1
|
Johnson BN, Allen MI, Nader MA. Acquisition of cocaine reinforcement using fixed-ratio and concurrent choice schedules in socially housed female and male monkeys. Psychopharmacology (Berl) 2024; 241:263-274. [PMID: 37882812 PMCID: PMC10841868 DOI: 10.1007/s00213-023-06483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
RATIONALE Previous studies in socially housed monkeys examining acquisition of cocaine self-administration under fixed-ratio (FR) schedules of reinforcement found that subordinate males and dominant females were more vulnerable than their counterparts. OBJECTIVES The present studies extended these findings in two ways: (1) to replicate the earlier study, in which female monkeys were studied after a relatively short period of social housing (~ 3 months) using cocaine-naïve female monkeys (n = 9; 4 dominant and 5 subordinate) living in well-established social groups (~ 18 months); and (2) in male monkeys (n = 3/social rank), we studied cocaine acquisition under a concurrent schedule, with an alternative, non-drug reinforcer available. RESULTS In contrast to earlier findings, subordinate female monkeys acquired cocaine reinforcement (i.e., > saline reinforcement) at significantly lower cocaine doses compared with dominant monkeys. In the socially housed males, no dominant monkey acquired a cocaine preference (i.e., > 80% cocaine choice) over food, while two of three subordinate monkeys acquired cocaine reinforcement. In monkeys that did not acquire, the conditions were changed to an FR schedule with only cocaine available and after acquisition, returned to the concurrent schedule. In all monkeys, high doses of cocaine were chosen over food reinforcement. CONCLUSIONS The behavioral data in females suggests that duration of social enrichment and stress can differentially impact vulnerability to cocaine reinforcement. The findings in socially housed male monkeys, using concurrent food vs. cocaine choice schedules of reinforcement, confirmed earlier social-rank differences using an FR schedule and showed that vulnerability could be modified by exposure to cocaine.
Collapse
Affiliation(s)
- Bernard N Johnson
- Department of Physiology and Pharmacology, Medical Center Blvd, Wake Forest University School of Medicine, Winston-Salem, NC, 27157-1083, USA
| | - Mia I Allen
- Department of Physiology and Pharmacology, Medical Center Blvd, Wake Forest University School of Medicine, Winston-Salem, NC, 27157-1083, USA
| | - Michael A Nader
- Department of Physiology and Pharmacology, Medical Center Blvd, Wake Forest University School of Medicine, Winston-Salem, NC, 27157-1083, USA.
| |
Collapse
|
2
|
Johnson BN, Allen MI, Reboussin BA, LaValley C, Nader MA. Delay discounting as a behavioral phenotype associated with social rank in female and male cynomolgus monkeys: Correlation with kappa opioid receptor availability. Pharmacol Biochem Behav 2023; 225:173545. [PMID: 37004977 PMCID: PMC10732250 DOI: 10.1016/j.pbb.2023.173545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Cocaine use disorder (CUD) is a significant problem worldwide, with no FDA-approved treatments. Epidemiological data indicate that only about 17 % of people that use cocaine will meet DSM criteria for CUD. Thus, the identification of biomarkers predictive of eventual cocaine use may be of great value. Two potentially useful predictors of CUD are social hierarchies in nonhuman primates and delay discounting. Both social rank and preference for a smaller, immediate reinforcer relative to a larger, delayed reinforcer have been predictive of CUD. Therefore, we wanted to determine if there was also a relationship between these two predictors of CUD. In the present study, monkeys cocaine-naive responded under a concurrent schedule of 1- vs. 3-food pellets and delivery of the 3-pellet option was delayed. The primary dependent variable was the indifference point (IP), which is the delay that results in 50 % choice for both options. In the initial determination of IP, there were no differences based on sex or social rank of the monkeys. When the delays were redetermined after ~25 baseline sessions (range 5-128 sessions), dominant females and subordinate males showed the largest increases in IP scores from the first determination to the second. Because 13 of these monkeys had prior PET scans of the kappa opioid receptor (KOR), we examined the relationship between KOR availability and IP values and found that the change in IP scores from the first to the second determination significantly negatively predicted average KOR availability in most brain regions. Future studies will examine acquisition to cocaine self-administration in these same monkeys, to determine if IP values are predictive of vulnerability to cocaine reinforcement.
Collapse
Affiliation(s)
- Bernard N Johnson
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, United States of America
| | - Mia I Allen
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, United States of America
| | - Beth A Reboussin
- Department of Biostatistics, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, United States of America
| | - Christina LaValley
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, United States of America
| | - Michael A Nader
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, United States of America.
| |
Collapse
|
3
|
Doyle MR, Peng LN, Cao J, Rice KC, Newman AH, Collins GT. 3,4-Methylenedioxypyrovalerone High-Responder Phenotype as a Tool to Evaluate Candidate Medications for Stimulant Use Disorder. J Pharmacol Exp Ther 2023; 384:353-362. [PMID: 36627204 PMCID: PMC9976791 DOI: 10.1124/jpet.122.001419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Despite decades of research, there are no medications approved by the United States Food and Drug Administration to treat stimulant use disorders. Self-administration procedures are widely used to screen candidate medications for stimulant use disorder, although preclinical reductions in stimulant self-administration have not translated to meaningful reductions in stimulant use in humans. One possible reason for this discordance is that most preclinical studies evaluate candidate medications under conditions that promote predictable, and well-regulated patterns of drug-taking rather than the dysregulated and/or compulsive patterns of drug-taking characteristic of a stimulant use disorder. A subset of rats ("high-responders") that self-administer 3,4-methelyendioxypyrovalerone (MDPV), a monoamine uptake inhibitor, develop high levels of dysregulated drug-taking consistent with behaviors related to stimulant use disorders. Because MDPV acts on dopamine, serotonin (5-HT), and sigma receptor systems, the current studies compared the potency and effectiveness of a dopamine D3 receptor partial agonist (VK4-40) or antagonist (VK4-116), a sigma receptor antagonist (BD1063), a dopamine D2/D3/sigma receptor antagonist (haloperidol), and a 5-HT2C receptor agonist (CP-809,101) to reduce MDPV (0.0032-0.1 mg/kg/infusion) self-administration in high- and low-responding rats as well as rats self-administering cocaine (0.032-1 mg/kg/infusion). VK4-40, VK4-116, haloperidol, and CP-809,101 were equipotent and effective at reducing drug-taking in all three groups of rats, including the high-responders; however, VK4-116 and CP-809,101 were less potent at reducing drug-taking in female compared with male rats. Together, these studies suggest that drugs targeting dopamine D3 or 5-HT2C receptors can effectively reduce dysregulated patterns of stimulant use, highlighting their potential utility for treating stimulant use disorders. SIGNIFICANCE STATEMENT: There are no United States Food and Drug Administration-approved treatments for stimulant use disorder, perhaps in part because candidate medications are most often evaluated in preclinical models using male subjects with well-regulated drug-taking. In an attempt to better model aberrant drug taking, this study found compounds acting at dopamine D3 or 5-HT2C receptors can attenuate drug-taking in male and female rats that self-administered two different stimulants and exhibited either a high or low substance use disorder-like phenotype.
Collapse
Affiliation(s)
- Michelle R Doyle
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| | - Lindsey N Peng
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| | - Jianjing Cao
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| | - Kenner C Rice
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| | - Amy Hauck Newman
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| | - Gregory T Collins
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (M.R.D., L.N.P., G.T.C.); South Texas Veterans Health Care System, San Antonio, Texas (M.R.D., G.T.C.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, Maryland (J.C., A.H.N.); and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, Maryland (K.C.R.)
| |
Collapse
|
4
|
Banks ML. Environmental influence on the preclinical evaluation of substance use disorder therapeutics. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 93:219-242. [PMID: 35341567 DOI: 10.1016/bs.apha.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Substance use disorders (SUD) develop as a result of complex interactions between the environment, the subject, and the drug of abuse. Preclinical basic research investigating each of these tripartite components of SUD individually has resulted in advancements in our fundamental knowledge regarding the progression from drug abuse to SUD and severe drug addiction and the underlying behavioral and neurobiological mechanisms. How these complex interactions between the environment, the subject, and the drug of abuse impact the effectiveness of candidate or clinically used medications for SUD has not been as extensively investigated. The focus of this chapter will address the current state of our knowledge how these environmental, subject, and pharmacological variables have been shown to impact candidate or clinical SUD medication evaluation in preclinical research using drug self-administration procedures as the primary dependent measure. The results discussed in this chapter highlight the importance of considering environmental variables such as the schedule of reinforcement, concurrent availability of alternative nondrug reinforcers, and experimental housing conditions in the context of SUD therapeutic evaluation. The thesis of this chapter is that improved understanding of environmental variables in the context of SUD research will facilitate the utility of preclinical drug self-administration studies in the evaluation and development of candidate SUD therapeutics.
Collapse
Affiliation(s)
- Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
5
|
Nader MA. The impact of social variables in preclinical models of cocaine abuse. Fac Rev 2021; 10:76. [PMID: 34746929 PMCID: PMC8546596 DOI: 10.12703/r/10-76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
At present, there are no US Food and Drug Administration–approved treatments for cocaine use disorders. One consideration for this lack of treatment efficacy stems from the appropriate use of animal models. The premise of this commentary is that social behavior needs to be incorporated in animal models of cocaine use disorder. The goal of this commentary is to describe some of the strengths and limitations of recent preclinical animal models of cocaine abuse which have incorporated social behavior. There are many ways to include social variables into preclinical research, and the study design will depend on the questions asked. Four general types of studies incorporating social factors are described: those involving aggression (that is, maternal neglect and social defeat), modeling, social reward, and social housing, including social isolation. The inclusion of social variables into preclinical research will help identify biobehavioral markers that may lead to an individualized treatment approach that more effectively decreases cocaine use. These studies will aid in the development of novel pharmacotherapies as well as non-pharmacological interventions (for example, punishment, alternative reinforcers, and environmental enrichment) that would be critical for informing policy decisions.
Collapse
Affiliation(s)
- Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 546 NRC, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA
| |
Collapse
|
6
|
Shab G, Fultz EK, Page A, Coelho MA, Brewin LW, Stailey N, Brown CN, Bryant CD, Kippin TE, Szumlinski KK. The motivational valence of methamphetamine relates inversely to subsequent methamphetamine self-administration in female C57BL/6J mice. Behav Brain Res 2020; 398:112959. [PMID: 33053382 DOI: 10.1016/j.bbr.2020.112959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 01/21/2023]
Abstract
Understanding the mechanisms underpinning individual variance in addiction vulnerability requires the development of validated, high-throughput screens. In a prior study of a large sample of male isogenic C57BL/6J mice, the direction and magnitude of methamphetamine (MA)-induced place-conditioning predicts the propensity to acquire oral MA self-administration, as well as the efficacy of MA to serve as a reinforcer. The present study examined whether or not such a predictive relationship also exists in females. Adult C57BL/6J females underwent a 4-day MA place-conditioning paradigm (once daily injections of 2 mg/kg) and were then trained to nose-poke for delivery of a 20 mg/L MA solution under increasing schedules of reinforcement, followed by dose-response testing (5-400 mg/L MA). Akin to males, 53 % of the females exhibited a conditioned place-preference, while 32 % of the mice were MA-neutral and 15 % exhibited a conditioned place-aversion. However, unlike males, the place-conditioning phenotype did not transfer to MA-reinforced nose-poking behavior under operant-conditioning procedures, with 400 mg/L MA intake being inversely correlated place-conditioning. While only one MA-conditioning dose has been assayed to date, these data indicate that sex does not significantly shift the proportion of C57BL/6J mice that perceive MA's interoceptive effects as positive, neutral or aversive. However, a sex difference appears to exist regarding the predictive relationship between the motivational valence of MA and subsequent drug-taking behavior; females exhibit MA-taking behavior and reinforcement, despite their initial perception of the stimulant interoceptive effects as positive, neutral or negative.
Collapse
Affiliation(s)
- Gabriella Shab
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Elissa K Fultz
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Ariana Page
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Michal A Coelho
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Lindsey W Brewin
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Nicholas Stailey
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Chelsea N Brown
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Camron D Bryant
- Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, USA; Institute for Collaborative Biology, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
7
|
Czoty PW, Nader MA. Effects of the α-2 Adrenergic Receptor Agonists Lofexidine and Guanfacine on Food-Cocaine Choice in Socially Housed Cynomolgus Monkeys. J Pharmacol Exp Ther 2020; 375:193-201. [PMID: 32636208 PMCID: PMC7569305 DOI: 10.1124/jpet.120.266007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/02/2020] [Indexed: 11/22/2022] Open
Abstract
Although norepinephrine (NE) does not appear to play a prominent role in mediating the abuse-related effects of cocaine, studies have indicated that NE α-2 receptor agonists can attenuate reinstatement of extinguished cocaine self-administration in rats and monkeys and can decrease cocaine craving in humans. In the present studies, we examined the effects of two α-2 receptor agonists, lofexidine and guanfacine, on choice between food and cocaine (0.0-0.1 mg/kg per injection) in cynomolgus monkeys. Male and female subjects were housed in stable same-sex social groups of four; social rank did not influence the effects of lofexidine and guanfacine. When administered acutely, lofexidine (0.03-3.0 mg/kg, i.v.) significantly decreased cocaine choice in females (n = 7) but not males (n = 8). However, in males, the same lofexidine doses produced dose-dependent decreases in core body temperature (n = 7), and acute guanfacine (0.003-1.0 mg/kg, i.v.) significantly decreased cocaine choice (n = 11). When lofexidine was administered for five consecutive days to a subset of the monkeys in whom lofexidine acutely decreased cocaine choice, tolerance to this effect developed to varying degrees of completeness in three of three males and two of four females. Taken together, these data suggest that α-2 receptor agonists can produce small decreases in the reinforcing strength of cocaine relative to food and that, even when efficacy is observed after acute administration, tolerance to the decreases in cocaine choice are apparent and more likely in males compared with females. SIGNIFICANCE STATEMENT: Cocaine use disorder remains a significant public health problem with no US Food and Drug Administration-approved treatments. Although cocaine elevates dopamine, serotonin, and norepinephrine (NE), the latter target has received less research. The present study noted modest effects of NE agonists on the relative reinforcing strength of cocaine with greater efficacy in female compared with male monkeys.
Collapse
Affiliation(s)
- Paul W Czoty
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
8
|
Malikowska-Racia N, Popik P, Sałat K. Behavioral effects of buspirone in a mouse model of posttraumatic stress disorder. Behav Brain Res 2019; 381:112380. [PMID: 31765726 DOI: 10.1016/j.bbr.2019.112380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022]
Abstract
Buspirone presents a unique profile of action, which involves activation of 5-HT1A receptors and complex effects on D2-like dopaminergic receptors. This medication is studied in terms of potential clinical repositioning to conditions that are associated with dopaminergic dysfunctions including schizophrenia and substance use disorder. Buspirone antagonizes D3 and D4 receptors, however, depending on the dose it differentially interacts with D2 receptors. Previously, we reported that some of D2/D3 dopaminergic agonists attenuate PTSD-like behavioral symptoms in mice. Here we investigated whether buspirone could also affect PTSD-like symptoms. We used the single prolonged stress (mSPS) protocol to induce PTSD-like behavior in adult male CD-1 mice. Buspirone (0.5, 2, or 10 mg/kg, i.p.) was injected for 15 consecutive days. The subjects were repeatedly examined in a variety of behavioral tests measuring conditioned freezing response, antidepressant-like effects, anxiety, and ultrasonic vocal response to the restraint stress. Mouse SPS resulted in prolonged immobility in the forced swim test and freezing in the fear-conditioning test, and produced symptoms of anxiety. Buspirone dose-dependently decreased the exaggerated freezing response in mice, but only at the dose of 2 mg/kg exhibited the anxiolytic-like effect in the elevated plus maze test. Buspirone reduced the number of ultrasonic calls in mSPS-exposed mice but revealed no antidepressant-like effect in the forced swim test. Present data suggest some positive effects of buspirone in the treatment of selected PTSD-like symptoms and prompt for its further clinical evaluation.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| | - Piotr Popik
- Faculty of Health Sciences, Jagiellonian University Medical College, 12 Michalowskiego St., 31-126, Krakow, Poland; Department of Behavioral Neuroscience and Drug Development Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343, Krakow, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland
| |
Collapse
|
9
|
Collins GT, France CP. Effects of lorcaserin and buspirone, administered alone and as a mixture, on cocaine self-administration in male and female rhesus monkeys. Exp Clin Psychopharmacol 2018; 26:488-496. [PMID: 29952618 PMCID: PMC6162158 DOI: 10.1037/pha0000209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cocaine use disorder is a serious public health issue for which there is no effective pharmacotherapy. One strategy to speed development of medications for cocaine use disorder is to repurpose drugs already approved for use in humans based on their ability to interact with targets known to be important for addiction. Two such drugs, lorcaserin (Belviq; a drug with serotonin [5-HT]2C receptor agonist properties) and buspirone (Buspar; a drug with 5-HT1A receptor partial agonist and dopamine D3/D4 receptor antagonist properties) can produce modest decreases in cocaine self-administration in rhesus monkeys. The current study evaluated the effectiveness of mixtures of lorcaserin and buspirone (at fixed dose ratios of 3:1, 1:1, and 1:3 relative to each drug's ID50) to reduce responding for 0.032 mg/kg/inf cocaine under a progressive ratio schedule of reinforcement in 2 male and 2 female rhesus monkeys. Dose addition analyses were used to determine if the effects of the drug mixtures differed from those predicted for an additive interaction between lorcaserin and buspirone. Dose-dependent reductions of cocaine self-administration were observed when lorcaserin and buspirone were administered alone, as well as when they were administered as 3:1, 1:1, and 1:3 fixed ratio mixtures of lorcaserin + buspirone. The effects of the 1:1 mixture of lorcaserin + buspirone on cocaine self-administration were supraadditive, whereas the effects of 3:1 and 1:3 mixtures were additive. Together, these results indicate that a combination therapy containing a mixture of lorcaserin and buspirone might be more effective than either drug alone at treating cocaine use disorder. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
Affiliation(s)
- Gregory T. Collins
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA,Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA,South Texas Veterans Health Care System, 7400 Merton Minter Dr., San Antonio, TX, 78229, USA
| | - Charles P. France
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA,Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| |
Collapse
|
10
|
Vannan A, Powell GL, Scott SN, Pagni BA, Neisewander JL. Animal Models of the Impact of Social Stress on Cocaine Use Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:131-169. [PMID: 30193703 DOI: 10.1016/bs.irn.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cocaine use disorders are strongly influenced by the social conditions prior, during, and after exposure to cocaine. In this chapter, we discuss how social factors such as early life stress, social rank stress, and environmental stress impact vulnerability and resilience to cocaine. The discussion of each animal model begins with a brief review of examples from the human literature, which provide the psychosocial background these models attempt to capture. We then discuss preclinical findings from use of each model, with emphasis on how social factors influence cocaine-related behaviors and how sex and age influence the behaviors and neurobiology. Models discussed include (1) early life social stress, such as maternal separation and neonatal isolation, (2) social defeat stress, (3) social hierarchies, and (4) social isolation and environmental enrichment. The cocaine-related behaviors reviewed for each of these animal models include cocaine-induced conditioned place preference, behavioral sensitization, and self-administration. Together, our review suggests that the degree of psychosocial stress experienced yields robust effects on cocaine-related behaviors and neurobiology, and these preclinical findings have translational impact for the future of cocaine use disorder treatment.
Collapse
Affiliation(s)
- Annika Vannan
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Gregory L Powell
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Samantha N Scott
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Broc A Pagni
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Janet L Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
11
|
Czoty PW, John WS, Newman AH, Nader MA. Yawning elicited by intravenous ethanol in rhesus monkeys with experience self-administering cocaine and ethanol: Involvement of dopamine D 3 receptors. Alcohol 2018; 69:1-5. [PMID: 29550583 PMCID: PMC5904012 DOI: 10.1016/j.alcohol.2017.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022]
Abstract
Characterization of the effects of long-term alcohol consumption on the brain would be aided by the development of behavioral assays that are relatively easy to implement in animal models of alcohol use disorders. Assessing unconditioned behaviors, such as drug-elicited yawning in models that permit long-term alcohol ingestion, may be a valuable complement to more invasive and costly procedures. The present studies investigated previous unexpected findings of ethanol-induced yawning in nonhuman primates. Subjects were adult male rhesus monkeys (n = 8), all of which had experience self-administering intravenous cocaine for several years. Four monkeys also had experience consuming 2.0 g/kg ethanol over 1 h per day, 5 days per week, for 6.8-12.0 months. All monkeys received saline or ethanol (0.25-1.0 g/kg) infused intravenously (i.v.) over 10 min, and the number of yawns elicited during the infusion was counted. A second experiment in the ethanol-experienced monkeys examined whether ethanol-induced yawning could be blocked by PG01037 (1.0, 3.0 mg/kg, i.v.), a selective antagonist at dopamine D3 receptors (D3R). Ethanol significantly and dose-dependently increased yawns in the ethanol-experienced animals, but not the ethanol-naïve animals. In the ethanol-experienced monkeys, this effect of ethanol was blocked by the D3R antagonist. The pharmacology of yawning is complex and a good deal of model development remains to be performed to characterize the potential involvement of other neurotransmitter systems. Nonetheless, drug-elicited yawning may be a useful unconditioned behavioral assay to assess the effects of long-term alcohol consumption in established nonhuman primate models.
Collapse
Affiliation(s)
- Paul W Czoty
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States.
| | - William S John
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, United States
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
12
|
Perkins FN, Freeman KB. Pharmacotherapies for decreasing maladaptive choice in drug addiction: Targeting the behavior and the drug. Pharmacol Biochem Behav 2018; 164:40-49. [PMID: 28666892 PMCID: PMC5745300 DOI: 10.1016/j.pbb.2017.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/06/2017] [Accepted: 06/26/2017] [Indexed: 12/23/2022]
Abstract
Drug addiction can be conceptualized as a disorder of maladaptive decision making in which drugs are chosen at the expense of pro-social, nondrug alternatives. The study of decision making in drug addiction has focused largely on the role of impulsivity as a facilitator of addiction, in particular the tendency for drug abusers to choose small, immediate gains over larger but delayed outcomes (i.e., delay discounting). A parallel line of work, also focused on decision making in drug addiction, has focused on identifying the determinants underlying the choice to take drugs over nondrug alternatives (i.e., drug vs. nondrug choice). Both tracks of research have been valuable tools in the development of pharmacotherapies for treating maladaptive decision making in drug addiction, and a number of common drugs have been studied in both designs. However, we have observed that there is little uniformity in the administration regimens of potential treatments between the designs, which hinders congruence in the development of single treatment strategies to reduce both impulsive behavior and drug choice. The current review provides an overview of the drugs that have been tested in both delay-discounting and drug-choice designs, and focuses on drugs that reduced the maladaptive choice in both designs. Suggestions to enhance congruence between the findings in future studies are provided. Finally, we propose the use of a hybridized, experimental approach that may enable researchers to test the effectiveness of therapeutics at decreasing impulsive and drug choice in a single design.
Collapse
Affiliation(s)
- Frank N Perkins
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Kevin B Freeman
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States.
| |
Collapse
|
13
|
Reynolds AR, Strickland JC, Stoops WW, Lile JA, Rush CR. Buspirone maintenance does not alter the reinforcing, subjective, and cardiovascular effects of intranasal methamphetamine. Drug Alcohol Depend 2017; 181:25-29. [PMID: 29028556 PMCID: PMC5683915 DOI: 10.1016/j.drugalcdep.2017.08.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Medications development efforts for methamphetamine-use disorder have targeted central monoamines because these systems are directly involved in the effects of methamphetamine. Buspirone is a dopamine autoreceptor and D3 receptor antagonist and partial agonist at serotonin 1A receptors, making it a logical candidate medication for methamphetamine-use disorder. Buspirone effects on abuse-related behaviors of methamphetamine have been mixed in clinical and preclinical studies. Experimental research using maintenance dosing, which models therapeutic use, is limited. This study evaluated the influence of buspirone maintenance on the reinforcing effects of methamphetamine using a self-administration procedure, which has predictive validity for clinical efficacy. The impact of buspirone maintenance on the subjective and cardiovascular response to methamphetamine was also determined. METHODS Eight research participants (1 female) reporting recent illicit stimulant use completed a placebo-controlled, crossover, double-blind protocol in which the pharmacodynamic effects of intranasal methamphetamine (0, 15, and 30mg) were assessed after at least 6days of buspirone (0 and 45mg/day) maintenance. RESULTS Intranasal methamphetamine functioned as a reinforcer and produced prototypical stimulant-like subjective (e.g., increased ratings of Good Effects and Like Drug) and cardiovascular (e.g., elevated blood pressure) effects. These effects of methamphetamine were similar under buspirone and placebo maintenance conditions. Maintenance on buspirone was well tolerated and devoid of effects when administered alone. CONCLUSIONS These data suggest that buspirone is unlikely to be an effective pharmacotherapy for methamphetamine-use disorder. Given the central role of monoamines in methamphetamine-use disorder, it is reasonable for future studies to continue to target these systems.
Collapse
Affiliation(s)
- Anna R Reynolds
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, 789 South Limestone, Lexington, KY 40536-0596, USA
| | - Justin C Strickland
- Department of Psychology, University of Kentucky Arts and Sciences, 110 Kastle Hall Lexington, KY 40506-0044, USA
| | - William W Stoops
- Department of Behavioral Science, University of Kentucky College of Medicine, 133 Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychology, University of Kentucky Arts and Sciences, 110 Kastle Hall Lexington, KY 40506-0044, USA; Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509, USA
| | - Joshua A Lile
- Department of Behavioral Science, University of Kentucky College of Medicine, 133 Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychology, University of Kentucky Arts and Sciences, 110 Kastle Hall Lexington, KY 40506-0044, USA; Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509, USA
| | - Craig R Rush
- Department of Behavioral Science, University of Kentucky College of Medicine, 133 Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychology, University of Kentucky Arts and Sciences, 110 Kastle Hall Lexington, KY 40506-0044, USA; Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509, USA.
| |
Collapse
|
14
|
Czoty PW, Gould RW, Gage HD, Nader MA. Effects of social reorganization on dopamine D2/D3 receptor availability and cocaine self-administration in male cynomolgus monkeys. Psychopharmacology (Berl) 2017; 234:2673-2682. [PMID: 28608008 PMCID: PMC5709179 DOI: 10.1007/s00213-017-4658-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/21/2017] [Indexed: 12/14/2022]
Abstract
RATIONALE Studies have demonstrated that brain dopamine D2/D3 receptors (D2/D3R) and the reinforcing effects of cocaine can be influenced by a monkey's position in the social dominance hierarchy. OBJECTIVE In this study, we manipulated the social ranks of monkeys by reorganizing social groups and assessed effects on D2/D3R availability and cocaine self-administration. METHODS Male cynomolgus monkeys (N = 12) had been trained to self-administer cocaine under a concurrent cocaine-food reinforcement schedule. Previously, PET measures of D2/D3R availability in the caudate nucleus and putamen had been obtained with [18F]fluoroclebopride during cocaine abstinence, while monkeys lived in stable social groups of four monkeys/pen. For this study, monkeys were reorganized into groups that consisted of (1) four previously dominant, (2) four previously subordinate, and (3) a mix of previously dominant and subordinate monkeys. After 3 months, D2/D3R availability was redetermined and cocaine self-administration was reexamined. RESULTS D2/D3R availability significantly increased after reorganization in monkeys who were formerly subordinate, with the greatest increases observed in those that became dominant. No consistent changes in D2/D3R availability were observed in formerly dominant monkeys. Cocaine self-administration did not vary according to rank after reorganization of social groups. However, when compared to their previous cocaine self-administration data, the potency of cocaine as a reinforcer decreased in 9 of 11 monkeys. CONCLUSIONS These results indicate that changing the social conditions can alter D2/D3R availability in subordinate monkeys in a manner suggestive of environmental enrichment. In most monkeys, social reorganization shifted the cocaine dose-response curve to the right, also consistent with environmental enrichment.
Collapse
Affiliation(s)
- P W Czoty
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, 546 NRC, Winston-Salem, NC, 27157-1083, USA
| | - R W Gould
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, 546 NRC, Winston-Salem, NC, 27157-1083, USA
| | - H D Gage
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - M A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, 546 NRC, Winston-Salem, NC, 27157-1083, USA.
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
15
|
Thomsen M, Barrett AC, Butler P, Negus SS, Caine SB. Effects of Acute and Chronic Treatments with Dopamine D 2 and D 3 Receptor Ligands on Cocaine versus Food Choice in Rats. J Pharmacol Exp Ther 2017; 362:161-176. [PMID: 28473458 PMCID: PMC5469403 DOI: 10.1124/jpet.117.241141] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/20/2017] [Indexed: 02/01/2023] Open
Abstract
Dopamine D3 receptor ligands are potential medications for psychostimulant addiction. Medication assessment may benefit from preclinical studies that evaluate chronic medication effects on choice between an abused drug and an alternative, nondrug reinforcer. This study compared acute and chronic effects of dopamine D2- and D3-preferring ligands on choice between intravenous cocaine and palatable food in rats. Under baseline conditions, cocaine maintained dose-dependent increases in cocaine choice and reciprocal decreases in food choice. Acutely, the D2 agonist R-(-)-norpropylapomorphine (NPA) and antagonist L-741,626 [3-[[4-(4-chlorophenyl)-4-hydroxypiperidin-l-yl]methyl-1H-indole] produced leftward and rightward shifts in cocaine dose-effect curves, respectively, whereas the partial agonist terguride had no effect. All three drugs dose-dependently decreased food-maintained responding. Chronically, the effects of R-(-)-norpropylapomorphine and L-741,626 on cocaine self-administration showed marked tolerance, whereas suppression of food-reinforced behavior persisted. Acute effects of the D3 ligands were less systematic and most consistent with nonselective decreases in cocaine- and food-maintained responding. Chronically, the D3 agonist PF-592,379 [5-[(2R,5S)-5-methyl-4-propylmorpholin-2-yl]pyridin-2-amine] increased cocaine choice, whereas an intermediate dose of the D3 antagonist PG01037 [N-[(E)-4-[4-(2,3-dichlorophenyl)piperazin-1-yl]but-2-enyl]-4-pyridin-2-ylbenzamide] produced a therapeutically desirable decrease in cocaine choice early in treatment; however, tolerance to this effect developed, and lower and higher doses were ineffective. D3 ligands failed to significantly modify total cocaine intake but caused persistent decreases in food intake. Thus, D2-and D3-preferring ligands showed distinct profiles, consistent with different pharmacological actions. In addition, these results highlight the role of acute versus chronic treatment as a determinant of test drug effects. With the possible exception of the D3 antagonist PG01037, no ligand was promising in terms of cocaine addiction treatment.
Collapse
Affiliation(s)
- Morgane Thomsen
- Alcohol and Drug Abuse Research Center, McLean Hospital, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark (M.T.); Drug Safety Research and Development, Pfizer, San Diego, California (P.B.); and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (S.S.N.)
| | - Andrew C Barrett
- Alcohol and Drug Abuse Research Center, McLean Hospital, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark (M.T.); Drug Safety Research and Development, Pfizer, San Diego, California (P.B.); and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (S.S.N.)
| | - Paul Butler
- Alcohol and Drug Abuse Research Center, McLean Hospital, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark (M.T.); Drug Safety Research and Development, Pfizer, San Diego, California (P.B.); and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (S.S.N.)
| | - S Stevens Negus
- Alcohol and Drug Abuse Research Center, McLean Hospital, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark (M.T.); Drug Safety Research and Development, Pfizer, San Diego, California (P.B.); and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (S.S.N.)
| | - S Barak Caine
- Alcohol and Drug Abuse Research Center, McLean Hospital, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark (M.T.); Drug Safety Research and Development, Pfizer, San Diego, California (P.B.); and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (S.S.N.)
| |
Collapse
|
16
|
Zernig G, Hiemke C. Making the Case for 'Power Abuse Disorder' as a Nosologic Entity. Pharmacology 2017; 100:50-63. [PMID: 28467994 DOI: 10.1159/000475600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/10/2017] [Indexed: 12/18/2022]
Abstract
The development of societies and cultures arguably is based on the ability of human primates to form hierarchies in which some individuals acquire and wield power, that is, control resources and influence and control the behavior of their conspecifics. In the following, we focus on the type of human primate power wielding that (a) harms and (b) produces excessive negative emotions in (1) the victim(s) of the power wielder and (2) the power wielder her/himself. If such a harmful behavior of the power wielder is not accompanied by an ethically justifiable benefit for the involved human primate groups, it can be considered "power abuse." We propose to term the associated behaviors, cognitions, and emotions of the power wielder as "power abuse disorder" (PAD). This behavior results from what we consider addictive behavior of the power abuse disordered (PADed) power wielder. PAD can be diagnosed on the basis of the World Health Organization's criteria for "dependence syndrome" as listed in the International Classification of Diseases version 10. We will demonstrate that many PADed individuals may very likely carry the Zeitgeist diagnosis "burnout." This article reviews the current understanding of the neural correlates of PAD and suggests future research. Based on the available evidence, PAD seems to be associated with a dysfunction of the mesocorticolimbic dopamine system, rendering PADed individuals vulnerable for psychostimulant abuse/dependence, and suggesting specific pharmacotherapeutic approaches to treat PAD.
Collapse
Affiliation(s)
- Gerald Zernig
- Experimental Psychiatry Unit, Department of Psychiatry 1, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
17
|
Gould RW, Czoty PW, Porrino LJ, Nader MA. Social Status in Monkeys: Effects of Social Confrontation on Brain Function and Cocaine Self-Administration. Neuropsychopharmacology 2017; 42:1093-1102. [PMID: 28025974 PMCID: PMC5506801 DOI: 10.1038/npp.2016.285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 12/05/2016] [Accepted: 12/11/2016] [Indexed: 12/23/2022]
Abstract
Individual differences in response to social stress and environmental enrichment may contribute to variability in response to behavioral and pharmacological treatments for drug addiction. In monkeys, social status influences the reinforcing effects of cocaine and the effects of some drugs on cocaine self-administration. In this study, we used male cynomolgus macaques (n=15) living in established social groups to examine the effects of social confrontation on the reinforcing effects of cocaine using a food-drug choice procedure. On the test day, a dominant or subordinate monkey was removed from his homecage and placed into another social pen; 30 min later he was studied in a cocaine-food choice paradigm. For the group, following social confrontation, sensitivity to cocaine reinforcement was significantly greater in subordinate monkeys compared with dominant animals. Examining individual-subject data revealed that for the majority of monkeys (9/15), serving as an intruder in another social group affected cocaine self-administration and these effects were dependent on the social rank of the monkey. For subordinate monkeys, sensitivity to the reinforcing effects of cocaine increased while sensitivity decreased in dominant monkeys. To investigate potential mechanisms mediating these effects, brain glucose metabolism was studied in a subset of monkeys (n=8) using [18F]fluorodeoxyglucose ([18F]FDG) with positron emission tomography. Dominant and subordinate monkeys displayed distinctly different patterns of brain glucose metabolism in their homecage, including areas associated with vigilance and stress/anxiety, respectively, and during social confrontation. These data demonstrate that, depending on an individual's social status, the same social experience can have divergent effects on brain function and cocaine self-administration. These phenotypic differences in response to social conditions support a personalized treatment approach to cocaine addiction.
Collapse
Affiliation(s)
- Robert W Gould
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Paul W Czoty
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Linda J Porrino
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
18
|
Banks ML, Negus SS. Insights from Preclinical Choice Models on Treating Drug Addiction. Trends Pharmacol Sci 2017; 38:181-194. [PMID: 27916279 PMCID: PMC5258826 DOI: 10.1016/j.tips.2016.11.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023]
Abstract
Substance-use disorders are a global public health problem that arises from behavioral misallocation between drug use and more adaptive behaviors maintained by nondrug alternatives (e.g., food or money). Preclinical drug self-administration procedures that incorporate a concurrently available nondrug reinforcer (e.g., food) provide translationally relevant and distinct dependent measures of behavioral allocation (i.e., to assess the relative reinforcing efficacy of the drug) and behavioral rate (i.e., to assess motor competence). In particular, preclinical drug versus food 'choice' procedures have produced increasingly concordant results with both human laboratory drug self-administration studies and double-blind placebo-controlled clinical trials. Accordingly, here we provide a heuristic framework of substance-use disorders based on a behavioral-centric perspective and recent insights from these preclinical choice procedures.
Collapse
Affiliation(s)
- Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
19
|
Abstract
Current tools for automated skull stripping, normalization, and segmentation of non-human primate (NHP) brain MRI studies typically demonstrate high failure rates. Many of these failures are due to a poor initial estimate for the affine component of the transformation. The purpose of this study is to introduce a multi-atlas approach to overcome these limitations and drive the failure rate to near zero. A library of study-specific templates (SST) spanning three Old World primate species (Macaca fascicularis, M. mulatta, Chlorocebus aethiops) was created using a previously described unbiased automated approach. Several modifications were introduced to the methodology to improve initial affine estimation at the study-specific template level, and at the individual subject level. These involve performing multiple separate normalizations to a multi-atlas library of templates and selecting the best performing template on the basis of a covariance similarity metric. This template was then used as an initialization for the affine component of subsequent skull stripping and normalization procedures. Normalization failure rate for SST generation and individual-subject segmentation on a set of 150 NHP was evaluated on the basis of visual inspection. The previous automated template creation procedure results in excellent skull stripping, segmentation, and atlas labeling across species. Failure rate at the individual-subject level was approximately 1%, however at the SST generation level it was 17%. Using the new multi-atlas approach, failure rate was further reduced to zero for both SST generation and individual subject processing. We describe a multi-atlas library registration approach for driving normalization failures in NHP to zero. It is straightforward to implement, and can have application to a wide variety of existing tools, as well as in difficult populations including neonates and the elderly. This approach is also an important step towards developing fully automated high-throughput processing pipelines that are critical for future high volume multi-center NHP imaging studies for studies of drug abuse and brain health.
Collapse
|
20
|
Pike E, Stoops WW, Rush CR. Acute buspirone dosing enhances abuse-related subjective effects of oral methamphetamine. Pharmacol Biochem Behav 2016; 150-151:87-93. [PMID: 27697553 DOI: 10.1016/j.pbb.2016.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/24/2016] [Accepted: 09/29/2016] [Indexed: 11/28/2022]
Abstract
There is not an approved pharmacotherapy for treating methamphetamine use disorder. This study sought to determine the effects of acute buspirone treatment on the subjective and cardiovascular effects of oral methamphetamine in order to provide an initial assessment of the utility, safety, and tolerability of buspirone for managing methamphetamine use disorder. We predicted that acute buspirone administration would reduce the subjective effects of methamphetamine. We also predicted that the combination of buspirone and methamphetamine would be safe and well tolerated. Ten subjects completed the protocol, which tested three methamphetamine doses (0, 15, and 30mg) in combination with two buspirone doses (0 and 30mg) across 6 experimental sessions. Subjective effects and physiological measures were collected at regular intervals prior to and after dose administration. Methamphetamine produced prototypical subjective and cardiovascular effects. Acute buspirone administration increased some of the abuse-related subjective effects of methamphetamine and also attenuated some cardiovascular effects. The combination of oral methamphetamine and buspirone was safe and well tolerated. Acute buspirone administration may increase the abuse liability of oral methamphetamine. Chronic buspirone dosing studies remain to be conducted, but given preclinical findings and the outcomes of this work, the utility of buspirone for treating methamphetamine use disorder appears limited.
Collapse
Affiliation(s)
- Erika Pike
- Department of Behavioral Science, University of Kentucky College of Medicine, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychology, University of Kentucky Arts and Sciences, Kastle Hall, Lexington, KY 40506-0044, USA
| | - William W Stoops
- Department of Behavioral Science, University of Kentucky College of Medicine, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychology, University of Kentucky Arts and Sciences, Kastle Hall, Lexington, KY 40506-0044, USA; Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509, USA
| | - Craig R Rush
- Department of Behavioral Science, University of Kentucky College of Medicine, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychology, University of Kentucky Arts and Sciences, Kastle Hall, Lexington, KY 40506-0044, USA; Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509, USA.
| |
Collapse
|
21
|
Czoty PW, Stoops WW, Rush CR. Evaluation of the "Pipeline" for Development of Medications for Cocaine Use Disorder: A Review of Translational Preclinical, Human Laboratory, and Clinical Trial Research. Pharmacol Rev 2016; 68:533-62. [PMID: 27255266 PMCID: PMC4931869 DOI: 10.1124/pr.115.011668] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cocaine use disorder is a persistent public health problem for which no widely effective medications exist. Self-administration procedures, which have shown good predictive validity in estimating the abuse potential of drugs, have been used in rodent, nonhuman primate, and human laboratory studies to screen putative medications. This review assessed the effectiveness of the medications development process regarding pharmacotherapies for cocaine use disorder. The primary objective was to determine whether data from animal and human laboratory self-administration studies predicted the results of clinical trials. In addition, the concordance between laboratory studies in animals and humans was assessed. More than 100 blinded, randomized, fully placebo-controlled studies of putative medications for cocaine use disorder were identified. Of the 64 drugs tested in these trials, only 10 had been examined in both human and well-controlled animal laboratory studies. Within all three stages, few studies had been conducted for each drug and when multiple studies had been conducted conclusions were sometimes contradictory. Overall, however, there was good concordance between animal and human laboratory results when the former assessed chronic drug treatment. Although only seven of the ten reviewed drugs showed fully concordant results across all three types of studies reviewed, the analysis revealed several subject-related, procedural, and environmental factors that differ between the laboratory and clinical trial settings that help explain the disagreement for other drugs. The review closes with several recommendations to enhance translation and communication across stages of the medications development process that will ultimately speed the progress toward effective pharmacotherapeutic strategies for cocaine use disorder.
Collapse
Affiliation(s)
- Paul W Czoty
- Wake Forest School of Medicine, Winston-Salem, North Carolina (P.W.C.); and University of Kentucky, Lexington, Kentucky (W.W.S., C.R.R.)
| | - William W Stoops
- Wake Forest School of Medicine, Winston-Salem, North Carolina (P.W.C.); and University of Kentucky, Lexington, Kentucky (W.W.S., C.R.R.)
| | - Craig R Rush
- Wake Forest School of Medicine, Winston-Salem, North Carolina (P.W.C.); and University of Kentucky, Lexington, Kentucky (W.W.S., C.R.R.)
| |
Collapse
|
22
|
Abstract
Research on the neural substrates of drug reward, withdrawal and relapse has yet to be translated into significant advances in the treatment of addiction. One potential reason is that this research has not captured a common feature of human addiction: progressive social exclusion and marginalization. We propose that research aimed at understanding the neural mechanisms that link these processes to drug seeking and drug taking would help to make addiction neuroscience research more clinically relevant.
Collapse
|
23
|
|
24
|
Boileau I, Nakajima S, Payer D. Imaging the D3 dopamine receptor across behavioral and drug addictions: Positron emission tomography studies with [(11)C]-(+)-PHNO. Eur Neuropsychopharmacol 2015; 25:1410-20. [PMID: 26141509 DOI: 10.1016/j.euroneuro.2015.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/07/2015] [Accepted: 06/12/2015] [Indexed: 12/21/2022]
Abstract
Chronic drug use has been associated with dopaminergic abnormalities, detectable in humans with positron emission tomography (PET). Among these, a hallmark feature is low D2 dopamine receptor availability, which has been linked to clinical outcomes, but has not yet translated into a therapeutic strategy. The D3 dopamine receptor on the other hand has gained increasing attention, as, in contrast to D2, chronic exposure to drugs has been shown to up-regulate this receptor subtype in preclinical models of addiction-a phenomenon linked to dopamine system sensitization and drug-seeking. The present article summarizes the literature to date in humans, suggesting that the D3 receptor may indeed contribute to core features of addiction such as impulsiveness and cognitive impairment. A particularly useful tool in investigating this question is the PET imaging probe [(11)C]-(+)-PHNO, which binds to D2/3 dopamine receptors but has preferential affinity for D3. This technique has been used to demonstrate D3 up-regulation in humans, and can be applied to assess pharmacological interventions for development of D3-targeted strategies in addiction treatment.
Collapse
Affiliation(s)
- Isabelle Boileau
- Addiction Imaging Research Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Shinichiro Nakajima
- Multimodal Imaging Group & Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada; Keio University, School of Medicine, Department of Neuropsychiatry, Tokyo, Japan
| | - Doris Payer
- Addiction Imaging Research Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Keck TM, John WS, Czoty PW, Nader MA, Newman AH. Identifying Medication Targets for Psychostimulant Addiction: Unraveling the Dopamine D3 Receptor Hypothesis. J Med Chem 2015; 58:5361-80. [PMID: 25826710 PMCID: PMC4516313 DOI: 10.1021/jm501512b] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dopamine D3 receptor (D3R) is a target for developing medications to treat substance use disorders. D3R-selective compounds with high affinity and varying efficacies have been discovered, providing critical research tools for cell-based studies that have been translated to in vivo models of drug abuse. D3R antagonists and partial agonists have shown especially promising results in rodent models of relapse-like behavior, including stress-, drug-, and cue-induced reinstatement of drug seeking. However, to date, translation to human studies has been limited. Herein, we present an overview and illustrate some of the pitfalls and challenges of developing novel D3R-selective compounds toward clinical utility, especially for treatment of cocaine abuse. Future research and development of D3R-selective antagonists and partial agonists for substance abuse remains critically important but will also require further evaluation and development of translational animal models to determine the best time in the addiction cycle to target D3Rs for optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Thomas M Keck
- †Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - William S John
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Paul W Czoty
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Michael A Nader
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Amy Hauck Newman
- †Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|