1
|
Zhang Z, Su J, Xue J, Xiao L, Hong L, Cai G, Gu T. The Research Progress of DNA Methylation in the Development and Function of the Porcine Placenta. Int J Mol Sci 2024; 25:10687. [PMID: 39409016 PMCID: PMC11476760 DOI: 10.3390/ijms251910687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The pig is the most widely consumed domestic animal in China, providing over half of the meat supply in food markets. For livestock, a key economic trait is the reproductive performance, which is significantly influenced by placental development. The placenta, a temporary fetal organ, is crucial for establishing maternal-fetal communication and supporting fetal growth throughout pregnancy. DNA methylation is an epigenetic modification that can regulate the gene expression by recruiting proteins involved in gene silencing or preventing transcription factor binding. To enhance our understanding of the molecular mechanisms underlying DNA methylation in porcine placental development, this review summarizes the structure and function of the porcine placenta and the role of DNA methylation in placental development.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Jiawei Su
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Jiaming Xue
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Liyao Xiao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
- Guangdong Provincial Key Laboratory of Agri-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Jeddi F, Faghfuri E, Mehranfar S, Soozangar N. The common bisulfite-conversion-based techniques to analyze DNA methylation in human cancers. Cancer Cell Int 2024; 24:240. [PMID: 38982390 PMCID: PMC11234524 DOI: 10.1186/s12935-024-03405-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
DNA methylation is an important molecular modification that plays a key role in the expression of cancer genes. Evaluation of epigenetic changes, hypomethylation and hypermethylation, in specific genes are applied for cancer diagnosis. Numerous studies have concentrated on describing DNA methylation patterns as biomarkers for cancer diagnosis monitoring and predicting response to cancer therapy. Various techniques for detecting DNA methylation status in cancers are based on sodium bisulfite treatment. According to the application of these methods in research and clinical studies, they have a number of advantages and disadvantages. The current review highlights sodium bisulfite treatment-based techniques, as well as, the advantages, drawbacks, and applications of these methods in the evaluation of human cancers.
Collapse
Affiliation(s)
- Farhad Jeddi
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elnaz Faghfuri
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sahar Mehranfar
- Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narges Soozangar
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
3
|
Zhang J, Sheng H, Hu C, Li F, Cai B, Ma Y, Wang Y, Ma Y. Effects of DNA Methylation on Gene Expression and Phenotypic Traits in Cattle: A Review. Int J Mol Sci 2023; 24:11882. [PMID: 37569258 PMCID: PMC10419045 DOI: 10.3390/ijms241511882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Gene expression in cells is determined by the epigenetic state of chromatin. Therefore, the study of epigenetic changes is very important to understand the regulatory mechanism of genes at the molecular, cellular, tissue and organ levels. DNA methylation is one of the most studied epigenetic modifications, which plays an important role in maintaining genome stability and ensuring normal growth and development. Studies have shown that methylation levels in bovine primordial germ cells, the rearrangement of methylation during embryonic development and abnormal methylation during placental development are all closely related to their reproductive processes. In addition, the application of bovine male sterility and assisted reproductive technology is also related to DNA methylation. This review introduces the principle, development of detection methods and application conditions of DNA methylation, with emphasis on the relationship between DNA methylation dynamics and bovine spermatogenesis, embryonic development, disease resistance and muscle and fat development, in order to provide theoretical basis for the application of DNA methylation in cattle breeding in the future.
Collapse
Affiliation(s)
- Junxing Zhang
- Key Laboratory of Ruminant Molecular Cell Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (J.Z.); (H.S.); (C.H.); (F.L.); (B.C.); (Y.M.)
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hui Sheng
- Key Laboratory of Ruminant Molecular Cell Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (J.Z.); (H.S.); (C.H.); (F.L.); (B.C.); (Y.M.)
| | - Chunli Hu
- Key Laboratory of Ruminant Molecular Cell Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (J.Z.); (H.S.); (C.H.); (F.L.); (B.C.); (Y.M.)
| | - Fen Li
- Key Laboratory of Ruminant Molecular Cell Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (J.Z.); (H.S.); (C.H.); (F.L.); (B.C.); (Y.M.)
| | - Bei Cai
- Key Laboratory of Ruminant Molecular Cell Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (J.Z.); (H.S.); (C.H.); (F.L.); (B.C.); (Y.M.)
| | - Yanfen Ma
- Key Laboratory of Ruminant Molecular Cell Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (J.Z.); (H.S.); (C.H.); (F.L.); (B.C.); (Y.M.)
| | - Yachun Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular Cell Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (J.Z.); (H.S.); (C.H.); (F.L.); (B.C.); (Y.M.)
| |
Collapse
|
4
|
An Optimized CoBRA Method for the Microfluidic Electrophoresis Detection of Breast Cancer Associated RASSF1 Methylation. BIOTECH (BASEL (SWITZERLAND)) 2023; 12:biotech12010007. [PMID: 36648833 PMCID: PMC9844460 DOI: 10.3390/biotech12010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Although breast cancer screening assays exist, many are inaccessible and have high turnaround times, leaving a significant need for better alternatives. Hypermethylation of tumor suppressor genes is a common epigenetic marker of breast cancer. Methylation tends to occur most frequently in the promoter and first exon regions of genes. Preliminary screening tests are crucial for informing patients whether they should pursue more involved testing. We selected RASSF1, previously demonstrated to be aberrantly methylated in liquid biopsies from breast cancer patients, as our gene of interest. Using CoBRA as our method for methylation quantification, we designed unique primer sets that amplify a portion of the CpG island spanning the 5' end of the RASSF1 first exon. We integrated the CoBRA approach with a microfluidics-based electrophoresis quantification system (LabChip) and optimized the assay such that insightful results could be obtained without post-PCR purification or concentration, two steps traditionally included in CoBRA assays. Circumventing these steps resulted in a decreased turnaround time and mitigated the laboratory machinery and reagent requirements. Our streamlined technique has an estimated limit of detection of 9.1 ng/μL of input DNA and was able to quantify methylation with an average error of 4.3%.
Collapse
|
5
|
Brown LJ, Achinger-Kawecka J, Portman N, Clark S, Stirzaker C, Lim E. Epigenetic Therapies and Biomarkers in Breast Cancer. Cancers (Basel) 2022; 14:474. [PMID: 35158742 PMCID: PMC8833457 DOI: 10.3390/cancers14030474] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic therapies remain a promising, but still not widely used, approach in the management of patients with cancer. To date, the efficacy and use of epigenetic therapies has been demonstrated primarily in the management of haematological malignancies, with limited supportive data in solid malignancies. The most studied epigenetic therapies in breast cancer are those that target DNA methylation and histone modification; however, none have been approved for routine clinical use. The majority of pre-clinical and clinical studies have focused on triple negative breast cancer (TNBC) and hormone-receptor positive breast cancer. Even though the use of epigenetic therapies alone in the treatment of breast cancer has not shown significant clinical benefit, these therapies show most promise in use in combinations with other treatments. With improving technologies available to study the epigenetic landscape in cancer, novel epigenetic alterations are increasingly being identified as potential biomarkers of response to conventional and epigenetic therapies. In this review, we describe epigenetic targets and potential epigenetic biomarkers in breast cancer, with a focus on clinical trials of epigenetic therapies. We describe alterations to the epigenetic landscape in breast cancer and in treatment resistance, highlighting mechanisms and potential targets for epigenetic therapies. We provide an updated review on epigenetic therapies in the pre-clinical and clinical setting in breast cancer, with a focus on potential real-world applications. Finally, we report on the potential value of epigenetic biomarkers in diagnosis, prognosis and prediction of response to therapy, to guide and inform the clinical management of breast cancer patients.
Collapse
Affiliation(s)
- Lauren Julia Brown
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Joanna Achinger-Kawecka
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Neil Portman
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Susan Clark
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Clare Stirzaker
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Elgene Lim
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| |
Collapse
|
6
|
Ma L, Huang Y, Zhang H, Ning W, Qi R, Yuan H, Lv F, Liu L, Yu C, Wang S. Sensitive Detection and Conjoint Analysis of Promoter Methylation by Conjugated Polymers for Differential Diagnosis and Prognosis of Glioma. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9291-9299. [PMID: 32436715 DOI: 10.1021/acsami.0c03218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glioma is the most common primary tumor in the central nervous system (CNS) with the worst prognosis. Accurate pathological diagnosis has always been a challenge for optimal management of glioma. Promoter methylation is an important mechanism of epigenetic silencing tumor-suppressor genes and a potential biomarker for differential diagnosis and prognosis. Herein, using the cationic conjugated polymer (CCP)-based fluorescence resonance energy transfer (FRET) technique, we realized a highly sensitive detection of promoter methylation in clinical samples of minimal methylation degree (1.25%) and trace DNA quantity (10 ng/μL). Results for three glioma-related genes (MGMT, CDKN2A, and TERT) were combined in a diagnostic classifier to analyze the glioma-CpG island methylator phenotype (G-CIMP), which achieved a sensitivity of 80% at a maximum specificity of 100% for a glioma diagnosis. Kaplan-Meier survival curves and Pearson correlation analysis revealed that the prognosis of glioma patients with high G-CIMP scores (>5) was significantly better than those with low G-CIMP scores, especially in diffuse midline glioma and astrocytoma. This CCP-based FRET technique for determining G-CIMP status could provide patients with rapid and reasonably accurate diagnosis of glioma, as well as a valuable prognostic prediction that can guide individual treatment.
Collapse
Affiliation(s)
- Lixin Ma
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P. R. China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P. R. China
| | - Ruilian Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haitao Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chunjiang Yu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
7
|
Lam D, Clark S, Stirzaker C, Pidsley R. Advances in Prognostic Methylation Biomarkers for Prostate Cancer. Cancers (Basel) 2020; 12:E2993. [PMID: 33076494 PMCID: PMC7602626 DOI: 10.3390/cancers12102993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
There is a major clinical need for accurate biomarkers for prostate cancer prognosis, to better inform treatment strategies and disease monitoring. Current clinically recognised prognostic factors, including prostate-specific antigen (PSA) levels, lack sensitivity and specificity in distinguishing aggressive from indolent disease, particularly in patients with localised intermediate grade prostate cancer. There has therefore been a major focus on identifying molecular biomarkers that can add prognostic value to existing markers, including investigation of DNA methylation, which has a known role in tumorigenesis. In this review, we will provide a comprehensive overview of the current state of DNA methylation biomarker studies in prostate cancer prognosis, and highlight the advances that have been made in this field. We cover the numerous studies into well-established candidate genes, and explore the technological transition that has enabled hypothesis-free genome-wide studies and the subsequent discovery of novel prognostic genes.
Collapse
Affiliation(s)
- Dilys Lam
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; (D.L.); (S.C.); (C.S.)
| | - Susan Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; (D.L.); (S.C.); (C.S.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Clare Stirzaker
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; (D.L.); (S.C.); (C.S.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Ruth Pidsley
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; (D.L.); (S.C.); (C.S.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
8
|
|
9
|
Crime investigation through DNA methylation analysis: methods and applications in forensics. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2018. [DOI: 10.1186/s41935-018-0042-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
10
|
Kurita R, Yanagisawa H, Kamata T, Kato D, Niwa O. On-Chip Evaluation of DNA Methylation with Electrochemical Combined Bisulfite Restriction Analysis Utilizing a Carbon Film Containing a Nanocrystalline Structure. Anal Chem 2017; 89:5976-5982. [DOI: 10.1021/acs.analchem.7b00533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ryoji Kurita
- Biomedical Research Institute,
National
Institute of Advanced Industrial Science and Technology (AIST) and
DAILAB, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan 305-8566
| | - Hiroyuki Yanagisawa
- Biomedical Research Institute,
National
Institute of Advanced Industrial Science and Technology (AIST) and
DAILAB, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan 305-8566
| | - Tomoyuki Kamata
- Biomedical Research Institute,
National
Institute of Advanced Industrial Science and Technology (AIST) and
DAILAB, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan 305-8566
| | - Dai Kato
- Biomedical Research Institute,
National
Institute of Advanced Industrial Science and Technology (AIST) and
DAILAB, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan 305-8566
| | - Osamu Niwa
- Biomedical Research Institute,
National
Institute of Advanced Industrial Science and Technology (AIST) and
DAILAB, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan 305-8566
| |
Collapse
|
11
|
Abstract
In the field of genetics, epigenetics is the study of changes in gene expression without any change in DNA sequences. Chemical base modification in DNA by DNA methyltransferase, and specifically methylation, has been well studied as the main mechanism of epigenetics. Therefore, the determination of DNA methylation of, for example, 5'-methylcytosine in the CpG sequence in mammals has attracted attention because it should prove valuable in a wide range of research fields including diagnosis, drug discovery, and therapy. Methylated DNA bases and DNA methyltransferase activity are analyzed using conventional methods; however, these methods are time-consuming and require complex multiple operations. Therefore, new methods and devices for DNA methylation analysis are now being actively developed. Furthermore, microfluidic technology has also been applied to DNA methylation analysis because the microfluidic platform offers the promising advantage of making it possible to perform thousands of DNA methylation reactions in small reaction volumes, resulting in a high-throughput analysis with high sensitivity. This review discusses epigenetics and the microfluidic platforms developed for DNA methylation analysis.
Collapse
Affiliation(s)
- Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566 Japan.
| | | |
Collapse
|
12
|
Ghantous A, Hernandez-Vargas H, Byrnes G, Dwyer T, Herceg Z. Characterising the epigenome as a key component of the fetal exposome in evaluating in utero exposures and childhood cancer risk. Mutagenesis 2015; 30:733-42. [PMID: 25724893 PMCID: PMC4757935 DOI: 10.1093/mutage/gev010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent advances in laboratory sciences hold a promise for a 'leap forward' in understanding the aetiology of complex human diseases, notably cancer, potentially providing an evidence base for prevention. For example, remarkable advances in epigenomics have an important impact on our understanding of biological phenomena and importance of environmental stressors in complex diseases. Environmental and lifestyle factors are thought to be implicated in the development of a wide range of human cancers by eliciting changes in the epigenome. These changes, thus, represent attractive targets for biomarker discovery intended for the improvement of exposure and risk assessment, diagnosis and prognosis and provision of short-term outcomes in intervention studies. The epigenome can be viewed as an interface between the genome and the environment; therefore, aberrant epigenetic events associated with environmental exposures are likely to play an important role in the onset and progression of different human diseases. The advent of powerful technologies for analysing epigenetic patterns in both cancer tissues and normal cells holds promise that the next few years will be fundamental for the identification of critical cancer- and exposure-associated epigenetic changes and for their evaluation as new generation of biomarkers. Here, we discuss new opportunities in the current age of 'omics' technologies for studies with prospective design and associated biospecimens that represent exciting potential for characterising the epigenome as a key component of the fetal exposome and for understanding causal pathways and robust predictors of cancer risk and associated environmental determinants during in utero life. Such studies should improve our knowledge concerning the aetiology of childhood cancer and identify both novel biomarkers and clues to causation, thus, providing an evidence base for cancer prevention.
Collapse
Affiliation(s)
- Akram Ghantous
- Epigenetics and
- Biostatistics Groups, International Agency for Research on Cancer (IARC), 150 rue Albert-Thomas, F-69008 Lyon, France
- The George Institute for Global Health and Nuffield Department of Population Health, Oxford Martin School | University of Oxford, 34 Broad Street Oxford OX1 3BD, UK
| | - Hector Hernandez-Vargas
- Epigenetics and
- Biostatistics Groups, International Agency for Research on Cancer (IARC), 150 rue Albert-Thomas, F-69008 Lyon, France
- The George Institute for Global Health and Nuffield Department of Population Health, Oxford Martin School | University of Oxford, 34 Broad Street Oxford OX1 3BD, UK
| | - Graham Byrnes
- Biostatistics Groups, International Agency for Research on Cancer (IARC), 150 rue Albert-Thomas, F-69008 Lyon, France
| | - Terence Dwyer
- The George Institute for Global Health and Nuffield Department of Population Health, Oxford Martin School | University of Oxford, 34 Broad Street Oxford OX1 3BD, UK
| | - Zdenko Herceg
- *To whom correspondence should be addressed. Tel: +33-4-72 73 83 98; Fax: +33-4-72 73 83 29; E-mail:
| |
Collapse
|
13
|
Mendez EF, Sattler R. Biomarker development for C9orf72 repeat expansion in ALS. Brain Res 2014; 1607:26-35. [PMID: 25261695 DOI: 10.1016/j.brainres.2014.09.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022]
Abstract
The expanded GGGGCC hexanucleotide repeat in the non-coding region of the C9orf72 gene on chromosome 9p21 has been discovered as the cause of approximately 20-50% of familial and up to 5-20% of sporadic amyotrophic lateral sclerosis (ALS) cases, making this the most common known genetic mutation of ALS to date. At the same time, it represents the most common genetic mutation in frontotemporal dementia (FTD; 10-30%). Because of the high prevalence of mutant C9orf72, pre-clinical efforts in identifying therapeutic targets and developing novel therapeutics for this mutation are highly pursued in the hope of providing a desperately needed disease-modifying treatment for ALS patients, as well as other patient populations affected by the C9orf72 mutation. The current lack of effective treatments for ALS is partially due to the lack of appropriate biomarkers that aide in assessing drug efficacy during clinical trials independent of clinical outcome measures, such as increased survival. In this review we will summarize the opportunities for biomarker development specifically targeted to the newly discovered C9orf72 repeat expansion. While drugs are being developed for this mutation, it will be crucial to provide a reliable biomarker to accompany the clinical development of these novel therapeutic interventions to maximize the chances of a successful clinical trial. This article is part of a Special Issue entitled ALS complex pathogenesis.
Collapse
Affiliation(s)
- Emily F Mendez
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, 855N Wolfe Street, Rangos 2-223, Baltimore, MD 21205, USA
| | - Rita Sattler
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, 855N Wolfe Street, Rangos 2-223, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Offspring production with sperm grown in vitro from cryopreserved testis tissues. Nat Commun 2014; 5:4320. [DOI: 10.1038/ncomms5320] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 06/05/2014] [Indexed: 01/25/2023] Open
|
15
|
Abstract
Epigenetics has undergone an explosion in the past decade. DNA methylation, consisting of the addition of a methyl group at the fifth position of cytosine (5-methylcytosine, 5-mC) in a CpG dinucleotide, is a well-recognized epigenetic mark with important functions in cellular development and pathogenesis. Numerous studies have focused on the characterization of DNA methylation marks associated with disease development as they may serve as useful biomarkers for diagnosis, prognosis, and prediction of response to therapy. Recently, novel cytosine modifications with potential regulatory roles such as 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-foC), and 5-carboxylcytosine (5-caC) have been discovered. Study of the functions of 5-mC and its oxidation derivatives promotes the understanding of the mechanism underlying association of epigenetic modifications with disease biology. In this respect, much has been accomplished in the development of methods for the discovery, detection, and location analysis of 5-mC and its oxidation derivatives. In this review, we focus on the recent advances for the global detection and location study of 5-mC and its oxidation derivatives 5-hmC, 5-foC, and 5-caC.
Collapse
|
16
|
Epigenetic upregulation of lncRNAs at 13q14.3 in leukemia is linked to the In Cis downregulation of a gene cluster that targets NF-kB. PLoS Genet 2013; 9:e1003373. [PMID: 23593011 PMCID: PMC3616974 DOI: 10.1371/journal.pgen.1003373] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 01/28/2013] [Indexed: 01/07/2023] Open
Abstract
Non-coding RNAs are much more common than previously thought. However, for the vast majority of non-coding RNAs, the cellular function remains enigmatic. The two long non-coding RNA (lncRNA) genes DLEU1 and DLEU2 map to a critical region at chromosomal band 13q14.3 that is recurrently deleted in solid tumors and hematopoietic malignancies like chronic lymphocytic leukemia (CLL). While no point mutations have been found in the protein coding candidate genes at 13q14.3, they are deregulated in malignant cells, suggesting an epigenetic tumor suppressor mechanism. We therefore characterized the epigenetic makeup of 13q14.3 in CLL cells and found histone modifications by chromatin-immunoprecipitation (ChIP) that are associated with activated transcription and significant DNA-demethylation at the transcriptional start sites of DLEU1 and DLEU2 using 5 different semi-quantitative and quantitative methods (aPRIMES, BioCOBRA, MCIp, MassARRAY, and bisulfite sequencing). These epigenetic aberrations were correlated with transcriptional deregulation of the neighboring candidate tumor suppressor genes, suggesting a coregulation in cis of this gene cluster. We found that the 13q14.3 genes in addition to their previously known functions regulate NF-kB activity, which we could show after overexpression, siRNA-mediated knockdown, and dominant-negative mutant genes by using Western blots with previously undescribed antibodies, by a customized ELISA as well as by reporter assays. In addition, we performed an unbiased screen of 810 human miRNAs and identified the miR-15/16 family of genes at 13q14.3 as the strongest inducers of NF-kB activity. In summary, the tumor suppressor mechanism at 13q14.3 is a cluster of genes controlled by two lncRNA genes that are regulated by DNA-methylation and histone modifications and whose members all regulate NF-kB. Therefore, the tumor suppressor mechanism in 13q14.3 underlines the role both of epigenetic aberrations and of lncRNA genes in human tumorigenesis and is an example of colocalization of a functionally related gene cluster.
Collapse
|
17
|
Olkhov-Mitsel E, Bapat B. Strategies for discovery and validation of methylated and hydroxymethylated DNA biomarkers. Cancer Med 2012; 1:237-60. [PMID: 23342273 PMCID: PMC3544446 DOI: 10.1002/cam4.22] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 12/13/2022] Open
Abstract
DNA methylation, consisting of the addition of a methyl group at the fifth-position of cytosine in a CpG dinucleotide, is one of the most well-studied epigenetic mechanisms in mammals with important functions in normal and disease biology. Disease-specific aberrant DNA methylation is a well-recognized hallmark of many complex diseases. Accordingly, various studies have focused on characterizing unique DNA methylation marks associated with distinct stages of disease development as they may serve as useful biomarkers for diagnosis, prognosis, prediction of response to therapy, or disease monitoring. Recently, novel CpG dinucleotide modifications with potential regulatory roles such as 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine have been described. These potential epigenetic marks cannot be distinguished from 5-methylcytosine by many current strategies and may potentially compromise assessment and interpretation of methylation data. A large number of strategies have been described for the discovery and validation of DNA methylation-based biomarkers, each with its own advantages and limitations. These strategies can be classified into three main categories: restriction enzyme digestion, affinity-based analysis, and bisulfite modification. In general, candidate biomarkers are discovered using large-scale, genome-wide, methylation sequencing, and/or microarray-based profiling strategies. Following discovery, biomarker performance is validated in large independent cohorts using highly targeted locus-specific assays. There are still many challenges to the effective implementation of DNA methylation-based biomarkers. Emerging innovative methylation and hydroxymethylation detection strategies are focused on addressing these gaps in the field of epigenetics. The development of DNA methylation- and hydroxymethylation-based biomarkers is an exciting and rapidly evolving area of research that holds promise for potential applications in diverse clinical settings.
Collapse
Affiliation(s)
- Ekaterina Olkhov-Mitsel
- Samuel Lunenfeld Research Institute, Mount Sinai HospitalToronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of TorontoToronto, Ontario, Canada
| | - Bharati Bapat
- Samuel Lunenfeld Research Institute, Mount Sinai HospitalToronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of TorontoToronto, Ontario, Canada
- Department of Pathology, University Health Network, University of TorontoToronto, Ontario, Canada
| |
Collapse
|
18
|
Draht MXG, Riedl RR, Niessen H, Carvalho B, Meijer GA, Herman JG, van Engeland M, Melotte V, Smits KM. Promoter CpG island methylation markers in colorectal cancer: the road ahead. Epigenomics 2012; 4:179-94. [PMID: 22449189 DOI: 10.2217/epi.12.9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite increasing knowledge on the biology, detection and treatment of colorectal cancer (CRC), the disease is still a major health problem. Hypermethylation of promoter regions of genes has been studied extensively as a contributor in CRC carcinogenesis. In addition, it is the topic of many studies focusing on biomarkers for the early detection, prediction of prognosis and treatment outcome. Methylation markers may be preferred over current screening and test methods as they are stable and easy to detect. However, almost no methylation marker is currently being used in clinical practice, often due to a lack of sensitivity, specificity, or validation of the results. This review summarizes the current knowledge of hypermethylation biomarkers for CRC detection, progression and treatment outcome.
Collapse
Affiliation(s)
- Muriel X G Draht
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Epigenetic mechanisms control gene expression in a way that is stably propagated over multiple cell divisions, but which is also flexible enough to respond to environmental influences. This intermediate position between stability and plasticity renders epigenetic information highly useful for monitoring cellular states in the context of personalized medicine. Epigenetic alterations have also been identified as causal events for common diseases such as cancer and autoimmune disorders. The goal of epigenetic biomarker development is to design experimental assays that produce relevant information for diagnosis, prognosis and therapy optimization in routine clinical treatment and drug discovery. Here, I outline a systematic approach to epigenetic biomarker development and highlight key bioinformatic tools that facilitate discovery, optimization and validation of novel biomarkers.
Collapse
Affiliation(s)
- Christoph Bock
- Max-Planck-Institut für Informatik, Saarbrücken, Germany.
| |
Collapse
|
20
|
Lee YK, Nam JM. Electrofluidic lipid membrane biosensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:832-837. [PMID: 22271621 DOI: 10.1002/smll.201102093] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Young Kwang Lee
- Department of Chemistry, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-747, South Korea
| | | |
Collapse
|
21
|
Nishino K, Hattori N, Sato S, Arai Y, Tanaka S, Nagy A, Shiota K. Non-CpG methylation occurs in the regulatory region of the Sry gene. J Reprod Dev 2011; 57:586-93. [PMID: 21636956 DOI: 10.1262/jrd.11-033a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sry (sex determining region on Y chromosome) gene is a master gene for sex determination. We previously reported that the Sry gene has tissue-dependent and differentially methylated regions (T-DMRs) by analyzing the DNA methylation states at CpG sites in the promoter regions. In this study, we found unique non-CpG methylation at the internal cytosine in the 5'-CCTGG-3' pentanucleotide sequence in the Sry T-DMR. This non-CpG methylation was detected in four mouse strains (ICR, BALB/c, DBA2 and C3H), but not in two strains (C57BL/6 and 129S1), suggesting that the CCTGG methylation is tentative and unstable. Interestingly, this CCTGG methylation was associated with demethylation of the CpG sites in the Sry T-DMR in the developmental process. A methylation-mediated promoter assay showed that the CCTGG methylation promotes gene expression. Our finding shows that non-CpG methylation has unique characteristic and is still conserved in mammals.
Collapse
Affiliation(s)
- Koichiro Nishino
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Nishino K, Toyoda M, Yamazaki-Inoue M, Fukawatase Y, Chikazawa E, Sakaguchi H, Akutsu H, Umezawa A. DNA methylation dynamics in human induced pluripotent stem cells over time. PLoS Genet 2011; 7:e1002085. [PMID: 21637780 PMCID: PMC3102737 DOI: 10.1371/journal.pgen.1002085] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/01/2011] [Indexed: 01/23/2023] Open
Abstract
Epigenetic reprogramming is a critical event in the generation of induced pluripotent stem cells (iPSCs). Here, we determined the DNA methylation profiles of 22 human iPSC lines derived from five different cell types (human endometrium, placental artery endothelium, amnion, fetal lung fibroblast, and menstrual blood cell) and five human embryonic stem cell (ESC) lines, and we followed the aberrant methylation sites in iPSCs for up to 42 weeks. The iPSCs exhibited distinct epigenetic differences from ESCs, which were caused by aberrant methylation at early passages. Multiple appearances and then disappearances of random aberrant methylation were detected throughout iPSC reprogramming. Continuous passaging of the iPSCs diminished the differences between iPSCs and ESCs, implying that iPSCs lose the characteristics inherited from the parent cells and adapt to very closely resemble ESCs over time. Human iPSCs were gradually reprogrammed through the "convergence" of aberrant hyper-methylation events that continuously appeared in a de novo manner. This iPS reprogramming consisted of stochastic de novo methylation and selection/fixation of methylation in an environment suitable for ESCs. Taken together, random methylation and convergence are driving forces for long-term reprogramming of iPSCs to ESCs.
Collapse
Affiliation(s)
- Koichiro Nishino
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Masashi Toyoda
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Mayu Yamazaki-Inoue
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Yoshihiro Fukawatase
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Emi Chikazawa
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Hironari Sakaguchi
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Hidenori Akutsu
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
23
|
Karius T, Schnekenburger M, Ghelfi J, Walter J, Dicato M, Diederich M. Reversible epigenetic fingerprint-mediated glutathione-S-transferase P1 gene silencing in human leukemia cell lines. Biochem Pharmacol 2011; 81:1329-42. [PMID: 21453686 DOI: 10.1016/j.bcp.2011.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/17/2011] [Accepted: 03/21/2011] [Indexed: 12/31/2022]
Abstract
Glutathione-S-transferase P1 (GSTP1) gene is commonly silenced by CpG island promoter hypermethylation in prostate, breast, and liver cancers. However, mechanisms leading to GSTP1 repression by promoter hypermethylation in leukemia and its relationship with pathological alterations of the chromatin structure remain poorly understood. A panel of leukemia cell lines was analyzed for their GSTP1 expression, revealing cell lines with high, moderate or no detectable GSTP1 expression. Bisulfite sequencing, methylation-specific PCR and combined bisulfite restriction analysis revealed that GSTP1 promoter was completely methylated in transcriptionally inactive RAJI and MEG-01 cell lines. In contrast, cell lines expressing GSTP1 exhibited an unmethylated and transcriptionally active promoter. Furthermore, histone marks and effector proteins associated with transcriptional activity were detected by chromatin immunoprecipitation in the GSTP1 expressing hypomethylated K-562 cell line. However, repressive chromatin marks and the recruitment of silencing protein complexes were found in the non-expressing hypermethylated RAJI and MEG-01 cell lines. Finally, we provide evidence that treatment of RAJI and MEG-01 cells with the DNA demethylating agent, 5-aza-2'-deoxycytidine, resulted in GSTP1 promoter demethylation, drastic changes of histone modifications and promoter associated proteins and GSTP1 gene activation. In contrast, treatments with HDAC inhibitors failed to demethylate and reactivate the GSTP1 gene. Our study extends the knowledge on leukemia-specific epigenetic alterations of GSTP1 gene. Furthermore, we are showing the correlation of DNA methylation and histone modifications with the positive/negative GSTP1 transcriptional expression state. Finally, these data support the concept of the dominance of DNA methylation over HDAC inhibitor-sensitive histone deacetylation in gene silencing.
Collapse
Affiliation(s)
- Tommy Karius
- Laboratoire de Biologie Moléculaire et Cellulaire de Cancer, Hôpital Kirchberg, Luxembourg
| | | | | | | | | | | |
Collapse
|
24
|
Claus R, Plass C, Armstrong SA, Bullinger L. DNA methylation profiling in acute myeloid leukemia: from recent technological advances to biological and clinical insights. Future Oncol 2011; 6:1415-31. [PMID: 20919827 DOI: 10.2217/fon.10.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia represents a heterogeneous malignant hematological disease with a complex underlying biology suggesting multiple patterns of genetic and epigenetic alterations. Recent evidence suggests that epigenetic mechanisms, especially deregulation of DNA methylation, play an important pathogenic role in leukemogenesis and the first epigenetic drugs have entered the clinic. Therefore, an improved understanding of the impact of altered epigenetic patterns on leukemogenesis represents a pre-requisite for improved patient management and outcome. Here, we provide an overview of current advances in deciphering the leukemic epigenome and its clinical relevance. Recent high-throughput analyses and genome-wide studies provide an optimal starting point for future epigenetic and integrative analyses that will further the development and use of predictive and prognostic epigenetic markers in acute myeloid leukemia.
Collapse
Affiliation(s)
- Rainer Claus
- Department of Epigenomics & Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | |
Collapse
|
25
|
Quantitative detection of DNA methylation states in minute amounts of DNA from body fluids. Methods 2010; 52:242-7. [DOI: 10.1016/j.ymeth.2010.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/20/2010] [Accepted: 03/28/2010] [Indexed: 12/17/2022] Open
|
26
|
Defining hypo-methylated regions of stem cell-specific promoters in human iPS cells derived from extra-embryonic amnions and lung fibroblasts. PLoS One 2010; 5:e13017. [PMID: 20885964 PMCID: PMC2946409 DOI: 10.1371/journal.pone.0013017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 09/06/2010] [Indexed: 11/28/2022] Open
Abstract
Background Human induced pluripotent stem (iPS) cells are currently used as powerful resources in regenerative medicine. During very early developmental stages, DNA methylation decreases to an overall low level at the blastocyst stage, from which embryonic stem cells are derived.Therefore, pluripotent stem cells, such as ES and iPS cells, are considered to have hypo-methylated status compared to differentiated cells. However, epigenetic mechanisms of “stemness” remain unknown in iPS cells derived from extra-embryonic and embryonic cells. Methodology/Principal Findings We examined genome-wide DNA methylation (24,949 CpG sites covering 1,3862 genes, mostly selected from promoter regions) with six human iPS cell lines derived from human amniotic cells and fetal lung fibroblasts as well as two human ES cell lines, and eight human differentiated cell lines using Illumina's Infinium HumanMethylation27. A considerable fraction (807 sites) exhibited a distinct difference in the methylation level between the iPS/ES cells and differentiated cells, with 87.6% hyper-methylation seen in iPS/ES cells. However, a limited fraction of CpG sites with hypo-methylation was found in promoters of genes encoding transcription factors. Thus, a group of genes becomes active through a decrease of methylation in their promoters. Twenty-three genes including SOX15, SALL4, TDGF1, PPP1R16B and SOX10 as well as POU5F1 were defined as genes with hypo-methylated SS-DMR (Stem cell-Specific Differentially Methylated Region) and highly expression in iPS/ES cells. Conclusions/Significance We show that DNA methylation profile of human amniotic iPS cells as well as fibroblast iPS cells, and defined the SS-DMRs. Knowledge of epigenetic information across iPS cells derived from different cell types can be used as a signature for “stemness” and may allow us to screen for optimum iPS/ES cells and to validate and monitor iPS/ES cell derivatives for human therapeutic applications.
Collapse
|
27
|
Odenthal M, Barta N, Lohfink D, Drebber U, Schulze F, Dienes HP, Baldus SE. Analysis of microsatellite instability in colorectal carcinoma by microfluidic-based chip electrophoresis. J Clin Pathol 2008; 62:850-2. [PMID: 18641409 PMCID: PMC2727801 DOI: 10.1136/jcp.2008.056994] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microsatellite analysis is an important tool in clinical research and molecular diagnostics because microsatellite instability (MSI) occurs frequently in various types of cancer. Approximately 10–15% of colorectal, gastric and endometrial carcinomas are associated with MSI, and this has an impact on clinical prognosis. The microsatellite loci Bat25, Bat26, D2S123, D5S346 and D17S250, recommended by the Bethesda guidelines, were analysed by microfluidic-based on-chip electrophoresis in 40 cases of colon carcinoma with known MSI status. In all cases, microfluidic separation of the PCR amplicons resulted in highly resolved, distinct patterns of each of the five microsatellite loci. Detection of MSI could be demonstrated by microsatellite-loci-associated, well-defined deviations in the electropherogram profiles of tumour and non-tumour material, and confirmed the classification of MSI cases performed by conventional technology. In conclusion, microfluidic chip technology is a simple and reliable approach for MSI detection that allows label-free and very fast analysis of microsatellite amplicons.
Collapse
Affiliation(s)
- M Odenthal
- Institute of Pathology, University Hospital of Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Brena RM, Morrison C, Liyanarachchi S, Jarjoura D, Davuluri RV, Otterson GA, Reisman D, Glaros S, Rush LJ, Plass C. Aberrant DNA methylation of OLIG1, a novel prognostic factor in non-small cell lung cancer. PLoS Med 2007; 4:e108. [PMID: 17388669 PMCID: PMC1831740 DOI: 10.1371/journal.pmed.0040108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 01/31/2007] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. Currently, tumor, node, metastasis (TNM) staging provides the most accurate prognostic parameter for patients with non-small cell lung cancer (NSCLC). However, the overall survival of patients with resectable tumors varies significantly, indicating the need for additional prognostic factors to better predict the outcome of the disease, particularly within a given TNM subset. METHODS AND FINDINGS In this study, we investigated whether adenocarcinomas and squamous cell carcinomas could be differentiated based on their global aberrant DNA methylation patterns. We performed restriction landmark genomic scanning on 40 patient samples and identified 47 DNA methylation targets that together could distinguish the two lung cancer subgroups. The protein expression of one of those targets, oligodendrocyte transcription factor 1 (OLIG1), significantly correlated with survival in NSCLC patients, as shown by univariate and multivariate analyses. Furthermore, the hazard ratio for patients negative for OLIG1 protein was significantly higher than the one for those patients expressing the protein, even at low levels. CONCLUSIONS Multivariate analyses of our data confirmed that OLIG1 protein expression significantly correlates with overall survival in NSCLC patients, with a relative risk of 0.84 (95% confidence interval 0.77-0.91, p < 0.001) along with T and N stages, as indicated by a Cox proportional hazard model. Taken together, our results suggests that OLIG1 protein expression could be utilized as a novel prognostic factor, which could aid in deciding which NSCLC patients might benefit from more aggressive therapy. This is potentially of great significance, as the addition of postoperative adjuvant chemotherapy in T2N0 NSCLC patients is still controversial.
Collapse
Affiliation(s)
- Romulo M Brena
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Carl Morrison
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Sandya Liyanarachchi
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - David Jarjoura
- Division of Biostatistics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Ramana V Davuluri
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Gregory A Otterson
- Department of Internal Medicine, Division of Hematology and Oncology, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - David Reisman
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Selina Glaros
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Laura J Rush
- Department of Veterinary Biosciences and the Comprehensive Cancer Center, The Ohio State University Columbus, Ohio, United States of America
| | - Christoph Plass
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, The Ohio State University, Columbus, Ohio, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|