1
|
Oshima K, Kumagai S, Shiramatsu TI, Takahashi H. Latent inhibition improves discriminative fear conditioning in rat model for schizophrenia. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039678 DOI: 10.1109/embc53108.2024.10781955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The aberrant salience hypothesis is a well-known framework that explains symptoms of schizophrenia. However, no studies have directly examined the relationship between this hypothesis and impaired discrimination learning between neutral (CS-) and aversive (CS+) sound stimuli in a rat model of schizophrenia. The present study aimed to examine the relationship between aberrant salience and the discrimination learning deficits in a rat model of schizophrenia. Rats were subjected to classical discriminative fear conditioning which follows latent inhibition to reduce the saliency of CS. Duration of freezing behavior demonstrated that schizophrenia model rats succeeded in the discriminative conditioning. Moreover, the magnitude of auditory evoked response revealed altered tonotopic map in these rats, supporting the successful learning. These results indicate that the decrease in saliency helps discriminative learning of the schizophrenia model rats, supporting that the deficits in discrimination in the schizophrenia can be discussed within the framework of the aberrant salience hypothesis for this disease.
Collapse
|
2
|
Homberg JR, Brivio P, Greven CU, Calabrese F. Individuals being high in their sensitivity to the environment: Are sensitive period changes in play? Neurosci Biobehav Rev 2024; 159:105605. [PMID: 38417743 DOI: 10.1016/j.neubiorev.2024.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
All individuals on planet earth are sensitive to the environment, but some more than others. These individual differences in sensitivity to environments are seen across many animal species including humans, and can influence personalities as well as vulnerability and resilience to mental disorders. Yet, little is known about the underlying brain mechanisms. Key genes that contribute to individual differences in environmental sensitivity are the serotonin transporter, dopamine D4 receptor and brain-derived neurotrophic factor genes. By synthesizing neurodevelopmental findings of these genetic factors, and discussing them through the lens of mechanisms related to sensitive periods, which are phases of heightened neuronal plasticity during which a certain network is being finetuned by experiences, we propose that these genetic factors delay but extend postnatal sensitive periods. This may explain why sensitive individuals show behavioral features that are characteristic of a young brain state at the level of sensory information processing, such as reduced filtering or blockade of irrelevant information, resulting in a sensory processing system that 'keeps all options open'.
Collapse
Affiliation(s)
- Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Corina U Greven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Center, London, United Kingdom
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
The lifetime impact of stress on fear regulation and cortical function. Neuropharmacology 2023; 224:109367. [PMID: 36464208 DOI: 10.1016/j.neuropharm.2022.109367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
A variety of stressful experiences can influence the ability to form and subsequently inhibit fear memory. While nonsocial stress can impact fear learning and memory throughout the lifespan, psychosocial stressors that involve negative social experiences or changes to the social environment have a disproportionately high impact during adolescence. Here, we review converging lines of evidence that suggest that development of prefrontal cortical circuitry necessary for both social experiences and fear learning is altered by stress exposure in a way that impacts both social and fear behaviors throughout the lifespan. Further, we suggest that psychosocial stress, through its impact on the prefrontal cortex, may be especially detrimental during early developmental periods characterized by higher sociability. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
|
4
|
Sun W, Chen X, Mei Y, Yang Y, Li X, An L. Prelimbic proBDNF Facilitates Retrieval-Dependent Fear Memory Destabilization by Regulation of Synaptic and Neural Functions in Juvenile Rats. Mol Neurobiol 2022; 59:4179-4196. [PMID: 35501631 DOI: 10.1007/s12035-022-02849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Fear regulation changes as a function of the early life is a key developmental period for the continued maturation of fear neural circuitry. The mechanisms of fear retrieval-induced reconsolidation have been investigated but remain poorly understood. The involvement of prelimbic proBDNF in fear memory extinction and its mediated signaling have been reported previously. Specifically, blocking the proBDNF/p75NTR pathway during the postnatal stage disrupts synaptic development and neuronal activity in adulthood. Given the inherent high expression of proBDNF during the juvenile period, we tested whether the prelimbic proBDNF regulated synaptic and neuronal functions allowing to influencing retrieval-dependent memory processing. By examining the freezing behavior of auditory fear-conditioned rats, we found the high level of the prelimbic proBDNF in juvenile rats enhanced the destabilization of the retrieval-dependent weak but not strong fear memory through activating p75NTR-GluN2B signaling. This modification of fear memory traces was attributed to the increment in the proportion of thin-type spine and promotion in synaptic function, as evidenced by the facilitation of NMDA-mediated EPSCs and GluN2B-dependent synaptic depression at the prelimbic projection. Furthermore, the strong prelimbic theta- and gamma-oscillation coupling predicted the suppressive effect of juvenile proBDNF on the recall of postretrieval memory. Our results critically emphasize the importance of developmental proBDNF for modification of retrieval-dependent memory and provide a potential critical targeting to inhibit threaten memories associated with neurodevelopment disorders.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Xiao Chen
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China
| | - Yazi Mei
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China. .,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China. .,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China. .,Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Miller DB, Rassaby MM, Collins KA, Milad MR. Behavioral and neural mechanisms of latent inhibition. Learn Mem 2022; 29:38-47. [PMID: 35042827 PMCID: PMC8774194 DOI: 10.1101/lm.053439.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/01/2021] [Indexed: 02/03/2023]
Abstract
Fear is an adaptive emotion that serves to protect an organism against potential dangers. It is often studied using classical conditioning paradigms where a conditioned stimulus is paired with an aversive unconditioned stimulus to induce a threat response. Less commonly studied is a phenomenon that is related to this form of conditioning, known as latent inhibition. Latent inhibition (LI) is a paradigm in which a neutral cue is repeatedly presented in the absence of any aversive associations. Subsequent pairing of this pre-exposed cue with an aversive stimulus typically leads to reduced expression of a conditioned fear/threat response. In this article, we review some of the theoretical basis for LI and its behavioral and neural mechanisms. We compare and contrast LI and fear/threat extinction-a process in which a previously conditioned cue is repeatedly presented in the absence of aversive outcomes. We end with highlighting the potential clinical utility of LI. Particularly, we focus on how LI application could be useful for enhancing resilience, especially for individuals who are more prone to continuous exposure to trauma and stressful environments, such as healthcare workers and first responders. The knowledge to be gained from advancing our understanding of neural mechanisms in latent inhibition could be applicable across psychiatric disorders characterized by exaggerated fear responses and impaired emotion regulation.
Collapse
Affiliation(s)
- Dylan B Miller
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Madeleine M Rassaby
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Katherine A Collins
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
| | - Mohammad R Milad
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York 10016, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
| |
Collapse
|
6
|
Hippocampal Disinhibition Reduces Contextual and Elemental Fear Conditioning While Sparing the Acquisition of Latent Inhibition. eNeuro 2022; 9:ENEURO.0270-21.2021. [PMID: 34980662 PMCID: PMC8805190 DOI: 10.1523/eneuro.0270-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Hippocampal neural disinhibition, i.e., reduced GABAergic inhibition, is a key feature of schizophrenia pathophysiology. The hippocampus is an important part of the neural circuitry that controls fear conditioning and can also modulate prefrontal and striatal mechanisms, including dopamine signaling, which play a role in salience modulation. Consequently, hippocampal neural disinhibition may contribute to impairments in fear conditioning and salience modulation reported in schizophrenia. Therefore, we examined the effect of ventral hippocampus (VH) disinhibition in male rats on fear conditioning and salience modulation, as reflected by latent inhibition (LI), in a conditioned emotional response (CER) procedure. A flashing light was used as the conditioned stimulus (CS), and conditioned suppression was used to index conditioned fear. In experiment 1, VH disinhibition via infusion of the GABA-A receptor antagonist picrotoxin before CS pre-exposure and conditioning markedly reduced fear conditioning to both the CS and context; LI was evident in saline-infused controls but could not be detected in picrotoxin-infused rats because of the low level of fear conditioning to the CS. In experiment 2, VH picrotoxin infusions only before CS pre-exposure did not affect the acquisition of fear conditioning or LI. Together, these findings indicate that VH neural disinhibition disrupts contextual and elemental fear conditioning, without affecting the acquisition of LI. The disruption of fear conditioning resembles aversive conditioning deficits reported in schizophrenia and may reflect a disruption of neural processing both within the hippocampus and in projection sites of the hippocampus.
Collapse
|
7
|
Szkudlarek HJ, Rodríguez-Ruiz M, Hudson R, De Felice M, Jung T, Rushlow WJ, Laviolette SR. THC and CBD produce divergent effects on perception and panic behaviours via distinct cortical molecular pathways. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110029. [PMID: 32623021 DOI: 10.1016/j.pnpbp.2020.110029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 12/17/2022]
Abstract
Clinical and pre-clinical evidence demonstrates divergent psychotropic effects of THC vs. CBD. While THC can induce perceptual distortions and anxiogenic effects, CBD displays antipsychotic and anxiolytic properties. A key brain region responsible for regulation of cognition and affect, the medial prefrontal cortex (PFC), is strongly modulated by cannabinoids, suggesting that these dissociable THC/CBD-dependent effects may involve functional and molecular interplay within the PFC. The primary aim of this study was to investigate potential interactions and molecular substrates involved in PFC-mediated effects of THC and CBD on differential cognitive and affective behavioural processing. Male Sprague Dawley rats received intra-PFC microinfusions of THC, CBD or their combination, and tested in the latent inhibition paradigm, spontaneous oddity discrimination test, elevated T-maze and open field. To identify local, drug-induced molecular modulation in the PFC, PFC samples were collected and processed with Western Blotting. Intra-PFC THC induced strong panic-like responses that were counteracted with CBD. In contrast, CBD did not affect panic-like behaviours but blocked formation of associative fear memories and impaired latent inhibition and oddity discrimination performance. Interestingly, these CBD effects were dependent upon 5-HT1A receptor transmission but not influenced by THC co-administration. Moreover, THC induced robust phosphorylation of ERK1/2 that was prevented by CBD, while CBD decreased phosphorylation of p70S6K, independently of THC. These results suggest that intra-PFC infusion of THC promotes panic-like behaviour associated with increased ERK1/2 phosphorylation. In contrast, CBD impairs perceptive functions and latent inhibition via activation of 5-HT1A receptors and reduced phosphorylation of p70S6K.
Collapse
Affiliation(s)
- Hanna J Szkudlarek
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | - Mar Rodríguez-Ruiz
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Roger Hudson
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Marta De Felice
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Tony Jung
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Walter J Rushlow
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Psychiatry. Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Steven R Laviolette
- Addiction Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Psychiatry. Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
8
|
Liu J, Likhtik E, Shereen AD, Dennis-Tiwary TA, Casaccia P. White Matter Plasticity in Anxiety: Disruption of Neural Network Synchronization During Threat-Safety Discrimination. Front Cell Neurosci 2020; 14:587053. [PMID: 33250713 PMCID: PMC7674975 DOI: 10.3389/fncel.2020.587053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Recent evidence highlighted the importance of white matter tracts in typical and atypical behaviors. White matter dynamically changes in response to learning, stress, and social experiences. Several lines of evidence have reported white matter dysfunction in psychiatric conditions, including depression, stress- and anxiety-related disorders. The mechanistic underpinnings of these associations, however, remain poorly understood. Here, we outline an integrative perspective positing a link between aberrant myelin plasticity and anxiety. Drawing on extant literature and emerging new findings, we suggest that in anxiety, unique changes may occur in response to threat and to safety learning and the ability to discriminate between both types of stimuli. We propose that altered myelin plasticity in the neural circuits underlying these two forms of learning relates to the emergence of anxiety-related disorders, by compromising mechanisms of neural network synchronization. The clinical and translational implications of this model for anxiety-related disorders are discussed.
Collapse
Affiliation(s)
- Jia Liu
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, United States
| | - Ekaterina Likhtik
- Department of Biology, Hunter College, City University of New York, New York, NY, United States
- Graduate Program in Biology at the Graduate Center, City University of New York, New York, NY, United States
| | - A. Duke Shereen
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, United States
| | - Tracy A. Dennis-Tiwary
- Department of Psychology, Hunter College, City University of New York, New York, NY, United States
- Graduate Program in Psychology and Behavioral and Cognitive Neuroscience at the Graduate Center, City University of New York, New York, NY, United States
| | - Patrizia Casaccia
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, United States
- Graduate Program in Biology at the Graduate Center, City University of New York, New York, NY, United States
- Graduate Program in Biochemistry at the Graduate Center, City University of New York, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
9
|
Piantadosi PT, Yeates DCM, Floresco SB. Prefrontal cortical and nucleus accumbens contributions to discriminative conditioned suppression of reward-seeking. ACTA ACUST UNITED AC 2020; 27:429-440. [PMID: 32934096 PMCID: PMC7497111 DOI: 10.1101/lm.051912.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
Fear can potently inhibit ongoing behavior, including reward-seeking, yet the neural circuits that underlie such suppression remain to be clarified. Prior studies have demonstrated that distinct subregions of the rodent medial prefrontal cortex (mPFC) differentially affect fear behavior, whereby fear expression is promoted by the more dorsal prelimbic cortex (PL) and inhibited by the more ventral infralimbic cortex (IL). These mPFC regions project to subregions of the nucleus accumbens, the core (NAcC) and shell (NAcS), that differentially contribute to reward-seeking as well as affective processes that may be relevant to fear expression. Here, we investigated how these mPFC and NAc subregions contribute to discriminative fear conditioning, assessed by conditioned suppression of reward-seeking. Bilateral inactivation of the NAcS or PL reduced the expression of conditioned suppression to a shock-associated CS+, whereas NAcC inactivation reduced reward-seeking without affecting suppression. IL inactivation caused a general reduction in conditioned suppression following discriminative conditioning, but not when using a single-stimulus design. Pharmacological disconnection of the PL → NAcS pathway revealed that this projection mediates conditioned suppression. These data add to a growing literature implicating discrete cortico-striatal pathways in the suppression of reward-seeking in response to aversive stimuli. Dysfunction within related structures may contribute to aberrant patterns of behavior in psychiatric illnesses including substance use disorders.
Collapse
Affiliation(s)
- Patrick T Piantadosi
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Dylan C M Yeates
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
10
|
Neural correlates of safety learning. Behav Brain Res 2020; 396:112884. [PMID: 32871228 DOI: 10.1016/j.bbr.2020.112884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023]
Abstract
Accurate discrimination between safe and dangerous stimuli is essential for survival. Prior research has begun to uncover the neural structures that are necessary for learning this discrimination, but exploration of brain regions involved in this learning process has been mostly limited to males. Recent findings show sex differences in discrimination learning, with reduced fear expression to safe cues in females compared to males. Here, we used male and female Sprague Dawley rats to explore neural activation, as measured by Fos expression, in fear and safety learning related brain regions. Neural activation after fear discrimination (Discrimination) was compared between males and females, as well as with fear conditioned (Fear Only) and stimulus presented (Control) conditions. Correlations of discrimination ability and neural activation were also calculated. We uncovered a correlation between central amygdala (CeA) activation and discrimination abilities in males and females. Anterior medial bed nucleus of the stria terminalis (BNST) was the only region where sex differences in Fos counts were observed in the Discrimination condition, and the only region where neural activation significantly differed between Fear Only and Discrimination conditions. Together, these findings indicate the importance of fear expression circuitry in mediating discrimination responses and generate important questions for future investigation.
Collapse
|
11
|
Sex differences in auditory fear discrimination are associated with altered medial prefrontal cortex function. Sci Rep 2020; 10:6300. [PMID: 32286467 PMCID: PMC7156682 DOI: 10.1038/s41598-020-63405-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/28/2020] [Indexed: 01/05/2023] Open
Abstract
The increased prevalence of post-traumatic stress disorder (PTSD) that is observed in women may involve sex differences in learned fear inhibition and medial prefrontal cortex (mPFC) function. PTSD is characterized by fear overgeneralization involving impaired fear regulation by safety signals. We recently found that males show fear discrimination and females show fear generalization involving reduced safety signalling after extended fear discrimination training. Here we determined if these sex differences involve altered mPFC function. Male and female rats underwent three days of auditory fear discrimination training, where one tone (CS+) was paired with footshock and another tone (CS−) was presented alone. Local field potentials were recorded from prelimbic (PL) and infralimbic (IL) mPFC during retrieval. We found that males discriminated and females generalized based on cue-induced freezing at retrieval. This was accompanied by sex differences in basal theta and gamma oscillations in PL and IL. Importantly, males also showed PL/IL theta activation during safety signalling by the CS− and IL gamma activation in response to the threat-related CS+, both of which were absent in females. These results add to growing evidence indicating that sex differences in learned fear inhibition are associated with altered mPFC function.
Collapse
|
12
|
Amelioration of cognitive impairments induced by GABA hypofunction in the male rat prefrontal cortex by direct and indirect dopamine D1 agonists SKF-81297 and d-Govadine. Neuropharmacology 2020; 162:107844. [DOI: 10.1016/j.neuropharm.2019.107844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/02/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022]
|
13
|
Taylor SF, Grove TB, Ellingrod VL, Tso IF. The Fragile Brain: Stress Vulnerability, Negative Affect and GABAergic Neurocircuits in Psychosis. Schizophr Bull 2019; 45:1170-1183. [PMID: 31150555 PMCID: PMC6811817 DOI: 10.1093/schbul/sbz046] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Persons with schizophrenia exhibit sensitivity to stress and negative affect (NA), both strongly correlated with poor functional outcome. This theoretical review suggests that NA reflects a "fragile brain," ie, vulnerable to stress, including events not experienced as stressful by healthy individuals. Based on postmortem evidence of altered gamma-aminobutyric acid (GABA) function in parvalbumin positive interneurons (PVI), animal models of PVI abnormalities and neuroimaging data with GABAergic challenge, it is suggested that GABAergic disruptions weaken cortical regions, which leads to stress vulnerability and excessive NA. Neurocircuits that respond to stressful and salient environmental stimuli, such as the hypothalamic-pituitary-adrenal axis and the amygdala, are highly dysregulated in schizophrenia, exhibiting hypo- and hyper-activity. PVI abnormalities in lateral prefrontal cortex and hippocampus have been hypothesized to affect cognitive function and positive symptoms, respectively; in the medial frontal cortex (dorsal anterior cingulate cortex and dorsal medial prefrontal cortex), these abnormalities may lead to vulnerability to stress, NA and dysregulation of stress responsive systems. Given that postmortem PVI disruptions have been identified in other conditions, such as bipolar disorder and autism, stress vulnerability may reflect a transdiagnostic dimension of psychopathology.
Collapse
Affiliation(s)
- Stephan F Taylor
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, Ann Arbor, MI,To whom correspondence should be addressed; tel: 734-936-4955, fax: 734-936-7868, e-mail:
| | - Tyler B Grove
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, Ann Arbor, MI
| | | | - Ivy F Tso
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, Ann Arbor, MI
| |
Collapse
|
14
|
Chirumamilla VC, Gonzalez-Escamilla G, Koirala N, Bonertz T, von Grotthus S, Muthuraman M, Groppa S. Cortical Excitability Dynamics During Fear Processing. Front Neurosci 2019; 13:568. [PMID: 31275095 PMCID: PMC6593288 DOI: 10.3389/fnins.2019.00568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/17/2019] [Indexed: 11/21/2022] Open
Abstract
Background: Little is known about the modulation of cortical excitability in the prefrontal cortex during fear processing in humans. Here, we aimed to transiently modulate and test the cortical excitability during fear processing using transcranial magnetic stimulation (TMS) and brain oscillations in theta and alpha frequency bands with electroencephalography (EEG). Methods: We conducted two separate experiments (no-TMS and TMS). In the no-TMS experiment, EEG recordings were performed during the instructed fear paradigm in which a visual cue (CS+) was paired with an aversive unconditioned stimulus (electric shock), while the other visual cue was unpaired (CS-). In the TMS experiment, in addition the TMS was applied on the right dorsomedial prefrontal cortex (dmPFC). The participants also underwent structural MRI (magnetic resonance imaging) scanning and were assigned pseudo-randomly to both experiments, such that age and gender were matched. The cortical excitability was evaluated by time-frequency analysis and functional connectivity with weighted phase lag index (WPLI). We further linked the excitability patterns with markers of stress coping capability. Results: After visual cue onset, we found increased theta power in the frontal lobe and decreased alpha power in the occipital lobe during CS+ relative to CS- trials. TMS of dmPFC increased theta power in the frontal lobe and reduced alpha power in the occipital lobe during CS+. The TMS pulse increased the information flow from the sensorimotor region to the prefrontal and occipital regions in the theta and alpha bands, respectively during CS+ compared to CS-. Pre-stimulation frontal theta power (0.75–1 s) predicted the magnitude of frontal theta power changes after stimulation (1–1.25 s). Finally, the increased frontal theta power during CS+ compared to CS- was positively correlated with stress coping behavior. Conclusion: Our results show that TMS over dmPFC transiently modulated the regional cortical excitability and the fronto-occipital information flows during fear processing, while the pre-stimulation frontal theta power determined the strength of achieved effects. The frontal theta power may serve as a biomarker for fear processing and stress-coping responses in individuals and could be clinically tested in mental disorders.
Collapse
Affiliation(s)
- Venkata C Chirumamilla
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nabin Koirala
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tamara Bonertz
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sarah von Grotthus
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
15
|
Thakur P, Shrivastava R, Shrivastava VK. Effects of exogenous oxytocin and atosiban antagonist on GABA in different region of brain. IBRO Rep 2019; 6:185-189. [PMID: 31211283 PMCID: PMC6562178 DOI: 10.1016/j.ibror.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 04/16/2019] [Indexed: 12/23/2022] Open
Abstract
Gamma amino butyric acid (GABA) is the primary inhibitory neurotransmitter in the vertebral central nervous system. It functions by altering the membrane conductance of Cl- ions, maintaining the membrane potential close to the resting potential. The hormone oxytocin (OT) has a central action where it acts as a neuromodulatory peptide and exerts its action depending upon the distribution of OT receptors (OTR) in the target site. OTRs are G-protein-coupled receptors (GPCRs) comprising different subunits (Gq, Gi, and Gs). The G- protein isoforms have the ability to activate different pathways, but specific agonists and antagonists may show different affinities to OTRs, depending on the specific G-protein isoform to which they are coupled. It is well documented that OTR distribution varies with age and species and in regions of the brain. In this study, we attempted to observe the impact of OT and atosiban (OTA), an OT antagonist, on GABA levels in different regions of the brain. Study animals were exposed intraperitoneally (i.p.) to normal saline (0.89%), OT 0.0116 mg/kg, and OTA 1 mg/kg in different combinations, for 30days. It was observed that OT and OTA administration modulated GABA levels in different regions of brain, while normal saline had no effect. It may be due to OTR receptor expression in different regions of the brain. This is significant because region-specific expression of different receptors could be important in the development of new drugs targeting specific neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Department of Biosciences, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Renu Shrivastava
- Sri Satya Sai College for Women BHEL, Bhopal, Madhya Pradesh 462024, India
| | - Vinoy K. Shrivastava
- Endocrinology Unit, Department of Biosciences, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| |
Collapse
|
16
|
Disinhibition of the prefrontal cortex leads to brain-wide increases in neuronal activation that are modified by spatial learning. Brain Struct Funct 2018; 224:171-190. [DOI: 10.1007/s00429-018-1769-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022]
|
17
|
Insel N, Guerguiev J, Richards BA. Irrelevance by inhibition: Learning, computation, and implications for schizophrenia. PLoS Comput Biol 2018; 14:e1006315. [PMID: 30067746 PMCID: PMC6089457 DOI: 10.1371/journal.pcbi.1006315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/13/2018] [Accepted: 06/15/2018] [Indexed: 11/18/2022] Open
Abstract
Symptoms of schizophrenia may arise from a failure of cortical circuits to filter-out irrelevant inputs. Schizophrenia has also been linked to disruptions in cortical inhibitory interneurons, consistent with the possibility that in the normally functioning brain, these cells are in some part responsible for determining which sensory inputs are relevant versus irrelevant. Here, we develop a neural network model that demonstrates how the cortex may learn to ignore irrelevant inputs through plasticity processes affecting inhibition. The model is based on the proposal that the amount of excitatory output from a cortical circuit encodes the expected magnitude of reward or punishment ("relevance"), which can be trained using a temporal difference learning mechanism acting on feedforward inputs to inhibitory interneurons. In the model, irrelevant and blocked stimuli drive lower levels of excitatory activity compared with novel and relevant stimuli, and this difference in activity levels is lost following disruptions to inhibitory units. When excitatory units are connected to a competitive-learning output layer with a threshold, the relevance code can be shown to "gate" both learning and behavioral responses to irrelevant stimuli. Accordingly, the combined network is capable of recapitulating published experimental data linking inhibition in frontal cortex with fear learning and expression. Finally, the model demonstrates how relevance learning can take place in parallel with other types of learning, through plasticity rules involving inhibitory and excitatory components, respectively. Altogether, this work offers a theory of how the cortex learns to selectively inhibit inputs, providing insight into how relevance-assignment problems may emerge in schizophrenia.
Collapse
Affiliation(s)
- Nathan Insel
- Department of Psychology, University of Montana, Missoula, Montana, United States of America
- * E-mail: (NI); (BAR)
| | - Jordan Guerguiev
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Blake A. Richards
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (NI); (BAR)
| |
Collapse
|
18
|
Piantadosi PT, Yeates DC, Floresco SB. Cooperative and dissociable involvement of the nucleus accumbens core and shell in the promotion and inhibition of actions during active and inhibitory avoidance. Neuropharmacology 2018; 138:57-71. [DOI: 10.1016/j.neuropharm.2018.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/07/2018] [Accepted: 05/21/2018] [Indexed: 11/28/2022]
|
19
|
Renard J, Szkudlarek HJ, Kramar CP, Jobson CEL, Moura K, Rushlow WJ, Laviolette SR. Adolescent THC Exposure Causes Enduring Prefrontal Cortical Disruption of GABAergic Inhibition and Dysregulation of Sub-Cortical Dopamine Function. Sci Rep 2017; 7:11420. [PMID: 28900286 PMCID: PMC5595795 DOI: 10.1038/s41598-017-11645-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic adolescent marijuana use has been linked to the later development of psychiatric diseases such as schizophrenia. GABAergic hypofunction in the prefrontal cortex (PFC) is a cardinal pathological feature of schizophrenia and may be a mechanism by which the PFC loses its ability to regulate sub-cortical dopamine (DA) resulting in schizophrenia-like neuropsychopathology. In the present study, we exposed adolescent rats to Δ-9-tetra-hydrocannabinol (THC), the psychoactive component in marijuana. At adulthood, we characterized the functionality of PFC GABAergic neurotransmission and its regulation of sub-cortical DA function using molecular, behavioral and in-vivo electrophysiological analyses. Our findings revealed a persistent attenuation of PFC GABAergic function combined with a hyperactive neuronal state in PFC neurons and associated disruptions in cortical gamma oscillatory activity. These PFC abnormalities were accompanied by hyperactive DAergic neuronal activity in the ventral tegmental area (VTA) and behavioral and cognitive abnormalities similar to those observed in psychiatric disorders. Remarkably, these neuronal and behavioral effects were reversed by pharmacological activation of GABAA receptors in the PFC. Together, these results identify a mechanistic link between dysregulated frontal cortical GABAergic inhibition and sub-cortical DAergic dysregulation, characteristic of well-established neuropsychiatric endophenotypes.
Collapse
Affiliation(s)
- Justine Renard
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Hanna J Szkudlarek
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Cecilia P Kramar
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Christina E L Jobson
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Kyra Moura
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Walter J Rushlow
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.,Dept. of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Steven R Laviolette
- Dept. of Anatomy and Cell Biology & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada. .,Dept. of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|
20
|
Auger ML, Meccia J, Floresco SB. Regulation of sustained attention, false alarm responding and implementation of conditional rules by prefrontal GABA A transmission: comparison with NMDA transmission. Psychopharmacology (Berl) 2017. [PMID: 28646451 DOI: 10.1007/s00213-017-4670-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RATIONALE Both prefrontal cortex (PFC) GABAA and NMDA transmission regulate attentional processes, yet how they may differentially regulate signal detection or other aspects of attention is unclear. OBJECTIVES We examined PFC GABAA and NMDA receptor regulation of attention using a sustained attention task (SAT) permitting identification of distinct forms of impairments. As this task requires implementation of conditional rules, we also investigated how reducing PFC GABA transmission affected performance of visual and auditory conditional discriminations. METHODS Male rats were well-trained on the SAT that required identifying whether a brief visual stimulus (500-50 ms) was present/absent by pressing one of two levers. They then received intra-PFC infusions of the GABAA antagonist bicuculline (12.5-50 ng), the NMDA antagonist MK-801 (6 μg), and i.p. injections of MK-801 (0.1-0.3 mg/kg) prior to testing. Separate groups were trained either on a similar task where the visual stimulus was presented for 2.5 s, or a task where presentation of one of two auditory cues required responding on a left or right lever. RESULTS Both doses of bicuculline impaired vigilance, selectively increasing errors during nonsignal trials. Intra-PFC MK-801 induced subtle impairments at short signal durations. Systemic MK-801 impaired performance and increased response latencies. Visual and auditory conditional discrimination was impaired by 50 ng, but not 12.5 ng of bicuculline. CONCLUSIONS These findings highlight a key role for PFC GABA transmission in reducing sensitivity to distractors during attentional performance. Furthermore, they reveal that disruption of GABA signaling can interfere with the ability to implement conditional rules.
Collapse
Affiliation(s)
- Meagan L Auger
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Juliet Meccia
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
21
|
Early neuromodulation prevents the development of brain and behavioral abnormalities in a rodent model of schizophrenia. Mol Psychiatry 2017; 23:943-951. [PMID: 28373685 PMCID: PMC5552352 DOI: 10.1038/mp.2017.52] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 12/18/2022]
Abstract
The notion that schizophrenia is a neurodevelopmental disorder in which neuropathologies evolve gradually over the developmental course indicates a potential therapeutic window during which pathophysiological processes may be modified to halt disease progression or reduce its severity. Here we used a neurodevelopmental maternal immune stimulation (MIS) rat model of schizophrenia to test whether early targeted modulatory intervention would affect schizophrenia's neurodevelopmental course. We applied deep brain stimulation (DBS) or sham stimulation to the medial prefrontal cortex (mPFC) of adolescent MIS rats and respective controls, and investigated its behavioral, biochemical, brain-structural and -metabolic effects in adulthood. We found that mPFC-DBS successfully prevented the emergence of deficits in sensorimotor gating, attentional selectivity and executive function in adulthood, as well as the enlargement of lateral ventricle volumes and mal-development of dopaminergic and serotonergic transmission. These data suggest that the mPFC may be a valuable target for effective preventive treatments. This may have significant translational value, suggesting that targeting the mPFC before the onset of psychosis via less invasive neuromodulation approaches may be a viable preventive strategy.
Collapse
|
22
|
Auger ML, Floresco SB. Prefrontal cortical GABAergic and NMDA glutamatergic regulation of delayed responding. Neuropharmacology 2017; 113:10-20. [DOI: 10.1016/j.neuropharm.2016.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 02/03/2023]
|
23
|
Selten MM, Meyer F, Ba W, Vallès A, Maas DA, Negwer M, Eijsink VD, van Vugt RWM, van Hulten JA, van Bakel NHM, Roosen J, van der Linden RJ, Schubert D, Verheij MMM, Kasri NN, Martens GJM. Increased GABA B receptor signaling in a rat model for schizophrenia. Sci Rep 2016; 6:34240. [PMID: 27687783 PMCID: PMC5043235 DOI: 10.1038/srep34240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 09/05/2016] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a complex disorder that affects cognitive function and has been linked, both in patients and animal models, to dysfunction of the GABAergic system. However, the pathophysiological consequences of this dysfunction are not well understood. Here, we examined the GABAergic system in an animal model displaying schizophrenia-relevant features, the apomorphine-susceptible (APO-SUS) rat and its phenotypic counterpart, the apomorphine-unsusceptible (APO-UNSUS) rat at postnatal day 20-22. We found changes in the expression of the GABA-synthesizing enzyme GAD67 specifically in the prelimbic- but not the infralimbic region of the medial prefrontal cortex (mPFC), indicative of reduced inhibitory function in this region in APO-SUS rats. While we did not observe changes in basal synaptic transmission onto LII/III pyramidal cells in the mPFC of APO-SUS compared to APO-UNSUS rats, we report reduced paired-pulse ratios at longer inter-stimulus intervals. The GABAB receptor antagonist CGP 55845 abolished this reduction, indicating that the decreased paired-pulse ratio was caused by increased GABAB signaling. Consistently, we find an increased expression of the GABAB1 receptor subunit in APO-SUS rats. Our data provide physiological evidence for increased presynaptic GABAB signaling in the mPFC of APO-SUS rats, further supporting an important role for the GABAergic system in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Martijn M. Selten
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Francisca Meyer
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Wei Ba
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Astrid Vallès
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neurosciences, Maastricht University, Maastricht, the Netherlands
| | - Dorien A. Maas
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Moritz Negwer
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Vivian D. Eijsink
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Ruben W. M. van Vugt
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Josephus A. van Hulten
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Nick H. M. van Bakel
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Joey Roosen
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Robert J. van der Linden
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Gerard J. M. Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
24
|
Hu M, Zong X, Zheng J, Mann JJ, Li Z, Pantazatos SP, Li Y, Liao Y, He Y, Zhou J, Sang D, Zhao H, Tang J, Chen H, Lv L, Chen X. Risperidone-induced topological alterations of anatomical brain network in first-episode drug-naive schizophrenia patients: a longitudinal diffusion tensor imaging study. Psychol Med 2016; 46:2549-2560. [PMID: 27338296 PMCID: PMC5242555 DOI: 10.1017/s0033291716001380] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND It remains unclear whether the topological deficits of the white matter network documented in cross-sectional studies of chronic schizophrenia patients are due to chronic illness or to other factors such as antipsychotic treatment effects. To answer this question, we evaluated the white matter network in medication-naive first-episode schizophrenia patients (FESP) before and after a course of treatment. METHOD We performed a longitudinal diffusion tensor imaging study in 42 drug-naive FESP at baseline and then after 8 weeks of risperidone monotherapy, and compared them with 38 healthy volunteers. Graph theory was utilized to calculate the topological characteristics of brain anatomical network. Patients' clinical state was evaluated using the Positive and Negative Syndrome Scale (PANSS) before and after treatment. RESULTS Pretreatment, patients had relatively intact overall topological organizations, and deficient nodal topological properties primarily in prefrontal gyrus and limbic system components such as the bilateral anterior and posterior cingulate. Treatment with risperidone normalized topological parameters in the limbic system, and the enhancement positively correlated with the reduction in PANSS-positive symptoms. Prefrontal topological impairments persisted following treatment and negative symptoms did not improve. CONCLUSIONS During the early phase of antipsychotic medication treatment there are region-specific alterations in white matter topological measures. Limbic white matter topological dysfunction improves with positive symptom reduction. Prefrontal deficits and negative symptoms are unresponsive to medication intervention, and prefrontal deficits are potential trait biomarkers and targets for negative symptom treatment development.
Collapse
Affiliation(s)
- M. Hu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute and Departments of Psychiatry and Radiology, Columbia University, 1051 Riverside Drive, Box 42, New York, NY 10032, USA
| | - X. Zong
- Mental Health Institute of the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - J. Zheng
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
| | - J. J. Mann
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute and Departments of Psychiatry and Radiology, Columbia University, 1051 Riverside Drive, Box 42, New York, NY 10032, USA
| | - Z. Li
- Mental Health Institute of the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - S. P. Pantazatos
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute and Departments of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Y. Li
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
| | - Y. Liao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience, David Geffen School of Medicine, Los Angeles, CA 90024, USA
| | - Y. He
- Mental Health Institute of the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - J. Zhou
- Mental Health Institute of the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - D. Sang
- Department of Radiology, Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, People’s Republic of China
| | - H. Zhao
- Department of Radiology, Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, People’s Republic of China
| | - J. Tang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience, David Geffen School of Medicine, Los Angeles, CA 90024, USA
| | - H. Chen
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
| | - L. Lv
- Department of Psychiatry, Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, People’s Republic of China
- Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Xinxiang Medical University, Xinxiang, Henan 453002, People’s Republic of China
| | - X. Chen
- Mental Health Institute of the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
- The China National Clinical Research Center for Mental Health Disorders, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
- National Technology Institute of Psychiatry, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, 139 Middle Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| |
Collapse
|
25
|
Glasgow J, Koshman Y, Samarel AM, Tseng KY, Scrogin K. Myocardial infarction sensitizes medial prefrontal cortex to inhibitory effect of locus coeruleus stimulation in rats. Psychopharmacology (Berl) 2016; 233:2581-92. [PMID: 27150078 PMCID: PMC5715661 DOI: 10.1007/s00213-016-4305-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 04/20/2016] [Indexed: 12/13/2022]
Abstract
RATIONALE Anxiety is a common comorbidity that develops after myocardial infarction and is now an established independent risk factor for cardiovascular mortality. OBJECTIVE Here, we assessed anxiety and mapped neural activity of forebrain regions that regulate anxiety in a rat model of myocardial infarction in order to identify sites of dysregulation. METHODS Anxiety responses to novel (open field) or aversive stimuli (discriminative auditory fear conditioning) were assessed in rats subjected to coronary artery ligation (CAL) or sham ligation. Forebrain metabolic activity was measured by cytochrome oxidase (CO) histochemistry. Changes in CO activity and the incidence of ventricular arrhythmias were also assessed during modulation of fear circuitry induced by electrical stimulation of the locus coeruleus. RESULTS Coronary artery ligation had negligible effects on open-field behavior, but increased expression of learned fear and impaired fear cue discrimination. Cytochrome oxidase activity was increased in the medial prefrontal cortex and in the lateral amygdala after CAL. Locus coeruleus stimulation reduced CO activity in the infralimbic medial prefrontal cortex only in rats subjected to CAL. Stimulation of the LC also elicited new ventricular arrhythmias in rats subjected to CAL. CONCLUSION Coronary artery ligation sensitizes the infralimbic medial prefrontal cortex to the inhibitory effects of locus coeruleus stimulation. Suppression of infralimbic medial prefrontal cortical activity may impair the ability of rats subjected to CAL to discriminate between cues that signal aversive and neutral events which, in turn, may promote excessive sympathetic activation of the cardiovascular system in response to innocuous stimuli.
Collapse
Affiliation(s)
- Jaimee Glasgow
- Graduate Program in Cell Biology, Neurobiology, and Anatomy, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Yevgeniya Koshman
- Cardiovascular Institute, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Allen M Samarel
- Cardiovascular Institute, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Kuei Y Tseng
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University, North Chicago, IL, USA
| | - Karie Scrogin
- Graduate Program in Cell Biology, Neurobiology, and Anatomy, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA.
- Cardiovascular Institute, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA.
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
26
|
Cassella SN, Hemmerle AM, Lundgren KH, Kyser TL, Ahlbrand R, Bronson SL, Richtand NM, Seroogy KB. Maternal immune activation alters glutamic acid decarboxylase-67 expression in the brains of adult rat offspring. Schizophr Res 2016; 171:195-9. [PMID: 26830319 PMCID: PMC4803111 DOI: 10.1016/j.schres.2016.01.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/21/2022]
Abstract
Activation of the maternal innate immune system, termed "maternal immune activation" (MIA), represents a common environmental risk factor for schizophrenia. Whereas evidence suggests dysregulation of GABA systems may underlie the pathophysiology of schizophrenia, a role for MIA in alteration of GABAergic systems is less clear. Here, pregnant rats received either the viral mimetic polyriboinosinic-polyribocytidilic acid or vehicle injection on gestational day 14. Glutamic acid decarboxylase-67 (GAD67) mRNA expression was examined in male offspring at postnatal day (P)14, P30 and P60. At P60, GAD67 mRNA was elevated in hippocampus and thalamus and decreased in prefrontal cortex of MIA offspring. MIA-induced alterations in GAD expression could contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Sarah N Cassella
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ann M Hemmerle
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kerstin H Lundgren
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Tara L Kyser
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Rebecca Ahlbrand
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Stefanie L Bronson
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Neil M Richtand
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; San Diego Veterans Affairs Healthcare System, San Diego, CA 92161, USA; Department of Psychiatry, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Kim B Seroogy
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
27
|
Piantadosi PT, Khayambashi S, Schluter MG, Kutarna A, Floresco SB. Perturbations in reward-related decision-making induced by reduced prefrontal cortical GABA transmission: Relevance for psychiatric disorders. Neuropharmacology 2016; 101:279-90. [DOI: 10.1016/j.neuropharm.2015.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 01/18/2023]
|
28
|
Tse MT, Piantadosi PT, Floresco SB. Prefrontal cortical gamma-aminobutyric acid transmission and cognitive function: drawing links to schizophrenia from preclinical research. Biol Psychiatry 2015; 77:929-39. [PMID: 25442792 DOI: 10.1016/j.biopsych.2014.09.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/22/2014] [Accepted: 09/15/2014] [Indexed: 12/28/2022]
Abstract
Cognitive dysfunction in schizophrenia is one of the most pervasive and debilitating aspects of the disorder. Among the numerous neural abnormalities that may contribute to schizophrenia symptoms, perturbations in markers for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), particularly within the frontal lobes, are some of the most reliable alterations observed at postmortem examination. However, how prefrontal GABA dysfunction contributes to cognitive impairment in schizophrenia remains unclear. We provide an overview of postmortem GABAergic perturbations in the brain affected by schizophrenia and describe circumstantial evidence linking these alterations to cognitive dysfunction. In addition, we conduct a survey of studies using neurodevelopmental, genetic, and pharmacologic rodent models that induce schizophrenia-like cognitive impairments, highlighting the convergence of these mechanistically distinct approaches to prefrontal GABAergic disruption. We review preclinical studies that have directly targeted prefrontal cortical GABAergic transmission using local application of GABAA receptor antagonists. These studies have provided an important link between GABA transmission and cognitive dysfunction in schizophrenia because they show that reducing prefrontal inhibitory transmission induces various cognitive, emotional, and dopaminergic abnormalities that resemble aspects of the disorder. These converging clinical and preclinical findings provide strong support for the idea that perturbations in GABA signaling drive certain forms of cognitive dysfunction in schizophrenia. Future studies using this approach will yield information to refine further a putative "GABA hypothesis" of schizophrenia.
Collapse
Affiliation(s)
- Maric T Tse
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick T Piantadosi
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stan B Floresco
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
29
|
Reichel JM, Nissel S, Rogel-Salazar G, Mederer A, Käfer K, Bedenk BT, Martens H, Anders R, Grosche J, Michalski D, Härtig W, Wotjak CT. Distinct behavioral consequences of short-term and prolonged GABAergic depletion in prefrontal cortex and dorsal hippocampus. Front Behav Neurosci 2015; 8:452. [PMID: 25628548 PMCID: PMC4292780 DOI: 10.3389/fnbeh.2014.00452] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/17/2014] [Indexed: 11/13/2022] Open
Abstract
GABAergic interneurons are essential for a functional equilibrium between excitatory and inhibitory impulses throughout the CNS. Disruption of this equilibrium can lead to various neurological or neuropsychiatric disorders such as epilepsy or schizophrenia. Schizophrenia itself is clinically defined by negative (e.g., depression) and positive (e.g., hallucinations) symptoms as well as cognitive dysfunction. GABAergic interneurons are proposed to play a central role in the etiology and progression of schizophrenia; however, the specific mechanisms and the time-line of symptom development as well as the distinct involvement of cortical and hippocampal GABAergic interneurons in the etiology of schizophrenia-related symptoms are still not conclusively resolved. Previous work demonstrated that GABAergic interneurons can be selectively depleted in adult mice by means of saporin-conjugated anti-vesicular GABA transporter antibodies (SAVAs) in vitro and in vivo. Given their involvement in schizophrenia-related disease etiology, we ablated GABAergic interneurons in the medial prefrontal cortex (mPFC) and dorsal hippocampus (dHPC) in adult male C57BL/6N mice. Subsequently we assessed alterations in anxiety, sensory processing, hyperactivity and cognition after long-term (>14 days) and short-term (<14 days) GABAergic depletion. Long-term GABAergic depletion in the mPFC resulted in a decrease in sensorimotor-gating and impairments in cognitive flexibility. Notably, the same treatment at the level of the dHPC completely abolished spatial learning capabilities. Short-term GABAergic depletion in the dHPC revealed a transient hyperactive phenotype as well as marked impairments regarding the acquisition of a spatial memory. In contrast, recall of a spatial memory was not affected by the same intervention. These findings emphasize the importance of functional local GABAergic networks for the encoding but not the recall of hippocampus-dependent spatial memories.
Collapse
Affiliation(s)
- Judith M Reichel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Research Group "Neuronal Plasticity" Munich, Germany
| | - Sabine Nissel
- Paul Flechsig Institute for Brain Research, University of Leipzig Leipzig, Germany
| | - Gabriela Rogel-Salazar
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Research Group "Neuronal Plasticity" Munich, Germany
| | - Anna Mederer
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Research Group "Neuronal Plasticity" Munich, Germany
| | - Karola Käfer
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Research Group "Neuronal Plasticity" Munich, Germany
| | - Benedikt T Bedenk
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Research Group "Neuronal Plasticity" Munich, Germany
| | | | - Rebecca Anders
- Paul Flechsig Institute for Brain Research, University of Leipzig Leipzig, Germany
| | - Jens Grosche
- Paul Flechsig Institute for Brain Research, University of Leipzig Leipzig, Germany ; Effigos AG Leipzig, Germany
| | | | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig Leipzig, Germany
| | - Carsten T Wotjak
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Research Group "Neuronal Plasticity" Munich, Germany
| |
Collapse
|
30
|
Abstract
BACKGROUND Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. METHODS We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates susceptibility to proactive interference. Male rats were well-trained to retrieve food from the same 4 arms of an 8-arm maze, receiving 5 trials/day (1-2 min intervals). RESULTS Infusions of the GABAA receptor antagonist bicuculline (12.5-50 ng) markedly increased working and reference memory errors and response latencies. Similar treatments also impaired short-term memory on an 8-baited arm task. These effects did not appear to be due to increased susceptibility to proactive interference. In contrast, PFC inactivation via infusion of GABA agonists baclofen/muscimol did not affect reference/working memory. In comparison to the pronounced effects on the 8-arm maze tasks, PFC GABAA antagonism only causes a slight and transient decrease in accuracy on a 2-arm spatial discrimination. CONCLUSIONS These findings demonstrate that prefrontal GABA hypofunction severely disrupts spatial reference and short-term memory and that disinhibition of the PFC can, in some instances, perturb memory processes not normally dependent on the frontal lobes. Moreover, these impairments closely resemble those observed in schizophrenic patients, suggesting that perturbation in PFC GABA signaling may contribute to these types of cognitive deficits associated with the disorder.
Collapse
Affiliation(s)
- Meagan L Auger
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver BC, Canada (Drs Auger and Floresco)
| | - Stan B Floresco
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver BC, Canada (Drs Auger and Floresco).
| |
Collapse
|