1
|
Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 2017; 157:49-78. [PMID: 28322920 PMCID: PMC5603356 DOI: 10.1016/j.pneurobio.2017.03.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023]
Abstract
One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke.
Collapse
Affiliation(s)
- Ling Wei
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Z Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Osama Mohamad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Forsberg D, Thonabulsombat C, Jäderstad J, Jäderstad LM, Olivius P, Herlenius E. Functional Stem Cell Integration into Neural Networks Assessed by Organotypic Slice Cultures. ACTA ACUST UNITED AC 2017; 42:2D.13.1-2D.13.30. [PMID: 28806855 DOI: 10.1002/cpsc.34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Re-formation or preservation of functional, electrically active neural networks has been proffered as one of the goals of stem cell-mediated neural therapeutics. A primary issue for a cell therapy approach is the formation of functional contacts between the implanted cells and the host tissue. Therefore, it is of fundamental interest to establish protocols that allow us to delineate a detailed time course of grafted stem cell survival, migration, differentiation, integration, and functional interaction with the host. One option for in vitro studies is to examine the integration of exogenous stem cells into an existing active neural network in ex vivo organotypic cultures. Organotypic cultures leave the structural integrity essentially intact while still allowing the microenvironment to be carefully controlled. This allows detailed studies over time of cellular responses and cell-cell interactions, which are not readily performed in vivo. This unit describes procedures for using organotypic slice cultures as ex vivo model systems for studying neural stem cell and embryonic stem cell engraftment and communication with CNS host tissue. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- David Forsberg
- Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Charoensri Thonabulsombat
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Section of Otorhinolaryngology, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden.,Center for Hearing and Communication Research, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden.,Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Johan Jäderstad
- Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Linda Maria Jäderstad
- Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Petri Olivius
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Section of Otorhinolaryngology, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden.,Center for Hearing and Communication Research, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Eric Herlenius
- Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Liu S, Li Z, Fu J, Sun L, Xu F, Harada T, Lou Y, Chu M, Sun Q, Xu K, Zhang R, Jin L, Xiao H, Wu S. The effects of harvesting media on biological characteristics and repair potential of neural stem cells after traumatic brain injury. PLoS One 2014; 9:e107865. [PMID: 25247595 PMCID: PMC4172630 DOI: 10.1371/journal.pone.0107865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022] Open
Abstract
Various solutions are utilized widely for the isolation, harvesting, sorting, testing and transplantation of neural stem cells (NSCs), whereas the effects of harvesting media on the biological characteristics and repair potential of NSCs remain unclear. To examine some of these effects, NSCs were isolated from cortex of E14.5 mice and exposed to the conventional harvesting media [0.9% saline (Saline), phosphate-buffered saline (PBS) or artificial cerebrospinal fluid (ACSF)] or the proliferation culture medium (PCM) for different durations at 4°C. Treated NSCs were grafted by in situ injection into the lesion sites of traumatic brain injury (TBI) mice. In vitro, harvesting media-exposed NSCs displayed time-dependent reduction of viability and proliferation. S phase entry decreased in harvesting media-exposed cells, which was associated with upregulation of p53 protein and downregulation of cyclin E1 protein. Moreover, harvesting media exposure induced the necrosis and apoptosis of NSCs. The levels of Fas-L, cleaved caspase 3 and 8 were increased, which suggests that the death receptor signaling pathway is involved in the apoptosis of NSCs. In addition, exposure to Saline did not facilitate the neuronal differentiation of NSCs, suggesting that Saline exposure may be disadvantageous for neurogenesis. In vivo, NSC-mediated functional recovery in harvesting media-exposed NSC groups was notably attenuated in comparison with the PCM-exposed NSC group. In conclusion, harvesting media exposure modulates the biological characteristics and repair potential of NSCs after TBI. Our results suggest that insight of the effects of harvesting media exposure on NSCs is critical for developing strategies to assure the successful long-term engraftment of NSCs.
Collapse
Affiliation(s)
- Shengliang Liu
- Department of Anatomy, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhuying Li
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Jin Fu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liang Sun
- Department of Anatomy, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fengyan Xu
- Department of Anatomy, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | | | - Yu Lou
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ming Chu
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qi Sun
- Department of Anatomy, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Kun Xu
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Rui Zhang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Lianhong Jin
- Department of Anatomy, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail: (SW); (LJ); (HX)
| | - Hui Xiao
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail: (SW); (LJ); (HX)
| | - Shuliang Wu
- Department of Anatomy, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail: (SW); (LJ); (HX)
| |
Collapse
|
4
|
Auto-attraction of neural precursors and their neuronal progeny impairs neuronal migration. Nat Neurosci 2013; 17:24-6. [PMID: 24241396 DOI: 10.1038/nn.3583] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/24/2013] [Indexed: 12/16/2022]
Abstract
Limited neuronal migration into host brain tissue is a key challenge in neural transplantation. We found that one important mechanism underlying this phenomenon is an intrinsic chemotactic interaction between the grafted neural precursor cells (NPCs) and their neuronal progeny. NPCs secrete the receptor tyrosine kinase ligands FGF2 and VEGF, which act as chemoattractants for neurons. Interference with these signaling pathways resulted in enhanced migration of human neurons from neural clusters.
Collapse
|
5
|
Yin N, Liu Q, Liu J, He B, Cui L, Li Z, Yun Z, Qu G, Liu S, Zhou Q, Jiang G. Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1831-41. [PMID: 23427069 DOI: 10.1002/smll.201202732] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Indexed: 05/16/2023]
Abstract
The impact of silver nanoparticles (AgNPs) on the central nervous system is a topic with mounting interest and concern and the facts remain elusive. In the current study, the neurotoxicity of commercial AgNPs to rat cerebellum granule cells (CGCs) and the corresponding molecular mechanism are closely investigated. It is demonstrated that AgNPs induce significant cellular toxicity to CGCs in a dose-dependent manner without damaging the cell membrane. Flow cytometry analysis with the Annexin V/propidium iodide (PI) staining indicates that the apoptotic proportion of CGCs upon treatment with AgNPs is greatly increased compared to the negative control. Moreover, the activity of caspase-3 is largely elevated in AgNP-treated cells compared to the negative control. AgNPs are demonstrated to induce oxidative stress, reflected by the massive generation of reactive oxygen species (ROS), the depletion of antioxidant glutathione (GSH), and the increase of intracellular calcium. Histological examination suggests that AgNPs provoke destruction of the cerebellum granular layer in rats with concomitant activation of caspase-3, in parallel to the neurotoxicity of AgNPs observed in vitro. Taken together, it is demonstrated for the first time that AgNPs substantially impair the survival of primary neuronal cells through apoptosis coupled to oxidative stress, depending on the caspase activation-mediated signaling.
Collapse
Affiliation(s)
- Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Herlenius E, Thonabulsombat C, Forsberg D, Jäderstad J, Jäderstad LM, Björk L, Olivius P. Functional stem cell integration assessed by organotypic slice cultures. ACTA ACUST UNITED AC 2013; Chapter 2:Unit 2D.13. [PMID: 23154935 DOI: 10.1002/9780470151808.sc02d13s23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Re-formation or preservation of functional, electrically active neural networks has been proffered as one of the goals of stem cell-mediated neural therapeutics. A primary issue for a cell therapy approach is the formation of functional contacts between the implanted cells and the host tissue. Therefore, it is of fundamental interest to establish protocols that allow us to delineate a detailed time course of grafted stem cell survival, migration, differentiation, integration, and functional interaction with the host. One option for in vitro studies is to examine the integration of exogenous stem cells into an existing active neuronal network in ex vivo organotypic cultures. Organotypic cultures leave the structural integrity essentially intact while still allowing the microenvironment to be carefully controlled. This allows detailed studies over time of cellular responses and cell-cell interactions, which are not readily performed in vivo. This unit describes procedures for using organotypic slice cultures as ex vivo model systems for studying neural stem cell and embryonic stem cell engraftment and communication with CNS host tissue.
Collapse
Affiliation(s)
- Eric Herlenius
- Neonatal Research Unit, Department of Women's and Children's Health, Astrid Lindgren Children's Hospital, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
7
|
High-frequency hippocampal oscillations activated by optogenetic stimulation of transplanted human ESC-derived neurons. J Neurosci 2013; 32:15837-42. [PMID: 23136422 DOI: 10.1523/jneurosci.3735-12.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
After transplantation, individual stem cell-derived neurons can functionally integrate into the host CNS; however, evidence that neurons derived from transplanted human embryonic stem cells (hESCs) can drive endogenous neuronal network activity in CNS tissue is still lacking. Here, using multielectrode array recordings, we report activation of high-frequency oscillations in the β and γ ranges (10-100 Hz) in the host hippocampal network via targeted optogenetic stimulation of transplanted hESC-derived neurons.
Collapse
|
8
|
Store-operated calcium entry modulates neuronal network activity in a model of chronic epilepsy. Exp Neurol 2011; 232:185-94. [DOI: 10.1016/j.expneurol.2011.08.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 08/23/2011] [Indexed: 11/20/2022]
|
9
|
Husseini L, Schmandt T, Scheffler B, Schröder W, Seifert G, Brüstle O, Steinhäuser C. Functional Analysis of Embryonic Stem Cell–Derived Glial Cells after Integration into Hippocampal Slice Cultures. Stem Cells Dev 2008; 17:1141-52. [DOI: 10.1089/scd.2007.0244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Leila Husseini
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
| | - Tanja Schmandt
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Björn Scheffler
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Wolfgang Schröder
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
- Present address: Department of Pharmacology, Grünenthal GmbH, Aachen, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | | |
Collapse
|
10
|
Ladewig J, Koch P, Endl E, Meiners B, Opitz T, Couillard-Despres S, Aigner L, Brüstle O. Lineage selection of functional and cryopreservable human embryonic stem cell-derived neurons. Stem Cells 2008; 26:1705-12. [PMID: 18420830 DOI: 10.1634/stemcells.2008-0007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A major prerequisite for the biomedical application of human embryonic stem cells (hESC) is the derivation of defined and homogeneous somatic cell types. Here we present a human doublecortin (DCX) promoter-based lineage-selection strategy for the generation of purified hESC-derived immature neurons. After transfection of hESC-derived neural precursors with a DCX-enhanced green fluorescent protein construct, fluorescence-activated cell sorting enables the enrichment of immature human neurons at purities of up to 95%. Selected neurons undergo functional maturation and are able to establish synaptic connections. Considering that the applicability of purified hESC-derived neurons would largely benefit from an efficient cryopreservation technique, we set out to devise defined freezing conditions involving caspase inhibition, which yield post-thaw recovery rates of up to 83%. Combined with our lineage-selection procedure this cryopreservation technique enables the generation of human neurons in a ready-to-use format for a large variety of biomedical applications.
Collapse
Affiliation(s)
- Julia Ladewig
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|