1
|
Hukema FW, Hetty S, Kagios C, Zelleroth S, Fanni G, Pereira MJ, Svensson MK, Sundbom M, Nilsson A, Andrén PE, Roman E, Eriksson JW. Abundance of dopamine and its receptors in the brain and adipose tissue following diet-induced obesity or caloric restriction. Transl Res 2025; 280:41-54. [PMID: 40345434 DOI: 10.1016/j.trsl.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
While obesity and type 2 diabetes (T2D) are associated with altered dopaminergic activity in the central nervous system and in adipose tissue (AT), the directions and underlying mechanisms remain inconclusive. Therefore, we characterized changes in the abundance of dopamine, its metabolites, and receptors DRD1 and DRD2 in the brain and AT upon dietary intervention or obesity. Male Wistar rats were fed either a standard pellet diet, a cafeteria diet inducing obesity and insulin resistance, or a calorie-restricted diet for 12 weeks. Abundance of dopamine and its receptors DRD1 and DRD2 were examined in brain regions relevant for feeding behavior and energy homeostasis. Furthermore, DRD1 and DRD2 protein levels were analyzed in rat inguinal and epidydimal AT and in human subcutaneous and omental AT from individuals with or without obesity. Rats with diet-induced obesity displayed higher dopamine levels, as well as DRD1 or DRD2 receptor levels in the caudate putamen and the nucleus accumbens core. Surprisingly, caloric restriction induced similar changes in DRD1 and DRD2, but not in dopamine levels, in the brain. Both diets reduced DRD1 abundance in inguinal and epidydimal AT, but upregulated DRD2 levels in inguinal AT. Furthermore, in human obesity, DRD1 protein levels were elevated only in omental AT, while DRD2 was upregulated in both omental and subcutaneous AT. These findings highlight dopaminergic responses to changes in energy balance, occurring both in the brain and AT. We propose that dopaminergic pathways are involved in tissue crosstalk during the development of obesity and T2D.
Collapse
Affiliation(s)
- Fleur W Hukema
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85, Uppsala, Sweden.
| | - Susanne Hetty
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85, Uppsala, Sweden.
| | - Christakis Kagios
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85, Uppsala, Sweden.
| | - Sofia Zelleroth
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden.
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85, Uppsala, Sweden.
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85, Uppsala, Sweden.
| | - Maria K Svensson
- Department of Medical Sciences, Renal Medicine, Uppsala University, 751 85, Uppsala, Sweden; Uppsala Clinical Research Center, Uppsala University, 751 85, Uppsala, Sweden.
| | - Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden.
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden.
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden.
| | - Erika Roman
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden; Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85, Uppsala, Sweden.
| |
Collapse
|
2
|
Darcey VL, Guo J, Chi M, Chung ST, Courville AB, Gallagher I, Herscovitch P, Howard R, La Noire M, Milley L, Schick A, Stagliano M, Turner S, Urbanski N, Yang S, Yim E, Zhai N, Zhou MS, Hall KD. Striatal dopamine tone is positively associated with adiposity in humans as determined by PET using dual dopamine type-2 receptor antagonist tracers. Mol Psychiatry 2025:10.1038/s41380-025-02960-y. [PMID: 40188315 DOI: 10.1038/s41380-025-02960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/08/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
The relationship between adiposity and dopamine type-2 receptor binding potential (D2BP) in the human brain has been repeatedly studied for >20 years with highly discrepant results, likely due to variable methodologies and differing study populations. We conducted a controlled inpatient feeding study to measure D2BP in the striatum using positron emission tomography with both [18F]fallypride and [11C]raclopride in pseudo-random order in 54 young adults with a wide range of body mass index (BMI 20-44 kg/m2). Within-subject D2BP measurements using the two tracers were moderately correlated (r = 0.47, p < 0.001). D2BP was negatively correlated with BMI as measured by [11C]raclopride (r = -0.51; p < 0.0001) but not [18F]fallypride (r = -0.01; p = 0.92) and these correlation coefficients were significantly different from each other (p < 0.001). Given that [18F]fallypride has greater binding affinity to dopamine type-2 receptors than [11C]raclopride, which is more easily displaced by endogenous dopamine, our results suggest that adiposity is positively associated with increased striatal dopamine tone.ClinicalTrials.gov Identifier: NCT03648892.
Collapse
Affiliation(s)
- Valerie L Darcey
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Center on Compulsive Behaviors, Intramural Research Program, NIH, Bethesda, MD, USA
| | - Juen Guo
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Meible Chi
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie T Chung
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amber B Courville
- Human Energy and Body Weight Regulation Core, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Isabelle Gallagher
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter Herscovitch
- Positron Emission Tomography Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Howard
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Melissa La Noire
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Milley
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex Schick
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael Stagliano
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara Turner
- Nutrition Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Urbanski
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shanna Yang
- Nutrition Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Eunha Yim
- University of Maryland, College Park, MD, USA
| | - Nan Zhai
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Megan S Zhou
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kevin D Hall
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Giacomel A, Martins D, Nordio G, Easmin R, Howes O, Selvaggi P, Williams SCR, Turkheimer F, De Groot M, Dipasquale O, Veronese M. Investigating dopaminergic abnormalities in schizophrenia and first-episode psychosis with normative modelling and multisite molecular neuroimaging. Mol Psychiatry 2025:10.1038/s41380-025-02938-w. [PMID: 40021831 DOI: 10.1038/s41380-025-02938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Molecular neuroimaging techniques, like PET and SPECT, offer invaluable insights into the brain's in-vivo biology and its dysfunction in neuropsychiatric patients. However, the transition of molecular neuroimaging into diagnostics and precision medicine has been limited to a few clinical applications, hindered by issues like practical feasibility, high costs, and high between-subject heterogeneity of neuroimaging measures. In this study, we explore the use of normative modelling (NM) to identify individual patient alterations by describing the physiological variability of molecular functions. NM potentially addresses challenges such as small sample sizes and diverse acquisition protocols typical of molecular neuroimaging studies. We applied NM to two PET radiotracers targeting the dopaminergic system ([11C]-(+)-PHNO and [18F]FDOPA) to create a reference-cohort model of healthy controls. The models were subsequently utilized on different independent cohorts of patients with psychosis in different disease stages and treatment outcomes. Our results showed that patients with psychosis exhibited a higher degree of extreme deviations (~3-fold increase) than controls, although this pattern was heterogeneous, with minimal overlap of extreme deviations topology (max 20%). We also confirmed that striatal [18F]FDOPA signal, when referenced to a normative distribution, can predict treatment response (striatal AUC ROC: 0.77-0.83). In conclusion, our results indicate that normative modelling can be effectively applied to molecular neuroimaging after proper harmonization, enabling insights into disease mechanisms and advancing precision medicine. In addition, the method is valuable in understanding the heterogeneity of patient populations and can contribute to maximising cost efficiency in studies aimed at comparing cases and controls.
Collapse
Affiliation(s)
- Alessio Giacomel
- Centre for Neuroimaging Sciences, Institute of Psychology, Psychiatry and Neuroscience (IoPPN), King's College London, London, UK.
| | - Daniel Martins
- Centre for Neuroimaging Sciences, Institute of Psychology, Psychiatry and Neuroscience (IoPPN), King's College London, London, UK
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Giovanna Nordio
- Centre for Neuroimaging Sciences, Institute of Psychology, Psychiatry and Neuroscience (IoPPN), King's College London, London, UK
| | - Rubaida Easmin
- Centre for Neuroimaging Sciences, Institute of Psychology, Psychiatry and Neuroscience (IoPPN), King's College London, London, UK
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychology, Psychiatry and Neuroscience (IoPPN), King's College London, London, UK
- MRC Laboratory of Medical Science, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Pierluigi Selvaggi
- Centre for Neuroimaging Sciences, Institute of Psychology, Psychiatry and Neuroscience (IoPPN), King's College London, London, UK
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Steven C R Williams
- Centre for Neuroimaging Sciences, Institute of Psychology, Psychiatry and Neuroscience (IoPPN), King's College London, London, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychology, Psychiatry and Neuroscience (IoPPN), King's College London, London, UK
| | - Marius De Groot
- GSK R&D, Clinical Pharmacology and Experimental Medicine, Clinical Imaging, Stevenage, UK
| | - Ottavia Dipasquale
- Centre for Neuroimaging Sciences, Institute of Psychology, Psychiatry and Neuroscience (IoPPN), King's College London, London, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychology, Psychiatry and Neuroscience (IoPPN), King's College London, London, UK.
- Department of Information Engineering, University of Padova, Padova, Italy.
| |
Collapse
|
4
|
Pais ML, Crisóstomo J, Abrunhosa A, Castelo-Branco M. Central dopamine receptors: Radiotracers unveiling the Role of dopaminergic tone in obesity. J Mol Med (Berl) 2025; 103:21-32. [PMID: 39630278 PMCID: PMC11739276 DOI: 10.1007/s00109-024-02501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025]
Abstract
Brain dopamine type 2 and 3 receptors (D2/3R) have been postulated to play a role in obesity. However, results from molecular neuroimaging studies exploring these receptors in obesity are not consensual. These inconsistencies may be due to the distinct characteristics of radiotracers that confound the interpretation of D2/3R assessment. Only three meta-analyses reported their results across radiotracers. Although all agree that obesity severity influences D2/3R availability, results vary for [11C]raclopride. Further, D2/3R assessment has been commonly interpreted as reflecting receptor density or availability. An alternative interpretation could be related to changes in endogenous central dopaminergic tone. The main question is whether the hypothesis of a quadratic relationship between dopaminergic tone and degree of obesity is suitable for the distinct characteristics of radiotracers. To answer this question and clarify the role of dopaminergic tone in obesity, we systematically reviewed this issue across radiotracers. Out of 514 articles, 15 articles were selected for review. Besides obesity severity, this study highlights the influence of radiotracer characteristics when assessing D2/3R. The tested hypothesis proved to be more suitable for radiotracers more susceptible to endogenous dopamine or with a lower affinity to D2/3R, supporting the quadratic relationship between dopaminergic tone and degree of obesity. While the role of D2/3R density in obesity may be relevant, dopaminergic tone seems to have a greater impact on the obesity-related differences found in these receptors. Finally, neuropsychological factors should be tested in addition to body mass index, as they may better reflect altered brain dopaminergic function.
Collapse
Affiliation(s)
- Marta Lapo Pais
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Joana Crisóstomo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Antero Abrunhosa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Montalban E, Giralt A, Taing L, Nakamura Y, Pelosi A, Brown M, de Pins B, Valjent E, Martin M, Nairn AC, Greengard P, Flajolet M, Hervé D, Gambardella N, Roussarie JP, Girault JA. Operant Training for Highly Palatable Food Alters Translating Messenger RNA in Nucleus Accumbens D 2 Neurons and Reveals a Modulatory Role of Ncdn. Biol Psychiatry 2024; 95:926-937. [PMID: 37579933 PMCID: PMC11059129 DOI: 10.1016/j.biopsych.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Highly palatable food triggers behavioral responses including strong motivation. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the long-lasting effects of highly palatable food on feeding behavior are poorly understood. METHODS We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral responses and dendritic spine modifications in the NAc. We compared the translating messenger RNA in NAc neurons identified by the type of dopamine receptors they express, depending on the kind of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn. RESULTS Operant conditioning for highly palatable food increased motivation for food even in well-fed mice. In wild-type mice, free choice between regular and highly palatable food increased weight compared with access to regular food only. Highly palatable food increased spine density in the NAc. In animals trained for highly palatable food, translating messenger RNAs were modified in NAc neurons expressing dopamine D2 receptors, mostly corresponding to striatal projection neurons, but not in neurons expressing D1 receptors. Knockout of Ncdn, an abundant downregulated gene, opposed the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting that downregulation may be a compensatory mechanism. CONCLUSIONS Our results emphasize the importance of messenger RNA alterations in D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.
Collapse
Affiliation(s)
- Enrica Montalban
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France.
| | - Albert Giralt
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Lieng Taing
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Yuki Nakamura
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Assunta Pelosi
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Mallory Brown
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Benoit de Pins
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, University of Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Miquel Martin
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain; Instituto de investigaciones médicas Hospital del Mar, Barcelona, Spain
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, Connecticut
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Denis Hervé
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | | | - Jean-Pierre Roussarie
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Jean-Antoine Girault
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
6
|
Walle R, Petitbon A, Fois GR, Varin C, Montalban E, Hardt L, Contini A, Angelo MF, Potier M, Ortole R, Oummadi A, De Smedt-Peyrusse V, Adan RA, Giros B, Chaouloff F, Ferreira G, de Kerchove d'Exaerde A, Ducrocq F, Georges F, Trifilieff P. Nucleus accumbens D1- and D2-expressing neurons control the balance between feeding and activity-mediated energy expenditure. Nat Commun 2024; 15:2543. [PMID: 38514654 PMCID: PMC10958053 DOI: 10.1038/s41467-024-46874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Accumulating evidence points to dysregulations of the Nucleus Accumbens (NAc) in eating disorders (ED), however its precise contribution to ED symptomatic dimensions remains unclear. Using chemogenetic manipulations in male mice, we found that activity of dopamine D1 receptor-expressing neurons of the NAc core subregion facilitated effort for a food reward as well as voluntary exercise, but decreased food intake, while D2-expressing neurons have opposite effects. These effects are congruent with D2-neurons being more active than D1-neurons during feeding while it is the opposite during running. Chronic manipulations of each subpopulations had limited effects on energy balance. However, repeated activation of D1-neurons combined with inhibition of D2-neurons biased behavior toward activity-related energy expenditure, whilst the opposite manipulations favored energy intake. Strikingly, concomitant activation of D1-neurons and inhibition of D2-neurons precipitated weight loss in anorexia models. These results suggest that dysregulations of NAc dopaminoceptive neurons might be at the core of EDs.
Collapse
Affiliation(s)
- Roman Walle
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| | - Anna Petitbon
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Giulia R Fois
- Univ. Bordeaux, CNRS, IMN, UMR5293 F-33000, Bordeaux, France
| | - Christophe Varin
- Laboratory of Neurophysiology, ULB Neuroscience Institute, WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Enrica Montalban
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Lola Hardt
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Andrea Contini
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Mylène Potier
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
- Bordeaux Sciences Agro, F-, 33175, Gradignan, France
| | - Rodrigue Ortole
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Asma Oummadi
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Roger A Adan
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, the Netherlands
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
- Université de Paris Cité, INCC UMR 8002, CNRS; F-75006, Paris, France
| | - Francis Chaouloff
- Endocannabinoids and NeuroAdaptation, NeuroCentre INSERM U1215, 33077, Bordeaux, France
- Université de Bordeaux, 33077, Bordeaux, France
| | - Guillaume Ferreira
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fabien Ducrocq
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Pierre Trifilieff
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| |
Collapse
|
7
|
de Laat B, Hoye J, Stanley G, Hespeler M, Ligi J, Mohan V, Wooten DW, Zhang X, Nguyen TD, Key J, Colonna G, Huang Y, Nabulsi N, Patel A, Matuskey D, Morris ED, Tinaz S. Intense exercise increases dopamine transporter and neuromelanin concentrations in the substantia nigra in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:34. [PMID: 38336768 PMCID: PMC10858031 DOI: 10.1038/s41531-024-00641-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons. Exercise has been reported to slow the clinical progression of PD. We evaluated the dopaminergic system of patients with mild and early PD before and after a six-month program of intense exercise. Using 18F-FE-PE2I PET imaging, we measured dopamine transporter (DAT) availability in the striatum and substantia nigra. Using NM-MRI, we evaluated the neuromelanin content in the substantia nigra. Exercise reversed the expected decrease in DAT availability into a significant increase in both the substantia nigra and putamen. Exercise also reversed the expected decrease in neuromelanin concentration in the substantia nigra into a significant increase. These findings suggest improved functionality in the remaining dopaminergic neurons after exercise. Further research is needed to validate our findings and to pinpoint the source of any true neuromodulatory and neuroprotective effects of exercise in PD in large clinical trials.
Collapse
Affiliation(s)
- Bart de Laat
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
| | - Jocelyn Hoye
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Gelsina Stanley
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | | | | | | | | | - Thanh D Nguyen
- Department of Radiology, Weil Cornell Medicine, New York, NY, USA
| | - Jose Key
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Giulia Colonna
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Amar Patel
- Department of Neurology, Yale University, New Haven, CT, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sule Tinaz
- Department of Neurology, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Pak K, Nummenmaa L. Brain dopamine receptor system is not altered in obesity: Bayesian and frequentist meta-analyses. Hum Brain Mapp 2023; 44:6552-6560. [PMID: 37950852 PMCID: PMC10681634 DOI: 10.1002/hbm.26534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023] Open
Abstract
Feeding induces dopamine release in the striatum, and a dysfunction of the dopaminergic reward system can lead to overeating, and obesity. Studies have reported inconsistent findings of dopamine receptor (DR) positron emission tomography scans in obesity. Here we investigated the association between DR availability and overweight/obesity using Bayesian and frequentist meta-analysis. We performed a systematic search of Embase, Medline, Scopus and Web of Science for studies that compared striatal DR availability between lean subjects and overweight/obese subjects. The standardized mean difference (Hedge's g) of DR availability was calculated after extraction of data from each study. Studies were divided into two groups according to the definition of overweight/obese subjects (body mass index [BMI] cutoff of 25 and 30 kg/m2 ). Both Bayesian and frequentist meta-analysis was done in R Statistical Software version 4.2.2 (The R Foundation for Statistical Computing). Nine studies were eligible for inclusion in this study. Three studies with C11-raclopride, one with C11-PNHO, two with F18-fallypride, one with I123-IBZM, one with C11-NMB and one with both C11-raclopride and C11-PNHO were included. In Bayesian meta-analysis, the standardized mean difference of DR availability between lean and overweight/obese subjects markedly overlapped with zero regardless of BMI cutoff for obesity. In frequentist meta-analysis, the pooled standardized mean difference of DR availability did not show the significant difference between lean and overweight/obese subjects. There was an effect of the radiopharmaceutical on the standardized mean difference of DR availability in meta-analysis of BMI cutoff of 25 kg/m2 . In conclusion, brain DR availability is not different between lean and overweight/obese subjects. However, the effect is dependent on the radiopharmaceutical and the degree of obesity. Further studies with multi-radiopharmaceutical in the same individuals are needed to understand the association between DR and obesity.
Collapse
Affiliation(s)
- Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research InstitutePusan National University HospitalBusanRepublic of Korea
- School of MedicinePusan National UniversityBusanRepublic of Korea
| | - Lauri Nummenmaa
- Turku PET CentreUniversity of TurkuTurkuFinland
- Turku PET CentreTurku University HospitalTurkuFinland
- Department of PsychologyUniversity of TurkuTurkuFinland
| |
Collapse
|
9
|
Galmiche M, Déchelotte P. Rôle de l’axe microbiote-intestin-cerveau dans la dérégulation du comportement alimentaire au cours de l’obésité et de l’hyperphagie boulimique : les mécanismes. NUTR CLIN METAB 2023; 37:2S16-2S25. [DOI: 10.1016/s0985-0562(24)00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Al‐Alsheikh AS, Alabdulkader S, Miras AD, Goldstone AP. Effects of bariatric surgery and dietary interventions for obesity on brain neurotransmitter systems and metabolism: A systematic review of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies. Obes Rev 2023; 24:e13620. [PMID: 37699864 PMCID: PMC10909448 DOI: 10.1111/obr.13620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/05/2023] [Accepted: 07/10/2023] [Indexed: 09/14/2023]
Abstract
This systematic review collates studies of dietary or bariatric surgery interventions for obesity using positron emission tomography and single-photon emission computed tomography. Of 604 publications identified, 22 met inclusion criteria. Twelve studies assessed bariatric surgery (seven gastric bypass, five gastric bypass/sleeve gastrectomy), and ten dietary interventions (six low-calorie diet, three very low-calorie diet, one prolonged fasting). Thirteen studies examined neurotransmitter systems (six used tracers for dopamine DRD2/3 receptors: two each for 11 C-raclopride, 18 F-fallypride, 123 I-IBZM; one for dopamine transporter, 123 I-FP-CIT; one used tracer for serotonin 5-HT2A receptor, 18 F-altanserin; two used tracers for serotonin transporter, 11 C-DASB or 123 I-FP-CIT; two used tracer for μ-opioid receptor, 11 C-carfentanil; one used tracer for noradrenaline transporter, 11 C-MRB); seven studies assessed glucose uptake using 18 F-fluorodeoxyglucose; four studies assessed regional cerebral blood flow using 15 O-H2 O (one study also used arterial spin labeling); and two studies measured fatty acid uptake using 18 F-FTHA and one using 11 C-palmitate. The review summarizes findings and correlations with clinical outcomes, eating behavior, and mechanistic mediators. The small number of studies using each tracer and intervention, lack of dietary intervention control groups in any surgical studies, heterogeneity in time since intervention and degree of weight loss, and small sample sizes hindered the drawing of robust conclusions across studies.
Collapse
Affiliation(s)
- Alhanouf S. Al‐Alsheikh
- Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
- Department of Community Health Sciences, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
| | - Shahd Alabdulkader
- Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
- Department of Health Sciences, College of Health and Rehabilitation SciencesPrincess Nourah Bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Alexander D. Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
- School of Medicine, Faculty of Life and Health SciencesUlster UniversityLondonderryUK
| | - Anthony P. Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College LondonHammersmith HospitalLondonUK
| |
Collapse
|
11
|
Darcey VL, Guo J, Chi M, Chung ST, Courville AB, Gallagher I, Herscovitch P, Howard R, LaNoire M, Milley L, Schick A, Stagliano M, Turner S, Urbanski N, Yang S, Yim E, Zhai N, Zhou MS, Hall KD. Striatal dopamine tone is positively associated with body mass index in humans as determined by PET using dual dopamine type-2 receptor antagonist tracers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.27.23296169. [PMID: 37886556 PMCID: PMC10602123 DOI: 10.1101/2023.09.27.23296169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The relationship between adiposity and dopamine type-2 receptor binding potential (D2BP) in the human brain has been repeatedly studied for >20 years with highly discrepant results, likely due to variable methodologies and differing study populations. We conducted a controlled inpatient feeding study to measure D2BP in the striatum using positron emission tomography with both [18F]fallypride and [11C]raclopride in pseudo-random order in 54 young adults with a wide range of body mass index (BMI 20-44 kg/m2). Within-subject D2BP measurements using the two tracers were moderately correlated (r=0.47, p<0.001). D2BP was negatively correlated with BMI as measured by [11C]raclopride (r= -0.51; p<0.0001) but not [18F]fallypride (r=-0.01; p=0.92) and these correlation coefficients were significantly different from each other (p<0.001). Given that [18F]fallypride has greater binding affinity to dopamine type-2 receptors than [11C]raclopride, which is more easily displaced by endogenous dopamine, our results suggest that adiposity is positively associated with increased striatal dopamine tone.
Collapse
Affiliation(s)
- Valerie L Darcey
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Center on Compulsive Behaviors, Intramural Research Program, NIH, Bethesda, MD, USA
| | - Juen Guo
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Meible Chi
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie T Chung
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amber B Courville
- Human Energy and Body Weight Regulation Core, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Isabelle Gallagher
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter Herscovitch
- Positron Emission Tomography Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Howard
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Melissa LaNoire
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Milley
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex Schick
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael Stagliano
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara Turner
- Nutrition Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Urbanski
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shanna Yang
- Nutrition Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Eunha Yim
- University of Maryland, College Park, MD, USA
| | - Nan Zhai
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Megan S Zhou
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kevin D Hall
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Bini J. The historical progression of positron emission tomography research in neuroendocrinology. Front Neuroendocrinol 2023; 70:101081. [PMID: 37423505 PMCID: PMC10530506 DOI: 10.1016/j.yfrne.2023.101081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The rapid and continual development of a number of radiopharmaceuticals targeting different receptor, enzyme and small molecule systems has fostered Positron Emission Tomography (PET) imaging of endocrine system actions in vivo in the human brain for several decades. PET radioligands have been developed to measure changes that are regulated by hormone action (e.g., glucose metabolism, cerebral blood flow, dopamine receptors) and actions within endocrine organs or glands such as steroids (e.g., glucocorticoids receptors), hormones (e.g., estrogen, insulin), and enzymes (e.g., aromatase). This systematic review is targeted to the neuroendocrinology community that may be interested in learning about positron emission tomography (PET) imaging for use in their research. Covering neuroendocrine PET research over the past half century, researchers and clinicians will be able to answer the question of where future research may benefit from the strengths of PET imaging.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
13
|
Ribeiro G, Maia A, Cotovio G, Oliveira FPM, Costa DC, Oliveira-Maia AJ. Striatal dopamine D2-like receptors availability in obesity and its modulation by bariatric surgery: a systematic review and meta-analysis. Sci Rep 2023; 13:4959. [PMID: 36973321 PMCID: PMC10042861 DOI: 10.1038/s41598-023-31250-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
There is significant evidence linking a 'reward deficiency syndrome' (RDS), comprising decreased availability of striatal dopamine D2-like receptors (DD2lR) and addiction-like behaviors underlying substance use disorders and obesity. Regarding obesity, a systematic review of the literature with a meta-analysis of such data is lacking. Following a systematic review of the literature, we performed random-effects meta-analyses to determine group differences in case-control studies comparing DD2lR between individuals with obesity and non-obese controls and prospective studies of pre- to post-bariatric surgery DD2lR changes. Cohen's d was used to measure effect size. Additionally, we explored factors potentially associated with group differences in DD2lR availability, such as obesity severity, using univariate meta-regression. In a meta-analysis including positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies, striatal DD2lR availability did not significantly differ between obesity and controls. However, in studies comprising patients with class III obesity or higher, group differences were significant, favoring lower DD2lR availability in the obesity group. This effect of obesity severity was corroborated by meta-regressions showing inverse associations between the body mass index (BMI) of the obesity group and DD2lR availability. Post-bariatric changes in DD2lR availability were not found, although a limited number of studies were included in this meta-analysis. These results support lower DD2lR in higher classes of obesity which is a more targeted population to explore unanswered questions regarding the RDS.
Collapse
Affiliation(s)
- Gabriela Ribeiro
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Av. de Brasília, Doca de Pedrouços, 1400-038, Lisboa, Portugal
- Lisbon Academic Medical Centre PhD Program, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
- Nova Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
- Nutrition and Metabolism Department, Nova Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
| | - Ana Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Av. de Brasília, Doca de Pedrouços, 1400-038, Lisboa, Portugal
- Nova Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira, 126, 1340-019, Lisboa, Portugal
| | - Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Av. de Brasília, Doca de Pedrouços, 1400-038, Lisboa, Portugal
- Nova Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira, 126, 1340-019, Lisboa, Portugal
| | - Francisco P M Oliveira
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Av. de Brasília, Doca de Pedrouços, 1400-038, Lisboa, Portugal
| | - Durval C Costa
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Av. de Brasília, Doca de Pedrouços, 1400-038, Lisboa, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Av. de Brasília, Doca de Pedrouços, 1400-038, Lisboa, Portugal.
- Nova Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| |
Collapse
|
14
|
Montalban E, Giralt A, Taing L, Nakamura Y, Pelosi A, Brown M, de Pins B, Valjent E, Martin M, Nairn AC, Greengard P, Flajolet M, Herv D, Gambardella N, Roussarie JP, Girault JA. Operant training for highly palatable food alters translating mRNA in nucleus accumbens D2 neurons and reveals a modulatory role of Neurochondrin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531496. [PMID: 36945487 PMCID: PMC10028890 DOI: 10.1101/2023.03.07.531496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND Highly palatable food triggers behavioral alterations reminiscent of those induced by addictive drugs. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the effects of highly palatable food on feeding behavior are poorly understood. METHODS We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral effects and dendritic spine modifications in the NAc. We compared the translating mRNA in NAc neurons identified by the type of dopamine receptors they express, depending on the type of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn (Neurochondrin). RESULTS Operant conditioning for highly palatable food increases motivation for food even in well-fed mice. In control mice, free access to regular or highly palatable food results in increased weight as compared to regular food only. Highly palatable food increases spine density in the NAc. In animals trained for highly palatable food, translating mRNAs are modified in NAc dopamine D2-receptor-expressing neurons, mostly corresponding to striatal projection neurons, but not in those expressing D1-receptors. Knock-out of Ncdn, an abundant down-regulated gene, opposes the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting down-regulation may be a compensatory mechanism. CONCLUSIONS Our results emphasize the importance of mRNA alterations D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.
Collapse
|
15
|
Pak K, Seok JW, Lee MJ, Kim K, Kim IJ. Dopamine receptor and dopamine transporter in obesity: A meta-analysis. Synapse 2023; 77:e22254. [PMID: 36099576 DOI: 10.1002/syn.22254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/09/2022] [Accepted: 09/08/2022] [Indexed: 01/29/2023]
Abstract
The brain plays a major role in controlling the desire to eat. This meta-analysis aimed to assess the association between dopamine receptor (DR) availability and dopamine transporter (DAT) availability, measured using positron emission tomography, and obesity. We performed a systematic search of MEDLINE (from inception to November 2020) and EMBASE (from inception to November 2020) for articles published in English using the keywords "dopamine receptor," "dopamine transporter," "obesity," and "neuroimaging." Body mass index (BMI) and the corresponding binding potential (BPND ) were extracted from figures in each study using Engauge Digitizer, version 12.1, and plotted for radiopharmaceuticals and regions of interest (ROIs). Five studies involving 119 subjects with DR and five studies including 421 subjects with DAT were eligible for inclusion in this study. In overweight or obese subjects with BMI of 25 kg/m2 or higher, DR availability from 11 C-Racloprie was negatively associated with BMI. However, DR availability from 11 C-PHNO was positively associated with BMI. DAT ratio was calculated after dividing DAT availabilities of overweight/obese BMI with mean DAT availabilities of normal BMI. The association between DAT ratio and BMI was not significant regardless of radiopharmaceuticals. In conclusion, dopamine plays a main role in the reward system with regard to obesity. Overweight and obese subjects had negative association between DR availability from 11 C-Raclopride and BMI. However, the association of DR availability with BMI was dependent on radiopharmaceuticals. DAT availability did not show the significant relationship with BMI regardless of radiopharmaceuticals.
Collapse
Affiliation(s)
- Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Ju Won Seok
- Department of Nuclear Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Myung Jun Lee
- Department of Neurology and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - In Joo Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
16
|
Joshi A, Schott M, la Fleur SE, Barrot M. Role of the striatal dopamine, GABA and opioid systems in mediating feeding and fat intake. Neurosci Biobehav Rev 2022; 139:104726. [PMID: 35691472 DOI: 10.1016/j.neubiorev.2022.104726] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/08/2021] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Food intake, which is a highly reinforcing behavior, provides nutrients required for survival in all animals. However, when fat and sugar consumption goes beyond the daily needs, it can favor obesity. The prevalence and severity of this health problem has been increasing with time. Besides covering nutrient and energy needs, food and in particular its highly palatable components, such as fats, also induce feelings of joy and pleasure. Experimental evidence supports a role of the striatal complex and of the mesolimbic dopamine system in both feeding and food-related reward processing, with the nucleus accumbens as a key target for reward or reinforcing-associated signaling during food intake behavior. In this review, we provide insights concerning the impact of feeding, including fat intake, on different types of receptors and neurotransmitters present in the striatal complex. Reciprocally, we also cover the evidence for a modulation of palatable food intake by different neurochemical systems in the striatal complex and in particular the nucleus accumbens, with a focus on dopamine, GABA and the opioid system.
Collapse
Affiliation(s)
- Anil Joshi
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Marion Schott
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Susanne Eva la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
17
|
Janssen LK, Horstmann A. Molecular Imaging of Central Dopamine in Obesity: A Qualitative Review across Substrates and Radiotracers. Brain Sci 2022; 12:486. [PMID: 35448017 PMCID: PMC9031606 DOI: 10.3390/brainsci12040486] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Dopamine is a neurotransmitter that plays a crucial role in adaptive behavior. A wealth of studies suggests obesity-related alterations in the central dopamine system. The most direct evidence for such differences in humans comes from molecular neuroimaging studies using positron emission tomography (PET) and single-photon emission computed tomography (SPECT). The aim of the current review is to give a comprehensive overview of molecular neuroimaging studies that investigated the relation between BMI or weight status and any dopamine target in the striatal and midbrain regions of the human brain. A structured literature search was performed and a summary of the extracted findings are presented for each of the four available domains: (1) D2/D3 receptors, (2) dopamine release, (3) dopamine synthesis, and (4) dopamine transporters. Recent proposals of a nonlinear relationship between severity of obesity and dopamine imbalances are described while integrating findings within and across domains, after which limitations of the review are discussed. We conclude that despite many observed associations between obesity and substrates of the dopamine system in humans, it is unlikely that obesity can be traced back to a single dopaminergic cause or consequence. For effective personalized prevention and treatment of obesity, it will be crucial to identify possible dopamine (and non-dopamine) profiles and their functional characteristics.
Collapse
Affiliation(s)
- Lieneke Katharina Janssen
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany;
- Institute of Psychology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany;
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
18
|
D3 Receptors and PET Imaging. Curr Top Behav Neurosci 2022; 60:251-275. [PMID: 35711027 DOI: 10.1007/7854_2022_374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This chapter encapsulates a short introduction to positron emission tomography (PET) imaging and the information gained by using this technology to detect changes of the dopamine 3 receptor (D3R) at the molecular level in vivo. We will discuss available D3R radiotracers, emphasizing [11C]PHNO. The focus, however, will be on PET findings in conditions including substance abuse, obesity, traumatic brain injury, schizophrenia, Parkinson's disease, and aging. Finally, there is a discussion about progress in producing next-generation selective D3R radiotracers.
Collapse
|
19
|
Neuroimaging and modulation in obesity and diabetes research: 10th anniversary meeting. Int J Obes (Lond) 2022; 46:718-725. [PMID: 34934178 PMCID: PMC8960390 DOI: 10.1038/s41366-021-01025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
|
20
|
NRM 2021 Abstract Booklet. J Cereb Blood Flow Metab 2021; 41:11-309. [PMID: 34905986 PMCID: PMC8851538 DOI: 10.1177/0271678x211061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Sauerzopf U, Weidenauer A, Dajic I, Bauer M, Bartova L, Meyer B, Nics L, Philippe C, Pfaff S, Pichler V, Mitterhauser M, Wadsak W, Hacker M, Kasper S, Lanzenberger R, Pezawas L, Praschak-Rieder N, Willeit M. Disrupted relationship between blood glucose and brain dopamine D2/3 receptor binding in patients with first-episode schizophrenia. NEUROIMAGE-CLINICAL 2021; 32:102813. [PMID: 34544031 PMCID: PMC8455866 DOI: 10.1016/j.nicl.2021.102813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023]
Abstract
An elemental function of brain dopamine is to coordinate cognitive and motor resources for successful exploitation of environmental energy sources. Dopamine transmission, goal-directed behavior, and glucose homeostasis are altered in schizophrenia patients prior to and after initiation of pharmacological treatment. Thus, we investigated the relationship between blood glucose levels and brain dopamine signaling in drug-naïve patients with first-episode psychosis. We quantified blood glucose levels and binding of the dopamine D2/3 receptor agonist radioligand (+)-[11C]-PHNO in 15 medication-naïve patients and 27 healthy volunteers employing positron emission tomography. Whole-brain voxel-wise linear model analysis identified two clusters of significant interaction between blood glucose levels and diagnosis on (+)-[11C]-PHNO binding-potential values. We observed positive relationships between blood glucose levels and binding-potential values in healthy volunteers but negative ones in patients with first episode psychosis in a cluster surviving rigorous multiple testing correction located in the in the right ventral tegmental area. Another cluster of homologous behavior, however at a lower level of statistical significance, comprised the ventral striatum and pallidum. Extracellular dopamine levels are a major determinant of (+)-[11C]-PHNO binding in the brain. In line with the concept that increased dopamine signaling occurs when goal-directed behavior is needed for restoring energy supply, our data indicate that in healthy volunteers, extracellular dopamine levels are high when blood glucose levels are low and vice-versa. This relationship is reversed in patients with first-episode psychosis, possibly reflecting an underlying pathogenic alteration that links two seemingly unrelated aspects of the illness: altered dopamine signaling and dysfunctional glucose homeostasis.
Collapse
Affiliation(s)
- U Sauerzopf
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Austria
| | - A Weidenauer
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Austria
| | - I Dajic
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Austria
| | - M Bauer
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - L Bartova
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Austria
| | - B Meyer
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Austria
| | - L Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - C Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - S Pfaff
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - V Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - M Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria; Ludwig-Boltzmann-Institute Applied Diagnostics, Vienna, Austria
| | - W Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria; Center for Biomarker Research in Medicine CBmed, Graz, Austria
| | - M Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - S Kasper
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Austria; Centre for Brain Research, Medical University of Vienna, Austria
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Austria
| | - L Pezawas
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Austria
| | - N Praschak-Rieder
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Austria
| | - M Willeit
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Austria.
| |
Collapse
|
22
|
Joshi A, Faivre F, la Fleur SE, Barrot M. Midbrain and Lateral Nucleus Accumbens Dopamine Depletion Affects Free-choice High-fat high-sugar Diet Preference in Male Rats. Neuroscience 2021; 467:171-184. [PMID: 34048800 DOI: 10.1016/j.neuroscience.2021.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022]
Abstract
Dopamine influences food intake behavior. Reciprocally, food intake, especially of palatable dietary items, can modulate dopamine-related brain circuitries. Among these reciprocal impacts, it has been observed that an increased intake of dietary fat results in blunted dopamine signaling and, to compensate this lowered dopamine function, caloric intake may subsequently increase. To determine how dopamine regulates food preference we performed 6-hydroxydopamine (6-OHDA) lesions, depleting dopamine in specific brain regions in male Sprague Dawley rats. Food preference was assessed by providing the rats with free choice access to control diet, fat, 20% sucrose and tap water. Rats with midbrain lesions targeting the substantia nigra (which is also a model of Parkinson's disease) consumed fewer calories, as reflected by a decrease in control diet intake, but they surprisingly displayed an increase in fat intake, without change in the sucrose solution intake compared to sham animals. To determine which of the midbrain dopamine projections may contribute to this effect, we next compared the impact of 6-OHDA lesions of terminal fields, targeting the dorsal striatum, the lateral nucleus accumbens and the medial nucleus accumbens. We found that 6-OHDA lesion of the lateral nucleus accumbens, but not of the dorsal striatum or the medial nucleus accumbens, led to increased fat intake. These findings indicate a role for lateral nucleus accumbens dopamine in regulating food preference, in particular the intake of fat.
Collapse
Affiliation(s)
- Anil Joshi
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Fanny Faivre
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Susanne Eva la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
23
|
Matuskey D, Angarita GA, Worhunsky P, Koohsari S, Gravel P, Pittman B, Gaiser EC, Gallezot JD, Nabulsi N, Huang Y, Carson RE, Potenza MN, Malison RT. Dopamine D 2/3 receptor availability in cocaine use disorder individuals with obesity as measured by [ 11C]PHNO PET. Drug Alcohol Depend 2021; 220:108514. [PMID: 33454626 PMCID: PMC7889720 DOI: 10.1016/j.drugalcdep.2021.108514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Positron emission tomography (PET) work with the dopamine D3 receptor (D3R) preferring ligand [11C]PHNO in obese individuals has demonstrated higher binding and positive correlations with body mass index (BMI) in otherwise healthy individuals. These findings implicated brain reward areas including the substantia nigra/ventral tegmental area (SN/VTA) and pallidum. In cocaine use disorder (CUD), similar SN/VTA binding profiles have been found compared to healthy control subjects. This study investigates whether BMI-[11C]PHNO relationships are similar in individuals with CUD. METHODS Non-obese CUD subjects (N = 12) were compared to age-matched obese CUD subjects (N = 14). All subjects underwent [11C]PHNO acquisition using a High Resolution Research Tomograph PET scanner. Parametric images were computed using the simplified reference tissue model with cerebellum as the reference region. [11C]PHNO measures of receptor availability were calculated and expressed as non-displaceable binding potential (BPND). RESULTS In between-group analyses, D2/3R availability in non-obese and obese CUD groups was not significantly different overall. BMI was inversely correlated withBPND in the SN/VTA (r = -0.45, p = 0.02 uncorrected) in all subjects. CONCLUSION These data suggest that obesity in CUD was not associated with significant differences in D2/3R availability. This in contrast to previous findings in non-CUD individuals that found increased availability of D3Rs in the SN/VTA associated with obesity. These findings could potentially reflect dysregulation of D3R in CUD, impacting how affected individuals respond to natural stimuli such as food.
Collapse
Affiliation(s)
- David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States; Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Neurology, Yale University, New Haven, CT, United States.
| | - Gustavo A. Angarita
- Department of Psychiatry, Yale University, New Haven, CT,Connecticut Mental Health Center, New Haven, CT
| | | | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT
| | - Paul Gravel
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT
| | - Brian Pittman
- Department of Psychiatry, Yale University, New Haven, CT
| | - Edward C. Gaiser
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT
| | | | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT
| | - Richard E. Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT
| | - Marc N. Potenza
- Department of Psychiatry, Yale University, New Haven, CT,Connecticut Mental Health Center, New Haven, CT.,Connecticut Council on Problem Gambling, Wethersfield, CT.,Department of Neuroscience, Yale University, New Haven, CT
| | - Robert T. Malison
- Department of Psychiatry, Yale University, New Haven, CT,Connecticut Mental Health Center, New Haven, CT
| |
Collapse
|
24
|
Boswell RG, Potenza MN, Grilo CM. The Neurobiology of Binge-eating Disorder Compared with Obesity: Implications for Differential Therapeutics. Clin Ther 2021; 43:50-69. [PMID: 33257092 PMCID: PMC7902428 DOI: 10.1016/j.clinthera.2020.10.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Emerging work indicates divergence in the neurobiologies of binge-eating disorder (BED) and obesity despite their frequent co-occurrence. This review highlights specific distinguishing aspects of BED, including elevated impulsivity and compulsivity possibly involving the mesocorticolimbic dopamine system, and discusses implications for differential therapeutics for BED. METHODS This narrative review describes epidemiologic, clinical, genetic, and preclinical differences between BED and obesity. Subsequently, this review discusses human neuroimaging work reporting differences in executive functioning, reward processing, and emotion reactivity in BED compared with obesity. Finally, on the basis of the neurobiology of BED, this review identifies existing and new therapeutic agents that may be most promising given their specific targets based on putative mechanisms of action relevant specifically to BED. FINDINGS BED is characterized by elevated impulsivity and compulsivity compared with obesity, which is reflected in divergent neurobiological characteristics and effective pharmacotherapies. Therapeutic agents that influence both reward and executive function systems may be especially effective for BED. IMPLICATIONS Greater attention to impulsivity/compulsivity-related, reward-related, and emotion reactivity-related processes may enhance conceptualization and treatment approaches for patients with BED. Consideration of these distinguishing characteristics and processes could have implications for more targeted pharmacologic treatment research and interventions.
Collapse
Affiliation(s)
- Rebecca G Boswell
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, USA.
| | - Marc N Potenza
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, USA; Connecticut Mental Health Center, New Haven, CT, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; Yale School of Medicine, Child Study Center, New Haven, CT, USA; Yale University, Department of Neuroscience, New Haven, CT, USA
| | - Carlos M Grilo
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, USA; Yale University, Department of Psychology, New Haven, CT, USA
| |
Collapse
|
25
|
Cumming P, Gründer G, Brinson Z, Wong DF. Applications, Advances, and Limitations of Molecular Imaging of Brain Receptors. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
26
|
García-García I, Morys F, Dagher A. Nucleus accumbens volume is related to obesity measures in an age-dependent fashion. J Neuroendocrinol 2020; 32:e12812. [PMID: 31758711 DOI: 10.1111/jne.12812] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
Motivation theories of obesity suggest that one of the brain mechanisms underlying pathological eating and weight gain is the dysregulation of dopaminergic circuits. Although these dysregulations likely occur at the microscopic level, studies on grey matter volume report macroscopic differences associated with obesity. One region suggested to play a key role in the pathophysiology of obesity is the nucleus accumbens (NAcc). We performed a meta-analysis of findings regarding NAcc volume and overweight/obesity. We additionally examined whether grey matter volume in the NAcc and other mesolimbic areas depends on the longitudinal trajectory of obesity, using the UK Biobank dataset. To this end, we analysed the data using a latent growth model, which identifies whether a certain variable of interest (eg, NAcc volume) is related to another variable's (body mass index [BMI]) initial values or longitudinal trajectories. Our meta-analysis showed that, overall, NAcc volume is positively related to BMI. However, further analyses revealed that the relationship between NAcc volume and BMI is dependent on age. For younger individuals, such a relationship is positive, whereas, for older adults, it is negative. This was corroborated by our analysis in the UK Biobank dataset, which includes older adults, where we found that a higher BMI was associated with a lower NAcc and thalamus volume. Overall, the present study suggests that increased NAcc volume at a young age might be a vulnerability factor for obesity, whereas, at an older age, decreased NAcc volume with increased BMI might be an effect of prolonged influences of neuroinflammation on the brain.
Collapse
Affiliation(s)
| | - Filip Morys
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
27
|
Gupta A, Osadchiy V, Mayer EA. Brain-gut-microbiome interactions in obesity and food addiction. Nat Rev Gastroenterol Hepatol 2020; 17:655-672. [PMID: 32855515 PMCID: PMC7841622 DOI: 10.1038/s41575-020-0341-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Normal eating behaviour is coordinated by the tightly regulated balance between intestinal and extra-intestinal homeostatic and hedonic mechanisms. By contrast, food addiction is a complex, maladaptive eating behaviour that reflects alterations in brain-gut-microbiome (BGM) interactions and a shift of this balance towards hedonic mechanisms. Each component of the BGM axis has been implicated in the development of food addiction, with both brain to gut and gut to brain signalling playing a role. Early-life influences can prime the infant gut microbiome and brain for food addiction, which might be further reinforced by increased antibiotic usage and dietary patterns throughout adulthood. The ubiquitous availability and marketing of inexpensive, highly palatable and calorie-dense food can further shift this balance towards hedonic eating through both central (disruptions in dopaminergic signalling) and intestinal (vagal afferent function, metabolic endotoxaemia, systemic immune activation, changes to gut microbiome and metabolome) mechanisms. In this Review, we propose a systems biology model of BGM interactions, which incorporates published reports on food addiction, and provides novel insights into treatment targets aimed at each level of the BGM axis.
Collapse
Affiliation(s)
- Arpana Gupta
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | - Vadim Osadchiy
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Emeran A Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA.
- Ahmanson-Lovelace Brain Mapping Center at University of California Los Angeles, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Naganawa M, Nabulsi N, Henry S, Matuskey D, Lin SF, Slieker L, Schwarz AJ, Kant N, Jesudason C, Ruley K, Navarro A, Gao H, Ropchan J, Labaree D, Carson RE, Huang Y. First-in-Human Assessment of 11C-LSN3172176, an M1 Muscarinic Acetylcholine Receptor PET Radiotracer. J Nucl Med 2020; 62:553-560. [PMID: 32859711 DOI: 10.2967/jnumed.120.246967] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/09/2020] [Indexed: 01/25/2023] Open
Abstract
This was a first-in-human study of the PET radiotracer 11C-LSN3172176 for the muscarinic acetylcholine receptor subtype M1. The objectives of the study were to determine the appropriate kinetic model to quantify binding of the tracer to M1 receptors, and the reliability of the chosen quantification method. Methods: Six healthy subjects completed the test-retest protocol, and 5 healthy subjects completed the baseline-scopolamine blocking protocol. Multiple modeling methods were applied to calculate total distribution volume (V T) and nondisplaceable binding potential (BP ND) in various brain regions. The reference region was selected from the blocking study. The occupancy plot was applied to compute receptor occupancy by scopolamine and nondisplaceable distribution volume. Results: Tracer uptake was highest in the striatum, followed by neocortical regions and white matter, and lowest in the cerebellum. Regional time-activity curves were fitted well by all models. The 2-tissue-compartment (2TC) model fits were good, but the 2TC parameters often could not be reliably estimated. Because V T correlated well between the 2TC and 1-tissue-compartment (1TC) models after exclusion of unreliable estimates, the 1TC model was chosen as the most appropriate. The cerebellum showed the lowest V T, consistent with preclinical studies showing little to no specific binding in the region. Further, cerebellar V T did not change between baseline and blocking scans, indicating that the cerebellum is a suitable reference region. The simplified reference tissue model (SRTM) slightly underestimated 1TC BP ND, and the simplified reference tissue model 2 (SRTM2) improved BP ND estimation. An 80-min scan was sufficient to quantify V T and BP ND The test-retest study showed excellent absolute test-retest variability for 1TC V T (≤5%) and BP ND (≤10%). In the baseline and blocking studies, occupancy values were lower in the striatum than in nonstriatal regions, as may be attributed to differences in regional acetylcholine concentrations. Conclusion: The 1TC and SRTM2 models are appropriate for quantitative analysis of 11C-LSN3172176 imaging data. 11C-LSN3172176 displayed excellent test-retest reproducibility and is a highly promising ligand to quantify M1 receptors in the human brain.
Collapse
Affiliation(s)
- Mika Naganawa
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | - Nabeel Nabulsi
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | - Shannan Henry
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | - David Matuskey
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | - Shu-Fei Lin
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | | | | | - Nancy Kant
- Eli Lilly and Company, Indianapolis, Indiana
| | | | - Kevin Ruley
- Eli Lilly and Company, Indianapolis, Indiana
| | | | - Hong Gao
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | - Jim Ropchan
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | - David Labaree
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | - Richard E Carson
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
29
|
Expression of Dopamine-Related Genes in Four Human Brain Regions. Brain Sci 2020; 10:brainsci10080567. [PMID: 32824878 PMCID: PMC7465182 DOI: 10.3390/brainsci10080567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
A better understanding of dopaminergic gene expression will inform future treatment options for many different neurologic and psychiatric conditions. Here, we utilized the National Institutes of Health’s Genotype-Tissue Expression project (GTEx) dataset to investigate genotype by expression associations in seven dopamine pathway genes (ANKK1, DBH, DRD1, DRD2, DRD3, DRD5, and SLC6A3) in and across four human brain tissues (prefrontal cortex, nucleus accumbens, substantia nigra, and hippocampus). We found that age alters expression of DRD1 in the nucleus accumbens and prefrontal cortex, DRD3 in the nucleus accumbens, and DRD5 in the hippocampus and prefrontal cortex. Sex was associated with expression of DRD5 in substantia nigra and hippocampus, and SLC6A3 in substantia nigra. We found that three linkage disequilibrium blocks of SNPs, all located in DRD2, were associated with alterations in expression across all four tissues. These demographic characteristic associations and these variants should be further investigated for use in screening, diagnosis, and future treatment of neurological and psychiatric conditions.
Collapse
|
30
|
Tavares GA, Torres A, de Souza JA. Early Life Stress and the Onset of Obesity: Proof of MicroRNAs' Involvement Through Modulation of Serotonin and Dopamine Systems' Homeostasis. Front Physiol 2020; 11:925. [PMID: 32848865 PMCID: PMC7399177 DOI: 10.3389/fphys.2020.00925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/09/2020] [Indexed: 01/12/2023] Open
Abstract
Healthy persons hold a very complex system for controlling energy homeostasis. The system functions on the interconnected way between the nutritional, endocrine, neural, and epigenetic regulation, which includes the microRNAs (miRNAs). Currently, it is well accepted that experiences of early life stress (ELS) carry modification of the central control of feeding behavior, one of the factors controlling energy homeostasis. Recently, studies give us a clue on the modulation of eating behavior, which is one of the main factors associated with the development of obesity. This clue connected the neural control through the serotonin (5HT) and dopamine (DA) systems with the fine regulation of miRNAs. The first pieces of evidence highlight the presence of the miR-16 in the regulation of the serotonin transporter (SERT) as well as the receptors 1a (5HT1A) and 2a (5HT2A). On the other hand, miR-504 is related to the dopamine receptor D2 (DRD2). As our knowledge advance, we expected to discover other important pathways for the regulation of the energy homeostasis. As both neurotransmission systems and miRNAs seem to be sensible to ELS, the aim of this review is to bring new insight about the involvement of miRNAs with a central role in the control of eating behavior focusing on the influences of ELS and regulation of neurotransmission systems.
Collapse
Affiliation(s)
- Gabriel Araujo Tavares
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France.,Laboratory of Neuroplasticity and Behavior, Graduate Program of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Amada Torres
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France.,Developmental Genetics and Molecular Physiology, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico - Campus Morelos, Cuernavaca, Mexico
| | - Julliet Araujo de Souza
- Laboratory of Neuroplasticity and Behavior, Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
31
|
Matuskey D, Tinaz S, Wilcox KC, Naganawa M, Toyonaga T, Dias M, Henry S, Pittman B, Ropchan J, Nabulsi N, Suridjan I, Comley RA, Huang Y, Finnema SJ, Carson RE. Synaptic Changes in Parkinson Disease Assessed with in vivo Imaging. Ann Neurol 2020; 87:329-338. [PMID: 31953875 PMCID: PMC7065227 DOI: 10.1002/ana.25682] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Parkinson disease is characterized by motor and nonmotor symptoms, reduced striatal dopamine signaling, and loss of dopamine neurons in the substantia nigra. It is now known that the pathological process in Parkinson disease may begin decades before the clinical diagnosis and include a variety of neuronal alterations in addition to the dopamine system. METHODS This study examined the density of all synapses with synaptic vesicle glycoprotein 2A (SV2A) in Parkinson disease subjects with mild bilateral disease (n = 12) and matched normal controls (n = 12) using in vivo high-resolution positron emission tomographic imaging as well as postmortem autoradiography in an independent sample with Parkinson disease (n = 15) and normal controls (n = 13) in the substantia nigra and putamen. RESULTS A group-by-brain region interaction effect (F10, 22 = 3.52, p = 0.007) was observed in the primary brain areas with in vivo SV2A binding. Post hoc analyses revealed that the Parkinson disease group exhibited lower SV2A in the substantia nigra (-45%; p < 0.001), red nucleus (-31%; p = 0.03), and locus coeruleus (-17%; p = 0.03). Exploratory analyses also revealed lower SV2A binding in clinically relevant cortical areas. Using autoradiography, we confirmed lower SV2A in the substantia nigra (-17%; p < 0.005) and nonsignificant findings in the putamen (-4%; p = 0.06). INTERPRETATION This work provides the first evidence of synaptic loss in brainstem nuclei involved in the pathogenesis of Parkinson disease in living patients. SV2A imaging holds promise for understanding synaptic changes central to the disease. Ann Neurol 2020;87:329-338.
Collapse
Affiliation(s)
- David Matuskey
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
- Department of PsychiatryYale UniversityNew HavenCT
- Department of NeurologyYale UniversityNew HavenCT
| | - Sule Tinaz
- Department of NeurologyYale UniversityNew HavenCT
| | - Kyle C. Wilcox
- Translational ImagingIntegrated Science and TechnologyAbbVieNorth ChicagoIL
| | - Mika Naganawa
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Takuya Toyonaga
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Mark Dias
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Shannan Henry
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | | | - Jim Ropchan
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Nabeel Nabulsi
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Ivonne Suridjan
- Translational ImagingIntegrated Science and TechnologyAbbVieNorth ChicagoIL
| | - Robert A. Comley
- Translational ImagingIntegrated Science and TechnologyAbbVieNorth ChicagoIL
| | - Yiyun Huang
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| | - Sjoerd J. Finnema
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
- Translational ImagingIntegrated Science and TechnologyAbbVieNorth ChicagoIL
| | - Richard E. Carson
- Positron Emission Tomography Research Center, Department of Radiology and Biomedical ImagingYale UniversityNew HavenCT
| |
Collapse
|
32
|
Radhakrishnan R, Matuskey D, Nabulsi N, Gaiser E, Gallezot JD, Henry S, Planeta B, Lin SF, Ropchan J, Huang Y, Carson RE, D'Souza DC. In vivo 5-HT 6 and 5-HT 2A receptor availability in antipsychotic treated schizophrenia patients vs. unmedicated healthy humans measured with [ 11C]GSK215083 PET. Psychiatry Res Neuroimaging 2020; 295:111007. [PMID: 31760336 DOI: 10.1016/j.pscychresns.2019.111007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 02/01/2023]
Abstract
While 5-HT6 receptor is a potential therapeutic target for cognitive impairment in schizophrenia (SCZ), in vivo 5-HT6 receptor availability following antipsychotic treatment has not been examined to-date. We examined the availability of 5-HT6 and 5-HT2A receptors following treatment with olanzapine, risperidone, aripiprazole and quetiapine in male patients with SCZ vs unmedicated age-matched healthy male controls (HC) using positron emission tomography (PET) imaging with [11C]GSK215083. [11C]GSK215083 has been shown to have selectivity for 5-HT6 in the striatum and 5-HT2A in the cortex. Patients with SCZ (n = 9) were scanned with [11C]GSK215083 on HR+ PET scanner at presumed steady-state trough and peak serum levels following 7 days of confirmed inpatient antipsychotic treatment. Time-activity curves in regions-of-interest were fitted with multilinear analysis-1 (MA1). Regional nondisplaceable binding potential (BPND) values were calculated using cerebellum as the reference region and corrected for partial volume effects. Compared to HCs (n = 9), olanzapine was associated with significantly lower BPND (range: 53%-95%) in ventral striatum, putamen, caudate and frontal cortex at both trough and peak scans. Risperidone was associated with significantly lower BPND in frontal cortex at both trough and peak scans. The study provides preliminary evidence that treatment with different second-generation antipsychotics results in differing profiles of 5-HT2A and 5-HT6 availability.
Collapse
Affiliation(s)
- Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, 300 George St., New Haven, CT 06520, United States.
| | - David Matuskey
- Department of Psychiatry, Yale University School of Medicine, 300 George St., New Haven, CT 06520, United States; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Edward Gaiser
- Department of Psychiatry, Yale University School of Medicine, 300 George St., New Haven, CT 06520, United States
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Shannan Henry
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Beata Planeta
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Shu-Fei Lin
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States; Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, 300 George St., New Haven, CT 06520, United States
| |
Collapse
|
33
|
García-García I, Morys F, Michaud A, Dagher A. Food Addiction, Skating on Thin Ice: a Critical Overview of Neuroimaging Findings. CURRENT ADDICTION REPORTS 2020. [DOI: 10.1007/s40429-020-00293-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Pak K, Seo S, Kim K, Lee MJ, Shin MJ, Suh S, Im HJ, Park JJ, Kim SJ, Kim IJ. Striatal dopamine transporter changes after glucose loading in humans. Diabetes Obes Metab 2020; 22:116-122. [PMID: 31478329 DOI: 10.1111/dom.13872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022]
Abstract
AIMS The dopamine transporter (DAT) actively translocates dopamine that is released from the presynaptic neurons across the membranes of nerve terminals into the extracellular space. We hypothesized that glucose loading-induced changes in striatal DAT levels could be associated with food intake in humans. MATERIALS AND METHODS An intravenous bolus injection of 18 F-FP-CIT was administered after infusion of glucose or placebo (normal saline), and emission data were acquired over 90 minutes in 33 healthy males. For a volume-of-interest-based analysis, an atlas involving sub-striatal regions of ventral striatum (VST), caudate nucleus and putamen was applied. DAT availability and binding potential (BPND ) were measured using a simplified reference tissue method with cerebellum as the reference. RESULTS The glucose-loaded BPND from the VST negatively correlated with body mass index (BMI), whereas the placebo-loaded BPND from the VST did not. After loading with glucose, there were substantial increases in BPND s: 18.3%, 71.7% and 34.0% on average in the VST, caudate nucleus and putamen, respectively. CONCLUSION Striatal DAT changes after glucose loading, and BMI is associated with glucose-loaded DAT availability, not with placebo-loaded DAT availability. DAT might have a role in the reward system of eating behavior.
Collapse
Affiliation(s)
- Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Seongho Seo
- Department of Neuroscience, College of Medicine, Gachon University, Incheon, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Myung Jun Lee
- Department of Neurology, Pusan National University Hospital, Busan, Republic of Korea
| | - Myung Jun Shin
- Department of Rehabilitation Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Sunghwan Suh
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Hyung-Jun Im
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jung-Jun Park
- Division of Sport Science, Pusan National University, Busan, Republic of Korea
| | - Seong-Jang Kim
- Department of Nuclear Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - In Joo Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
35
|
Osadchiy V, Mayer EA, Bhatt R, Labus JS, Gao L, Kilpatrick LA, Liu C, Tillisch K, Naliboff B, Chang L, Gupta A. History of early life adversity is associated with increased food addiction and sex-specific alterations in reward network connectivity in obesity. Obes Sci Pract 2019; 5:416-436. [PMID: 31687167 PMCID: PMC6819979 DOI: 10.1002/osp4.362] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neuroimaging studies have identified obesity-related differences in the brain's resting state activity. An imbalance between homeostatic and reward aspects of ingestive behaviour may contribute to obesity and food addiction. The interactions between early life adversity (ELA), the reward network and food addiction were investigated to identify obesity and sex-related differences, which may drive obesity and food addiction. METHODS Functional resting state magnetic resonance imaging was acquired in 186 participants (high body mass index [BMI]: ≥25: 53 women and 54 men; normal BMI: 18.50-24.99: 49 women and 30 men). Participants completed questionnaires to assess ELA (Early Traumatic Inventory) and food addiction (Yale Food Addiction Scale). A tripartite network analysis based on graph theory was used to investigate the interaction between ELA, brain connectivity and food addiction. Interactions were determined by computing Spearman rank correlations, thresholded at q < 0.05 corrected for multiple comparisons. RESULTS Participants with high BMI demonstrate an association between ELA and food addiction, with reward regions playing a role in this interaction. Among women with high BMI, increased ELA was associated with increased centrality of reward and emotion regulation regions. Men with high BMI showed associations between ELA and food addiction with somatosensory regions playing a role in this interaction. CONCLUSIONS The findings suggest that ELA may alter brain networks, leading to increased vulnerability for food addiction and obesity later in life. These alterations are sex specific and involve brain regions influenced by dopaminergic or serotonergic signalling.
Collapse
Affiliation(s)
- V. Osadchiy
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - E. A. Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Ahmanson‐Lovelace Brain Mapping CenterUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - R. Bhatt
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Pediatric Pain and Palliative Care ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - J. S. Labus
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - L. Gao
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - L. A. Kilpatrick
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - C. Liu
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - K. Tillisch
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Pediatric Pain and Palliative Care ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - B. Naliboff
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - L. Chang
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - A. Gupta
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity ProgramUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- David Geffen School of MedicineUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| |
Collapse
|
36
|
Pfaff S, Philippe C, Nics L, Berroterán-Infante N, Pallitsch K, Rami-Mark C, Weidenauer A, Sauerzopf U, Willeit M, Mitterhauser M, Hacker M, Wadsak W, Pichler V. Toward the Optimization of (+)-[ 11C]PHNO Synthesis: Time Reduction and Process Validation. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:4292596. [PMID: 31656452 PMCID: PMC6791232 DOI: 10.1155/2019/4292596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/19/2019] [Accepted: 08/30/2019] [Indexed: 11/17/2022]
Abstract
(+)-[11C]PHNO, a dopamine D2/3 receptor agonistic radiotracer, is applied for investigating the dopaminergic system via positron emission tomography (PET). An improved understanding of neuropsychiatric disorders associated with dysfunctions in the dopamine system and the underlying mechanism is a necessity in order to promote the development of new potential therapeutic drugs. In contrast to other broadly applied 11C-radiopharmaceuticals, the production of this radiotracer requires a challenging four-step radiosynthesis involving harsh reaction conditions and reactants as well as an inert atmosphere. Consequently, the production is prone to errors and troubleshooting after failed radiosyntheses remains time consuming. Hence, we aimed to optimize the radiosynthesis of (+)-[11C]PHNO for achieving better activity yields without loss of product quality. Therefore, we synthesized (+)-[11C]PHNO and omitted all heating and cooling steps leading to higher activity yields. As a result, radiosynthesis fully conducted at room temperature led to a time-reduced production procedure that saves about 5 min, which is an appreciable decay-prevention of around 15% of the activity yield. Additionally, we established a troubleshooting protocol by investigating reaction intermediates, byproducts, and impurities. Indeed, partial runs enabled the assignment of byproducts to their associated error source. Finally, we were able to generate a decision tree facilitating error detection in (+)-[11C]PHNO radiosynthesis.
Collapse
Affiliation(s)
- Sarah Pfaff
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Neydher Berroterán-Infante
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Christina Rami-Mark
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Ana Weidenauer
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Ulrich Sauerzopf
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Matthäus Willeit
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Ludwig-Boltzmann-Institute Applied Diagnostics, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- CBmed GmbH-Center for Biomarker Research in Medicine, Graz, Austria
| | - Verena Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Caravaggio F, Worhunsky P, Graff-Guerrero A, Matuskey D. Further in vivo characterization of [ 11 C]-(+)-PHNO uptake into a retina-like region of interest in humans. Synapse 2019; 74:e22135. [PMID: 31553807 DOI: 10.1002/syn.22135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/20/2019] [Indexed: 11/12/2022]
Abstract
The neurotransmitter dopamine is present in the retina and is involved in several modulatory functions. Unlike in rodents, dopamine D3 receptors are expressed in the retina of humans. Recently, uptake of the D3 receptor-preferring radiotracer [11 C]-(+)-PHNO has been observed in a retina-like region of interest (ROI) in humans. Here, we attempted to quantify [11 C]-(+)-PHNO uptake into this ROI using an independent sample, employing an extended scan acquisition time (120 min) and arterial kinetic modeling. Data from 14 healthy controls were analyzed (Mean Age: 38.41 ± 9.55, 3 female), 8 of which provided arterial line input function data (Mean Age: 41.07 ± 7.82, 3 female). Using Ichise's multilinear analysis (MA1) method, it was possible to quantify the volume of distribution (VT ) of [11 C]-(+)-PHNO in this retina-like region (Mean VT = 13.56 ± 3.52; Mean χ2 = 2.08 ± 2.20). Notably, the shape of the time activity curve resembled closely that of the globus pallidus. Moreover, the VT values in the retina correlated well with binding potential (BPND ) values calculated using the simplified reference tissue model (Mean BPND = 2.11 ± .94; Mean χ2 = 5.76 ± 2.56), employing the cerebellum as the reference region (r = .76, r2 = .58). In summary, we provide evidence that the in vivo uptake of [11 C]-(+)-PHNO into a retina-like ROI in humans can be quantified using both arterial blood sampling (VT ) and simplified reference tissue methods (BPND ).
Collapse
Affiliation(s)
- Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Patrick Worhunsky
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - David Matuskey
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA.,PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA.,Department of Neurology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
38
|
Social status and demographic effects of the kappa opioid receptor: a PET imaging study with a novel agonist radiotracer in healthy volunteers. Neuropsychopharmacology 2019; 44:1714-1719. [PMID: 30928993 PMCID: PMC6785144 DOI: 10.1038/s41386-019-0379-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/22/2019] [Indexed: 12/21/2022]
Abstract
Kappa opioid receptors (KORs) have been characterized as an aversive system in the brain and implicated in social behavior in preclinical models. This work investigated the effect of social status on the KOR system in humans using positron emission tomography (PET) imaging with the novel KOR agonist radiotracer [11C]EKAP. Eighteen healthy participants (mean age 41.2 ± 9.3) completed the Barratt Simplified Measure of Social Status (BSMSS), an MRI and an [11C]EKAP PET scan on the High Resolution Research Tomograph. Arterial blood sampling and metabolite analysis were conducted to obtain the input function. Regions of interest were based upon an MR template and included the reward/aversion areas of the brain. The multilinear analysis-1 (MA1) method was applied to the regional time-activity curves (TACs) to calculate [11C]EKAP regional volume of distribution (VT). Mixed models and Pearson correlation coefficients were used for body mass index (BMI), gender and age, with age being dropped in subsequent analyses because of nonsignificance. An overall effect of primary ROIs (F7, 112 7.43, p < 0.0001), BSMSS score (F1, 13 7.45, p = 0.02), BMI (F1, 13 23.5, p < 0.001), and gender (F1, 13 23.75, p < 0.001), but not age (F1, 13 1.12, p = 0.35) was observed. Regional [11C]EKAP VT and BSMSS were found to be negatively correlated in the amygdala (r = -0.69, p < 0.01), anterior cingulate cortex (r = -0.56, p = 0.02), caudate (r = -0.66, p < 0.01), frontal cortex (r = -0.52, p = 0.04), hippocampus (r = -0.60, p = 0.01), pallidum (r = -0.59, p = 0.02), putamen (r = -0.62, p = 0.01), and ventral striatum (r = -0.66, p < 0.01). In secondary (non-reward) regions, correlations of [11C]EKAP VT and BSMSS were nonsignificant with the exception of the insula. There was an inverse correlation between social status and KOR levels that was largely specific to the reward/aversion (e.g., saliency) areas of the brain. This finding suggests the KOR system may act as a mediator for the negative effects of social behaviors in humans.
Collapse
|
39
|
Ducrocq F, Hyde A, Fanet H, Oummadi A, Walle R, De Smedt-Peyrusse V, Layé S, Ferreira G, Trifilieff P, Vancassel S. Decrease in Operant Responding Under Obesogenic Diet Exposure is not Related to Deficits in Incentive or Hedonic Processes. Obesity (Silver Spring) 2019; 27:255-263. [PMID: 30597761 DOI: 10.1002/oby.22358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE A growing body of evidence suggests that obesity could result from alterations in reward processing. In rodent models, chronic exposure to an obesogenic diet leads to blunted dopamine signaling and related incentive responding. This study aimed to determine which reward-related behavioral dimensions are actually impacted by obesogenic diet exposure. METHODS Mice were chronically exposed to an obesogenic diet. Incentive and hedonic processes were tested through operant conditioning and licking microstructures, respectively. In parallel, mesolimbic dopamine transmission was assessed using microdialysis. RESULTS Prolonged high-fat (HF) diet exposure led to blunted mesolimbic dopamine release, paralleled by a decrease in operant responding in all schedules tested. HF-fed and control animals similarly decreased their operant responding in an effort-based choice task, and HF-fed animals displayed an overall lower calorie intake in this task. Analysis of the licking microstructures during consumption of a freely accessible reward suggested a decrease in basal hunger and a potentiation of gastrointestinal inhibition in HF-fed animals, without changes in hedonic reactivity. CONCLUSIONS These results suggest that the decrease in operant responding under prolonged HF diet exposure is mainly driven by decrease in hunger as well as stronger postingestive negative feedback mechanisms, rather than by a decrease in incentive or hedonic responses.
Collapse
Affiliation(s)
- Fabien Ducrocq
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
| | - Alexia Hyde
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
| | - Hortense Fanet
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Asma Oummadi
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
| | - Roman Walle
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
| | - Véronique De Smedt-Peyrusse
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Sophie Layé
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Guillaume Ferreira
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Pierre Trifilieff
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Sylvie Vancassel
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| |
Collapse
|
40
|
van Galen KA, Ter Horst KW, Booij J, la Fleur SE, Serlie MJ. The role of central dopamine and serotonin in human obesity: lessons learned from molecular neuroimaging studies. Metabolism 2018; 85:325-339. [PMID: 28970033 DOI: 10.1016/j.metabol.2017.09.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Obesity results from an imbalance between energy intake and expenditure, and many studies have aimed to determine why obese individuals continue to (over)consume food under conditions of caloric excess. The two major "neurotransmitter hypotheses" of obesity state that increased food intake is partially driven by decreased dopamine-mediated reward and decreased serotonin-mediated homeostatic feedback in response to food intake. Using molecular neuroimaging studies to visualize and quantify aspects of the central dopamine and serotonin systems in vivo, recent PET and SPECT studies have also implicated alterations in these systems in human obesity. The interpretation of these data, however, is more complex than it may appear. Here, we discuss important characteristics and limitations of current radiotracer methods and use this framework to comprehensively review the available human data on central dopamine and serotonin in obesity. On the basis of the available evidence, we conclude that obesity is associated with decreased central dopaminergic and serotonergic signaling and that future research, especially in long-term follow-up and interventional settings, is needed to advance our understanding of the neuronal pathophysiology of obesity in humans.
Collapse
Affiliation(s)
- Katy A van Galen
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands
| | - Kasper W Ter Horst
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands; Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands.
| |
Collapse
|
41
|
Radhakrishnan R, Nabulsi N, Gaiser E, Gallezot JD, Henry S, Planeta B, Lin SF, Ropchan J, Williams W, Morris E, D'Souza DC, Huang Y, Carson RE, Matuskey D. Age-Related Change in 5-HT 6 Receptor Availability in Healthy Male Volunteers Measured with 11C-GSK215083 PET. J Nucl Med 2018; 59:1445-1450. [PMID: 29626125 DOI: 10.2967/jnumed.117.206516] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/21/2018] [Indexed: 12/23/2022] Open
Abstract
Serotonin receptor 6 (5-hydroxytrypamine-6, or 5-HT6) is a potential therapeutic target given its distribution in brain regions that are important in depression, anxiety, and cognition. This study sought to investigate the effects of age on 5-HT6 receptor availability using 11C-GSK215083, a PET ligand with affinity for 5-HT6 in the striatum and 5-HT2A in the cortex. Methods: Twenty-eight healthy male volunteers (age range, 23-52 y) were scanned with 11C-GSK215083 PET. Time-activity curves in regions of interest were fitted using a multilinear analysis method. Nondisplaceable binding potential (BPND) was calculated using the cerebellum as the reference region and corrected for partial-volume effects. Results: In 5-HT6-rich areas, regional 11C-GSK215083 showed a negative correlation between BPND and age in the caudate (r = -0.41, P = 0.03) (14% change per decade) and putamen (r = -0.30, P = 0.04) (11% change per decade) but not in the ventral striatum or pallidum. A negative correlation with age was also seen in cortical regions (r = -0.41, P = 0.03) (7% change per decade), consistent with the literature on 5-HT2A availability. Conclusion: To our knowledge, this was the first in vivo study on humans to examine the effect of age on 5-HT6 receptor availability. The study demonstrated a significant age-related decline in 5-HT6 availability (BPND) in the caudate and putamen.
Collapse
Affiliation(s)
- Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; and
| | - Edward Gaiser
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; and
| | - Shannan Henry
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; and
| | - Beata Planeta
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; and
| | - Shu-Fei Lin
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; and
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; and
| | - Wendol Williams
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Evan Morris
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; and.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; and
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; and.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - David Matuskey
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut .,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
42
|
Caravaggio F, Ku Chung J, Plitman E, Boileau I, Gerretsen P, Kim J, Iwata Y, Patel R, Chakravarty MM, Remington G, Graff-Guerrero A. The relationship between subcortical brain volume and striatal dopamine D 2/3 receptor availability in healthy humans assessed with [ 11 C]-raclopride and [ 11 C]-(+)-PHNO PET. Hum Brain Mapp 2017; 38:5519-5534. [PMID: 28752565 DOI: 10.1002/hbm.23744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/21/2017] [Accepted: 07/16/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Abnormalities in dopamine (DA) and brain morphology are observed in several neuropsychiatric disorders. However, it is not fully understood how these abnormalities may relate to one another. For such in vivo findings to be used as biomarkers for neuropsychiatric disease, it must be understood how variability in DA relates to brain structure under healthy conditions. We explored how the availability of striatal DA D2/3 receptors (D2/3 R) is related to the volume of subcortical brain structures in a sample of healthy humans. Differences in D2/3 R availability measured with an antagonist radiotracer ([11 C]-raclopride) versus an agonist radiotracer ([11 C]-(+)-PHNO) were examined. METHODS Data from 62 subjects scanned with [11 C]-raclopride (mean age = 38.98 ± 14.45; 23 female) and 68 subjects scanned with [11 C]-(+)-PHNO (mean age = 38.54 ± 14.59; 25 female) were used. Subcortical volumes were extracted from T1-weighted images using the Multiple Automatically Generated Templates (MAGeT-Brain) algorithm. Partial correlations were used controlling for age, gender, and total brain volume. RESULTS For [11 C]-(+)-PHNO, ventral caudate volumes were positively correlated with BPND in the dorsal caudate and globus pallidus (GP). Ventral striatum (VS) volumes were positively correlated with BPND in the VS. With [11 C]-raclopride, BPND in the VS was negatively correlated with subiculum volume of the hippocampus. Moreover, BPND in the GP was negatively correlated with the volume of the lateral posterior nucleus of the thalamus. CONCLUSION Findings are purely exploratory and presented corrected and uncorrected for multiple comparisons. We hope they will help inform the interpretation of future PET studies where concurrent changes in D2/3 R and brain morphology are observed. Hum Brain Mapp 38:5519-5534, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Jun Ku Chung
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Isabelle Boileau
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Raihaan Patel
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, H4H 1R3, Canada.,Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - M Mallar Chakravarty
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, H4H 1R3, Canada.,Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Gary Remington
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| |
Collapse
|
43
|
Small DM. Dopamine Adaptations as a Common Pathway for Neurocognitive Impairment in Diabetes and Obesity: A Neuropsychological Perspective. Front Neurosci 2017; 11:134. [PMID: 28400713 PMCID: PMC5368264 DOI: 10.3389/fnins.2017.00134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/06/2017] [Indexed: 01/06/2023] Open
Abstract
Evidence accumulates linking obesity and diabetes with cognitive dysfunction. At present the mechanism(s) underlying these associations and the relative contribution of diet, adiposity, and metabolic dysfunction are unknown. In this perspective key gaps in knowledge are outlined and an initial sketch of a neuropsychological profile is developed that points toward a critical role for dopamine (DA) adaptations in neurocognitive impairment secondary to diabetes and obesity. The precise mechanisms by which diet, metabolic dysfunction, and adiposity influence the DA system to impact cognition remains unclear and is an important direction for future research.
Collapse
Affiliation(s)
- Dana M Small
- The John B Pierce LaboratoryNew Haven, CT, USA; Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
44
|
Kravitz AV, O'Neal TJ, Friend DM. Do Dopaminergic Impairments Underlie Physical Inactivity in People with Obesity? Front Hum Neurosci 2016; 10:514. [PMID: 27790107 PMCID: PMC5063846 DOI: 10.3389/fnhum.2016.00514] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/28/2016] [Indexed: 01/15/2023] Open
Abstract
Obesity is associated with physical inactivity, which exacerbates the negative health consequences of obesity. Despite a wide consensus that people with obesity should exercise more, there are few effective methods for increasing physical activity in people with obesity. This lack is reflected in our limited understanding of the cellular and molecular causes of physical inactivity in obesity. We hypothesize that impairments in dopamine signaling contribute to physical inactivity in people with obesity, as in classic movement disorders such as Parkinson's disease. Here, we review two lines of evidence supporting this hypothesis: (1) chronic exposure to obesogenic diets has been linked to impairments in dopamine synthesis, release, and receptor function, particularly in the striatum, and (2) striatal dopamine is necessary for the proper control of movement. Identifying the biological determinants of physical inactivity may lead to more effective strategies for increasing physical activity in people with obesity, as well as improve our understanding of why it is difficult for people with obesity to alter their levels of physical activity.
Collapse
Affiliation(s)
- Alexxai V Kravitz
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney DiseasesBethesda, MD, USA; National Institutes of Health, National Institute on Drug AbuseBaltimore, MD, USA
| | - Timothy J O'Neal
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases Bethesda, MD, USA
| | - Danielle M Friend
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases Bethesda, MD, USA
| |
Collapse
|
45
|
Oxenkrug G, Cornicelli J, van der Hart M, Roeser J, Summergrad P. Kynurenic acid, an aryl hydrocarbon receptor ligand, is elevated in serum of Zucker fatty rats. INTEGRATIVE MOLECULAR MEDICINE 2016; 3:761-763. [PMID: 27738521 PMCID: PMC5058339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Obesity is an increasingly urgent global problem and the molecular mechanisms of obesity are not fully understood. Dysregulation of the tryptophan (Trp) - kynurenine (Kyn) metabolic pathway (TKP) have been suggested as a mechanism of obesity and described in obese humans and in animal models of obesity. However, to the best of our knowledge, TKP metabolism has not been studied in leptin-receptor-deficient Zucker fatty rats (ZFR) (fa/fa), the best-known and most widely used rat model of obesity. We were interested to determine if there are any deviations of TKP in ZFR. Concentrations of major TKP metabolites were evaluated (HPLC- MS method) in serum of ZFR (fa/fa) and age-matched lean rats (FA/-). Concentrations of kynurenic acid (KYNA) were 50% higher in ZFR than in lean rats (p<0.004, Mann-Whitney two-tailed test). Anthranilic acid (AA) concentrations, while elevated by 33%, did not reach statistical significance (p<0.04, one-tailed test). Elevated KYNA serum concentrations might contribute to development of obesity via KYNA-induced activation of aryl hydrocarbon receptor. Present results warrant further studies of KYNA and AA in ZFR and other animal models of obesity.
Collapse
Affiliation(s)
- G Oxenkrug
- Department of Psychiatry, Tufts University School of Medicine, Boston, USA,Correspondence to: Oxenkrug G, Department of Psychiatry, Tufts University School of Medicine, Boston, USA,
| | | | | | - J Roeser
- Brains On-Line, S. San Francisco, USA
| | - P Summergrad
- Department of Psychiatry, Tufts University School of Medicine, Boston, USA
| |
Collapse
|