addiction, attention deficit/hyperactivity disorder, and obesity. Third, the determinants of individual variation in delay discounting are discussed, including both genetic and environmental contributions. Finally, the chapter evaluates delay discounting as a potentially modifiable risk factor and the status of clinical interventions designed to reduce delay discounting to address deficits in self-control in a variety of maladaptive behaviors.
Collapse
|
11
|
Rivera MA, Fahey TD, López-Taylor JR, Martínez JL. The Association of Aquaporin-1 Gene with Marathon Running Performance Level: a Confirmatory Study Conducted in Male Hispanic Marathon Runners. SPORTS MEDICINE-OPEN 2020; 6:16. [PMID: 32198675 PMCID: PMC7083975 DOI: 10.1186/s40798-020-00243-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/19/2020] [Indexed: 01/10/2023]
Abstract
Background Replication studies are essential for identifying credible associations between alleles and phenotypes. Validation of genotype-phenotype associations in the sports and exercise field is rare. An initial genetic association study suggested that rs1049305 (C > G) in the 3′ untranslated region (3′UTR) of the aquaporin-1 (AQP1) gene was associated with marathon running (MR) performance level in Hispanic males. To validate this finding, we conducted a replication analysis in an independent case-control sample of Hispanic male marathon runners (n = 1430; cases n = 713 and controls n = 717). A meta-analysis was utilized to test the extent of the association between the initial results and the present report. It also provided to test the heterogeneity (variation) between the two studies. Results The replication study showed a statistically significant (p ≤ 0.05) association between rs1049305 (C > G) of the AQP1 gene and MR performance level. Association test results using a fixed effect model for the combined, original study and the present report, yielded an odds ratio = 1.28, 95% confidence interval = 1.13–1.45, p = 0.0001. The extent of the measures of heterogeneity was Tau-squared = 0, H statistic = 1, I2 statistic = 0, and Cochran’s Q test (Q = 0.29; p value 0.59), indicated the variation between studies were due to chance and not to differences in heterogeneity between the two studies. Within the limitations of the present replication, contrast of two studies and its effects on meta-analysis, the findings were robust. Conclusion This study successfully replicated the results of Martínez et al. (Med Sportiva 13:251-5, 2009). The meta-analysis provided further epidemiological credibility for the hypothesis of association between the DNA rs1049305 (C > G) variation in the 3′UTR of the AQP1 gene and MR running performance level in Hispanics male marathon runners. It is not precluded that a linked DNA structure in the surrounding molecular neighborhood could be of influence by been part of the overly complex phenotype of MR performance level.
Collapse
Affiliation(s)
- Miguel A Rivera
- Department of Physical Medicine, Rehabilitation & Sports Medicine, School of Medicine, University of Puerto Rico, Main Building Office A204, San Juan, PR, 00936, USA.
| | - Thomas D Fahey
- Department of Kinesiology, California State University, Chico, CA, USA
| | - Juan R López-Taylor
- Physical Activity and Applied Sport Sciences Institute, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | | |
Collapse
|
12
|
Schacht JP, Anton RF, McNamara PJ, Im Y, King AC. The dopamine transporter VNTR polymorphism moderates the relationship between acute response to alcohol and future alcohol use disorder symptoms. Addict Biol 2019; 24:1109-1118. [PMID: 30230123 DOI: 10.1111/adb.12676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder (AUD) is a genetically influenced disease with peak onset in young adulthood. Identification of factors that predict whether AUD symptoms will diminish or persist after young adulthood is a critical public health need. King and colleagues previously reported that acute response to alcohol predicted future AUD symptom trajectory. Genes associated with brain dopamine signaling, which underlies alcohol's rewarding effects, might influence this finding. This study analyzed whether variation at a variable number tandem repeat polymorphism in DAT1/SLC6A3, the gene encoding the dopamine transporter, moderated the predictive relationships between acute response to alcohol and future AUD symptoms among participants enrolled in the Chicago Social Drinking Project (first two cohorts). Heavy-drinking young adults (N = 197) completed an alcohol challenge, in which acute response (liking, wanting, stimulation, and sedation) was measured. Alcohol use disorder symptoms were assessed over the following 6 years. DAT1 genotype significantly moderated the interactions between follow-up time and alcohol liking (P = 0.006) and wanting (P = 0.006) in predicting future AUD symptoms. These predictive effects were strongest among participants who carried the DAT1 9-repeat allele, previously associated with enhanced striatal dopamine tone relative to the 10-repeat allele. Exploratory analyses indicated that DAT1 effects on the relationship between alcohol liking and AUD symptoms appeared stronger for females (n = 79) than males (n = 118) (P = 0.0496). These data suggest that heavy-drinking DAT1 9-repeat allele carriers who display high alcohol-induced reward in young adulthood may be predisposed to persistent AUD symptoms and support combining genotypic and phenotypic information to predict future AUD risk.
Collapse
Affiliation(s)
- Joseph P. Schacht
- Department of Psychiatry and Behavioral Sciences; Medical University of South Carolina; Charleston South Carolina USA
| | - Raymond F. Anton
- Department of Psychiatry and Behavioral Sciences; Medical University of South Carolina; Charleston South Carolina USA
| | - Patrick J. McNamara
- Department of Psychiatry and Behavioral Neuroscience; University of Chicago; Chicago Illinois USA
| | - Yeongbin Im
- Department of Psychiatry and Behavioral Sciences; Medical University of South Carolina; Charleston South Carolina USA
| | - Andrea C. King
- Department of Psychiatry and Behavioral Neuroscience; University of Chicago; Chicago Illinois USA
| |
Collapse
|
13
|
Mitchell SH. Linking Delay Discounting and Substance Use Disorders: Genotypes and Phenotypes. Perspect Behav Sci 2019; 42:419-432. [PMID: 31976442 PMCID: PMC6768927 DOI: 10.1007/s40614-019-00218-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Research supports the idea that "delay discounting," also known as temporal discounting, intertemporal choice, or impulsive choice, is a transdisease process with a strong connection to substance use disorders (SUDs) and other psychopathologies, like attention deficit hyperactivity disorder and depression. This article briefly reviews the evidence used to conclude that delay discounting is heritable and should be considered to be an endophenotype, as well as evidence of its behavioral and genetic associations with SUDs. It also discusses the limitations that should be considered when evaluating the strength of these associations. Finally, this article briefly describes research examining relationships among delay discounting and SUD-associated intermediate phenotypes to better understand the conceptual relationships underlying the links between SUDs and delay discounting, and identifies research gaps that should be addressed.
Collapse
Affiliation(s)
- Suzanne H. Mitchell
- Behavioral Neuroscience, Psychiatry, the Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
| |
Collapse
|
14
|
Genomic basis of delayed reward discounting. Behav Processes 2019; 162:157-161. [PMID: 30876880 DOI: 10.1016/j.beproc.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/04/2019] [Accepted: 03/09/2019] [Indexed: 02/07/2023]
Abstract
Delayed reward discounting (DRD) is a behavioral economic measure of impulsivity, reflecting how rapidly a reward loses value based on its temporal distance. In humans, more impulsive DRD is associated with susceptibility to a number of psychiatric diseases (e.g., addiction, ADHD), health outcomes (e.g., obesity), and lifetime outcomes (e.g., educational attainment). Although the determinants of DRD are both genetic and environmental, this review focuses on its genetic basis. Both rodent studies using inbred strains and human twin studies indicate that DRD is moderately heritable, a conclusion that was further supported by a recent human genome-wide association study (GWAS) that used single nucleotide polymorphisms (SNP) to estimate heritability. The GWAS of DRD also identified genetic correlations with psychiatric diagnoses, health outcomes, and measures of cognitive performance. Future research priorities include rodent studies probing putative genetic mechanisms of DRD and human GWASs using larger samples and non-European cohorts. Continuing to characterize genomic influences on DRD has the potential to yield important biological insights with implications for a variety of medically and socially important outcomes.
Collapse
|
15
|
Baker AN, Miranda AM, Garneau NL, Hayes JE. Self-reported Smoking Status, TAS2R38 Variants, and Propylthiouracil Phenotype: An Exploratory Crowdsourced Cohort Study. Chem Senses 2018; 43:617-625. [PMID: 30137252 PMCID: PMC6150776 DOI: 10.1093/chemse/bjy053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
TAS2R38 gene variants, which confer sensitivity to specific bitter tastants (e.g., 6-n-propylthiouracil), have been repeatedly associated with lower alcohol use via greater bitterness perception, but research exploring TAS2R38 variation in relation to smoking shows mixed results. In both, the working hypothesis is that 1 or more copies of the functional allele increases bitterness and may provide a barrier to early use. Such a barrier to initiation may, conceivably, manifest as differential rates of current use across diplotypes. Here, an age-diverse convenience sample (n = 886) of Denver Museum of Nature and Science guests was used to explore cross-sectional relationships between TAS2R38 diplotype, self-reported tobacco use (current, former, never smokers), and a rapid measure of 6-n-propylthiouracil phenotype (bitterness of filter paper discs). TAS2R38 diplotypes were determined by Sanger sequencing. After excluding rare diplotypes, data from 814 participants were analyzed. A mix of current (~10%), former (25%), and never smokers (65%) were included. As expected, there was a relationship between TAS2R38 diplotype and 6-n-propylthiouracil bitterness. However, contrary to our hypothesis, there was no evidence of a relationship between diplotype and smoker status among participants with common TAS2R38 diplotypes. Notably, we observed a relationship between of 6-n-propylthiouracil bitterness and smoking status, but the effect was opposite of what was expected: current smokers perceived higher (not lower) bitterness than never smokers. When all the various factors (diplotype, age, sex, and smoking status) were included in ANOVA, all remained predictive of 6-n-propylthiouracil bitterness. Reasons for greater phenotypic bitterness among current smokers are unknown and merit further study.
Collapse
Affiliation(s)
- Allison N Baker
- Graduate Program in Neuroscience, The Pennsylvania State University, University Park, PA, USA
| | - Anjelica M Miranda
- Health Sciences Department, The Genetics of Taste Lab, Denver Museum of Nature and Science, Denver, CO, USA
| | - Nicole L Garneau
- Health Sciences Department, The Genetics of Taste Lab, Denver Museum of Nature and Science, Denver, CO, USA
| | - John E Hayes
- Department of Food Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
16
|
Madlon-Kay S, Montague MJ, Brent LJN, Ellis S, Zhong B, Snyder-Mackler N, Horvath JE, Skene JHP, Platt ML. Weak effects of common genetic variation in oxytocin and vasopressin receptor genes on rhesus macaque social behavior. Am J Primatol 2018; 80:e22873. [PMID: 29931777 DOI: 10.1002/ajp.22873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/01/2018] [Accepted: 04/02/2018] [Indexed: 02/02/2023]
Abstract
The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) influence pair bonding, attachment, and sociality, as well as anxiety and stress responses in humans and other mammals. The effects of these peptides are mediated by genetic variability in their associated receptors, OXTR and the AVPR gene family. However, the role of these genes in regulating social behaviors in non-human primates is not well understood. To address this question, we examined whether genetic variation in the OT receptor gene OXTR and the AVP receptor genes AVPR1A and AVPR1B influence naturally-occurring social behavior in free-ranging rhesus macaques-gregarious primates that share many features of their biology and social behavior with humans. We assessed rates of social behavior across 3,250 hr of observational behavioral data from 201 free-ranging rhesus macaques on Cayo Santiago island in Puerto Rico, and used genetic sequence data to identify 25 OXTR, AVPR1A, and AVPR1B single-nucleotide variants (SNVs) in the population. We used an animal model to estimate the effects of 12 SNVs (n = 3 OXTR; n = 5 AVPR1A; n = 4 AVPR1B) on rates of grooming, approaches, passive contact, contact aggression, and non-contact aggression, given and received. Though we found evidence for modest heritability of these behaviors, estimates of effect sizes of the selected SNVs were close to zero, indicating that common OXTR and AVPR variation contributed little to social behavior in these animals. Our results are consistent with recent findings in human genetics that the effects of individual common genetic variants on complex phenotypes are generally small.
Collapse
Affiliation(s)
- Seth Madlon-Kay
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, Devon
| | - Samuel Ellis
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, Devon
| | - Brian Zhong
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Noah Snyder-Mackler
- Department of Psychology, University of Washington, Seattle, Washington.,Center for Studies in Demography and Ecology, University of Washington, Seattle, Washington.,Washington National Primate Research Center, University of Washington, Seattle, Washington
| | - Julie E Horvath
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina.,North Carolina Museum of Natural Sciences, Raleigh, North Carolina.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | | | - Michael L Platt
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Marketing, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Swerdlow NR, Bhakta SG, Talledo JA, Franz DM, Hughes EL, Rana BK, Light GA. Effects of Amphetamine on Sensorimotor Gating and Neurocognition in Antipsychotic-Medicated Schizophrenia Patients. Neuropsychopharmacology 2018; 43:708-717. [PMID: 29154367 PMCID: PMC5809803 DOI: 10.1038/npp.2017.285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/18/2017] [Accepted: 11/08/2017] [Indexed: 01/01/2023]
Abstract
Prepulse inhibition (PPI) of startle is being explored both as an indicator of target engagement for, and a biomarker predicting the sensitivity to, procognitive effects of drugs. We now report the effects of the pro-attentional drug, d-amphetamine, on PPI and neurocognition in antipsychotic-medicated schizophrenia patients and healthy subjects (HS) who were also tested in a targeted cognitive training (TCT) module. 44 HS and 38 schizophrenia patients completed a double-blind, placebo-controlled crossover study of the effects of a single dose of amphetamine (10 mg po) on PPI and MATRICS Consensus Cognitive Battery (MCCB) performance; TCT results were previously reported from 60 of these subjects. Moderators predicting AMPH sensitivity were assessed, including the rs4680 single-nucleotide polymorphism for catechol-O-methyltransferase (COMT). After placebo, patients exhibited PPI deficits with 60 ms prepulse intervals; these deficits were 'rescued' by amphetamine. The magnitude of amphetamine-enhanced PPI was greater in patients than in HS (p<0.032), and was associated with positive symptoms (p<0.007), antipsychotic load (p<0.015), hedonic effects of AMPH (p<0.003), and with the presence of at least one methionine allele in rs4680 (p<0.008). No significant effects of amphetamine on MCCB performance were detected in either group, though pro-attentional effects of amphetamine in patients were associated with greater amphetamine-enhanced TCT learning. Amphetamine acutely 'normalized' PPI in antipsychotic-medicated schizophrenia patients; no concurrent acute neurocognitive changes were detected by the MCCB. Findings suggest that in the context of appropriate antipsychotic medication, a low dose of amphetamine enhances brain processes associated with higher function in schizophrenia patients, without accompanying changes in MCCB performance.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA,Department of Psychiatry, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0804, USA, Tel: +619-543-6270, Fax: +619-543-2493, E-mail:
| | - Savita G Bhakta
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA
| | - Jo A Talledo
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA
| | - Daniel M Franz
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA
| | - Erica L Hughes
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA
| | - Brinda K Rana
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA
| | - Gregory A Light
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA
| |
Collapse
|
18
|
Vizeli P, Meyer Zu Schwabedissen HE, Liechti ME. No major role of norepinephrine transporter gene variations in the cardiostimulant effects of MDMA. Eur J Clin Pharmacol 2018; 74:275-283. [PMID: 29198060 PMCID: PMC5808057 DOI: 10.1007/s00228-017-2392-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Methylenedioxymethamphetamine (MDMA, ecstasy) is used recreationally and frequently leads to sympathomimetic toxicity. MDMA produces cardiovascular and subjective stimulant effects that were shown to partially depend on the norepinephrine transporter (NET)-mediated release of norepinephrine and stimulation of α1-adrenergic receptors. Genetic variants, such as single-nucleotide polymorphisms (SNPs), of the NET gene (SLC6A2) may explain interindividual differences in the acute stimulant-type responses to MDMA in humans. METHODS We characterized the effects of common genetic variants of the SLC6A2 gene (rs168924, rs47958, rs1861647, rs2242446, and rs36029) on cardiovascular and subjective stimulation after MDMA administration in 124 healthy subjects in a pooled analysis of eight double-blind, placebo-controlled studies. RESULTS Carriers of the GG genotype of the SLC6A2 rs1861647 SNP presented higher elevations of heart rate and rate-pressure product after MDMA than subjects with one or no G alleles. Subjects with a C allele in the SLC6A2 rs2242446 SNP presented higher elevations of the heart rate after MDMA administration compared with the TT genotype. Subjects with the AA genotype of the SLC6A2 rs36029 SNP presented higher elevations of mean arterial pressure and rate pressure product after MDMA administration than carriers of the G allele. The SLC6A2 rs168924 and rs47958 SNPs did not alter the response to MDMA. CONCLUSIONS Genetic polymorphisms of the SLC6A2 gene weakly moderated the acute cardiovascular response to MDMA in controlled studies and may play a minor role in adverse cardiovascular events when MDMA is used recreationally.
Collapse
Affiliation(s)
- Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, Department of Clinical Research, University Hospital Basel, University of Basel, Schanzenstrasse 55, 4056, Basel, Switzerland
| | | | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, Department of Clinical Research, University Hospital Basel, University of Basel, Schanzenstrasse 55, 4056, Basel, Switzerland.
| |
Collapse
|
19
|
Sanchez-Roige S, Gray JC, MacKillop JK, Chen CH, Palmer AA. The genetics of human personality. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12439. [PMID: 29152902 PMCID: PMC7012279 DOI: 10.1111/gbb.12439] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/12/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
Personality traits are the relatively enduring patterns of thoughts, feelings and behaviors that reflect the tendency to respond in certain ways under certain circumstances. Twin and family studies have showed that personality traits are moderately heritable, and can predict various lifetime outcomes, including psychopathology. The Research Domain Criteria characterizes psychiatric diseases as extremes of normal tendencies, including specific personality traits. This implies that heritable variation in personality traits, such as neuroticism, would share a common genetic basis with psychiatric diseases, such as major depressive disorder. Despite considerable efforts over the past several decades, the genetic variants that influence personality are only beginning to be identified. We review these recent and increasingly rapid developments, which focus on the assessment of personality via several commonly used personality questionnaires in healthy human subjects. Study designs covered include twin, linkage, candidate gene association studies, genome-wide association studies and polygenic analyses. Findings from genetic studies of personality have furthered our understanding about the genetic etiology of personality, which, like neuropsychiatric diseases themselves, is highly polygenic. Polygenic analyses have showed genetic correlations between personality and psychopathology, confirming that genetic studies of personality can help to elucidate the etiology of several neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joshua C Gray
- Center for Deployment Psychology, Uniformed Services University, Bethesda, MD, 20814
| | - James K MacKillop
- Peter Boris Centre for Addictions Research, McMaster University/St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada; Homewood Research Institute, Guelph, ON N1E 6K9, Canada
| | - Chi-Hua Chen
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Reed C, Baba H, Zhu Z, Erk J, Mootz JR, Varra NM, Williams RW, Phillips TJ. A Spontaneous Mutation in Taar1 Impacts Methamphetamine-Related Traits Exclusively in DBA/2 Mice from a Single Vendor. Front Pharmacol 2018; 8:993. [PMID: 29403379 PMCID: PMC5786530 DOI: 10.3389/fphar.2017.00993] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/26/2017] [Indexed: 01/01/2023] Open
Abstract
Major gene effects on traits associated with substance use disorders are rare. Previous findings in methamphetamine drinking (MADR) lines of mice, bred for high or low voluntary MA intake, and in null mutants demonstrate a major impact of the trace amine-associated receptor 1 (Taar1) gene on a triad of MA-related traits: MA consumption, MA-induced conditioned taste aversion and MA-induced hypothermia. While inbred strains are fundamentally genetically stable, rare spontaneous mutations can become fixed and result in new or aberrant phenotypes. A single nucleotide polymorphism in Taar1 that encodes a missense proline to threonine mutation in the second transmembrane domain (Taar1m1J ) has been identified in the DBA/2J strain. MA is an agonist at this receptor, but the receptor produced by Taar1m1J does not respond to MA or endogenous ligands. In the present study, we used progeny of the C57BL/6J × DBA/2J F2 cross, the MADR lines, C57BL/6J × DBA/2J recombinant inbred strains, and DBA/2 mice sourced from four vendors to further examine Taar1-MA phenotype relations and to define the chronology of the fixation of the Taar1m1J mutation. Mice homozygous for Taar1m1J were found at high frequency early in selection for high MA intake in multiple replicates of the high MADR line, whereas Taar1m1J homozygotes were absent in the low MADR line. The homozygous Taar1m1J genotype is causally linked to increased MA intake, reduced MA-induced conditioned taste aversion, and reduced MA-induced hypothermia across models. Genotype-phenotype correlations range from 0.68 to 0.96. This Taar1 polymorphism exists in DBA/2J mice sourced directly from The Jackson Laboratory, but not DBA/2 mice sourced from Charles River (DBA/2NCrl), Envigo (formerly Harlan Sprague Dawley; DBA/2NHsd) or Taconic (DBA/2NTac). By genotyping archived samples from The Jackson Laboratory, we have determined that this mutation arose in 2001-2003. Our data strengthen the conclusion that the mutant Taar1m1J allele, which codes for a non-functional receptor protein, increases risk for multiple MA-related traits, including MA intake, in homozygous Taar1m1J individuals.
Collapse
Affiliation(s)
- Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Harue Baba
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Zhen Zhu
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Jason Erk
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - John R. Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Nicholas M. Varra
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
21
|
Ballesteros-Yáñez I, Castillo CA, Merighi S, Gessi S. The Role of Adenosine Receptors in Psychostimulant Addiction. Front Pharmacol 2018; 8:985. [PMID: 29375384 PMCID: PMC5767594 DOI: 10.3389/fphar.2017.00985] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022] Open
Abstract
Adenosine receptors (AR) are a family of G-protein coupled receptors, comprised of four members, named A1, A2A, A2B, and A3 receptors, found widely distributed in almost all human body tissues and organs. To date, they are known to participate in a large variety of physiopathological responses, which include vasodilation, pain, and inflammation. In particular, in the central nervous system (CNS), adenosine acts as a neuromodulator, exerting different functions depending on the type of AR and consequent cellular signaling involved. In terms of molecular pathways and second messengers involved, A1 and A3 receptors inhibit adenylyl cyclase (AC), through Gi/o proteins, while A2A and A2B receptors stimulate it through Gs proteins. In the CNS, A1 receptors are widely distributed in the cortex, hippocampus, and cerebellum, A2A receptors are localized mainly in the striatum and olfactory bulb, while A2B and A3 receptors are found at low levels of expression. In addition, AR are able to form heteromers, both among themselves (e.g., A1/A2A), as well as with other subtypes (e.g., A2A/D2), opening a whole range of possibilities in the field of the pharmacology of AR. Nowadays, we know that adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission and therefore reward systems, being A1 receptors colocalized in heteromeric complexes with D1 receptors, and A2A receptors with D2 receptors. This review documents the present state of knowledge of the contribution of AR, particularly A1 and A2A, to psychostimulants-mediated effects, including locomotor activity, discrimination, seeking and reward, and discuss their therapeutic relevance to psychostimulant addiction. Studies presented in this review reinforce the potential of A1 agonists as an effective strategy to counteract psychostimulant-induced effects. Furthermore, different experimental data support the hypothesis that A2A/D2 heterodimers are partly responsible for the psychomotor and reinforcing effects of psychostimulant drugs, such as cocaine and amphetamine, and the stimulation of A2A receptor is proposed as a potential therapeutic target for the treatment of drug addiction. The overall analysis of presented data provide evidence that excitatory modulation of A1 and A2A receptors constitute promising tools to counteract psychostimulants addiction.
Collapse
Affiliation(s)
- Inmaculada Ballesteros-Yáñez
- Department of Inorganic and Organic Chemistry and Biochemistry, School of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Carlos A. Castillo
- Department of Nursing, Physiotherapy and Occupational Therapy, School of Nursing and Physiotherapy, University of Castilla-La Mancha, Toledo, Spain
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Stefania Gessi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Ferrara, Italy
| |
Collapse
|
22
|
Gray JC, MacKillop J, Weafer J, Hernandez KM, Gao J, Palmer AA, de Wit H. Genetic analysis of impulsive personality traits: Examination of a priori candidates and genome-wide variation. Psychiatry Res 2018; 259:398-404. [PMID: 29120849 PMCID: PMC5742029 DOI: 10.1016/j.psychres.2017.10.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 10/03/2017] [Accepted: 10/28/2017] [Indexed: 11/16/2022]
Abstract
Impulsive personality traits are heritable risk factors and putative endophenotypes for addiction and other psychiatric disorders involving disinhibition. This study examined the genetic basis of impulsive personality traits, defined as scores on the Barratt Impulsiveness Scale (BIS-11) and the UPPS-P Impulsive Behavior Scale (UPPS-P). In 983 healthy young adults of European ancestry, the study examined genetic variation in relation to a combined phenotype of seven subscales based on high phenotypic intercorrelations. The study first tested 14 a priori loci that have previously been associated impulsive personality traits or closely related constructs. Second, the study included an exploratory genome-wide scan (i.e., GWAS), acknowledging that only relatively large effects would be detectable in a sample size of ~ 1000. A priori SNP analyses revealed a significant association between the combined impulsivity phenotype and two SNPs within the 5-HT2a receptor gene (HTR2A; rs6313 and rs6311). Follow-up analyses suggested that the effects were specific to the Motor and Non-planning subscales on the BIS-11, and also that the two loci were in linkage disequilibrium. The GWAS yielded no statistically significant findings. This study further implicates loci within HTR2A with certain forms of self-reported impulsivity and identifies candidates for future investigation from the genome-wide analyses.
Collapse
Affiliation(s)
- Joshua C Gray
- Center for Deployment Psychology, Uniformed Services University, Bethesda, MD 20814, USA; Department of Psychology, University of Georgia, Athens, GA 30602, USA.
| | - James MacKillop
- Peter Boris Centre for Addictions Research, McMaster University, Hamilton, ON, Canada L8S4L8; Homewood Research Institute, Homewood Health Centre, Guelph, ON, Canada N1E 6K9
| | - Jessica Weafer
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Kyle M Hernandez
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Jianjun Gao
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA 92103, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Abraham A Palmer
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA 92103, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Weafer J, Gray JC, Hernandez K, Palmer AA, MacKillop J, de Wit H. Hierarchical investigation of genetic influences on response inhibition in healthy young adults. Exp Clin Psychopharmacol 2017; 25:512-520. [PMID: 29251981 PMCID: PMC5737791 DOI: 10.1037/pha0000156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Poor inhibitory control is a known risk factor for substance use disorders, making it a priority to identify the determinants of these deficits. The aim of the current study was to identify genetic associations with inhibitory control using the stop signal task in a large sample (n = 934) of healthy young adults of European ancestry. We genotyped the subjects genome-wide and then used a hierarchical approach in which we tested seven a priori single nucleotide polymorphisms (SNPs) previously associated with stop signal task performance, approximately 9,000 SNPs designated as high-value addiction (HVA) markers by the SmokeScreen array, and approximately five million genotyped and imputed SNPs, followed by a gene-based association analysis using the resultant p values. A priori SNP analyses revealed nominally significant associations between response inhibition and one locus in HTR2A (rs6313; p = .04, dominance model, uncorrected) in the same direction as prior findings. A nominally significant association was also found in one locus in ANKK1 (rs1800497; p = .03, uncorrected), although in the opposite direction of previous reports. After accounting for multiple comparisons, the HVA, genome-wide, and gene-based analyses yielded no significant findings. This study implicates variation in serotonergic and dopaminergic genes while underscoring the difficulty of detecting the influence of individual SNPs, even when biological information is used to prioritize testing. Although such small effect sizes suggest limited utility of individual SNPs in predicting risk for addiction or other impulse control disorders, they may nonetheless shed light on complex biological processes underlying poor inhibitory control. (PsycINFO Database Record
Collapse
Affiliation(s)
- Jessica Weafer
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago
| | - Joshua C. Gray
- Department of Psychology, University of Georgia,Department of Psychiatry and Human Behavior, Brown University
| | | | - Abraham A. Palmer
- Department of Psychiatry, University of California, San Diego,Institute for Genomic Medicine, University of California, San Diego
| | - James MacKillop
- Peter Boris Centre for Addictions Research, McMaster University,Homewood Research Institute, Homewood Health Centre
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago,Corresponding author: Harriet de Wit, Department of Psychiatry and Behavioral Neuroscience, MC 3077, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, Phone: 773-702-1537, Fax: 773-834-7698,
| |
Collapse
|
24
|
Goldberg LR, Kirkpatrick SL, Yazdani N, Luttik KP, Lacki OA, Babbs RK, Jenkins DF, Johnson WE, Bryant CD. Casein kinase 1-epsilon deletion increases mu opioid receptor-dependent behaviors and binge eating1. GENES, BRAIN, AND BEHAVIOR 2017; 16:725-738. [PMID: 28594147 PMCID: PMC6180211 DOI: 10.1111/gbb.12397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Abstract
Genetic and pharmacological studies indicate that casein kinase 1 epsilon (Csnk1e) contributes to psychostimulant, opioid, and ethanol motivated behaviors. We previously used pharmacological inhibition to demonstrate that Csnk1e negatively regulates the locomotor stimulant properties of opioids and psychostimulants. Here, we tested the hypothesis that Csnk1e negatively regulates opioid and psychostimulant reward using genetic inhibition and the conditioned place preference assay in Csnk1e knockout mice. Similar to pharmacological inhibition, Csnk1e knockout mice showed enhanced opioid-induced locomotor activity with the mu opioid receptor agonist fentanyl (0.2 mg/kg i.p.) as well as enhanced sensitivity to low-dose fentanyl reward (0.05 mg/kg). Interestingly, female knockout mice also showed a markedly greater escalation in consumption of sweetened palatable food - a behavioral pattern consistent with binge eating that also depends on mu opioid receptor activation. No difference was observed in fentanyl analgesia in the 52.5°C hot plate assay (0-0.4 mg/kg), naloxone conditioned place aversion (4 mg/kg), or methamphetamine conditioned place preference (0-4 mg/kg). To identify molecular adaptations associated with increased drug and food behaviors in knockout mice, we completed transcriptome analysis via mRNA sequencing of the striatum. Enrichment analysis identified terms associated with myelination and axon guidance and pathway analysis identified a differentially expressed gene set predicted to be regulated by the Wnt signaling transcription factor, Tcf7l2. To summarize, Csnk1e deletion increased mu opioid receptor-dependent behaviors, supporting previous studies indicating an endogenous negative regulatory role of Csnk1e in opioid behavior.
Collapse
Affiliation(s)
- Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Boston University, Boston, MA USA
| | - Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Boston University, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University, Boston, MA USA
| | - Kimberly P. Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| | - Olga A. Lacki
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| | - R. Keith Babbs
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| | - David F. Jenkins
- Graduate Program in Bioinformatics, Boston University, Boston, MA USA
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - W. Evan Johnson
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| |
Collapse
|
25
|
Young EE, Bryant CD, Lee SE, Peng X, Cook B, Nair HK, Dreher KJ, Zhang X, Palmer AA, Chung JM, Mogil JS, Chesler EJ, Lariviere WR. Systems genetic and pharmacological analysis identifies candidate genes underlying mechanosensation in the von Frey test. GENES BRAIN AND BEHAVIOR 2017; 15:604-15. [PMID: 27231153 DOI: 10.1111/gbb.12302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/05/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022]
Abstract
Mechanical sensitivity is commonly affected in chronic pain and other neurological disorders. To discover mechanisms of individual differences in punctate mechanosensation, we performed quantitative trait locus (QTL) mapping of the response to von Frey monofilament stimulation in BXD recombinant inbred (BXD) mice. Significant loci were detected on mouse chromosome (Chr) 5 and 15, indicating the location of underlying polymorphisms that cause heritable variation in von Frey response. Convergent evidence from public gene expression data implicates candidate genes within the loci: von Frey thresholds were strongly correlated with baseline expression of Cacna2d1, Ift27 and Csnk1e in multiple brain regions of BXD strains. Systemic gabapentin and PF-670462, which target the protein products of Cacna2d1 and Csnk1e, respectively, significantly increased von Frey thresholds in a genotype-dependent manner in progenitors and BXD strains. Real-time polymerase chain reaction confirmed differential expression of Cacna2d1 and Csnk1e in multiple brain regions in progenitors and showed differential expression of Cacna2d1 and Csnk1e in the dorsal root ganglia of the progenitors and BXD strains grouped by QTL genotype. Thus, linkage mapping, transcript covariance and pharmacological testing suggest that genetic variation affecting Cacna2d1 and Csnk1e may contribute to individual differences in von Frey filament response. This study implicates Cacna2d1 and Ift27 in basal mechanosensation in line with their previously suspected role in mechanical hypersensitivity. Csnk1e is implicated for von Frey response for the first time. Further investigation is warranted to identify the specific polymorphisms involved and assess the relevance of these findings to clinical conditions of disturbed mechanosensation.
Collapse
Affiliation(s)
- E E Young
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,School of Nursing, University of Connecticut, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - C D Bryant
- Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - S E Lee
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - X Peng
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - B Cook
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - H K Nair
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - K J Dreher
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - X Zhang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - A A Palmer
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.,Department of Human Genetics, University of Chicago, Chicago, IL, USA.,Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - J M Chung
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - J S Mogil
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - E J Chesler
- Mammalian Genetics & Genomics, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,The Jackson Laboratory, Bar Harbor, ME, USA
| | - W R Lariviere
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Genome-Wide Association Study of Loneliness Demonstrates a Role for Common Variation. Neuropsychopharmacology 2017; 42:811-821. [PMID: 27629369 PMCID: PMC5312064 DOI: 10.1038/npp.2016.197] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 01/28/2023]
Abstract
Loneliness is a complex biological trait that has been associated with numerous negative health outcomes. The measurement and environmental determinants of loneliness are well understood, but its genetic basis is not. Previous studies have estimated the heritability of loneliness between 37 and 55% using twins and family-based approaches, and have explored the role of specific candidate genes. We used genotypic and phenotypic data from 10 760 individuals aged ⩾50 years that were collected by the Health and Retirement Study (HRS) to perform the first genome-wide association study of loneliness. No associations reached genome-wide significance (p>5 × 10-8). Furthermore, none of the previously published associations between variants within candidate genes (BDNF, OXTR, RORA, GRM8, CHRNA4, IL-1A, CRHR1, MTHFR, DRD2, APOE) and loneliness were replicated (p>0.05), despite our much larger sample size. We estimated the chip heritability of loneliness and examined coheritability between loneliness and several personality and psychiatric traits. Our estimates of chip heritability (14-27%) support a role for common genetic variation. We identified strong genetic correlations between loneliness, neuroticism, and a scale of 'depressive symptoms.' We also identified weaker evidence for coheritability with extraversion, schizophrenia, bipolar disorder, and major depressive disorder. We conclude that loneliness, as defined in this study, is a modestly heritable trait that has a highly polygenic genetic architecture. The coheritability between loneliness and neuroticism may reflect the role of negative affectivity that is common to both traits. Our results also reflect the value of studies that probe the common genetic basis of salutary social bonds and clinically defined psychiatric disorders.
Collapse
|
27
|
Yashin AI, Zhbannikov I, Arbeeva L, Arbeev KG, Wu D, Akushevich I, Yashkin A, Kovtun M, Kulminski AM, Stallard E, Kulminskaya I, Ukraintseva S. Pure and Confounded Effects of Causal SNPs on Longevity: Insights for Proper Interpretation of Research Findings in GWAS of Populations with Different Genetic Structures. Front Genet 2016; 7:188. [PMID: 27877192 PMCID: PMC5099244 DOI: 10.3389/fgene.2016.00188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
This paper shows that the effects of causal SNPs on lifespan, estimated through GWAS, may be confounded and the genetic structure of the study population may be responsible for this effect. Simulation experiments show that levels of linkage disequilibrium (LD) and other parameters of the population structure describing connections between two causal SNPs may substantially influence separate estimates of the effect of the causal SNPs on lifespan. This study suggests that differences in LD levels between two causal SNP loci within two study populations may contribute to the failure to replicate previous GWAS findings. The results of this paper also show that successful replication of the results of genetic association studies does not necessarily guarantee proper interpretation of the effect of a causal SNP on lifespan.
Collapse
Affiliation(s)
- Anatoliy I Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University Durham, NC, USA
| | - Ilya Zhbannikov
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University Durham, NC, USA
| | - Liubov Arbeeva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University Durham, NC, USA
| | - Konstantin G Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University Durham, NC, USA
| | - Deqing Wu
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University Durham, NC, USA
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University Durham, NC, USA
| | - Arseniy Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University Durham, NC, USA
| | - Mikhail Kovtun
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University Durham, NC, USA
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University Durham, NC, USA
| | - Eric Stallard
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University Durham, NC, USA
| | - Irina Kulminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University Durham, NC, USA
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University Durham, NC, USA
| |
Collapse
|
28
|
Bujarski S, Ray LA. Experimental psychopathology paradigms for alcohol use disorders: Applications for translational research. Behav Res Ther 2016; 86:11-22. [PMID: 27266992 PMCID: PMC5067182 DOI: 10.1016/j.brat.2016.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/12/2016] [Accepted: 05/26/2016] [Indexed: 02/05/2023]
Abstract
In spite of high prevalence and disease burden, scientific consensus on the etiology and treatment of Alcohol Use Disorder (AUD) has yet to be reached. The development and utilization of experimental psychopathology paradigms in the human laboratory represents a cornerstone of AUD research. In this review, we describe and critically evaluate the major experimental psychopathology paradigms developed for AUD, with an emphasis on their implications, strengths, weaknesses, and methodological considerations. Specifically we review alcohol administration, self-administration, cue-reactivity, and stress-reactivity paradigms. We also provide an introduction to the application of experimental psychopathology methods to translational research including genetics, neuroimaging, pharmacological and behavioral treatment development, and translational science. Through refining and manipulating key phenotypes of interest, these experimental paradigms have the potential to elucidate AUD etiological factors, improve the efficiency of treatment developments, and refine treatment targets thus advancing precision medicine.
Collapse
Affiliation(s)
- Spencer Bujarski
- Department of Psychology, University of California, Los Angeles, United States.
| | - Lara A Ray
- Department of Psychology, University of California, Los Angeles, United States; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States
| |
Collapse
|
29
|
COMT val158met moderation of dopaminergic drug effects on cognitive function: a critical review. THE PHARMACOGENOMICS JOURNAL 2016; 16:430-8. [PMID: 27241058 PMCID: PMC5028240 DOI: 10.1038/tpj.2016.43] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
Abstract
The relationship between dopamine (DA) tone in the prefrontal cortex (PFC) and PFC-dependent cognitive functions (for example, working memory, selective attention, executive function) may be described by an inverted-U-shaped function, in which both excessively high and low DA is associated with impairment. In the PFC, the COMT val158met single nucleotide polymorphism (rs4680) confers differences in catechol-O-methyltransferase (COMT) efficacy and DA tone, and individuals homozygous for the val allele display significantly reduced cortical DA. Many studies have investigated whether val158met genotype moderates the effects of dopaminergic drugs on PFC-dependent cognitive functions. A review of 25 such studies suggests evidence for this pharmacogenetic effect is mixed for stimulants and COMT inhibitors, which have greater effects on D1 receptors, and strong for antipsychotics, which have greater effects on D2 receptors. Overall, COMT val158met genotype represents an enticing target for identifying individuals who are more likely to respond positively to dopaminergic drugs.
Collapse
|
30
|
Smith CT, Weafer J, Cowan RL, Kessler RM, Palmer AA, de Wit H, Zald DH. Individual differences in timing of peak positive subjective responses to d-amphetamine: Relationship to pharmacokinetics and physiology. J Psychopharmacol 2016; 30:330-43. [PMID: 26880226 PMCID: PMC5049703 DOI: 10.1177/0269881116631650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rate of delivery of psychostimulants has been associated with their positive euphoric effects and potential addiction liability. However, information on individual differences in onset of d-amphetamine's effects remains scarce. We examined individual differences in the time to peak subjective and physiological effects and the pharmacokinetics/pharmacodynamics of oral d-amphetamine. We considered two independent studies that used different dosing regimens where subjects completed the drug effects questionnaire at multiple time points post d-amphetamine. Based on the observation of distinct individual differences in time course of drug effects questionnaire "feel", "high", and "like" ratings (DEQH+L+F) in Study 1, subjects in both studies were categorized as early peak responders (peak within 60 minutes), late peak responders (peak > 60 minutes) or nonresponders; 20-25% of participants were categorized as early peak responders, 50-55% as late peak responders and 20-30% as nonresponders. Physiological (both studies) and plasma d-amphetamine (Study 1) were compared among these groups. Early peak responders exhibited an earlier rise in plasma d-amphetamine levels and more sustained elevation in heart rate compared to late peak responders. The present data illustrate the presence of significant individual differences in the temporal pattern of responses to oral d-amphetamine, which may contribute to heightened abuse potential.
Collapse
Affiliation(s)
- Christopher T. Smith
- Department of Psychology, PMB 407817, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37240-7817
| | - Jessica Weafer
- Department of Psychiatry and Behavioral Neuroscience, MC3077, University of Chicago, 5821 S. Maryland Avenue, Chicago, IL 60637
| | - Ronald L. Cowan
- Department of Psychology, PMB 407817, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37240-7817,Department of Psychiatry, Vanderbilt University School of Medicine, 1601 23 Ave South, Suite 3057, Nashville, TN, 37212
| | | | - Abraham A. Palmer
- Department of Psychiatry and Behavioral Neuroscience, MC3077, University of Chicago, 5821 S. Maryland Avenue, Chicago, IL 60637,Department of Human Genetics, University of Chicago, 920 E 58 St., CLSC-507G, Chicago, IL 60637
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, MC3077, University of Chicago, 5821 S. Maryland Avenue, Chicago, IL 60637
| | - David H. Zald
- Department of Psychology, PMB 407817, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37240-7817,Department of Psychiatry, Vanderbilt University School of Medicine, 1601 23 Ave South, Suite 3057, Nashville, TN, 37212
| |
Collapse
|
31
|
Martelle SE, Raffield LM, Palmer ND, Cox AJ, Freedman BI, Hugenschmidt CE, Williamson JD, Bowden DW. Dopamine pathway gene variants may modulate cognitive performance in the DHS - Mind Study. Brain Behav 2016; 6:e00446. [PMID: 27066308 PMCID: PMC4797918 DOI: 10.1002/brb3.446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is an established association between type 2 diabetes and accelerated cognitive decline. The exact mechanism linking type 2 diabetes and reduced cognitive function is less clear. The monoamine system, which is extensively involved in cognition, can be altered by type 2 diabetes status. Thus, this study hypothesized that sequence variants in genes linked to dopamine metabolism and associated pathways are associated with cognitive function as assessed by the Digit Symbol Substitution Task, the Modified Mini-Mental State Examination, the Stroop Task, the Rey Auditory-Verbal Learning Task, and the Controlled Oral Word Association Task for Phonemic and Semantic Fluency in the Diabetes Heart Study, a type 2 diabetes-enriched familial cohort (n = 893). METHODS To determine the effects of candidate variants on cognitive performance, genetic association analyses were performed on the well-documented variable number tandem repeat located in the 3' untranslated region of the dopamine transporter, as well as on single-nucleotide polymorphisms covering genes in the dopaminergic pathway, the insulin signaling pathway, and the convergence of both. Next, polymorphisms in loci of interest with strong evidence for involvement in dopamine processing were extracted from genetic datasets available in a subset of the cohort (n = 572) derived from Affymetrix(®) Genome-Wide Human SNP Array 5.0 and 1000 Genomes imputation from this array. RESULTS The candidate gene analysis revealed one variant from the DOPA decarboxylase gene, rs10499695, to be associated with poorer performance on a subset of Rey Auditory-Verbal Learning Task measuring retroactive interference (P = 0.001, β = -0.45). Secondary analysis of genome-wide and imputed data uncovered another DOPA decarboxylase variant, rs62445903, also associated with retroactive interference (P = 7.21 × 10(-7), β = 0.3). These data suggest a role for dopaminergic genes, specifically a gene involved in regulation of dopamine synthesis, in cognitive performance in type 2 diabetes.
Collapse
Affiliation(s)
- Susan E Martelle
- Department of Physiology and Pharmacology Wake Forest School of Medicine Winston - Salem North Carolina; Center for Genomics and Personalized Medicine Research Wake Forest School of Medicine Winston - Salem North Carolina
| | - Laura M Raffield
- Center for Genomics and Personalized Medicine Research Wake Forest School of Medicine Winston - Salem North Carolina
| | - Nichole D Palmer
- Center for Genomics and Personalized Medicine Research Wake Forest School of Medicine Winston - Salem North Carolina
| | - Amanda J Cox
- Molecular Basis of Disease Griffith University Southport Brisbane Queensland Australia
| | - Barry I Freedman
- Department of Internal Medicine, Nephrology Wake Forest School of Medicine Winston - Salem North Carolina
| | - Christina E Hugenschmidt
- Department of Internal Medicine, Gerontology and Geriatric Medicine Wake Forest School of Medicine Winston - Salem North Carolina
| | - Jeff D Williamson
- Department of Internal Medicine, Gerontology and Geriatric Medicine Wake Forest School of Medicine Winston - Salem North Carolina
| | - Don W Bowden
- Center for Genomics and Personalized Medicine Research Wake Forest School of Medicine Winston - Salem North Carolina
| |
Collapse
|
32
|
Zahavi AY, Sabbagh MA, Washburn D, Mazurka R, Bagby RM, Strauss J, Kennedy JL, Ravindran A, Harkness KL. Serotonin and Dopamine Gene Variation and Theory of Mind Decoding Accuracy in Major Depression: A Preliminary Investigation. PLoS One 2016; 11:e0150872. [PMID: 26974654 PMCID: PMC4790964 DOI: 10.1371/journal.pone.0150872] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/19/2016] [Indexed: 12/19/2022] Open
Abstract
Theory of mind–the ability to decode and reason about others’ mental states–is a universal human skill and forms the basis of social cognition. Theory of mind accuracy is impaired in clinical conditions evidencing social impairment, including major depressive disorder. The current study is a preliminary investigation of the association of polymorphisms of the serotonin transporter (SLC6A4), dopamine transporter (DAT1), dopamine receptor D4 (DRD4), and catechol-O-methyl transferase (COMT) genes with theory of mind decoding in a sample of adults with major depression. Ninety-six young adults (38 depressed, 58 non-depressed) completed the ‘Reading the Mind in the Eyes task’ and a non-mentalistic control task. Genetic associations were only found for the depressed group. Specifically, superior accuracy in decoding mental states of a positive valence was seen in those homozygous for the long allele of the serotonin transporter gene, 9-allele carriers of DAT1, and long-allele carriers of DRD4. In contrast, superior accuracy in decoding mental states of a negative valence was seen in short-allele carriers of the serotonin transporter gene and 10/10 homozygotes of DAT1. Results are discussed in terms of their implications for integrating social cognitive and neurobiological models of etiology in major depression.
Collapse
Affiliation(s)
- Arielle Y. Zahavi
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
| | - Mark A. Sabbagh
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
| | - Dustin Washburn
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
| | - Raegan Mazurka
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
| | - R. Michael Bagby
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - John Strauss
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - James L. Kennedy
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Arun Ravindran
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Kate L. Harkness
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
33
|
Schwantes-An TH, Zhang J, Chen LS, Hartz SM, Culverhouse RC, Chen X, Coon H, Frank J, Kamens HM, Konte B, Kovanen L, Latvala A, Legrand LN, Maher BS, Melroy WE, Nelson EC, Reid MW, Robinson JD, Shen PH, Yang BZ, Andrews JA, Aveyard P, Beltcheva O, Brown SA, Cannon DS, Cichon S, Corley RP, Dahmen N, Degenhardt L, Foroud T, Gaebel W, Giegling I, Glatt SJ, Grucza RA, Hardin J, Hartmann AM, Heath AC, Herms S, Hodgkinson CA, Hoffmann P, Hops H, Huizinga D, Ising M, Johnson EO, Johnstone E, Kaneva RP, Kendler KS, Kiefer F, Kranzler HR, Krauter KS, Levran O, Lucae S, Lynskey MT, Maier W, Mann K, Martin NG, Mattheisen M, Montgomery GW, Müller-Myhsok B, Murphy MF, Neale MC, Nikolov MA, Nishita D, Nöthen MM, Nurnberger J, Partonen T, Pergadia ML, Reynolds M, Ridinger M, Rose RJ, Rouvinen-Lagerström N, Scherbaum N, Schmäl C, Soyka M, Stallings MC, Steffens M, Treutlein J, Tsuang M, Wall TL, Wodarz N, Yuferov V, Zill P, Bergen AW, Chen J, Cinciripini PM, Edenberg HJ, Ehringer MA, Ferrell RE, Gelernter J, Goldman D, Hewitt JK, Hopfer CJ, Iacono WG, Kaprio J, Kreek MJ, Kremensky IM, Madden PAF, McGue M, Munafò MR, Philibert RA, et alSchwantes-An TH, Zhang J, Chen LS, Hartz SM, Culverhouse RC, Chen X, Coon H, Frank J, Kamens HM, Konte B, Kovanen L, Latvala A, Legrand LN, Maher BS, Melroy WE, Nelson EC, Reid MW, Robinson JD, Shen PH, Yang BZ, Andrews JA, Aveyard P, Beltcheva O, Brown SA, Cannon DS, Cichon S, Corley RP, Dahmen N, Degenhardt L, Foroud T, Gaebel W, Giegling I, Glatt SJ, Grucza RA, Hardin J, Hartmann AM, Heath AC, Herms S, Hodgkinson CA, Hoffmann P, Hops H, Huizinga D, Ising M, Johnson EO, Johnstone E, Kaneva RP, Kendler KS, Kiefer F, Kranzler HR, Krauter KS, Levran O, Lucae S, Lynskey MT, Maier W, Mann K, Martin NG, Mattheisen M, Montgomery GW, Müller-Myhsok B, Murphy MF, Neale MC, Nikolov MA, Nishita D, Nöthen MM, Nurnberger J, Partonen T, Pergadia ML, Reynolds M, Ridinger M, Rose RJ, Rouvinen-Lagerström N, Scherbaum N, Schmäl C, Soyka M, Stallings MC, Steffens M, Treutlein J, Tsuang M, Wall TL, Wodarz N, Yuferov V, Zill P, Bergen AW, Chen J, Cinciripini PM, Edenberg HJ, Ehringer MA, Ferrell RE, Gelernter J, Goldman D, Hewitt JK, Hopfer CJ, Iacono WG, Kaprio J, Kreek MJ, Kremensky IM, Madden PAF, McGue M, Munafò MR, Philibert RA, Rietschel M, Roy A, Rujescu D, Saarikoski ST, Swan GE, Todorov AA, Vanyukov MM, Weiss RB, Bierut LJ, Saccone NL. Association of the OPRM1 Variant rs1799971 (A118G) with Non-Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of European-Ancestry Cohorts. Behav Genet 2016; 46:151-69. [PMID: 26392368 PMCID: PMC4752855 DOI: 10.1007/s10519-015-9737-3] [Show More Authors] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/17/2015] [Indexed: 12/20/2022]
Abstract
The mu1 opioid receptor gene, OPRM1, has long been a high-priority candidate for human genetic studies of addiction. Because of its potential functional significance, the non-synonymous variant rs1799971 (A118G, Asn40Asp) in OPRM1 has been extensively studied, yet its role in addiction has remained unclear, with conflicting association findings. To resolve the question of what effect, if any, rs1799971 has on substance dependence risk, we conducted collaborative meta-analyses of 25 datasets with over 28,000 European-ancestry subjects. We investigated non-specific risk for "general" substance dependence, comparing cases dependent on any substance to controls who were non-dependent on all assessed substances. We also examined five specific substance dependence diagnoses: DSM-IV alcohol, opioid, cannabis, and cocaine dependence, and nicotine dependence defined by the proxy of heavy/light smoking (cigarettes-per-day >20 vs. ≤ 10). The G allele showed a modest protective effect on general substance dependence (OR = 0.90, 95% C.I. [0.83-0.97], p value = 0.0095, N = 16,908). We observed similar effects for each individual substance, although these were not statistically significant, likely because of reduced sample sizes. We conclude that rs1799971 contributes to mechanisms of addiction liability that are shared across different addictive substances. This project highlights the benefits of examining addictive behaviors collectively and the power of collaborative data sharing and meta-analyses.
Collapse
Affiliation(s)
- Tae-Hwi Schwantes-An
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8232, St. Louis, MO, 63110, USA
- Genometrics Section, Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, US National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Juan Zhang
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8232, St. Louis, MO, 63110, USA
- Key Laboratory of Brain Function and Disease, School of Life Sciences, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sarah M Hartz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert C Culverhouse
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiangning Chen
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Hilary Coon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Helen M Kamens
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bettina Konte
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Leena Kovanen
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Antti Latvala
- Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
| | - Lisa N Legrand
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Brion S Maher
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Whitney E Melroy
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mark W Reid
- Oregon Research Institute, Eugene, OR, 97403, USA
| | - Jason D Robinson
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pei-Hong Shen
- Section of Human Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Bao-Zhu Yang
- Department of Psychiatry, Yale University, New Haven, CT, 06516, USA
| | | | - Paul Aveyard
- Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, United Kingdom
| | - Olga Beltcheva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Sandra A Brown
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dale S Cannon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Sven Cichon
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Division of Medical Genetics, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4003, Switzerland
| | - Robin P Corley
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
| | - Norbert Dahmen
- Ökumenisches Hainich-Klinikum, Mühlhausen/Thüringen, Germany
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Randwick, NSW, 2031, Australia
- School of Population and Global Health, University of Melbourne, Melbourne, 3010, Australia
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Ina Giegling
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Stephen J Glatt
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Richard A Grucza
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jill Hardin
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - Annette M Hartmann
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stefan Herms
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Division of Medical Genetics, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4003, Switzerland
| | - Colin A Hodgkinson
- Section of Human Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Per Hoffmann
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Division of Medical Genetics, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4003, Switzerland
| | - Hyman Hops
- Oregon Research Institute, Eugene, OR, 97403, USA
| | - David Huizinga
- Institute of Behavioral Science, University of Colorado, Boulder, CO, 80309, USA
| | - Marcus Ising
- Max-Planck-Institute of Psychiatry, 80804, Munich, Germany
| | - Eric O Johnson
- Behavioral Health Research Division, Research Triangle Institute International, Durham, NC, 27709, USA
| | - Elaine Johnstone
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Radka P Kaneva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Kenneth S Kendler
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Henry R Kranzler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ken S Krauter
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Orna Levran
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, USA
| | - Susanne Lucae
- Max-Planck-Institute of Psychiatry, 80804, Munich, Germany
| | - Michael T Lynskey
- Addictions Department, Institute of Psychiatry, King's College London, London, SE5 8BB, UK
| | | | - Karl Mann
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Nicholas G Martin
- Department of Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, 4029, Australia
| | - Manuel Mattheisen
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Harvard School of Public Health, Boston, MA, 02115, USA
- Aarhus University, Aarhus, 8000, Denmark
| | - Grant W Montgomery
- Department of Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, 4029, Australia
| | | | - Michael F Murphy
- Childhood Cancer Research Group, University of Oxford, Oxford, OX3 7LG, UK
| | - Michael C Neale
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Momchil A Nikolov
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Denise Nishita
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - Markus M Nöthen
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
| | - John Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Timo Partonen
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Michele L Pergadia
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maureen Reynolds
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Monika Ridinger
- Department of Psychiatry, University Medical Center Regensburg, University of Regensburg, 8548, Regensburg, Germany
- Psychiatric Hospital, Konigsfelden, Windisch, Switzerland
| | - Richard J Rose
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Noora Rouvinen-Lagerström
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Norbert Scherbaum
- Addiction Research Group at the Department of Psychiatry and Psychotherapy, LVR Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Christine Schmäl
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Michael Soyka
- Department of Psychiatry, University of Munich, 3860, Munich, Germany
- Private Hospital Meiringen, Meiringen, Switzerland
| | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Psychology & Neuroscience, University of Colorado, Boulder, CO, 80309, USA
| | - Michael Steffens
- Research Department, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Ming Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tamara L Wall
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Norbert Wodarz
- Department of Psychiatry, University Medical Center Regensburg, University of Regensburg, 8548, Regensburg, Germany
| | - Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, USA
| | | | - Andrew W Bergen
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - Jingchun Chen
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Paul M Cinciripini
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
| | - Robert E Ferrell
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University, New Haven, CT, 06516, USA
- Department of Genetics, Yale University, New Haven, CT, 06516, USA
- Department of Neurobiology, Yale University, New Haven, CT, 06516, USA
| | - David Goldman
- Section of Human Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Psychology & Neuroscience, University of Colorado, Boulder, CO, 80309, USA
| | - Christian J Hopfer
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jaakko Kaprio
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
- Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
- Institute for Molecular Medicine FIMM, University of Helsinki, 00014, Helsinki, Finland
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, USA
| | - Ivo M Kremensky
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Pamela A F Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, UK Centre for Tobacco and Alcohol Studies, and School of Experimental Psychology, University of Bristol, Bristol, BS8 1TU, UK
| | | | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Alec Roy
- Psychiatry Service, Department of Veteran Affairs, New Jersey VA Health Care System, East Orange, NJ, 07018, USA
| | - Dan Rujescu
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Sirkku T Saarikoski
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Gary E Swan
- Department of Medicine, Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Alexandre A Todorov
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael M Vanyukov
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nancy L Saccone
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8232, St. Louis, MO, 63110, USA.
| |
Collapse
|
34
|
Heinzerling KG, Demirdjian L, Wu Y, Shoptaw S. Single nucleotide polymorphism near CREB1, rs7591784, is associated with pretreatment methamphetamine use frequency and outcome of outpatient treatment for methamphetamine use disorder. J Psychiatr Res 2016; 74:22-9. [PMID: 26736037 PMCID: PMC5053101 DOI: 10.1016/j.jpsychires.2015.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 12/23/2022]
Abstract
Although stimulant dependence is highly heritable, few studies have examined genetic influences on methamphetamine dependence. We performed a candidate gene study of 52 SNPs and pretreatment methamphetamine use frequency among 263 methamphetamine dependent Hispanic and Non-Hispanic White participants of several methamphetamine outpatient clinical trials in Los Angeles. One SNP, rs7591784 was significantly associated with pretreatment methamphetamine use frequency following Bonferroni correction (p < 0.001) in males but not females. We then examined rs7591784 and methamphetamine urine drug screen results during 12 weeks of outpatient treatment among males with treatment outcome data available (N = 94) and found rs7591784 was significantly associated with methamphetamine use during treatment controlling for pretreatment methamphetamine use. rs7591784 is near CREB1 and in a linkage disequilibrium block with rs2952768, previously shown to influence CREB1 expression. The CREB signaling pathway is involved in gene expression changes related to chronic use of multiple drugs of abuse including methamphetamine and these results suggest that variability in CREB signaling may influence pretreatment frequency of methamphetamine use as well as outcomes of outpatient treatment. Medications targeting the CREB pathway, including phosphodiesterase inhibitors, warrant investigation as pharmacotherapies for methamphetamine use disorders.
Collapse
Affiliation(s)
- Keith G. Heinzerling
- UCLA Department of Family Medicine and Center for Behavioral and Addiction Medicine, Los Angeles, CA, USA, Correspondence to: Keith Heinzerling, UCLA Department of Family Medicine, 1920 Colorado Avenue, Santa Monica, CA, 90404, USA,
| | | | - Yingnian Wu
- UCLA Department of Statistics, Los Angeles, CA, USA
| | - Steven Shoptaw
- UCLA Department of Family Medicine and Center for Behavioral and Addiction Medicine, Los Angeles, CA, USA
| |
Collapse
|
35
|
Bershad AK, Weafer JJ, Kirkpatrick MG, Wardle MC, Miller MA, de Wit H. Oxytocin receptor gene variation predicts subjective responses to MDMA. Soc Neurosci 2016; 11:592-9. [DOI: 10.1080/17470919.2016.1143026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Genetic variation of the dopamine transporter (DAT1) influences the acute subjective responses to cocaine in volunteers with cocaine use disorders. Pharmacogenet Genomics 2016; 25:296-304. [PMID: 25850966 DOI: 10.1097/fpc.0000000000000137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The aim of this study was to identify gene variants of DAT1 (SLC6A3) that modulate subjective responses to acute cocaine exposure. METHODS Non-treatment-seeking volunteers (n=66) with cocaine use disorders received a single bolus infusion of saline and cocaine (40 mg, intravenous) in a randomized order. Subjective effects were assessed with visual analog scales administered before (-15 min) and up to 20 min after infusion. Ratings of subjective effects were normalized to baseline, and saline infusion values were subtracted. Data were analyzed using repeated measures analysis of variance. DNA from the participants was genotyped for the DAT1 intron 8 (rs3836790) and 3'-untranslated region (rs28363170) variable number of tandem repeats. RESULTS Participants were mostly male (∼80%) and African American (∼70%). No differences were found among drug use variables between groups for either polymorphism. Carriers of the 9-allele of the DAT1 3'-untranslated region (9,9 and 9,10) exhibited greater responses to cocaine for 'high', 'any drug effect', 'anxious', and 'stimulated' (all P-values<0.001) compared with individuals homozygous for the 10-allele. For the intron 8 polymorphism, individuals homozygous for the 6-allele exhibited greater responses for 'anxious' compared with carriers of the 5-allele (P<0.001). Individuals possessing the genotype pattern of 10,10 and at least one 5-allele reported lower responses to 'good effects', 'bad effects', 'depressed', and 'anxious' (all P-values<0.01). CONCLUSION The data presented here show for the first time support for the hypothesis that genetic differences in DAT1 contribute to the variation in subjective responses to cocaine among participants with cocaine use disorders.
Collapse
|
37
|
|
38
|
Vaidyanathan U, Vrieze SI, Iacono WG. The Power of Theory, Research Design, and Transdisciplinary Integration in Moving Psychopathology Forward. PSYCHOLOGICAL INQUIRY 2015; 26:209-230. [PMID: 27030789 PMCID: PMC4809358 DOI: 10.1080/1047840x.2015.1015367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
While the past few decades have seen much work in psychopathology research that has yielded provocative insights, relatively little progress has been made in understanding the etiology of mental disorders. We contend that this is due to an overreliance on statistics and technology with insufficient attention to adequacy of experimental design, a lack of integration of data across various domains of research, and testing of theoretical models using relatively weak study designs. We provide a conceptual discussion of these issues and follow with a concrete demonstration of our proposed solution. Using two different disorders - depression and substance use - as examples, we illustrate how we can evaluate competing theories regarding their etiology by integrating information from various domains including latent variable models, neurobiology, and quasi-experimental data such as twin and adoption studies, rather than relying on any single methodology alone. More broadly, we discuss the extent to which such integrative thinking allows for inferences about the etiology of mental disorders, rather than focusing on descriptive correlates alone. Greater scientific insight will require stringent tests of competing theories and a deeper conceptual understanding of the advantages and pitfalls of methodologies and criteria we use in our studies.
Collapse
Affiliation(s)
- Uma Vaidyanathan
- Department of Psychology, University of Minnesota, N218 Elliot Hall, 75 East River Road, Minneapolis, MN 55455
| | - Scott I Vrieze
- Institute for Behavioral Genetics, University of Colorado – Boulder, 1480 30 Street, Boulder, CO 80303
| | - William G. Iacono
- Department of Psychology, University of Minnesota, N218 Elliot Hall, 75 East River Road, Minneapolis, MN 55455
| |
Collapse
|
39
|
Yarosh HL, Meda SA, de Wit H, Hart AB, Pearlson GD. Multivariate analysis of subjective responses to d-amphetamine in healthy volunteers finds novel genetic pathway associations. Psychopharmacology (Berl) 2015; 232:2781-94. [PMID: 25843748 PMCID: PMC4504822 DOI: 10.1007/s00213-015-3914-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/06/2015] [Indexed: 11/24/2022]
Abstract
RATIONALE Researchers studying behavioral and physiologic effects of d-amphetamine have explored individual response differences to the drug. Concurrently, genome-wide analyses have identified several single-nucleotide polymorphisms (SNPs) associated with these traits. Univariate methods can identify SNPs associated with behavioral and physiological traits, but multivariate analyses allow identification of clusters of related biologically relevant SNPs and behavioral components. OBJECTIVES The aim of the study was to identify clusters of related biologically relevant SNPs and behavioral components in the responses of healthy individuals to d-amphetamine using multivariate analysis. METHODS Individuals (N = 375) without substance abuse histories completed surveys and detailed cardiovascular monitoring during randomized, blinded sessions: d-amphetamine (10 and 20 mg) and placebo. We applied parallel independent component analysis (Para-ICA) to data previously analyzed with univariate approaches, revealing new associations between genes and behavioral responses to d-amphetamine. RESULTS Three significantly associated (p < .001) phenotype-genotype pairs emerged. The first component included physiologic measures of systolic and diastolic blood pressure (BP) and mean arterial pressure (MAP) along with SNPs in calcium and glutamatergic signaling pathways. The second associated components included the "Anger" items from the Profile of Mood States (POMS) questionnaire and the marijuana effects from the Addiction Research Center Inventory (Cuyas, Verdejo-Garcia et al.), with enriched genetic pathways involved in cardiomyopathy and MAPK signaling. The final pair included "Anxious," "Fatigue," and "Confusion" items from the POMS questionnaire, plus functional pathways related to cardiac muscle contraction and cardiomyopathy. CONCLUSIONS Multifactorial genetic networks related to calcium signaling, glutamatergic and dopaminergic synapse function, and amphetamine addiction appear to mediate common behavioral and cardiovascular responses to d-amphetamine.
Collapse
Affiliation(s)
- Haley L. Yarosh
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Shashwath A. Meda
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois
| | - Amy B. Hart
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut,Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
40
|
Wright NE, Strong JA, Gilbart ER, Shollenbarger SG, Lisdahl KM. 5-HTTLPR Genotype Moderates the Effects of Past Ecstasy Use on Verbal Memory Performance in Adolescent and Emerging Adults: A Pilot Study. PLoS One 2015; 10:e0134708. [PMID: 26231032 PMCID: PMC4521717 DOI: 10.1371/journal.pone.0134708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/13/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Ecstasy use is associated with memory deficits. Serotonin transporter gene (5-HTTLPR) polymorphisms have been linked with memory function in healthy samples. The present pilot study investigated the influence of 5-HTTLPR polymorphisms on memory performance in ecstasy users, marijuana-using controls, and non-drug-using controls, after a minimum of 7 days of abstinence. METHOD Data were collected from 116 young adults (18-25 years-old), including 45 controls, 42 marijuana users, and 29 ecstasy users, and were balanced for 5-HTTLPR genotype. Participants were abstinent seven days prior to completing memory testing. Three MANCOVAs and one ANCOVA were run to examine whether drug group, 5-HTTLPR genotype, and their interactions predicted verbal and visual memory after controlling for gender, past year alcohol use, other drug use, and nicotine cotinine levels. RESULTS MANCOVA and ANCOVA analysis revealed a significant interaction between drug group and genotype (p = .03) such that ecstasy users with the L/L genotype performed significantly worse on CVLT-2 total recall (p = .05), short (p = .008) and long delay free recall (p = .01), and recognition (p = .006), with the reverse pattern found in controls. Ecstasy did not significantly predict visual memory. 5-HTTLPR genotype significantly predicted memory for faces (p = .02); short allele carriers performed better than those with L/L genotype. CONCLUSIONS 5-HTTLPR genotype moderated the effects of ecstasy on verbal memory, with L/L carriers performing worse compared to controls. Future research should continue to examine individual differences in ecstasy's impact on neurocognitive performance as well as relationships with neuronal structure. Additional screening and prevention efforts focused on adolescents and emerging adults are necessary to prevent ecstasy consumption.
Collapse
Affiliation(s)
- Natasha E. Wright
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Judith A. Strong
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Erika R. Gilbart
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Skyler G. Shollenbarger
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Krista M. Lisdahl
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| |
Collapse
|
41
|
A review of pharmacogenetic studies of substance-related disorders. Drug Alcohol Depend 2015; 152:1-14. [PMID: 25819021 PMCID: PMC4458176 DOI: 10.1016/j.drugalcdep.2015.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/05/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Substance-related disorders (SRDs) are a major cause of morbidity and mortality worldwide. Family, twin, and adoption studies have demonstrated the substantial heritability of SRDs. To determine the impact of genetic variation on risk for SRD and the response to treatment, researchers have conducted a number of secondary data analyses and quasi-experimental studies that target one or more candidate gene variants. METHODS This review examines studies in which candidate polymorphisms were examined as mediator variables to identify pharmacogenetic effects on subjective responses to drug administration or cues or outcomes of medication trials for SRDs. Efforts to use a meta-analytic approach to quantify these effects are premature because the number of available studies using similar methods and outcomes is limited, so the present review is qualitative. RESULTS Findings from these studies provide preliminary evidence of clinically relevant pharmacogenetic effects. However, independent replication of these findings has been sparse. CONCLUSIONS Although this growing body of literature has produced conflicting results, improved statistical controls may help to clarify the findings. Additionally, the use of empirically derived sub-phenotypes (i.e., which serve to differentiate distinct groups of affected individuals) may also help to identify genetic mediators of pharmacologic response in relation to SRDs. The identification of genetic mediators can inform clinical care both by identifying risk factors for SRDs and predicting adverse events and therapeutic outcomes associated with specific pharmacotherapies.
Collapse
|
42
|
Kosobud AEK, Wetherill L, Plawecki MH, Kareken DA, Liang T, Nurnberger JL, Windisch K, Xuei X, Edenberg HJ, Foroud TM, O'Connor SJ. Adaptation of Subjective Responses to Alcohol is Affected by an Interaction of GABRA2 Genotype and Recent Drinking. Alcohol Clin Exp Res 2015; 39:1148-57. [PMID: 26087834 DOI: 10.1111/acer.12749] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/30/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Subjective perceptions of alcohol intoxication are associated with altered risk for alcohol abuse and dependence. Acute adaptation of these perceptions may influence such risk and may involve genes associated with pleasant perceptions or the relief of anxiety. This study assessed the effect of variation in the GABAA receptor genes GABRG1 and GABRA2 and recent drinking history on the acute adaptation of subjective responses to alcohol. METHODS One hundred and thirty-two nondependent moderate to heavy drinkers, aged 21 to 27, participated in 2 single-blind, counterbalanced sessions, approximately 1 week apart. One session was an intravenous alcohol "clamp," during which breath alcohol concentration was held steady at 60 mg/dl (60 mg%) for 3 hours, and the other an identical session using saline infusion. Subjective perceptions of Intoxication, Enjoyment, Stimulation, Relaxation, Anxiety, Tiredness, and Estimated Number of Drinks were acquired before (baseline), and during the first and final 45 minutes of the clamp. A placebo-adjusted index of the subject's acute adaptation to alcohol was calculated for each of the 7 subjective measures and used in a principal component analysis to create a single aggregate estimate for each subject's adaptive response to alcohol. Analysis of covariance tested whether GABRA2 and GABRG1 single nucleotide polymorphism (SNP) genotypes, gender, placebo session, family history of alcoholism, recent drinking history, and the genotype × recent drinking history interaction significantly predicted the adaptive response. RESULTS Recent drinking history (p = 0.01), and recent drinking history × genotype interaction (p = 0.01) were significantly associated with acute adaptation of the subjective responses to alcohol for the GABRA2 SNP rs279858. CONCLUSIONS Higher recent drinking was found to be associated with reduced acute tolerance to positive, stimulating effects of alcohol in carriers of the rs279858 risk allele. We postulate that the GABRA2 effect on alcohol dependence may, in part, be due to its effect on subjective responses to alcohol.
Collapse
Affiliation(s)
- Ann E K Kosobud
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Psychology, Indiana University Purdue University at Indianapolis, Indianapolis, Indiana
| | - Martin H Plawecki
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - David A Kareken
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tiebing Liang
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana
| | - John L Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kyle Windisch
- Department of Psychology, Indiana University Purdue University at Indianapolis, Indianapolis, Indiana
| | - Xiaoling Xuei
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sean J O'Connor
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana.,R.L. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| |
Collapse
|
43
|
Hayes JE, Feeney EL, Nolden AA, McGeary JE. Quinine Bitterness and Grapefruit Liking Associate with Allelic Variants in TAS2R31. Chem Senses 2015; 40:437-43. [PMID: 26024668 DOI: 10.1093/chemse/bjv027] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multiple psychophysical gene-association studies suggest a single nucleotide polymorphism (SNP) within the bitter receptor gene TAS2R19 on chromosome 12 may be functional. Previously, the Arg299Cys SNP (rs10772420) has been associated with differential bitterness of quinine and differential liking for grapefruit juice. However, quinine does not activate TAS2R19 in vitro; likewise, limonin and naringin, bitter compounds in grapefruit, do not activate TAS2R19 in vitro. Here, we examined quinine bitterness (whole-mouth swish-and-spit stimuli and regionally delivered quinine across 4 loci) and remembered liking for grapefruit juice to test whether they associate with SNPs in another nearby gene, TASR2R31. We observed SNP-phenotype associations between whole-mouth quinine bitterness and self-reported liking for grapefruit juice with SNPs in TAS2R31, and regional quinine bitterness followed a similar trend, but did not reach significance. Present data provide independent replication of prior associations reported for TAS2R19. However, we also observed strong linkage disequilibrium (LD) between TAS2R19 and TAS2R31 SNPs. When present data are considered in light of existing functional expression data, this suggests phenotypic associations reported previously for rs10772420 may potentially be due to LD between this SNP and polymorphism(s) in, or closer to, TAS2R31. If confirmed, this would reduce the number of TAS2Rs with putatively functional polymorphisms to 5.
Collapse
Affiliation(s)
- John E Hayes
- Sensory Evaluation Center, Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA,
| | - Emma L Feeney
- Sensory Evaluation Center, Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alissa A Nolden
- Sensory Evaluation Center, Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - John E McGeary
- Providence Veterans Affairs Medical Center, Providence, RI 02908, USA, Division of Behavior Genetics, Rhode Island Hospital and Center for Alcohol and Addiction Studies, Brown University, Providence, RI 02912, USA
| |
Collapse
|
44
|
Strike LT, Couvy-Duchesne B, Hansell NK, Cuellar-Partida G, Medland SE, Wright MJ. Genetics and Brain Morphology. Neuropsychol Rev 2015; 25:63-96. [DOI: 10.1007/s11065-015-9281-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/08/2015] [Indexed: 12/17/2022]
|
45
|
Jones JD, Comer SD, Kranzler HR. The pharmacogenetics of alcohol use disorder. Alcohol Clin Exp Res 2015; 39:391-402. [PMID: 25703505 PMCID: PMC4348335 DOI: 10.1111/acer.12643] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/24/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Annually, the use and abuse of alcohol contributes to millions of deaths and billions of dollars in societal costs. To determine the impact of genetic variation on the susceptibility to the disorder and its response to treatment, studies have been conducted to assess the contribution of a variety of candidate genetic variants. These variants, which we review here, were chosen based upon their observed or hypothesized functional relevance to alcohol use disorder (AUD) risk or to the mechanism by which medications used to treat the disorder exert their effects. METHODS This qualitative review examines studies in which candidate polymorphisms were tested as moderator variables to identify pharmacogenetic effects on either the subjective response to alcohol or the outcomes of pharmacotherapy. RESULTS Although findings from these studies provide evidence of a number of clinically relevant pharmacogenetic effects, the literature is limited and there are conflicting findings that require resolution. CONCLUSIONS Pharmacogenetic studies of AUD treatment that use greater methodological rigor and better statistical controls, such as corrections for multiple testing, may help to resolve inconsistent findings. These procedures could also lead to the discovery of more robust and clinically meaningful moderator effects. As the field evolves through methodological standardization and the use of larger study samples, pharmacogenetic research has the potential to inform clinical care by enhancing therapeutic effects and personalizing treatments. These efforts may also provide insights into the mechanisms by which medications reduce heavy drinking or promote abstinence in patients with an AUD.
Collapse
Affiliation(s)
- Jermaine D Jones
- Division on Substance Abuse , New York State Psychiatric Institute & Columbia University College of Physicians and Surgeons, New York, New York
| | | | | |
Collapse
|
46
|
Gatt JM, Burton KLO, Williams LM, Schofield PR. Specific and common genes implicated across major mental disorders: a review of meta-analysis studies. J Psychiatr Res 2015; 60:1-13. [PMID: 25287955 DOI: 10.1016/j.jpsychires.2014.09.014] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 02/07/2023]
Abstract
Major efforts have been directed at family-based association and case-control studies to identify the involvement of candidate genes in the major disorders of mental health. What remains unknown is whether candidate genes are associated with multiple disorders via pleiotropic mechanisms, and/or if other genes are specific to susceptibility for individual disorders. Here we undertook a review of genes that have been identified in prior meta-analyses examining specific genes and specific mental disorders that have core disruptions to emotional and cognitive function and contribute most to burden of illness- major depressive disorder (MDD), anxiety disorders (AD, including panic disorder and obsessive compulsive disorder), schizophrenia (SZ) and bipolar disorder (BD) and attention deficit hyperactivity disorder (ADHD). A literature review was conducted up to end-March 2013 which included a total of 1519 meta-analyses across 157 studies reporting multiple genes implicated in one or more of the five disorders studied. A total of 134 genes (206 variants) were identified as significantly associated risk variants for MDD, AD, ADHD, SZ or BD. Null genetic effects were also reported for 195 genes (426 variants). 13 genetic variants were shared in common between two or more disorders (APOE e4, ACE Ins/Del, BDNF Val66Met, COMT Val158Met, DAOA G72/G30 rs3918342, DAT1 40-bp, DRD4 48-bp, SLC6A4 5-HTTLPR, HTR1A C1019G, MTHR C677T, MTHR A1298C, SLC6A4 VNTR and TPH1 218A/C) demonstrating evidence for pleiotrophy. Another 12 meta-analyses of GWAS studies of the same disorders were identified, with no overlap in genetic variants reported. This review highlights the progress that is being made in identifying shared and unique genetic mechanisms that contribute to the risk of developing several major psychiatric disorders, and identifies further steps for progress.
Collapse
Affiliation(s)
- Justine M Gatt
- The Brain Dynamics Centre, Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia; Westmead Millennium Institute, Westmead, NSW, 2145, Australia; Neuroscience Research Australia, Randwick, NSW, 2031, Australia; School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Karen L O Burton
- The Brain Dynamics Centre, Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia; Westmead Millennium Institute, Westmead, NSW, 2145, Australia; Neuroscience Research Australia, Randwick, NSW, 2031, Australia; School of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Leanne M Williams
- The Brain Dynamics Centre, Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia; Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA, 94305-5717, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia; School of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
47
|
Rueger SY, Hu H, McNamara P, Cao D, Hao W, King AC. Differences in subjective response to alcohol in heavy- and light-drinking Chinese men versus Caucasian American men. Addiction 2015; 110:91-9. [PMID: 25203488 PMCID: PMC4270853 DOI: 10.1111/add.12737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/22/2014] [Accepted: 08/28/2014] [Indexed: 12/23/2022]
Abstract
AIMS To compare subjective responses to alcohol among Han Chinese and Caucasian American males. DESIGN Double-blinded, placebo-controlled human laboratory design. Participants completed three randomized experimental sessions with high and low alcohol and placebo beverages. SETTING Chinese participants were examined at Xinjiang Medical University, China. Caucasian participants were examined at the University of Chicago, USA. PARTICIPANTS Seventy Han Chinese (35 heavy/35 light drinkers) and 75 Caucasian Americans (43 heavy/32 light drinkers). MEASUREMENTS Breath alcohol concentration (BrAC) and the 'stimulation' and 'sedation' subscales of the Biphasic Alcohol Effects Scale were assessed at pre-drink baseline and four time-points after beverage consumption. The 'like' and 'want' subscales of the Drug Effects Questionnaire were also assessed at the post-drink assessments. FINDINGS Comparisons with light drinkers showed that high- and low-dose alcohol produced decreases in stimulation, liking and wanting in Chinese versus Caucasians (P < 0.05), and dose-dependent increases in sedation in both groups (P < 0.001). Among heavy drinkers, high-dose alcohol produced higher stimulation (P < 0.001) but with concomitant higher sedation for both doses (P < 0.05) for Chinese versus Caucasians. Alcohol also demonstrated significantly lower liking (P < 0.001) in Chinese versus Caucasian heavy drinkers for both doses. Interestingly, both groups showed dose-dependent increases in wanting relative to placebo (P < 0.05), but the magnitude of the increase was lower in Chinese drinkers. CONCLUSIONS Stimulating effects of alcohol are predominant in Chinese male binge drinkers, as has been found in Caucasians, but with less hedonic and motivational reward, potentially explaining some of the lower risk for alcohol disorders in Asian subgroups.
Collapse
Affiliation(s)
- Sandra Yu Rueger
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA,Department of Psychology, Wheaton College, Wheaton IL, USA
| | - Hongxing Hu
- Mental Health Institute, Second Xiangya Hospital, Central South University, Hunan, China,Clinical psychological department, First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Patrick McNamara
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Wei Hao
- Mental Health Institute, Second Xiangya Hospital, Central South University, Hunan, China
| | - Andrea C. King
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
48
|
Saez I, Set E, Hsu M. From genes to behavior: placing cognitive models in the context of biological pathways. Front Neurosci 2014; 8:336. [PMID: 25414628 PMCID: PMC4220121 DOI: 10.3389/fnins.2014.00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/05/2014] [Indexed: 01/16/2023] Open
Abstract
Connecting neural mechanisms of behavior to their underlying molecular and genetic substrates has important scientific and clinical implications. However, despite rapid growth in our knowledge of the functions and computational properties of neural circuitry underlying behavior in a number of important domains, there has been much less progress in extending this understanding to their molecular and genetic substrates, even in an age marked by exploding availability of genomic data. Here we describe recent advances in analytical strategies that aim to overcome two important challenges associated with studying the complex relationship between genes and behavior: (i) reducing distal behavioral phenotypes to a set of molecular, physiological, and neural processes that render them closer to the actions of genetic forces, and (ii) striking a balance between the competing demands of discovery and interpretability when dealing with genomic data containing up to millions of markers. Our proposed approach involves linking, on one hand, models of neural computations and circuits hypothesized to underlie behavior, and on the other hand, the set of the genes carrying out biochemical processes related to the functioning of these neural systems. In particular, we focus on the specific example of value-based decision-making, and discuss how such a combination allows researchers to leverage existing biological knowledge at both neural and genetic levels to advance our understanding of the neurogenetic mechanisms underlying behavior.
Collapse
Affiliation(s)
- Ignacio Saez
- Helen Wills Neuroscience Program, Haas School of Business, University of California, Berkeley Berkeley, CA, USA
| | - Eric Set
- Helen Wills Neuroscience Program, Haas School of Business, University of California, Berkeley Berkeley, CA, USA ; Department of Economics, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Ming Hsu
- Helen Wills Neuroscience Program, Haas School of Business, University of California, Berkeley Berkeley, CA, USA
| |
Collapse
|
49
|
Kirkpatrick MG, Baggott MJ, Mendelson JE, Galloway GP, Liechti ME, Hysek CM, de Wit H. MDMA effects consistent across laboratories. Psychopharmacology (Berl) 2014; 231:3899-905. [PMID: 24633447 PMCID: PMC4161650 DOI: 10.1007/s00213-014-3528-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE Several laboratories have conducted placebo-controlled drug challenge studies with 3,4-methylenedioxymethamphetamine (MDMA), providing a unique source of data to examine the reliability of the acute effects of the drug across subject samples and settings. We examined the subjective and physiological responses to the drug across three different laboratories and investigated the influence of prior MDMA use. METHODS Overall, 220 healthy volunteers with varying levels of previous MDMA experience participated in laboratory-based studies in which they received placebo or MDMA orally (1.5 mg/kg or 125-mg fixed dose) under double-blind conditions. Cardiovascular and subjective effects were assessed before and repeatedly after drug administration. The studies were conducted independently by investigators in Basel, San Francisco, and Chicago. RESULTS Despite methodological differences between the studies and differences in the subjects' drug use histories, MDMA produced very similar cardiovascular and subjective effects across the sites. The participants' prior use of MDMA was inversely related to feeling "Any Drug Effect" only at sites testing more experienced users. CONCLUSIONS These data indicate that the pharmacological effects of MDMA are robust and highly reproducible across settings. There was also modest evidence for tolerance to the effects of MDMA in regular users.
Collapse
Affiliation(s)
| | - Matthew J. Baggott
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago
- Addiction & Pharmacology Research Laboratory, California Pacific Medical Center, San Francisco
| | - John E. Mendelson
- Addiction & Pharmacology Research Laboratory, California Pacific Medical Center, San Francisco
| | - Gantt P. Galloway
- Addiction & Pharmacology Research Laboratory, California Pacific Medical Center, San Francisco
| | - Matthias E. Liechti
- Division of Clinical Pharmacology and Toxicology, University Hospital and University of Basel, Basel, Switzerland
| | - Cédric M. Hysek
- Division of Clinical Pharmacology and Toxicology, University Hospital and University of Basel, Basel, Switzerland
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago
| |
Collapse
|
50
|
Stein MA, Waldman I, Newcorn J, Bishop J, Kittles R, Cook EH. Dopamine transporter genotype and stimulant dose-response in youth with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 2014; 24:238-44. [PMID: 24813374 PMCID: PMC4064733 DOI: 10.1089/cap.2013.0102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study seeks to determine if variation in the dopamine transporter gene (SLC6A3/DAT1) moderates the dose-response effects of long-acting dexmethylphenidate (D-MPH) and mixed amphetamine salts (MAS) in children with attention-deficit/hyperactivity disorder (ADHD). METHODS Fifty-six children and adolescents (mean age=11.7±2.2) participated in a double-blind, two period crossover, dose-response study with a randomized placebo week in each 4 week drug period. Each period consisted of sequential week-long exposures to three dose levels (10, 20, 25-30 mg, depending upon weight) of D-MPH or MAS. RESULTS Doses of 10-20 mg of either D-MPH or MAS had little to no effect on hyperactivity-impulsivity and total ADHD symptom scores in subjects with the 9/9 genotype; this was in contrast to the dose-response curves of subjects with either the 10/10 or 10/9 genotype. CONCLUSIONS ADHD youth with the 9/9 genotype may require higher stimulant doses to achieve adequate symptom control.
Collapse
Affiliation(s)
- Mark A. Stein
- Department of Psychiatry and Behavioral Medicine, Seattle Children's Hospital, and University of Washington, Seattle, Washington
| | - Irwin Waldman
- Department of Psychology, Emory University, Atlanta, Georgia
| | - Jeffrey Newcorn
- Icahn School of Medicine, Mount Sinai Hospital, New York, New York
| | - Jeffrey Bishop
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Rick Kittles
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Edwin H. Cook
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|