1
|
Yip MC, Gonzalez MM, Lewallen CF, Landry CR, Kolb I, Yang B, Stoy WM, Fong MF, Rowan MJM, Boyden ES, Forest CR. Patch-walking, a coordinated multi-pipette patch clamp for efficiently finding synaptic connections. eLife 2024; 13:RP97399. [PMID: 39556439 PMCID: PMC11573346 DOI: 10.7554/elife.97399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Significant technical challenges exist when measuring synaptic connections between neurons in living brain tissue. The patch clamping technique, when used to probe for synaptic connections, is manually laborious and time-consuming. To improve its efficiency, we pursued another approach: instead of retracting all patch clamping electrodes after each recording attempt, we cleaned just one of them and reused it to obtain another recording while maintaining the others. With one new patch clamp recording attempt, many new connections can be probed. By placing one pipette in front of the others in this way, one can 'walk' across the mouse brain slice, termed 'patch-walking.' We performed 136 patch clamp attempts for two pipettes, achieving 71 successful whole cell recordings (52.2%). Of these, we probed 29 pairs (i.e. 58 bidirectional probed connections) averaging 91 μm intersomatic distance, finding three connections. Patch-walking yields 80-92% more probed connections, for experiments with 10-100 cells than the traditional synaptic connection searching method.
Collapse
Affiliation(s)
- Mighten C Yip
- George W Woodruff School of Mechanical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Mercedes M Gonzalez
- George W Woodruff School of Mechanical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Colby F Lewallen
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institute of HealthBethesdaUnited States
| | - Corey R Landry
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Ilya Kolb
- GENIE Project Team, Janelia Research Campus Howard Hughes Medical InstituteAshburnUnited States
| | - Bo Yang
- George W Woodruff School of Mechanical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - William M Stoy
- Department of Electrical Engineering, Columbia UniversityNew YorkUnited States
| | - Ming-fai Fong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Matthew JM Rowan
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Edward S Boyden
- Department of Brain and Cognitive Science, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical InstituteCambridgeUnited States
| | - Craig R Forest
- George W Woodruff School of Mechanical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
2
|
Hayakawa T, Suzuki H, Yamamoto H, Mitsuda N. Synthetic biology in plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:173-193. [PMID: 40115764 PMCID: PMC11921130 DOI: 10.5511/plantbiotechnology.24.0630b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/30/2024] [Indexed: 03/23/2025]
Abstract
Synthetic biology, an interdisciplinary field at the intersection of engineering and biology, has garnered considerable attention for its potential applications in plant science. By exploiting engineering principles, synthetic biology enables the redesign and construction of biological systems to manipulate plant traits, metabolic pathways, and responses to environmental stressors. This review explores the evolution and current state of synthetic biology in plants, highlighting key achievements and emerging trends. Synthetic biology offers innovative solutions to longstanding challenges in agriculture and biotechnology for improvement of nutrition and photosynthetic efficiency, useful secondary metabolite production, engineering biosensors, and conferring stress tolerance. Recent advances, such as genome editing technologies, have facilitated precise manipulation of plant genomes, creating new possibilities for crop improvement and sustainable agriculture. Despite its transformative potential, ethical and biosafety considerations underscore the need for responsible deployment of synthetic biology tools in plant research and development. This review provides insights into the burgeoning field of plant synthetic biology, offering a glimpse into its future implications for food security, environmental sustainability, and human health.
Collapse
Affiliation(s)
- Takahiko Hayakawa
- Mitsubishi Chemical Research Corporation, 16-1 Samon-cho, Sinjuku-ku, Tokyo 106-0017, Japan
| | - Hayato Suzuki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukisamu Higashi 2-17-2-1, Toyohira, Sapporo, Hokkaido 062-8517, Japan
| | - Hiroshi Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukisamu Higashi 2-17-2-1, Toyohira, Sapporo, Hokkaido 062-8517, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
3
|
Yip MC, Gonzalez MM, Lewallen CF, Landry CR, Kolb I, Yang B, Stoy WM, Fong MF, Rowan MJ, Boyden ES, Forest CR. Patch-walking: Coordinated multi-pipette patch clamp for efficiently finding synaptic connections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.30.587445. [PMID: 39185225 PMCID: PMC11343158 DOI: 10.1101/2024.03.30.587445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Significant technical challenges exist when measuring synaptic connections between neurons in living brain tissue. The patch clamping technique, when used to probe for synaptic connections, is manually laborious and time-consuming. To improve its efficiency, we pursued another approach: instead of retracting all patch clamping electrodes after each recording attempt, we cleaned just one of them and reused it to obtain another recording while maintaining the others. With one new patch clamp recording attempt, many new connections can be probed. By placing one pipette in front of the others in this way, one can "walk" across the tissue, termed "patch-walking." We performed 136 patch clamp attempts for two pipettes, achieving 71 successful whole cell recordings (52.2%). Of these, we probed 29 pairs (i.e., 58 bidirectional probed connections) averaging 91 μm intersomatic distance, finding 3 connections. Patch-walking yields 80-92% more probed connections, for experiments with 10-100 cells than the traditional synaptic connection searching method.
Collapse
Affiliation(s)
- Mighten C. Yip
- George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA, 30363, USA
| | - Mercedes M. Gonzalez
- George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA, 30363, USA
| | - Colby F. Lewallen
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Corey R. Landry
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA, 30363, USA
| | - Ilya Kolb
- GENIE Project Team, Janelia Research Campus Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Bo Yang
- George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA, 30363, USA
| | - William M. Stoy
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Ming-fai Fong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA, 30363, USA
| | - Matthew J.M. Rowan
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, 30322, USA
| | - Edward S. Boyden
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Craig R. Forest
- George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA, 30363, USA
| |
Collapse
|
4
|
Alegria AD, Joshi AS, Mendana JB, Khosla K, Smith KT, Auch B, Donovan M, Bischof J, Gohl DM, Kodandaramaiah SB. High-throughput genetic manipulation of multicellular organisms using a machine-vision guided embryonic microinjection robot. Genetics 2024; 226:iyae025. [PMID: 38373262 PMCID: PMC10990426 DOI: 10.1093/genetics/iyae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/21/2024] Open
Abstract
Microinjection is a technique used for transgenesis, mutagenesis, cell labeling, cryopreservation, and in vitro fertilization in multiple single and multicellular organisms. Microinjection requires specialized skills and involves rate-limiting and labor-intensive preparatory steps. Here, we constructed a machine-vision guided generalized robot that fully automates the process of microinjection in fruit fly (Drosophila melanogaster) and zebrafish (Danio rerio) embryos. The robot uses machine learning models trained to detect embryos in images of agar plates and identify specific anatomical locations within each embryo in 3D space using dual view microscopes. The robot then serially performs a microinjection in each detected embryo. We constructed and used three such robots to automatically microinject tens of thousands of Drosophila and zebrafish embryos. We systematically optimized robotic microinjection for each species and performed routine transgenesis with proficiency comparable to highly skilled human practitioners while achieving up to 4× increases in microinjection throughput in Drosophila. The robot was utilized to microinject pools of over 20,000 uniquely barcoded plasmids into 1,713 embryos in 2 days to rapidly generate more than 400 unique transgenic Drosophila lines. This experiment enabled a novel measurement of the number of independent germline integration events per successfully injected embryo. Finally, we showed that robotic microinjection of cryoprotective agents in zebrafish embryos significantly improves vitrification rates and survival of cryopreserved embryos post-thaw as compared to manual microinjection. We anticipate that the robot can be used to carry out microinjection for genome-wide manipulation and cryopreservation at scale in a wide range of organisms.
Collapse
Affiliation(s)
- Andrew D Alegria
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amey S Joshi
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jorge Blanco Mendana
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kanav Khosla
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kieran T Smith
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Benjamin Auch
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Margaret Donovan
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - John Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daryl M Gohl
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Suhasa B Kodandaramaiah
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Qin C, Yuan Q, Liu M, Zhuang L, Xu L, Wang P. Biohybrid tongue based on hypothalamic neuronal network-on-a-chip for real-time blood glucose sensing and assessment. Biosens Bioelectron 2024; 244:115784. [PMID: 37939416 DOI: 10.1016/j.bios.2023.115784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023]
Abstract
The expression of sweet receptors in the hypothalamus has been implicated in energy homeostasis control and the pathogenesis of obesity and diabetes. However, the exact mechanism by which hypothalamic glucose-sensing neurons function remains unclear. Conventional detection methods, such as fiber photometry, optogenetics, brain-machine interfaces, patch clamp and calcium imaging, pose limitations for real-time glucose perception due to their complexity, cytotoxicity and so on. Therefore, this study proposes a biohybrid tongue based on hypothalamic neuronal network (HNN)-on-a-chip coupling with microelectrode array (MEA) for real-time glucose perception. Hypothalamic neuronal cultures were cultivated on a two-dimensional "brain-on-chip" device, enabling the formation of neuronal networks and electrophysiological signal detection. Additionally, we investigated the endogenous expression of sweet taste receptors (T1R2/T1R3) in hypothalamic neuronal cells, providing the basis for the biohybrid tongue based on HNN-on-a-chip's sweetness detection capabilities. The spike signal response to sucrose and glucose stimulation was detected, and concentration-dependent responses were explored with glucose concentrations ranging from 0.01 mM to 8 mM. MEAs allow for real-time recordings, enabling the observation of dynamic changes in neuronal responses to glucose fluctuations over time. The biohybrid tongue based on HNN-on-a-chip can measure various parameters, including spike frequency and amplitude, providing insights into neuronal firing patterns and excitability. Moreover, hypothalamic glucoregulatory neurons that sense and respond to changes in blood glucose was identified, including glucose-excited neurons (GE-Neurons) and glucose-inhibited neurons (GI-Neurons). The detection range for GE-Neurons spans from 0.4 to 6 mM, while GI-Neurons demonstrate sensitivity within the range of 1-8 mM. And the glucose detection limit was firmly established at 0.01 mM. Through non-linear regression analysis, the IC50 for GI-Neurons' spike firing was determined to be 4.18 mM. In conclusion, the biohybrid tongue based on HNN-on-a-chip offers a valuable in vitro tool for studying hypothalamic neurons, elucidating glucose sensing mechanisms, and understanding hypothalamic neuronal function.
Collapse
Affiliation(s)
- Chunlian Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, 310053, China
| | - Mengxue Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lizhou Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
6
|
Li K, Gong H, Qiu J, Li R, Zhao Q, Zhao X, Sun M. Neuron Contact Detection Based on Pipette Precise Positioning for Robotic Brain-Slice Patch Clamps. SENSORS (BASEL, SWITZERLAND) 2023; 23:8144. [PMID: 37836974 PMCID: PMC10575430 DOI: 10.3390/s23198144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
A patch clamp is the "gold standard" method for studying ion-channel biophysics and pharmacology. Due to the complexity of the operation and the heavy reliance on experimenter experience, more and more researchers are focusing on patch-clamp automation. The existing automated patch-clamp system focuses on the process of completing the experiment; the detection method in each step is relatively simple, and the robustness of the complex brain film environment is lacking, which will increase the detection error in the microscopic environment, affecting the success rate of the automated patch clamp. To address these problems, we propose a method that is suitable for the contact between pipette tips and neuronal cells in automated patch-clamp systems. It mainly includes two key steps: precise positioning of pipettes and contact judgment. First, to obtain the precise coordinates of the tip of the pipette, we use the Mixture of Gaussian (MOG) algorithm for motion detection to focus on the tip area under the microscope. We use the object detection model to eliminate the encirclement frame of the pipette tip to reduce the influence of different shaped tips, and then use the sweeping line algorithm to accurately locate the pipette tip. We also use the object detection model to obtain a three-dimensional bounding frame of neuronal cells. When the microscope focuses on the maximum plane of the cell, which is the height in the middle of the enclosing frame, we detect the focus of the tip of the pipette to determine whether the contact between the tip and the cell is successful, because the cell and the pipette will be at the same height at this time. We propose a multitasking network CU-net that can judge the focus of pipette tips in complex contexts. Finally, we design an automated contact sensing process in combination with resistance constraints and apply it to our automated patch-clamp system. The experimental results show that our method can increase the success rate of pipette contact with cells in patch-clamp experiments.
Collapse
Affiliation(s)
- Ke Li
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (K.L.); (H.G.); (J.Q.); (R.L.); (Q.Z.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Huiying Gong
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (K.L.); (H.G.); (J.Q.); (R.L.); (Q.Z.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Jinyu Qiu
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (K.L.); (H.G.); (J.Q.); (R.L.); (Q.Z.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Ruimin Li
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (K.L.); (H.G.); (J.Q.); (R.L.); (Q.Z.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Qili Zhao
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (K.L.); (H.G.); (J.Q.); (R.L.); (Q.Z.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Xin Zhao
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (K.L.); (H.G.); (J.Q.); (R.L.); (Q.Z.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Mingzhu Sun
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (K.L.); (H.G.); (J.Q.); (R.L.); (Q.Z.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| |
Collapse
|
7
|
Landry CR, Yip MC, Zhou Y, Niu W, Wang Y, Yang B, Wen Z, Forest CR. Electrophysiological and morphological characterization of single neurons in intact human brain organoids. J Neurosci Methods 2023; 394:109898. [PMID: 37236404 PMCID: PMC10483933 DOI: 10.1016/j.jneumeth.2023.109898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Brain organoids represent a new model system for studying developmental human neurophysiology. Methods for studying the electrophysiology and morphology of single neurons in organoids require acute slices or dissociated cultures. While these methods have advantages (e.g., visual access, ease of experimentation), they risk damaging cells and circuits present in the intact organoid. To access single cells within intact organoid circuits, we have demonstrated a method for fixturing and performing whole cell patch clamp recording from intact brain organoids using both manual and automated tools. We demonstrate applied electrophysiology methods development followed by an integration of electrophysiology with reconstructing the morphology of the neurons within the brain organoid using dye filling and tissue clearing. We found that whole cell patch clamp recordings could be achieved both on the surface and within the interior of intact human brain organoids using both manual and automated methods. Manual experiments were higher yield (53 % whole cell success rate manual, 9 % whole cell success rate automated), but automated experiments were more efficient (30 patch attempts per day automated, 10 patch attempts per day manual). Using these methods, we performed an unbiased survey of cells within human brain organoids between 90 and 120 days in vitro (DIV) and present preliminary data on morphological and electrical diversity in human brain organoids. The further development of intact brain organoid patch clamp methods could be broadly applicable to studies of cellular, synaptic, and circuit-level function in the developing human brain.
Collapse
Affiliation(s)
- Corey R Landry
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, United States.
| | - Mighten C Yip
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, United States
| | - Ying Zhou
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States
| | - Weibo Niu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States
| | - Yunmiao Wang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States; Department of Biology, Emory University, United States
| | - Bo Yang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States; Department of Cell Biology, Emory University School of Medicine, United States
| | - Craig R Forest
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, United States; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, United States
| |
Collapse
|
8
|
Bod RB, Rokai J, Meszéna D, Fiáth R, Ulbert I, Márton G. From End to End: Gaining, Sorting, and Employing High-Density Neural Single Unit Recordings. Front Neuroinform 2022; 16:851024. [PMID: 35769832 PMCID: PMC9236662 DOI: 10.3389/fninf.2022.851024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
The meaning behind neural single unit activity has constantly been a challenge, so it will persist in the foreseeable future. As one of the most sourced strategies, detecting neural activity in high-resolution neural sensor recordings and then attributing them to their corresponding source neurons correctly, namely the process of spike sorting, has been prevailing so far. Support from ever-improving recording techniques and sophisticated algorithms for extracting worthwhile information and abundance in clustering procedures turned spike sorting into an indispensable tool in electrophysiological analysis. This review attempts to illustrate that in all stages of spike sorting algorithms, the past 5 years innovations' brought about concepts, results, and questions worth sharing with even the non-expert user community. By thoroughly inspecting latest innovations in the field of neural sensors, recording procedures, and various spike sorting strategies, a skeletonization of relevant knowledge lays here, with an initiative to get one step closer to the original objective: deciphering and building in the sense of neural transcript.
Collapse
Affiliation(s)
- Réka Barbara Bod
- Laboratory of Experimental Neurophysiology, Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - János Rokai
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Domokos Meszéna
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Richárd Fiáth
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - István Ulbert
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Gergely Márton
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
9
|
Peng Y, Schöneberg N, Esposito MS, Geiger JRP, Sharott A, Tovote P. Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson's disease in rodent models. Exp Neurol 2022; 351:114008. [PMID: 35149118 PMCID: PMC7612860 DOI: 10.1016/j.expneurol.2022.114008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson’s disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales.
Collapse
Affiliation(s)
- Yangfan Peng
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; MRC Brain Network Dynamics Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom.
| | - Nina Schöneberg
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany
| | - Maria Soledad Esposito
- Medical Physics Department, Centro Atomico Bariloche, Comision Nacional de Energia Atomica (CNEA), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Av. E. Bustillo 9500, R8402AGP San Carlos de Bariloche, Rio Negro, Argentina
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrew Sharott
- MRC Brain Network Dynamics Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany; Center for Mental Health, University of Wuerzburg, Margarete-Höppel-Platz 1, 97080 Wuerzburg, Germany.
| |
Collapse
|
10
|
Lee BR, Budzillo A, Hadley K, Miller JA, Jarsky T, Baker K, Hill D, Kim L, Mann R, Ng L, Oldre A, Rajanbabu R, Trinh J, Vargas S, Braun T, Dalley RA, Gouwens NW, Kalmbach BE, Kim TK, Smith KA, Soler-Llavina G, Sorensen S, Tasic B, Ting JT, Lein E, Zeng H, Murphy GJ, Berg J. Scaled, high fidelity electrophysiological, morphological, and transcriptomic cell characterization. eLife 2021; 10:e65482. [PMID: 34387544 PMCID: PMC8428855 DOI: 10.7554/elife.65482] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
The Patch-seq approach is a powerful variation of the patch-clamp technique that allows for the combined electrophysiological, morphological, and transcriptomic characterization of individual neurons. To generate Patch-seq datasets at scale, we identified and refined key factors that contribute to the efficient collection of high-quality data. We developed patch-clamp electrophysiology software with analysis functions specifically designed to automate acquisition with online quality control. We recognized the importance of extracting the nucleus for transcriptomic success and maximizing membrane integrity during nucleus extraction for morphology success. The protocol is generalizable to different species and brain regions, as demonstrated by capturing multimodal data from human and macaque brain slices. The protocol, analysis and acquisition software are compiled at https://githubcom/AllenInstitute/patchseqtools. This resource can be used by individual labs to generate data across diverse mammalian species and that is compatible with large publicly available Patch-seq datasets.
Collapse
Affiliation(s)
- Brian R Lee
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | | | - Tim Jarsky
- Allen Institute for Brain ScienceSeattleUnited States
| | | | - DiJon Hill
- Allen Institute for Brain ScienceSeattleUnited States
| | - Lisa Kim
- Allen Institute for Brain ScienceSeattleUnited States
| | - Rusty Mann
- Allen Institute for Brain ScienceSeattleUnited States
| | - Lindsay Ng
- Allen Institute for Brain ScienceSeattleUnited States
| | - Aaron Oldre
- Allen Institute for Brain ScienceSeattleUnited States
| | - Ram Rajanbabu
- Allen Institute for Brain ScienceSeattleUnited States
| | - Jessica Trinh
- Allen Institute for Brain ScienceSeattleUnited States
| | - Sara Vargas
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | | | - Brian E Kalmbach
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Tae Kyung Kim
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | | | | | - Jonathan T Ting
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Ed Lein
- Allen Institute for Brain ScienceSeattleUnited States
| | - Hongkui Zeng
- Allen Institute for Brain ScienceSeattleUnited States
| | - Gabe J Murphy
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Jim Berg
- Allen Institute for Brain ScienceSeattleUnited States
| |
Collapse
|
11
|
Landry CR, Yip MC, Kolb I, Stoy WA, Gonzalez MM, Forest CR. Method for Rapid Enzymatic Cleaning for Reuse of Patch Clamp Pipettes: Increasing Throughput by Eliminating Manual Pipette Replacement between Patch Clamp Attempts. Bio Protoc 2021; 11:e4085. [PMID: 34395724 PMCID: PMC8329470 DOI: 10.21769/bioprotoc.4085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 11/02/2022] Open
Abstract
The whole-cell patch-clamp method is a gold standard for single-cell analysis of electrical activity, cellular morphology, and gene expression. Prior to our discovery that patch-clamp pipettes could be cleaned and reused, experimental throughput and automation were limited by the need to replace pipettes manually after each experiment. This article presents an optimized protocol for pipette cleaning, which enables it to be performed quickly (< 30 s), resulting in a high yield of whole-cell recording success rate (> 90%) for over 100 reuses of a single pipette. For most patch-clamp experiments (< 30 whole-cell recordings per day), this method enables a single pipette to be used for an entire day of experiments. In addition, we describe easily implementable hardware and software as well as troubleshooting tips to help other labs implement this method in their own experiments. Pipette cleaning enables patch-clamp experiments to be performed with higher throughput, whether manually or in an automated fashion, by eliminating the tedious and skillful task of replacing pipettes. From our experience with numerous electrophysiology laboratories, pipette cleaning can be integrated into existing patch-clamp setups in approximately one day using the hardware and software described in this article. Graphic abstract: Rapid enzymatic cleaning for reuse of patch-clamp pipettes.
Collapse
Affiliation(s)
- Corey R. Landry
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Mighten C. Yip
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Ilya Kolb
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | | | - Mercedes M. Gonzalez
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Craig R. Forest
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
12
|
Wright NC, Borden PY, Liew YJ, Bolus MF, Stoy WM, Forest CR, Stanley GB. Rapid Cortical Adaptation and the Role of Thalamic Synchrony during Wakefulness. J Neurosci 2021; 41:5421-5439. [PMID: 33986072 PMCID: PMC8221593 DOI: 10.1523/jneurosci.3018-20.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/18/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Rapid sensory adaptation is observed across all sensory systems, and strongly shapes sensory percepts in complex sensory environments. Yet despite its ubiquity and likely necessity for survival, the mechanistic basis is poorly understood. A wide range of primarily in vitro and anesthetized studies have demonstrated the emergence of adaptation at the level of primary sensory cortex, with only modest signatures in earlier stages of processing. The nature of rapid adaptation and how it shapes sensory representations during wakefulness, and thus the potential role in perceptual adaptation, is underexplored, as are the mechanisms that underlie this phenomenon. To address these knowledge gaps, we recorded spiking activity in primary somatosensory cortex (S1) and the upstream ventral posteromedial (VPm) thalamic nucleus in the vibrissa pathway of awake male and female mice, and quantified responses to whisker stimuli delivered in isolation and embedded in an adapting sensory background. We found that cortical sensory responses were indeed adapted by persistent sensory stimulation; putative excitatory neurons were profoundly adapted, and inhibitory neurons only modestly so. Further optogenetic manipulation experiments and network modeling suggest this largely reflects adaptive changes in synchronous thalamic firing combined with robust engagement of feedforward inhibition, with little contribution from synaptic depression. Taken together, these results suggest that cortical adaptation in the regime explored here results from changes in the timing of thalamic input, and the way in which this differentially impacts cortical excitation and feedforward inhibition, pointing to a prominent role of thalamic gating in rapid adaptation of primary sensory cortex.SIGNIFICANCE STATEMENT Rapid adaptation of sensory activity strongly shapes representations of sensory inputs across all sensory pathways over the timescale of seconds, and has profound effects on sensory perception. Despite its ubiquity and theoretical role in the efficient encoding of complex sensory environments, the mechanistic basis is poorly understood, particularly during wakefulness. In this study in the vibrissa pathway of awake mice, we show that cortical representations of sensory inputs are strongly shaped by rapid adaptation, and that this is mediated primarily by adaptive gating of the thalamic inputs to primary sensory cortex and the differential way in which these inputs engage cortical subpopulations of neurons.
Collapse
Affiliation(s)
- Nathaniel C Wright
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Peter Y Borden
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Yi Juin Liew
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, Georgia 30332 and Beijing University, Beijing China 100871
| | - Michael F Bolus
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - William M Stoy
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Craig R Forest
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Garrett B Stanley
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| |
Collapse
|
13
|
Noguchi A, Ikegaya Y, Matsumoto N. In Vivo Whole-Cell Patch-Clamp Methods: Recent Technical Progress and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:1448. [PMID: 33669656 PMCID: PMC7922023 DOI: 10.3390/s21041448] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Brain functions are fundamental for the survival of organisms, and they are supported by neural circuits consisting of a variety of neurons. To investigate the function of neurons at the single-cell level, researchers often use whole-cell patch-clamp recording techniques. These techniques enable us to record membrane potentials (including action potentials) of individual neurons of not only anesthetized but also actively behaving animals. This whole-cell recording method enables us to reveal how neuronal activities support brain function at the single-cell level. In this review, we introduce previous studies using in vivo patch-clamp recording techniques and recent findings primarily regarding neuronal activities in the hippocampus for behavioral function. We further discuss how we can bridge the gap between electrophysiology and biochemistry.
Collapse
Affiliation(s)
- Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| |
Collapse
|
14
|
Automatic deep learning-driven label-free image-guided patch clamp system. Nat Commun 2021; 12:936. [PMID: 33568670 PMCID: PMC7875980 DOI: 10.1038/s41467-021-21291-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
Patch clamp recording of neurons is a labor-intensive and time-consuming procedure. Here, we demonstrate a tool that fully automatically performs electrophysiological recordings in label-free tissue slices. The automation covers the detection of cells in label-free images, calibration of the micropipette movement, approach to the cell with the pipette, formation of the whole-cell configuration, and recording. The cell detection is based on deep learning. The model is trained on a new image database of neurons in unlabeled brain tissue slices. The pipette tip detection and approaching phase use image analysis techniques for precise movements. High-quality measurements are performed on hundreds of human and rodent neurons. We also demonstrate that further molecular and anatomical analysis can be performed on the recorded cells. The software has a diary module that automatically logs patch clamp events. Our tool can multiply the number of daily measurements to help brain research. Patch clamp recording of neurons is slow and labor-intensive. Here the authors present a method for automated deep learning driven label-free image guided patch clamp physiology to perform measurements on hundreds of human and rodent neurons.
Collapse
|
15
|
Okamoto K, Ebina T, Fujii N, Konishi K, Sato Y, Kashima T, Nakano R, Hioki H, Takeuchi H, Yumoto J, Matsuzaki M, Ikegaya Y. Tb 3+-doped fluorescent glass for biology. SCIENCE ADVANCES 2021; 7:7/2/eabd2529. [PMID: 33523970 PMCID: PMC7787498 DOI: 10.1126/sciadv.abd2529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Optical investigation and manipulation constitute the core of biological experiments. Here, we introduce a new borosilicate glass material that contains the rare-earth ion terbium(III) (Tb3+), which emits green fluorescence upon blue light excitation, similar to green fluorescent protein (GFP), and thus is widely compatible with conventional biological research environments. Micropipettes made of Tb3+-doped glass allowed us to target GFP-labeled cells for single-cell electroporation, single-cell transcriptome analysis (Patch-seq), and patch-clamp recording under real-time fluorescence microscopic control. The glass also exhibited potent third harmonic generation upon infrared laser excitation and was usable for online optical targeting of fluorescently labeled neurons in the in vivo neocortex. Thus, Tb3+-doped glass simplifies many procedures in biological experiments.
Collapse
Affiliation(s)
- Kazuki Okamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Teppei Ebina
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Kuniaki Konishi
- Institute for Photon Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yu Sato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuhiko Kashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Risako Nakano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruki Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Junji Yumoto
- Institute for Photon Science and Technology, The University of Tokyo, Tokyo, Japan
- Department of Physics, The University of Tokyo, Tokyo, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, Japan
| |
Collapse
|
16
|
Stoy WM, Yang B, Kight A, Wright NC, Borden PY, Stanley GB, Forest CR. Compensation of physiological motion enables high-yield whole-cell recording in vivo. J Neurosci Methods 2020; 348:109008. [PMID: 33242530 DOI: 10.1016/j.jneumeth.2020.109008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Whole-cell patch-clamp recording in vivo is the gold-standard method for measuring subthreshold electrophysiology from single cells during behavioural tasks, sensory stimulations, and optogenetic manipulation. However, these recordings require a tight, gigaohm resistance, seal between a glass pipette electrode's aperture and a cell's membrane. These seals are difficult to form, especially in vivo, in part because of a strong dependence on the distance between the pipette aperture and cell membrane. NEW METHOD We elucidate and utilize this dependency to develop an autonomous method for placement and synchronization of pipette's tip aperture to the membrane of a nearby, moving neuron, which enables high-yield seal formation and subsequent recordings deep in the brain of the living mouse. RESULTS This synchronization procedure nearly doubles the reported gigaseal yield in the thalamus (>3 mm below the pial surface) from 26 % (n = 17/64) to 48 % (n = 32/66). Whole-cell recording yield improved from 10 % (n = 9/88) to 24 % (n = 18/76) when motion compensation was used during the gigaseal formation. As an example of its application, we utilized this system to investigate the role of the sensory environment and ventral posterior medial region (VPM) projection synchrony on intracellular dynamics in the barrel cortex. COMPARISON WITH EXISTING METHOD(S) Current methods of in vivo whole-cell patch clamping do not synchronize the position of the pipette to motion of the cell. CONCLUSIONS This method results in substantially greater subcortical whole-cell recording yield than previously reported and thus makes pan-brain whole-cell electrophysiology practical in the living mouse brain.
Collapse
Affiliation(s)
- William M Stoy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Bo Yang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ali Kight
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Nathaniel C Wright
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Peter Y Borden
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Garrett B Stanley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Craig R Forest
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
17
|
Alegria A, Joshi A, O'Brien J, Kodandaramaiah SB. Single neuron recording: progress towards high-throughput analysis. BIOELECTRONICS IN MEDICINE 2020; 3:33-36. [PMID: 33169092 PMCID: PMC7604670 DOI: 10.2217/bem-2020-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/10/2020] [Indexed: 11/21/2022]
Affiliation(s)
- Andrew Alegria
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, MN 55455, USA
| | - Amey Joshi
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, MN 55455, USA
| | - Jacob O'Brien
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, MN 55455, USA
| | - Suhasa B Kodandaramaiah
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, MN 55455, USA
- Department of Neuroscience, University of Minnesota, Twin Cities, MN 55455, USA
| |
Collapse
|
18
|
Lewallen CF, Wan Q, Maminishkis A, Stoy W, Kolb I, Hotaling N, Bharti K, Forest CR. High-yield, automated intracellular electrophysiology in retinal pigment epithelia. J Neurosci Methods 2019; 328:108442. [PMID: 31562888 PMCID: PMC7071944 DOI: 10.1016/j.jneumeth.2019.108442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Recent advancements with induced pluripotent stem cell-derived (iPSC) retinal pigment epithelium (RPE) have made disease modeling and cell therapy for macular degeneration feasible. However, current techniques for intracellular electrophysiology - used to validate epithelial function - are painstaking and require manual skill; limiting experimental throughput. NEW METHOD A five-stage algorithm, leveraging advances in automated patch clamping, systematically derived and optimized, improves yield and reduces skill when compared to conventional, manual techniques. RESULTS The automated algorithm improves yield per attempt from 17% (manually, n = 23) to 22% (automated, n = 120) (chi-squared, p = 0.004). Specifically for RPE, depressing the local cell membrane by 6 μm and electroporating (buzzing) just prior to this depth (5 μm) maximized yield. COMPARISON WITH EXISTING METHOD Conventionally, intracellular epithelial electrophysiology is performed by manually lowering a pipette with a micromanipulator, blindly, towards a monolayer of cells and spontaneously stopping when the magnitude of the instantaneous measured membrane potential decreased below a predetermined threshold. The new method automatically measures the pipette tip resistance during the descent, detects the cell surface, indents the cell membrane, and briefly buzzes to electroporate the membrane while descending, overall achieving a higher yield than conventional methods. CONCLUSIONS This paper presents an algorithm for high-yield, automated intracellular electrophysiology in epithelia; optimized for human RPE. Automation reduces required user skill and training while, simultaneously, improving yield. This algorithm could enable large-scale exploration of drug toxicity and physiological function verification for numerous kinds of epithelia.
Collapse
Affiliation(s)
- Colby F Lewallen
- Georgia Institute of Technology, G.W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, USA.
| | - Qin Wan
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arvydas Maminishkis
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William Stoy
- Georgia Institute of Technology, Wallace H Coulter Department of Biomedical Engineering, Atlanta, GA 30332, USA
| | - Ilya Kolb
- Georgia Institute of Technology, Wallace H Coulter Department of Biomedical Engineering, Atlanta, GA 30332, USA; HHMI Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA 20147, USA
| | - Nathan Hotaling
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Craig R Forest
- Georgia Institute of Technology, G.W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, USA
| |
Collapse
|
19
|
Peng Y, Mittermaier FX, Planert H, Schneider UC, Alle H, Geiger JRP. High-throughput microcircuit analysis of individual human brains through next-generation multineuron patch-clamp. eLife 2019; 8:48178. [PMID: 31742558 PMCID: PMC6894931 DOI: 10.7554/elife.48178] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022] Open
Abstract
Comparing neuronal microcircuits across different brain regions, species and individuals can reveal common and divergent principles of network computation. Simultaneous patch-clamp recordings from multiple neurons offer the highest temporal and subthreshold resolution to analyse local synaptic connectivity. However, its establishment is technically complex and the experimental performance is limited by high failure rates, long experimental times and small sample sizes. We introduce an in vitro multipatch setup with an automated pipette pressure and cleaning system facilitating recordings of up to 10 neurons simultaneously and sequential patching of additional neurons. We present hardware and software solutions that increase the usability, speed and data throughput of multipatch experiments which allowed probing of 150 synaptic connections between 17 neurons in one human cortical slice and screening of over 600 connections in tissue from a single patient. This method will facilitate the systematic analysis of microcircuits and allow unprecedented assessment of inter-individual variability.
Collapse
Affiliation(s)
- Yangfan Peng
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Henrike Planert
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Henrik Alle
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
20
|
Shull G, Haffner C, Huttner WB, Kodandaramaiah SB, Taverna E. Robotic platform for microinjection into single cells in brain tissue. EMBO Rep 2019; 20:e47880. [PMID: 31469223 PMCID: PMC6776899 DOI: 10.15252/embr.201947880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/23/2019] [Accepted: 08/07/2019] [Indexed: 01/02/2023] Open
Abstract
Microinjection into single cells in brain tissue is a powerful technique to study and manipulate neural stem cells. However, such microinjection requires expertise and is a low-throughput process. We developed the "Autoinjector", a robot that utilizes images from a microscope to guide a microinjection needle into tissue to deliver femtoliter volumes of liquids into single cells. The Autoinjector enables microinjection of hundreds of cells within a single organotypic slice, resulting in an overall yield that is an order of magnitude greater than manual microinjection. The Autoinjector successfully targets both apical progenitors (APs) and newborn neurons in the embryonic mouse and human fetal telencephalon. We used the Autoinjector to systematically study gap-junctional communication between neural progenitors in the embryonic mouse telencephalon and found that apical contact is a characteristic feature of the cells that are part of a gap junction-coupled cluster. The throughput and versatility of the Autoinjector will render microinjection an accessible high-performance single-cell manipulation technique and will provide a powerful new platform for performing single-cell analyses in tissue for bioengineering and biophysics applications.
Collapse
Affiliation(s)
- Gabriella Shull
- Department of Biomedical EngineeringUniversity of MinnesotaTwin CitiesMNUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNCUSA
| | - Christiane Haffner
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Suhasa B Kodandaramaiah
- Department of Biomedical EngineeringUniversity of MinnesotaTwin CitiesMNUSA
- Department of Mechanical EngineeringUniversity of MinnesotaTwin CitiesMNUSA
| | - Elena Taverna
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
21
|
Suk HJ, Boyden ES, van Welie I. Advances in the automation of whole-cell patch clamp technology. J Neurosci Methods 2019; 326:108357. [PMID: 31336060 DOI: 10.1016/j.jneumeth.2019.108357] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022]
Abstract
Electrophysiology is the study of neural activity in the form of local field potentials, current flow through ion channels, calcium spikes, back propagating action potentials and somatic action potentials, all measurable on a millisecond timescale. Despite great progress in imaging technologies and sensor proteins, none of the currently available tools allow imaging of neural activity on a millisecond timescale and beyond the first few hundreds of microns inside the brain. The patch clamp technique has been an invaluable tool since its inception several decades ago and has generated a wealth of knowledge about the nature of voltage- and ligand-gated ion channels, sub-threshold and supra-threshold activity, and characteristics of action potentials related to higher order functions. Many techniques that evolve to be standardized tools in the biological sciences go through a period of transformation in which they become, at least to some degree, automated, in order to improve reproducibility, throughput and standardization. The patch clamp technique is currently undergoing this transition, and in this review, we will discuss various aspects of this transition, covering advances in automated patch clamp technology both in vitro and in vivo.
Collapse
Affiliation(s)
- Ho-Jun Suk
- Health Sciences and Technology, MIT, Cambridge, MA 02139, USA; Media Lab, MIT, Cambridge, MA 02139, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA
| | - Edward S Boyden
- Media Lab, MIT, Cambridge, MA 02139, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | | |
Collapse
|
22
|
Kolb I, Landry CR, Yip MC, Lewallen CF, Stoy WA, Lee J, Felouzis A, Yang B, Boyden ES, Rozell CJ, Forest CR. PatcherBot: a single-cell electrophysiology robot for adherent cells and brain slices. J Neural Eng 2019; 16:046003. [PMID: 30970335 DOI: 10.1088/1741-2552/ab1834] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Intracellular patch-clamp electrophysiology, one of the most ubiquitous, high-fidelity techniques in biophysics, remains laborious and low-throughput. While previous efforts have succeeded at automating some steps of the technique, here we demonstrate a robotic 'PatcherBot' system that can perform many patch-clamp recordings sequentially, fully unattended. APPROACH Comprehensive automation is accomplished by outfitting the robot with machine vision, and cleaning pipettes instead of manually exchanging them. MAIN RESULTS the PatcherBot can obtain data at a rate of 16 cells per hour and work with no human intervention for up to 3 h. We demonstrate the broad applicability and scalability of this system by performing hundreds of recordings in tissue culture cells and mouse brain slices with no human supervision. Using the PatcherBot, we also discovered that pipette cleaning can be improved by a factor of three. SIGNIFICANCE The system is potentially transformative for applications that depend on many high-quality measurements of single cells, such as drug screening, protein functional characterization, and multimodal cell type investigations.
Collapse
Affiliation(s)
- Ilya Kolb
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Holst GL, Stoy W, Yang B, Kolb I, Kodandaramaiah SB, Li L, Knoblich U, Zeng H, Haider B, Boyden ES, Forest CR. Autonomous patch-clamp robot for functional characterization of neurons in vivo: development and application to mouse visual cortex. J Neurophysiol 2019; 121:2341-2357. [PMID: 30969898 DOI: 10.1152/jn.00738.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Patch clamping is the gold standard measurement technique for cell-type characterization in vivo, but it has low throughput, is difficult to scale, and requires highly skilled operation. We developed an autonomous robot that can acquire multiple consecutive patch-clamp recordings in vivo. In practice, 40 pipettes loaded into a carousel are sequentially filled and inserted into the brain, localized to a cell, used for patch clamping, and disposed. Automated visual stimulation and electrophysiology software enables functional cell-type classification of whole cell-patched cells, as we show for 37 cells in the anesthetized mouse in visual cortex (V1) layer 5. We achieved 9% yield, with 5.3 min per attempt over hundreds of trials. The highly variable and low-yield nature of in vivo patch-clamp recordings will benefit from such a standardized, automated, quantitative approach, allowing development of optimal algorithms and enabling scaling required for large-scale studies and integration with complementary techniques. NEW & NOTEWORTHY In vivo patch-clamp is the gold standard for intracellular recordings, but it is a very manual and highly skilled technique. The robot in this work demonstrates the most automated in vivo patch-clamp experiment to date, by enabling production of multiple, serial intracellular recordings without human intervention. The robot automates pipette filling, wire threading, pipette positioning, neuron hunting, break-in, delivering sensory stimulus, and recording quality control, enabling in vivo cell-type characterization.
Collapse
Affiliation(s)
- Gregory L Holst
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - William Stoy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Bo Yang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Ilya Kolb
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | | | - Lu Li
- Allen Institute for Brain Science , Seattle, Washington
| | - Ulf Knoblich
- Allen Institute for Brain Science , Seattle, Washington
| | - Hongkui Zeng
- Allen Institute for Brain Science , Seattle, Washington
| | - Bilal Haider
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Edward S Boyden
- Media Arts and Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts.,McGovern Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Koch Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Craig R Forest
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
24
|
Ghanbari L, Rynes ML, Hu J, Schulman DS, Johnson GW, Laroque M, Shull GM, Kodandaramaiah SB. Craniobot: A computer numerical controlled robot for cranial microsurgeries. Sci Rep 2019; 9:1023. [PMID: 30705287 PMCID: PMC6355931 DOI: 10.1038/s41598-018-37073-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Over the last few decades, a plethora of tools has been developed for neuroscientists to interface with the brain. Implementing these tools requires precisely removing sections of the skull to access the brain. These delicate cranial microsurgical procedures need to be performed on the sub-millimeter thick bone without damaging the underlying tissue and therefore, require significant training. Automating some of these procedures would not only enable more precise microsurgical operations, but also facilitate widespread use of advanced neurotechnologies. Here, we introduce the "Craniobot", a cranial microsurgery platform that combines automated skull surface profiling with a computer numerical controlled (CNC) milling machine to perform a variety of cranial microsurgical procedures on mice. The Craniobot utilizes a low-force contact sensor to profile the skull surface and uses this information to perform precise milling operations within minutes. We have used the Craniobot to perform intact skull thinning and open small to large craniotomies over the dorsal cortex.
Collapse
Affiliation(s)
- Leila Ghanbari
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Mathew L Rynes
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Jia Hu
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Daniel S Schulman
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Gregory W Johnson
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Michael Laroque
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Gabriella M Shull
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Suhasa B Kodandaramaiah
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minnesota, USA.
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA.
| |
Collapse
|
25
|
Allen BD, Moore-Kochlacs C, Bernstein JG, Kinney JP, Scholvin J, Seoane LF, Chronopoulos C, Lamantia C, Kodandaramaiah SB, Tegmark M, Boyden ES. Automated in vivo patch-clamp evaluation of extracellular multielectrode array spike recording capability. J Neurophysiol 2018; 120:2182-2200. [PMID: 29995597 DOI: 10.1152/jn.00650.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Much innovation is currently aimed at improving the number, density, and geometry of electrodes on extracellular multielectrode arrays for in vivo recording of neural activity in the mammalian brain. To choose a multielectrode array configuration for a given neuroscience purpose, or to reveal design principles of future multielectrode arrays, it would be useful to have a systematic way of evaluating the spike recording capability of such arrays. We describe an automated system that performs robotic patch-clamp recording of a neuron being simultaneously recorded via an extracellular multielectrode array. By recording a patch-clamp data set from a neuron while acquiring extracellular recordings from the same neuron, we can evaluate how well the extracellular multielectrode array captures the spiking information from that neuron. To demonstrate the utility of our system, we show that it can provide data from the mammalian cortex to evaluate how the spike sorting performance of a close-packed extracellular multielectrode array is affected by bursting, which alters the shape and amplitude of spikes in a train. We also introduce an algorithmic framework to help evaluate how the number of electrodes in a multielectrode array affects spike sorting, examining how adding more electrodes yields data that can be spike sorted more easily. Our automated methodology may thus help with the evaluation of new electrode designs and configurations, providing empirical guidance on the kinds of electrodes that will be optimal for different brain regions, cell types, and species, for improving the accuracy of spike sorting. NEW & NOTEWORTHY We present an automated strategy for evaluating the spike recording performance of an extracellular multielectrode array, by enabling simultaneous recording of a neuron with both such an array and with patch clamp. We use our robot and accompanying algorithms to evaluate the performance of multielectrode arrays on supporting spike sorting.
Collapse
Affiliation(s)
- Brian D Allen
- Media Lab and McGovern Institute for Brain Research, Departments of Biological Engineering and Brain and Cognitive Sciences, and Koch Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Caroline Moore-Kochlacs
- Media Lab and McGovern Institute for Brain Research, Departments of Biological Engineering and Brain and Cognitive Sciences, and Koch Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Department of Neuroscience, Boston University , Boston, Massachusetts
| | - Jacob G Bernstein
- Media Lab and McGovern Institute for Brain Research, Departments of Biological Engineering and Brain and Cognitive Sciences, and Koch Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Justin P Kinney
- Media Lab and McGovern Institute for Brain Research, Departments of Biological Engineering and Brain and Cognitive Sciences, and Koch Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Leaflabs, LLC, Cambridge, Massachusetts
| | - Jorg Scholvin
- Media Lab and McGovern Institute for Brain Research, Departments of Biological Engineering and Brain and Cognitive Sciences, and Koch Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Luís F Seoane
- Department of Physics and Kavli Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | | | | | - Suhasa B Kodandaramaiah
- Media Lab and McGovern Institute for Brain Research, Departments of Biological Engineering and Brain and Cognitive Sciences, and Koch Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Max Tegmark
- Department of Physics and Kavli Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Edward S Boyden
- Media Lab and McGovern Institute for Brain Research, Departments of Biological Engineering and Brain and Cognitive Sciences, and Koch Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts
| |
Collapse
|
26
|
Hong G, Viveros RD, Zwang TJ, Yang X, Lieber CM. Tissue-like Neural Probes for Understanding and Modulating the Brain. Biochemistry 2018; 57:3995-4004. [PMID: 29529359 PMCID: PMC6039269 DOI: 10.1021/acs.biochem.8b00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrophysiology tools have contributed substantially to understanding brain function, yet the capabilities of conventional electrophysiology probes have remained limited in key ways because of large structural and mechanical mismatches with respect to neural tissue. In this Perspective, we discuss how the general goal of probe design in biochemistry, that the probe or label have a minimal impact on the properties and function of the system being studied, can be realized by minimizing structural, mechanical, and topological differences between neural probes and brain tissue, thus leading to a new paradigm of tissue-like mesh electronics. The unique properties and capabilities of the tissue-like mesh electronics as well as future opportunities are summarized. First, we discuss the design of an ultraflexible and open mesh structure of electronics that is tissue-like and can be delivered in the brain via minimally invasive syringe injection like molecular and macromolecular pharmaceuticals. Second, we describe the unprecedented tissue healing without chronic immune response that leads to seamless three-dimensional integration with a natural distribution of neurons and other key cells through these tissue-like probes. These unique characteristics lead to unmatched stable long-term, multiplexed mapping and modulation of neural circuits at the single-neuron level on a year time scale. Last, we offer insights on several exciting future directions for the tissue-like electronics paradigm that capitalize on their unique properties to explore biochemical interactions and signaling in a "natural" brain environment.
Collapse
Affiliation(s)
- Guosong Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Robert D. Viveros
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Theodore J. Zwang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Xiao Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Charles M. Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
27
|
Lee AK, Brecht M. Elucidating Neuronal Mechanisms Using Intracellular Recordings during Behavior. Trends Neurosci 2018; 41:385-403. [DOI: 10.1016/j.tins.2018.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 12/17/2022]
|
28
|
Kodandaramaiah SB, Flores FJ, Holst GL, Singer AC, Han X, Brown EN, Boyden ES, Forest CR. Multi-neuron intracellular recording in vivo via interacting autopatching robots. eLife 2018; 7:24656. [PMID: 29297466 PMCID: PMC5812718 DOI: 10.7554/elife.24656] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 12/19/2017] [Indexed: 11/16/2022] Open
Abstract
The activities of groups of neurons in a circuit or brain region are important for neuronal computations that contribute to behaviors and disease states. Traditional extracellular recordings have been powerful and scalable, but much less is known about the intracellular processes that lead to spiking activity. We present a robotic system, the multipatcher, capable of automatically obtaining blind whole-cell patch clamp recordings from multiple neurons simultaneously. The multipatcher significantly extends automated patch clamping, or 'autopatching’, to guide four interacting electrodes in a coordinated fashion, avoiding mechanical coupling in the brain. We demonstrate its performance in the cortex of anesthetized and awake mice. A multipatcher with four electrodes took an average of 10 min to obtain dual or triple recordings in 29% of trials in anesthetized mice, and in 18% of the trials in awake mice, thus illustrating practical yield and throughput to obtain multiple, simultaneous whole-cell recordings in vivo.
Collapse
Affiliation(s)
- Suhasa B Kodandaramaiah
- Media Lab, Massachusetts Institute of Technology, Cambridge, United States.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
| | - Francisco J Flores
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, United States.,Picower Institute for Memory and Learning, Massachusetts Institute of Technology, Cambridge, United States
| | - Gregory L Holst
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
| | - Annabelle C Singer
- Media Lab, Massachusetts Institute of Technology, Cambridge, United States.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, United States
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, United States.,Picower Institute for Memory and Learning, Massachusetts Institute of Technology, Cambridge, United States.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States
| | - Edward S Boyden
- Media Lab, Massachusetts Institute of Technology, Cambridge, United States.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Craig R Forest
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, United States
| |
Collapse
|
29
|
Suk HJ, van Welie I, Kodandaramaiah SB, Allen B, Forest CR, Boyden ES. Closed-Loop Real-Time Imaging Enables Fully Automated Cell-Targeted Patch-Clamp Neural Recording In Vivo. Neuron 2017; 95:1037-1047.e11. [PMID: 28858614 DOI: 10.1016/j.neuron.2017.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/27/2017] [Accepted: 08/04/2017] [Indexed: 01/02/2023]
Abstract
Targeted patch-clamp recording is a powerful method for characterizing visually identified cells in intact neural circuits, but it requires skill to perform. We previously developed an algorithm that automates "blind" patching in vivo, but full automation of visually guided, targeted in vivo patching has not been demonstrated, with currently available approaches requiring human intervention to compensate for cell movement as a patch pipette approaches a targeted neuron. Here we present a closed-loop real-time imaging strategy that automatically compensates for cell movement by tracking cell position and adjusting pipette motion while approaching a target. We demonstrate our system's ability to adaptively patch, under continuous two-photon imaging and real-time analysis, fluorophore-expressing neurons of multiple types in the living mouse cortex, without human intervention, with yields comparable to skilled human experimenters. Our "imagepatching" robot is easy to implement and will help enable scalable characterization of identified cell types in intact neural circuits.
Collapse
Affiliation(s)
- Ho-Jun Suk
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ingrid van Welie
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Suhasa B Kodandaramaiah
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian Allen
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Craig R Forest
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Edward S Boyden
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Singer AC, Talei Franzesi G, Kodandaramaiah SB, Flores FJ, Cohen JD, Lee AK, Borgers C, Forest CR, Kopell NJ, Boyden ES. Mesoscale-duration activated states gate spiking in response to fast rises in membrane voltage in the awake brain. J Neurophysiol 2017; 118:1270-1291. [PMID: 28566460 PMCID: PMC5558023 DOI: 10.1152/jn.00116.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Seconds-scale network states, affecting many neurons within a network, modulate neural activity by complementing fast integration of neuron-specific inputs that arrive in the milliseconds before spiking. Nonrhythmic subthreshold dynamics at intermediate timescales, however, are less well characterized. We found, using automated whole cell patch clamping in vivo, that spikes recorded in CA1 and barrel cortex in awake mice are often preceded not only by monotonic voltage rises lasting milliseconds but also by more gradual (lasting tens to hundreds of milliseconds) depolarizations. The latter exert a gating function on spiking, in a fashion that depends on the gradual rise duration: the probability of spiking was higher for longer gradual rises, even when controlled for the amplitude of the gradual rises. Barrel cortex double-autopatch recordings show that gradual rises are shared across some, but not all, neurons. The gradual rises may represent a new kind of state, intermediate both in timescale and in proportion of neurons participating, which gates a neuron's ability to respond to subsequent inputs.NEW & NOTEWORTHY We analyzed subthreshold activity preceding spikes in hippocampus and barrel cortex of awake mice. Aperiodic voltage ramps extending over tens to hundreds of milliseconds consistently precede and facilitate spikes, in a manner dependent on both their amplitude and their duration. These voltage ramps represent a "mesoscale" activated state that gates spike production in vivo.
Collapse
Affiliation(s)
- Annabelle C Singer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Media Laboratory and McGovern Institute for Brain Research, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Giovanni Talei Franzesi
- Media Laboratory and McGovern Institute for Brain Research, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Suhasa B Kodandaramaiah
- Media Laboratory and McGovern Institute for Brain Research, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| | - Francisco J Flores
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jeremy D Cohen
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia
| | - Albert K Lee
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia
| | | | - Craig R Forest
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia; and
| | - Nancy J Kopell
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts
| | - Edward S Boyden
- Media Laboratory and McGovern Institute for Brain Research, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts;
| |
Collapse
|
31
|
Wu Q, Chubykin AA. Application of Automated Image-guided Patch Clamp for the Study of Neurons in Brain Slices. J Vis Exp 2017. [PMID: 28784955 DOI: 10.3791/56010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Whole-cell patch clamp is the gold-standard method to measure the electrical properties of single cells. However, the in vitro patch clamp remains a challenging and low-throughput technique due to its complexity and high reliance on user operation and control. This manuscript demonstrates an image-guided automatic patch clamp system for in vitro whole-cell patch clamp experiments in acute brain slices. Our system implements a computer vision-based algorithm to detect fluorescently labeled cells and to target them for fully automatic patching using a micromanipulator and internal pipette pressure control. The entire process is highly automated, with minimal requirements for human intervention. Real-time experimental information, including electrical resistance and internal pipette pressure, are documented electronically for future analysis and for optimization to different cell types. Although our system is described in the context of acute brain slice recordings, it can also be applied to the automated image-guided patch clamp of dissociated neurons, organotypic slice cultures, and other non-neuronal cell types.
Collapse
Affiliation(s)
- Qiuyu Wu
- Department of Biological Sciences, Purdue University; Purdue Institute for Integrative Neuroscience, Purdue University
| | - Alexander A Chubykin
- Department of Biological Sciences, Purdue University; Purdue Institute for Integrative Neuroscience, Purdue University;
| |
Collapse
|
32
|
Stoy WA, Kolb I, Holst GL, Liew Y, Pala A, Yang B, Boyden ES, Stanley GB, Forest CR. Robotic navigation to subcortical neural tissue for intracellular electrophysiology in vivo. J Neurophysiol 2017; 118:1141-1150. [PMID: 28592685 DOI: 10.1152/jn.00117.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
In vivo studies of neurophysiology using the whole cell patch-clamp technique enable exquisite access to both intracellular dynamics and cytosol of cells in the living brain but are underrepresented in deep subcortical nuclei because of fouling of the sensitive electrode tip. We have developed an autonomous method to navigate electrodes around obstacles such as blood vessels after identifying them as a source of contamination during regional pipette localization (RPL) in vivo. In mice, robotic navigation prevented fouling of the electrode tip, increasing RPL success probability 3 mm below the pial surface to 82% (n = 72/88) over traditional, linear localization (25%, n = 24/95), and resulted in high-quality thalamic whole cell recordings with average access resistance (32.0 MΩ) and resting membrane potential (-62.9 mV) similar to cortical recordings in isoflurane-anesthetized mice. Whole cell yield improved from 1% (n = 1/95) to 10% (n = 9/88) when robotic navigation was used during RPL. This method opens the door to whole cell studies in deep subcortical nuclei, including multimodal cell typing and studies of long-range circuits.NEW & NOTEWORTHY This work represents an automated method for accessing subcortical neural tissue for intracellular electrophysiology in vivo. We have implemented a novel algorithm to detect obstructions during regional pipette localization and move around them while minimizing lateral displacement within brain tissue. This approach leverages computer control of pressure, manipulator position, and impedance measurements to create a closed-loop platform for pipette navigation in vivo. This technique enables whole cell patching studies to be performed throughout the living brain.
Collapse
Affiliation(s)
- W A Stoy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - I Kolb
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - G L Holst
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Y Liew
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - A Pala
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - B Yang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - E S Boyden
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts; and.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - G B Stanley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - C R Forest
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia; .,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
33
|
Abstract
Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull (∼1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions (∼2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system.
Collapse
|
34
|
Kolb I, Stoy WA, Rousseau EB, Moody OA, Jenkins A, Forest CR. Cleaning patch-clamp pipettes for immediate reuse. Sci Rep 2016; 6:35001. [PMID: 27725751 PMCID: PMC5057089 DOI: 10.1038/srep35001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/22/2016] [Indexed: 01/19/2023] Open
Abstract
Patch-clamp recording has enabled single-cell electrical, morphological and genetic studies at unparalleled resolution. Yet it remains a laborious and low-throughput technique, making it largely impractical for large-scale measurements such as cell type and connectivity characterization of neurons in the brain. Specifically, the technique is critically limited by the ubiquitous practice of manually replacing patch-clamp pipettes after each recording. To circumvent this limitation, we developed a simple, fast, and automated method for cleaning glass pipette electrodes that enables their reuse within one minute. By immersing pipette tips into Alconox, a commercially-available detergent, followed by rinsing, we were able to reuse pipettes 10 times with no degradation in signal fidelity, in experimental preparations ranging from human embryonic kidney cells to neurons in culture, slices, and in vivo. Undetectable trace amounts of Alconox remaining in the pipette after cleaning did not affect ion channel pharmacology. We demonstrate the utility of pipette cleaning by developing the first robot to perform sequential patch-clamp recordings in cell culture and in vivo without a human operator.
Collapse
Affiliation(s)
- I Kolb
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| | - W A Stoy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| | - E B Rousseau
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, 12203 USA
| | - O A Moody
- Neuroscience Graduate Program, GDBBS, Emory University, Atlanta, GA, 30322 USA
| | - A Jenkins
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322 USA.,Department of Anesthesiology, Emory University, Atlanta, GA, 30322 USA
| | - C R Forest
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta GA, 30332 USA
| |
Collapse
|
35
|
Wang Y, Liu YZ, Wang SY, Wang Z. In vivo whole-cell recording with high success rate in anaesthetized and awake mammalian brains. Mol Brain 2016; 9:86. [PMID: 27680101 PMCID: PMC5041312 DOI: 10.1186/s13041-016-0266-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/16/2016] [Indexed: 11/12/2022] Open
Abstract
As a critical technique for dissection of synaptic and cellular mechanisms, whole-cell patch-clamp recording has become feasible for in vivo preparations including both anaesthetized and awake mammalian brains. However, compared with in vitro whole-cell recording, in vivo whole-cell recording often suffers from low success rates and high access resistance, preventing its wide application in physiological analysis of neural circuits. Here, we describe experimental procedures for achieving in vivo amphotericin B-perforated whole-cell recording as well as conventional (breakthrough) whole-cell recording from rats and mice. The success rate of perforated whole-cell recordings was 70―80 % in the hippocampus and neocortex, and access resistance was 40―70 MΩ. The success rate of conventional whole-cell recordings was ~50 % in the hippocampus, with access resistance of 20―40 MΩ. Recordings were stable, and in awake, head-fixed animals, ~50 % whole-cell patched neurons could be held for > 1 hr. The conventional whole-cell recording also permitted infusion of pharmacological agents, such as intracellular blockers of Na+ channels and NMDA receptors. These findings open new possibilities for synaptic and cellular analysis in vivo.
Collapse
Affiliation(s)
- Yao Wang
- Institute and Key Laboratory of Brain Functional Genomics of Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Yu-Zhang Liu
- Institute and Key Laboratory of Brain Functional Genomics of Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Shi-Yi Wang
- Institute and Key Laboratory of Brain Functional Genomics of Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Zhiru Wang
- Institute and Key Laboratory of Brain Functional Genomics of Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
36
|
|