1
|
Shioi G, Watanabe TM, Kaneshiro J, Azuma Y, Onami S. Trans-scale live-imaging of an E5.5 mouse embryo using incubator-type biaxial light-sheet microscopy. Life Sci Alliance 2025; 8:e202402839. [PMID: 39814551 PMCID: PMC11735545 DOI: 10.26508/lsa.202402839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
During mouse embryonic development, the embryonic day (E) 5.5 stage represents a crucial period for the formation of the primitive body axis, where the symmetry breaking of cellular states influences the multicellular system. Elucidating the detailed mechanisms of this process necessitates a trans-layered dynamic observation of the embryo and all internal cells. In this report, we present our success in achieving in-toto single-cell observation in a whole hemisphere of an E5.5 embryo for 12 h, using a newly developed incubator-type biaxial light-sheet microscope. To achieve the success, we optimized our microscope system, including an incubator for culture stability, and refining the observation protocol to reduce phototoxicity. Our key discovery is that the scan speed during light-sheet formation plays a critical role in reducing phototoxicity, rather than the irradiation intensity or the interval time between frames. This innovative system not only enabled in-toto single-cell tracking but also led to the discovery of the abrupt shrinking of embryos whose contractile center was located at the extraembryonic ectoderm during monotonous growth up to the E6.5 stage.
Collapse
Affiliation(s)
- Go Shioi
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Tomonobu M Watanabe
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Junichi Kaneshiro
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Yusuke Azuma
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shuichi Onami
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
2
|
Guo M, Wu Y, Hobson CM, Su Y, Qian S, Krueger E, Christensen R, Kroeschell G, Bui J, Chaw M, Zhang L, Liu J, Hou X, Han X, Lu Z, Ma X, Zhovmer A, Combs C, Moyle M, Yemini E, Liu H, Liu Z, Benedetto A, La Riviere P, Colón-Ramos D, Shroff H. Deep learning-based aberration compensation improves contrast and resolution in fluorescence microscopy. Nat Commun 2025; 16:313. [PMID: 39747824 PMCID: PMC11697233 DOI: 10.1038/s41467-024-55267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Optical aberrations hinder fluorescence microscopy of thick samples, reducing image signal, contrast, and resolution. Here we introduce a deep learning-based strategy for aberration compensation, improving image quality without slowing image acquisition, applying additional dose, or introducing more optics. Our method (i) introduces synthetic aberrations to images acquired on the shallow side of image stacks, making them resemble those acquired deeper into the volume and (ii) trains neural networks to reverse the effect of these aberrations. We use simulations and experiments to show that applying the trained 'de-aberration' networks outperforms alternative methods, providing restoration on par with adaptive optics techniques; and subsequently apply the networks to diverse datasets captured with confocal, light-sheet, multi-photon, and super-resolution microscopy. In all cases, the improved quality of the restored data facilitates qualitative image inspection and improves downstream image quantitation, including orientational analysis of blood vessels in mouse tissue and improved membrane and nuclear segmentation in C. elegans embryos.
Collapse
Affiliation(s)
- Min Guo
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.
| | - Yicong Wu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Chad M Hobson
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Shuhao Qian
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Eric Krueger
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Ryan Christensen
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Grant Kroeschell
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Johnny Bui
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Matthew Chaw
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Xuekai Hou
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xiaofei Han
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhiye Lu
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Zhovmer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Christian Combs
- NHLBI Light Microscopy Facility, National Institutes of Health, Bethesda, MD, USA
| | - Mark Moyle
- Department of Biology, Brigham Young University-Idaho, Rexburg, ID, USA
| | - Eviatar Yemini
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Huafeng Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhiyi Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Alexandre Benedetto
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Patrick La Riviere
- Department of Radiology, University of Chicago, Chicago, IL, USA
- MBL Fellows Program, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Daniel Colón-Ramos
- MBL Fellows Program, Marine Biological Laboratory, Woods Hole, MA, USA
- Wu Tsai Institute, Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
- MBL Fellows Program, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
3
|
Kramer SN, Antarasen J, Reinholt CR, Kisley L. A practical guide to light-sheet microscopy for nanoscale imaging: Looking beyond the cell. JOURNAL OF APPLIED PHYSICS 2024; 136:091101. [PMID: 39247785 PMCID: PMC11380115 DOI: 10.1063/5.0218262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
We present a comprehensive guide to light-sheet microscopy (LSM) to assist scientists in navigating the practical implementation of this microscopy technique. Emphasizing the applicability of LSM to image both static microscale and nanoscale features, as well as diffusion dynamics, we present the fundamental concepts of microscopy, progressing through beam profile considerations, to image reconstruction. We outline key practical decisions in constructing a home-built system and provide insight into the alignment and calibration processes. We briefly discuss the conditions necessary for constructing a continuous 3D image and introduce our home-built code for data analysis. By providing this guide, we aim to alleviate the challenges associated with designing and constructing LSM systems and offer scientists new to LSM a valuable resource in navigating this complex field.
Collapse
Affiliation(s)
- Stephanie N Kramer
- Department of Physics, Case Western Reserve University, Rockefeller Building, 2076 Adelbert Road, Cleveland, Ohio 44106, USA
| | - Jeanpun Antarasen
- Department of Physics, Case Western Reserve University, Rockefeller Building, 2076 Adelbert Road, Cleveland, Ohio 44106, USA
| | - Cole R Reinholt
- Department of Physics, Case Western Reserve University, Rockefeller Building, 2076 Adelbert Road, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
4
|
Lin J, Mehra D, Marin Z, Wang X, Borges HM, Shen Q, Gałecki S, Haug J, Abbott DH, Dean KM. Mechanically sheared axially swept light-sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:5314-5327. [PMID: 39296406 PMCID: PMC11407235 DOI: 10.1364/boe.526145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 09/21/2024]
Abstract
We present a mechanically sheared image acquisition format for upright and open-top light-sheet microscopes that automatically places data in its proper spatial context. This approach, which reduces computational post-processing and eliminates unnecessary interpolation or duplication of the data, is demonstrated on an upright variant of axially swept light-sheet microscopy (ASLM) that achieves a field of view, measuring 774 × 435 microns, that is 3.2-fold larger than previous models and a raw and isotropic resolution of ∼460 nm. Combined, we demonstrate the power of this approach by imaging sub-diffraction beads, cleared biological tissues, and expanded specimens.
Collapse
Affiliation(s)
- Jinlong Lin
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Dushyant Mehra
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Zach Marin
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Xiaoding Wang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Hazel M. Borges
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Qionghua Shen
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Seweryn Gałecki
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - John Haug
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Derek H. Abbott
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Kevin M. Dean
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Glaser A, Chandrashekar J, Vasquez S, Arshadi C, Ouellette N, Jiang X, Baka J, Kovacs G, Woodard M, Seshamani S, Cao K, Clack N, Recknagel A, Grim A, Balaram P, Turschak E, Hooper M, Liddell A, Rohde J, Hellevik A, Takasaki K, Erion Barner L, Logsdon M, Chronopoulos C, de Vries S, Ting J, Perlmutter S, Kalmbach B, Dembrow N, Tasic B, Reid RC, Feng D, Svoboda K. Expansion-assisted selective plane illumination microscopy for nanoscale imaging of centimeter-scale tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.544277. [PMID: 37425699 PMCID: PMC10327101 DOI: 10.1101/2023.06.08.544277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Recent advances in tissue processing, labeling, and fluorescence microscopy are providing unprecedented views of the structure of cells and tissues at sub-diffraction resolutions and near single molecule sensitivity, driving discoveries in diverse fields of biology, including neuroscience. Biological tissue is organized over scales of nanometers to centimeters. Harnessing molecular imaging across intact, three-dimensional samples on this scale requires new types of microscopes with larger fields of view and working distance, as well as higher throughput. We present a new expansion-assisted selective plane illumination microscope (ExA-SPIM) with aberration-free 1×1×3 μm optical resolution over a large field of view (10.6×8.0 mm 2 ) and working distance (35 mm) at speeds up to 946 megavoxels/sec. Combined with new tissue clearing and expansion methods, the microscope allows imaging centimeter-scale samples with 250×250×750 nm optical resolution (4× expansion), including entire mouse brains, with high contrast and without sectioning. We illustrate ExA-SPIM by reconstructing individual neurons across the mouse brain, imaging cortico-spinal neurons in the macaque motor cortex, and visualizing axons in human white matter.
Collapse
|
6
|
Guo M, Wu Y, Hobson CM, Su Y, Qian S, Krueger E, Christensen R, Kroeschell G, Bui J, Chaw M, Zhang L, Liu J, Hou X, Han X, Lu Z, Ma X, Zhovmer A, Combs C, Moyle M, Yemini E, Liu H, Liu Z, Benedetto A, La Riviere P, Colón-Ramos D, Shroff H. Deep learning-based aberration compensation improves contrast and resolution in fluorescence microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.15.562439. [PMID: 37986950 PMCID: PMC10659418 DOI: 10.1101/2023.10.15.562439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Optical aberrations hinder fluorescence microscopy of thick samples, reducing image signal, contrast, and resolution. Here we introduce a deep learning-based strategy for aberration compensation, improving image quality without slowing image acquisition, applying additional dose, or introducing more optics into the imaging path. Our method (i) introduces synthetic aberrations to images acquired on the shallow side of image stacks, making them resemble those acquired deeper into the volume and (ii) trains neural networks to reverse the effect of these aberrations. We use simulations and experiments to show that applying the trained 'de-aberration' networks outperforms alternative methods, providing restoration on par with adaptive optics techniques; and subsequently apply the networks to diverse datasets captured with confocal, light-sheet, multi-photon, and super-resolution microscopy. In all cases, the improved quality of the restored data facilitates qualitative image inspection and improves downstream image quantitation, including orientational analysis of blood vessels in mouse tissue and improved membrane and nuclear segmentation in C. elegans embryos.
Collapse
|
7
|
Kroll JB, Cha A, Oyler-Yaniv A, Lambert T, Swinburne IA, Murphy A, Megason SG. Tetrahedral serial multiview microscopy and image fusion for improved resolution and extent in stained zebrafish embryos. Dev Dyn 2024; 253:690-704. [PMID: 38131490 PMCID: PMC11192867 DOI: 10.1002/dvdy.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Spatial mapping on the single-cell level over the whole organism can uncover roles of molecular players involved in vertebrate development. Custom microscopes have been developed that use multiple objectives to view a sample from multiple views at the same time. Such multiview imaging approaches can improve resolution and uniformity of image quality as well as allow whole embryos to be imaged (Swoger et al., Opt Express, 2007;15(13):8029). However, multiview imaging is highly restricted to specialized equipment requiring multiple objectives or sample rotation with automated hardware. RESULTS Our approach uses a standard single-objective confocal microscope to perform serial multiview imaging. Multiple views are imaged sequentially by mounting the fixed sample in an agarose tetrahedron that is manually rotated in between imaging each face. Computational image fusion allows for a joint 3D image to be created from multiple tiled Z-stacks acquired from different angles. The resulting fused image has improved resolution and imaging extent. CONCLUSION With this technique, multiview imaging can be performed on a variety of common single-objective microscopes to allow for whole-embryo, high-resolution imaging.
Collapse
Affiliation(s)
- Johanna B. Kroll
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115
- University of Muenster, Muenster, Germany
| | - Anna Cha
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115
| | - Alon Oyler-Yaniv
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115
| | - Talley Lambert
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115
| | - Ian A. Swinburne
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115
- Department of Molecular Cell Biology, University of California, Berkeley, CA
| | - Andrew Murphy
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115
| | - Sean G. Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115
| |
Collapse
|
8
|
Zylbertal A, Bianco IH. Mirror-assisted light-sheet microscopy: a simple upgrade to enable bi-directional sample excitation. NEUROPHOTONICS 2024; 11:035006. [PMID: 39114857 PMCID: PMC11304984 DOI: 10.1117/1.nph.11.3.035006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Significance Light-sheet microscopy is a powerful imaging technique that achieves optical sectioning via selective illumination of individual sample planes. However, when the sample contains opaque or scattering tissues, the incident light sheet may not be able to uniformly excite the entire sample. For example, in the context of larval zebrafish whole-brain imaging, occlusion by the eyes prevents access to a significant portion of the brain during common implementations using unidirectional illumination. Aim We introduce mirror-assisted light-sheet microscopy (mLSM), a simple inexpensive method that can be implemented on existing digitally scanned light-sheet setups by adding a single optical element-a mirrored micro-prism. The prism is placed near the sample to generate a second excitation path for accessing previously obstructed regions. Approach Scanning the laser beam onto the mirror generates a second, reflected illumination path that circumvents the occlusion. Online tuning of the scanning and laser power waveforms enables near uniform sample excitation with dual illumination. Results mLSM produces cellular-resolution images of zebrafish brain regions inaccessible to unidirectional illumination. The imaging quality in regions illuminated by the direct or reflected sheet is adjustable by translating the excitation objective. The prism does not interfere with visually guided behavior. Conclusions mLSM presents an easy-to-implement, cost-effective way to upgrade an existing light-sheet system to obtain more imaging data from a biological sample.
Collapse
Affiliation(s)
- Asaph Zylbertal
- University College London, Department of Neuroscience, Physiology & Pharmacology, London, United Kingdom
| | - Isaac H. Bianco
- University College London, Department of Neuroscience, Physiology & Pharmacology, London, United Kingdom
| |
Collapse
|
9
|
Otomo K, Omura T, Nozawa Y, Edwards SJ, Sato Y, Saito Y, Yagishita S, Uchida H, Watakabe Y, Naitou K, Yanai R, Sahara N, Takagi S, Katayama R, Iwata Y, Shiokawa T, Hayakawa Y, Otsuka K, Watanabe-Takano H, Haneda Y, Fukuhara S, Fujiwara M, Nii T, Meno C, Takeshita N, Yashiro K, Rosales Rocabado JM, Kaku M, Yamada T, Oishi Y, Koike H, Cheng Y, Sekine K, Koga JI, Sugiyama K, Kimura K, Karube F, Kim H, Manabe I, Nemoto T, Tainaka K, Hamada A, Brismar H, Susaki EA. descSPIM: an affordable and easy-to-build light-sheet microscope optimized for tissue clearing techniques. Nat Commun 2024; 15:4941. [PMID: 38866781 PMCID: PMC11169475 DOI: 10.1038/s41467-024-49131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Despite widespread adoption of tissue clearing techniques in recent years, poor access to suitable light-sheet fluorescence microscopes remains a major obstacle for biomedical end-users. Here, we present descSPIM (desktop-equipped SPIM for cleared specimens), a low-cost ($20,000-50,000), low-expertise (one-day installation by a non-expert), yet practical do-it-yourself light-sheet microscope as a solution for this bottleneck. Even the most fundamental configuration of descSPIM enables multi-color imaging of whole mouse brains and a cancer cell line-derived xenograft tumor mass for the visualization of neurocircuitry, assessment of drug distribution, and pathological examination by false-colored hematoxylin and eosin staining in a three-dimensional manner. Academically open-sourced ( https://github.com/dbsb-juntendo/descSPIM ), descSPIM allows routine three-dimensional imaging of cleared samples in minutes. Thus, the dissemination of descSPIM will accelerate biomedical discoveries driven by tissue clearing technologies.
Collapse
Affiliation(s)
- Kohei Otomo
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Biochemistry II, Juntendo University School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Takaki Omura
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Neurosurgery, University of Tokyo, Tokyo, Japan
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Nozawa
- Biochemistry II, Juntendo University School of Medicine, Tokyo, Japan
| | - Steven J Edwards
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yukihiko Sato
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuri Saito
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigehiro Yagishita
- Department of Pharmacology and Therapeutics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Uchida
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuki Watakabe
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kiyotada Naitou
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Rin Yanai
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Naruhiko Sahara
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Satoshi Takagi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yusuke Iwata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiro Shiokawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kensuke Otsuka
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan
| | - Haruko Watanabe-Takano
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Yuka Haneda
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Miku Fujiwara
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takenobu Nii
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikara Meno
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Takeshita
- Anatomy and Developmental Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenta Yashiro
- Anatomy and Developmental Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Juan Marcelo Rosales Rocabado
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tatsuya Yamada
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, USA
| | - Yumiko Oishi
- Department of Meidical Biochemistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Koike
- Department of Meidical Biochemistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yinglan Cheng
- Department of Meidical Biochemistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keisuke Sekine
- Laboratory of Cancer Cell Systems, National Cancer Center Research Institute, Tokyo, Japan
| | - Jun-Ichiro Koga
- The Second Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kaori Sugiyama
- Institute for Advanced Research of Biosystem Dynamics, Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Kenichi Kimura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Fuyuki Karube
- Lab of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hyeree Kim
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomomi Nemoto
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akinobu Hamada
- Department of Pharmacology and Therapeutics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Etsuo A Susaki
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Biochemistry II, Juntendo University School of Medicine, Tokyo, Japan.
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
10
|
Ball JM, Li W. Using high-resolution microscopy data to generate realistic structures for electromagnetic FDTD simulations from complex biological models. Nat Protoc 2024; 19:1348-1380. [PMID: 38332306 DOI: 10.1038/s41596-023-00947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/08/2023] [Indexed: 02/10/2024]
Abstract
Finite-difference time-domain (FDTD) electromagnetic simulations are a computational method that has seen much success in the study of biological optics; however, such simulations are often hindered by the difficulty of faithfully replicating complex biological microstructures in the simulation space. Recently, we designed simulations to calculate the trajectory of electromagnetic light waves through realistically reconstructed retinal photoreceptors and found that cone photoreceptor mitochondria play a substantial role in shaping incoming light. In addition to vision research and ophthalmology, such simulations are broadly applicable to studies of the interaction of electromagnetic radiation with biological tissue. Here, we present our method for discretizing complex 3D models of cellular structures for use in FDTD simulations using MEEP, the MIT Electromagnetic Equation Propagation software, including subpixel smoothing at mesh boundaries. Such models can originate from experimental imaging or be constructed by hand. We also include sample code for use in MEEP. Implementation of this algorithm in new code requires understanding of 3D mathematics and may require several weeks of effort, whereas use of our sample code requires knowledge of MEEP and C++ and may take up to a few hours to prepare a model of interest for 3D FDTD simulation. In all cases, access to a facility supercomputer with parallel processing capabilities is recommended. This protocol offers a practical solution to a significant challenge in the field of computational electrodynamics and paves the way for future advancements in the study of light interaction with biological structures.
Collapse
Affiliation(s)
- John M Ball
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Lin J, Mehra D, Marin Z, Wang X, Borges HM, Shen Q, Gałecki S, Haug J, Dean KM. Mechanically Sheared Axially Swept Light-Sheet Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588892. [PMID: 38645073 PMCID: PMC11030395 DOI: 10.1101/2024.04.10.588892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
We present a mechanically sheared image acquisition format for upright and open-top light-sheet microscopes that automatically places data in its proper spatial context. This approach, which reduces computational post-processing and eliminates unnecessary interpolation or duplication of the data, is demonstrated on an upright variant of Axially Swept Light-Sheet Microscopy (ASLM) that achieves a field of view, measuring 774 x 435 microns, that is 3.2-fold larger than previous models and a raw and isotropic resolution of ∼420 nm. Combined, we demonstrate the power of this approach by imaging sub-diffraction beads, cleared biological tissues, and expanded specimens.
Collapse
|
12
|
Shi Y, Tabet JS, Milkie DE, Daugird TA, Yang CQ, Ritter AT, Giovannucci A, Legant WR. Smart lattice light-sheet microscopy for imaging rare and complex cellular events. Nat Methods 2024; 21:301-310. [PMID: 38167656 PMCID: PMC11216155 DOI: 10.1038/s41592-023-02126-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
Light-sheet microscopes enable rapid high-resolution imaging of biological specimens; however, biological processes span spatiotemporal scales. Moreover, long-term phenotypes are often instigated by rare or fleeting biological events that are difficult to capture with a single imaging modality. Here, to overcome this limitation, we present smartLLSM, a microscope that incorporates artificial intelligence-based instrument control to autonomously switch between epifluorescent inverted imaging and lattice light-sheet microscopy (LLSM). We apply this approach to two unique processes: cell division and immune synapse formation. In each context, smartLLSM provides population-level statistics across thousands of cells and autonomously captures multicolor three-dimensional datasets or four-dimensional time-lapse movies of rare events at rates that dramatically exceed human capabilities. From this, we quantify the effects of Taxol dose on spindle structure and kinetochore dynamics in dividing cells and of antigen strength on cytotoxic T lymphocyte engagement and lytic granule polarization at the immune synapse. Overall, smartLLSM efficiently detects rare events within heterogeneous cell populations and records these processes with high spatiotemporal four-dimensional imaging over statistically significant replicates.
Collapse
Affiliation(s)
- Yu Shi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimmy S Tabet
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel E Milkie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Timothy A Daugird
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chelsea Q Yang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Andrea Giovannucci
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Wesley R Legant
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Brown GE, Han YD, Michell AR, Ly OT, Vanoye CG, Spanghero E, George AL, Darbar D, Khetani SR. Engineered cocultures of iPSC-derived atrial cardiomyocytes and atrial fibroblasts for modeling atrial fibrillation. SCIENCE ADVANCES 2024; 10:eadg1222. [PMID: 38241367 PMCID: PMC10798559 DOI: 10.1126/sciadv.adg1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia treatable with antiarrhythmic drugs; however, patient responses remain highly variable. Human induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs) are useful for discovering precision therapeutics, but current platforms yield phenotypically immature cells and are not easily scalable for high-throughput screening. Here, primary adult atrial, but not ventricular, fibroblasts induced greater functional iPSC-aCM maturation, partly through connexin-40 and ephrin-B1 signaling. We developed a protein patterning process within multiwell plates to engineer patterned iPSC-aCM and atrial fibroblast coculture (PC) that significantly enhanced iPSC-aCM structural, electrical, contractile, and metabolic maturation for 6+ weeks compared to conventional mono-/coculture. PC displayed greater sensitivity for detecting drug efficacy than monoculture and enabled the modeling and pharmacological or gene editing treatment of an AF-like electrophysiological phenotype due to a mutated sodium channel. Overall, PC is useful for elucidating cell signaling in the atria, drug screening, and modeling AF.
Collapse
Affiliation(s)
- Grace E. Brown
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yong Duk Han
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ashlin R. Michell
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Olivia T. Ly
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Carlos G. Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emanuele Spanghero
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dawood Darbar
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Salman R. Khetani
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Kreplin LZ, Arumugam S. High-resolution light-sheet microscopy for whole-cell sub-cellular dynamics. Curr Opin Cell Biol 2023; 85:102272. [PMID: 39491307 DOI: 10.1016/j.ceb.2023.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2024]
Abstract
Research in the areas of organelle dynamics, cytoskeletal interactions, membrane protrusions, and cell motility relies heavily on live-cell imaging. These structures continuously move about in complex patterns and imaging them live at sufficient temporal resolutions as well as for durations long enough to extract significant number of events is an absolute necessity. Capturing most of the sub-cellular dynamics in whole cell volumes was beyond reach due to the lack of balance between reduced photo-toxicity, time resolution, and the required spatial resolution in dominant imaging modalities like point scanning confocal and spinning disc confocal microscopy. In the last few years, a plethora of light-sheet geometries have emerged, pushing the limits of measurements. In this review, we will focus on a subset of light-sheet modalities that are most suited to studying live, sub-cellular dynamics in whole-cell volumes.
Collapse
Affiliation(s)
- Laura Zoe Kreplin
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton, Melbourne, VIC 3800, Australia.
| |
Collapse
|
15
|
Sadhu RK, Hernandez-Padilla C, Eisenbach YE, Penič S, Zhang L, Vishwasrao HD, Behkam B, Konstantopoulos K, Shroff H, Iglič A, Peles E, Nain AS, Gov NS. Experimental and theoretical model for the origin of coiling of cellular protrusions around fibers. Nat Commun 2023; 14:5612. [PMID: 37699891 PMCID: PMC10497540 DOI: 10.1038/s41467-023-41273-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Protrusions at the leading-edge of a cell play an important role in sensing the extracellular cues during cellular spreading and motility. Recent studies provided indications that these protrusions wrap (coil) around the extracellular fibers. However, the physics of this coiling process, and the mechanisms that drive it, are not well understood. We present a combined theoretical and experimental study of the coiling of cellular protrusions on fibers of different geometry. Our theoretical model describes membrane protrusions that are produced by curved membrane proteins that recruit the protrusive forces of actin polymerization, and identifies the role of bending and adhesion energies in orienting the leading-edges of the protrusions along the azimuthal (coiling) direction. Our model predicts that the cell's leading-edge coils on fibers with circular cross-section (above some critical radius), but the coiling ceases for flattened fibers of highly elliptical cross-section. These predictions are verified by 3D visualization and quantitation of coiling on suspended fibers using Dual-View light-sheet microscopy (diSPIM). Overall, we provide a theoretical framework, supported by experiments, which explains the physical origin of the coiling phenomenon.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Institut Curie, PSL Research University, CNRS, UMR 168, Paris, France.
| | | | - Yael Eshed Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Samo Penič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Hari Shroff
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
16
|
Soelistyo CJ, Ulicna K, Lowe AR. Machine learning enhanced cell tracking. FRONTIERS IN BIOINFORMATICS 2023; 3:1228989. [PMID: 37521315 PMCID: PMC10380934 DOI: 10.3389/fbinf.2023.1228989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Quantifying cell biology in space and time requires computational methods to detect cells, measure their properties, and assemble these into meaningful trajectories. In this aspect, machine learning (ML) is having a transformational effect on bioimage analysis, now enabling robust cell detection in multidimensional image data. However, the task of cell tracking, or constructing accurate multi-generational lineages from imaging data, remains an open challenge. Most cell tracking algorithms are largely based on our prior knowledge of cell behaviors, and as such, are difficult to generalize to new and unseen cell types or datasets. Here, we propose that ML provides the framework to learn aspects of cell behavior using cell tracking as the task to be learned. We suggest that advances in representation learning, cell tracking datasets, metrics, and methods for constructing and evaluating tracking solutions can all form part of an end-to-end ML-enhanced pipeline. These developments will lead the way to new computational methods that can be used to understand complex, time-evolving biological systems.
Collapse
Affiliation(s)
- Christopher J. Soelistyo
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
- Institute for the Physics of Living Systems, London, United Kingdom
| | - Kristina Ulicna
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
- Institute for the Physics of Living Systems, London, United Kingdom
| | - Alan R. Lowe
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
- Institute for the Physics of Living Systems, London, United Kingdom
- Alan Turing Institute, London, United Kingdom
| |
Collapse
|
17
|
Sanders S, Jensen Y, Reimer R, Bosse JB. From the beginnings to multidimensional light and electron microscopy of virus morphogenesis. Adv Virus Res 2023; 116:45-88. [PMID: 37524482 DOI: 10.1016/bs.aivir.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Individual functional viral morphogenesis events are often dynamic, short, and infrequent and might be obscured by other pathways and dead-end products. Volumetric live cell imaging has become an essential tool for studying viral morphogenesis events. It allows following entire dynamic processes while providing functional evidence that the imaged process is involved in viral production. Moreover, it allows to capture many individual events and allows quantitative analysis. Finally, the correlation of volumetric live-cell data with volumetric electron microscopy (EM) can provide crucial insights into the ultrastructure and mechanisms of viral morphogenesis events. Here, we provide an overview and discussion of suitable imaging methods for volumetric correlative imaging of viral morphogenesis and frame them in a historical summary of their development.
Collapse
Affiliation(s)
- Saskia Sanders
- Department of Virology, Hannover Medical School, Hannover, Germany; Leibniz Institute of Virology (LIV), Hamburg, Germany; Centre for Structural Systems Biology, Hamburg, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Yannick Jensen
- Department of Virology, Hannover Medical School, Hannover, Germany; Leibniz Institute of Virology (LIV), Hamburg, Germany; Centre for Structural Systems Biology, Hamburg, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | | | - Jens B Bosse
- Department of Virology, Hannover Medical School, Hannover, Germany; Leibniz Institute of Virology (LIV), Hamburg, Germany; Centre for Structural Systems Biology, Hamburg, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
18
|
Liu JTC, Glaser AK, Poudel C, Vaughan JC. Nondestructive 3D Pathology with Light-Sheet Fluorescence Microscopy for Translational Research and Clinical Assays. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:231-252. [PMID: 36854208 DOI: 10.1146/annurev-anchem-091222-092734] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, there has been a revived appreciation for the importance of spatial context and morphological phenotypes for both understanding disease progression and guiding treatment decisions. Compared with conventional 2D histopathology, which is the current gold standard of medical diagnostics, nondestructive 3D pathology offers researchers and clinicians the ability to visualize orders of magnitude more tissue within their natural volumetric context. This has been enabled by rapid advances in tissue-preparation methods, high-throughput 3D microscopy instrumentation, and computational tools for processing these massive feature-rich data sets. Here, we provide a brief overview of many of these technical advances along with remaining challenges to be overcome. We also speculate on the future of 3D pathology as applied in translational investigations, preclinical drug development, and clinical decision-support assays.
Collapse
Affiliation(s)
- Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Adam K Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA;
- Allen Institute for Neural Dynamics, Seattle, Washington, USA
| | - Chetan Poudel
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Harden TT, Vincent BJ, DePace AH. Transcriptional activators in the early Drosophila embryo perform different kinetic roles. Cell Syst 2023; 14:258-272.e4. [PMID: 37080162 PMCID: PMC10473017 DOI: 10.1016/j.cels.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/26/2022] [Accepted: 03/21/2023] [Indexed: 04/22/2023]
Abstract
Combinatorial regulation of gene expression by transcription factors (TFs) may in part arise from kinetic synergy-wherein TFs regulate different steps in the transcription cycle. Kinetic synergy requires that TFs play distinguishable kinetic roles. Here, we used live imaging to determine the kinetic roles of three TFs that activate transcription in the Drosophila embryo-Zelda, Bicoid, and Stat92E-by introducing their binding sites into the even-skipped stripe 2 enhancer. These TFs influence different sets of kinetic parameters, and their influence can change over time. All three TFs increased the fraction of transcriptionally active nuclei; Zelda also shortened the first-passage time into transcription and regulated the interval between transcription events. Stat92E also increased the lifetimes of active transcription. Different TFs can therefore play distinct kinetic roles in activating the transcription. This has consequences for understanding the composition and flexibility of regulatory DNA sequences and the biochemical function of TFs. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Timothy T Harden
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ben J Vincent
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Sorelli M, Costantini I, Bocchi L, Axer M, Pavone FS, Mazzamuto G. Fiber enhancement and 3D orientation analysis in label-free two-photon fluorescence microscopy. Sci Rep 2023; 13:4160. [PMID: 36914673 PMCID: PMC10011555 DOI: 10.1038/s41598-023-30953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Fluorescence microscopy can be exploited for evaluating the brain's fiber architecture with unsurpassed spatial resolution in combination with different tissue preparation and staining protocols. Differently from state-of-the-art polarimetry-based neuroimaging modalities, the quantification of fiber tract orientations from fluorescence microscopy volume images entails the application of specific image processing techniques, such as Fourier or structure tensor analysis. These, however, may lead to unreliable outcomes as they do not isolate myelinated fibers from the surrounding tissue. In this work, we describe a novel image processing pipeline that enables the computation of accurate 3D fiber orientation maps from both grey and white matter regions, exploiting the selective multiscale enhancement of tubular structures of varying diameters provided by a 3D implementation of the Frangi filter. The developed software tool can efficiently generate orientation distribution function maps at arbitrary spatial scales which may support the histological validation of modern diffusion-weighted magnetic resonance imaging tractography. Despite being tested here on two-photon scanning fluorescence microscopy images, acquired from tissue samples treated with a label-free technique enhancing the autofluorescence of myelinated fibers, the presented pipeline was developed to be employed on all types of 3D fluorescence images and fiber staining.
Collapse
Affiliation(s)
- Michele Sorelli
- Department of Physics and Astronomy, University of Florence, 50019, Sesto Fiorentino, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), 50019, Sesto Fiorentino, Italy
| | - Irene Costantini
- European Laboratory for Non-Linear Spectroscopy (LENS), 50019, Sesto Fiorentino, Italy. .,Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy. .,National Research Council, National Institute of Optics (CNR-INO), 50019, Sesto Fiorentino, Italy.
| | - Leonardo Bocchi
- Department of Information Engineering, University of Florence, 50039, Florence, Italy
| | - Markus Axer
- Research Centre Jülich, Institute of Neuroscience and Medicine, 52428, Jülich, Germany
| | - Francesco Saverio Pavone
- Department of Physics and Astronomy, University of Florence, 50019, Sesto Fiorentino, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), 50019, Sesto Fiorentino, Italy.,National Research Council, National Institute of Optics (CNR-INO), 50019, Sesto Fiorentino, Italy
| | - Giacomo Mazzamuto
- Department of Physics and Astronomy, University of Florence, 50019, Sesto Fiorentino, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), 50019, Sesto Fiorentino, Italy.,National Research Council, National Institute of Optics (CNR-INO), 50019, Sesto Fiorentino, Italy
| |
Collapse
|
21
|
Shi Y, Tabet JS, Milkie DE, Daugird TA, Yang CQ, Giovannucci A, Legant WR. Smart Lattice Light Sheet Microscopy for imaging rare and complex cellular events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531517. [PMID: 36945393 PMCID: PMC10028917 DOI: 10.1101/2023.03.07.531517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Light sheet microscopes enable rapid, high-resolution imaging of biological specimens; however, biological processes span a variety of spatiotemporal scales. Moreover, long-term phenotypes are often instigated by rare or fleeting biological events that are difficult to capture with a single imaging modality and constant imaging parameters. To overcome this limitation, we present smartLLSM, a microscope that incorporates AI-based instrument control to autonomously switch between epifluorescent inverted imaging and lattice light sheet microscopy. We apply this technology to two major scenarios. First, we demonstrate that the instrument provides population-level statistics of cell cycle states across thousands of cells on a coverslip. Second, we show that by using real-time image feedback to switch between imaging modes, the instrument autonomously captures multicolor 3D datasets or 4D time-lapse movies of dividing cells at rates that dramatically exceed human capabilities. Quantitative image analysis on high-content + high-throughput datasets reveal kinetochore and chromosome dynamics in dividing cells and determine the effects of drug perturbation on cells in specific mitotic stages. This new methodology enables efficient detection of rare events within a heterogeneous cell population and records these processes with high spatiotemporal 4D imaging over statistically significant replicates.
Collapse
|
22
|
Han Q, Shi J, Shi F. Sidelobe suppression in structured light sheet fluorescence microscopy by the superposition of two light sheets. BIOMEDICAL OPTICS EXPRESS 2023; 14:1178-1191. [PMID: 36950249 PMCID: PMC10026568 DOI: 10.1364/boe.481508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Light sheet microscopy has emerged as a powerful technique for three-dimensional and long-term vivo imaging within neuroscience and developmental biology. A light sheet illumination with structured light fields allows a better tradeoff between the field of view and axial resolution but suffers from strong side lobes. Here, we propose a method of producing structured light sheet illumination with suppressed side lobes by applying the superposition of two light sheets. The side lobe suppression results from the destructive interference between the side lobes and constructive interference between the main lobe of the two light sheets. In the proposed method, the incident light pattern in the rear pupil plane of the illumination objective is a combination of the incident light line beams required for the generation of the two interfering light sheets. We present a fast and simple calculation method to determine the incident light pattern in the rear pupil plane. Simulation results demonstrate the effectiveness of the proposed sidelobe suppression method for double-line light sheet, four-line light sheet, as well as line Bessel sheet. In particular, an 81% decrease in the relative side lobe energy can be achieved in case of double-line light sheet with an almost nonchanging propagation length. We show a way of using combined incident light patterns to generate structured light sheets with interference-resulted side lobe suppression, which is straightforward in design and with advantages of improved imaging performance.
Collapse
|
23
|
Efficient 3D light-sheet imaging of very large-scale optically cleared human brain and prostate tissue samples. Commun Biol 2023; 6:170. [PMID: 36781939 PMCID: PMC9925784 DOI: 10.1038/s42003-023-04536-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
The ability to image human tissue samples in 3D, with both cellular resolution and a large field of view (FOV), can improve fundamental and clinical investigations. Here, we demonstrate the feasibility of light-sheet imaging of ~5 cm3 sized formalin fixed human brain and up to ~7 cm3 sized formalin fixed paraffin embedded (FFPE) prostate cancer samples, processed with the FFPE-MASH protocol. We present a light-sheet microscopy prototype, the cleared-tissue dual view Selective Plane Illumination Microscope (ct-dSPIM), capable of fast 3D high-resolution acquisitions of cm3 scale cleared tissue. We used mosaic scans for fast 3D overviews of entire tissue samples or higher resolution overviews of large ROIs with various speeds: (a) Mosaic 16 (16.4 µm isotropic resolution, ~1.7 h/cm3), (b) Mosaic 4 (4.1 µm isotropic resolution, ~ 5 h/cm3) and (c) Mosaic 0.5 (0.5 µm near isotropic resolution, ~15.8 h/cm3). We could visualise cortical layers and neurons around the border of human brain areas V1&V2, and could demonstrate suitable imaging quality for Gleason score grading in thick prostate cancer samples. We show that ct-dSPIM imaging is an excellent technique to quantitatively assess entire MASH prepared large-scale human tissue samples in 3D, with considerable future clinical potential.
Collapse
|
24
|
Alnahhas RN, Dunlop MJ. Advances in linking single-cell bacterial stress response to population-level survival. Curr Opin Biotechnol 2023; 79:102885. [PMID: 36641904 PMCID: PMC9899315 DOI: 10.1016/j.copbio.2022.102885] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 01/14/2023]
Abstract
Stress response mechanisms can allow bacteria to survive a myriad of challenges, including nutrient changes, antibiotic encounters, and antagonistic interactions with other microbes. Expression of these stress response pathways, in addition to other cell features such as growth rate and metabolic state, can be heterogeneous across cells and over time. Collectively, these single-cell-level phenotypes contribute to an overall population-level response to stress. These include diversifying actions, which can be used to enable bet-hedging, and coordinated actions, such as biofilm production, horizontal gene transfer, and cross-feeding. Here, we highlight recent results and emerging technologies focused on both single-cell and population-level responses to stressors, and we draw connections about the combined impact of these effects on survival of bacterial communities.
Collapse
Affiliation(s)
- Razan N Alnahhas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States; Biological Design Center, Boston University, Boston, MA 02215, United States
| | - Mary J Dunlop
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States; Biological Design Center, Boston University, Boston, MA 02215, United States.
| |
Collapse
|
25
|
Flemming HC, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol 2023; 21:70-86. [PMID: 36127518 DOI: 10.1038/s41579-022-00791-0] [Citation(s) in RCA: 291] [Impact Index Per Article: 145.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 01/20/2023]
Abstract
The biofilm matrix can be considered to be a shared space for the encased microbial cells, comprising a wide variety of extracellular polymeric substances (EPS), such as polysaccharides, proteins, amyloids, lipids and extracellular DNA (eDNA), as well as membrane vesicles and humic-like microbially derived refractory substances. EPS are dynamic in space and time and their components interact in complex ways, fulfilling various functions: to stabilize the matrix, acquire nutrients, retain and protect eDNA or exoenzymes, or offer sorption sites for ions and hydrophobic substances. The retention of exoenzymes effectively renders the biofilm matrix an external digestion system influencing the global turnover of biopolymers, considering the ubiquitous relevance of biofilms. Physico-chemical and biological interactions and environmental conditions enable biofilm systems to morph into films, microcolonies and macrocolonies, films, ridges, ripples, columns, pellicles, bubbles, mushrooms and suspended aggregates - in response to the very diverse conditions confronting a particular biofilm community. Assembly and dynamics of the matrix are mostly coordinated by secondary messengers, signalling molecules or small RNAs, in both medically relevant and environmental biofilms. Fully deciphering how bacteria provide structure to the matrix, and thus facilitate and benefit from extracellular reactions, remains the challenge for future biofilm research.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Seviour
- Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.,Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
| | - Jost Wingender
- University of Duisburg-Essen, Biofilm Centre, Department of Aquatic Microbiology, Essen, Germany
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
26
|
Shao W, Chang M, Emmerich K, Kanold PO, Mumm JS, Yi J. Mesoscopic oblique plane microscopy with a diffractive light-sheet for large-scale 4D cellular resolution imaging. OPTICA 2022; 9:1374-1385. [PMID: 38384442 PMCID: PMC10881189 DOI: 10.1364/optica.471101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/31/2022] [Indexed: 02/23/2024]
Abstract
Fundamental understanding of large-scale dynamic connectivity within a living organism requires volumetric imaging over a large field of view (FOV) at biologically relevant speed and resolution. However, most microscopy methods make trade-offs between FOV and axial resolution, making it challenging to observe highly dynamic processes at cellular resolution in 3D across mesoscopic scales (e.g., whole zebrafish larva). To overcome this limitation, we have developed mesoscopic oblique plane microscopy (Meso-OPM) with a diffractive light sheet. By augmenting the illumination angle of the light sheet with a transmission grating, we improved the axial resolution approximately sixfold over existing methods and approximately twofold beyond the diffraction limitation of the primary objective lens. We demonstrated a FOV up to 5.4 mm × 3.3 mm with resolution of 2.5 μm × 3 μm × 6 μm, allowing volumetric imaging of 3D cellular structures with a single scan. Applying Meso-OPM for in vivo imaging of zebrafish larvae, we report here in toto whole-body volumetric recordings of neuronal activity at 2 Hz volume rate and whole-body volumetric recordings of blood flow dynamics at 5 Hz with 3D cellular resolution.
Collapse
Affiliation(s)
- Wenjun Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | - Minzi Chang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | - Kevin Emmerich
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | - Jeff S. Mumm
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | - Ji Yi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland 21231, USA
| |
Collapse
|
27
|
Practical considerations for quantitative light sheet fluorescence microscopy. Nat Methods 2022; 19:1538-1549. [PMID: 36266466 DOI: 10.1038/s41592-022-01632-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/31/2022] [Indexed: 12/25/2022]
Abstract
Fluorescence microscopy has evolved from a purely observational tool to a platform for quantitative, hypothesis-driven research. As such, the demand for faster and less phototoxic imaging modalities has spurred a rapid growth in light sheet fluorescence microscopy (LSFM). By restricting the excitation to a thin plane, LSFM reduces the overall light dose to a specimen while simultaneously improving image contrast. However, the defining characteristics of light sheet microscopes subsequently warrant unique considerations in their use for quantitative experiments. In this Perspective, we outline many of the pitfalls in LSFM that can compromise analysis and confound interpretation. Moreover, we offer guidance in addressing these caveats when possible. In doing so, we hope to provide a useful resource for life scientists seeking to adopt LSFM to quantitatively address complex biological hypotheses.
Collapse
|
28
|
Li Y, Su Y, Guo M, Han X, Liu J, Vishwasrao HD, Li X, Christensen R, Sengupta T, Moyle MW, Rey-Suarez I, Chen J, Upadhyaya A, Usdin TB, Colón-Ramos DA, Liu H, Wu Y, Shroff H. Incorporating the image formation process into deep learning improves network performance. Nat Methods 2022; 19:1427-1437. [PMID: 36316563 PMCID: PMC9636023 DOI: 10.1038/s41592-022-01652-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
We present Richardson-Lucy network (RLN), a fast and lightweight deep learning method for three-dimensional fluorescence microscopy deconvolution. RLN combines the traditional Richardson-Lucy iteration with a fully convolutional network structure, establishing a connection to the image formation process and thereby improving network performance. Containing only roughly 16,000 parameters, RLN enables four- to 50-fold faster processing than purely data-driven networks with many more parameters. By visual and quantitative analysis, we show that RLN provides better deconvolution, better generalizability and fewer artifacts than other networks, especially along the axial dimension. RLN outperforms classic Richardson-Lucy deconvolution on volumes contaminated with severe out of focus fluorescence or noise and provides four- to sixfold faster reconstructions of large, cleared-tissue datasets than classic multi-view pipelines. We demonstrate RLN's performance on cells, tissues and embryos imaged with widefield-, light-sheet-, confocal- and super-resolution microscopy.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Min Guo
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Xiaofei Han
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Xuesong Li
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Ryan Christensen
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Titas Sengupta
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Mark W Moyle
- Department of Biology, Brigham Young University-Idaho, Rexburg, ID, USA
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
- Department of Physics, University of Maryland, College Park, MD, USA
| | - Ted B Usdin
- Systems Neuroscience Imaging Resource, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel Alfonso Colón-Ramos
- Wu Tsai Institute, Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- MBL Fellows Program, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
- Intelligent Optical and Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, Zhejiang, China.
| | - Yicong Wu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- MBL Fellows Program, Marine Biological Laboratory, Woods Hole, MA, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| |
Collapse
|
29
|
Smith JJ, Kenny IW, Wolff C, Cray R, Kumar A, Sherwood DR, Matus DQ. A light sheet fluorescence microscopy protocol for Caenorhabditis elegans larvae and adults. Front Cell Dev Biol 2022; 10:1012820. [PMID: 36274853 PMCID: PMC9586288 DOI: 10.3389/fcell.2022.1012820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 01/07/2023] Open
Abstract
Light sheet fluorescence microscopy (LSFM) has become a method of choice for live imaging because of its fast acquisition and reduced photobleaching and phototoxicity. Despite the strengths and growing availability of LSFM systems, no generalized LSFM mounting protocol has been adapted for live imaging of post-embryonic stages of C. elegans. A major challenge has been to develop methods to limit animal movement using a mounting media that matches the refractive index of the optical system. Here, we describe a simple mounting and immobilization protocol using a refractive-index matched UV-curable hydrogel within fluorinated ethylene propylene (FEP) tubes for efficient and reliable imaging of larval and adult C. elegans stages.
Collapse
Affiliation(s)
- Jayson J. Smith
- Department of Neurobiology, University of Chicago, Chicago, IL, United States,University of Chicago Neuroscience Institute, Chicago, IL, United States,Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Isabel W. Kenny
- Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States,Department of Biology, Duke University, Durham, NC, United States
| | - Carsten Wolff
- Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States,Marine Biological Laboratory, Woods Hole, MA, United States
| | - Rachel Cray
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Abhishek Kumar
- Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States,Marine Biological Laboratory, Woods Hole, MA, United States
| | - David R. Sherwood
- Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States,Department of Biology, Duke University, Durham, NC, United States,*Correspondence: David R. Sherwood, ; David Q. Matus,
| | - David Q. Matus
- Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States,*Correspondence: David R. Sherwood, ; David Q. Matus,
| |
Collapse
|
30
|
Guan G, Zhao Z, Tang C. Delineating the mechanisms and design principles of Caenorhabditis elegans embryogenesis using in toto high-resolution imaging data and computational modeling. Comput Struct Biotechnol J 2022; 20:5500-5515. [PMID: 36284714 PMCID: PMC9562942 DOI: 10.1016/j.csbj.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
The nematode (roundworm) Caenorhabditis elegans is one of the most popular animal models for the study of developmental biology, as its invariant development and transparent body enable in toto cellular-resolution fluorescence microscopy imaging of developmental processes at 1-min intervals. This has led to the development of various computational tools for the systematic and automated analysis of imaging data to delineate the molecular and cellular processes throughout the embryogenesis of C. elegans, such as those associated with cell lineage, cell migration, cell morphology, and gene activity. In this review, we first introduce C. elegans embryogenesis and the development of techniques for tracking cell lineage and reconstructing cell morphology during this process. We then contrast the developmental modes of C. elegans and the customized technologies used for studying them with the ones of other animal models, highlighting its advantage for studying embryogenesis with exceptional spatial and temporal resolution. This is followed by an examination of the physical models that have been devised-based on accurate determinations of developmental processes afforded by analyses of imaging data-to interpret the early embryonic development of C. elegans from subcellular to intercellular levels of multiple cells, which focus on two key processes: cell polarization and morphogenesis. We subsequently discuss how quantitative data-based theoretical modeling has improved our understanding of the mechanisms of C. elegans embryogenesis. We conclude by summarizing the challenges associated with the acquisition of C. elegans embryogenesis data, the construction of algorithms to analyze them, and the theoretical interpretation.
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Peking–Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Ronteix G, Aristov A, Bonnet V, Sart S, Sobel J, Esposito E, Baroud CN. Griottes: a generalist tool for network generation from segmented tissue images. BMC Biol 2022; 20:178. [PMID: 35953853 PMCID: PMC9367069 DOI: 10.1186/s12915-022-01376-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microscopy techniques and image segmentation algorithms have improved dramatically this decade, leading to an ever increasing amount of biological images and a greater reliance on imaging to investigate biological questions. This has created a need for methods to extract the relevant information on the behaviors of cells and their interactions, while reducing the amount of computing power required to organize this information. RESULTS This task can be performed by using a network representation in which the cells and their properties are encoded in the nodes, while the neighborhood interactions are encoded by the links. Here, we introduce Griottes, an open-source tool to build the "network twin" of 2D and 3D tissues from segmented microscopy images. We show how the library can provide a wide range of biologically relevant metrics on individual cells and their neighborhoods, with the objective of providing multi-scale biological insights. The library's capacities are demonstrated on different image and data types. CONCLUSIONS This library is provided as an open-source tool that can be integrated into common image analysis workflows to increase their capacities.
Collapse
Affiliation(s)
- Gustave Ronteix
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, Paris, F-75015 France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120 France
| | - Andrey Aristov
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, Paris, F-75015 France
| | - Valentin Bonnet
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, Paris, F-75015 France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120 France
| | - Sebastien Sart
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, Paris, F-75015 France
| | - Jeremie Sobel
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, Paris, F-75015 France
| | - Elric Esposito
- UTechS PBI, Institut Pasteur, 25-28 Rue du Dr Roux, Paris, 75015 France
| | - Charles N. Baroud
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, Paris, F-75015 France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120 France
| |
Collapse
|
32
|
Ardiel EL, Lauziere A, Xu S, Harvey BJ, Christensen RP, Nurrish S, Kaplan JM, Shroff H. Stereotyped behavioral maturation and rhythmic quiescence in C.elegans embryos. eLife 2022; 11:76836. [PMID: 35929725 PMCID: PMC9448323 DOI: 10.7554/elife.76836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Systematic analysis of rich behavioral recordings is being used to uncover how circuits encode complex behaviors. Here, we apply this approach to embryos. What are the first embryonic behaviors and how do they evolve as early neurodevelopment ensues? To address these questions, we present a systematic description of behavioral maturation for Caenorhabditis elegans embryos. Posture libraries were built using a genetically encoded motion capture suit imaged with light-sheet microscopy and annotated using custom tracking software. Analysis of cell trajectories, postures, and behavioral motifs revealed a stereotyped developmental progression. Early movement is dominated by flipping between dorsal and ventral coiling, which gradually slows into a period of reduced motility. Late-stage embryos exhibit sinusoidal waves of dorsoventral bends, prolonged bouts of directed motion, and a rhythmic pattern of pausing, which we designate slow wave twitch (SWT). Synaptic transmission is required for late-stage motion but not for early flipping nor the intervening inactive phase. A high-throughput behavioral assay and calcium imaging revealed that SWT is elicited by the rhythmic activity of a quiescence-promoting neuron (RIS). Similar periodic quiescent states are seen prenatally in diverse animals and may play an important role in promoting normal developmental outcomes.
Collapse
Affiliation(s)
- Evan L Ardiel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Andrew Lauziere
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
| | - Stephen Xu
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
| | - Brandon J Harvey
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
| | | | - Stephen Nurrish
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
| |
Collapse
|
33
|
Lee S, Kume H, Urakubo H, Kasai H, Ishii S. Tri-view two-photon microscopic image registration and deblurring with convolutional neural networks. Neural Netw 2022; 152:57-69. [DOI: 10.1016/j.neunet.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/10/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
34
|
Kyere FA, Curtin I, Krupa O, McCormick CM, Dere M, Khan S, Kim M, Wang TWW, He Q, Wu G, Shih YYI, Stein JL. Whole-Brain Single-Cell Imaging and Analysis of Intact Neonatal Mouse Brains Using MRI, Tissue Clearing, and Light-Sheet Microscopy. J Vis Exp 2022:10.3791/64096. [PMID: 35969091 PMCID: PMC9912361 DOI: 10.3791/64096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tissue clearing followed by light-sheet microscopy (LSFM) enables cellular-resolution imaging of intact brain structure, allowing quantitative analysis of structural changes caused by genetic or environmental perturbations. Whole-brain imaging results in more accurate quantification of cells and the study of region-specific differences that may be missed with commonly used microscopy of physically sectioned tissue. Using light-sheet microscopy to image cleared brains greatly increases acquisition speed as compared to confocal microscopy. Although these images produce very large amounts of brain structural data, most computational tools that perform feature quantification in images of cleared tissue are limited to counting sparse cell populations, rather than all nuclei. Here, we demonstrate NuMorph (Nuclear-Based Morphometry), a group of analysis tools, to quantify all nuclei and nuclear markers within annotated regions of a postnatal day 4 (P4) mouse brain after clearing and imaging on a light-sheet microscope. We describe magnetic resonance imaging (MRI) to measure brain volume prior to shrinkage caused by tissue clearing dehydration steps, tissue clearing using the iDISCO+ method, including immunolabeling, followed by light-sheet microscopy using a commercially available platform to image mouse brains at cellular resolution. We then demonstrate this image analysis pipeline using NuMorph, which is used to correct intensity differences, stitch image tiles, align multiple channels, count nuclei, and annotate brain regions through registration to publicly available atlases. We designed this approach using publicly available protocols and software, allowing any researcher with the necessary microscope and computational resources to perform these techniques. These tissue clearing, imaging, and computational tools allow measurement and quantification of the three-dimensional (3D) organization of cell-types in the cortex and should be widely applicable to any wild-type/knockout mouse study design.
Collapse
Affiliation(s)
- Felix A Kyere
- UNC Neuroscience Center, University of North Carolina, Chapel Hill; Department of Genetics, University of North Carolina, Chapel Hill
| | - Ian Curtin
- UNC Neuroscience Center, University of North Carolina, Chapel Hill; Department of Genetics, University of North Carolina, Chapel Hill
| | - Oleh Krupa
- UNC Neuroscience Center, University of North Carolina, Chapel Hill; Department of Genetics, University of North Carolina, Chapel Hill
| | - Carolyn M McCormick
- UNC Neuroscience Center, University of North Carolina, Chapel Hill; Department of Genetics, University of North Carolina, Chapel Hill
| | - Mustafa Dere
- Department of Psychiatry, University of North Carolina, Chapel Hill
| | - Sarah Khan
- Department of Psychiatry, University of North Carolina, Chapel Hill; Department of Computer Science, The University of North Carolina at Greensboro
| | - Minjeong Kim
- Department of Computer Science, The University of North Carolina at Greensboro
| | - Tzu-Wen Winnie Wang
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill; Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill; Department of Neurology, The University of North Carolina at Chapel Hill
| | - Qiuhong He
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill; Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill; Department of Neurology, The University of North Carolina at Chapel Hill
| | - Guorong Wu
- Department of Psychiatry, University of North Carolina, Chapel Hill
| | - Yen-Yu Ian Shih
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill; Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill; Department of Neurology, The University of North Carolina at Chapel Hill
| | - Jason L Stein
- UNC Neuroscience Center, University of North Carolina, Chapel Hill; Department of Genetics, University of North Carolina, Chapel Hill;
| |
Collapse
|
35
|
Deroubaix A, Kramvis A. Imaging Techniques: Essential Tools for the Study of SARS-CoV-2 Infection. Front Cell Infect Microbiol 2022; 12:794264. [PMID: 35937687 PMCID: PMC9355083 DOI: 10.3389/fcimb.2022.794264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/21/2022] [Indexed: 01/08/2023] Open
Abstract
The world has seen the emergence of a new virus in 2019, SARS-CoV-2, causing the COVID-19 pandemic and millions of deaths worldwide. Microscopy can be much more informative than conventional detection methods such as RT-PCR. This review aims to present the up-to-date microscopy observations in patients, the in vitro studies of the virus and viral proteins and their interaction with their host, discuss the microscopy techniques for detection and study of SARS-CoV-2, and summarize the reagents used for SARS-CoV-2 detection. From basic fluorescence microscopy to high resolution techniques and combined technologies, this article shows the power and the potential of microscopy techniques, especially in the field of virology.
Collapse
Affiliation(s)
- Aurélie Deroubaix
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Life Sciences Imaging Facility, University of the Witwatersrand, Johannesburg, South Africa
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
36
|
Lightsheet optical tweezer (LOT) for optical manipulation of microscopic particles and live cells. Sci Rep 2022; 12:10229. [PMID: 35715431 PMCID: PMC9205896 DOI: 10.1038/s41598-022-13095-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/20/2022] [Indexed: 11/09/2022] Open
Abstract
Optical trapping and patterning cells or microscopic particles is fascinating. We developed a light sheet-based optical tweezer to trap dielectric particles and live HeLa cells. The technique requires the generation of a tightly focussed diffraction-limited light-sheet realized by a combination of cylindrical lens and high NA objective lens. The resultant field is a focussed line (along x-axis) perpendicular to the beam propagation direction (z-axis). This is unlike traditional optical tweezers that are fundamentally point-traps and can trap one particle at a time. Several spherical beads undergoing Brownian motion in the solution are trapped by the lightsheet gradient potential, and the time (to reach trap-centre) is estimated from the video captured at 230 frames/s. High-speed imaging of beads with increasing laser power shows a steady increase in trap stiffness with a maximum of 0.00118 pN/nm at 52.5 mW. This is order less than the traditional point-traps, and hence may be suitable for applications requiring delicate optical forces. On the brighter side, light sheet tweezer (LOT) can simultaneously trap multiple objects with the distinct ability to manipulate them in the transverse (xy) plane via translation and rotation. However, the trapped beads displayed free movement along the light-sheet axis (x-axis), exhibiting a single degree of freedom. Furthermore, the tweezer is used to trap and pattern live HeLa cells in various shapes and structures. Subsequently, the cells were cultured for a prolonged period of time (> 18 h), and cell viability was ascertained. We anticipate that LOT can be used to study constrained dynamics of microscopic particles and help understand the patterned cell growth that has implications in optical imaging, microscopy, and cell biology.
Collapse
|
37
|
Glaser AK, Bishop KW, Barner LA, Susaki EA, Kubota SI, Gao G, Serafin RB, Balaram P, Turschak E, Nicovich PR, Lai H, Lucas LAG, Yi Y, Nichols EK, Huang H, Reder NP, Wilson JJ, Sivakumar R, Shamskhou E, Stoltzfus CR, Wei X, Hempton AK, Pende M, Murawala P, Dodt HU, Imaizumi T, Shendure J, Beliveau BJ, Gerner MY, Xin L, Zhao H, True LD, Reid RC, Chandrashekar J, Ueda HR, Svoboda K, Liu JTC. A hybrid open-top light-sheet microscope for versatile multi-scale imaging of cleared tissues. Nat Methods 2022; 19:613-619. [PMID: 35545715 PMCID: PMC9214839 DOI: 10.1038/s41592-022-01468-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
Light-sheet microscopy has emerged as the preferred means for high-throughput volumetric imaging of cleared tissues. However, there is a need for a flexible system that can address imaging applications with varied requirements in terms of resolution, sample size, tissue-clearing protocol, and transparent sample-holder material. Here, we present a 'hybrid' system that combines a unique non-orthogonal dual-objective and conventional (orthogonal) open-top light-sheet (OTLS) architecture for versatile multi-scale volumetric imaging. We demonstrate efficient screening and targeted sub-micrometer imaging of sparse axons within an intact, cleared mouse brain. The same system enables high-throughput automated imaging of multiple specimens, as spotlighted by a quantitative multi-scale analysis of brain metastases. Compared with existing academic and commercial light-sheet microscopy systems, our hybrid OTLS system provides a unique combination of versatility and performance necessary to satisfy the diverse requirements of a growing number of cleared-tissue imaging applications.
Collapse
Affiliation(s)
- Adam K Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
- Allen Institute for Neural Dynamics, Seattle, WA, USA.
| | - Kevin W Bishop
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Lindsey A Barner
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Etsuo A Susaki
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Shimpei I Kubota
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Gan Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Robert B Serafin
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | | | | | | | - Hoyin Lai
- Leica Microsystems, Inc, Buffalo Grove, IL, USA
| | | | - Yating Yi
- Department of Restorative Sciences, Texas A&M University, Dallas, TX, USA
| | - Eva K Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Hongyi Huang
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Nicholas P Reder
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Jasmine J Wilson
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Ramya Sivakumar
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Elya Shamskhou
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Caleb R Stoltzfus
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Xing Wei
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Andrew K Hempton
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Marko Pende
- MDI Biological Laboratory, Bar Harbor, ME, USA
| | - Prayag Murawala
- MDI Biological Laboratory, Bar Harbor, ME, USA
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Germany
| | - Hans-Ulrich Dodt
- Department for Bioelectronics, Vienna University of Technology, Vienna, Austria
- Section for Bioelectronics, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Michael Y Gerner
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Li Xin
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Hu Zhao
- Department of Restorative Sciences, Texas A&M University, Dallas, TX, USA
| | - Lawrence D True
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - R Clay Reid
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jayaram Chandrashekar
- Allen Institute for Neural Dynamics, Seattle, WA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Hiroki R Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Karel Svoboda
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
38
|
Zhang Q, Kindt KS. Using Light-Sheet Microscopy to Study Spontaneous Activity in the Developing Lateral-Line System. Front Cell Dev Biol 2022; 10:819612. [PMID: 35592245 PMCID: PMC9112283 DOI: 10.3389/fcell.2022.819612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Hair cells are the sensory receptors in the auditory and vestibular systems of all vertebrates, and in the lateral-line system of aquatic vertebrates. The purpose of this work is to explore the zebrafish lateral-line system as a model to study and understand spontaneous activity in vivo. Our work applies genetically encoded calcium indicators along with light-sheet fluorescence microscopy to visualize spontaneous calcium activity in the developing lateral-line system. Consistent with our previous work, we show that spontaneous calcium activity is present in developing lateral-line hair cells. We now show that supporting cells that surround hair cells, and cholinergic efferent terminals that directly contact hair cells are also spontaneously active. Using two-color functional imaging we demonstrate that spontaneous activity in hair cells does not correlate with activity in either supporting cells or cholinergic terminals. We find that during lateral-line development, hair cells autonomously generate spontaneous events. Using localized calcium indicators, we show that within hair cells, spontaneous calcium activity occurs in two distinct domains—the mechanosensory bundle and the presynapse. Further, spontaneous activity in the mechanosensory bundle ultimately drives spontaneous calcium influx at the presynapse. Comprehensively, our results indicate that in developing lateral-line hair cells, autonomously generated spontaneous activity originates with spontaneous mechanosensory events.
Collapse
|
39
|
Zarei M, Xie D, Jiang F, Bagirov A, Huang B, Raj A, Nagarajan S, Guo S. High activity and high functional connectivity are mutually exclusive in resting state zebrafish and human brains. BMC Biol 2022; 20:84. [PMID: 35410342 PMCID: PMC8996543 DOI: 10.1186/s12915-022-01286-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/28/2022] [Indexed: 01/21/2023] Open
Abstract
Background The structural connectivity of neurons in the brain allows active neurons to impact the physiology of target neuron types with which they are functionally connected. While the structural connectome is at the basis of functional connectome, it is the functional connectivity measured through correlations between time series of individual neurophysiological events that underlies behavioral and mental states. However, in light of the diverse neuronal cell types populating the brain and their unique connectivity properties, both neuronal activity and functional connectivity are heterogeneous across the brain, and the nature of their relationship is not clear. Here, we employ brain-wide calcium imaging at cellular resolution in larval zebrafish to understand the principles of resting state functional connectivity. Results We recorded the spontaneous activity of >12,000 neurons in the awake resting state forebrain. By classifying their activity (i.e., variances of ΔF/F across time) and functional connectivity into three levels (high, medium, low), we find that highly active neurons have low functional connections and highly connected neurons are of low activity. This finding holds true when neuronal activity and functional connectivity data are classified into five instead of three levels, and in whole brain spontaneous activity datasets. Moreover, such activity-connectivity relationship is not observed in randomly shuffled, noise-added, or simulated datasets, suggesting that it reflects an intrinsic brain network property. Intriguingly, deploying the same analytical tools on functional magnetic resonance imaging (fMRI) data from the resting state human brain, we uncover a similar relationship between activity (signal variance over time) and functional connectivity, that is, regions of high activity are non-overlapping with those of high connectivity. Conclusions We found a mutually exclusive relationship between high activity (signal variance over time) and high functional connectivity of neurons in zebrafish and human brains. These findings reveal a previously unknown and evolutionarily conserved brain organizational principle, which has implications for understanding disease states and designing artificial neuronal networks. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01286-3.
Collapse
Affiliation(s)
- Mahdi Zarei
- Department of Bioengineering and Therapeutic Sciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, USA.
| | - Dan Xie
- Department of Bioengineering and Therapeutic Sciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Fei Jiang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Adil Bagirov
- Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94143, USA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Srikantan Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, USA. .,Programs in Human Genetics and Biological Sciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, USA.
| |
Collapse
|
40
|
Juanez K, Ghose P. Repurposing the Killing Machine: Non-canonical Roles of the Cell Death Apparatus in Caenorhabditis elegans Neurons. Front Cell Dev Biol 2022; 10:825124. [PMID: 35237604 PMCID: PMC8882910 DOI: 10.3389/fcell.2022.825124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
Here we highlight the increasingly divergent functions of the Caenorhabditis elegans cell elimination genes in the nervous system, beyond their well-documented roles in cell dismantling and removal. We describe relevant background on the C. elegans nervous system together with the apoptotic cell death and engulfment pathways, highlighting pioneering work in C. elegans. We discuss in detail the unexpected, atypical roles of cell elimination genes in various aspects of neuronal development, response and function. This includes the regulation of cell division, pruning, axon regeneration, and behavioral outputs. We share our outlook on expanding our thinking as to what cell elimination genes can do and noting their versatility. We speculate on the existence of novel genes downstream and upstream of the canonical cell death pathways relevant to neuronal biology. We also propose future directions emphasizing the exploration of the roles of cell death genes in pruning and guidance during embryonic development.
Collapse
|
41
|
Farahani PE, Nelson CM. Revealing epithelial morphogenetic mechanisms through live imaging. Curr Opin Genet Dev 2022; 72:61-68. [PMID: 34864332 PMCID: PMC8860867 DOI: 10.1016/j.gde.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023]
Abstract
Epithelial morphogenesis is guided by mechanical forces and biochemical signals that vary spatiotemporally. As many morphogenetic events are driven by rapid cellular processes, understanding morphogenesis requires monitoring development in real time. Here, we discuss how live-imaging approaches can help identify morphogenetic mechanisms otherwise missed in static snapshots of development. We begin with a summary of live-imaging strategies, including recent advances that push the limits of spatiotemporal resolution and specimen size. We then describe recent efforts that employ live imaging to uncover morphogenetic mechanisms. We conclude by discussing how information collected from live imaging can be enhanced by genetically encoded biosensors and spatiotemporal perturbation techniques to determine the dynamics of patterning of developmental signals and their importance for guiding morphogenesis.
Collapse
Affiliation(s)
- Payam E Farahani
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
42
|
Fiúza UM, Lemaire P. Methods for the Study of Apical Constriction During Ascidian Gastrulation. Methods Mol Biol 2022; 2438:377-413. [PMID: 35147954 DOI: 10.1007/978-1-0716-2035-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gastrulation is the first major morphogenetic event during ascidian embryogenesis. Ascidian gastrulation begins with the invagination of the endodermal progenitors, a two-step process driven by individual cell shape changes of endoderm cells. During the first step, endoderm cells constrict apically, thereby flattening the vegetal side of the embryo. During the second step, endoderm cells shorten along their apicobasal axis and tissue invagination ensues. Individual cell shape changes are mediated by localized actomyosin contractile activity. Here, we describe methods used during ascidian endoderm apical constriction to study myosin activity and cellular morphodynamics with confocal and light sheet microscopy and followed by quantitative image analysis.
Collapse
Affiliation(s)
- Ulla-Maj Fiúza
- Systems Bioengineering, DCEXS Universidad Pompeu Fabra, Barcelona, Spain.
| | | |
Collapse
|
43
|
Mauro MS, Celma G, Zimyanin V, Magaj MM, Gibson KH, Redemann S, Bahmanyar S. Ndc1 drives nuclear pore complex assembly independent of membrane biogenesis to promote nuclear formation and growth. eLife 2022; 11:75513. [PMID: 35852146 PMCID: PMC9296133 DOI: 10.7554/elife.75513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
The nuclear envelope (NE) assembles and grows from bilayer lipids produced at the endoplasmic reticulum (ER). How ER membrane incorporation coordinates with assembly of nuclear pore complexes (NPCs) to generate a functional NE is not well understood. Here, we use the stereotypical first division of the early C. elegans embryo to test the role of the membrane-associated nucleoporin Ndc1 in coupling NPC assembly to NE formation and growth. 3D-EM tomography of reforming and expanded NEs establishes that Ndc1 determines NPC density. Loss of ndc1 results in faster turnover of the outer scaffold nucleoporin Nup160 at the NE, providing an explanation for how Ndc1 controls NPC number. NE formation fails in the absence of both Ndc1 and the inner ring component Nup53, suggesting partially redundant roles in NPC assembly. Importantly, upregulation of membrane synthesis restored the slow rate of nuclear growth resulting from loss of ndc1 but not from loss of nup53. Thus, membrane biogenesis can be decoupled from Ndc1-mediated NPC assembly to promote nuclear growth. Together, our data suggest that Ndc1 functions in parallel with Nup53 and membrane biogenesis to control NPC density and nuclear size.
Collapse
Affiliation(s)
- Michael Sean Mauro
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Gunta Celma
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Vitaly Zimyanin
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Magdalena M Magaj
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Kimberley H Gibson
- Center for Cellular and Molecular Imaging: Electron Microscopy, Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Stefanie Redemann
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States,Department of Cell Biology, University of VirginiaCharlottesvilleUnited States
| | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| |
Collapse
|
44
|
Moore RP, O'Shaughnessy EC, Shi Y, Nogueira AT, Heath KM, Hahn KM, Legant WR. A multi-functional microfluidic device compatible with widefield and light sheet microscopy. LAB ON A CHIP 2021; 22:136-147. [PMID: 34859808 PMCID: PMC9022779 DOI: 10.1039/d1lc00600b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a microfluidic device compatible with high resolution light sheet and super-resolution microscopy. The device is a 150 μm thick chamber with a transparent fluorinated ethylene propylene (FEP) cover that has a similar refractive index (1.34) to water (1.33), making it compatible with top-down imaging used in light sheet microscopy. We provide a detailed fabrication protocol and characterize the optical performance of the device. We demonstrate that the device supports long-term imaging of cell growth and differentiation as well as the rapid addition and removal of reagents while simultaneously maintaining sterile culture conditions by physically isolating the sample from the dipping lenses used for imaging. Finally, we demonstrate that the device can be used for super-resolution imaging using lattice light sheet structured illumination microscopy (LLS-SIM) and DNA PAINT. We anticipate that FEP-based microfluidics, as shown here, will be broadly useful to researchers using light sheet microscopy due to the ability to switch reagents, image weakly adherent cells, maintain sterility, and physically isolate the specimen from the optics of the instruments.
Collapse
Affiliation(s)
- Regan P Moore
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, 27599, USA.
| | - Ellen C O'Shaughnessy
- Pharmacology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yu Shi
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, 27599, USA.
| | - Ana T Nogueira
- Pharmacology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Katelyn M Heath
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, 27599, USA.
| | - Klaus M Hahn
- Pharmacology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wesley R Legant
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, 27599, USA.
- Pharmacology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
45
|
Hobson CM, Falvo MR, Superfine R. A survey of physical methods for studying nuclear mechanics and mechanobiology. APL Bioeng 2021; 5:041508. [PMID: 34849443 PMCID: PMC8604565 DOI: 10.1063/5.0068126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
It is increasingly appreciated that the cell nucleus is not only a home for DNA but also a complex material that resists physical deformations and dynamically responds to external mechanical cues. The molecules that confer mechanical properties to nuclei certainly contribute to laminopathies and possibly contribute to cellular mechanotransduction and physical processes in cancer such as metastasis. Studying nuclear mechanics and the downstream biochemical consequences or their modulation requires a suite of complex assays for applying, measuring, and visualizing mechanical forces across diverse length, time, and force scales. Here, we review the current methods in nuclear mechanics and mechanobiology, placing specific emphasis on each of their unique advantages and limitations. Furthermore, we explore important considerations in selecting a new methodology as are demonstrated by recent examples from the literature. We conclude by providing an outlook on the development of new methods and the judicious use of the current techniques for continued exploration into the role of nuclear mechanobiology.
Collapse
Affiliation(s)
| | - Michael R. Falvo
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard Superfine
- Department of Applied Physical Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
46
|
Goelzer M, Goelzer J, Ferguson ML, Neu CP, Uzer G. Nuclear envelope mechanobiology: linking the nuclear structure and function. Nucleus 2021; 12:90-114. [PMID: 34455929 PMCID: PMC8432354 DOI: 10.1080/19491034.2021.1962610] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023] Open
Abstract
The nucleus, central to cellular activity, relies on both direct mechanical input as well as its molecular transducers to sense external stimuli and respond by regulating intra-nuclear chromatin organization that determines cell function and fate. In mesenchymal stem cells of musculoskeletal tissues, changes in nuclear structures are emerging as a key modulator of their differentiation and proliferation programs. In this review we will first introduce the structural elements of the nucleoskeleton and discuss the current literature on how nuclear structure and signaling are altered in relation to environmental and tissue level mechanical cues. We will focus on state-of-the-art techniques to apply mechanical force and methods to measure nuclear mechanics in conjunction with DNA, RNA, and protein visualization in living cells. Ultimately, combining real-time nuclear deformations and chromatin dynamics can be a powerful tool to study mechanisms of how forces affect the dynamics of genome function.
Collapse
Affiliation(s)
- Matthew Goelzer
- Materials Science and Engineering, Boise State University, Boise, ID, US
| | | | - Matthew L. Ferguson
- Biomolecular Science, Boise State University, Boise, ID, US
- Physics, Boise State University, Boise, ID, US
| | - Corey P. Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, US
| | - Gunes Uzer
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, US
| |
Collapse
|
47
|
Wu Y, Han X, Su Y, Glidewell M, Daniels JS, Liu J, Sengupta T, Rey-Suarez I, Fischer R, Patel A, Combs C, Sun J, Wu X, Christensen R, Smith C, Bao L, Sun Y, Duncan LH, Chen J, Pommier Y, Shi YB, Murphy E, Roy S, Upadhyaya A, Colón-Ramos D, La Riviere P, Shroff H. Multiview confocal super-resolution microscopy. Nature 2021; 600:279-284. [PMID: 34837071 PMCID: PMC8686173 DOI: 10.1038/s41586-021-04110-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022]
Abstract
Confocal microscopy1 remains a major workhorse in biomedical optical microscopy owing to its reliability and flexibility in imaging various samples, but suffers from substantial point spread function anisotropy, diffraction-limited resolution, depth-dependent degradation in scattering samples and volumetric bleaching2. Here we address these problems, enhancing confocal microscopy performance from the sub-micrometre to millimetre spatial scale and the millisecond to hour temporal scale, improving both lateral and axial resolution more than twofold while simultaneously reducing phototoxicity. We achieve these gains using an integrated, four-pronged approach: (1) developing compact line scanners that enable sensitive, rapid, diffraction-limited imaging over large areas; (2) combining line-scanning with multiview imaging, developing reconstruction algorithms that improve resolution isotropy and recover signal otherwise lost to scattering; (3) adapting techniques from structured illumination microscopy, achieving super-resolution imaging in densely labelled, thick samples; (4) synergizing deep learning with these advances, further improving imaging speed, resolution and duration. We demonstrate these capabilities on more than 20 distinct fixed and live samples, including protein distributions in single cells; nuclei and developing neurons in Caenorhabditis elegans embryos, larvae and adults; myoblasts in imaginal disks of Drosophila wings; and mouse renal, oesophageal, cardiac and brain tissues.
Collapse
Affiliation(s)
- Yicong Wu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
| | - Xiaofei Han
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Department of Automation, Tsinghua University, Beijing, China
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Leica Microsystems, Buffalo Grove, IL, USA
- SVision, Bellevue, WA, USA
| | | | | | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Titas Sengupta
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Robert Fischer
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Akshay Patel
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Christian Combs
- NHLBI Light Microscopy Facility, National Institutes of Health, Bethesda, MD, USA
| | - Junhui Sun
- Laboratory of Cardiac Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xufeng Wu
- NHLBI Light Microscopy Facility, National Institutes of Health, Bethesda, MD, USA
| | - Ryan Christensen
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Corey Smith
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yilun Sun
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Leighton H Duncan
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sougata Roy
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
- Department of Physics, University of Maryland, College Park, MD, USA
| | - Daniel Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
- Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, San Juan, Puerto Rico
| | - Patrick La Riviere
- Department of Radiology, University of Chicago, Chicago, IL, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
48
|
Sengupta T, Koonce NL, Vázquez-Martínez N, Moyle MW, Duncan LH, Emerson SE, Han X, Shao L, Wu Y, Santella A, Fan L, Bao Z, Mohler W, Shroff H, Colón-Ramos DA. Differential adhesion regulates neurite placement via a retrograde zippering mechanism. eLife 2021; 10:71171. [PMID: 34783657 PMCID: PMC8843091 DOI: 10.7554/elife.71171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
During development, neurites and synapses segregate into specific neighborhoods or layers within nerve bundles. The developmental programs guiding placement of neurites in specific layers, and hence their incorporation into specific circuits, are not well understood. We implement novel imaging methods and quantitative models to document the embryonic development of the C. elegans brain neuropil, and discover that differential adhesion mechanisms control precise placement of single neurites onto specific layers. Differential adhesion is orchestrated via developmentally-regulated expression of the IgCAM SYG-1, and its partner ligand SYG-2. Changes in SYG-1 expression across neuropil layers result in changes in adhesive forces, which sort SYG-2-expressing neurons. Sorting to layers occurs, not via outgrowth from the neurite tip, but via an alternate mechanism of retrograde zippering, involving interactions between neurite shafts. Our study indicates that biophysical principles from differential adhesion govern neurite placement and synaptic specificity in vivo in developing neuropil bundles.
Collapse
Affiliation(s)
- Titas Sengupta
- Yale University School of Medicine, New Haven, United States
| | - Noelle L Koonce
- Yale University School of Medicine, New Haven, United States
| | | | - Mark W Moyle
- Yale University School of Medicine, New Haven, United States
| | | | - Sarah E Emerson
- Yale University School of Medicine, New Haven, United States
| | - Xiaofei Han
- National Institutes of Health, Bethesda, United States
| | - Lin Shao
- Yale University School of Medicine, New Haven, United States
| | - Yicong Wu
- National Institutes of Health, Bethesda, United States
| | - Anthony Santella
- Developmental Biology Program, Molecular Cytology Core, Sloan-Kettering Institute, New York, United States
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Institute, Weill Cornell Medicine, New York, United States
| | - Zhirong Bao
- Developmental Biology Program, Sloan-Kettering Institute, New York, United States
| | - William Mohler
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
| | - Hari Shroff
- National Institutes of Health, Bethesda, United States
| | | |
Collapse
|
49
|
Gibbs HC, Mota SM, Hart NA, Min SW, Vernino AO, Pritchard AL, Sen A, Vitha S, Sarasamma S, McIntosh AL, Yeh AT, Lekven AC, McCreedy DA, Maitland KC, Perez LM. Navigating the Light-Sheet Image Analysis Software Landscape: Concepts for Driving Cohesion From Data Acquisition to Analysis. Front Cell Dev Biol 2021; 9:739079. [PMID: 34858975 PMCID: PMC8631767 DOI: 10.3389/fcell.2021.739079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022] Open
Abstract
From the combined perspective of biologists, microscope instrumentation developers, imaging core facility scientists, and high performance computing experts, we discuss the challenges faced when selecting imaging and analysis tools in the field of light-sheet microscopy. Our goal is to provide a contextual framework of basic computing concepts that cell and developmental biologists can refer to when mapping the peculiarities of different light-sheet data to specific existing computing environments and image analysis pipelines. We provide our perspective on efficient processes for tool selection and review current hardware and software commonly used in light-sheet image analysis, as well as discuss what ideal tools for the future may look like.
Collapse
Affiliation(s)
- Holly C. Gibbs
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Microscopy and Imaging Center, Texas A&M University, College Station, TX, United States
| | - Sakina M. Mota
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Nathan A. Hart
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Sun Won Min
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Alex O. Vernino
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Anna L. Pritchard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Anindito Sen
- Microscopy and Imaging Center, Texas A&M University, College Station, TX, United States
| | - Stan Vitha
- Microscopy and Imaging Center, Texas A&M University, College Station, TX, United States
| | - Sreeja Sarasamma
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Avery L. McIntosh
- Microscopy and Imaging Center, Texas A&M University, College Station, TX, United States
| | - Alvin T. Yeh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Arne C. Lekven
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Dylan A. McCreedy
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Kristen C. Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Microscopy and Imaging Center, Texas A&M University, College Station, TX, United States
| | - Lisa M. Perez
- High Performance Research Computing, Texas A&M University, College Station, TX, United States
| |
Collapse
|
50
|
Plante AE, Rao VP, Rizzo MA, Meredith AL. Comparative Ca 2+ channel contributions to intracellular Ca 2+ levels in the circadian clock. BIOPHYSICAL REPORTS 2021; 1:100005. [PMID: 35330949 PMCID: PMC8942421 DOI: 10.1016/j.bpr.2021.100005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022]
Abstract
Circadian rhythms in mammals are coordinated by the central clock in the brain, located in the suprachiasmatic nucleus (SCN). Multiple molecular and cellular signals display a circadian variation within SCN neurons, including intracellular Ca2+, but the mechanisms are not definitively established. SCN cytosolic Ca2+ levels exhibit a peak during the day, when both action potential firing and Ca2+ channel activity are increased, and are decreased at night, correlating with a reduction in firing rate. In this study, we employ a single-color fluorescence anisotropy reporter (FLARE), Venus FLARE-Cameleon, and polarization inverted selective-plane illumination microscopy to measure rhythmic changes in cytosolic Ca2+ in SCN neurons. Using this technique, the Ca2+ channel subtypes contributing to intracellular Ca2+ at the peak and trough of the circadian cycle were assessed using a pharmacological approach with Ca2+ channel inhibitors. Peak (218 ± 16 nM) and trough (172 ± 13 nM) Ca2+ levels were quantified, indicating a 1.3-fold circadian variance in Ca2+ concentration. Inhibition of ryanodine-receptor-mediated Ca2+ release produced a larger relative decrease in cytosolic Ca2+ at both time points compared to voltage-gated Ca2+channels. These results support the hypothesis that circadian Ca2+ rhythms in SCN neurons are predominantly driven by intracellular Ca2+ channels, although not exclusively so. The study provides a foundation for future experiments to probe Ca2+ signaling in a dynamic biological context using FLAREs.
Collapse
Affiliation(s)
- Amber E. Plante
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Vishnu P. Rao
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Megan A. Rizzo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea L. Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|