1
|
Ramesh V, Tsoukala E, Kougianou I, Kozic Z, Burr K, Viswanath B, Hampton D, Story D, Reddy BK, Pal R, Dando O, Kind PC, Chattarji S, Selvaraj BT, Chandran S, Zoupi L. The Fragile X Messenger Ribonucleoprotein 1 Regulates the Morphology and Maturation of Human and Rat Oligodendrocytes. Glia 2025; 73:1203-1220. [PMID: 39928301 PMCID: PMC12012330 DOI: 10.1002/glia.24680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The Fragile X Messenger Ribonucleoprotein (FMRP) is an RNA binding protein that regulates the translation of multiple mRNAs and is expressed by neurons and glia in the mammalian brain. Loss of FMRP leads to fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. While most research has been focusing on the neuronal contribution to FXS pathophysiology, the role of glia, particularly oligodendrocytes, is largely unknown. FXS individuals are characterized by white matter changes, which imply impairments in oligodendrocyte differentiation and myelination. We hypothesized that FMRP regulates oligodendrocyte maturation and myelination during postnatal development. Using a combination of human pluripotent stem cell-derived oligodendrocytes and an Fmr1 knockout rat model, we studied the role of FMRP on mammalian oligodendrocyte development. We found that the loss of FMRP leads to shared defects in oligodendrocyte morphology in both rat and human systems in vitro, which persist in the presence of FMRP-expressing axons in chimeric engraftment models. Our findings point to species-conserved, cell-autonomous defects during oligodendrocyte maturation in FXS.
Collapse
|
2
|
van der Lei MB, Kooy RF. From Discovery to Innovative Translational Approaches in 80 Years of Fragile X Syndrome Research. Biomedicines 2025; 13:805. [PMID: 40299377 PMCID: PMC12024745 DOI: 10.3390/biomedicines13040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and a major genetic contributor to autism spectrum disorder. It is caused by a CGG trinucleotide repeat expansion in the FMR1 gene, resulting in gene silencing and the loss of FMRP, an RNA-binding protein essential for synaptic plasticity. This review covers over 80 years of FXS research, highlighting key milestones, clinical features, genetic and molecular mechanisms, the FXS mouse model, disrupted molecular pathways, and current therapeutic strategies. Additionally, we discuss recent advances including AI-driven combination therapies, CRISPR-based gene editing, and antisense oligonucleotides (ASOs) therapies. Despite these scientific breakthroughs, translating preclinical findings into effective clinical treatments remains challenging. Clinical trials have faced several difficulties, including patient heterogeneity, inconsistent outcome measures, and variable therapeutic responses. Standardized preclinical testing protocols and refined clinical trial designs are required to overcome these challenges. The development of FXS-specific biomarkers could also improve the precision of treatment assessments. Ultimately, future therapies will need to combine pharmacological and behavioral interventions tailored to individual needs. While significant challenges remain, ongoing research continues to offer hope for transformative breakthroughs that could significantly improve the quality of life for individuals with FXS and their families.
Collapse
Affiliation(s)
| | - R. Frank Kooy
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium;
| |
Collapse
|
3
|
Ciranna L, Costa L. Therapeutic Effects of Pharmacological Modulation of Serotonin Brain System in Human Patients and Animal Models of Fragile X Syndrome. Int J Mol Sci 2025; 26:2495. [PMID: 40141138 PMCID: PMC11941774 DOI: 10.3390/ijms26062495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
The brain serotonin (5-HT) system modulates glutamatergic and GABAergic transmission in almost every brain area, crucially regulating mood, food intake, body temperature, pain, hormone secretion, learning and memory. Previous studies suggest a disruption of the brain 5-HT system in Fragile X Syndrome, with abnormal activity of the 5-HT transporter leading to altered 5-HT brain levels. We provide an update on therapeutic effects exerted by drugs modulating serotonergic transmission on Fragile X patients and animal models. The enhancement of serotonergic transmission using Selective Serotonin Reuptake Inhibitors (SSRIs) corrected mood disorders and language deficits in Fragile X patients. In Fmr1 KO mice, a model of Fragile X Syndrome, selective 5-HT7 receptor agonists rescued synaptic plasticity, memory and stereotyped behavior. In addition, drugs specifically acting on 5-HT1A, 5-HT2 and 5-HT5 receptor subtypes were able to correct, respectively, epilepsy, learning deficits and hyperactivity in different Fragile X animal models. In conclusion, the SSRI treatment of Fragile X patients improves mood and language; in parallel, studies on animal models suggest that compounds selectively acting on distinct 5-HT receptor subtypes might provide a targeted correction of other Fragile X phenotypes, and thus should be further tested in clinical trials for future therapy.
Collapse
Affiliation(s)
- Lucia Ciranna
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Lara Costa
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
4
|
Nie L, Irwin C, Geahchan S, Singh KK. Human pluripotent stem cell (hPSC)-derived models for autism spectrum disorder drug discovery. Expert Opin Drug Discov 2025; 20:233-251. [PMID: 39718245 DOI: 10.1080/17460441.2024.2416484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/10/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder (NDD) with genetic and environmental origins. Currently, there are no effective pharmacological treatments targeting core ASD features. This leads to unmet medical needs of individuals with ASD and requires relevant human disease models recapitulating genetic and clinical heterogeneity to better understand underlying mechanisms and identify potential pharmacological therapies. Recent advancements in stem cell technology have enabled the generation of human pluripotent stem cell (hPSC)-derived two-dimensional (2D) and three-dimensional (3D) neural models, which serve as powerful tools for ASD modeling and drug discovery. AREAS COVERED This article reviews the applications of hPSC-derived 2D and 3D neural models in studying various forms of ASD using pharmacological perturbation and drug screenings, highlighting the potential use of these models to develop novel pharmacological treatment strategies for ASD. EXPERT OPINION hPSC-derived models recapitulate early human brain development spatiotemporally and have allowed patient-specific mechanistic investigation and therapeutic development using advanced molecular technologies, which will contribute to precision medicine for ASD therapy. Improvements are still required in hPSC-based models to further enhance their physiological relevance, clinical translation, and scalability for ASD drug discovery.
Collapse
Affiliation(s)
- Lingdi Nie
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Courtney Irwin
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sarah Geahchan
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karun K Singh
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Kos J, Langiu M, Hellyer SD, Gregory KJ. Pharmacology, Signaling and Therapeutic Potential of Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. ACS Pharmacol Transl Sci 2024; 7:3671-3690. [PMID: 39698283 PMCID: PMC11651194 DOI: 10.1021/acsptsci.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 12/20/2024]
Abstract
Metabotropic glutamate receptors are a family of eight class C G protein-coupled receptors regulating higher order brain functions including cognition and motion. Metabotropic glutamate receptors have thus been heavily investigated as potential drug targets for treating neurological disorders. Drug discovery efforts directed toward metabotropic glutamate receptor subtype 5 (mGlu5) have been particularly fruitful, with a wealth of drug candidates and pharmacological tools identified. mGlu5 negative allosteric modulators (NAMs) are promising novel therapeutics for developmental, neuropsychiatric and neurodegenerative disorders (e.g., Alzheimer's Disease, Huntington's Disease, Parkinson's Disease, amyotrophic lateral sclerosis, autism spectrum disorders, substance use disorders, stroke, anxiety and depression) and show promise in ameliorating adverse effects induced by other medications (e.g., L-dopa induced dyskinesia in Parkinson's Disease). However, despite preclinical success, mGlu5 NAMs are yet to reach the market due to poor safety and efficacy profiles in clinical trials. Herein, we review the physiology and signal transduction of mGlu5. We provide a comprehensive critique of therapeutic options with respect to mGlu5 inhibitors, spanning from orthosteric antagonists to NAMs. Finally, we address the challenges associated with drug development and highlight future directions to guide rational drug discovery of safe and effective novel therapeutics.
Collapse
Affiliation(s)
- Jackson
A. Kos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Shane D. Hellyer
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Karen J. Gregory
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
6
|
Li JL, Zhu CH, Tian MM, Liu Y, Ma L, Tao LJ, Zheng P, Yu JQ, Liu N. Negative allosteric modulator of Group Ⅰ mGluRs: Recent advances and therapeutic perspective for neuropathic pain. Neuroscience 2024; 560:406-421. [PMID: 39368605 DOI: 10.1016/j.neuroscience.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Neuropathic pain (NP) is a widespread public health problem that existing therapeutic treatments cannot manage adequately; therefore, novel treatment strategies are urgently required. G-protein-coupled receptors are important for intracellular signal transduction, and widely participate in physiological and pathological processes, including pain perception. Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are predominantly implicated in central sensitization, which can lead to hyperalgesia and allodynia. Many orthosteric site antagonists targeting Group I mGluRs have been found to alleviate NP, but their poor efficacy, low selectivity, and numerous side effects limit their development in NP treatment. Here we reviewed the advantages of Group I mGluRs negative allosteric modulators (NAMs) over orthosteric site antagonists based on allosteric modulation mechanism, and the challenges and opportunities of Group I mGluRs NAMs in NP treatment. This article aims to elucidate the advantages and future development potential of Group I mGluRs NAMs in the treatment of NP.
Collapse
Affiliation(s)
- Jia-Ling Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Chun-Hao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Miao-Miao Tian
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Jian-Qiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China; School of Basic Medical Science, Ningxia Medical University, Yinchuan 750000, China.
| |
Collapse
|
7
|
Protic D, Breeze E, Mendoza G, Zafarullah M, Abbeduto L, Hagerman R, Coffey C, Cudkowicz M, Durbin-Johnson B, Ashwood P, Berry-Kravis E, Erickson CA, Filipink R, Gropman A, Lehwald L, Maxwell-Horn A, Morris S, Bennett AP, Prock L, Talboy A, Tartaglia N, Veenstra-VanderWeele J, Tassone F. Negative effect of treatment with mGluR5 negative allosteric modulator AFQ056 on blood biomarkers in young individuals with Fragile X syndrome. SAGE Open Med 2024; 12:20503121241282401. [PMID: 39483619 PMCID: PMC11526204 DOI: 10.1177/20503121241282401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024] Open
Abstract
Background Fragile X syndrome, with an approximate incidence rate of 1 in 4000 males to 1 in 8000 females, is the most prevalent genetic cause of heritable intellectual disability and the most common monogenic cause of autism spectrum disorder. The full mutation of the Fragile X Messenger Ribonucleoprotein-1 gene, characterized by an expansion of CGG trinucleotide repeats (>200 CGG repeats), leads to fragile X syndrome. Currently, there are no targeted treatments available for fragile X syndrome. In a recent large multi-site trial, FXLEARN, the effects of the mGluR5 negative allosteric modulator, AFQ056 (mavoglurant), were investigated, but did not show a significant impact of AFQ056 on language development in children with fragile X syndrome aged 3-6 years. Objectives The current analyses from biospecimens collected in the FXLEARN study aimed to determine whether AFQ056 affects the level of potential biomarkers associated with Akt/mTOR and matrix metalloproteinase 9 signaling in young individuals with fragile X syndrome. Previous research has indicated that these biomarkers play crucial roles in the pathophysiology of fragile X syndrome. Design A double-blind placebo-controlled parallel-group flexible-dose forced titration design. Methods Blood samples for biomarkers were collected during the FXLEARN at baseline and subsequent visits (1- and 8-month visits). Biomarker analyses included fragile X messenger ribonucleoprotein-1 genotyping by Southern blot and PCR approaches, fragile X messenger ribonucleoprotein-1 mRNA levels determined by PCR, matrix metalloproteinase 9 levels' detection using a magnetic bead panel, and targets of the Akt/mTOR signaling pathway with their phosphorylation levels detected. Results This research revealed that administering AFQ056 does not affect the expression levels of the investigated blood biomarkers in young children with fragile X syndrome. Conclusion Our findings of the lack of association between clinical improvement and biomarkers' levels in the treatment group are in line with the lack of benefit observed in the FXLEARN study. These findings indicate that AFQ056 does not provide benefits as assessed by primary or secondary endpoints. Registration ClincalTrials.gov NCT02920892.
Collapse
Affiliation(s)
- Dragana Protic
- Faculty of Medicine, Department of Pharmacology, Clinical Pharmacology, and Toxicology, University of Belgrade, Belgrade, Serbia
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, Belgrade, Serbia
| | - Elizabeth Breeze
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Sacramento, CA, USA
| | - Guadalupe Mendoza
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Leonard Abbeduto
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, CA, USA
| | - Randi Hagerman
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | | | - Merit Cudkowicz
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Blythe Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences, Anatomy, and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | | - Stephanie Morris
- Washington University Medical Center, Saint Louis Children’s Hospital, St. Louis, MO, USA
| | | | - Lisa Prock
- Boston Children’s Hospital, Boston, MA, USA
| | - Amy Talboy
- Emory University Medical Center, Atlanta, GA, USA
| | | | - Jeremy Veenstra-VanderWeele
- Center for Autism and the Developing Brain, New York-Presbyterian, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Flora Tassone
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
8
|
Gokalp D, Unal G. The role of mGluR5 on the therapeutic effects of ketamine in Wistar rats. Psychopharmacology (Berl) 2024; 241:1399-1415. [PMID: 38459971 PMCID: PMC11199271 DOI: 10.1007/s00213-024-06571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
RATIONALE Ketamine produces dissociative, psychomimetic, anxiolytic, antidepressant, and anesthetic effects in a dose dependent manner. It has a complex mechanism of action that involve alterations in other glutamate receptors. The metabotropic glutamate receptor 5 (mGluR5) has been investigated in relation to the psychotic and anesthetic properties of ketamine, while its role in mediating the therapeutic effects of ketamine remains unknown. OBJECTIVES We investigated the role of mGluR5 on the antidepressant, anxiolytic and fear memory-related effects of ketamine in adult male Wistar rats. METHODS Two sets of experiments were conducted. We first utilized the positive allosteric modulator CDPPB to investigate how acute mGluR5 activation regulates the therapeutic effects of ketamine (10 mg/kg). We then tested the synergistic antidepressant effect of mGluR5 antagonism and ketamine by combining MTEP with a sub-effective dose of ketamine (1 mg/kg). Behavioral despair, locomotor activity, anxiety-like behavior, and fear memory were respectively assessed in the forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and auditory fear conditioning. RESULTS Enhancing mGluR5 activity via CDPPB occluded the antidepressant effect of ketamine without changing locomotor activity. Furthermore, concomitant administration of MTEP and ketamine exhibited a robust synergistic antidepressant effect. The MTEP + ketamine treatment, however, blocked the anxiolytic effect observed by sole administration of MTEP or the low dose ketamine. CONCLUSIONS These findings suggest that suppressed mGluR5 activity is required for the antidepressant effects of ketamine. Consequently, the antagonism of mGluR5 enhances the antidepressant effectiveness of low dose ketamine, but eliminates its anxiolytic effects.
Collapse
Affiliation(s)
- Dilan Gokalp
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
9
|
Dionne O, Abolghasemi A, Corbin F, Çaku A. Implication of the endocannabidiome and metabolic pathways in fragile X syndrome pathophysiology. Psychiatry Res 2024; 337:115962. [PMID: 38763080 DOI: 10.1016/j.psychres.2024.115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Fragile X Syndrome (FXS) results from the silencing of the FMR1 gene and is the most prevalent inherited cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorder. It is well established that Fragile X individuals are subjected to a wide array of comorbidities, ranging from cognitive, behavioural, and medical origin. Furthermore, recent studies have also described metabolic impairments in FXS individuals. However, the molecular mechanisms linking FMRP deficiency to improper metabolism are still misunderstood. The endocannabinoidome (eCBome) is a lipid-based signalling system that regulates several functions across the body, ranging from cognition, behaviour and metabolism. Alterations in the eCBome have been described in FXS animal models and linked to neuronal hyperexcitability, a core deficit of the disease. However, the potential link between dysregulation of the eCBome and altered metabolism observed in FXS remains unexplored. As such, this review aims to overcome this issue by describing the most recent finding related to eCBome and metabolic dysfunctions in the context of FXS. A better comprehension of this association will help deepen our understanding of FXS pathophysiology and pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Olivier Dionne
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada.
| | - Armita Abolghasemi
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - François Corbin
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - Artuela Çaku
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| |
Collapse
|
10
|
Ferranti AS, Luessen DJ, Niswender CM. Novel pharmacological targets for GABAergic dysfunction in ADHD. Neuropharmacology 2024; 249:109897. [PMID: 38462041 PMCID: PMC11843668 DOI: 10.1016/j.neuropharm.2024.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopment disorder that affects approximately 5% of the population. The disorder is characterized by impulsivity, hyperactivity, and deficits in attention and cognition, although symptoms vary across patients due to the heterogenous and polygenic nature of the disorder. Stimulant medications are the standard of care treatment for ADHD patients, and their effectiveness has led to the dopaminergic hypothesis of ADHD in which deficits in dopaminergic signaling, especially in cortical brain regions, mechanistically underly ADHD pathophysiology. Despite their effectiveness in many individuals, almost one-third of patients do not respond to stimulant treatments and the long-term negative side effects of these medications remain unclear. Emerging clinical evidence is beginning to highlight an important role of dysregulated excitatory/inhibitory (E/I) balance in ADHD. These deficits in E/I balance are related to functional abnormalities in glutamate and Gamma-Aminobutyric Acid (GABA) signaling in the brain, with increasing emphasis placed on GABAergic interneurons driving specific aspects of ADHD pathophysiology. Recent genome-wide association studies (GWAS) have also highlighted how genes associated with GABA function are mutated in human populations with ADHD, resulting in the generation of several new genetic mouse models of ADHD. This review will discuss how GABAergic dysfunction underlies ADHD pathophysiology, and how specific receptors/proteins related to GABAergic interneuron dysfunction may be pharmacologically targeted to treat ADHD in subpopulations with specific comorbidities and symptom domains. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Anthony S Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Deborah J Luessen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
11
|
Terman SW, Kirkpatrick L, Akiyama LF, Baajour W, Atilgan D, Dorotan MKC, Choi HW, French JA. Current state of the epilepsy drug and device pipeline. Epilepsia 2024; 65:833-845. [PMID: 38345387 PMCID: PMC11018510 DOI: 10.1111/epi.17884] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
The field of epilepsy has undergone substantial advances as we develop novel drugs and devices. Yet considerable challenges remain in developing broadly effective, well-tolerated treatments, but also precision treatments for rare epilepsies and seizure-monitoring devices. We summarize major recent and ongoing innovations in diagnostic and therapeutic products presented at the seventeenth Epilepsy Therapies & Diagnostics Development (ETDD) conference, which occurred May 31 to June 2, 2023, in Aventura, Florida. Therapeutics under development are targeting genetics, ion channels and other neurotransmitters, and many other potentially first-in-class interventions such as stem cells, glycogen metabolism, cholesterol, the gut microbiome, and novel modalities for delivering electrical neuromodulation.
Collapse
Affiliation(s)
- Samuel W Terman
- University of Michigan Department of Neurology, Ann Arbor, MI 48109, USA
| | - Laura Kirkpatrick
- University of Pittsburgh Department of Neurology, Pittsburgh, PA 15213, USA
- University of Pittsburgh Department of Pediatrics, Pittsburgh, PA 15213, USA
| | - Lisa F Akiyama
- University of Washington Department of Neurology, Seattle, WA 98105, USA
| | - Wadih Baajour
- University of Texas Health Science Center at Houston, Department of Neurology, Houston, TX 77030, USA
| | - Deniz Atilgan
- University of Texas Health Science Center at Houston, Department of Neurology, Houston, TX 77030, USA
| | | | - Hyoung Won Choi
- Emory University Department of Pediatrics, Division of Neurology, Atlanta, GA 30322
| | - Jacqueline A French
- NYU Grossman School of Medicine and NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
12
|
Neul JL. Challenges in developing therapies in fragile X syndrome: how the FXLEARN trial can guide research. J Clin Invest 2024; 134:e175036. [PMID: 38426491 PMCID: PMC10904042 DOI: 10.1172/jci175036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and the single-gene cause of autism, is caused by decreased expression of the fragile X messenger ribonucleoprotein protein (FMRP), a ribosomal-associated RNA-binding protein involved in translational repression. Extensive preclinical work in several FXS animal models supported the therapeutic potential of decreasing metabotropic glutamate receptor (mGluR) signaling to correct translation of proteins related to synaptic plasticity; however, multiple clinical trials failed to show conclusive evidence of efficacy. In this issue of the JCI, Berry-Kravis and colleagues conducted the FXLEARN clinical trial to address experimental design concerns from previous trials. Unfortunately, despite treatment of young children with combined pharmacological and learning interventions for a prolonged period, no efficacy of blocking mGluR activity was observed. Future systematic evaluation of potential therapeutic approaches should evaluate consistency between human and animal pathophysiological mechanisms, utilize innovative clinical trial design from FXLEARN, and incorporate translatable biomarkers.
Collapse
|
13
|
Fang M, Deibler SK, Krishnamurthy PM, Wang F, Rodriguez P, Banday S, Virbasius CM, Sena-Esteves M, Watts JK, Green MR. EZH2 inhibition reactivates epigenetically silenced FMR1 and normalizes molecular and electrophysiological abnormalities in fragile X syndrome neurons. Front Neurosci 2024; 18:1348478. [PMID: 38449737 PMCID: PMC10915284 DOI: 10.3389/fnins.2024.1348478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Fragile X Syndrome (FXS) is a neurological disorder caused by epigenetic silencing of the FMR1 gene. Reactivation of FMR1 is a potential therapeutic approach for FXS that would correct the root cause of the disease. Here, using a candidate-based shRNA screen, we identify nine epigenetic repressors that promote silencing of FMR1 in FXS cells (called FMR1 Silencing Factors, or FMR1- SFs). Inhibition of FMR1-SFs with shRNAs or small molecules reactivates FMR1 in cultured undifferentiated induced pluripotent stem cells, neural progenitor cells (NPCs) and post-mitotic neurons derived from FXS patients. One of the FMR1-SFs is the histone methyltransferase EZH2, for which an FDA-approved small molecule inhibitor, EPZ6438 (also known as tazemetostat), is available. We show that EPZ6438 substantially corrects the characteristic molecular and electrophysiological abnormalities of cultured FXS neurons. Unfortunately, EZH2 inhibitors do not efficiently cross the blood-brain barrier, limiting their therapeutic use for FXS. Recently, antisense oligonucleotide (ASO)-based approaches have been developed as effective treatment options for certain central nervous system disorders. We therefore derived efficacious ASOs targeting EZH2 and demonstrate that they reactivate FMR1 expression and correct molecular and electrophysiological abnormalities in cultured FXS neurons, and reactivate FMR1 expression in human FXS NPCs engrafted within the brains of mice. Collectively, our results establish EZH2 inhibition in general, and EZH2 ASOs in particular, as a therapeutic approach for FXS.
Collapse
Affiliation(s)
- Minggang Fang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Sara K. Deibler
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | | - Feng Wang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Paola Rodriguez
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Ching-Man Virbasius
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Jonathan K. Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Michael R. Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
14
|
Watkins LV, Moon S, Burrows L, Tromans S, Barwell J, Shankar R. Pharmacological management of fragile X syndrome: a systematic review and narrative summary of the current evidence. Expert Opin Pharmacother 2024; 25:301-313. [PMID: 38393835 DOI: 10.1080/14656566.2024.2323605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
INTRODUCTION Fragile X syndrome (FXS) is the most common inherited cause of Intellectual Disability. There is a broad phenotype that includes deficits in cognition and behavioral changes, alongside physical characteristics. Phenotype depends upon the level of mutation in the FMR1 (fragile X messenger ribonucleoprotein 1) gene. The molecular understanding of the impact of the FMR1 gene mutation provides an opportunity to target treatment not only at symptoms but also on a molecular level. METHODS We conducted a systematic review to provide an up-to-date narrative summary of the current evidence for pharmacological treatment in FXS. The review was restricted to randomized, blinded, placebo-controlled trials. RESULTS The outcomes from these studies are discussed and the level of evidence assessed against validated criteria. The initial search identified 2377 articles, of which 16 were included in the final analysis. CONCLUSION Based on this review to date there is limited data to support any specific pharmacological treatments, although the data for cannabinoids are encouraging in those with FXS and in future developments in gene therapy may provide the answer to the search for precision medicine. Treatment must be person-centered and consider the combination of medical, genetic, cognitive, and emotional challenges.
Collapse
Affiliation(s)
- Lance V Watkins
- Epilepsy Specialist Service, Swansea Bay University Health Board, Cardiff, UK
- Unit for Development in Intellectual and Developmental Disabilities, University of South Wales, Pontypridd, UK
- Cornwall Intellectual Disability Equitable Research (CIDER), University of Plymouth Peninsula School of Medicine, Truro, UK
| | - Seungyoun Moon
- Epilepsy Specialist Service, Swansea Bay University Health Board, Cardiff, UK
| | - Lisa Burrows
- Cornwall Intellectual Disability Equitable Research (CIDER), University of Plymouth Peninsula School of Medicine, Truro, UK
- Adult Neurodevelopmental Psychiatry, Cornwall Partnership NHS Trust, Truro, UK
| | - Samuel Tromans
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Adult Learning Disability Service, Leicestershire Partnership NHS Trust, Leicester, UK
| | - Julian Barwell
- Clinical Genetics Department, University Hospitals of Leicester, Leicester, UK
| | - Rohit Shankar
- Cornwall Intellectual Disability Equitable Research (CIDER), University of Plymouth Peninsula School of Medicine, Truro, UK
| |
Collapse
|
15
|
Li R, Lightbody AA, Lee CH, Bartholomay KL, Marzelli MJ, Reiss AL. Association of Intrinsic Functional Brain Network and Longitudinal Development of Cognitive Behavioral Symptoms in Young Girls With Fragile X Syndrome. Biol Psychiatry 2023; 94:814-822. [PMID: 37004849 PMCID: PMC10544666 DOI: 10.1016/j.biopsych.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/01/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Fragile X syndrome (FXS) is an X chromosome-linked genetic disorder characterized by increased risk for behavioral, social, and neurocognitive deficits. Because males express a more severe phenotype than females, research has focused largely on identifying neural abnormalities in all-male or both-sex populations with FXS. Therefore, very little is known about the neural alterations that contribute to cognitive behavioral symptoms in females with FXS. This cross-sectional study aimed to elucidate the large-scale resting-state brain networks associated with the multidomain cognitive behavioral phenotype in girls with FXS. METHODS We recruited 38 girls with full-mutation FXS (11.58 ± 3.15 years) and 32 girls without FXS (11.66 ± 2.27 years). Both groups were matched on age, verbal IQ, and multidomain cognitive behavioral symptoms. Resting-state functional magnetic resonance imaging data were collected. RESULTS Compared with the control group, girls with FXS showed significantly greater resting-state functional connectivity of the default mode network, lower nodal strength at the right middle temporal gyrus, stronger nodal strength at the left caudate, and higher global efficiency of the default mode network. These aberrant brain network characteristics map directly onto the cognitive behavioral symptoms commonly observed in girls with FXS. An exploratory analysis suggested that brain network patterns at a prior time point (time 1) were predictive of the longitudinal development of participants' multidomain cognitive behavioral symptoms. CONCLUSIONS These findings represent the first examination of large-scale brain network alterations in a large sample of girls with FXS, expanding our knowledge of potential neural mechanisms underlying the development of cognitive behavioral symptoms in girls with FXS.
Collapse
Affiliation(s)
- Rihui Li
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau S.A.R., China.
| | - Amy A Lightbody
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Cindy H Lee
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Kristi L Bartholomay
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Matthew J Marzelli
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| |
Collapse
|
16
|
Neves D, Salazar IL, Almeida RD, Silva RM. Molecular mechanisms of ischemia and glutamate excitotoxicity. Life Sci 2023; 328:121814. [PMID: 37236602 DOI: 10.1016/j.lfs.2023.121814] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Excitotoxicity is classically defined as the neuronal damage caused by the excessive release of glutamate, and subsequent activation of excitatory plasma membrane receptors. In the mammalian brain, this phenomenon is mainly driven by excessive activation of glutamate receptors (GRs). Excitotoxicity is common to several chronic disorders of the Central Nervous System (CNS) and is considered the primary mechanism of neuronal loss of function and cell death in acute CNS diseases (e.g. ischemic stroke). Multiple mechanisms and pathways lead to excitotoxic cell damage including pro-death signaling cascade events downstream of glutamate receptors, calcium (Ca2+) overload, oxidative stress, mitochondrial impairment, excessive glutamate in the synaptic cleft as well as altered energy metabolism. Here, we review the current knowledge on the molecular mechanisms that underlie excitotoxicity, emphasizing the role of Nicotinamide Adenine Dinucleotide (NAD) metabolism. We also discuss novel and promising therapeutic strategies to treat excitotoxicity, highlighting recent clinical trials. Finally, we will shed light on the ongoing search for stroke biomarkers, an exciting and promising field of research, which may improve stroke diagnosis, prognosis and allow better treatment options.
Collapse
Affiliation(s)
- Diogo Neves
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Ivan L Salazar
- Multidisciplinary Institute of Ageing, MIA - Portugal, University of Coimbra, Coimbra, Portugal
| | - Ramiro D Almeida
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Raquel M Silva
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, Viseu, Portugal.
| |
Collapse
|
17
|
Berry-Kravis E, Abbeduto L, Hagerman R, Coffey CS, Cudkowicz M, Erickson CA, McDuffie A, Hessl D, Ethridge L, Tassone F, Kaufmann WE, Friedmann K, Bullard L, Hoffmann A, Veenstra-VanderWeele J, Staley K, Klements D, Moshinsky M, Harkey B, Long J, Fedler J, Klingner E, Ecklund D, Costigan M, Huff T, Pearson B. Effects of AFQ056 on language learning in fragile X syndrome. J Clin Invest 2023; 134:e171723. [PMID: 37651202 PMCID: PMC10904045 DOI: 10.1172/jci171723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUNDFXLEARN, the first-ever large multisite trial of effects of disease-targeted pharmacotherapy on learning, was designed to explore a paradigm for measuring effects of mechanism-targeted treatment in fragile X syndrome (FXS). In FXLEARN, the effects of metabotropic glutamate receptor type 5 (mGluR5) negative allosteric modulator (NAM) AFQ056 on language learning were evaluated in 3- to 6-year-old children with FXS, expected to have more learning plasticity than adults, for whom prior trials of mGluR5 NAMs have failed.METHODSAfter a 4-month single-blind placebo lead-in, participants were randomized 1:1 to AFQ056 or placebo, with 2 months of dose optimization to the maximum tolerated dose, then 6 months of treatment during which a language-learning intervention was implemented for both groups. The primary outcome was a centrally scored videotaped communication measure, the Weighted Communication Scale (WCS). Secondary outcomes were objective performance-based and parent-reported cognitive and language measures.RESULTSFXLEARN enrolled 110 participants, randomized 99, and had 91 who completed the placebo-controlled period. Although both groups made language progress and there were no safety issues, the change in WCS score during the placebo-controlled period was not significantly different between the AFQ056 and placebo-treated groups, nor were there any significant between-group differences in change in any secondary measures.CONCLUSIONDespite the large body of evidence supporting use of mGluR5 NAMs in animal models of FXS, this study suggests that this mechanism of action does not translate into benefit for the human FXS population and that better strategies are needed to determine which mechanisms will translate from preclinical models to humans in genetic neurodevelopmental disorders.TRIAL REGISTRATIONClincalTrials.gov NCT02920892.FUNDING SOURCESNeuroNEXT network NIH grants U01NS096767, U24NS107200, U24NS107209, U01NS077323, U24NS107183, U24NS107168, U24NS107128, U24NS107199, U24NS107198, U24NS107166, U10NS077368, U01NS077366, U24NS107205, U01NS077179, and U01NS077352; NIH grant P50HD103526; and Novartis IIT grant AFQ056X2201T for provision of AFQ056.
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, and Anatomy & Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
| | - Leonard Abbeduto
- MIND Institute and Department of Psychiatry and Behavioral Sciences and
| | - Randi Hagerman
- MIND Institute and Department of Pediatrics, UCD, Sacramento, California, USA
| | | | - Merit Cudkowicz
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Craig A. Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrea McDuffie
- MIND Institute and Department of Psychiatry and Behavioral Sciences and
| | - David Hessl
- MIND Institute and Department of Psychiatry and Behavioral Sciences and
| | - Lauren Ethridge
- Department of Psychology, University of Oklahoma, Norman, Oklahoma, and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Flora Tassone
- MIND Institute and Department of Biochemistry and Molecular Medicine, UCD, Sacramento, California, USA
| | - Walter E. Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Lauren Bullard
- MIND Institute and Department of Psychiatry and Behavioral Sciences and
| | - Anne Hoffmann
- Departments of Pediatrics and Communication Disorders and Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, and New York State Psychiatric Institute, New York, New York, USA
| | - Kevin Staley
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David Klements
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael Moshinsky
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Brittney Harkey
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jeff Long
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Janel Fedler
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | | | - Dixie Ecklund
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Michele Costigan
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Trevis Huff
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Brenda Pearson
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
18
|
Milla LA, Corral L, Rivera J, Zuñiga N, Pino G, Nunez-Parra A, Cea-Del Rio CA. Neurodevelopment and early pharmacological interventions in Fragile X Syndrome. Front Neurosci 2023; 17:1213410. [PMID: 37599992 PMCID: PMC10433175 DOI: 10.3389/fnins.2023.1213410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Fragile X Syndrome (FXS) is a neurodevelopmental disorder and the leading monogenic cause of autism and intellectual disability. For years, several efforts have been made to develop an effective therapeutic approach to phenotypically rescue patients from the disorder, with some even advancing to late phases of clinical trials. Unfortunately, none of these attempts have completely succeeded, bringing urgency to further expand and refocus research on FXS therapeutics. FXS arises at early stages of postnatal development due to the mutation and transcriptional silencing of the Fragile X Messenger Ribonucleoprotein 1 gene (FMR1) and consequent loss of the Fragile X Messenger Ribonucleoprotein (FMRP) expression. Importantly, FMRP expression is critical for the normal adult nervous system function, particularly during specific windows of embryogenic and early postnatal development. Cellular proliferation, migration, morphology, axonal guidance, synapse formation, and in general, neuronal network establishment and maturation are abnormally regulated in FXS, underlying the cognitive and behavioral phenotypes of the disorder. In this review, we highlight the relevance of therapeutically intervening during critical time points of development, such as early postnatal periods in infants and young children and discuss past and current clinical trials in FXS and their potential to specifically target those periods. We also discuss potential benefits, limitations, and disadvantages of these pharmacological tools based on preclinical and clinical research.
Collapse
Affiliation(s)
- Luis A. Milla
- Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Lucia Corral
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Jhanpool Rivera
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Nolberto Zuñiga
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Gabriela Pino
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Alexia Nunez-Parra
- Physiology Laboratory, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- Cell Physiology Center, Universidad de Chile, Santiago, Chile
| | - Christian A. Cea-Del Rio
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
19
|
Torazza C, Provenzano F, Gallia E, Cerminara M, Balbi M, Bonifacino T, Tessitore S, Ravera S, Usai C, Musante I, Puliti A, Van Den Bosch L, Jafar-nejad P, Rigo F, Milanese M, Bonanno G. Genetic Downregulation of the Metabotropic Glutamate Receptor Type 5 Dampens the Reactive and Neurotoxic Phenotype of Adult ALS Astrocytes. Cells 2023; 12:1952. [PMID: 37566031 PMCID: PMC10416852 DOI: 10.3390/cells12151952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons (MNs). Astrocytes display a toxic phenotype in ALS, which results in MN damage. Glutamate (Glu)-mediated excitotoxicity and group I metabotropic glutamate receptors (mGluRs) play a pathological role in the disease progression. We previously demonstrated that in vivo genetic ablation or pharmacological modulation of mGluR5 reduced astrocyte activation and MN death, prolonged survival and ameliorated the clinical progression in the SOD1G93A mouse model of ALS. This study aimed to investigate in vitro the effects of mGluR5 downregulation on the reactive spinal cord astrocytes cultured from adult late symptomatic SOD1G93A mice. We observed that mGluR5 downregulation in SOD1G93A astrocytes diminished the cytosolic Ca2+ overload under resting conditions and after mGluR5 simulation and reduced the expression of the reactive glial markers GFAP, S100β and vimentin. In vitro exposure to an anti-mGluR5 antisense oligonucleotide or to the negative allosteric modulator CTEP also ameliorated the altered reactive astrocyte phenotype. Downregulating mGluR5 in SOD1G93A mice reduced the synthesis and release of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α and ameliorated the cellular bioenergetic profile by improving the diminished oxygen consumption and ATP synthesis and by lowering the excessive lactate dehydrogenase activity. Most relevantly, mGluR5 downregulation hampered the neurotoxicity of SOD1G93A astrocytes co-cultured with spinal cord MNs. We conclude that selective reduction in mGluR5 expression in SOD1G93A astrocytes positively modulates the astrocyte reactive phenotype and neurotoxicity towards MNs, further supporting mGluR5 as a promising therapeutic target in ALS.
Collapse
Affiliation(s)
- Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Elena Gallia
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Maria Cerminara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 16132 Genoa, Italy; (M.C.); (A.P.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Matilde Balbi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Sara Tessitore
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Silvia Ravera
- Department of Experimental Medicine (DIMES), University of Genoa, Via Alberti L.B. 2, 16132 Genova, Italy;
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), Via De Marini 6, 16149 Genoa, Italy;
| | - Ilaria Musante
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Aldamaria Puliti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 16132 Genoa, Italy; (M.C.); (A.P.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
- VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA; (P.J.-n.); (F.R.)
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| |
Collapse
|
20
|
Di Menna L, Orlando R, D'Errico G, Ginerete RP, Machaczka A, Bonaccorso CM, Arena A, Spatuzza M, Celli R, Alborghetti M, Ciocca E, Zuena AR, Scioli MR, Bruno V, Battaglia G, Nicoletti F, Catania MV. Blunted type-5 metabotropic glutamate receptor-mediated polyphosphoinositide hydrolysis in two mouse models of monogenic autism. Neuropharmacology 2023:109642. [PMID: 37392820 DOI: 10.1016/j.neuropharm.2023.109642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
The involvement of the mGlu5 receptors in the pathophysiology of several forms of monogenic autism has been supported by numerous studies following the seminal observation that mGlu5 receptor-dependent long-term depression was enhanced in the hippocampus of mice modeling the fragile-X syndrome (FXS). Surprisingly, there are no studies examining the canonical signal transduction pathway activated by mGlu5 receptors (i.e. polyphosphoinositide - PI - hydrolysis) in mouse models of autism. We have developed a method for in vivo assessment of PI hydrolysis based on systemic injection of lithium chloride followed by treatment with the selective mGlu5 receptor PAM, VU0360172, and measurement of endogenous inositolmonophosphate (InsP) in brain tissue. Here, we report that mGlu5 receptor-mediated PI hydrolysis was blunted in the cerebral cortex, hippocampus, and corpus striatum of Ube3am-/p+ mice modeling Angelman syndrome (AS), and in the cerebral cortex and hippocampus of fmr1 knockout mice modeling FXS. In vivo mGlu5 receptor-mediated stimulation of Akt on threonine 308 was also blunted in the hippocampus of FXS mice. These changes were associated with a significant increase in cortical and striatal Homer1 levels and striatal mGlu5 receptor and Gαq levels in AS mice, and with a reduction in cortical mGlu5 receptor and hippocampal Gαq levels, and an increase in cortical phospholipase-Cβ and hippocampal Homer1 levels in FXS mice. This is the first evidence that the canonical transduction pathway activated by mGlu5 receptors is down-regulated in brain regions of mice modeling monogenic autism.
Collapse
Affiliation(s)
| | - Rosamaria Orlando
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | | | | | - Agata Machaczka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Science, Krakow, Poland
| | | | | | | | | | - Marika Alborghetti
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Italy
| | - Eleonora Ciocca
- Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | | | - Valeria Bruno
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Giuseppe Battaglia
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Maria Vincenza Catania
- Institute for Biomedical Research and Innovation, The National Research Council (IRIB-CNR), Catania, Italy.
| |
Collapse
|
21
|
Epping-Jordan MP, Girard F, Bessis AS, Mutel V, Boléa C, Derouet F, Bessif A, Mingard B, Barbier S, Paradis JS, Rocher JP, Lütjens R, Kalinichev M, Poli S. Effect of the Metabotropic Glutamate Receptor Type 5 Negative Allosteric Modulator Dipraglurant on Motor and Non-Motor Symptoms of Parkinson's Disease. Cells 2023; 12:1004. [PMID: 37048075 PMCID: PMC10093229 DOI: 10.3390/cells12071004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Parkinson's disease (PD) patients suffer not only from the primary motor symptoms of the disease but also from a range of non-motor symptoms (NMS) that cause disability and low quality of life. Excessive glutamate activity in the basal ganglia resulting from degeneration of the nigrostriatal dopamine pathway has been implicated in the motor symptoms, NMS and dyskinesias in PD patients. In this study, we investigated the effects of a selective mGlu5 negative allosteric modulator (NAM), dipraglurant, in a rodent motor symptoms model of PD, but also in models of anxiety, depression and obsessive-compulsive disorder, all of which are among the most prevalent NMS symptoms. Dipraglurant is rapidly absorbed after oral administration, readily crosses the blood-brain barrier, and exhibits a high correlation between plasma concentration and efficacy in behavioral models. In vivo, dipraglurant dose-dependently reduced haloperidol-induced catalepsy, increased punished licks in the Vogel conflict-drinking model, decreased immobility time in the forced swim test, decreased the number of buried marbles in the marble-burying test, but had no effect on rotarod performance or locomotor activity. These findings suggest that dipraglurant may have benefits to address some of the highly problematic comorbid non-motor symptoms of PD, in addition to its antidyskinetic effect demonstrated in PD-LID patients.
Collapse
|
22
|
Li R, Bruno JL, Jordan T, Miller JG, Lee CH, Bartholomay KL, Marzelli MJ, Piccirilli A, Lightbody AA, Reiss AL. Aberrant Neural Response During Face Processing in Girls With Fragile X Syndrome: Defining Potential Brain Biomarkers for Treatment Studies. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:311-319. [PMID: 34555563 PMCID: PMC8964834 DOI: 10.1016/j.bpsc.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Children and adolescents with fragile X syndrome (FXS) manifest significant symptoms of anxiety, particularly in response to face-to-face social interaction. In this study, we used functional near-infrared spectroscopy to reveal a specific pattern of brain activation and habituation in response to face stimuli in young girls with FXS, an important but understudied clinical population. METHODS Participants were 32 girls with FXS (age: 11.8 ± 2.9 years) and a control group of 28 girls without FXS (age: 10.5 ± 2.3 years) matched for age, general cognitive function, and autism symptoms. Functional near-infrared spectroscopy was used to assess brain activation during a face habituation task including repeated upright/inverted faces and greeble (nonface) objects. RESULTS Compared with the control group, girls with FXS showed significant hyperactivation in the frontopolar and dorsal lateral prefrontal cortices in response to all face stimuli (upright + inverted). Lack of neural habituation (and significant sensitization) was also observed in the FXS group in the frontopolar cortex in response to upright face stimuli. Finally, aberrant frontopolar sensitization in response to upright faces in girls with FXS was significantly correlated with notable cognitive-behavioral and social-emotional outcomes relevant to this condition, including executive function, autism symptoms, depression, and anxiety. CONCLUSIONS These findings strongly support a hypothesis of neural hyperactivation and accentuated sensitization during face processing in FXS, a phenomenon that could be developed as a biomarker end point for improving treatment trial evaluation in girls with this condition.
Collapse
Affiliation(s)
- Rihui Li
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California.
| | - Jennifer L Bruno
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Tracy Jordan
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Jonas G Miller
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Cindy H Lee
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Kristi L Bartholomay
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Matthew J Marzelli
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Aaron Piccirilli
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Amy A Lightbody
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Departments of Radiology and Pediatrics, Stanford University, Stanford, California
| |
Collapse
|
23
|
Galineau L, Arlicot N, Dupont AC, Briend F, Houy-Durand E, Tauber C, Gomot M, Gissot V, Barantin L, Lefevre A, Vercouillie J, Roussel C, Roux S, Nadal L, Mavel S, Laumonnier F, Belzung C, Chalon S, Emond P, Santiago-Ribeiro MJ, Bonnet-Brilhault F. Glutamatergic synapse in autism: a complex story for a complex disorder. Mol Psychiatry 2023; 28:801-809. [PMID: 36434055 DOI: 10.1038/s41380-022-01860-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose pathophysiological mechanisms are still unclear. Hypotheses suggest a role for glutamate dysfunctions in ASD development, but clinical studies investigating brain and peripheral glutamate levels showed heterogenous results leading to hypo- and hyper-glutamatergic hypotheses of ASD. Recently, studies proposed the implication of elevated mGluR5 densities in brain areas in the pathophysiology of ASD. Thus, our objective was to characterize glutamate dysfunctions in adult subjects with ASD by quantifying (1) glutamate levels in the cingulate cortex and periphery using proton magnetic resonance spectroscopy and metabolomics, and (2) mGluR5 brain density in this population and in a validated animal model of ASD (prenatal exposure to valproate) at developmental stages corresponding to childhood and adolescence in humans using positron emission tomography. No modifications in cingulate Glu levels were observed between individuals with ASD and controls further supporting the difficulty to evaluate modifications in excitatory transmission using spectroscopy in this population, and the complexity of its glutamate-related changes. Our imaging results showed an overall increased density in mGluR5 in adults with ASD, that was only observed mostly subcortically in adolescent male rats prenatally exposed to valproic acid, and not detected in the stage corresponding to childhood in the same animals. This suggest that clinical changes in mGluR5 density could reflect the adaptation of the glutamatergic dysfunctions occurring earlier rather than being key to the pathophysiology of ASD.
Collapse
Affiliation(s)
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Unité de Radiopharmacie, CHRU de Tours, Tours, France
| | - Anne-Claire Dupont
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Unité de Radiopharmacie, CHRU de Tours, Tours, France.,Service de Médecine Nucléaire, CHRU de Tours, Tours, France
| | - Frederic Briend
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Emmanuelle Houy-Durand
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Clovis Tauber
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Marie Gomot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | | | | | - Antoine Lefevre
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Sylvie Roux
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Lydie Nadal
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Sylvie Mavel
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Sylvie Chalon
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Maria-Joao Santiago-Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Médecine Nucléaire, CHRU de Tours, Tours, France
| | - Frédérique Bonnet-Brilhault
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France. .,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France.
| |
Collapse
|
24
|
Abstract
The fragile X-related disorders are an important group of hereditary disorders that are caused by expanded CGG repeats in the 5' untranslated region of the FMR1 gene or by mutations in the coding sequence of this gene. Two categories of pathological CGG repeats are associated with these disorders, full mutation alleles and shorter premutation alleles. Individuals with full mutation alleles develop fragile X syndrome, which causes autism and intellectual disability, whereas those with premutation alleles, which have shorter CGG expansions, can develop fragile X-associated tremor/ataxia syndrome, a progressive neurodegenerative disease. Thus, fragile X-related disorders can manifest as neurodegenerative or neurodevelopmental disorders, depending on the size of the repeat expansion. Here, we review mouse models of fragile X-related disorders and discuss how they have informed our understanding of neurodegenerative and neurodevelopmental disorders. We also assess the translational value of these models for developing rational targeted therapies for intellectual disability and autism disorders.
Collapse
Affiliation(s)
- Rob Willemsen
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands. Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium
| | - R. Frank Kooy
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands. Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium
| |
Collapse
|
25
|
Hoglund BK, Carfagno V, Olive MF, Leyrer-Jackson JM. Metabotropic glutamate receptors and cognition: From underlying plasticity and neuroprotection to cognitive disorders and therapeutic targets. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:367-413. [PMID: 36868635 DOI: 10.1016/bs.irn.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors that play pivotal roles in mediating the activity of neurons and other cell types within the brain, communication between cell types, synaptic plasticity, and gene expression. As such, these receptors play an important role in a number of cognitive processes. In this chapter, we discuss the role of mGlu receptors in various forms of cognition and their underlying physiology, with an emphasis on cognitive dysfunction. Specifically, we highlight evidence that links mGlu physiology to cognitive dysfunction across brain disorders including Parkinson's disease, Alzheimer's disease, Fragile X syndrome, post-traumatic stress disorder, and schizophrenia. We also provide recent evidence demonstrating that mGlu receptors may elicit neuroprotective effects in particular disease states. Lastly, we discuss how mGlu receptors can be targeted utilizing positive and negative allosteric modulators as well as subtype specific agonists and antagonist to restore cognitive function across these disorders.
Collapse
Affiliation(s)
- Brandon K Hoglund
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ, United States
| | - Vincent Carfagno
- School of Medicine, Midwestern University, Glendale, AZ, United States
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Jonna M Leyrer-Jackson
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ, United States.
| |
Collapse
|
26
|
Abstract
The histories of targeted treatment trials in fragile X syndrome (FXS) are reviewed in animal studies and human trials. Advances in understanding the neurobiology of FXS have identified a number of pathways that are dysregulated in the absence of FMRP and are therefore pathways that can be targeted with new medication. The utilization of quantitative outcome measures to assess efficacy in multiple studies has improved the quality of more recent trials. Current treatment trials including the use of cannabidiol (CBD) topically and metformin orally have positive preliminary data, and both of these medications are available clinically. The use of the phosphodiesterase inhibitor (PDE4D), BPN1440, which raised the level of cAMP that is low in FXS has very promising results for improving cognition in adult males who underwent a controlled trial. There are many more targeted treatments that will undergo trials in FXS, so the future looks bright for new treatments.
Collapse
Affiliation(s)
- Devon Johnson
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
| | - Courtney Clark
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
| | - Randi Hagerman
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
27
|
Alusi G, Berry-Kravis E, Nelson D, Orefice LL, Booker SA. Emerging Therapeutic Strategies for Fragile X Syndrome: Q&A. ACS Chem Neurosci 2022; 13:3544-3546. [PMID: 36475635 PMCID: PMC9782331 DOI: 10.1021/acschemneuro.2c00674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding how best to treat aspects of Fragile X syndrome has the potential to improve the quality of life of affected individuals. Such an effective therapy has, as yet, remained elusive. In this article, we ask those researching or affected by Fragile X syndrome their views on the current state of research and from where they feel the most likely therapy may emerge.
Collapse
Affiliation(s)
| | - Elizabeth Berry-Kravis
- Department
of Pediatrics, Neurological Sciences, and Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois60612, United States
| | - David Nelson
- Molecular
and Human Genetics, Baylor College of Medicine, Houston, Texas77030, United States
| | - Lauren L. Orefice
- Department
of Molecular Biology, Massachusetts General
Hospital, Boston, Massachusetts02114, United States,Department
of Genetics, Harvard Medical School, Boston, Massachusetts02115, United States
| | - Sam A. Booker
- Simons
Initiative
for the Developing Brain, University of
Edinburgh, EdinburghEH8 9XD, U.K.,
| |
Collapse
|
28
|
Matrisciano F, Locci V, Dong E, Nicoletti F, Guidotti A, Grayson DR. Altered Expression and In Vivo Activity of mGlu5 Variant a Receptors in the Striatum of BTBR Mice: Novel Insights Into the Pathophysiology of Adult Idiopathic Forms of Autism Spectrum Disorders. Curr Neuropharmacol 2022; 20:2354-2368. [PMID: 35139800 PMCID: PMC9890299 DOI: 10.2174/1567202619999220209112609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND mGlu5 metabotropic glutamate receptors are considered as candidate drug targets in the treatment of "monogenic" forms of autism spectrum disorders (ASD), such as Fragile- X syndrome (FXS). However, despite promising preclinical data, clinical trials using mGlu5 receptor antagonists to treat FXS showed no beneficial effects. OBJECTIVE Here, we studied the expression and function of mGlu5 receptors in the striatum of adult BTBR mice, which model idiopathic forms of ASD, and behavioral phenotype. METHODS Behavioral tests were associated with biochemistry analysis including qPCR and western blot for mRNA and protein expression. In vivo analysis of polyphosphoinositides hydrolysis was performed to study the mGlu5-mediated intracellular signaling in the striatum of adult BTBR mice under basal conditions and after MTEP exposure. RESULTS Expression of mGlu5 receptors and mGlu5 receptor-mediated polyphosphoinositides hydrolysis were considerably high in the striatum of BTBR mice, sensitive to MTEP treatment. Changes in the expression of genes encoding for proteins involved in excitatory and inhibitory neurotransmission and synaptic plasticity, including Fmr1, Dlg4, Shank3, Brd4, bdnf-exon IX, Mef2c, and Arc, GriA2, Glun1, Nr2A, and Grm1, Grm2, GriA1, and Gad1 were also found. Behaviorally, BTBR mice showed high repetitive stereotypical behaviors, including self-grooming and deficits in social interactions. Acute or repeated injections with MTEP reversed the stereotyped behavior and the social interaction deficit. Similar effects were observed with the NMDA receptor blockers MK-801 or ketamine. CONCLUSION These findings support a pivotal role of mGlu5 receptor abnormal expression and function in idiopathic ASD adult forms and unveil novel potential targets for therapy.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Valentina Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Erbo Dong
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Center for Alcohol Research in Epigenetics Department of Psychiatry College of Medicine University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alessandro Guidotti
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Center for Alcohol Research in Epigenetics Department of Psychiatry College of Medicine University of Illinois Chicago, Chicago, IL 60612, USA
| | - Dennis R. Grayson
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Center for Alcohol Research in Epigenetics Department of Psychiatry College of Medicine University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
29
|
Berry-Kravis E. Disease-Targeted Treatment Translation in Fragile X Syndrome as a Model for Neurodevelopmental Disorders. J Child Neurol 2022; 37:797-812. [PMID: 35791522 DOI: 10.1177/08830738221089740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fragile X syndrome (FXS), the most common monogenic cause of intellectual disability and autism spectrum disorder, has been one of the first neurodevelopmental disorders in which molecular and neuronal mechanisms of disease were identified, leading to the concept of targeting the underlying disease to reverse symptoms. Translating findings in basic science and animal models to humans with FXS has proven difficult. These challenges have prompted the FXS field to organize to build interlocking projects and initiatives to improve consistency of supportive care, make clinical research accessible to families, generate collaborative research on natural history, outcome measures and biomarkers, and create clinical trial consortia and novel trial designs. This work has resulted in improved success in recent clinical trials, providing key steps toward regulatory approval of disease-targeted treatments for FXS. Progress in the FXS field has informed translation of transformative new disease-targeted therapies for other monogenic neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
30
|
Witkin JM, Pandey KP, Smith JL. Clinical investigations of compounds targeting metabotropic glutamate receptors. Pharmacol Biochem Behav 2022; 219:173446. [PMID: 35987339 DOI: 10.1016/j.pbb.2022.173446] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022]
Abstract
Pharmacological modulation of glutamate has long been considered to be of immense therapeutic utility. The metabotropic glutamate receptors (mGluRs) are potential targets for safely altering glutamate-driven excitation. Data support the potential therapeutic use of mGluR modulators in the treatment of anxiety, depression, schizophrenia, and other psychiatric disorders, pain, epilepsy, as well as neurodegenerative and neurodevelopmental disorders. For each of the three mGluR groups, compounds have been constructed that produce either potentiation or functional blockade. PET ligands for mGlu5Rs have been studied in a range of patient populations and several mGlu5R antagonists have been tested for potential efficacy in patients including mavoglurant, diploglurant, basimglurant, GET 73, and ADX10059. Efficacy with mGlu5R antagonists has been reported in trials with patients with gastroesophageal reflux disease; data from patients with Parkinson's disease or Fragile X syndrome have not been as robust as hoped. Fenobam was approved for use as an anxiolytic prior to its recognition as an mGlu5R antagonist. mGlu2/3R agonists (pomaglumated methionil) and mGlu2R agonists (JNJ-40411813, AZD 8529, and LY2979165) have been studied in patients with schizophrenia with promising but mixed results. Antagonists of mGlu2/3Rs (decoglurant and TS-161) have been studied in depression where TS-161 has advanced into a planned Phase 2 study in treatment-resistant depression. The Group III mGluRs are the least developed of the mGluR receptor targets. The mGlu4R potentiator, foliglurax, did not meet its primary endpoint in patients with Parkinson's disease. Ongoing efforts to develop mGluR-targeted compounds continue to promise these glutamate modulators as medicines for psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA.
| | - Kamal P Pandey
- Department of Chemistry & Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| |
Collapse
|
31
|
Morrill NK, Joly-Amado A, Li Q, Prabhudeva S, Weeber EJ, Nash KR. Reelin central fragment supplementation improves cognitive deficits in a mouse model of Fragile X Syndrome. Exp Neurol 2022; 357:114170. [PMID: 35863501 DOI: 10.1016/j.expneurol.2022.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022]
Abstract
Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and is characterized by autistic behaviors, childhood seizures, and deficits in learning and memory. FXS has a loss of function of the FMR1 gene that leads to a lack of Fragile X Mental Retardation Protein (FMRP) expression. FMRP is critical for synaptic plasticity, spatial learning, and memory. Reelin is a large extracellular glycoprotein essential for synaptic plasticity and numerous neurodevelopmental processes. Reduction in Reelin signaling is implicated as a contributing factor in disease etiology in several neurological disorders, including schizophrenia, and autism. However, the role of Reelin in FXS is poorly understood. We demonstrate a reduction in Reelin in Fmr1 knock-out (KO) mice, suggesting that a loss of Reelin activity may contribute to FXS. We demonstrate here that Reelin signaling enhancement via a single intracerebroventricular injection of the Reelin central fragment into Fmr1 KO mice can profoundly rescue cognitive deficits in hidden platform water maze and fear conditioning, as well as hyperactivity during the open field. Improvements in behavior were associated with rescued levels of post synaptic marker in Fmr1 KO mice when compared to controls. These data suggest that increasing Reelin signaling in FXS could offer a novel therapeutic for improving cognition in FXS.
Collapse
Affiliation(s)
- Nicole K Morrill
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Qingyou Li
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Sahana Prabhudeva
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Edwin J Weeber
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA.
| |
Collapse
|
32
|
Budgett RF, Bakker G, Sergeev E, Bennett KA, Bradley SJ. Targeting the Type 5 Metabotropic Glutamate Receptor: A Potential Therapeutic Strategy for Neurodegenerative Diseases? Front Pharmacol 2022; 13:893422. [PMID: 35645791 PMCID: PMC9130574 DOI: 10.3389/fphar.2022.893422] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 01/13/2023] Open
Abstract
The type 5 metabotropic glutamate receptor, mGlu5, has been proposed as a potential therapeutic target for the treatment of several neurodegenerative diseases. In preclinical neurodegenerative disease models, novel allosteric modulators have been shown to improve cognitive performance and reduce disease-related pathology. A common pathological hallmark of neurodegenerative diseases is a chronic neuroinflammatory response, involving glial cells such as astrocytes and microglia. Since mGlu5 is expressed in astrocytes, targeting this receptor could provide a potential mechanism by which neuroinflammatory processes in neurodegenerative disease may be modulated. This review will discuss current evidence that highlights the potential of mGlu5 allosteric modulators to treat neurodegenerative diseases, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Furthermore, this review will explore the role of mGlu5 in neuroinflammatory responses, and the potential for this G protein-coupled receptor to modulate neuroinflammation.
Collapse
Affiliation(s)
- Rebecca F Budgett
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | - Sophie J Bradley
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Sosei Heptares, Cambridge, United Kingdom
| |
Collapse
|
33
|
Jacob S, Veenstra-VanderWeele J, Murphy D, McCracken J, Smith J, Sanders K, Meyenberg C, Wiese T, Deol-Bhullar G, Wandel C, Ashford E, Anagnostou E. Efficacy and safety of balovaptan for socialisation and communication difficulties in autistic adults in North America and Europe: a phase 3, randomised, placebo-controlled trial. Lancet Psychiatry 2022; 9:199-210. [PMID: 35151410 DOI: 10.1016/s2215-0366(21)00429-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND There are no approved pharmacological therapies to support treatment of the core communication and socialisation difficulties associated with autism spectrum disorder in adults. We aimed to assess the efficacy, safety, and pharmacokinetics of balovaptan, a vasopressin 1a receptor antagonist, versus placebo in autistic adults. METHODS V1aduct was a phase 3, randomised, placebo-controlled, double-blind trial, conducted at 46 sites across six countries (the USA, the UK, France, Italy, Spain, and Canada). Eligible participants were aged 18 years or older with an intelligence quotient (IQ) of 70 or higher, and met the criteria for moderate-to-severe autism spectrum disorder (DSM-5 and Autism Diagnostic Observation Schedule). Participants were randomly allocated (1:1), with an independent interactive voice or web-based response system, to receive balovaptan (10 mg) or placebo daily for 24 weeks. Randomisation was stratified by an individual's baseline Vineland-II two-domain composite (2DC) score (<60 or ≥60), sex, region (North America or rest of world), and age (<25 years or ≥25 years). Participants, study site personnel, and the sponsor were masked to treatment assignment. The primary endpoint was change from baseline in Vineland-II 2DC score (the mean composite score across the Vineland-II socialisation and communication domains) at week 24. The primary analysis was done with ANCOVA in the intention-to-treat population. The V1aduct study was terminated for futility after around 50% of participants completed the week 24 visit. This trial is registered with ClinicalTrials.gov (NCT03504917). FINDINGS Between Aug 8, 2018, and July 1, 2020, 540 people were screened for eligibility, of whom 322 were allocated to receive balovaptan (164 [51%]) or placebo (158 [49%]). One participant from the balovaptan group was not treated before trial termination and was excluded from the analysis. 60 participants in the balovaptan group and 55 in the placebo group discontinued treatment before week 24. The sample consisted of 64 (20%) women and 257 (80%) men, with 260 (81%) participants from North America and 61 (19%) from Europe. At baseline, mean age was 27·6 years (SD 9·7) and mean IQ score was 104·8 (18·1). Two (1%) participants were American Indian or Alaska Native, eight (2%) were Asian, 15 (5%) were Black or African American, 283 (88%) were White, four (1%) were of multiple races, and nine (3%) were of unknown race. Mean baseline Vineland-II 2DC scores were 67·2 (SD 15·3) in the balovaptan group and 66·2 (17·7) in the placebo group. The interim futility analysis showed no improvement for balovaptan versus placebo in terms of Vineland-II 2DC score at week 24 compared with baseline, with a least-squares mean change of 2·91 (SE 1·52) in the balovaptan group (n=79) and 4·75 (1·60) in the placebo group (n=71; estimated treatment difference -1·84 [95% CI -5·15 to 1·48]). In the final analysis, mean change from baseline in Vineland-II 2DC score at week 24 was 4·56 (SD 10·85) in the balovaptan group (n=111) and 6·83 (12·18) in the placebo group (n=99). Balovaptan was well tolerated, with similar proportions of participants with at least one adverse event in the balovaptan group (98 [60%] of 163) and placebo group (104 [66%] of 158). The most common adverse events were nasopharyngitis (14 [9%] in the balovaptan group and 19 [12%] in the placebo group), diarrhoea (11 [7%] and 14 [9%]), upper respiratory tract infection (ten [6%] and nine [6%]), insomnia (five [3%] and eight [5%]), oropharyngeal pain (five [3%] and eight [5%]), and dizziness (two [1%] and ten [6%]). Serious adverse events were reported for two (1%) participants in the balovaptan group (one each of suicidal ideation and schizoaffective disorder), and five (3%) participants in the placebo group (one each of suicidal ideation, panic disorder, limb abscess, urosepsis, colitis [in the same participant with urosepsis], and death by suicide). No treatment-related deaths occurred. INTERPRETATION Balovaptan did not improve social communication in autistic adults. This study provides insights into challenges facing autism spectrum disorder trials, including the considerable placebo response and the selection of appropriate outcome measures. FUNDING F Hoffmann-La Roche.
Collapse
Affiliation(s)
- Suma Jacob
- Child and Adolescent Psychiatry, University of Minnesota, Minneapolis, MN, USA.
| | | | | | - James McCracken
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Kevin Sanders
- F Hoffmann-La Roche, Genentech, South San Francisco, CA, USA
| | | | | | | | | | | | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Protic DD, Aishworiya R, Salcedo-Arellano MJ, Tang SJ, Milisavljevic J, Mitrovic F, Hagerman RJ, Budimirovic DB. Fragile X Syndrome: From Molecular Aspect to Clinical Treatment. Int J Mol Sci 2022; 23:1935. [PMID: 35216055 PMCID: PMC8875233 DOI: 10.3390/ijms23041935] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the full mutation as well as highly localized methylation of the fragile X mental retardation 1 (FMR1) gene on the long arm of the X chromosome. Children with FXS are commonly co-diagnosed with Autism Spectrum Disorder, attention and learning problems, anxiety, aggressive behavior and sleep disorder, and early interventions have improved many behavior symptoms associated with FXS. In this review, we performed a literature search of original and review articles data of clinical trials and book chapters using MEDLINE (1990-2021) and ClinicalTrials.gov. While we have reviewed the biological importance of the fragile X mental retardation protein (FMRP), the FXS phenotype, and current diagnosis techniques, the emphasis of this review is on clinical interventions. Early non-pharmacological interventions in combination with pharmacotherapy and targeted treatments aiming to reverse dysregulated brain pathways are the mainstream of treatment in FXS. Overall, early diagnosis and interventions are fundamental to achieve optimal clinical outcomes in FXS.
Collapse
Affiliation(s)
- Dragana D. Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia
| | - Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA; (R.A.); (M.J.S.-A.); (S.J.T.); (R.J.H.)
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Maria Jimena Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA; (R.A.); (M.J.S.-A.); (S.J.T.); (R.J.H.)
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Si Jie Tang
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA; (R.A.); (M.J.S.-A.); (S.J.T.); (R.J.H.)
| | - Jelena Milisavljevic
- Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (J.M.); (F.M.)
| | - Filip Mitrovic
- Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (J.M.); (F.M.)
| | - Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA; (R.A.); (M.J.S.-A.); (S.J.T.); (R.J.H.)
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
35
|
Kenny A, Wright D, Stanfield AC. EEG as a translational biomarker and outcome measure in fragile X syndrome. Transl Psychiatry 2022; 12:34. [PMID: 35075104 PMCID: PMC8786970 DOI: 10.1038/s41398-022-01796-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 01/08/2023] Open
Abstract
Targeted treatments for fragile X syndrome (FXS) have frequently failed to show efficacy in clinical testing, despite success at the preclinical stages. This has highlighted the need for more effective translational outcome measures. EEG differences observed in FXS, including exaggerated N1 ERP amplitudes, increased resting gamma power and reduced gamma phase-locking in the sensory cortices, have been suggested as potential biomarkers of the syndrome. These abnormalities are thought to reflect cortical hyper excitability resulting from an excitatory (glutamate) and inhibitory (GABAergic) imbalance in FXS, which has been the target of several pharmaceutical remediation studies. EEG differences observed in humans also show similarities to those seen in laboratory models of FXS, which may allow for greater translational equivalence and better predict clinical success of putative therapeutics. There is some evidence from clinical trials showing that treatment related changes in EEG may be associated with clinical improvements, but these require replication and extension to other medications. Although the use of EEG characteristics as biomarkers is still in the early phases, and further research is needed to establish its utility in clinical trials, the current research is promising and signals the emergence of an effective translational biomarker.
Collapse
Affiliation(s)
- Aisling Kenny
- Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF, Edinburgh, UK.
| | - Damien Wright
- grid.4305.20000 0004 1936 7988Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF Edinburgh, UK
| | - Andrew C. Stanfield
- grid.4305.20000 0004 1936 7988Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF Edinburgh, UK
| |
Collapse
|
36
|
Shaffer R, Thurman AJ, Ronco L, Cadavid D, Raines S, Kim SH. Social communication in fragile X syndrome: pilot examination of the Brief Observation of Social Communication Change (BOSCC). J Neurodev Disord 2022; 14:4. [PMID: 35034602 PMCID: PMC8903546 DOI: 10.1186/s11689-021-09411-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/08/2021] [Indexed: 12/17/2022] Open
Abstract
Background Social communication is a key area of difficulty in fragile X syndrome (FXS) and there are not yet adequate outcome measurement tools. Appropriate outcome measures for FXS have been identified as a key area of research interest in order to evaluate future therapeutic trials. The Brief Observation of Social Communication Change-Minimally Verbal (BOSCC-MV), an outcome measure with strong psychometrics developed for autism spectrum disorder, has promise as an outcome measure to assess social communication change with FXS participants. Methods We examined the BOSCC-MV via central coders in this multi-site-trial to assess its appropriateness for FXS. Eighteen minimally verbal males ages 3–12 years were enrolled and assessed on two consecutive days and 7 participants completed a third visit 6 months later. We examined test-retest reliability, inter-rater reliability, and both convergent and divergent validity with standard clinical measures including the Autism Diagnostic and Observation Schedule-2, Vineland 3, Social Responsiveness Scale, and the Aberrant Behavior Checklist. Results The BOSCC-MV in FXS demonstrated strong inter-rater and test-retest reliability, comparable to previous trials in idiopathic ASD. Strong convergent validity was found with Autism Diagnostic Observation Schedule-2 and Vineland-3. Divergent validity was demonstrated between BOSCC-MV and unrelated measures. Conclusions The BOSCC-MV shows promise as a FXS social communication outcome measure, warranting further large-scale evaluation.
Collapse
Affiliation(s)
- Rebecca Shaffer
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, 3333 Burnet Avenue, MLC 4002, Cincinnati, OH, 45229, USA.
| | - Angela John Thurman
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, MIND Institute, University of California Davis Health, Sacramento, CA, USA
| | - Lucienne Ronco
- Fulcrum Therapeutics, Cambridge, MA, USA.,Deep Genomics Therapeutics, Toronto, ON, Canada
| | - Diego Cadavid
- Fulcrum Therapeutics, Cambridge, MA, USA.,University of Massachusetts Medical School, Worcester, MA, USA
| | | | - So Hyun Kim
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
37
|
Central Nervous System Trial Failures: Using the Fragile X Syndrome-mGluR5 Drug Target to Highlight the Complexities of Translating Preclinical Discoveries Into Human Trials. J Clin Psychopharmacol 2022; 42:234-237. [PMID: 35489028 PMCID: PMC9060375 DOI: 10.1097/jcp.0000000000001553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE/BACKGROUND Drug trials of the central nervous system(CNS) have been plagued with uninformative failures, often because of the difficulties of knowing definitively whether dosing achieved was sufficient to modulate the intended CNS target at adequate concentrations to produce pharmacodynamic or dose-related changes in readouts of brain function. Key design elements can be introduced into early-stage trials to get at this issue. METHODS/PROCEDURES This commentary builds on a review of earlier clinical studies in Fragile X syndrome to explore the extent to which the chain of evidence is in place to allow for interpretation of the results as ruling in or out the utility of modulating one or another molecular target to treat this disorder. Recent and current biomarker studies in Fragile X syndrome occurring subsequent to the clinical studies are reviewed to see if they might address any chain of evidence gaps. FINDINGS/RESULTS Despite the strong preclinical basis for targeting molecular mechanisms, the lack of efficacy seen in clinical studies remains uninterpretable, with regard to ruling in or out the utility of targeting the mechanism in a clinical population, given the absence of studies, which address whether doses of administered drug impacted the targeted brain mechanism. IMPLICATIONS/CONCLUSIONS The value of pursuing clinical studies of compounds targeted to novel mechanisms in the absence of clinical pharmacological evidence of some anticipated mediating pharmacokinetic/pharmacodynamic signals is questionable. One or more biomarkers of a drug effect on brain function are needed to establish dose dependent CNS effects that allow one to interpret clinical results as ruling in or out a mechanism and providing a firm basis for continuing or not, as well as informing dose selection in any clinical efficacy trials. Initiatives to address this general need in pediatric psychopharmacology are highlighted.
Collapse
|
38
|
Hunt JFV, Li M, Risgaard R, Ananiev GE, Wildman S, Zhang F, Bugni TS, Zhao X, Bhattacharyya A. High Throughput Small Molecule Screen for Reactivation of FMR1 in Fragile X Syndrome Human Neural Cells. Cells 2021; 11:cells11010069. [PMID: 35011630 PMCID: PMC8750025 DOI: 10.3390/cells11010069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of autism and intellectual disability. The majority of FXS cases are caused by transcriptional repression of the FMR1 gene due to epigenetic changes that are not recapitulated in current animal disease models. FXS patient induced pluripotent stem cell (iPSC)-derived gene edited reporter cell lines enable novel strategies to discover reactivators of FMR1 expression in human cells on a much larger scale than previously possible. Here, we describe the workflow using FXS iPSC-derived neural cell lines to conduct a massive, unbiased screen for small molecule activators of the FMR1 gene. The proof-of-principle methodology demonstrates the utility of human stem-cell-based methodology for the untargeted discovery of reactivators of the human FMR1 gene that can be applied to other diseases.
Collapse
Affiliation(s)
- Jack F. V. Hunt
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (J.F.V.H.); (M.L.); (R.R.)
| | - Meng Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (J.F.V.H.); (M.L.); (R.R.)
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ryan Risgaard
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (J.F.V.H.); (M.L.); (R.R.)
| | - Gene E. Ananiev
- Carbone Cancer Center Drug Discovery Core, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.E.A.); (S.W.)
| | - Scott Wildman
- Carbone Cancer Center Drug Discovery Core, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.E.A.); (S.W.)
| | - Fan Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; (F.Z.); (T.S.B.)
| | - Tim S. Bugni
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; (F.Z.); (T.S.B.)
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (J.F.V.H.); (M.L.); (R.R.)
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence: (X.Z.); (A.B.); Tel.: +1-(608)-263-9906 (X.Z.); +1-(608)-265-6142 (A.B.)
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (J.F.V.H.); (M.L.); (R.R.)
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence: (X.Z.); (A.B.); Tel.: +1-(608)-263-9906 (X.Z.); +1-(608)-265-6142 (A.B.)
| |
Collapse
|
39
|
Romagnoli A, Di Marino D. The Use of Peptides in the Treatment of Fragile X Syndrome: Challenges and Opportunities. Front Psychiatry 2021; 12:754485. [PMID: 34803767 PMCID: PMC8599826 DOI: 10.3389/fpsyt.2021.754485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023] Open
Abstract
Fragile X Syndrome (FXS) is the most frequent cause of inherited intellectual disabilities and autism spectrum disorders, characterized by cognitive deficits and autistic behaviors. The silencing of the Fmr1 gene and consequent lack of FMRP protein, is the major contribution to FXS pathophysiology. FMRP is an RNA binding protein involved in the maturation and plasticity of synapses and its absence culminates in a range of morphological, synaptic and behavioral phenotypes. Currently, there are no approved medications for the treatment of FXS, with the approaches under study being fairly specific and unsatisfying in human trials. Here we propose peptides/peptidomimetics as candidates in the pharmacotherapy of FXS; in the last years this class of molecules has catalyzed the attention of pharmaceutical research, being highly selective and well-tolerated. Thanks to their ability to target protein-protein interactions (PPIs), they are already being tested for a wide range of diseases, including cancer, diabetes, inflammation, Alzheimer's disease, but this approach has never been applied to FXS. As FXS is at the forefront of efforts to develop new drugs and approaches, we discuss opportunities, challenges and potential issues of peptides/peptidomimetics in FXS drug design and development.
Collapse
Affiliation(s)
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
40
|
Budimirovic DB, Dominick KC, Gabis LV, Adams M, Adera M, Huang L, Ventola P, Tartaglia NR, Berry-Kravis E. Gaboxadol in Fragile X Syndrome: A 12-Week Randomized, Double-Blind, Parallel-Group, Phase 2a Study. Front Pharmacol 2021; 12:757825. [PMID: 34690787 PMCID: PMC8531725 DOI: 10.3389/fphar.2021.757825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Fragile X syndrome (FXS), the most common single-gene cause of intellectual disability and autism spectrum disorder (ASD), is caused by a >200-trinucleotide repeat expansion in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene. Individuals with FXS can present with a range of neurobehavioral impairments including, but not limited to: cognitive, language, and adaptive deficits; ASD; anxiety; social withdrawal and avoidance; and aggression. Decreased expression of the γ-aminobutyric acid type A (GABAA) receptor δ subunit and deficient GABAergic tonic inhibition could be associated with symptoms of FXS. Gaboxadol (OV101) is a δ-subunit-selective, extrasynaptic GABAA receptor agonist that enhances GABAergic tonic inhibition, providing the rationale for assessment of OV101 as a potential targeted treatment of FXS. No drug is approved in the United States for the treatment of FXS. Methods: This 12-weeks, randomized (1:1:1), double-blind, parallel-group, phase 2a study was designed to assess the safety, tolerability, efficacy, and optimal daily dose of OV101 5 mg [once (QD), twice (BID), or three-times daily (TID)] when administered for 12 weeks to adolescent and adult men with FXS. Safety was the primary study objective, with key assessments including treatment-emergent adverse events (TEAEs), treatment-related adverse events leading to study discontinuation, and serious adverse events (SAEs). The secondary study objective was to evaluate the effect of OV101 on a variety of problem behaviors. Results: A total of 23 participants with FXS (13 adolescents, 10 adults) with moderate-to-severe neurobehavioral phenotypes (Full Scale Intelligence Quotient, 41.5 ± 3.29; ASD, 82.6%) were randomized to OV101 5 mg QD (n = 8), 5 mg BID (n = 8), or 5 mg TID (n = 7) for 12 weeks. OV101 was well tolerated across all 3 treatment regimens. The most common TEAEs were upper respiratory tract infection (n = 4), headache (n = 3), diarrhea (n = 2), and irritability (n = 2). No SAEs were reported. Improvements from baseline to end-of-treatment were observed on several efficacy endpoints, and 60% of participants were identified as treatment responders based on Clinical Global Impressions-Improvement. Conclusions: Overall, OV101 was safe and well tolerated. Efficacy results demonstrate an initial signal for OV101 in individuals with FXS. These results need to be confirmed in a larger, randomized, placebo-controlled study with optimal outcomes and in the most appropriate age group. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03697161.
Collapse
Affiliation(s)
- Dejan B Budimirovic
- Department of Psychiatry, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, United States.,Department of Psychiatry and Behavioral Sciences-Child Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kelli C Dominick
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Lidia V Gabis
- Maccabi HMO, Tel Aviv-Yafo, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | | | | - Linda Huang
- Ovid Therapeutics Inc., New York, NY, United States
| | - Pamela Ventola
- Child Study Center, Yale University, New Haven, CT, United States
| | - Nicole R Tartaglia
- University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
41
|
Bui TA, Shatto J, Cuppens T, Droit A, Bolduc FV. Phenotypic Trade-Offs: Deciphering the Impact of Neurodiversity on Drug Development in Fragile X Syndrome. Front Psychiatry 2021; 12:730987. [PMID: 34733188 PMCID: PMC8558248 DOI: 10.3389/fpsyt.2021.730987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common single-gene cause of intellectual disability and autism spectrum disorder. Individuals with FXS present with a wide range of severity in multiple phenotypes including cognitive delay, behavioral challenges, sleep issues, epilepsy, and anxiety. These symptoms are also shared by many individuals with other neurodevelopmental disorders (NDDs). Since the discovery of the FXS gene, FMR1, FXS has been the focus of intense preclinical investigation and is placed at the forefront of clinical trials in the field of NDDs. So far, most studies have aimed to translate the rescue of specific phenotypes in animal models, for example, learning, or improving general cognitive or behavioral functioning in individuals with FXS. Trial design, selection of outcome measures, and interpretation of results of recent trials have shown limitations in this type of approach. We propose a new paradigm in which all phenotypes involved in individuals with FXS would be considered and, more importantly, the possible interactions between these phenotypes. This approach would be implemented both at the baseline, meaning when entering a trial or when studying a patient population, and also after the intervention when the study subjects have been exposed to the investigational product. This approach would allow us to further understand potential trade-offs underlying the varying effects of the treatment on different individuals in clinical trials, and to connect the results to individual genetic differences. To better understand the interplay between different phenotypes, we emphasize the need for preclinical studies to investigate various interrelated biological and behavioral outcomes when assessing a specific treatment. In this paper, we present how such a conceptual shift in preclinical design could shed new light on clinical trial results. Future clinical studies should take into account the rich neurodiversity of individuals with FXS specifically and NDDs in general, and incorporate the idea of trade-offs in their designs.
Collapse
Affiliation(s)
- Truong An Bui
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Julie Shatto
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Tania Cuppens
- Centre de Recherche du CHU de Québec-Université Laval et Département de Médecine Moléculaire de l'Université Laval, Laval, QC, Canada
| | - Arnaud Droit
- Centre de Recherche du CHU de Québec-Université Laval et Département de Médecine Moléculaire de l'Université Laval, Laval, QC, Canada
| | - François V. Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
42
|
Perche O, Lesne F, Patat A, Raab S, Twyman R, Ring RH, Briault S. Electroretinography and contrast sensitivity, complementary translational biomarkers of sensory deficits in the visual system of individuals with fragile X syndrome. J Neurodev Disord 2021; 13:45. [PMID: 34625026 PMCID: PMC8501595 DOI: 10.1186/s11689-021-09375-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Disturbances in sensory function are an important clinical feature of neurodevelopmental disorders such as fragile X syndrome (FXS). Evidence also directly connects sensory abnormalities with the clinical expression of behavioral impairments in individuals with FXS; thus, positioning sensory function as a potential clinical target for the development of new therapeutics. Using electroretinography (ERG) and contrast sensitivity (CS), we previously reported the presence of sensory deficits in the visual system of the Fmr1-/y genetic mouse model of FXS. The goals of the current study were two-folds: (1) to assess the feasibility of measuring ERG and CS as a biomarker of sensory deficits in individuals with FXS, and (2) to investigate whether the deficits revealed by ERG and CS in Fmr1-/y mice translate to humans with FXS. METHODS Both ERG and CS were measured in a cohort of male individuals with FXS (n = 20, 18-45 years) and age-matched healthy controls (n = 20, 18-45 years). Under light-adapted conditions, and using both single flash and flicker (repeated train of flashes) stimulation protocols, retinal function was recorded from individual subjects using a portable, handheld, full-field flash ERG device (RETeval®, LKC Technologies Inc., Gaithersburg, MD, USA). CS was assessed in each subject using the LEA SYMBOLS® low-contrast test (Good-Lite, Elgin, IL, USA). RESULTS Data recording was successfully completed for ERG and assessment of CS in most individuals from both cohorts demonstrating the feasibility of these methods for use in the FXS population. Similar to previously reported findings from the Fmr1-/y genetic mouse model, individuals with FXS were found to exhibit reduced b-wave and flicker amplitude in ERG and an impaired ability to discriminate contrasts compared to healthy controls. CONCLUSIONS This study demonstrates the feasibility of using ERG and CS for assessing visual deficits in FXS and establishes the translational validity of the Fmr1-/y mice phenotype to individuals with FXS. By including electrophysiological and functional readouts, the results of this study suggest the utility of both ERG and CS (ERG-CS) as complementary translational biomarkers for characterizing sensory abnormalities found in FXS, with potential applications to the clinical development of novel therapeutics that target sensory function abnormalities to treat core symptomatology in FXS. TRIAL REGISTRATION ID-RCB number 2019-A01015-52 registered on the 17 May 2019.
Collapse
Affiliation(s)
- Olivier Perche
- Genetic Department, Centre Hospitalier Régional d'Orléans, Orléans, France
- UMR7355, Centre National de la Recherche Scientifique (CNRS), Orléans, France
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK
| | | | - Alain Patat
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK
| | | | | | - Robert H Ring
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sylvain Briault
- Genetic Department, Centre Hospitalier Régional d'Orléans, Orléans, France.
- UMR7355, Centre National de la Recherche Scientifique (CNRS), Orléans, France.
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France.
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK.
| |
Collapse
|
43
|
Kang Y, Zhou Y, Li Y, Han Y, Xu J, Niu W, Li Z, Liu S, Feng H, Huang W, Duan R, Xu T, Raj N, Zhang F, Dou J, Xu C, Wu H, Bassell GJ, Warren ST, Allen EG, Jin P, Wen Z. A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat Neurosci 2021; 24:1377-1391. [PMID: 34413513 PMCID: PMC8484073 DOI: 10.1038/s41593-021-00913-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Fragile X syndrome (FXS) is caused by the loss of fragile X mental retardation protein (FMRP), an RNA-binding protein that can regulate the translation of specific mRNAs. In this study, we developed an FXS human forebrain organoid model and observed that the loss of FMRP led to dysregulated neurogenesis, neuronal maturation and neuronal excitability. Bulk and single-cell gene expression analyses of FXS forebrain organoids revealed that the loss of FMRP altered gene expression in a cell-type-specific manner. The developmental deficits in FXS forebrain organoids could be rescued by inhibiting the phosphoinositide 3-kinase pathway but not the metabotropic glutamate pathway disrupted in the FXS mouse model. We identified a large number of human-specific mRNAs bound by FMRP. One of these human-specific FMRP targets, CHD2, contributed to the altered gene expression in FXS organoids. Collectively, our study revealed molecular, cellular and electrophysiological abnormalities associated with the loss of FMRP during human brain development.
Collapse
Affiliation(s)
- Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Ying Zhou
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Yanfei Han
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Xu
- The Graduate Program in Genetics and Molecular Biology, Emory University, GA 30322, USA
| | - Weibo Niu
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shiying Liu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, OH 44106, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, OH 44106, USA
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Nisha Raj
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Feiran Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Juan Dou
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chongchong Xu
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen T Warren
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA;,To whom correspondence should be addressed: (P.J.) and (Z.W.)
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA;,To whom correspondence should be addressed: (P.J.) and (Z.W.)
| |
Collapse
|
44
|
Abd-Elrahman KS, Ferguson SSG. Noncanonical Metabotropic Glutamate Receptor 5 Signaling in Alzheimer's Disease. Annu Rev Pharmacol Toxicol 2021; 62:235-254. [PMID: 34516293 DOI: 10.1146/annurev-pharmtox-021821-091747] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate receptor 5 (mGluR5) is ubiquitously expressed in brain regions responsible for memory and learning. It plays a key role in modulating rapid changes in synaptic transmission and plasticity. mGluR5 supports long-term changes in synaptic strength by regulating the transcription and translation of essential synaptic proteins. β-Amyloid 42 (Aβ42) oligomers interact with a mGluR5/cellular prion protein (PrPC) complex to disrupt physiological mGluR5 signal transduction. Aberrant mGluR5 signaling and associated synaptic failure are considered an emerging pathophysiological mechanism of Alzheimer's disease (AD). Therefore, mGluR5 represents an attractive therapeutic target for AD, and recent studies continue to validate the efficacy of various mGluR5 allosteric modulators in improving memory deficits and mitigating disease pathology. However, sex-specific differences in the pharmacology of mGluR5 and activation of noncanonical signaling downstream of the receptor suggest that its utility as a therapeutic target in female AD patients needs to be reconsidered. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Khaled S Abd-Elrahman
- University of Ottawa Brain and Mind Research Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; .,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; email
| | - Stephen S G Ferguson
- University of Ottawa Brain and Mind Research Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada;
| |
Collapse
|
45
|
Hagerman RJ, Hagerman PJ. Fragile X Syndrome: Lessons Learned and What New Treatment Avenues Are on the Horizon. Annu Rev Pharmacol Toxicol 2021; 62:365-381. [PMID: 34499526 DOI: 10.1146/annurev-pharmtox-052120-090147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading single-gene form of autism spectrum disorder, encompassing cognitive, behavioral, and physical forms of clinical involvement. FXS is caused by large expansions of a noncoding CGG repeat (>200 repeats) in the FMR1 gene, at which point the gene is generally silenced. Absence of FMR1 protein (FMRP), important for synaptic development and maintenance, gives rise to the neurodevelopmental disorder. There is, at present, no therapeutic approach that directly reverses the loss of FMRP; however, there is an increasing number of potential treatments that target the pathways dysregulated in FXS, including those that address the enhanced activity of the mGluR5 pathway and deficits in GABA pathways. Based on studies of targeted therapeutics to date, the prospects are good for one or more effective therapies for FXS in the near future. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Randi J Hagerman
- Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California 95817, USA; .,MIND Institute, University of California Davis Health, Sacramento, California 95817, USA
| | - Paul J Hagerman
- MIND Institute, University of California Davis Health, Sacramento, California 95817, USA.,Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California 95616, USA;
| |
Collapse
|
46
|
Salling MC, Grassetti A, Ferrera VP, Martinez D, Foltin RW. Negative allosteric modulation of metabotropic glutamate receptor 5 attenuates alcohol self-administration in baboons. Pharmacol Biochem Behav 2021; 208:173227. [PMID: 34224733 DOI: 10.1016/j.pbb.2021.173227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
Many of the behavioral symptoms that define alcohol use disorder (AUD) are thought to be mediated by amplified glutamatergic activity. As a result, previous preclinical studies have investigated glutamate receptor inhibition as a potential pharmacotherapy for AUD, particularly the metabotropic glutamate receptor 5 (mGlu5). In rodents, mGlu5 negative allosteric modulators (NAMs) have been shown to decrease alcohol self-administration. However, their effect on non-human primates has not previously been explored. To bridge this gap, the effects of mGlu5 NAM pretreatment on sweetened alcohol (8% w/v in diluted KoolAid) self-administration in female baboons were evaluated. Two different mGlu5 NAMs were tested: 1) 3-2((-Methyl-4-thiazolyl) ethynyl) pyridine (MTEP) which was administered at a dose of 2 mg/kg IM; and 2) auglurant (N-(5-fluoropyridin-2-yl)-6-methyl-4-(pyrimidin-5-yloxy)picolinamide), a newly developed NAM, which was tested under two different routes (0.001, 0.01, 0.03, 0.1 mg/kg IM and 0.1, 0.3, 1.0 mg/kg PO). MTEP decreased both fixed ratio and progressive ratio responding for sweetened alcohol. Auglurant, administered IM, decreased alcohol self-administration at doses that did not affect self-administration of an alcohol-free sweet liquid reward (0.01 to 0.1 mg/kg). Oral administration of auglurant was not effective in decreasing alcohol self-administration. Our results extend positive findings from rodent studies on mGlu5 regulation of alcohol drinking to female baboons and further strengthen the rationale for targeting mGlu5 in clinical trials for AUD.
Collapse
Affiliation(s)
- Michael C Salling
- Department of Cell Biology and Anatomy, Lousiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Alexander Grassetti
- Departments of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
| | - Vincent P Ferrera
- Departments of Neuroscience and Psychiatry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Diana Martinez
- Departments of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
| | - Richard W Foltin
- Departments of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
47
|
McCracken JT, Anagnostou E, Arango C, Dawson G, Farchione T, Mantua V, McPartland J, Murphy D, Pandina G, Veenstra-VanderWeele J. Drug development for Autism Spectrum Disorder (ASD): Progress, challenges, and future directions. Eur Neuropsychopharmacol 2021; 48:3-31. [PMID: 34158222 PMCID: PMC10062405 DOI: 10.1016/j.euroneuro.2021.05.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
In 2017, facing lack of progress and failures encountered in targeted drug development for Autism Spectrum Disorder (ASD) and related neurodevelopmental disorders, the ISCTM with the ECNP created the ASD Working Group charged to identify barriers to progress and recommending research strategies for the field to gain traction. Working Group international academic, regulatory and industry representatives held multiple in-person meetings, teleconferences, and subgroup communications to gather a wide range of perspectives on lessons learned from extant studies, current challenges, and paths for fundamental advances in ASD therapeutics. This overview delineates the barriers identified, and outlines major goals for next generation biomedical intervention development in ASD. Current challenges for ASD research are many: heterogeneity, lack of validated biomarkers, need for improved endpoints, prioritizing molecular targets, comorbidities, and more. The Working Group emphasized cautious but unwavering optimism for therapeutic progress for ASD core features given advances in the basic neuroscience of ASD and related disorders. Leveraging genetic data, intermediate phenotypes, digital phenotyping, big database discovery, refined endpoints, and earlier intervention, the prospects for breakthrough treatments are substantial. Recommendations include new priorities for expanded research funding to overcome challenges in translational clinical ASD therapeutic research.
Collapse
Affiliation(s)
- James T McCracken
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, United States.
| | | | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Univesitario Gregorio Maranon, and School of Medicine, Universidad Complutense de Madrid, CIBERSAM, Madrid, Spain
| | - Geraldine Dawson
- Duke University Medical Center, Durham, North Carolina, United States
| | - Tiffany Farchione
- Food and Drug Administration, Silver Spring, Maryland, United States
| | - Valentina Mantua
- Food and Drug Administration, Silver Spring, Maryland, United States
| | | | - Declan Murphy
- Institute of Psychiatry, Psychology and Neuroscience, King's College De Crespigny Park, Denmark Hill, London SE5 8AF, United Kingdom
| | - Gahan Pandina
- Neuroscience Therapeutic Area, Janssen Research & Development, Pennington, New Jersey, United States
| | | |
Collapse
|
48
|
Armstrong C, Marsh ED. Electrophysiological Biomarkers in Genetic Epilepsies. Neurotherapeutics 2021; 18:1458-1467. [PMID: 34642905 PMCID: PMC8609056 DOI: 10.1007/s13311-021-01132-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
Precision treatments for epilepsy targeting the underlying genetic diagnoses are becoming a reality. Historically, the goal of epilepsy treatments was to reduce seizure frequency. In the era of precision medicine, however, outcomes such as prevention of epilepsy progression or even improvements in cognitive functions are both aspirational targets for any intervention. Developing methods, both in clinical trial design and in novel endpoints, will be necessary for measuring, not only seizures, but also the other neurodevelopmental outcomes that are predicted to be targeted by precision treatments. Biomarkers that quantitatively measure disease progression or network level changes are needed to allow for unbiased measurements of the effects of any gene-level treatments. Here, we discuss some of the promising electrophysiological biomarkers that may be of use in clinical trials of precision therapies, as well as the difficulties in implementing them.
Collapse
Affiliation(s)
- Caren Armstrong
- Division of Neurology and Pediatric Epilepsy Program, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Eric D Marsh
- Division of Neurology and Pediatric Epilepsy Program, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pediatrics and Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
49
|
Milanese M, Bonifacino T, Torazza C, Provenzano F, Kumar M, Ravera S, Zerbo AR, Frumento G, Balbi M, Nguyen TPN, Bertola N, Ferrando S, Viale M, Profumo A, Bonanno G. Blocking glutamate mGlu 5 receptors with the negative allosteric modulator CTEP improves disease course in SOD1 G93A mouse model of amyotrophic lateral sclerosis. Br J Pharmacol 2021; 178:3747-3764. [PMID: 33931856 PMCID: PMC8457068 DOI: 10.1111/bph.15515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/22/2021] [Accepted: 04/20/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE The pathogenesis of amyotrophic lateral sclerosis (ALS) is not fully clarified, although excessive glutamate (Glu) transmission and the downstream cytotoxic cascades are major mechanisms for motor neuron death. Two metabotropic glutamate receptors (mGlu1 and mGlu5 ) are overexpressed in ALS and regulate cellular disease processes. Expression and function of mGlu5 receptors are altered at early symptomatic stages in the SOD1G93A mouse model of ALS and knockdown of mGlu5 receptors in SOD1G93A mice improved disease progression. EXPERIMENTAL APPROACH We treated male and female SOD1G93A mice with 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP), an orally available mGlu5 receptor negative allosteric modulator (NAM), using doses of 2 mg·kg-1 per 48 h or 4 mg·kg-1 per 24 h from Day 90, an early symptomatic disease stage. Disease progression was studied by behavioural and histological approaches. KEY RESULTS CTEP dose-dependently ameliorated clinical features in SOD1G93A mice. The lower dose increased survival and improved motor skills in female mice, with barely positive effects in male mice. Higher doses significantly ameliorated disease symptoms and survival in both males and females, females being more responsive. CTEP also reduced motor neuron death, astrocyte and microglia activation, and abnormal glutamate release in the spinal cord, with equal effects in male and female mice. No differences were also observed in CTEP access to the brain. CONCLUSION AND IMPLICATIONS Our results suggest that mGlu5 receptors are promising targets for the treatment of ALS and highlight mGlu5 receptor NAMs as effective pharmacological tools with translational potential.
Collapse
Affiliation(s)
- Marco Milanese
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy.,Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy.,Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Carola Torazza
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Francesca Provenzano
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy.,Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Mandeep Kumar
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Arianna Roberta Zerbo
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Giulia Frumento
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Matilde Balbi
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - T P Nhung Nguyen
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Nadia Bertola
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Sara Ferrando
- Department of Earth, Environmental and Life Science, University of Genoa, Genoa, Italy
| | | | - Aldo Profumo
- IRCCS Ospedale policlinico San Martino, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy.,IRCCS Ospedale policlinico San Martino, Genoa, Italy
| |
Collapse
|
50
|
Arnett AB, Wang T, Eichler EE, Bernier RA. Reflections on the genetics-first approach to advancements in molecular genetic and neurobiological research on neurodevelopmental disorders. J Neurodev Disord 2021; 13:24. [PMID: 34148555 PMCID: PMC8215789 DOI: 10.1186/s11689-021-09371-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD) and intellectual disability (ID), are common diagnoses with highly heterogeneous phenotypes and etiology. The genetics-first approach to research on NDDs has led to the identification of hundreds of genes conferring risk for ASD, ID, and related symptoms. MAIN BODY Although relatively few individuals with NDDs share likely gene-disruptive (LGD) mutations in the same gene, characterization of overlapping functions, protein networks, and temporospatial expression patterns among these genes has led to increased understanding of the neurobiological etiology of NDDs. This shift in focus away from single genes and toward broader gene-brain-behavior pathways has been accelerated by the development of publicly available transcriptomic databases, cell type-specific research methods, and sequencing of non-coding genomic regions. CONCLUSIONS The genetics-first approach to research on NDDs has advanced the identification of critical protein function pathways and temporospatial expression patterns, expanding the impact of this research beyond individuals with single-gene mutations to the broader population of patients with NDDs.
Collapse
Affiliation(s)
- Anne B Arnett
- Department of Psychiatry and Behavioral Sciences, University of Washington, CHDD, Box 357920, Seattle, WA, 98195, USA.
- Department of Psychiatry and Behavioral Medicine, Seattle Children's Hospital, Seattle, WA, USA.
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, CHDD, Box 357920, Seattle, WA, 98195, USA
| |
Collapse
|