1
|
Ben‐Ishay Y, Barak Y, Feintuch A, Ouari O, Pierro A, Mileo E, Su X, Goldfarb D. Exploring the dynamics and structure of PpiB in living Escherichia coli cells using electron paramagnetic resonance spectroscopy. Protein Sci 2024; 33:e4903. [PMID: 38358137 PMCID: PMC10868451 DOI: 10.1002/pro.4903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
The combined effects of the cellular environment on proteins led to the definition of a fifth level of protein structural organization termed quinary structure. To explore the implication of potential quinary structure for globular proteins, we studied the dynamics and conformations of Escherichia coli (E. coli) peptidyl-prolyl cis/trans isomerase B (PpiB) in E. coli cells. PpiB plays a major role in maturation and regulation of folded proteins by catalyzing the cis/trans isomerization of the proline imidic peptide bond. We applied electron paramagnetic resonance (EPR) techniques, utilizing both Gadolinium (Gd(III)) and nitroxide spin labels. In addition to using standard spin labeling approaches with genetically engineered cysteines, we incorporated an unnatural amino acid to achieve Gd(III)-nitroxide orthogonal labeling. We probed PpiB's residue-specific dynamics by X-band continuous wave EPR at ambient temperatures and its structure by double electron-electron resonance (DEER) on frozen samples. PpiB was delivered to E. coli cells by electroporation. We report a significant decrease in the dynamics induced by the cellular environment for two chosen labeling positions. These changes could not be reproduced by adding crowding agents and cell extracts. Concomitantly, we report a broadening of the distance distribution in E. coli, determined by Gd(III)-Gd(III) DEER measurements, as compared with solution and human HeLa cells. This suggests an increase in the number of PpiB conformations present in E. coli cells, possibly due to interactions with other cell components, which also contributes to the reduction in mobility and suggests the presence of a quinary structure.
Collapse
Affiliation(s)
- Yasmin Ben‐Ishay
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Yoav Barak
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Akiva Feintuch
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Olivier Ouari
- CNRS, ICR, Institut de Chimie RadicalaireAix‐Marseille UniversitéMarseilleFrance
| | - Annalisa Pierro
- CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des ProtéinesAix Marseille UniversitéMarseilleFrance
- Present address:
Konstanz Research School Chemical Biology, Department of ChemistryUniversity of KonstanzKonstanzGermany
| | - Elisabetta Mileo
- CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des ProtéinesAix Marseille UniversitéMarseilleFrance
| | - Xun‐Cheng Su
- State Key Laboratory of Elemento‐organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular RecognitionCollege of Chemistry, Nankai UniversityTianjinChina
| | - Daniella Goldfarb
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
2
|
Wang XW, Zhang X, Cui CY, Li B, Goldfarb D, Yang Y, Su XC. Stabilizing Nitroxide Spin Labels for Structural and Conformational Studies of Biomolecules by Maleimide Treatment. Chemistry 2023; 29:e202301350. [PMID: 37354082 DOI: 10.1002/chem.202301350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
Nitroxide (NO) spin radicals are effective in characterizing structures, interactions and dynamics of biomolecules. The EPR applications in cell lysates or intracellular milieu require stable spin labels, but NO radicals are unstable in such conditions. We showed that the destabilization of NO radicals in cell lysates or even in cells is caused by NADPH/NADH related enzymes, but not by the commonly believed reducing reagents such as GSH. Maleimide stabilizes the NO radicals in the cell lysates by consumption of the NADPH/NADH that are essential for the enzymes involved in destabilizing NO radicals, instead of serving as the solo thiol scavenger. The maleimide treatment retains the crowding properties of the intracellular components and allows to perform long-time EPR measurements of NO labeled biomolecules close to the intracellular conditions. The strategy of maleimide treatment on cell lysates for the EPR applications has been demonstrated on double electron-electron resonance (DEER) measurements on a number of NO labeled protein samples. The method opens a broad application range for the NO labeled biomolecules by EPR in conditions that resemble the intracellular milieu.
Collapse
Affiliation(s)
- Xi-Wei Wang
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xing Zhang
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao-Yu Cui
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bin Li
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yin Yang
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Galazzo L, Bordignon E. Electron paramagnetic resonance spectroscopy in structural-dynamic studies of large protein complexes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:1-19. [PMID: 37321755 DOI: 10.1016/j.pnmrs.2022.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Macromolecular protein assemblies are of fundamental importance for many processes inside the cell, as they perform complex functions and constitute central hubs where reactions occur. Generally, these assemblies undergo large conformational changes and cycle through different states that ultimately are connected to specific functions further regulated by additional small ligands or proteins. Unveiling the 3D structural details of these assemblies at atomic resolution, identifying the flexible parts of the complexes, and monitoring with high temporal resolution the dynamic interplay between different protein regions under physiological conditions is key to fully understanding their properties and to fostering biomedical applications. In the last decade, we have seen remarkable advances in cryo-electron microscopy (EM) techniques, which deeply transformed our vision of structural biology, especially in the field of macromolecular assemblies. With cryo-EM, detailed 3D models of large macromolecular complexes in different conformational states became readily available at atomic resolution. Concomitantly, nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy (EPR) have benefited from methodological innovations which also improved the quality of the information that can be achieved. Such enhanced sensitivity widened their applicability to macromolecular complexes in environments close to physiological conditions and opened a path towards in-cell applications. In this review we will focus on the advantages and challenges of EPR techniques with an integrative approach towards a complete understanding of macromolecular structures and functions.
Collapse
Affiliation(s)
- Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| |
Collapse
|
4
|
Giannoulis A, Ackermann K, Bogdanov A, Cordes DB, Higgins C, Ward J, Slawin AMZ, Taylor JE, Bode BE. Synthesis of mono-nitroxides and of bis-nitroxides with varying electronic through-bond communication. Org Biomol Chem 2023; 21:375-385. [PMID: 36524609 PMCID: PMC9811921 DOI: 10.1039/d2ob01863b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitroxides are a unique class of persistent radicals finding a wide range of applications, from spin probes to polarizing agents, and recently bis-nitroxides have been used as proof-of-concept molecules for quantum information processing. Here we present the syntheses of pyrroline-based nitroxide (NO) radicals and give a comparision of two possible synthetic routes to form two key intermediates, namely 2,2,5,5-tetramethylpyrroline-1-oxyl-3-acetylene (TPA) and 1-oxyl-2,2,5,5-tetramethylpyrroline-3-carboxylic acid (TPC). TPC and TPA were then used as precursors for the synthesis of three model compounds featuring two distant NO groups with a variable degree of conjugation and thus electronic communication between them. Using relatively facile synthetic routes, we produced a number of mono- and bis-nitroxides with the structures of multiple compounds unambiguously characterized by X-ray crystallography, while Continuous Wave Electron Paramagnetic Resonance (CW-EPR) allowed us to quantify the electronic communication in the bis-nitroxides. Our study expands the repertoire of mono- and bis-nitroxides with possibilities of exploiting them for studying quantum coherence effects and as polarizing agents.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovot76100Israel,EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Alexey Bogdanov
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovot76100Israel
| | - David B. Cordes
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Catherine Higgins
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Joshua Ward
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Alexandra M. Z. Slawin
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - James E. Taylor
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St AndrewsNorth HaughSt AndrewsKY16 9STUK,Department of Chemistry, University of BathClaverton DownBathBA2 7AYUK
| | - Bela E. Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| |
Collapse
|
5
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Harvey SM, Wasielewski MR. Photogenerated Spin-Correlated Radical Pairs: From Photosynthetic Energy Transduction to Quantum Information Science. J Am Chem Soc 2021; 143:15508-15529. [PMID: 34533930 DOI: 10.1021/jacs.1c07706] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
More than a half century ago, the NMR spectra of diamagnetic products resulting from radical pair reactions were observed to have strongly enhanced absorptive and emissive resonances. At the same time, photogenerated radical pairs were discovered to exhibit unusual electron paramagnetic resonance spectra that also had such resonances. These non-Boltzmann, spin-polarized spectra were observed in both chemical systems as well as in photosynthetic reaction center proteins following photodriven charge separation. Subsequent studies of these phenomena led to a variety of chemical electron donor-acceptor model systems that provided a broad understanding of the spin dynamics responsible for these spectra. When the distance between the two radicals is restricted, these observations result from the formation of spin-correlated radical pairs (SCRPs) in which the spin-spin exchange and dipolar interactions between the two unpaired spins play an important role in the spin dynamics. Early on, it was recognized that SCRPs photogenerated by ultrafast electron transfer are entangled spin pairs created in a well-defined spin state. These SCRPs can serve as spin qubit pairs (SQPs), whose spin dynamics can be manipulated to study a wide variety of quantum phenomena intrinsic to the field of quantum information science. This Perspective highlights the role of SCRPs as SQPs, gives examples of possible quantum manipulations using SQPs, and provides some thoughts on future directions.
Collapse
Affiliation(s)
- Samantha M Harvey
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
7
|
Chu A, Schlecker B, Kern M, Goodsell J, Angerhofer A, Lips K, Anders J. On the modeling of amplitude-sensitive electron spin resonance (ESR) detection using voltage-controlled oscillator (VCO)-based ESR-on-a-chip detectors. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:699-713. [PMID: 37905224 PMCID: PMC10539732 DOI: 10.5194/mr-2-699-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/17/2021] [Indexed: 11/02/2023]
Abstract
In this paper, we present an in-depth analysis of a voltage-controlled oscillator (VCO)-based sensing method for electron spin resonance (ESR) spectroscopy, which greatly simplifies the experimental setup compared to conventional detection schemes. In contrast to our previous oscillator-based ESR detectors, where the ESR signal was encoded in the oscillation frequency, in the amplitude-sensitive method, the ESR signal is sensed as a change of the oscillation amplitude of the VCO. Therefore, using VCO architecture with a built-in amplitude demodulation scheme, the experimental setup reduces to a single permanent magnet in combination with a few inexpensive electronic components. We present a theoretical analysis of the achievable limit of detection, which uses perturbation-theory-based VCO modeling for the signal and applies a stochastic averaging approach to obtain a closed-form expression for the noise floor. Additionally, the paper also introduces a numerical model suitable for simulating oscillator-based ESR experiments in a conventional circuit simulator environment. This model can be used to optimize sensor performance early on in the design phase. Finally, all presented models are verified against measured results from a prototype VCO operating at 14 GHz inside a 0.5 T magnetic field.
Collapse
Affiliation(s)
- Anh Chu
- Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - Benedikt Schlecker
- Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - Michal Kern
- Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - Justin L. Goodsell
- Department of Chemistry, University of Florida, Gainesville, FL32611-7200, USA
| | | | - Klaus Lips
- Department Spins in Energy Materials and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Jens Anders
- Institute of Smart Sensors and IQST (Center for Integrated Quantum Science and Technology), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| |
Collapse
|
8
|
Krafčík D, Ištvánková E, Džatko Š, Víšková P, Foldynová-Trantírková S, Trantírek L. Towards Profiling of the G-Quadruplex Targeting Drugs in the Living Human Cells Using NMR Spectroscopy. Int J Mol Sci 2021; 22:6042. [PMID: 34205000 PMCID: PMC8199861 DOI: 10.3390/ijms22116042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Recently, the 1H-detected in-cell NMR spectroscopy has emerged as a unique tool allowing the characterization of interactions between nucleic acid-based targets and drug-like molecules in living human cells. Here, we assess the application potential of 1H and 19F-detected in-cell NMR spectroscopy to profile drugs/ligands targeting DNA G-quadruplexes, arguably the most studied class of anti-cancer drugs targeting nucleic acids. We show that the extension of the original in-cell NMR approach is not straightforward. The severe signal broadening and overlap of 1H in-cell NMR spectra of polymorphic G-quadruplexes and their complexes complicate their quantitative interpretation. Nevertheless, the 1H in-cell NMR can be used to identify drugs that, despite strong interaction in vitro, lose their ability to bind G-quadruplexes in the native environment. The in-cell NMR approach is adjusted to a recently developed 3,5-bis(trifluoromethyl)phenyl probe to monitor the intracellular interaction with ligands using 19F-detected in-cell NMR. The probe allows dissecting polymorphic mixture in terms of number and relative populations of individual G-quadruplex species, including ligand-bound and unbound forms in vitro and in cellulo. Despite the probe's discussed limitations, the 19F-detected in-cell NMR appears to be a promising strategy to profile G-quadruplex-ligand interactions in the complex environment of living cells.
Collapse
Affiliation(s)
- Daniel Krafčík
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Šimon Džatko
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | | | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
| |
Collapse
|
9
|
Kucher S, Elsner C, Safonova M, Maffini S, Bordignon E. In-Cell Double Electron-Electron Resonance at Nanomolar Protein Concentrations. J Phys Chem Lett 2021; 12:3679-3684. [PMID: 33829785 DOI: 10.1021/acs.jpclett.1c00048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is an established technique to site-specifically monitor conformational changes of spin-labeled biomolecules. Emerging in-cell EPR approaches aiming to address spin-labeled proteins in their native environment still struggle to reach a broad applicability and to target physiologically relevant protein concentrations. Here, we present a comparative in vitro and in-cell double electron-electron resonance (DEER) study demonstrating that nanomolar protein concentrations are at reach to measure distances up to 4.5 nm between protein sites carrying commercial gadolinium spin labels.
Collapse
Affiliation(s)
- Svetlana Kucher
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Universitaetsstr. 150, 44801 Bochum, Germany
| | - Christina Elsner
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Universitaetsstr. 150, 44801 Bochum, Germany
| | - Mariya Safonova
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Universitaetsstr. 150, 44801 Bochum, Germany
| | - Stefano Maffini
- Max Planck Institute of Molecular Physiology, Department of Mechanistic Cell Biology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Enrica Bordignon
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Universitaetsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
10
|
Polienko YF, Kuprikova NM, Parkhomenko DA, Gatilov YV, Chernyak EI, Kirilyuk IA. Synthesis of 2,5-bis(spirocyclohexane)-substituted nitroxides: New spin labeling agents. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Juliusson HY, Sigurdsson ST. Reduction Resistant and Rigid Nitroxide Spin-Labels for DNA and RNA. J Org Chem 2020; 85:4036-4046. [PMID: 32103670 DOI: 10.1021/acs.joc.9b02988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy, coupled with site-directed spin labeling (SDSL), is a useful method for studying conformational changes of biomolecules in cells. To employ in-cell EPR using nitroxide-based spin labels, the structure of the nitroxides must confer reduction resistance to withstand the reductive environment within cells. Here, we report the synthesis of two new spin labels, EÇ and EÇm, both of which possess the rigidity and the reduction resistance needed for extracting detailed structural information by EPR spectroscopy. EÇ and EÇm were incorporated into DNA and RNA, respectively, by oligonucleotide synthesis. Both labels were shown to be nonperturbing of the duplex structure. The partial reduction of EÇm during RNA synthesis was circumvented by the protection of the nitroxide as a benzoylated hydroxylamine.
Collapse
Affiliation(s)
- Haraldur Y Juliusson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| |
Collapse
|
12
|
Kucher S, Korneev S, Klare JP, Klose D, Steinhoff HJ. In cell Gd3+-based site-directed spin labeling and EPR spectroscopy of eGFP. Phys Chem Chem Phys 2020; 22:13358-13362. [DOI: 10.1039/d0cp01930e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newly synthesized Gd3+ chelate complex allows in cell spin labeling and detection of eGFP by EPR spectroscopy.
Collapse
Affiliation(s)
| | - Sergej Korneev
- Department of Biology
- Osnabrück University
- Osnabrück
- Germany
| | | | - Daniel Klose
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- Zurich
- Switzerland
| | | |
Collapse
|
13
|
Cetiner EC, Jonker HRA, Helmling C, Gophane DB, Grünewald C, Sigurdsson ST, Schwalbe H. Paramagnetic-iterative relaxation matrix approach: extracting PRE-restraints from NOESY spectra for 3D structure elucidation of biomolecules. JOURNAL OF BIOMOLECULAR NMR 2019; 73:699-712. [PMID: 31606877 DOI: 10.1007/s10858-019-00282-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Paramagnetic relaxation enhancement (PRE) can be used to determine long-range distance restraints in biomolecules. The PREs are typically determined by analysis of intensity differences in HSQC experiments of paramagnetic and diamagnetic spin labels. However, this approach requires both isotope- and spin-labelling. Herein, we report a novel method to evaluate NOESY intensities in the presence of a paramagnetic moiety to determine PRE restraints. The advantage of our approach over HSQC-based approaches is the increased number of available signals without the need for isotope labelling. NOESY intensities affected by a paramagnetic center were evaluated during a structure calculation within the paramagnetic iterative relaxation matrix approach (P-IRMA). We applied P-IRMA to a 14-mer RNA with a known NMR solution structure, which allowed us to assess the quality of the PRE restraints. To this end, three different spin labels have been attached at different positions of the 14-mer to test the influence of flexibility on the structure calculation. Structural disturbances introduced by the spin label have been evaluated by chemical shift analysis. Furthermore, the impact of P-IRMA on the quality of the structure bundles were tested by intentionally leaving out available diamagnetic restraints. Our analyses show that P-IRMA is a powerful tool to refine RNA structures for systems that are insufficiently described by using only diamagnetic restraints.
Collapse
Affiliation(s)
- E C Cetiner
- Institut für Organische Chemie und Chemische Biologie, Zentrum für Biomolekulare Magnetische Resonanz, Goethe Universität Frankfurt am Main, Max-von-Laue Straße 7, 60438, Frankfurt am Main, Germany
| | - H R A Jonker
- Institut für Organische Chemie und Chemische Biologie, Zentrum für Biomolekulare Magnetische Resonanz, Goethe Universität Frankfurt am Main, Max-von-Laue Straße 7, 60438, Frankfurt am Main, Germany
| | - C Helmling
- Institut für Organische Chemie und Chemische Biologie, Zentrum für Biomolekulare Magnetische Resonanz, Goethe Universität Frankfurt am Main, Max-von-Laue Straße 7, 60438, Frankfurt am Main, Germany
| | - D B Gophane
- Department of Chemistry Science Institute, University of Iceland, Dunhaga 3, 107, Reykjavik, Iceland
| | - C Grünewald
- Institut für Organische Chemie und Chemische Biologie, Zentrum für Biomolekulare Magnetische Resonanz, Goethe Universität Frankfurt am Main, Max-von-Laue Straße 7, 60438, Frankfurt am Main, Germany
| | - S Th Sigurdsson
- Department of Chemistry Science Institute, University of Iceland, Dunhaga 3, 107, Reykjavik, Iceland
| | - H Schwalbe
- Institut für Organische Chemie und Chemische Biologie, Zentrum für Biomolekulare Magnetische Resonanz, Goethe Universität Frankfurt am Main, Max-von-Laue Straße 7, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Anders J, Lips K. MR to go. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:118-123. [PMID: 31327536 DOI: 10.1016/j.jmr.2019.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/02/2019] [Accepted: 07/08/2019] [Indexed: 05/03/2023]
Abstract
In this paper, we provide a review of the recent advances in miniaturizing nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectrometers for portable magnetic resonance (MR) applications. We focus the discussion on the application of integrated circuit technology for the miniaturization of the NMR and EPR spectrometer hardware and/or the detector and we will briefly touch on magnet technology. Finally, we will summarize current challenges of chip-integrated spectrometers and give an outlook on future applications of mobile MR spectrometers.
Collapse
Affiliation(s)
- J Anders
- University of Stuttgart, Institute of Smart Sensors and IQ(ST) (Center for Integrated Quantum Science and Technology), Stuttgart, Germany.
| | - K Lips
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin Joint EPR Lab, Institute Nanospectroscopy, Berlin, Germany.
| |
Collapse
|
15
|
Joseph B, Jaumann EA, Sikora A, Barth K, Prisner TF, Cafiso DS. In situ observation of conformational dynamics and protein ligand-substrate interactions in outer-membrane proteins with DEER/PELDOR spectroscopy. Nat Protoc 2019; 14:2344-2369. [PMID: 31278399 PMCID: PMC6886689 DOI: 10.1038/s41596-019-0182-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/18/2019] [Indexed: 12/01/2022]
Abstract
Observing structure and conformational dynamics of membrane proteins at high-resolution in their native environments is challenging because of the lack of suitable techniques. We have developed an approach for high-precision distance measurements in the nanometer range for outer membrane proteins (OMPs) in intact E. coli and native membranes. OMPs in Gram-negative bacteria rarely have reactive cysteines. This enables in-situ labeling of engineered cysteines with a methanethiosulfonate functionalized nitroxide spin label (MTSL) with minimal background signals. Following overexpression of the target protein, spin labeling is performed with E. coli or isolated outer membranes (OM) under selective conditions. The interspin distances are measured in-situ using pulsed electron-electron double resonance spectroscopy (PELDOR or DEER). The residual background signals, which are problematic for in-situ structural biology, contributes specifically to the intermolecular part of the signal and can be selectively removed to extract the desired interspin distance distribution. The initial cloning stage can take 5–7 d and the subsequent protein expression, OM isolation, spin labeling, PELDOR experiment, and the data analysis typically take 4–5 d. The described protocol provides a general strategy for observing protein-ligand/substrate interactions, oligomerization, and conformational dynamics of OMPs in the native OM and intact E. coli. EDITORIAL SUMMARY This protocol describes how to label bacterial outer membrane proteins with spin labels to study conformational changes and their interaction with ligands and substrates in native membranes and cells using Pulsed Electron-Electron Double Resonance (PELDOR or DEER) spectroscopy. TWEET A new protocol for studying conformational changes and ligand/substrate interactions of bacterial outer membrane proteins in-situ. COVER TEASER Studying membrane protein conformations in-situ
Collapse
Affiliation(s)
- Benesh Joseph
- Institute of Biophysics, Department of Physics, University of Frankfurt, Frankfurt am Main, Germany. .,Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, University of Frankfurt, Frankfurt am Main, Germany.
| | - Eva A Jaumann
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, University of Frankfurt, Frankfurt am Main, Germany
| | - Arthur Sikora
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, VA, USA
| | - Katja Barth
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, University of Frankfurt, Frankfurt am Main, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, University of Frankfurt, Frankfurt am Main, Germany
| | - David S Cafiso
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
16
|
Olshansky JH, Krzyaniak MD, Young RM, Wasielewski MR. Photogenerated Spin-Entangled Qubit (Radical) Pairs in DNA Hairpins: Observation of Spin Delocalization and Coherence. J Am Chem Soc 2019; 141:2152-2160. [DOI: 10.1021/jacs.8b13155] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jacob H. Olshansky
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D. Krzyaniak
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M. Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
17
|
Weinrich T, Jaumann EA, Scheffer UM, Prisner TF, Göbel MW. Phosphoramidite building blocks with protected nitroxides for the synthesis of spin-labeled DNA and RNA. Beilstein J Org Chem 2018; 14:1563-1569. [PMID: 30013683 PMCID: PMC6036967 DOI: 10.3762/bjoc.14.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/14/2018] [Indexed: 12/23/2022] Open
Abstract
TEMPO spin labels protected with 2-nitrobenzyloxymethyl groups were attached to the amino residues of three different nucleosides: deoxycytidine, deoxyadenosine, and adenosine. The corresponding phosphoramidites could be incorporated by unmodified standard procedures into four different self-complementary DNA and two RNA oligonucleotides. After photochemical removal of the protective group, elimination of formic aldehyde and spontaneous air oxidation, the nitroxide radicals were regenerated in high yield. The resulting spin-labeled palindromic duplexes could be directly investigated by PELDOR spectroscopy without further purification steps. Spin–spin distances measured by PELDOR correspond well to the values obtained from molecular models.
Collapse
Affiliation(s)
- Timo Weinrich
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Eva A Jaumann
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Ute M Scheffer
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Michael W Göbel
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
18
|
Giassa IC, Rynes J, Fessl T, Foldynova-Trantirkova S, Trantirek L. Advances in the cellular structural biology of nucleic acids. FEBS Lett 2018; 592:1997-2011. [PMID: 29679394 DOI: 10.1002/1873-3468.13054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/09/2018] [Indexed: 01/01/2023]
Abstract
Conventional biophysical and chemical biology approaches for delineating relationships between the structure and biological function of nucleic acids (NAs) abstract NAs from their native biological context. However, cumulative experimental observations have revealed that the structure, dynamics and interactions of NAs might be strongly influenced by a broad spectrum of specific and nonspecific physical-chemical environmental factors. This consideration has recently sparked interest in the development of novel tools for structural characterization of NAs in the native cellular context. Here, we review the individual methods currently being employed for structural characterization of NA structure in a native cellular environment with a focus on recent advances and developments in the emerging fields of in-cell NMR and electron paramagnetic resonance spectroscopy and in-cell single-molecule FRET of NAs.
Collapse
Affiliation(s)
- Ilektra-Chara Giassa
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Rynes
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tomas Fessl
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Silvie Foldynova-Trantirkova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Institute of Biophysics, Academy of Science of the Czech Republic, Brno, Czech Republic
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
19
|
Weinrich T, Jaumann EA, Scheffer U, Prisner TF, Göbel MW. A Cytidine Phosphoramidite with Protected Nitroxide Spin Label: Synthesis of a Full-Length TAR RNA and Investigation by In-Line Probing and EPR Spectroscopy. Chemistry 2018; 24:6202-6207. [PMID: 29485736 DOI: 10.1002/chem.201800167] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/23/2018] [Indexed: 01/20/2023]
Abstract
EPR studies on RNA are complicated by three major obstacles related to the chemical nature of nitroxide spin labels: Decomposition while oligonucleotides are chemically synthesized, further decay during enzymatic strand ligation, and undetected changes in conformational equilibria due to the steric demand of the label. Herein possible solutions for all three problems are presented: A 2-nitrobenzyloxymethyl protective group for nitroxides that is stable under all conditions of chemical RNA synthesis and can be removed photochemically. By careful selection of ligation sites and splint oligonucleotides, high yields were achieved in the assembly of a full-length HIV-1 TAR RNA labeled with two protected nitroxide groups. PELDOR measurements on spin-labeled TAR in the absence and presence of arginine amide indicated arrest of interhelical motions on ligand binding. Finally, even minor changes in conformation due to the presence of spin labels are detected with high sensitivity by in-line probing.
Collapse
Affiliation(s)
- Timo Weinrich
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Eva A Jaumann
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Ute Scheffer
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Thomas F Prisner
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Michael W Göbel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
20
|
John L, Drescher M. Xenopus laevis Oocytes Preparation for in-Cell EPR Spectroscopy. Bio Protoc 2018; 8:e2798. [PMID: 34286018 DOI: 10.21769/bioprotoc.2798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/14/2022] Open
Abstract
One of the most exciting perspectives for studying bio-macromolecules comes from the emerging field of in-cell spectroscopy, which enables to determine the structure and dynamics of bio-macromolecules in the cell. In-cell electron paramagnetic resonance (EPR) spectroscopy in combination with micro-injection of bio-macromolecules into Xenopus laevis oocytes is ideally suited for this purpose. Xenopus laevis oocytes are a commonly used eukaryotic cell model in different fields of biology, such as cell- and development-biology. For in-cell EPR, the bio-macromolecules of interest are microinjected into the Xenopus laevis oocytes upon site-directed spin labeling. The sample solution is filled into a thin glass capillary by means of Nanoliter Injector and after that microinjected into the dark animal part of the Xenopus laevis oocytes by puncturing the membrane cautiously. Afterwards, three or five microinjected Xenopus laevis oocytes, depending on the kind of the final in-cell EPR experiment, are loaded into a Q-band EPR sample tube followed by optional shock-freezing (for experiment in frozen solution) and measurement (either at cryogenic or physiological temperatures) after the desired incubation time. The incubation time is limited due to cytotoxic effects of the microinjected samples and the stability of the paramagnetic spin label in the reducing cellular environment. Both aspects are quantified by monitoring cell morphology and reduction kinetics.
Collapse
Affiliation(s)
- Laura John
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
21
|
Haugland MM, Lovett JE, Anderson EA. Advances in the synthesis of nitroxide radicals for use in biomolecule spin labelling. Chem Soc Rev 2018; 47:668-680. [PMID: 29192696 DOI: 10.1039/c6cs00550k] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
EPR spectroscopy is an increasingly useful analytical tool to probe biomolecule structure, dynamic behaviour, and interactions. Nitroxide radicals are the most commonly used radical probe in EPR experiments, and many methods have been developed for their synthesis, as well as incorporation into biomolecules using site-directed spin labelling. In this Tutorial Review, we discuss the most practical methods for the synthesis of nitroxides, focusing on the tunability of their structures, the manipulation of their sidechains into spin labelling handles, and their installation into biomolecules.
Collapse
Affiliation(s)
- Marius M Haugland
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK.
| | | | | |
Collapse
|
22
|
Cattani J, Subramaniam V, Drescher M. Room-temperature in-cell EPR spectroscopy: alpha-Synuclein disease variants remain intrinsically disordered in the cell. Phys Chem Chem Phys 2018; 19:18147-18151. [PMID: 28696461 DOI: 10.1039/c7cp03432f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human alpha-Synuclein (aS), implicated in Parkinson's disease, adopts a rich variety of different conformations depending on the macromolecular context. In order to unravel its pathophysiological role, monitoring its intracellular conformational state and identifying differences for the disease variants is crucial. Here, we present an intracellular spectroscopy approach based on a systematic spin-labeling site-scan in combination with intracellular electron paramagnetic resonance spectroscopy determining conformations on a molecular scale. A quantitative and model-based data analysis revealed that the vast majority of aS, be it wild-type or disease variants A30P or A53T, exists in the monomeric intrinsically disordered form in the cell.
Collapse
Affiliation(s)
- Julia Cattani
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.
| | | | | |
Collapse
|
23
|
Lawless MJ, Shimshi A, Cunningham TF, Kinde MN, Tang P, Saxena S. Analysis of Nitroxide-Based Distance Measurements in Cell Extracts and in Cells by Pulsed ESR Spectroscopy. Chemphyschem 2017; 18:1653-1660. [PMID: 28295910 DOI: 10.1002/cphc.201700115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Indexed: 11/10/2022]
Abstract
Measurements of distances in cells by pulsed ESR spectroscopy afford tremendous opportunities to study proteins in native environments that are irreproducible in vitro. However, the in-cell environment is harsh towards the typical nitroxide radicals used in double electron-electron resonance (DEER) experiments. A systematic examination is performed on the loss of the DEER signal, including contributions from nitroxide decay and nitroxide side-chain cleavage. In addition, the possibility of extending the lifetime of the nitroxide radical by use of an oxidizing agent is investigated. Using this oxidizing agent, DEER distance measurements are performed on doubly nitroxide-labeled GB1, the immunoglobulin-binding domain of protein G, at varying incubation times in the cellular environment. It is found that, by comparison of the loss of DEER signal to the loss of the CW spectrum, cleavage of the nitroxide side chain contributes to the loss of DEER signal, which is significantly greater in cells than in cell extracts. Finally, local spin concentrations are monitored at varying incubation times to show the time required for molecular diffusion of a small globular protein within the cellular milieu.
Collapse
Affiliation(s)
- Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Amit Shimshi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Timothy F Cunningham
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA.,Current address: Department of Chemistry, Hanover College, 484 Ball Dr, Hanover, IN, 47243, USA
| | - Monica N Kinde
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, PA, 15213, USA.,Current address: Division of Basic Sciences, Kansas City University of Medicine and Biosciences, 2901 St. John's Blvd., Joplin, MO, 64804, USA
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, PA, 15213, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
24
|
Blank A. A new approach to distance measurements between two spin labels in the >10 nm range. Phys Chem Chem Phys 2017; 19:5222-5229. [PMID: 28149986 DOI: 10.1039/c6cp07597e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ESR spectroscopy can be efficiently used to acquire the distance between two spin labels placed on a macromolecule by measuring their mutual dipolar interaction frequency, as long as the distance is not greater than ∼10 nm. Any hope to significantly increase this figure is hampered by the fact that all available spin labels have a phase memory time (Tm), restricted to the microseconds range, which provides a limited window during which the dipolar interaction frequency can be measured. Thus, due to the inverse cubic dependence of the dipolar frequency over the labels' separation distance, evaluating much larger distances, e.g. 20 nm, would require to have a Tm that is ∼200 microsecond, clearly beyond any hope. Here we propose a new approach to greatly enhancing the maximum measured distance available by relying on another type of dipole interaction-mediated mechanism called spin diffusion. This mechanism operates and can be evaluated during the spin lattice relaxation time, T1 (commonly in the milliseconds range), rather than only during Tm. Up until recently, the observation of spin diffusion in solid electron spin systems was considered experimentally impractical. However, recent developments have enabled its direct measurement by means of high sensitivity pulsed ESR that employs intense short magnetic field gradients, thus opening the door to the subsequent utilization of these capabilities. The manuscript presents the subject of spin diffusion, the ways it can be directly measured, and a theoretical discussion on how intramolecular spin-pair distance, even in the range of 20-30 nm, could be accurately extracted from spin diffusion measurements.
Collapse
Affiliation(s)
- A Blank
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
25
|
Kucher S, Korneev S, Tyagi S, Apfelbaum R, Grohmann D, Lemke EA, Klare JP, Steinhoff HJ, Klose D. Orthogonal spin labeling using click chemistry for in vitro and in vivo applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 275:38-45. [PMID: 27992783 DOI: 10.1016/j.jmr.2016.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
Site-directed spin labeling for EPR- and NMR spectroscopy has mainly been achieved exploiting the specific reactivity of cysteines. For proteins with native cysteines or for in vivo applications, an alternative coupling strategy is required. In these cases click chemistry offers major benefits by providing a fast and highly selective, biocompatible reaction between azide and alkyne groups. Here, we establish click chemistry as a tool to target unnatural amino acids in vitro and in vivo using azide- and alkyne-functionalized spin labels. The approach is compatible with a variety of labels including reduction-sensitive nitroxides. Comparing spin labeling efficiencies from the copper-free with the strongly reducing copper(I)-catalyzed azide-alkyne click reaction, we find that the faster kinetics for the catalyzed reaction outrun reduction of the labile nitroxide spin labels and allow quantitative labeling yields within short reaction times. Inter-spin distance measurements demonstrate that the novel side chain is suitable for paramagnetic NMR- or EPR-based conformational studies of macromolecular complexes.
Collapse
Affiliation(s)
- Svetlana Kucher
- Department of Physics, University of Osnabrück, Barbarastr. 7, 49076 Osnabrück, Germany
| | - Sergei Korneev
- Department of Biology & Chemistry, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Swati Tyagi
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Ronja Apfelbaum
- Physical and Theoretical Chemistry, Technical University of Braunschweig, Hans-Sommer-Str. 10, 38106 Braunschweig, Germany
| | - Dina Grohmann
- Physical and Theoretical Chemistry, Technical University of Braunschweig, Hans-Sommer-Str. 10, 38106 Braunschweig, Germany
| | - Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Johann P Klare
- Department of Physics, University of Osnabrück, Barbarastr. 7, 49076 Osnabrück, Germany
| | - Heinz-Jürgen Steinhoff
- Department of Physics, University of Osnabrück, Barbarastr. 7, 49076 Osnabrück, Germany.
| | - Daniel Klose
- Department of Physics, University of Osnabrück, Barbarastr. 7, 49076 Osnabrück, Germany.
| |
Collapse
|
26
|
Huang S, Paletta JT, Elajaili H, Huber K, Pink M, Rajca S, Eaton GR, Eaton SS, Rajca A. Synthesis and Electron Spin Relaxation of Tetracarboxylate Pyrroline Nitroxides. J Org Chem 2017; 82:1538-1544. [PMID: 28032758 PMCID: PMC5478179 DOI: 10.1021/acs.joc.6b02737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
We report the design,
synthesis, and electron spin relaxation properties
of hydrophilic tetracarboxylate ester pyrroline nitroxides 1 and 2, which serve as models in the search for new
spin labels for DEER distance measurement at room temperature. The
nitroxides are designed to have the methyl groups further away from
the N–O spin site to decrease the inequivalent couplings of
the unpaired electron to the methyl protons that shorten Tm at T > 70 K in currently used labels.
The key step in the synthesis of 1 and 2 is the reaction of the dianion of pyrrole-1,2,5-tricarboxylic acid tert-butyl ester dimethyl ester with electrophiles such
as methyl chloroformate and methyl bromoacetate. Structures of 1 and 2 are confirmed by X-ray crystallography.
Studies of electron spin relaxation rates in rigid trehalose/sucrose
matrices reveal approximately temperature independent values of 1/Tm for 1 and 2 up to
about 160 K and modest temperature dependence up to 295 K, demonstrating
that increasing the distance between the nitroxide moiety and methyl
groups is effective in lengthening Tm at T > 70 K.
Collapse
Affiliation(s)
- Shengdian Huang
- Department of Chemistry, University of Nebraska , Lincoln, Nebraska 68588-0304, United States
| | - Joseph T Paletta
- Department of Chemistry, University of Nebraska , Lincoln, Nebraska 68588-0304, United States
| | - Hanan Elajaili
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208-2436, United States
| | - Kirby Huber
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208-2436, United States
| | - Maren Pink
- IUMSC, Department of Chemistry, Indiana University , Bloomington, Indiana 47405-7102, United States
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska , Lincoln, Nebraska 68588-0304, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208-2436, United States
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208-2436, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska , Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
27
|
Jassoy JJ, Berndhäuser A, Duthie F, Kühn SP, Hagelueken G, Schiemann O. Versatile Trityl Spin Labels for Nanometer Distance Measurements on Biomolecules In Vitro and within Cells. Angew Chem Int Ed Engl 2017; 56:177-181. [PMID: 27918126 DOI: 10.1002/anie.201609085] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/03/2016] [Indexed: 01/04/2023]
Abstract
Structure determination of biomacromolecules under in-cell conditions is a relevant yet challenging task. Electron paramagnetic resonance (EPR) distance measurements in combination with site-directed spin labeling (SDSL) are a valuable tool in this endeavor but the usually used nitroxide spin labels are not well-suited for in-cell measurements. In contrast, triarylmethyl (trityl) radicals are highly persistent, exhibit a long relaxation time and a narrow spectral width. Here, the synthesis of a versatile collection of trityl spin labels and their application in in vitro and in-cell trityl-iron distance measurements on a cytochrome P450 protein are described. The trityl labels show similar labeling efficiencies and better signal-to-noise ratios (SNR) as compared to the popular methanethiosulfonate spin label (MTSSL) and enabled a successful in-cell measurement.
Collapse
Affiliation(s)
- J Jacques Jassoy
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Andreas Berndhäuser
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Fraser Duthie
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Sebastian P Kühn
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Gregor Hagelueken
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| |
Collapse
|
28
|
Weinrich T, Gränz M, Grünewald C, Prisner TF, Göbel MW. Synthesis of a Cytidine Phosphoramidite with Protected Nitroxide Spin Label for EPR Experiments with RNA. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601174] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Timo Weinrich
- Institute of Organic Chemistry and Chemical Biology; Goethe-University Frankfurt; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Markus Gränz
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance; Goethe-University Frankfurt; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Christian Grünewald
- Institute of Organic Chemistry and Chemical Biology; Goethe-University Frankfurt; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance; Goethe-University Frankfurt; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Michael W. Göbel
- Institute of Organic Chemistry and Chemical Biology; Goethe-University Frankfurt; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| |
Collapse
|
29
|
Jassoy JJ, Berndhäuser A, Duthie F, Kühn SP, Hagelueken G, Schiemann O. Versatile Trityl Spin Labels for Nanometer Distance Measurements on Biomolecules In Vitro and within Cells. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609085] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J. Jacques Jassoy
- Institute of Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Andreas Berndhäuser
- Institute of Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Fraser Duthie
- Institute of Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Sebastian P. Kühn
- Institute of Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Gregor Hagelueken
- Institute of Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| |
Collapse
|
30
|
Jones CE, Berliner LJ. Nitroxide Spin-Labelling and Its Role in Elucidating Cuproprotein Structure and Function. Cell Biochem Biophys 2016; 75:195-202. [PMID: 27342129 DOI: 10.1007/s12013-016-0751-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/11/2016] [Indexed: 10/21/2022]
Abstract
Copper is one of the most abundant biological metals, and its chemical properties mean that organisms need sophisticated and multilayer mechanisms in place to maintain homoeostasis and avoid deleterious effects. Studying copper proteins requires multiple techniques, but electron paramagnetic resonance (EPR) plays a key role in understanding Cu(II) sites in proteins. When spin-labels such as aminoxyl radicals (commonly referred to as nitroxides) are introduced, then EPR becomes a powerful technique to monitor not only the coordination environment, but also to obtain structural information that is often not readily available from other techniques. This information can contribute to explaining how cuproproteins fold and misfold. The theory and practice of EPR can be daunting to the non-expert; therefore, in this mini review, we explore how nitroxide spin-labelling can be used to help the inorganic biochemist gain greater understanding of cuproprotein structure and function in vitro and how EPR imaging may help improve understanding of copper homoeostasis in vivo.
Collapse
Affiliation(s)
- Christopher E Jones
- The School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2759, Australia.
| | - Lawrence J Berliner
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208-0183, USA
| |
Collapse
|
31
|
Qi M, Hülsmann M, Godt A. Spacers for Geometrically Well-Defined Water-Soluble Molecular Rulers and Their Application. J Org Chem 2016; 81:2549-71. [DOI: 10.1021/acs.joc.6b00125] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mian Qi
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| | - Miriam Hülsmann
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| |
Collapse
|
32
|
Wojciechowski F, Groß A, Holder IT, Knörr L, Drescher M, Hartig JS. Pulsed EPR spectroscopy distance measurements of DNA internally labelled with Gd(3+)-DOTA. Chem Commun (Camb) 2015; 51:13850-3. [PMID: 26236790 DOI: 10.1039/c5cc04234h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gd(3+) is increasingly used in EPR spectroscopy due to its increased intracellular stability and signal-to-noise ratios. Here we present the incorporation of Gd(3+)-DOTA into internal positions in DNA. Distance measurements via pulsed Electron Paramagnetic Resonance (EPR) spectroscopy in vitro and in cellula proved enhanced stability and efficiency compared to nitroxide labels.
Collapse
Affiliation(s)
- Filip Wojciechowski
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, Konstanz, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Klinska M, Smith LM, Gryn'ova G, Banwell MG, Coote ML. Experimental demonstration of pH-dependent electrostatic catalysis of radical reactions. Chem Sci 2015; 6:5623-5627. [PMID: 29861899 PMCID: PMC5949849 DOI: 10.1039/c5sc01307k] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/20/2015] [Indexed: 01/05/2023] Open
Abstract
Fluorescence spectroscopy demonstrated pH-dependent electrostatic effects on the kinetics and thermodynamics of hydrogen atom transfer between 1-hydroxy-2,2,6,6-tetramethyl-4-piperidinecarboxylic acid and {2,2,6,6-tetramethyl-4-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-1-piperidinyl}oxidanyl radical in dichloromethane.
Time-dependent fluorescence spectroscopy has been used to demonstrate significant pH-dependent electrostatic effects on the kinetics and thermodynamics of hydrogen atom transfer between 1-hydroxy-2,2,6,6-tetramethyl-4-piperidinecarboxylic acid (4-CT-H) and the profluorescent nitroxide {2,2,6,6-tetramethyl-4-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-1-piperidinyl}oxidanyl radical (PFN) in dichloromethane. This pH switching does not occur when 4-CT-H is replaced with a structurally analogous hydroxylamine that lacks an acid-base group, or when the polarity of the solvent is increased. These findings validate our recent theoretical predictions that electrostatic stabilisation of delocalised radicals is of functional significance in low polarity environments.
Collapse
Affiliation(s)
- Marta Klinska
- Research School of Chemistry , Australian National University , Canberra ACT 2601 , Australia .
| | - Leesa M Smith
- Research School of Chemistry , Australian National University , Canberra ACT 2601 , Australia .
| | - Ganna Gryn'ova
- Research School of Chemistry , Australian National University , Canberra ACT 2601 , Australia .
| | - Martin G Banwell
- Research School of Chemistry , Australian National University , Canberra ACT 2601 , Australia .
| | - Michelle L Coote
- Research School of Chemistry , Australian National University , Canberra ACT 2601 , Australia . .,ARC Centre of Excellence for Electromaterials Science , Australia
| |
Collapse
|
34
|
Hacker SM, Hintze C, Marx A, Drescher M. Monitoring enzymatic ATP hydrolysis by EPR spectroscopy. Chem Commun (Camb) 2015; 50:7262-4. [PMID: 24872080 DOI: 10.1039/c4cc02422b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An adenosine triphosphate (ATP) analogue modified with two nitroxide radicals is developed and employed to study its enzymatic hydrolysis by electron paramagnetic resonance spectroscopy. For this application, we demonstrate that EPR holds the potential to complement fluorogenic substrate analogues in monitoring enzymatic activity.
Collapse
Affiliation(s)
- Stephan M Hacker
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
35
|
Joseph B, Sikora A, Bordignon E, Jeschke G, Cafiso DS, Prisner TF. Distance Measurement on an Endogenous Membrane Transporter in E. coli Cells and Native Membranes Using EPR Spectroscopy. Angew Chem Int Ed Engl 2015; 54:6196-9. [PMID: 25826642 DOI: 10.1002/anie.201501086] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Indexed: 01/21/2023]
Abstract
Membrane proteins may be influenced by the environment, and they may be unstable in detergents or fail to crystallize. As a result, approaches to characterize structures in a native environment are highly desirable. Here, we report a novel general strategy for precise distance measurements on outer membrane proteins in whole Escherichia coli cells and isolated outer membranes. The cobalamin transporter BtuB was overexpressed and spin-labeled in whole cells and outer membranes and interspin distances were measured to a spin-labeled cobalamin using pulse EPR spectroscopy. A comparative analysis of the data reveals a similar interspin distance between whole cells, outer membranes, and synthetic vesicles. This approach provides an elegant way to study conformational changes or protein-protein/ligand interactions at surface-exposed sites of membrane protein complexes in whole cells and native membranes, and provides a method to validate outer membrane protein structures in their native environment.
Collapse
Affiliation(s)
- Benesh Joseph
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum, Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main (Germany) http://www.prisner.de
| | - Arthur Sikora
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville VA22904-4319 (USA)
| | - Enrica Bordignon
- Department of Physics, Free University of Berlin, Arnimallee 14, 14195 Berlin (Germany)
| | - Gunnar Jeschke
- Laboratory for Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland)
| | - David S Cafiso
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville VA22904-4319 (USA).
| | - Thomas F Prisner
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum, Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main (Germany) http://www.prisner.de.
| |
Collapse
|
36
|
Joseph B, Sikora A, Bordignon E, Jeschke G, Cafiso DS, Prisner TF. Distance Measurement on an Endogenous Membrane Transporter inE. coliCells and Native Membranes Using EPR Spectroscopy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Schmidt MJ, Fedoseev A, Summerer D, Drescher M. Genetically Encoded Spin Labels for In Vitro and In-Cell EPR Studies of Native Proteins. Methods Enzymol 2015; 563:483-502. [PMID: 26478496 DOI: 10.1016/bs.mie.2015.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a powerful approach to study the structure, dynamics, and interactions of proteins. The genetic encoding of the noncanonical amino acid spin-labeled lysine 1 (SLK-1) eliminates the need for any chemical labeling steps in SDSL-EPR studies and enables the investigation of native, endogenous proteins with minimal structural perturbation, and without the need to create unique reactive sites for chemical labeling. We report detailed experimental procedures for the efficient synthesis of SLK-1, the expression and purification of SLK-1-containing proteins under conditions that ensure maximal integrity of the nitroxide radical moiety, and procedures for intramolecular EPR distance measurements in proteins by double electron-electron resonance.
Collapse
Affiliation(s)
- M J Schmidt
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - A Fedoseev
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - D Summerer
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - M Drescher
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
38
|
Dunkel S, Pulagam LP, Steinhoff HJ, Klare JP. In vivo EPR on spin labeled colicin A reveals an oligomeric assembly of the pore-forming domain in E. coli membranes. Phys Chem Chem Phys 2015; 17:4875-8. [DOI: 10.1039/c4cp05638h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
DEER distance measurements on intact Escherichia coli cells interacting with nitroxide spin-labeled ColA suggest that this bacteriocin forms dimers upon membrane insertion.
Collapse
Affiliation(s)
- S. Dunkel
- Department of Physics
- University of Osnabrück
- 49076 Osnabrück
- Germany
| | - L. P. Pulagam
- Department of Physics
- University of Osnabrück
- 49076 Osnabrück
- Germany
| | - H.-J. Steinhoff
- Department of Physics
- University of Osnabrück
- 49076 Osnabrück
- Germany
| | - J. P. Klare
- Department of Physics
- University of Osnabrück
- 49076 Osnabrück
- Germany
| |
Collapse
|
39
|
Saha S, Jagtap AP, Sigurdsson ST. Site-directed spin labeling of 2′-amino groups in RNA with isoindoline nitroxides that are resistant to reduction. Chem Commun (Camb) 2015; 51:13142-5. [DOI: 10.1039/c5cc05014f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
2'-Amino groups in RNA were selectively spin labeled with reductively stable isoindoline nitroxides through a high-yielding reaction with aromatic isothiocyanates.
Collapse
Affiliation(s)
- Subham Saha
- University of Iceland
- Department of Chemistry
- Science Institute
- 107 Reykjavik
- Iceland
| | - Anil P. Jagtap
- University of Iceland
- Department of Chemistry
- Science Institute
- 107 Reykjavik
- Iceland
| | | |
Collapse
|
40
|
Jagtap AP, Krstic I, Kunjir NC, Hänsel R, Prisner TF, Sigurdsson ST. Sterically shielded spin labels for in-cell EPR spectroscopy: Analysis of stability in reducing environment. Free Radic Res 2014; 49:78-85. [DOI: 10.3109/10715762.2014.979409] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
New developments in spin labels for pulsed dipolar EPR. Molecules 2014; 19:16998-7025. [PMID: 25342554 PMCID: PMC6271499 DOI: 10.3390/molecules191016998] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022] Open
Abstract
Spin labelling is a chemical technique that enables the integration of a molecule containing an unpaired electron into another framework for study. Given the need to understand the structure, dynamics, and conformational changes of biomacromolecules, spin labelling provides a relatively non-intrusive technique and has certain advantages over X-ray crystallography; which requires high quality crystals. The technique relies on the design of binding probes that target a functional group, for example, the thiol group of a cysteine residue within a protein. The unpaired electron is typically supplied through a nitroxide radical and sterically shielded to preserve stability. Pulsed electron paramagnetic resonance (EPR) techniques allow small magnetic couplings to be measured (e.g., <50 MHz) providing information on single label probes or the dipolar coupling between multiple labels. In particular, distances between spin labels pairs can be derived which has led to many protein/enzymes and nucleotides being studied. Here, we summarise recent examples of spin labels used for pulse EPR that serve to illustrate the contribution of chemistry to advancing discoveries in this field.
Collapse
|
42
|
Qi M, Groß A, Jeschke G, Godt A, Drescher M. Gd(III)-PyMTA Label Is Suitable for In-Cell EPR. J Am Chem Soc 2014; 136:15366-78. [DOI: 10.1021/ja508274d] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mian Qi
- Faculty
of Chemistry and Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Andreas Groß
- Department
of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical
Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Gunnar Jeschke
- Laboratory
of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Adelheid Godt
- Faculty
of Chemistry and Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Malte Drescher
- Department
of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical
Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
43
|
Abstract
Ever since scientists realized that cells are the basic building blocks of all life, they have been developing tools to look inside them to reveal the architectures and mechanisms that define their biological functions. Whereas "looking into cells" is typically said in reference to optical microscopy, high-resolution in-cell and on-cell nuclear magnetic resonance (NMR) spectroscopy is a powerful method that offers exciting new possibilities for structural and functional studies in and on live cells. In contrast to conventional imaging techniques, in- and on-cell NMR methods do not provide spatial information on cellular biomolecules. Instead, they enable atomic-resolution insights into the native cell states of proteins, nucleic acids, glycans, and lipids. Here we review recent advances and developments in both fields and discuss emerging concepts that have been delineated with these methods.
Collapse
Affiliation(s)
- Darón I Freedberg
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, Maryland 20852-1448;
| | | |
Collapse
|
44
|
Hänsel R, Luh LM, Corbeski I, Trantirek L, Dötsch V. Intrazelluläre NMR- und EPR-Spektroskopie von biologischen Makromolekülen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201311320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Hänsel R, Luh LM, Corbeski I, Trantirek L, Dötsch V. In-cell NMR and EPR spectroscopy of biomacromolecules. Angew Chem Int Ed Engl 2014; 53:10300-14. [PMID: 25070284 DOI: 10.1002/anie.201311320] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Indexed: 12/21/2022]
Abstract
The dream of cell biologists is to be able to watch biological macromolecules perform their duties in the intracellular environment of live cells. Ideally, the observation of both the location and the conformation of these macromolecules with biophysical techniques is desired. The development of many fluorescence techniques, including superresolution fluorescence microscopy, has significantly enhanced our ability to spot proteins and other molecules in the crowded cellular environment. However, the observation of their structure and conformational changes while they attend their business is still very challenging. In principle, NMR and EPR spectroscopy can be used to investigate the conformation and dynamics of biological macromolecules in living cells. The development of in-cell magnetic resonance techniques has demonstrated the feasibility of this approach. Herein we review the different techniques with a focus on liquid-state in-cell NMR spectroscopy, provide an overview of applications, and discuss the challenges that lie ahead.
Collapse
Affiliation(s)
- Robert Hänsel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt (Germany)
| | | | | | | | | |
Collapse
|
46
|
Astakhova IK, Wengel J. Scaffolding along nucleic acid duplexes using 2'-amino-locked nucleic acids. Acc Chem Res 2014; 47:1768-77. [PMID: 24749544 DOI: 10.1021/ar500014g] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONSPECTUS: Incorporation of chemically modified nucleotide scaffolds into nucleic acids to form assemblies rich in function is an innovative area with great promise for nanotechnology and biomedical and material science applications. The intrinsic biorecognition potential of nucleic acids combined with advanced properties of the locked nucleic acids (LNAs) provide opportunities to develop new nanomaterials and devices like sensors, aptamers, and machines. In this Account, we describe recent research on preparation and investigation of the properties of LNA/DNA hybrids containing functionalized 2'-amino-LNA nucleotides. By application of different chemical reactions, modification of 2'-amino-LNA scaffolds can be efficiently performed in high yields and with various tags, postsynthetically or during the automated oligonucleotide synthesis. The choice of a synthetic method for scaffolding along 2'-amino-LNA mainly depends on the chemical nature of the modification, its price, its availability, and applications of the product. One of the most useful applications of the product LNA/DNA scaffolds containing 2'-amino-LNA is to detect complementary DNA and RNA targets. Examples of these applications include sensing of clinically important single-nucleotide polymorphisms (SNPs) and imaging of nucleic acids in vitro, in cell culture, and in vivo. According to our studies, 2'-amino-LNA scaffolds are efficient within diagnostic probes for DNA and RNA targets and as therapeutics, whereas both 2'-amino- and isomeric 2'-α-l-amino-LNA scaffolds have promising properties for stabilization and detection of DNA nanostructures. Attachment of fluorescent groups to the 2'-amino group results in very high fluorescent quantum yields of the duplexes and remarkable sensitivity of the fluorescence signal to target binding. Notably, fluorescent LNA/DNA probes bind nucleic acid targets with advantages of high affinity and specificity. Thus, molecular motion of nanodevices and programmable self-assembly of chemically modified LNA/DNA nanomaterials can be followed by bright fluorescence signaling from the functionalized LNA units. Another appealing aspect of the amino-LNA scaffolds is specific targeting of nucleic acids and proteins for therapeutic applications. 2'-Amino-LNA/DNA conjugates containing peptide and polyaromatic hydrocarbon (PAH) groups are promising in this context as well as for advanced imaging and diagnostic purposes in vivo. For imaging applications, photostability of fluorescence dyes is of crucial importance. Chemically stable and photostable fluorescent PAH molecules attached to 2'-amino functionality of the 2'-amino-LNA are potent for in vitro and in vivo imaging of DNA and RNA targets. We believe that rational evolution of the biopolymers of Nature may solve the major challenges of the future material science and biomedicine. However, this requires strong scientific progress and efficient interdisciplinary research. Examples of this Account demonstrate that among other synthetic biopolymers, synthetic nucleic acids containing functionalized 2'-amino-LNA scaffolds offer great opportunities for material science, diagnostics, and medicine of the future.
Collapse
Affiliation(s)
- I. Kira Astakhova
- Nucleic Acid Center,
Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jesper Wengel
- Nucleic Acid Center,
Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
47
|
Seven I, Weinrich T, Gränz M, Grünewald C, Brüß S, Krstić I, Prisner TF, Heckel A, Göbel MW. Photolabile Protecting Groups for Nitroxide Spin Labels. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Schmidt MJ, Borbas J, Drescher M, Summerer D. A Genetically Encoded Spin Label for Electron Paramagnetic Resonance Distance Measurements. J Am Chem Soc 2014; 136:1238-41. [DOI: 10.1021/ja411535q] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Moritz J. Schmidt
- Department of Chemistry,
Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Julia Borbas
- Department of Chemistry,
Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Malte Drescher
- Department of Chemistry,
Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Daniel Summerer
- Department of Chemistry,
Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
49
|
Deoxyribozyme-Mediated Ligation for Incorporating EPR Spin Labels and Reporter Groups into RNA. Methods Enzymol 2014; 549:85-104. [DOI: 10.1016/b978-0-12-801122-5.00004-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Rehm C, Holder IT, Groß A, Wojciechowski F, Urban M, Sinn M, Drescher M, Hartig JS. A bacterial DNA quadruplex with exceptional K+ selectivity and unique structural polymorphism. Chem Sci 2014. [DOI: 10.1039/c4sc00440j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The G-quadruplex forming sequence d[(G4CT)3G4] shows complete and continuous quadruplex interconversion upon increasing K+-concentrations and pronounced K+ selectivity.
Collapse
Affiliation(s)
- Charlotte Rehm
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB)
- University of Konstanz
- 78457 Konstanz, Germany
| | - Isabelle T. Holder
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB)
- University of Konstanz
- 78457 Konstanz, Germany
| | - Andreas Groß
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB)
- University of Konstanz
- 78457 Konstanz, Germany
| | - Filip Wojciechowski
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB)
- University of Konstanz
- 78457 Konstanz, Germany
| | - Maximilian Urban
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB)
- University of Konstanz
- 78457 Konstanz, Germany
| | - Malte Sinn
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB)
- University of Konstanz
- 78457 Konstanz, Germany
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB)
- University of Konstanz
- 78457 Konstanz, Germany
| | - Jörg S. Hartig
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB)
- University of Konstanz
- 78457 Konstanz, Germany
| |
Collapse
|