1
|
Li Y, Lyu J, Wang Y, Ye M, Wang H. Ligand Modification-Free Methods for the Profiling of Protein-Environmental Chemical Interactions. Chem Res Toxicol 2024; 37:1-15. [PMID: 38146056 DOI: 10.1021/acs.chemrestox.3c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Adverse health outcomes caused by environmental chemicals are often initiated via their interactions with proteins. Essentially, one environmental chemical may interact with a number of proteins and/or a protein may interact with a multitude of environmental chemicals, forming an intricate interaction network. Omics-wide protein-environmental chemical interaction profiling (PECI) is of prominent importance for comprehensive understanding of these interaction networks, including the toxicity mechanisms of action (MoA), and for providing systematic chemical safety assessment. However, such information remains unknown for most environmental chemicals, partly due to their vast chemical diversity. In recent years, with the continuous efforts afforded, especially in mass spectrometry (MS) based omics technologies, several ligand modification-free methods have been developed, and new attention for systematic PECI profiling was gained. In this Review, we provide a comprehensive overview on these methodologies for the identification of ligand-protein interactions, including affinity interaction-based methods of affinity-driven purification, covalent modification profiling, and activity-based protein profiling (ABPP) in a competitive mode, physicochemical property changes assessment methods of ligand-directed nuclear magnetic resonance (ligand-directed NMR), MS integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS), thermal proteome profiling (TPP), limited proteolysis-coupled mass spectrometry (LiP-MS), stability of proteins from rates of oxidation (SPROX), and several intracellular downstream response characterization methods. We expect that the applications of these ligand modification-free technologies will drive a considerable increase in the number of PECI identified, facilitate unveiling the toxicological mechanisms, and ultimately contribute to systematic health risk assessment of environmental chemicals.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiawen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- State Key Laboratory of Medical Proteomics, Beijing, 102206, China
| | - Hailin Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Luzarowski M, Skirycz A. Parallel Analysis of Protein-Protein and Protein-Metabolite Complexes Using a Single-Step Affinity Purification. Methods Mol Biol 2023; 2554:107-122. [PMID: 36178623 DOI: 10.1007/978-1-0716-2624-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cellular protein-metabolite interactions (PMI), for decades relatively overlooked, are seeing a golden age in recent years. To facilitate simultaneous characterization of PMI and protein-protein interactions (PPI) of a given protein ("bait"), we developed a protocol that utilizes antibody-assisted affinity purification (AP) followed by liquid chromatography-mass spectrometry (LC-MS). Aside from its speed, simplicity, and adaptability to a variety of biological systems, its main strength lies in the parallel identification, in a near-physiological environment, of a given protein's protein and small-molecule partners.
Collapse
Affiliation(s)
- Marcin Luzarowski
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
3
|
Cardon T, Franck J, Coyaud E, Laurent EMN, Damato M, Maffia M, Vergara D, Fournier I, Salzet M. Alternative proteins are functional regulators in cell reprogramming by PKA activation. Nucleic Acids Res 2020; 48:7864-7882. [PMID: 32324228 PMCID: PMC7641301 DOI: 10.1093/nar/gkaa277] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/06/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022] Open
Abstract
It has been recently shown that many proteins are lacking from reference databases used in mass spectrometry analysis, due to their translation templated on alternative open reading frames. This questions our current understanding of gene annotation and drastically expands the theoretical proteome complexity. The functions of these alternative proteins (AltProts) still remain largely unknown. We have developed a large-scale and unsupervised approach based on cross-linking mass spectrometry (XL-MS) followed by shotgun proteomics to gather information on the functional role of AltProts by mapping them back into known signalling pathways through the identification of their reference protein (RefProt) interactors. We have identified and profiled AltProts in a cancer cell reprogramming system: NCH82 human glioma cells after 0, 16, 24 and 48 h Forskolin stimulation. Forskolin is a protein kinase A activator inducing cell differentiation and epithelial–mesenchymal transition. Our data show that AltMAP2, AltTRNAU1AP and AltEPHA5 interactions with tropomyosin 4 are downregulated under Forskolin treatment. In a wider perspective, Gene Ontology and pathway enrichment analysis (STRING) revealed that RefProts associated with AltProts are enriched in cellular mobility and transfer RNA regulation. This study strongly suggests novel roles of AltProts in multiple essential cellular functions and supports the importance of considering them in future biological studies.
Collapse
Affiliation(s)
- Tristan Cardon
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Julien Franck
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Etienne Coyaud
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Estelle M N Laurent
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Marina Damato
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France.,Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Isabelle Fournier
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France.,Institut Universitaire de France (IUF),75005 Paris, France
| | - Michel Salzet
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France.,Institut Universitaire de France (IUF),75005 Paris, France
| |
Collapse
|
4
|
Luzarowski M, Skirycz A. Emerging strategies for the identification of protein-metabolite interactions. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4605-4618. [PMID: 31087097 PMCID: PMC6760282 DOI: 10.1093/jxb/erz228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/10/2019] [Indexed: 05/31/2023]
Abstract
Interactions between biological molecules enable life. The significance of a cell-wide understanding of molecular complexes is thus obvious. In comparison to protein-protein interactions, protein-metabolite interactions remain under-studied. However, this has been gradually changing due to technological progress. Here, we focus on the interactions between ligands and receptors, the triggers of signalling events. While the number of small molecules with proven or proposed signalling roles is rapidly growing, most of their protein receptors remain unknown. Conversely, there are numerous signalling proteins with predicted ligand-binding domains for which the identities of the metabolite counterparts remain elusive. Here, we discuss the current biochemical strategies for identifying protein-metabolite interactions and how they can be used to characterize known metabolite regulators and identify novel ones.
Collapse
Affiliation(s)
- Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | |
Collapse
|
5
|
Luzarowski M, Wojciechowska I, Skirycz A. 2 in 1: One-step Affinity Purification for the Parallel Analysis of Protein-Protein and Protein-Metabolite Complexes. J Vis Exp 2018. [PMID: 30124652 PMCID: PMC6126660 DOI: 10.3791/57720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cellular processes are regulated by interactions between biological molecules such as proteins, metabolites, and nucleic acids. While the investigation of protein-protein interactions (PPI) is no novelty, experimental approaches aiming to characterize endogenous protein-metabolite interactions (PMI) constitute a rather recent development. Herein, we present a protocol that allows simultaneous characterization of the PPI and PMI of a protein of choice, referred to as bait. Our protocol was optimized for Arabidopsis cell cultures and combines affinity purification (AP) with mass spectrometry (MS)-based protein and metabolite detection. In short, transgenic Arabidopsis lines, expressing bait protein fused to an affinity tag, are first lysed to obtain a native cellular extract. Anti-tag antibodies are used to pull down protein and metabolite partners of the bait protein. The affinity-purified complexes are extracted using a one-step methyl tert-butyl ether (MTBE)/methanol/water method. Whilst metabolites separate into either the polar or the hydrophobic phase, proteins can be found in the pellet. Both metabolites and proteins are then analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS or UPLC-MS/MS). Empty-vector (EV) control lines are used to exclude false positives. The major advantage of our protocol is that it enables identification of protein and metabolite partners of a target protein in parallel in near-physiological conditions (cellular lysate). The presented method is straightforward, fast, and can be easily adapted to biological systems other than plant cell cultures.
Collapse
|
6
|
Veyel D, Sokolowska EM, Moreno JC, Kierszniowska S, Cichon J, Wojciechowska I, Luzarowski M, Kosmacz M, Szlachetko J, Gorka M, Méret M, Graf A, Meyer EH, Willmitzer L, Skirycz A. PROMIS, global analysis of PROtein-metabolite interactions using size separation in Arabidopsis thaliana. J Biol Chem 2018; 293:12440-12453. [PMID: 29853640 PMCID: PMC6093232 DOI: 10.1074/jbc.ra118.003351] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/25/2018] [Indexed: 12/19/2022] Open
Abstract
Small molecules not only represent cellular building blocks and metabolic intermediates, but also regulatory ligands and signaling molecules that interact with proteins. Although these interactions affect cellular metabolism, growth, and development, they have been largely understudied. Herein, we describe a method, which we named PROtein–Metabolite Interactions using Size separation (PROMIS), that allows simultaneous, global analysis of endogenous protein–small molecule and of protein–protein complexes. To this end, a cell-free native lysate from Arabidopsis thaliana cell cultures was fractionated by size-exclusion chromatography, followed by quantitative metabolomic and proteomic analyses. Proteins and small molecules showing similar elution behavior, across protein-containing fractions, constituted putative interactors. Applying PROMIS to an A. thaliana extract, we ascertained known protein–protein (PPIs) and protein–metabolite (PMIs) interactions and reproduced binding between small-molecule protease inhibitors and their respective proteases. More importantly, we present examples of two experimental strategies that exploit the PROMIS dataset to identify novel PMIs. By looking for similar elution behavior of metabolites and enzymes belonging to the same biochemical pathways, we identified putative feedback and feed-forward regulations in pantothenate biosynthesis and the methionine salvage cycle, respectively. By combining PROMIS with an orthogonal affinity purification approach, we identified an interaction between the dipeptide Tyr–Asp and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase. In summary, we present proof of concept for a powerful experimental tool that enables system-wide analysis of PMIs and PPIs across all biological systems. The dataset obtained here comprises nearly 140 metabolites and 5000 proteins, which can be mined for putative interactors.
Collapse
Affiliation(s)
- Daniel Veyel
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Ewelina M Sokolowska
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Juan C Moreno
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | | | - Justyna Cichon
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Izabela Wojciechowska
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Marcin Luzarowski
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Monika Kosmacz
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Jagoda Szlachetko
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Michal Gorka
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | | | - Alexander Graf
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Etienne H Meyer
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Lothar Willmitzer
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Aleksandra Skirycz
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| |
Collapse
|
7
|
Luzarowski M, Kosmacz M, Sokolowska E, Jasińska W, Willmitzer L, Veyel D, Skirycz A. Affinity purification with metabolomic and proteomic analysis unravels diverse roles of nucleoside diphosphate kinases. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3487-3499. [PMID: 28586477 PMCID: PMC5853561 DOI: 10.1093/jxb/erx183] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/04/2017] [Indexed: 05/22/2023]
Abstract
Interactions between metabolites and proteins play an integral role in all cellular functions. Here we describe an affinity purification (AP) approach in combination with LC/MS-based metabolomics and proteomics that allows, to our knowledge for the first time, analysis of protein-metabolite and protein-protein interactions simultaneously in plant systems. More specifically, we examined protein and small-molecule partners of the three (of five) nucleoside diphosphate kinases present in the Arabidopsis genome (NDPK1-NDPK3). The bona fide role of NDPKs is the exchange of terminal phosphate groups between nucleoside diphosphates (NDPs) and triphosphates (NTPs). However, other functions have been reported, which probably depend on both the proteins and small molecules specifically interacting with the NDPK. Using our approach we identified 23, 17, and 8 novel protein partners of NDPK1, NDPK2, and NDPK3, respectively, with nucleotide-dependent proteins such as actin and adenosine kinase 2 being enriched. Particularly interesting, however, was the co-elution of glutathione S-transferases (GSTs) and reduced glutathione (GSH) with the affinity-purified NDPK1 complexes. Following up on this finding, we could demonstrate that NDPK1 undergoes glutathionylation, opening a new paradigm of NDPK regulation in plants. The described results extend our knowledge of NDPKs, the key enzymes regulating NDP/NTP homeostasis.
Collapse
Affiliation(s)
- Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Monika Kosmacz
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Ewelina Sokolowska
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Weronika Jasińska
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Lothar Willmitzer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Daniel Veyel
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
- Correspondence:
| |
Collapse
|
8
|
Han X, Yang Y, Wu Y, Liu X, Lei X, Guo Y. A bioassay-guided fractionation system to identify endogenous small molecules that activate plasma membrane H+-ATPase activity in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2951-2962. [PMID: 28582540 PMCID: PMC5853834 DOI: 10.1093/jxb/erx156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/08/2017] [Indexed: 05/13/2023]
Abstract
Plasma membrane (PM) H+-ATPase is essential for plant growth and development. Various environmental stimuli regulate its activity, a process that involves many protein cofactors. However, whether endogenous small molecules play a role in this regulation remains unknown. Here, we describe a bio-guided isolation method to identify endogenous small molecules that regulate PM H+-ATPase activity. We obtained crude extracts from Arabidopsis seedlings with or without salt treatment and then purified them into fractions based on polarity and molecular mass by repeated column chromatography. By evaluating the effect of each fraction on PM H+-ATPase activity, we found that fractions containing the endogenous, free unsaturated fatty acids oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3) extracted from salt-treated seedlings stimulate PM H+-ATPase activity. These results were further confirmed by the addition of exogenous C18:1, C18:2, or C18:3 in the activity assay. The ssi2 mutant, with reduced levels of C18:1, C18:2, and C18:3, displayed reduced PM H+-ATPase activity. Furthermore, C18:1, C18:2, and C18:3 directly bound to the C-terminus of the PM H+-ATPase AHA2. Collectively, our results demonstrate that the binding of free unsaturated fatty acids to the C-terminus of PM H+-ATPase is required for its activation under salt stress. The bio-guided isolation model described in this study could enable the identification of new endogenous small molecules that modulate essential protein functions, as well as signal transduction, in plants.
Collapse
Affiliation(s)
- Xiuli Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujiao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohui Liu
- National Institute of Biological Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoguang Lei
- National Institute of Biological Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Veyel D, Kierszniowska S, Kosmacz M, Sokolowska EM, Michaelis A, Luzarowski M, Szlachetko J, Willmitzer L, Skirycz A. System-wide detection of protein-small molecule complexes suggests extensive metabolite regulation in plants. Sci Rep 2017; 7:42387. [PMID: 28205532 PMCID: PMC5304321 DOI: 10.1038/srep42387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/30/2016] [Indexed: 11/09/2022] Open
Abstract
Protein small molecule interactions are at the core of cell regulation controlling metabolism and development. We reasoned that due to the lack of system wide approaches only a minority of those regulatory molecules are known. In order to see whether or not this assumption is true we developed an effective approach for the identification of small molecules having potential regulatory role that obviates the need of protein or small molecule baits. At the core of this approach is a simple biochemical co-fractionation taking advantage of size differences between proteins and small molecules. Metabolomics based analysis of small molecules co-fractionating with proteins identified a multitude of small molecules in Arabidopsis suggesting the existence of numerous, small molecules/metabolites bound to proteins representing potential regulatory molecules. The approach presented here uses Arabidopsis cell cultures, but is generic and hence applicable to all biological systems.
Collapse
Affiliation(s)
- Daniel Veyel
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Monika Kosmacz
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Aenne Michaelis
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Jagoda Szlachetko
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Lothar Willmitzer
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | |
Collapse
|
10
|
Li Y, Liu Y, Li S, Liang G, Jiang C, Hu Q. Novel control of gel fraction and enhancement of bonding strength for constructing 3D architecture of tissue engineering scaffold with alginate tubular fiber. J Biosci Bioeng 2016; 121:111-116. [PMID: 26073314 DOI: 10.1016/j.jbiosc.2015.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/18/2015] [Accepted: 04/26/2015] [Indexed: 02/08/2023]
Abstract
Alginate tubular fiber has been successfully prepared via coaxial fluid crosslink mode, which is potentially used for the construction of vascularized tissue engineering scaffolds (VTES). However, its elastic and smooth surface is negative for the adhesion of fibers. In this study, the gel fractions were controlled in a novel way of two-step crosslink process in order to meet the needs of each processing link. Based on such consideration, an appropriate formulation was selected to direct write single fiber, which ensured the tubular structure with enough gel portion as well as adhesion between fibers with the reserved sol. Finally, the integrity of the scaffolds had a further development within the 2nd crosslink bath process, which would help to solve the question of poor shear resistance for hydrogel scaffolds.
Collapse
Affiliation(s)
- Yu Li
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai 200444, China
| | - Yuanyuan Liu
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai 200444, China.
| | - Shuai Li
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai 200444, China
| | - Gang Liang
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai 200444, China
| | - Chen Jiang
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai 200444, China
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai 200444, China
| |
Collapse
|
11
|
Nikolaev YV, Kochanowski K, Link H, Sauer U, Allain FHT. Systematic Identification of Protein-Metabolite Interactions in Complex Metabolite Mixtures by Ligand-Detected Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2016; 55:2590-600. [PMID: 27065204 DOI: 10.1021/acs.biochem.5b01291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-metabolite interactions play a vital role in the regulation of numerous cellular processes. Consequently, identifying such interactions is a key prerequisite for understanding cellular regulation. However, the noncovalent nature of the binding between proteins and metabolites has so far hampered the development of methods for systematically mapping protein-metabolite interactions. The few available, largely mass spectrometry-based, approaches are restricted to specific metabolite classes, such as lipids. In this study, we address this issue and show the potential of ligand-detected nuclear magnetic resonance (NMR) spectroscopy, which is routinely used in drug development, to systematically identify protein-metabolite interactions. As a proof of concept, we selected four well-characterized bacterial and mammalian proteins (AroG, Eno, PfkA, and bovine serum albumin) and identified metabolite binders in complex mixes of up to 33 metabolites. Ligand-detected NMR captured all of the reported protein-metabolite interactions, spanning a full range of physiologically relevant Kd values (low micromolar to low millimolar). We also detected a number of novel interactions, such as promiscuous binding of the negatively charged metabolites citrate, AMP, and ATP, as well as binding of aromatic amino acids to AroG protein. Using in vitro enzyme activity assays, we assessed the functional relevance of these novel interactions in the case of AroG and show that l-tryptophan, l-tyrosine, and l-histidine act as novel inhibitors of AroG activity. Thus, we conclude that ligand-detected NMR is suitable for the systematic identification of functionally relevant protein-metabolite interactions.
Collapse
Affiliation(s)
- Yaroslav V Nikolaev
- Institute of Molecular Biology & Biophysics, ETH Zürich , CH-8093 Zürich, Switzerland
| | - Karl Kochanowski
- Institute of Molecular Systems Biology, ETH Zürich , CH-8093 Zürich, Switzerland.,Life Science Zurich PhD Program on Systems Biology , Zurich, Switzerland
| | - Hannes Link
- Institute of Molecular Systems Biology, ETH Zürich , CH-8093 Zürich, Switzerland.,Max-Planck Institute for Terrestrial Microbiology , Marburg, Germany
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich , CH-8093 Zürich, Switzerland
| | - Frederic H-T Allain
- Institute of Molecular Biology & Biophysics, ETH Zürich , CH-8093 Zürich, Switzerland
| |
Collapse
|
12
|
pMINERVA: A donor-acceptor system for the in vivo recombineering of scFv into IgG molecules. J Immunol Methods 2016; 431:22-30. [PMID: 26851519 DOI: 10.1016/j.jim.2016.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/12/2016] [Accepted: 02/01/2016] [Indexed: 11/22/2022]
Abstract
Phage display is the most widely used method for selecting binding molecules from recombinant antibody libraries. However, validation of the phage antibodies often requires early production of the cognate full-length immunoglobulin G (IgG). The conversion of phage library outputs to a full immunoglobulin via standard subcloning is time-consuming and limits the number of clones that can be evaluated. We have developed a novel system to convert scFvs from a phage display vector directly into IgGs without any in vitro subcloning steps. This new vector system, named pMINERVA, makes clever use of site-specific bacteriophage integrases that are expressed in Escherichia coli and intron splicing that occurs within mammalian cells. Using this system, a phage display vector contains both bacterial and mammalian regulatory regions that support antibody expression in E. coli and mammalian cells. A single-chain variable fragment (scFv) antibody is expressed on the surface of bacteriophage M13 as a genetic fusion to the gpIII coat protein. The scFv is converted to an IgG that can be expressed in mammalian cells by transducing a second E. coli strain. In that strain, the phiC31 recombinase fuses the heavy chain constant domain from an acceptor plasmid to the heavy chain variable domain and introduces controlling elements upstream of the light chain variable domain. Splicing in mammalian cells removes a synthetic intron containing the M13 gpIII gene to produce the fusion of the light chain variable domain to the constant domain. We show that phage displaying a scFv and recombinant IgGs generated using this system are expressed at wild-type levels and retain normal function. Use of the pMINERVA completely eliminates the labor-intensive subcloning and DNA sequence confirmation steps currently needed to convert a scFv into a functional IgG Ab.
Collapse
|
13
|
|
14
|
Dedecker M, Van Leene J, De Jaeger G. Unravelling plant molecular machineries through affinity purification coupled to mass spectrometry. CURRENT OPINION IN PLANT BIOLOGY 2015; 24:1-9. [PMID: 25603557 DOI: 10.1016/j.pbi.2015.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/30/2014] [Accepted: 01/04/2015] [Indexed: 05/23/2023]
Abstract
Rather than functioning independently, proteins tend to work in concert with each other and with other macromolecules to form macromolecular complexes. Affinity purification coupled to mass spectrometry (AP-MS) can lead to a better understanding of the cellular functions of these complexes. With the development of easy purification protocols and ultra-sensitive MS, AP-MS is currently widely used for screening co-complex membership in plants. Studying complexes in their developmental context through the isolation of specific organs and tissues has now become feasible. Besides, the tagged protein can be employed for probing other interactions like protein-DNA and protein-RNA interactions. With the tools at hand, protein-centred interaction studies will greatly improve our knowledge of how plant cells wire their functional components in relation to their function.
Collapse
Affiliation(s)
- Maarten Dedecker
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; CropDesign N.V., Technologiepark 21, B-9052 Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|