1
|
Martz J, Shelton MA, Langen TJ, Srinivasan S, Seney ML, Kentner AC. Peripubertal antagonism of corticotropin-releasing factor receptor 1 results in sustained changes in behavioral plasticity and the transcriptomic profile of the amygdala. Neuroscience 2025; 567:261-270. [PMID: 39798835 PMCID: PMC11789919 DOI: 10.1016/j.neuroscience.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Peripuberty is a significant period of neurodevelopment with long-lasting effects on the brain and behavior. Blocking type 1 corticotropin-releasing factor receptors (CRFR1) in neonatal and peripubertal rats attenuates detrimental effects of early-life stress on neural plasticity, behavior, and stress hormone action, long after exposure to the drug has ended. CRFR1 antagonism can also impact neural and behavioral development in the absence of stressful stimuli, suggesting sustained alterations under baseline conditions. To investigate this further, we administered the CRFR1 antagonist (CRFR1a) R121919 to young adolescent male and female rats across 4 days. Following each treatment, rats were tested for locomotion, social behavior, mechanical allodynia, or prepulse inhibition (PPI). Acute CRFR1 blockade immediately reduced PPI in peripubertal males, but not females. In adulthood, each assay was repeated without CRFR1a exposure to test for persistent effects of the adolescent treatment. Males continued to experience deficits in PPI while females displayed altered locomotion, PPI, and social behavior. The amygdala was collected to measure long-term effects on gene expression. In the adult amygdala, peripubertal CRFR1a induced alterations in pathways related to neural plasticity and stress in males. In females, pathways related to central nervous system myelination, cell junction organization, and glutamatergic regulation of synaptic transmission were affected. Understanding how acute exposure to neuropharmacological agents can have sustained impacts on brain and behavior, in the absence of further exposures, has important clinical implications for developing adolescents.
Collapse
Affiliation(s)
- Julia Martz
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, 02115, United States
| | - Micah A Shelton
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States
| | - Tristen J Langen
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, 02115, United States
| | - Sakhi Srinivasan
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, 02115, United States
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States
| | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, 02115, United States.
| |
Collapse
|
2
|
Martz J, Shelton MA, Langen TJ, Srinivasan S, Seney ML, Kentner AC. Peripubertal antagonism of corticotropin-releasing factor receptor 1 results in sustained changes in behavioral plasticity and the transcriptomic profile of the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.14.607957. [PMID: 39185241 PMCID: PMC11343213 DOI: 10.1101/2024.08.14.607957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Peripuberty is a significant period of neurodevelopment with long-lasting effects on the brain and behavior. Blocking type 1 corticotropin-releasing factor receptors (CRFR1) in neonatal and peripubertal rats attenuates detrimental effects of early-life stress on neural plasticity, behavior, and stress hormone action, long after exposure to the drug has ended. CRFR1 antagonism can also impact neural and behavioral development in the absence of stressful stimuli, suggesting sustained alterations under baseline conditions. To investigate this further, we administered the CRFR1 antagonist (CRFR1a) R121919 to young adolescent male and female rats across 4 days. Following each treatment, rats were tested for locomotion, social behavior, mechanical allodynia, or prepulse inhibition (PPI). Acute CRFR1 blockade immediately reduced PPI in peripubertal males, but not females. In adulthood, each assay was repeated without CRFR1a exposure to test for persistent effects of the adolescent treatment. Males continued to experience deficits in PPI while females displayed altered locomotion, PPI, and social behavior. The amygdala was collected to measure long-term effects on gene expression. In the adult amygdala, peripubertal CRFR1a induced alterations in pathways related to neural plasticity and stress in males. In females, pathways related to central nervous system myelination, cell junction organization, and glutamatergic regulation of synaptic transmission were affected. Understanding how acute exposure to neuropharmacological agents can have sustained impacts on brain and behavior, in the absence of further exposures, has important clinical implications for developing adolescents.
Collapse
Affiliation(s)
- Julia Martz
- School of Arts & Sciences, Health Psychology Program,
Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States
02115
| | - Micah A. Shelton
- Department of Psychiatry, University of Pittsburgh, 450
Technology Drive Pittsburgh, PA, 15219
| | - Tristen J. Langen
- School of Arts & Sciences, Health Psychology Program,
Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States
02115
| | - Sakhi Srinivasan
- School of Arts & Sciences, Health Psychology Program,
Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States
02115
| | - Marianne L. Seney
- Department of Psychiatry, University of Pittsburgh, 450
Technology Drive Pittsburgh, PA, 15219
| | - Amanda C. Kentner
- School of Arts & Sciences, Health Psychology Program,
Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States
02115
| |
Collapse
|
3
|
Stout DM, Powell S, Kangavary A, Acheson DT, Nievergelt CM, Kash T, Simmons AN, Baker DG, Risbrough VB. Dissociable impact of childhood trauma and deployment trauma on affective modulation of startle. Neurobiol Stress 2021; 15:100362. [PMID: 34258336 PMCID: PMC8259305 DOI: 10.1016/j.ynstr.2021.100362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
Trauma disorders are often associated with alterations in aversive anticipation and disruptions in emotion/fear circuits. Heightened or blunted anticipatory responding to negative cues in adulthood may be due to differential trauma exposure during development, and previous trauma exposure in childhood may also modify effects of subsequent trauma in adulthood. The aim of the current investigation was to examine the contributions of childhood trauma on affective modulation of startle before and after trauma exposure in adulthood (a combat deployment). Adult male participants from the Marine Resilience Study with (n = 1145) and without (n = 1312) a history of reported childhood trauma completed an affective modulation of startle task to assess aversive anticipation. Affective startle response was operationalized by electromyography (EMG) recording of the orbicularis oculi muscle in response to acoustic stimuli when anticipating positive and negative affective images. Startle responses to affective images were also assessed. Testing occurred over three time-points; before going on a 7 month combat deployment and 3 and 6 months after returning from deployment. Startle response when anticipating negative images was greater compared to pleasant images across all three test periods. Across all 3 time points, childhood trauma was consistently associated with significantly blunted startle when anticipating negative images, suggesting reliable effects of childhood trauma on aversive anticipation. Conversely, deployment trauma was associated with increased startle reactivity post-deployment compared to pre-deployment, which was independent of childhood trauma and image valence. These results support the hypothesis that trauma exposure during development vs. adulthood may have dissociable effects on aversive anticipation and arousal mechanisms. Further study in women and across more refined age groups is needed to test generalizability and identify potential developmental windows for these differential effects.
Collapse
Affiliation(s)
- Daniel M. Stout
- VA Center of Excellence for Stress and Mental Health (CESAMH), USA
- VA San Diego Healthcare System, USA
- University of California San Diego, USA
| | - Susan Powell
- VA San Diego Healthcare System, USA
- University of California San Diego, USA
| | | | - Dean T. Acheson
- VA Center of Excellence for Stress and Mental Health (CESAMH), USA
- VA San Diego Healthcare System, USA
- University of California San Diego, USA
| | - Caroline M. Nievergelt
- VA Center of Excellence for Stress and Mental Health (CESAMH), USA
- VA San Diego Healthcare System, USA
- University of California San Diego, USA
| | | | - Alan N. Simmons
- VA Center of Excellence for Stress and Mental Health (CESAMH), USA
- VA San Diego Healthcare System, USA
- University of California San Diego, USA
| | - Dewleen G. Baker
- VA Center of Excellence for Stress and Mental Health (CESAMH), USA
- VA San Diego Healthcare System, USA
- University of California San Diego, USA
| | - Victoria B. Risbrough
- VA Center of Excellence for Stress and Mental Health (CESAMH), USA
- VA San Diego Healthcare System, USA
- University of California San Diego, USA
| |
Collapse
|
4
|
Ruat J, Hartmann A, Heinz DE, Nemcova P, Stoffel R, Deussing JM, Chen A, Wotjak CT. CB1 receptors in corticotropin-releasing factor neurons selectively control the acoustic startle response in male mice. GENES BRAIN AND BEHAVIOR 2021; 20:e12775. [PMID: 34672092 DOI: 10.1111/gbb.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
The endocannabinoid system is an important regulator of the hormonal and behavioral stress responses, which critically involve corticotropin-releasing factor (CRF) and its receptors. While it has been shown that CRF and the cannabinoid type 1 (CB1) receptor are co-localized in several brain regions, the physiological relevance of this co-expression remains unclear. Using double in situ hybridization, we confirmed co-localization in the piriform cortex, the lateral hypothalamic area, the paraventricular nucleus, and the Barrington's nucleus, albeit at low levels. To study the behavioral and physiological implications of this co-expression, we generated a conditional knockout mouse line that selectively lacks the expression of CB1 receptors in CRF neurons. We found no effects on fear and anxiety-related behaviors under basal conditions nor after a traumatic experience. Additionally, plasma corticosterone levels were unaffected at baseline and after restraint stress. Only acoustic startle responses were significantly enhanced in male, but not female, knockout mice. Taken together, the consequences of depleting CB1 in CRF-positive neurons caused a confined hyperarousal phenotype in a sex-dependent manner. The current results suggest that the important interplay between the central endocannabinoid and CRF systems in regulating the organism's stress response is predominantly taking place at the level of CRF receptor-expressing neurons.
Collapse
Affiliation(s)
- Julia Ruat
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany.,Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alice Hartmann
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniel E Heinz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany.,Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Paulina Nemcova
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rainer Stoffel
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Scientific Core Unit Genetically Engineered Mouse Models, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alon Chen
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Carsten T Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany.,Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| |
Collapse
|
5
|
Yue W, Caldwell S, Risbrough V, Powell S, Zhou X. Chronic presence of blood circulating anti-NMDAR1 autoantibodies impairs cognitive function in mice. PLoS One 2021; 16:e0256972. [PMID: 34473764 PMCID: PMC8412244 DOI: 10.1371/journal.pone.0256972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022] Open
Abstract
High titers of anti-NMDAR1 autoantibodies in brain cause anti-NMDAR1 encephalitis that displays psychiatric symptoms of schizophrenia and/or other psychiatric disorders in addition to neurological symptoms. Low titers of anti-NMDAR1 autoantibodies are reported in the blood of a subset of the general human population and psychiatric patients. Since ~0.1–0.2% of blood circulating antibodies cross the blood-brain barriers and antibodies can persist for months and years in human blood, it is important to investigate whether chronic presence of these blood circulating anti-NMDAR1 autoantibodies may impair human cognitive functions and contribute to the development of psychiatric symptoms. Here, we generated mice carrying low titers of anti-NMDAR1 autoantibodies in blood against a single antigenic epitope of mouse NMDAR1. Mice carrying the anti-NMDAR1 autoantibodies are healthy and display no differences in locomotion, sensorimotor gating, and contextual memory compared to controls. Chronic presence of the blood circulating anti-NMDAR1 autoantibodies, however, is sufficient to impair T-maze spontaneous alternation in the integrity of blood-brain barriers across all 3 independent mouse cohorts, indicating a robust cognitive deficit in spatial working memory and/or novelty detection. Our studies implicate that chronic presence of low titers of blood circulating anti-NMDAR1 autoantibodies may impair cognitive functions in both the general healthy human population and psychiatric patients.
Collapse
Affiliation(s)
- William Yue
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Sorana Caldwell
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- VA Research Service, VA San Diego Healthcare System, San Diego, California, United States of America
- VA Mental Illness Research and Clinical Core, VA San Diego Healthcare System, San Diego, California, United States of America
| | - Victoria Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- VA Research Service, VA San Diego Healthcare System, San Diego, California, United States of America
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California, United States of America
| | - Susan Powell
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- VA Research Service, VA San Diego Healthcare System, San Diego, California, United States of America
- VA Mental Illness Research and Clinical Core, VA San Diego Healthcare System, San Diego, California, United States of America
| | - Xianjin Zhou
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- VA Research Service, VA San Diego Healthcare System, San Diego, California, United States of America
- VA Mental Illness Research and Clinical Core, VA San Diego Healthcare System, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Deslauriers J, Toth M, Scadeng M, McKenna BS, Bussell R, Gresack J, Rissman R, Risbrough VB, Brown GG. DTI-identified microstructural changes in the gray matter of mice overexpressing CRF in the forebrain. Psychiatry Res Neuroimaging 2020; 304:111137. [PMID: 32731113 PMCID: PMC7508966 DOI: 10.1016/j.pscychresns.2020.111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 11/18/2022]
Abstract
Increased corticotroping releasing factor (CRF) contributes to brain circuit abnormalities associated with stress-related disorders including posttraumatic stress disorder. However, the causal relationship between CRF hypersignaling and circuit abnormalities associated with stress disorders is unclear. We hypothesized that increased CRF exposure induces changes in limbic circuit morphology and functions. An inducible, forebrain-specific overexpression of CRF (CRFOE) transgenic mouse line was used to longitudinally investigate its chronic effects on behaviors and microstructural integrity of several brain regions. Behavioral and diffusion tensor imaging studies were performed before treatment, after 3-4 wks of treatment, and again 3 mo after treatment ended to assess recovery. CRFOE was associated with increased perseverative movements only after 3 wks of treatment, as well as reduced fractional anisotropy at 3 wks in the medial prefrontal cortex and increased fractional anisotropy in the ventral hippocampus at 3 mo compared to the control group. In the dorsal hippocampus, mean diffusivity was lower in CRFOE mice both during and after treatment ended. Our data suggest differential response and recovery patterns of cortical and hippocampal subregions in response to CRFOE. Overall these findings support a causal relationship between CRF hypersignaling and microstructural changes in brain regions relevant to stress disorders.
Collapse
Affiliation(s)
- Jessica Deslauriers
- Department of Psychiatry, University of California San Diego, La Jolla, CA; Veterans Affairs Center of Excellence for Stress and Mental Health, La Jolla, CA; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Mate Toth
- Department of Psychiatry, University of California San Diego, La Jolla, CA; Veterans Affairs Center of Excellence for Stress and Mental Health, La Jolla, CA; Department of Translational Behavioral Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Miriam Scadeng
- Department of Radiology, University of California San Diego, La Jolla, CA; Department of Anatomy and Medical Imaging, University of Auckland, New Zealand
| | - Benjamin S McKenna
- Department of Psychiatry, University of California San Diego, La Jolla, CA; Veterans Affairs Center of Excellence for Stress and Mental Health, La Jolla, CA
| | - Robert Bussell
- Department of Translational Behavioral Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | | | - Robert Rissman
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA; Veterans Affairs Center of Excellence for Stress and Mental Health, La Jolla, CA
| | - Gregory G Brown
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| |
Collapse
|
7
|
Rajbhandari AK, Bakshi VP. Repeated norepinephrine receptor stimulation in the BNST induces sensorimotor gating deficits via corticotropin releasing factor. Neuropharmacology 2020; 172:108090. [PMID: 32360378 DOI: 10.1016/j.neuropharm.2020.108090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/15/2020] [Accepted: 04/02/2020] [Indexed: 11/19/2022]
Abstract
Intense stress precipitates symptoms in disorders such as post-traumatic stress (PTSD) and schizophrenia. Patients with these disorders have dysfunctional sensorimotor gating as indexed by disrupted prepulse inhibition of the startle response (PPI), which refers to decreased startle response when a weak pre-stimulus precedes a startling stimulus. Stress promotes release of norepinephrine (NE) and corticotrophin releasing factor (CRF) within the brain, neurotransmitters that also modulate PPI. We have shown that repeated stress causes sensitization of NE receptors within the basolateral amygdala (BLA) via CRF receptors and promotes long-lasting PPI disruptions and startle abnormalities. The bed nucleus of the stria terminalis (BNST) is another crucial brain region that could be involved in stress-induced alterations in NE and CRF functions to promote PPI changes as this anatomical structure is enriched in CRF and NE receptors that have been shown to regulate each other. We hypothesized that repeated infusions of NE into the BNST would cross-sensitize CRF receptors or vice versa to alter PPI. Separate groups of male Sprague Dawley rats received, CRF (200ng/0.5 μl), NE (20μg/0.5 μl), or vehicle into the BNST, once/day for 3 days and PPI was tested after each infusion. Repeated CRF-or vehicle-treated rats were then challenged with a subthreshold dose of NE (0.3μg/0.5 μl) while repeated NE-treated rats were challenged with CRF (200ng/0.5 μl), and PPI was measured. Surprisingly, initial/repeated CRF or vehicle in the BNST had no effects on PPI. In contrast, initial and repeated NE disrupted PPI. Sub-threshold NE challenge in rats that previously received repeated CRF had no effect on PPI. Interestingly though, intra-BNST challenge dose of CRF significantly disrupted PPI in rats that previously had received repeated NE infusions. Taken together, these results indicate that repeated stress-induced NE release could alter the activity of CRF receptors in the BNST to modulate sensorimotor gating as measured through PPI.
Collapse
Affiliation(s)
- Abha Karki Rajbhandari
- Dept. of Psychiatry and Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA; AKR Is Now at Icahn School of Medicine at Mount Sinai, New York, 10029, USA.
| | - Vaishali P Bakshi
- Dept. of Psychiatry and Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA; AKR Is Now at Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| |
Collapse
|
8
|
Vega-Torres JD, Azadian M, Rios-Orsini RA, Reyes-Rivera AL, Ontiveros-Angel P, Figueroa JD. Adolescent Vulnerability to Heightened Emotional Reactivity and Anxiety After Brief Exposure to an Obesogenic Diet. Front Neurosci 2020; 14:562. [PMID: 32694970 PMCID: PMC7338851 DOI: 10.3389/fnins.2020.00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/06/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Emerging evidence demonstrates that diet-induced obesity disrupts corticolimbic circuits underlying emotional regulation. Studies directed at understanding how obesity alters brain and behavior are easily confounded by a myriad of complications related to obesity. This study investigated the early neurobiological stress response triggered by an obesogenic diet. Furthermore, this study directly determined the combined impact of a short-term obesogenic diet and adolescence on critical behavioral and molecular substrates implicated in emotion regulation and stress. METHODS Adolescent (postnatal day 31) or adult (postnatal day 81) Lewis rats were fed for 1 week with an experimental Western-like high-saturated fat diet (WD, 41% kcal from fat) or a matched control diet (CD, 13% kcal from fat). We used the acoustic fear-potentiated startle (FPS) paradigm to determine the effects of the WD on cued fear conditioning and fear extinction. We used c-Fos mapping to determine the functional influence of the diet and stress on corticolimbic circuits. RESULTS We report that 1-week WD consumption was sufficient to induce fear extinction deficits in adolescent rats, but not in adult rats. We identify fear-induced alterations in corticolimbic neuronal activation and demonstrate increased prefrontal cortex CRHR1 messenger RNA (mRNA) levels in the rats that consumed the WD. CONCLUSION Our findings demonstrate that short-term consumption of an obesogenic diet during adolescence heightens behavioral and molecular vulnerabilities associated with risk for anxiety and stress-related disorders. Given that fear extinction promotes resilience and that fear extinction principles are the foundation of psychological treatments for posttraumatic stress disorder (PTSD), understanding how obesogenic environments interact with the adolescent period to affect the acquisition and expression of fear extinction memories is of tremendous clinical relevance.
Collapse
Affiliation(s)
- Julio D. Vega-Torres
- Physiology Division, Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Matine Azadian
- Stanford University School of Medicine, Stanford, CA, United States
| | | | | | - Perla Ontiveros-Angel
- Physiology Division, Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Johnny D. Figueroa
- Physiology Division, Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
9
|
Biological intersection of sex, age, and environment in the corticotropin releasing factor (CRF) system and alcohol. Neuropharmacology 2020; 170:108045. [PMID: 32217364 DOI: 10.1016/j.neuropharm.2020.108045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) is critical in neural circuit function and behavior, particularly in the context of stress, anxiety, and addiction. Despite a wealth of preclinical evidence for the efficacy of CRF receptor 1 antagonists in reducing behavioral pathology associated with alcohol exposure, several clinical trials have had disappointing outcomes, possibly due to an underappreciation of the role of biological variables. Although he National Institutes of Health (NIH) now mandate the inclusion of sex as a biological variable in all clinical and preclinical research, the current state of knowledge in this area is based almost entirely on evidence from male subjects. Additionally, the influence of biological variables other than sex has received even less attention in the context of neuropeptide signaling. Age (particularly adolescent development) and housing conditions have been shown to affect CRF signaling and voluntary alcohol intake, and the interaction between these biological variables is particularly relevant to the role of the CRF system in the vulnerability or resilience to the development of alcohol use disorder (AUD). Going forward, it will be important to include careful consideration of biological variables in experimental design, reporting, and interpretation. As new research uncovers conditions in which sex, age, and environment play major roles in physiological and/or pathological processes, our understanding of the complex interaction between relevant biological variables and critical signaling pathways like the CRF system in the cellular and behavioral consequences of alcohol exposure will continue to expand ultimately improving the ability of preclinical research to translate to the clinic. This article is part of the special issue on Neuropeptides.
Collapse
|
10
|
Ross JA, Alexis R, Reyes BAS, Risbrough V, Van Bockstaele EJ. Localization of amyloid beta peptides to locus coeruleus and medial prefrontal cortex in corticotropin releasing factor overexpressing male and female mice. Brain Struct Funct 2019; 224:2385-2405. [PMID: 31250157 PMCID: PMC7371412 DOI: 10.1007/s00429-019-01915-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/17/2019] [Indexed: 01/25/2023]
Abstract
A culmination of evidence from the literature points to the Locus Coeruleus (LC)-Norepinephrine system as an underappreciated and understudied area of research in the context of Alzheimer's Disease (AD). Stress is a risk factor for developing AD, and is supported by multiple clinical and preclinical studies demonstrating that amplification of the stress system disrupts cellular and molecular processes at the synapse, promoting the production and accumulation of the amyloid beta (Aβ42) peptide. Stress-induced activation of the LC is mediated by corticotropin releasing factor (CRF) and CRF receptors exhibit sex-biased stress signaling. Sex differences are evident in the neurochemical, morphological and molecular regulation of LC neurons by CRF, providing a compelling basis for the higher prevalence of stress-related disorders such as AD in females. In the present study, we examined the cellular substrates for interactions between Aβ and tyrosine hydroxylase a marker of noradrenergic somatodendritic processes in the LC, and Dopamine-β-Hydroxylase (DβH) in the infralimbic medial prefrontal cortex (ILmPFC) in mice conditionally overexpressing CRF in the forebrain (CRFOE) under a Doxycycline (DOX) regulated tetO promoter. CRFOE was sufficient to elicit a redistribution of Aβ peptides in the somatodendritic processes of the LC of male and female transgenic mice, without altering total Aβ42 protein expression levels. DOX treated groups exhibited lysosomal compartments with apparent lipofuscin and abnormal morphology, indicating potential dysfunction of these Aβ42-clearing compartments. In female DOX treated groups, swollen microvessels with lipid-laden vacuoles were also observed, a sign of blood-brain-barrier dysfunction. Finally, sex differences were observed in the prefrontal cortex, as females responded to DOX treatment with increased frequency of co-localization of Aβ42 and DβH in noradrenergic axon terminals compared to vehicle treated controls, while male groups showed no significant changes. We hypothesize that the observed sex differences in Aβ42 distribution in this model of CRF hypersignaling is based on increased responsivity of female rodent CRFR1 in the LC. Aβ42 production is enhanced during increased neuronal activation, therefore, the excitation of DOX treated female CRFOE LC neurons projecting to the mPFC may exhibit more frequent co-localization with Aβ due to increased neuronal activity of noradrenergic neurons.
Collapse
Affiliation(s)
- Jennifer A Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, 245 S. 15th Street, Philadelphia, PA, 19102, USA.
| | - Rody Alexis
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, 245 S. 15th Street, Philadelphia, PA, 19102, USA
| | - Beverly A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, 245 S. 15th Street, Philadelphia, PA, 19102, USA
| | - Victoria Risbrough
- Department of Psychiatry, University of California, San Diego, CA, 92093, USA
- Center of Excellence for Stress and Mental Health, San Diego VA Health Services, La Jolla, CA, USA
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, 245 S. 15th Street, Philadelphia, PA, 19102, USA
| |
Collapse
|
11
|
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev 2018; 98:2225-2286. [DOI: 10.1152/physrev.00042.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physiological stress response is responsible for the maintenance of homeostasis in the presence of real or perceived challenges. In this function, the brain activates adaptive responses that involve numerous neural circuits and effector molecules to adapt to the current and future demands. A maladaptive stress response has been linked to the etiology of a variety of disorders, such as anxiety and mood disorders, eating disorders, and the metabolic syndrome. The neuropeptide corticotropin-releasing factor (CRF) and its relatives, the urocortins 1–3, in concert with their receptors (CRFR1, CRFR2), have emerged as central components of the physiological stress response. This central peptidergic system impinges on a broad spectrum of physiological processes that are the basis for successful adaptation and concomitantly integrate autonomic, neuroendocrine, and behavioral stress responses. This review focuses on the physiology of CRF-related peptides and their cognate receptors with the aim of providing a comprehensive up-to-date overview of the field. We describe the major molecular features covering aspects of gene expression and regulation, structural properties, and molecular interactions, as well as mechanisms of signal transduction and their surveillance. In addition, we discuss the large body of published experimental studies focusing on state-of-the-art genetic approaches with high temporal and spatial precision, which collectively aimed to dissect the contribution of CRF-related ligands and receptors to different levels of the stress response. We discuss the controversies in the field and unravel knowledge gaps that might pave the way for future research directions and open up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jan M. Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Bangasser DA, Wiersielis KR. Sex differences in stress responses: a critical role for corticotropin-releasing factor. Hormones (Athens) 2018; 17:5-13. [PMID: 29858858 DOI: 10.1007/s42000-018-0002-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022]
Abstract
Rates of post-traumatic stress disorder, panic disorder, and major depression are higher in women than in men. Another shared feature of these disorders is that dysregulation of the stress neuropeptide, corticotropin-releasing factor (CRF), is thought to contribute to their pathophysiology. Therefore, sex differences in responses to CRF could contribute to this sex bias in disease prevalence. Here, we review emerging data from non-human animal models that reveal extensive sex differences in CRF functions ranging from its presynaptic regulation to its postsynaptic efficacy. Specifically, detailed are sex differences in the regulation of CRF-containing neurons and the amount of CRF that they produce. We also describe sex differences in CRF receptor expression, distribution, trafficking, and signaling. Finally, we highlight sex differences in the processes that mitigate the effects of CRF. In most cases, the identified sex differences can lead to increased stress sensitivity in females. Thus, the relevance of these differences for the increased risk of depression and anxiety disorders in women compared to men is also discussed.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, 1701 North 13th Street, 873 Weiss Hall, Philadelphia, PA, 19122, USA.
| | - Kimberly R Wiersielis
- Department of Psychology and Neuroscience Program, Temple University, 1701 North 13th Street, 873 Weiss Hall, Philadelphia, PA, 19122, USA
| |
Collapse
|
13
|
Dunlop BW, Binder EB, Iosifescu D, Mathew SJ, Neylan TC, Pape JC, Carrillo-Roa T, Green C, Kinkead B, Grigoriadis D, Rothbaum BO, Nemeroff CB, Mayberg HS. Corticotropin-Releasing Factor Receptor 1 Antagonism Is Ineffective for Women With Posttraumatic Stress Disorder. Biol Psychiatry 2017; 82:866-874. [PMID: 28793974 PMCID: PMC5683912 DOI: 10.1016/j.biopsych.2017.06.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/09/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Medication and psychotherapy treatments for posttraumatic stress disorder (PTSD) provide insufficient benefit for many patients. Substantial preclinical and clinical data indicate abnormalities in the hypothalamic-pituitary-adrenal axis, including signaling by corticotropin-releasing factor, in the pathophysiology of PTSD. METHODS We conducted a double-blind, placebo-controlled, randomized, fixed-dose clinical trial evaluating the efficacy of GSK561679, a corticotropin-releasing factor receptor 1 (CRF1 receptor) antagonist in adult women with PTSD. The trial randomized 128 participants, of whom 96 completed the 6-week treatment period. RESULTS In both the intent-to-treat and completer samples, GSK561679 failed to show superiority over placebo on the primary outcome of change in Clinician-Administered PTSD Scale total score. Adverse event frequencies did not significantly differ between GSK561679- and placebo-treated subjects. Exploration of the CRF1 receptor single nucleotide polymorphism rs110402 found that response to GSK561679 and placebo did not significantly differ by genotype alone. However, subjects who had experienced a moderate or severe history of childhood abuse and who were also GG homozygotes for rs110402 showed significant improvement after treatment with GSK561679 (n = 6) but not with placebo (n = 7) on the PTSD Symptom Scale-Self-Report. CONCLUSIONS The results of this trial, the first evaluating a CRF1 receptor antagonist for the treatment of PTSD, combined with other negative trials of CRF1 receptor antagonists for major depressive disorder, generalized anxiety disorder, and social anxiety disorder, suggest that CRF1 receptor antagonists lack efficacy as monotherapy agents for these conditions.
Collapse
Affiliation(s)
- Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Elisabeth B. Binder
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA,Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Dan Iosifescu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjay J. Mathew
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine & Michael E. Debakey VA Medical Center, Houston, TX, USA
| | - Thomas C. Neylan
- Department of Psychiatry, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Julius C. Pape
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tania Carrillo-Roa
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Charles Green
- Department of Pediatrics, Center for Clinical Research and Evidence-Based Medicine, University of Texas Medical School at Houston, TX, USA
| | - Becky Kinkead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | | | - Barbara O. Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Charles B. Nemeroff
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen S. Mayberg
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
14
|
Ju LS, Yang JJ, Gravenstein N, Seubert CN, Morey TE, Sumners C, Vasilopoulos T, Yang JJ, Martynyuk AE. Role of environmental stressors in determining the developmental outcome of neonatal anesthesia. Psychoneuroendocrinology 2017; 81:96-104. [PMID: 28433802 PMCID: PMC5492971 DOI: 10.1016/j.psyneuen.2017.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND The majority of studies evaluating neurocognition in humans who had procedures under anesthesia early in life found long-term deficits even though the typical anesthesia duration normalized to the human life span is much shorter than that shown to induce developmental abnormalities in rodents. Therefore, we studied whether subsequent environmental stressors contribute to deficiencies programmed by a brief neonatal etomidate exposure. METHODS Postnatal days (P) 4, 5, or 6, Sprague-Dawley rats, pretreated with vehicle or the Na+-K+-2Cl- (NKCC1) inhibitor, bumetanide, received two injections of etomidate resulting in anesthesia for 2h. To simulate stress after anesthesia, the animals were exposed to a single maternal separation for 3h at P10. 3-7days after exposure to etomidate the rats had increased hypothalamic NKCC1 mRNA and corticotropin releasing hormone (CRH) mRNA and decreased K+-2Cl- (KCC2) mRNA levels with greater changes in males. In rats neonatally exposed to both etomidate and maternal separation, these abnormalities persisted into adulthood. These animals also exhibited extended corticosterone responses to restraint stress with increases in total plasma corticosterone more robust in males, as well as behavioral abnormalities. Pretreatment with the NKCC1 inhibitor ameliorated most of these effects. CONCLUSIONS Post-anesthesia stressors may exacerbate/unmask neurodevelopmental abnormalities even after a relatively short anesthetic with etomidate, leading to dysregulated stress response systems and neurobehavioral deficiencies in adulthood. Amelioration by bumetanide suggests a mechanistic role for etomidate-enhanced gamma-aminobutyric acid type A receptor-mediated depolarization in initiating long-lasting alterations in gene expression that are further potentiated by subsequent maternal separation.
Collapse
Affiliation(s)
- Ling-Sha Ju
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jiao-Jiao Yang
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Nikolaus Gravenstein
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States; The McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Christoph N Seubert
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Timothy E Morey
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Colin Sumners
- The McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States; Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Terrie Vasilopoulos
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jian-Jun Yang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Anatoly E Martynyuk
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States; The McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
15
|
Zhang R, Asai M, Mahoney CE, Joachim M, Shen Y, Gunner G, Majzoub JA. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice. Mol Psychiatry 2017; 22:733-744. [PMID: 27595593 PMCID: PMC5339066 DOI: 10.1038/mp.2016.136] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/17/2016] [Accepted: 07/13/2016] [Indexed: 01/09/2023]
Abstract
A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, whereas extra-hypothalamic CRH has a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma adrenocorticotropic hormone, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open-field, elevated plus maze, holeboard, light-dark box and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation.
Collapse
Affiliation(s)
- Rong Zhang
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA,Key laboratory of Resource Biology and Biotechnology in Western China; College of Life Science, Northwest University, Xi’an, Shaanxi, 710069, China,Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan,To whom correspondence should be addressed. ;
| | - Masato Asai
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA,Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Joachim
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuan Shen
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Georgia Gunner
- Neurodevelopmental Behavior Core, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph A Majzoub
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA,To whom correspondence should be addressed. ;
| |
Collapse
|
16
|
Wiersielis KR, Wicks B, Simko H, Cohen SR, Khantsis S, Baksh N, Waxler DE, Bangasser DA. Sex differences in corticotropin releasing factor-evoked behavior and activated networks. Psychoneuroendocrinology 2016; 73:204-216. [PMID: 27521739 PMCID: PMC5048569 DOI: 10.1016/j.psyneuen.2016.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 01/04/2023]
Abstract
Hypersecretion of corticotropin releasing factor (CRF) is linked to the pathophysiology of major depression and post-traumatic stress disorder, disorders that are more common in women than men. Notably, preclinical studies have identified sex differences in CRF receptors that can increase neuronal sensitivity to CRF in female compared to male rodents. These cellular sex differences suggest that CRF may regulate brain circuits and behavior differently in males and females. To test this idea, we first evaluated whether there were sex differences in anxiety-related behaviors induced by the central infusion of CRF. High doses of CRF increased self-grooming more in female than in male rats, and the magnitude of this effect in females was greater when they were in the proestrous phase of their estrous cycle (higher ovarian hormones) compared to the diestrous phase (lower ovarian hormones), which suggests that ovarian hormones potentiate this anxiogenic effect of CRF. Brain regions associated with CRF-evoked self-grooming were identified by correlating a marker of neuronal activation, cFOS, with time spent grooming. In the infralimbic region, which is implicated in regulating anxiety, the correlation for CRF-induced neuronal activation and grooming was positive in proestrous females, but negative for males and diestrous females, indicating that ovarian hormones altered this relationship between neuronal activation and behavior. Because CRF regulates a number of regions that work together to coordinate different aspects of responding to stress, we then examined more broadly whether CRF-activated functional connectivity networks differed between males and cycling females. Interestingly, hormonal status altered correlations for CRF-induced neuronal activation between a variety of brain regions, but the most striking differences were found when comparing proestrous females to males, particularly when comparing neuronal activation between prefrontal cortical and other forebrain regions. These results suggest that ovarian hormones alter the way brain regions work together in response to CRF, which could drive different strategies for coping with stress in males versus females. These sex differences in stress responses could also help explain female vulnerability to psychiatric disorders characterized by CRF hypersecretion.
Collapse
|
17
|
Sánchez-Morla EM, Mateo J, Aparicio A, García-Jiménez MÁ, Jiménez E, Santos JL. Prepulse inhibition in euthymic bipolar disorder patients in comparison with control subjects. Acta Psychiatr Scand 2016; 134:350-9. [PMID: 27294331 DOI: 10.1111/acps.12604] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Deficient prepulse inhibition (PPI) of the startle response, indicating sensorimotor gating deficits, has been reported in schizophrenia and other neuropsychiatric disorders. This study aimed to assess sensorimotor gating deficits in patients with euthymic bipolar. Furthermore, we analysed the relationships between PPI and clinical and cognitive measures. METHOD Prepulse inhibition was measured in 64 patients with euthymic bipolar and in 64 control subjects matched for age, gender, education level and smoking status. Clinical characteristics and level of functioning were assessed in all participants using Hamilton Depression Rating Scale (HDRS), Young Mania Rating Scale (YMRS) and Functioning Assessment Short Test (FAST). Cognition was evaluated using the Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery (MCCB) and the Stroop test as an additional measure of executive function. RESULTS Compared with controls, patients with bipolar disorder exhibited PPI deficits at 60- and 120-millisecond prepulse-pulse intervals. Among patients with bipolar disorder, PPI was correlated with the social cognition domain of the MCCB. PPI was not significantly correlated with other clinical, functional and neurocognitive variables in either group. CONCLUSIONS Our data suggest that PPI deficit is a neurobiological marker in euthymic bipolar disorder, which is associated with social cognition but not with other clinical, functional or cognitive measures.
Collapse
Affiliation(s)
- E M Sánchez-Morla
- Department of Psychiatry, Hospital Virgen de la Luz, Cuenca, Spain. .,Department of Psychiatry, Hospital Universitario de Guadalajara, Guadalajara, Spain. .,Department of Medicine, School of Medicine, University of Alcalá, Madrid, Spain.
| | - J Mateo
- Innovation in Bioengineering Research Group, University of Castilla La Mancha, Cuenca, Spain
| | - A Aparicio
- Department of Psychiatry, Hospital Virgen de la Luz, Cuenca, Spain
| | | | - E Jiménez
- Department of Psychiatry, Hospital Virgen de la Luz, Cuenca, Spain
| | - J L Santos
- Department of Psychiatry, Hospital Virgen de la Luz, Cuenca, Spain
| |
Collapse
|
18
|
Kalin NH, Fox AS, Kovner R, Riedel MK, Fekete EM, Roseboom PH, Tromp DPM, Grabow BP, Olsen ME, Brodsky EK, McFarlin DR, Alexander AL, Emborg ME, Block WF, Fudge JL, Oler JA. Overexpressing Corticotropin-Releasing Factor in the Primate Amygdala Increases Anxious Temperament and Alters Its Neural Circuit. Biol Psychiatry 2016; 80:345-55. [PMID: 27016385 PMCID: PMC4967405 DOI: 10.1016/j.biopsych.2016.01.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/23/2015] [Accepted: 01/14/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Nonhuman primate models are critical for understanding mechanisms underlying human psychopathology. We established a nonhuman primate model of anxious temperament (AT) for studying the early-life risk to develop anxiety and depression. Studies have identified the central nucleus of the amygdala (Ce) as an essential component of AT's neural substrates. Corticotropin-releasing factor (CRF) is expressed in the Ce, has a role in stress, and is linked to psychopathology. Here, in young rhesus monkeys, we combined viral vector technology with assessments of anxiety and multimodal neuroimaging to understand the consequences of chronically increased CRF in the Ce region. METHODS Using real-time intraoperative magnetic resonance imaging-guided convection-enhanced delivery, five monkeys received bilateral dorsal amygdala Ce-region infusions of adeno-associated virus serotype 2 containing the CRF construct. Their cagemates served as unoperated control subjects. AT, regional brain metabolism, resting functional magnetic resonance imaging, and diffusion tensor imaging were assessed before and 2 months after viral infusions. RESULTS Dorsal amygdala CRF overexpression significantly increased AT and metabolism within the dorsal amygdala. Additionally, we observed changes in metabolism in other AT-related regions, as well as in measures of functional and structural connectivity. CONCLUSIONS This study provides a translational roadmap that is important for understanding human psychopathology by combining molecular manipulations used in rodents with behavioral phenotyping and multimodal neuroimaging measures used in humans. The results indicate that chronic CRF overexpression in primates not only increases AT but also affects metabolism and connectivity within components of AT's neural circuitry.
Collapse
Affiliation(s)
- Ned H Kalin
- Department of Psychiatry, University of Wisconsin, Madison, WI,Neuroscience Training Program, University of Wisconsin, Madison, WI,Wisconsin National Primate Research Center, Madison, WI
| | - Andrew S Fox
- Department of Psychiatry, University of Wisconsin, Madison, WI
| | - Rothem Kovner
- Department of Psychiatry, University of Wisconsin, Madison, WI,Neuroscience Training Program, University of Wisconsin, Madison, WI
| | | | - Eva M Fekete
- Department of Psychiatry, University of Wisconsin, Madison, WI
| | - Patrick H Roseboom
- Department of Psychiatry, University of Wisconsin, Madison, WI,Neuroscience Training Program, University of Wisconsin, Madison, WI
| | - Do P M Tromp
- Department of Psychiatry, University of Wisconsin, Madison, WI,Neuroscience Training Program, University of Wisconsin, Madison, WI
| | | | - Miles E Olsen
- Department of Medical Physics, University of Wisconsin, Madison, WI
| | - Ethan K Brodsky
- Department of Medical Physics, University of Wisconsin, Madison, WI,inseRT MRI, Inc
| | | | - Andrew L Alexander
- Department of Psychiatry, University of Wisconsin, Madison, WI,Department of Medical Physics, University of Wisconsin, Madison, WI,inseRT MRI, Inc
| | - Marina E Emborg
- Neuroscience Training Program, University of Wisconsin, Madison, WI,Department of Medical Physics, University of Wisconsin, Madison, WI,Wisconsin National Primate Research Center, Madison, WI
| | - Walter F Block
- Department of Medical Physics, University of Wisconsin, Madison, WI,inseRT MRI, Inc
| | - Julie L Fudge
- Departments of Neurobiology and Anatomy, and Psychiatry, University of Rochester Medical Center
| | - Jonathan A Oler
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
19
|
Zhang J, Cai CY, Wu HY, Zhu LJ, Luo CX, Zhu DY. CREB-mediated synaptogenesis and neurogenesis is crucial for the role of 5-HT1a receptors in modulating anxiety behaviors. Sci Rep 2016; 6:29551. [PMID: 27404655 PMCID: PMC4941576 DOI: 10.1038/srep29551] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/17/2016] [Indexed: 02/03/2023] Open
Abstract
Serotonin 1a-receptor (5-HT1aR) has been specifically implicated in the pathogenesis of anxiety. However, the mechanism underlying the role of 5-HT1aR in anxiety remains poorly understood. Here we show in mice that the transcription factor cAMP response element binding protein (CREB) in the hippocampus functions as an effector of 5-HT1aR in modulating anxiety-related behaviors. We generated recombinant lentivirus LV-CREB133-GFP expressing a dominant negative CREB which could not be phosphorylated at Ser133 to specifically reduce CREB activity, and LV-VP16-CREB-GFP expressing a constitutively active fusion protein VP16-CREB which could be phosphorylated by itself to specifically enhance CREB activity. LV-CREB133-GFP neutralized 5-HT1aR agonist-induced up-regulation of synapse density, spine density, dendrite complexity, neurogenesis, and the expression of synapsin and spinophilin, two well-characterized synaptic proteins, and abolished the anxiolytic effect of 5-HT1aR agonist; whereas LV-VP16-CREB-GFP rescued the 5-HT1aR antagonist-induced down-regulation of synapse density, spine density, dendrite complexity, neurogenesis and synapsin and spinophilin expression, and reversed the anxiogenic effect of 5-HT1aR antagonist. The deletion of neurogenesis by irradiation or the diminution of synaptogenesis by knockdown of synapsin expression abolished the anxiolytic effects of both CREB and 5-HT1aR activation. These findings suggest that CREB-mediated hippoacampus structural plasticity is crucial for the role of 5-HT1aR in modulating anxiety-related behaviors.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China
| | - Cheng-Yun Cai
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China
| | - Li-Juan Zhu
- Institute of Neuroscience, Soochow University, Su zhou, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China.,The key laboratory of human functional genomics of Jiangsu Province, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
20
|
Overexpression of Forebrain CRH During Early Life Increases Trauma Susceptibility in Adulthood. Neuropsychopharmacology 2016; 41:1681-90. [PMID: 26538448 PMCID: PMC4832031 DOI: 10.1038/npp.2015.338] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/30/2015] [Accepted: 10/29/2015] [Indexed: 01/02/2023]
Abstract
Although early-life stress is a significant risk factor for developing anxiety disorders, including posttraumatic stress disorder (PTSD), the underlying mechanisms are unclear. Corticotropin releasing hormone (CRH) is disrupted in individuals with PTSD and early-life stress and hence may mediate the effects of early-life stress on PTSD risk. We hypothesized that CRH hyper-signaling in the forebrain during early development is sufficient to increase response to trauma in adulthood. To test this hypothesis, we induced transient, forebrain-specific, CRH overexpression during early-life (pre-puberty, CRHOEdev) in double-mutant mice (Camk2a-rtta2 × tetO-Crh) and tested their behavioral and gene expression responses to the predator stress model of PTSD in adulthood. In one cohort of CRHOEdev exposed and unexposed mice, avoidance and arousal behaviors were examined 7-15 days after exposure to predator stress. In another cohort, gene expression changes in Crhr1, Crhr2, and Fkbp51 in forebrain of CRHOEdev exposed and unexposed mice were examined 7 days after predator stress. CRHOEdev induced robust increases in startle reactivity and reductions in startle inhibition independently of predator stress in both male and female mice. Avoidance behaviors after predator stress were highly dependent on sex and CRHOEdev exposure. Whereas stressed females exhibited robust avoidance responses that were not altered by CRHOEdev, males developed significant avoidance only when exposed to both CRHOEdev and stress. Quantitative real-time-PCR analysis indicated that CRHOEdev unexposed males exhibit significant changes in Crhr2 expression in the amygdala and bed nucleus stria terminalis in response to stress, whereas males exposed to CRHOEdev did not. Similar to CRHOEdev males, females exhibited no significant Crhr2 gene expression changes in response to stress. Cortical Fkbp51 expression was also significantly reduced by stress and CRHOEdev exposure in males, but not in females. These findings indicate that forebrain CRH hyper-signaling in early-life is sufficient to increase enduring effects of adult trauma and attenuate Crhr2 expression changes in response to stress in males. These data support growing evidence for significant sex differences in response to trauma, and support further study of CRHR2 as a candidate mechanism for PTSD risk.
Collapse
|
21
|
Bangasser DA, Kawasumi Y. Cognitive disruptions in stress-related psychiatric disorders: A role for corticotropin releasing factor (CRF). Horm Behav 2015; 76:125-35. [PMID: 25888454 PMCID: PMC4605842 DOI: 10.1016/j.yhbeh.2015.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 12/28/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Stress is a potential etiology contributor to both post-traumatic stress disorders (PTSD) and major depression. One stress-related neuropeptide that is hypersecreted in these disorders is corticotropin releasing factor (CRF). Dysregulation of CRF has long been linked to the emotion and mood symptoms that characterize PTSD and depression. However, the idea that CRF also mediates the cognitive disruptions observed in patients with these disorders has received less attention. Here we review literature indicating that CRF can alter cognitive functions. Detailed are anatomical studies revealing that CRF is poised to modulate regions required for learning and memory. We also describe preclinical behavioral studies that demonstrate CRF's ability to alter fear conditioning, impair memory consolidation, and alter a number of executive functions, including attention and cognitive flexibility. The implications of these findings for the etiology and treatment of the cognitive impairments observed in stress-related psychiatric disorders are described.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA.
| | - Yushi Kawasumi
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
22
|
Rajbhandari AK, Baldo BA, Bakshi VP. Predator Stress-Induced CRF Release Causes Enduring Sensitization of Basolateral Amygdala Norepinephrine Systems that Promote PTSD-Like Startle Abnormalities. J Neurosci 2015; 35:14270-85. [PMID: 26490866 PMCID: PMC4683687 DOI: 10.1523/jneurosci.5080-14.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/06/2015] [Accepted: 07/10/2015] [Indexed: 12/24/2022] Open
Abstract
The neurobiology of post-traumatic stress disorder (PTSD) remains unclear. Intense stress promotes PTSD, which has been associated with exaggerated startle and deficient sensorimotor gating. Here, we examined the long-term sequelae of a rodent model of traumatic stress (repeated predator exposure) on amygdala systems that modulate startle and prepulse inhibition (PPI), an operational measure of sensorimotor gating. We show in rodents that repeated psychogenic stress (predator) induces long-lasting sensitization of basolateral amygdala (BLA) noradrenergic (NE) receptors (α1) via a corticotropin-releasing factor receptor 1 (CRF-R1)-dependent mechanism, and that these CRF1 and NE α1 receptors are highly colocalized on presumptive excitatory output projection neurons of the BLA. A profile identical to that seen with predator exposure was produced in nonstressed rats by intra-BLA infusions of CRF (200 ng/0.5 μl), but not by repeated NE infusions (20 μg/0.5 μl). Infusions into the adjacent central nucleus of amygdala had no effect. Importantly, the predator stress- or CRF-induced sensitization of BLA manifested as heightened startle and PPI deficits in response to subsequent subthreshold NE system challenges (with intra-BLA infusions of 0.3 μg/0.5 μl NE), up to 1 month after stress. This profile of effects closely resembles aspects of PTSD. Hence, we reveal a discrete neural pathway mediating the enhancement of NE system function seen in PTSD, and we offer a model for characterizing potential new treatments that may work by modulating this BLA circuitry. SIGNIFICANCE STATEMENT The present findings reveal a novel and discrete neural substrate that could underlie certain core deficits (startle and prepulse inhibition) that are observed in post-traumatic stress disorder (PTSD). It is shown here that repeated exposure to a rodent model of traumatic stress (predator exposure) produces a long-lasting sensitization of basolateral amygdala noradrenergic substrates [via a corticotropin-releasing factor (CRF)-dependent mechanism] that regulate startle, which is exaggerated in PTSD. Moreover, it is demonstrated that the sensitized noradrenergic receptors colocalize with CRF1 receptors on output projection neurons of the basolateral amygdala. Hence, this stress-induced sensitization of noradrenergic receptors on basolateral nucleus efferents has wide-ranging implications for the numerous deleterious sequelae of trauma exposure that are seen in multiple psychiatric illnesses, including PTSD.
Collapse
Affiliation(s)
- Abha K Rajbhandari
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53719
| | - Brian A Baldo
- Department of Psychiatry and Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53719
| | - Vaishali P Bakshi
- Department of Psychiatry and Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53719
| |
Collapse
|
23
|
Flandreau E, Risbrough V, Lu A, Ableitner M, Geyer MA, Holsboer F, Deussing JM. Cell type-specific modifications of corticotropin-releasing factor (CRF) and its type 1 receptor (CRF1) on startle behavior and sensorimotor gating. Psychoneuroendocrinology 2015; 53:16-28. [PMID: 25575243 PMCID: PMC4364548 DOI: 10.1016/j.psyneuen.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
The corticotropin-releasing factor (CRF) family of peptides and receptors coordinates the mammalian endocrine, autonomic, and behavioral responses to stress. Excessive CRF production has been implicated in the etiology of stress-sensitive psychiatric disorders such as posttraumatic stress disorder (PTSD), which is associated with alterations in startle plasticity. The CRF family of peptides and receptors mediate acute startle response changes during stress, and chronic CRF activation can induce startle abnormalities. To determine what neural circuits modulate startle in response to chronic CRF activation, transgenic mice overexpressing CRF throughout the central nervous system (CNS; CRF-COE(CNS)) or restricted to inhibitory GABAergic neurons (CRF-COE(GABA)) were compared across multiple domains of startle plasticity. CRF overexpression throughout the CNS increased startle magnitude and reduced ability to inhibit startle (decreased habituation and decreased prepulse inhibition (PPI)), similar to previous reports of exogenous effects of CRF. Conversely, CRF overexpression confined to inhibitory neurons decreased startle magnitude but had no effect on inhibitory measures. Acute CRF receptor 1 (CRF1) antagonist treatment attenuated only the effects on startle induced by CNS-specific CRF overexpression. Specific deletion of CRF1 receptors from forebrain principal neurons failed to alter the effects of exogenous CRF or stress on startle, suggesting that these CRF1 expressing neurons are not required for CRF-induced changes in startle behaviors. These data indicate that the effects of CRF activation on startle behavior utilize an extensive neural circuit that includes both forebrain and non-forebrain regions. Furthermore, these findings suggest that the neural source of increased CRF release determines the startle phenotype elicited. It is conceivable that this may explain why disorders characterized by increased CRF in cerebrospinal fluid (e.g. PTSD and major depressive disorder) have distinct symptom profiles in terms of startle reactivity.
Collapse
Affiliation(s)
| | - Victoria Risbrough
- Veterans Administration Center of Excellence for Stress and Mental Health, 3350 La Jolla Village Drive San Diego, CA 92161, USA.
| | - Ailing Lu
- Unit of Innate Immunity, Key Laboratory of Molecular Virology and Immunology Institut Pasteur of Shanghai, Chinese Academy of Sciences. 320 Yue Yang Road, Shanghai, 200031; China. Phone/Fax: 86-21-54923102/54923101
| | - Martin Ableitner
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10 D-80804, Munich Phone: +49 (0)89 / 30622-645 Fax: +49 (0)89 / 30622-610
| | - Mark A Geyer
- Department of Psychiatry University of California San Diego 9500 Gilman Drive MC 0804 La Jolla, CA 92093-0804 ph (619)543-3582 fx (619)543-2493
| | - Florian Holsboer
- Max Planck Institute of Psychiatry Kraepelinstr. 2-10 80804 Munich, Germany Phone: +49-89-30622-220 Fax: +49-89-30622-483
| | - Jan M Deussing
- Department Stress Neurobiology and Neurogenetics Max Planck Institute of Psychiatry Kraepelinstrasse 2-10 D-80804, Munich Phone: +49 (0)89 / 30622-639 Fax: +49 (0)89 / 30622-610
| |
Collapse
|
24
|
Li XF, Hu MH, Li SY, Geach C, Hikima A, Rose S, Greenwood MP, Greenwood M, Murphy D, Poston L, Lightman SL, O'Byrne KT. Overexpression of corticotropin releasing factor in the central nucleus of the amygdala advances puberty and disrupts reproductive cycles in female rats. Endocrinology 2014; 155:3934-44. [PMID: 25051447 DOI: 10.1210/en.2014-1339] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prolonged exposure to environmental stress activates the hypothalamic-pituitary-adrenal (HPA) axis and generally disrupts the hypothalamic-pituitary-gonadal axis. Because CRF expression in the central nucleus of the amygdala (CeA) is a key modulator in adaptation to chronic stress, and central administration of CRF inhibits the hypothalamic GnRH pulse generator, we tested the hypothesis that overexpression of CRF in the CeA of female rats alters anxiety behavior, dysregulates the HPA axis response to stress, changes pubertal timing, and disrupts reproduction. We used a lentiviral vector to increase CRF expression site specifically in the CeA of preweaning (postnatal day 12) female rats. Overexpression of CRF in the CeA increased anxiety-like behavior in peripubertal rats shown by a reduction in time spent in the open arms of the elevated plus maze and a decrease in social interaction. Paradoxically, puberty onset was advanced but followed by irregular estrous cyclicity and an absence of spontaneous preovulatory LH surges associated with proestrous vaginal cytology in rats overexpressing CRF. Despite the absence of change in basal corticosterone secretion or induced by stress (lipopolysaccharide or restraint), overexpression of CRF in the CeA significantly decreased lipopolysaccharide, but not restraint, stress-induced suppression of pulsatile LH secretion in postpubertal ovariectomized rats, indicating a differential stress responsivity of the GnRH pulse generator to immunological stress and a potential adaptation of the HPA axis to chronic activation of amygdaloid CRF. These data suggest that the expression profile of this key limbic brain CRF system might contribute to the complex neural mechanisms underlying the increasing incidence of early onset of puberty on the one hand and infertility on the other attributed to chronic stress in modern human society.
Collapse
Affiliation(s)
- X F Li
- Division of Women's Health (X.F.L., M.H.H., S.Y.L., C.G., L.P., K.T.O.) and Neurodegenerative Disease Research Group (A.H., S.R.), School of Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (M.P.G., M.G., D.M., S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Risbrough V, Ji B, Hauger R, Zhou X. Generation and characterization of humanized mice carrying COMT158 Met/Val alleles. Neuropsychopharmacology 2014; 39:1823-32. [PMID: 24509724 PMCID: PMC4059890 DOI: 10.1038/npp.2014.29] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 12/28/2022]
Abstract
The Val158Met polymorphism of human catechol-o-methyltransferase (COMT) is one of the most well-studied single-nucleotide polymorphisms in neuropsychiatry; however, findings are inconsistent due to human genetic heterogeneity. We created the first 'humanized' COMTVal158Met mouse lines, which carry either human COMT Val or Met alleles via gene targeting. The 'humanized' mouse model enables strict comparison of the physiological functions of the two alleles. Consistent with human observation, Met/Met mice exhibited a 30% reduction in enzymatic activity compared with Val/Val mice. On the basis of the reported differences in human Met and Val carriers across working memory, fear processes and sensorimotor gating, we examined these functions between sibling Met/Met and Val/Val mice. Val/Val mice exhibited robust reductions in spatial working memory compared with Met/Met mice in both sexes, with tolcapone treatment significantly reversing the Val/Val alternation deficits. Sex effects were observed in other behaviors, with male Val/Val mice exhibited lower prepulse inhibition compared with Met/Met mice, whereas female mice exhibited the opposite phenotype. Female but not male Met/Met mice exhibited reduced contextual fear, increased cued fear, and reduced extinction recall. Thus, these mice (1) support the argument that human COMT Val158Met polymorphism modulates behavioral functions and most importantly (2) exhibit the expected treatment effects supporting the 'inverted U shaped' dose response of catecholamine signaling on cognitive function. This model will be invaluable for understanding the effects of human COMT Val158Met polymorphism on cortical development and behavioral functions, and how this polymorphism modulates treatment response.
Collapse
Affiliation(s)
- Victoria Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA,Research Service, VA San Diego Healthcare System, La Jolla, CA, USA,Department of Psychiatry, University of California San Diego, 9500 Gilman Drive Mail Code 0804, La Jolla 92093-0804, CA, USA. Tel: +1 619 543 3582, Fax: +1 619 543 2493, E-mail: or
| | - Baohu Ji
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Richard Hauger
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA,Research Service, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Xianjin Zhou
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA,Research Service, VA San Diego Healthcare System, La Jolla, CA, USA,Department of Psychiatry, University of California San Diego, 9500 Gilman Drive Mail Code 0804, La Jolla 92093-0804, CA, USA. Tel: +1 619 543 3582, Fax: +1 619 543 2493, E-mail: or
| |
Collapse
|
26
|
Naviaux JC, Schuchbauer MA, Li K, Wang L, Risbrough VB, Powell SB, Naviaux RK. Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy. Transl Psychiatry 2014; 4:e400. [PMID: 24937094 PMCID: PMC4080315 DOI: 10.1038/tp.2014.33] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/14/2014] [Accepted: 04/16/2014] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASDs) now affect 1-2% of the children born in the United States. Hundreds of genetic, metabolic and environmental factors are known to increase the risk of ASD. Similar factors are known to influence the risk of schizophrenia and bipolar disorder; however, a unifying mechanistic explanation has remained elusive. Here we used the maternal immune activation (MIA) mouse model of neurodevelopmental and neuropsychiatric disorders to study the effects of a single dose of the antipurinergic drug suramin on the behavior and metabolism of adult animals. We found that disturbances in social behavior, novelty preference and metabolism are not permanent but are treatable with antipurinergic therapy (APT) in this model of ASD and schizophrenia. A single dose of suramin (20 mg kg(-1) intraperitoneally (i.p.)) given to 6-month-old adults restored normal social behavior, novelty preference and metabolism. Comprehensive metabolomic analysis identified purine metabolism as the key regulatory pathway. Correction of purine metabolism normalized 17 of 18 metabolic pathways that were disturbed in the MIA model. Two days after treatment, the suramin concentration in the plasma and brainstem was 7.64 μM pmol μl(-1) (±0.50) and 5.15 pmol mg(-1) (±0.49), respectively. These data show good uptake of suramin into the central nervous system at the level of the brainstem. Most of the improvements associated with APT were lost after 5 weeks of drug washout, consistent with the 1-week plasma half-life of suramin in mice. Our results show that purine metabolism is a master regulator of behavior and metabolism in the MIA model, and that single-dose APT with suramin acutely reverses these abnormalities, even in adults.
Collapse
Affiliation(s)
- J C Naviaux
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - M A Schuchbauer
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - K Li
- The Mitochondrial and Metabolic Disease Center, University of California San Diego School of Medicine, San Diego, CA, USA,Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - L Wang
- The Mitochondrial and Metabolic Disease Center, University of California San Diego School of Medicine, San Diego, CA, USA,Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - V B Risbrough
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, USA,Veterans Affairs Center for Excellence in Stress and Mental Health (CESAMH), La Jolla, CA, USA
| | - S B Powell
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - R K Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California San Diego School of Medicine, San Diego, CA, USA,Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA,Veterans Affairs Center for Excellence in Stress and Mental Health (CESAMH), La Jolla, CA, USA,Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA,Department of Pathology, University of California San Diego School of Medicine, La Jolla, CA, USA,Departments of Medicine, Pediatrics, and Pathology, University of California San Diego School of Medicine, 214 Dickinson Street, Building CTF, Room C102, San Diego, CA 92103-8467, USA. E-mail:
| |
Collapse
|