1
|
Bencivenga D, Stampone E, Azhar J, Parente D, Ali W, Del Vecchio V, Della Ragione F, Borriello A. p27 Kip1 and Tumors: Characterization of CDKN1B Variants Identified in MEN4 and Breast Cancer. Cells 2025; 14:188. [PMID: 39936980 PMCID: PMC11817124 DOI: 10.3390/cells14030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/02/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
p27Kip1 is a key cell cycle gatekeeper governing the timing of Cyclin-dependent kinase (CDK) activation/inactivation and, consequently, cell proliferation. Structurally, the protein is largely unfolded, a feature that strongly increases its plasticity and interactors and enhances the number of regulated cellular processes. p27Kip1, like other intrinsically unstructured proteins, is post-translationally modified on several residues. These modifications affect its cellular localization and address p27Kip1 for specific interactions/functions. Several germline or somatic CDKN1B (the p27Kip1 encoding gene) mutations have been demonstrated to be associated with multiple endocrine neoplasia type 4 (MEN4), hairy cell leukemia, small-intestine neuroendocrine tumors, and breast and prostate cancers. Here, we analyzed the effect of four CDKN1B missense and nonsense mutations found in patients affected by MEN4 or cancers, namely, c.349C>T, p.P117S; c.397C>A, p.P133T; c.487C>T, p.Q163*; and c.511G>T, p.E171*. By transfecting breast cancer cell lines, we observed increased growth and cell motility for all the investigated mutants compared to wild-type p27Kip1 transfected cells. Furthermore, we discovered that the mutant forms exhibited altered phosphorylation on key residues and different localization or degradation mechanisms in comparison to the wild-type protein and suggested a possible region as crucial for the lysosome-dependent degradation of the protein. Finally, the loss of p27Kip1 ability in blocking cell proliferation was in part explained through the different binding efficiency that mutant p27Kip1 forms exhibited with Cyclin/Cyclin-dependent Kinase complexes (or proteins involved indirectly in that binding) with respect to the WT.
Collapse
Affiliation(s)
- Debora Bencivenga
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| | - Emanuela Stampone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| | - Jahanzaib Azhar
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| | - Daniela Parente
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| | - Waqar Ali
- Centre National de la Recherche Scientifique, University of Montpellier, UMR9002, 141 rue de la Cardonille, 34396 Montpellier, France;
| | - Vitale Del Vecchio
- Department of Experimental Medicine, Section of Human Histology and Embryology, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80128 Naples, Italy;
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| |
Collapse
|
2
|
Tolue Ghasaban F, Ghanei M, Mahmoudian RA, Taghehchian N, Abbaszadegan MR, Moghbeli M. MicroRNAs as the critical regulators of epithelial mesenchymal transition in pancreatic tumor cells. Heliyon 2024; 10:e30599. [PMID: 38726188 PMCID: PMC11079401 DOI: 10.1016/j.heliyon.2024.e30599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer (PC), as one of the main endocrine and digestive systems malignancies has the highest cancer related mortality in the world. Lack of the evident clinical symptoms and appropriate diagnostic markers in the early stages of tumor progression are the main reasons of the high mortality rate among PC patients. Therefore, it is necessary to investigate the molecular pathways involved in the PC progression, in order to introduce novel early diagnostic methods. Epithelial mesenchymal transition (EMT) is a critical cellular process associated with pancreatic tumor cells invasion and distant metastasis. MicroRNAs (miRNAs) are also important regulators of EMT process. In the present review, we discussed the role of miRNAs in regulation of EMT process during PC progression. It has been reported that the miRNAs mainly regulate the EMT process in pancreatic tumor cells through the regulation of EMT-specific transcription factors and several signaling pathways such as WNT, NOTCH, TGF-β, JAK/STAT, and PI3K/AKT. Considering the high stability of miRNAs in body fluids and their role in regulation of EMT process, they can be introduced as the non-invasive diagnostic markers in the early stages of malignant pancreatic tumors. This review paves the way to introduce a non-invasive EMT based panel marker for the early tumor detection among PC patients.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
4
|
Beeken J, Kessels S, Rigo JM, Alpizar YA, Nguyen L, Brône B. p27 kip1 Modulates the Morphology and Phagocytic Activity of Microglia. Int J Mol Sci 2022; 23:10432. [PMID: 36142366 PMCID: PMC9499407 DOI: 10.3390/ijms231810432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
p27kip1 is a multifunctional protein that promotes cell cycle exit by blocking the activity of cyclin/cyclin-dependent kinase complexes as well as migration and motility via signaling pathways that converge on the actin and microtubule cytoskeleton. Despite the broad characterization of p27kip1 function in neural cells, little is known about its relevance in microglia. Here, we studied the role of p27kip1 in microglia using a combination of in vitro and in situ approaches. While the loss of p27kip1 did not affect microglial density in the cerebral cortex, it altered their morphological complexity in situ. However, despite the presence of p27kip1 in microglial processes, as shown by immunofluorescence in cultured cells, loss of p27kip1 did not change microglial process motility and extension after applying laser-induced brain damage in cortical brain slices. Primary microglia lacking p27kip1 showed increased phagocytic uptake of synaptosomes, while a cell cycle dead variant negatively affected phagocytosis. These findings indicate that p27kip1 plays specific roles in microglia.
Collapse
Affiliation(s)
- Jolien Beeken
- UHasselt, Hasselt University, BIOMED, 3500 Hasselt, Belgium
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sar-Tilman, 4000 Liège, Belgium
| | - Sofie Kessels
- UHasselt, Hasselt University, BIOMED, 3500 Hasselt, Belgium
| | | | | | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sar-Tilman, 4000 Liège, Belgium
| | - Bert Brône
- UHasselt, Hasselt University, BIOMED, 3500 Hasselt, Belgium
| |
Collapse
|
5
|
Schirripa A, Sexl V, Kollmann K. Cyclin-dependent kinase inhibitors in malignant hematopoiesis. Front Oncol 2022; 12:916682. [PMID: 36033505 PMCID: PMC9403899 DOI: 10.3389/fonc.2022.916682] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The cell-cycle is a tightly orchestrated process where sequential steps guarantee cellular growth linked to a correct DNA replication. The entire cell division is controlled by cyclin-dependent kinases (CDKs). CDK activation is balanced by the activating cyclins and CDK inhibitors whose correct expression, accumulation and degradation schedule the time-flow through the cell cycle phases. Dysregulation of the cell cycle regulatory proteins causes the loss of a controlled cell division and is inevitably linked to neoplastic transformation. Due to their function as cell-cycle brakes, CDK inhibitors are considered as tumor suppressors. The CDK inhibitors p16INK4a and p15INK4b are among the most frequently altered genes in cancer, including hematopoietic malignancies. Aberrant cell cycle regulation in hematopoietic stem cells (HSCs) bears severe consequences on hematopoiesis and provokes hematological disorders with a broad array of symptoms. In this review, we focus on the importance and prevalence of deregulated CDK inhibitors in hematological malignancies.
Collapse
|
6
|
Baig MH, Yousuf M, Khan MI, Khan I, Ahmad I, Alshahrani MY, Hassan MI, Dong JJ. Investigating the Mechanism of Inhibition of Cyclin-Dependent Kinase 6 Inhibitory Potential by Selonsertib: Newer Insights Into Drug Repurposing. Front Oncol 2022; 12:865454. [PMID: 35720007 PMCID: PMC9204300 DOI: 10.3389/fonc.2022.865454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 12/23/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play significant roles in numerous physiological, and are considered an attractive drug target for cancer, neurodegenerative, and inflammatory diseases. In the present study, we have aimed to investigate the binding affinity and inhibitory potential of selonsertib toward CDK6. Using the drug repurposing approach, we performed molecular docking of selonsertib with CDK6 and observed a significant binding affinity. To ascertain, we further performed essential dynamics analysis and free energy calculation, which suggested the formation of a stable selonsertib-CDK6 complex. The in-silico findings were further experimentally validated. The recombinant CDK6 was expressed, purified, and treated with selonsertib. The binding affinity of selonsertib to CDK6 was estimated by fluorescence binding studies and enzyme inhibition assay. The results indicated an appreciable binding of selonsertib against CDK6, which subsequently inhibits its activity with a commendable IC50 value (9.8 μM). We concluded that targeting CDK6 by selonsertib can be an efficient therapeutic approach to cancer and other CDK6-related diseases. These observations provide a promising opportunity to utilize selonsertib to address CDK6-related human pathologies.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Mohd. Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd. Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, BezmialemVakif University, Istanbul, Turkey
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Niciporuka R, Nazarovs J, Ozolins A, Narbuts Z, Miklasevics E, Gardovskis J. Can We Predict Differentiated Thyroid Cancer Behavior? Role of Genetic and Molecular Markers. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1131. [PMID: 34684168 PMCID: PMC8540789 DOI: 10.3390/medicina57101131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022]
Abstract
Thyroid cancer is ranked in ninth place among all the newly diagnosed cancer cases in 2020. Differentiated thyroid cancer behavior can vary from indolent to extremely aggressive. Currently, predictions of cancer prognosis are mainly based on clinicopathological features, which are direct consequences of cell and tissue microenvironment alterations. These alterations include genetic changes, cell cycle disorders, estrogen receptor expression abnormalities, enhanced epithelial-mesenchymal transition, extracellular matrix degradation, increased hypoxia, and consecutive neovascularization. All these processes are represented by specific genetic and molecular markers, which can further predict thyroid cancer development, progression, and prognosis. In conclusion, evaluation of cancer genetic and molecular patterns, in addition to clinicopathological features, can contribute to the identification of patients with a potentially worse prognosis. It is essential since it plays a crucial role in decision-making regarding initial surgery, postoperative treatment, and follow-up. To date, there is a large diversity in methodologies used in different studies, frequently leading to contradictory results. To evaluate the true significance of predictive markers, more comparable studies should be conducted.
Collapse
Affiliation(s)
- Rita Niciporuka
- Department of Surgery, Riga Stradins University, Pilsonu Street 13, LV-1002 Riga, Latvia; (A.O.); (Z.N.); (J.G.)
- Department of Surgery, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia
| | - Jurijs Nazarovs
- Department of Pathology, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia;
| | - Arturs Ozolins
- Department of Surgery, Riga Stradins University, Pilsonu Street 13, LV-1002 Riga, Latvia; (A.O.); (Z.N.); (J.G.)
- Department of Surgery, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia
| | - Zenons Narbuts
- Department of Surgery, Riga Stradins University, Pilsonu Street 13, LV-1002 Riga, Latvia; (A.O.); (Z.N.); (J.G.)
- Department of Surgery, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia
| | - Edvins Miklasevics
- Institute of Oncology, Riga Stradins University, Pilsonu Street 13, LV-1002 Riga, Latvia;
| | - Janis Gardovskis
- Department of Surgery, Riga Stradins University, Pilsonu Street 13, LV-1002 Riga, Latvia; (A.O.); (Z.N.); (J.G.)
- Department of Surgery, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia
| |
Collapse
|
8
|
The Synergic Cytotoxicity Effect of Cisplatin and Salicylic Acid on the A2780 cp Ovarian Carcinoma Cell Line, and the Evaluation of p21 and ZEB1 Expression Levels. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2021. [DOI: 10.1007/s40944-021-00574-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
p27 controls autophagic vesicle trafficking in glucose-deprived cells via the regulation of ATAT1-mediated microtubule acetylation. Cell Death Dis 2021; 12:481. [PMID: 33986251 PMCID: PMC8119952 DOI: 10.1038/s41419-021-03759-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
The cyclin-dependent kinase inhibitor p27Kip1 (p27) has been involved in promoting autophagy and survival in conditions of metabolic stress. While the signaling cascade upstream of p27 leading to its cytoplasmic localization and autophagy induction has been extensively studied, how p27 stimulates the autophagic process remains unclear. Here, we investigated the mechanism by which p27 promotes autophagy upon glucose deprivation. Mouse embryo fibroblasts (MEFs) lacking p27 exhibit a decreased autophagy flux compared to wild-type cells and this is correlated with an abnormal distribution of autophagosomes. Indeed, while autophagosomes are mainly located in the perinuclear area in wild-type cells, they are distributed throughout the cytoplasm in p27-null MEFs. Autophagosome trafficking towards the perinuclear area, where most lysosomes reside, is critical for autophagosome–lysosome fusion and cargo degradation. Vesicle trafficking is mediated by motor proteins, themselves recruited preferentially to acetylated microtubules, and autophagy flux is directly correlated to microtubule acetylation levels. p27−/− MEFs exhibit a marked reduction in microtubule acetylation levels and restoring microtubule acetylation in these cells, either by re-expressing p27 or with deacetylase inhibitors, restores perinuclear positioning of autophagosomes and autophagy flux. Finally, we find that p27 promotes microtubule acetylation by binding to and stabilizing α-tubulin acetyltransferase (ATAT1) in glucose-deprived cells. ATAT1 knockdown results in random distribution of autophagosomes in p27+/+ MEFs and impaired autophagy flux, similar to that observed in p27−/− cells. Overall, in response to glucose starvation, p27 promotes autophagy by facilitating autophagosome trafficking along microtubule tracks by maintaining elevated microtubule acetylation via an ATAT1-dependent mechanism.
Collapse
|
10
|
Bencivenga D, Stampone E, Aulitto A, Tramontano A, Barone C, Negri A, Roberti D, Perrotta S, Della Ragione F, Borriello A. A cancer-associated CDKN1B mutation induces p27 phosphorylation on a novel residue: a new mechanism for tumor suppressor loss-of-function. Mol Oncol 2021; 15:915-941. [PMID: 33316141 PMCID: PMC8024736 DOI: 10.1002/1878-0261.12881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 01/12/2023] Open
Abstract
CDKN1B haploinsufficiency promotes the development of several human cancers. The gene encodes p27Kip1, a protein playing pivotal roles in the control of growth, differentiation, cytoskeleton dynamics, and cytokinesis. CDKN1B haploinsufficiency has been associated with chromosomal or gene aberrations. However, very few data exist on the mechanisms by which CDKN1B missense mutations facilitate carcinogenesis. Here, we report a functional study on a cancer‐associated germinal p27Kip1 variant, namely glycine9‐>arginine‐p27Kip1 (G9R‐p27Kip1) identified in a parathyroid adenoma. We unexpectedly found that G9R‐p27Kip1 lacks the major tumor suppressor activities of p27Kip1 including its antiproliferative and pro‐apoptotic functions. In addition, G9R‐p27Kip1 transfection in cell lines induces the formation of more numerous and larger spheres when compared to wild‐type p27Kip1‐transfected cells. We demonstrated that the mutation creates a consensus sequence for basophilic kinases causing a massive phosphorylation of G9R‐p27Kip1 on S12, a residue normally never found modified in p27Kip1. The novel S12 phosphorylation appears responsible for the loss of function of G9R‐p27Kip1 since S12AG9R‐p27Kip1 recovers most of the p27Kip1 tumor suppressor activities. In addition, the expression of the phosphomimetic S12D‐p27Kip1 recapitulates G9R‐p27Kip1 properties. Mechanistically, S12 phosphorylation enhances the nuclear localization of the mutant protein and also reduces its cyclin‐dependent kinase (CDK)2/CDK1 inhibition activity. To our knowledge, this is the first reported case of quantitative phosphorylation of a p27Kip1 variant on a physiologically unmodified residue associated with the loss of several tumor suppressor activities. In addition, our findings demonstrate that haploinsufficiency might be due to unpredictable post‐translational modifications due to generation of novel consensus sequences by cancer‐associated missense mutations.
Collapse
Affiliation(s)
- Debora Bencivenga
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emanuela Stampone
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Arianna Aulitto
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annunziata Tramontano
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Clementina Barone
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aide Negri
- Department of Medicine and Surgery, University of Parma, Italy
| | - Domenico Roberti
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silverio Perrotta
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
11
|
Wu Y, Li X, Chen M, Liu Z, Zhang X, Zheng S, Xu X. Phosphorylation of PED/PEA-15 at Ser116 and phosphorylation of p27 at Thr187 indicates a poor prognosis in hepatocellular carcinoma. Oncol Lett 2021; 21:177. [PMID: 33574916 PMCID: PMC7816284 DOI: 10.3892/ol.2021.12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 11/24/2020] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes a deadly cancer with a high rate of recurrence and metastasis. Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes-15 (PED/PEA-15) is a protein involved in the metabolism of glucose that regulates numerous cellular processes, including cell division, apoptosis and migration in numerous types of cancer. However, PED/PEA-15 may act as a tumor-promotor or a tumor-suppressor depending on its phosphorylation status. In the present study, the association between the phosphorylation of PED/PEA-15 at Ser116 [PED/PEA-15(S116)], the phosphorylation of P27 at Thr187 [P-p27(T187)] and the clinicopathological features and prognosis of patients with HCC was assessed. The levels of PED/PEA-15(S116) and P-p27(T187) were determined using immunohistochemistry and western blotting analysis in resected liver tumor tissues and adjacent non-cancerous tissues obtained from 60 patients with HCC as well as normal liver tissues from 12 patients with benign lesions. The association between the expression levels of these two markers and the clinicopathological features of patients with HCC was explored. Using the Kaplan-Meier method, the prognostic value of PED/PEA-15(S116) and P-p27(T187) expression levels was determined. The results demonstrated that the levels of PED/PEA-15(S116) and P-p27(T187) proteins were remarkably higher in the HCC group compared with those in the adjacent and normal tissue groups (both P<0.05). In addition, a moderate positive correlation was observed between the levels of PED/PEA-15(S116) and P-p27(T187) (r=0.434; P<0.05). The levels of these two proteins were associated with the Edmondson grade, Tumor-Node-Metastasis (TNM) stage, vascular invasion and tumor multiplicity (all P<0.05). Furthermore, the Kaplan-Meier analysis results demonstrated that patients with HCC that presented with positive expression of PED/PEA-15(S116) and P-p27(T187) exhibited a dismal prognosis compared with that in patients with negative expression regarding the overall survival (OS), as well as disease-free survival (both P<0.05). Multivariate Cox analysis revealed that the TNM stage (P<0.05), vascular invasion (P<0.05), PED/PEA-15(S116) levels (P<0.001) and P-p27(T187) levels (P<0.05) were independent prognostic factors for OS in patients with HCC. In conclusion the results of the present study demonstrated that PED/PEA-15(S116) and P-p27(T187) levels were upregulated in HCC tissues compared with those in the adjacent and normal tissues; PED/PEA-15(S116) and P-p27(T187) expression may serve as an indicator of a poor prognosis in patients with HCC, suggesting that these proteins may be prospective therapeutic targets for HCC.
Collapse
Affiliation(s)
- Yifeng Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang 310006, P.R. China.,Division of Hepatobiliary and Pancreatic Surgery, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Xianpeng Li
- Division of Hepatobiliary and Pancreatic Surgery, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Mingliang Chen
- Division of Hepatobiliary and Pancreatic Surgery, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Zhikun Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang 310006, P.R. China
| | - Xuanyu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang 310006, P.R. China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
12
|
Creff J, Besson A. Functional Versatility of the CDK Inhibitor p57 Kip2. Front Cell Dev Biol 2020; 8:584590. [PMID: 33117811 PMCID: PMC7575724 DOI: 10.3389/fcell.2020.584590] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The cyclin/CDK inhibitor p57Kip2 belongs to the Cip/Kip family, with p21Cip1 and p27Kip1, and is the least studied member of the family. Unlike the other family members, p57Kip2 has a unique role during embryogenesis and is the only CDK inhibitor required for embryonic development. p57Kip2 is encoded by the imprinted gene CDKN1C, which is the gene most frequently silenced or mutated in the genetic disorder Beckwith-Wiedemann syndrome (BWS), characterized by multiple developmental anomalies. Although initially identified as a cell cycle inhibitor based on its homology to other Cip/Kip family proteins, multiple novel functions have been ascribed to p57Kip2 in recent years that participate in the control of various cellular processes, including apoptosis, migration and transcription. Here, we will review our current knowledge on p57Kip2 structure, regulation, and its diverse functions during development and homeostasis, as well as its potential implication in the development of various pathologies, including cancer.
Collapse
Affiliation(s)
- Justine Creff
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| | - Arnaud Besson
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| |
Collapse
|
13
|
Kimata Y, Leturcq M, Aradhya R. Emerging roles of metazoan cell cycle regulators as coordinators of the cell cycle and differentiation. FEBS Lett 2020; 594:2061-2083. [PMID: 32383482 DOI: 10.1002/1873-3468.13805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023]
Abstract
In multicellular organisms, cell proliferation must be tightly coordinated with other developmental processes to form functional tissues and organs. Despite significant advances in our understanding of how the cell cycle is controlled by conserved cell-cycle regulators (CCRs), how the cell cycle is coordinated with cell differentiation in metazoan organisms and how CCRs contribute to this process remain poorly understood. Here, we review the emerging roles of metazoan CCRs as intracellular proliferation-differentiation coordinators in multicellular organisms. We illustrate how major CCRs regulate cellular events that are required for cell fate acquisition and subsequent differentiation. To this end, CCRs employ diverse mechanisms, some of which are separable from those underpinning the conventional cell-cycle-regulatory functions of CCRs. By controlling cell-type-specific specification/differentiation processes alongside the progression of the cell cycle, CCRs enable spatiotemporal coupling between differentiation and cell proliferation in various developmental contexts in vivo. We discuss the significance and implications of this underappreciated role of metazoan CCRs for development, disease and evolution.
Collapse
Affiliation(s)
- Yuu Kimata
- School of Life Science and Technology, ShanghaiTech University, China
| | - Maïté Leturcq
- School of Life Science and Technology, ShanghaiTech University, China
| | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
14
|
Haumann I, Sturm MA, Anstötz M, Rune GM. GPER1 Signaling Initiates Migration of Female V-SVZ-Derived Cells. iScience 2020; 23:101077. [PMID: 32361597 PMCID: PMC7200306 DOI: 10.1016/j.isci.2020.101077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/01/2019] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
In the rodent ventricular-subventricular zone (V-SVZ) neurons are generated throughout life. They migrate along the rostral migratory stream (RMS) into the olfactory bulb before their final differentiation into interneurons and integration into local circuits. Estrogen receptors (ERs) are steroid hormone receptors with important functions in neurogenesis and synaptic plasticity. In this study, we show that the ER GPER1 is expressed in subsets of cells within the V-SVZ of female animals and provide evidence for a potential local estrogen source from aromatase-positive astrocytes surrounding the RMS. Blocking of GPER1 in Matrigel cultures of female animals significantly impairs migration of V-SVZ-derived cells. This outgrowth is accompanied by regulation of phosphorylation of the actin-binding protein cofilin by GPER1 signaling including an involvement of the p21-Ras pathway. Our results point to a prominent role of GPER1 in the initiation of neuronal migration from the V-SVZ to the olfactory bulb. GPER1 is expressed within all cell types of the stem cell lineage in the V-SVZ Blocking of GPER1 leads to a decrease in migration of V-SVZ-derived neuroblasts GPER1 signaling in V-SVZ Matrigel cultures involves Ras-induced p21 Blocking of GPER1 signaling leads to an increase in the ratio of p-cofilin/cofilin
Collapse
Affiliation(s)
- Iris Haumann
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Muriel Anne Sturm
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Max Anstötz
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
15
|
Bayarmagnai B, Perrin L, Esmaeili Pourfarhangi K, Graña X, Tüzel E, Gligorijevic B. Invadopodia-mediated ECM degradation is enhanced in the G1 phase of the cell cycle. J Cell Sci 2019; 132:jcs.227116. [PMID: 31533971 DOI: 10.1242/jcs.227116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 09/10/2019] [Indexed: 12/16/2022] Open
Abstract
The process of tumor cell invasion and metastasis includes assembly of invadopodia, protrusions capable of degrading the extracellular matrix (ECM). The effect of cell cycle progression on invadopodia has not been elucidated. In this study, by using invadopodia and cell cycle fluorescent markers, we show in 2D and 3D cultures, as well as in vivo, that breast carcinoma cells assemble invadopodia and invade into the surrounding ECM preferentially during the G1 phase. The expression (MT1-MMP, also known as MMP14, and cortactin) and localization (Tks5; also known as SH3PXD2A) of invadopodia components are elevated in G1 phase, and cells synchronized in G1 phase exhibit significantly higher ECM degradation compared to the cells synchronized in S phase. The cyclin-dependent kinase inhibitor (CKI) p27kip1 (also known as CDKN1B) localizes to the sites of invadopodia assembly. Overexpression and stable knockdown of p27kip1 lead to contrasting effects on invadopodia turnover and ECM degradation. Taken together, these findings suggest that expression of invadopodia components, as well as invadopodia function, are linked to cell cycle progression, and that invadopodia are controlled by cell cycle regulators. Our results caution that this coordination between invasion and cell cycle must be considered when designing effective chemotherapies.
Collapse
Affiliation(s)
- Battuya Bayarmagnai
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Louisiane Perrin
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | | | - Xavier Graña
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.,Fels Research Institute for Cancer Biology and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Erkan Tüzel
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Bojana Gligorijevic
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA .,Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
16
|
Zhang J, Liu S, Ye Q, Pan J. Transcriptional inhibition by CDK7/9 inhibitor SNS-032 abrogates oncogene addiction and reduces liver metastasis in uveal melanoma. Mol Cancer 2019; 18:140. [PMID: 31526394 PMCID: PMC6745806 DOI: 10.1186/s12943-019-1070-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Background Life of patients with uveal melanoma (UM) is largely threatened by liver metastasis. Little is known about the drivers of liver organotropic metastasis in UM. The elevated activity of transcription of oncogenes is presumably to drive aspects of tumors. We hypothesized that inhibition of transcription by cyclin-dependent kinase 7/9 (CDK7/9) inhibitor SNS-032 diminished liver metastasis by abrogating the putative oncogenes in charge of colonization, stemness, cell motility of UM cells in host liver microenvironment. Methods The effects of SNS-032 on the expression of the relevant oncogenes were examined by qRT-PCR and Western blotting analysis. Proliferative activity, frequency of CSCs and liver metastasis were evaluated by using NOD-SCID mouse xenograft model and NOG mouse model, respectively. Results The results showed that CDK7/9 were highly expressed in UM cells, and SNS-032 significantly suppressed the cellular proliferation, induced apoptosis, and inhibited the outgrowth of xenografted UM cells and PDX tumors in NOD-SCID mice, repressed the cancer stem-like cell (CSC) properties through transcriptional inhibition of stemness-related protein Krüppel-like factor 4 (KLF4), inhibited the invasive phonotypes of UM cells through matrix metalloproteinase 9 (MMP9). Mechanistically, SNS-032 repressed the c-Myc-dependent transcription of RhoA gene, and thereby lowered the RhoA GTPase activity and actin polymerization, and subsequently inhibited cell motility and liver metastasis. Conclusions In conclusion, we validate a set of transcription factors which confer metastatic traits (e.g., KLF4 for CSCs, c-Myc for cell motility) in UM cells. Our results identify SNS-032 as a promising therapeutic agent, and warrant a clinical trial in patients with metastatic UM.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Shenglan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Qianyun Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| |
Collapse
|
17
|
Rampioni Vinciguerra GL, Citron F, Segatto I, Belletti B, Vecchione A, Baldassarre G. p27kip1 at the crossroad between actin and microtubule dynamics. Cell Div 2019; 14:2. [PMID: 30976290 PMCID: PMC6442415 DOI: 10.1186/s13008-019-0045-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
The p27kip1 protein, mainly known as a negative regulator of cell proliferation, has also been involved in the control of other cellular processes, including the regulation of cytoskeleton dynamics. Notably, these two functions involve distinct protein domains, residing in the N- and C-terminal halves, respectively. In the last two decades, p27kip1 has been reported to interact with microtubule and acto-myosin cytoskeletons, both in direct and indirect ways, overall drawing a picture in which several factors play their role either in synergy or in contrast one with another. As a result, the role of p27kip1 in cytoskeleton dynamics has been implicated in cell migration, both in physiologic and in neoplastic contexts, modulating cytokinesis, lipid raft trafficking, and neuronal development. Recently, two distinct papers have further reported a central role for p27kip1 in the control of microtubule stability and post-translational modifications, dissecting the interaction between p27kip1 and α-tubulin-acetyl-transferase (α-TAT), an enzyme involved in the stability of microtubules, and protein-regulator of cytokinesis 1 (PRC1), a nuclear regulator of the central spindle during mitosis. In light of these recent evidences, we will comment on the role of p27kip1 on cytoskeleton regulation and its implication for cancer progression.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- 1Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy.,2Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "Sapienza", Santo Andrea Hospital, 00189 Rome, Italy
| | - Francesca Citron
- 1Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| | - Ilenia Segatto
- 1Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| | - Barbara Belletti
- 1Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| | - Andrea Vecchione
- 2Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "Sapienza", Santo Andrea Hospital, 00189 Rome, Italy
| | - Gustavo Baldassarre
- 1Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy
| |
Collapse
|
18
|
Abstract
PI3K is activated in over 60% of human cancers, mediating C-terminal p27 phosphorylation. This work reveals cooperation between PI3K and cJun pathways: p27 phosphorylation by PI3K-activated kinases stimulates p27/cJun corecruitment to chromatin and activation of transcription programs of cell adhesion, motility, TGFB2, and epithelial–mesenchymal transformation to drive tumor progression. Prior analysis showed that high p27pT157 strongly associates with activated AKTpS273 and p90RSKpT359 in human breast cancers. These cancers also differentially express p27/cJun target genes and identify a poor prognostic group. In cancers, the cell cycle-restraining effects of p27 are lost through increased proteolysis and decreased translation. We reveal a previously unknown oncogenic action of p27, in which p27 acts as a cJun coactivator to drive oncogenic gene expression programs. p27 shifts from CDK inhibitor to oncogene when phosphorylated by PI3K effector kinases. Here, we show that p27 is a cJun coregulator, whose assembly and chromatin association is governed by p27 phosphorylation. In breast and bladder cancer cells with high p27pT157pT198 or expressing a CDK-binding defective p27pT157pT198 phosphomimetic (p27CK−DD), cJun is activated and interacts with p27, and p27/cJun complexes localize to the nucleus. p27/cJun up-regulates TGFB2 to drive metastasis in vivo. Global analysis of p27 and cJun chromatin binding and gene expression shows that cJun recruitment to many target genes is p27 dependent, increased by p27 phosphorylation, and activates programs of epithelial–mesenchymal transformation and metastasis. Finally, human breast cancers with high p27pT157 differentially express p27/cJun-regulated genes of prognostic relevance, supporting the biological significance of the work.
Collapse
|
19
|
Calvayrac O, Nowosad A, Cabantous S, Lin LP, Figarol S, Jeannot P, Serres MP, Callot C, Perchey RT, Creff J, Taranchon-Clermont E, Rouquette I, Favre G, Pradines A, Manenti S, Mazieres J, Lee H, Besson A. Cytoplasmic p27 Kip1 promotes tumorigenesis via suppression of RhoB activity. J Pathol 2018; 247:60-71. [PMID: 30206932 DOI: 10.1002/path.5167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 01/10/2023]
Abstract
The cell cycle inhibitor p27Kip1 is a tumor suppressor via the inhibition of CDK complexes in the nucleus. However, p27 also plays other functions in the cell and may acquire oncogenic roles when located in the cytoplasm. Activation of oncogenic pathways such as Ras or PI3K/AKT causes the relocalization of p27 in the cytoplasm, where it can promote tumorigenesis by unclear mechanisms. Here, we investigated how cytoplasmic p27 participates in the development of non-small cell lung carcinomas. We provide molecular and genetic evidence that the oncogenic role of p27 is mediated, at least in part, by binding to and inhibiting the GTPase RhoB, which normally acts as a tumor suppressor in the lung. Genetically modified mice revealed that RhoB expression is preferentially lost in tumors in which p27 is absent and maintained in tumors expressing wild-type p27 or p27CK- , a mutant that cannot inhibit CDKs. Moreover, although the absence of RhoB promoted tumorigenesis in p27-/- animals, it had no effect in p27CK- knock-in mice, suggesting that cytoplasmic p27 may act as an oncogene, at least in part, by inhibiting the activity of RhoB. Finally, in a cohort of lung cancer patients, we identified a subset of tumors harboring cytoplasmic p27 in which RhoB expression is maintained and these characteristics were strongly associated with decreased patient survival. Thus, monitoring p27 localization and RhoB levels in non-small cell lung carcinoma patients appears to be a powerful prognostic marker for these tumors. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olivier Calvayrac
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Ada Nowosad
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Stéphanie Cabantous
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Lin-Po Lin
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Sarah Figarol
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Pauline Jeannot
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Murielle P Serres
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Caroline Callot
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud T Perchey
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Justine Creff
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Estelle Taranchon-Clermont
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France.,Service de Pathologie, IUCT-Oncopole, CHU de Toulouse, Toulouse, France
| | - Isabelle Rouquette
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France.,Service de Pathologie, IUCT-Oncopole, CHU de Toulouse, Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Anne Pradines
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Stephane Manenti
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Julien Mazieres
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France.,Thoracic Oncology Department, Larrey Hospital, University Hospital of Toulouse, Toulouse, France
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Arnaud Besson
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
20
|
Heriady Y, Achmad D, Hernowo BS, Faried A, Ismono D, Hilmanto D. Expression of the RAC1, RHOA and CXCR4 proteins and their interaction as risk factors for infiltration to the nipple areola complex in operable breast carcinoma. Breast Cancer 2018; 26:172-179. [PMID: 30209686 DOI: 10.1007/s12282-018-0907-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/06/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Nipple areola complex (NAC) infiltration in operable breast carcinoma (OBC) is associated with local recurrence. NAC infiltration in OBC suggests that RAC1, RHOA and CXCR4 proteins are risk factors for migration and infiltration of OBC to NAC. This study aims to analyze the expression and interactions of these proteins as risk factors for NAC infiltration in OBC. MATERIALS AND METHODS This is an analytic observational cross-sectional study coupled with a categorical comparative study in each 40 subjects of OBC with and without NAC infiltration. The immunohistochemistry performed with a cut-off point based on the result of a receiver operating characteristics (ROC). RESULTS RAC1, p < 0.001 with POR 5.76, 95% CI: 2.06-16.08; RHOA, p < 0.001 with POR 7.00, 95% CI: 2.28-21.53; and CXCR4, p = 0.001 with POR 6.33, 95% CI 2.06-19.49. There was an interaction between RAC1 and RHOA (p < 0.001 with POR 17.14, 95% CI: 3.07-125.66); between RAC1 and CXCR4 (p < 0.001 with POR 30.93, 95% CI 3.62-686.89); between RHOA and CXCR4 (p < 0.001 with POR 10.21, 95% CI 2.19-54.17); and between the RAC1, RHOA and CXCR4 proteins (p < 0.001 with POR = 23.69, 95% CI 2.51-544.86). CONCLUSION We conclude that the expression of the RAC1, RHOA, and CXCR4 proteins and their interactions play a role as risk factors of NAC infiltration.
Collapse
Affiliation(s)
- Yusuf Heriady
- Department of Surgery, Faculty of Medicine, Universitas Islam Bandung, Al Ihsan Hospital, Baleendah, Bandung, 40375, Indonesia
| | - Dimyati Achmad
- Department of Surgery, Faculty of Medicine, Universitas Padjadjaran (FK UNPAD), Dr. Hasan Sadikin Hospital (RSHS), Bandung, 40161, Indonesia
| | - Bethy S Hernowo
- Department of Pathology Anatomy, FK UNPAD, RSHS, Bandung, 40161, Indonesia
| | - Ahmad Faried
- Oncology and Stem Cell Working Group, FK UNPAD, RSHS, Bandung, 40161, Indonesia. .,Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin Hospital, Bandung, 40161, West Java, Indonesia.
| | - Darmadji Ismono
- Oncology and Stem Cell Working Group, FK UNPAD, RSHS, Bandung, 40161, Indonesia
| | - Dany Hilmanto
- Oncology and Stem Cell Working Group, FK UNPAD, RSHS, Bandung, 40161, Indonesia
| |
Collapse
|
21
|
Li Y, Yang X, Du X, Lei Y, He Q, Hong X, Tang X, Wen X, Zhang P, Sun Y, Zhang J, Wang Y, Ma J, Liu N. RAB37 Hypermethylation Regulates Metastasis and Resistance to Docetaxel-Based Induction Chemotherapy in Nasopharyngeal Carcinoma. Clin Cancer Res 2018; 24:6495-6508. [PMID: 30131385 DOI: 10.1158/1078-0432.ccr-18-0532] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/30/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Epigenetic alterations play important roles in metastasis and drug resistance through gene regulation. However, the functional features and molecular mechanisms of epigenetic changes remain largely unclear in nasopharyngeal carcinoma (NPC) metastasis. EXPERIMENTAL DESIGN Gene regulatory network analysis was used to identify metastatic-specific dysregulated genes between normal and NPC tissues and the expression was validated in published Gene-Expression Omnibus data set. The regulatory and functional role of RAB37 downregulation was examined in NPC and was validated in vitro and in vivo, and downstream target of RAB37 was explored. The clinical value of RAB37 methylation was evaluated in NPC metastasis and chemosensitivity. RESULTS We identified RAB37 as a specific hypermethylated gene that is most commonly downregulated in NPC. Moreover, RAB37 downregulation was attributed to hypermethylation of its promoter and was significantly associated with metastasis- and docetaxel chemoresistance-related features in NPC. Ectopic RAB37 overexpression suppressed NPC cell metastasis and enhanced chemosensitivity to docetaxel. Mechanistically, RAB37 colocalized with TIMP2, regulated TIMP2 secretion, inhibited downstream MMP2 activity, and consequently altered NPC cell metastasis. Furthermore, RAB37 hypermethylation was correlated with poor clinical outcomes in patients with NPC. We developed a prognostic model based on RAB37 methylation and N stage that effectively predicted an increased risk of distant metastasis and a favorable response to docetaxel-containing induction chemotherapy (IC) in NPC patients. CONCLUSIONS This study shows that RAB37 hypermethylation is involved in NPC metastasis and chemoresistance, and that our prognostic model can identify patients who are at a high risk of distant metastasis and might benefit from for docetaxel IC.
Collapse
Affiliation(s)
- Yingqin Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xiaojing Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xiaojing Du
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Yuan Lei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Qingmei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xiaohong Hong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xinran Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xin Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Panpan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Ying Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Jian Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Yaqin Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Na Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
Bachs O, Gallastegui E, Orlando S, Bigas A, Morante-Redolat JM, Serratosa J, Fariñas I, Aligué R, Pujol MJ. Role of p27 Kip1 as a transcriptional regulator. Oncotarget 2018; 9:26259-26278. [PMID: 29899857 PMCID: PMC5995243 DOI: 10.18632/oncotarget.25447] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
The protein p27Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors. It interacts with both the catalytic and the regulatory subunit (cyclin) and introduces a region into the catalytic cleave of the Cdk inducing its inactivation. Its inhibitory capacity can be modulated by specific tyrosine phosphorylations. p27Kip1 also behaves as a transcriptional regulator. It associates with specific chromatin domains through different transcription factors. ChIP on chip, ChIP-seq and expression microarray analysis allowed the identification of the transcriptional programs regulated by p27Kip1. Thus, important cellular functions as cell division cycle, respiration, RNA processing, translation and cell adhesion, are under p27Kip1 regulation. Moreover, genes involved in pathologies as cancer and neurodegeneration are also regulated by p27Kip1, suggesting its implication in these pathologies. The carboxyl moiety of p27Kip1 can associate with different proteins, including transcriptional regulators. In contrast, its NH2-terminal region specifically interacts with cyclin-Cdk complexes. The general mechanistic model of how p27Kip1 regulates transcription is that it associates by its COOH region to the transcriptional regulators on the chromatin and by the NH2-domain to cyclin-Cdk complexes. After Cdk activation it would phosphorylate the specific targets on the chromatin leading to gene expression. This model has been demonstrated to apply in the transcriptional regulation of p130/E2F4 repressed genes involved in cell cycle progression. We summarize in this review our current knowledge on the role of p27Kip1 in the regulation of transcription, on the transcriptional programs under its regulation and on its relevance in pathologies as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Oriol Bachs
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Edurne Gallastegui
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Serena Orlando
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
| | - José Manuel Morante-Redolat
- Departamento de Biología Celular, Biología Funcional y Antropología Física and ERI de Biotecnología y Biomedicina, CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Joan Serratosa
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Barcelona, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física and ERI de Biotecnología y Biomedicina, CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Rosa Aligué
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Maria Jesús Pujol
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| |
Collapse
|
23
|
Phillips AH, Ou L, Gay A, Besson A, Kriwacki RW. Mapping Interactions between p27 and RhoA that Stimulate Cell Migration. J Mol Biol 2018; 430:751-758. [PMID: 29410088 DOI: 10.1016/j.jmb.2018.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
Abstract
p27 mediates cell cycle arrest by binding to and inhibiting cyclin-dependent kinase/cyclin complexes, but p27 can also contribute to pro-oncogenic signaling upon mislocalization to the cytoplasm. Cytoplasmic p27 stimulates cell migration by associating with RhoA and interfering with the exchange of GDP from RhoA stimulated by guanine nucleotide exchange factors. We used biophysical methods to show that the N-terminus of p27 directly interacts with RhoA in vitro. The affinity of p27 for RhoA is low, with an equilibrium dissociation constant of hundreds of micromolar; however, at high concentrations, p27 interfered with guanine nucleotide exchange factor-mediated nucleotide exchange from RhoA. We also show that promotion of cell migration in scratch wound cell healing assays requires full-length p27 despite the C-terminus being dispensable for the direct interaction between p27 and RhoA in vitro. These results suggest that there may be an unidentified factor(s) that associates with the C-terminus of p27 to enhance its interactions with RhoA and promote cell migration.
Collapse
Affiliation(s)
- Aaron H Phillips
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States
| | - Li Ou
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States
| | - Alexandre Gay
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France
| | - Arnaud Besson
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States.
| |
Collapse
|
24
|
Chen ZL, Yang J, Shen YW, Li ST, Wang X, Lv M, Wang BY, Li P, Zhao W, Qiu RY, Liu Y, Liu PJ, Yang J. AmotP130 regulates Rho GTPase and decreases breast cancer cell mobility. J Cell Mol Med 2018; 22:2390-2403. [PMID: 29377471 PMCID: PMC5867092 DOI: 10.1111/jcmm.13533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
Angiomotin (Amot) is a newly discovered, multifunctional protein that is involved in cell migration and angiogenesis. However, the role of its isoform, AmotP130, in the regulation of cytoskeleton and metastasis of breast cancer, is unclear. The aim of this study was to investigate the role of AmotP130 in the reorganization of the actin cytoskeleton and the changes of morphology in breast cancer cells through the Rho pathway that influences the invasion and migration of cells. The results suggested that AmotP130 suppressed the invasion ability through remodelling the cytoskeleton of breast cancer cells, including the actin fibre organization and focal adhesion protein turnover. Global transcriptome changes in breast cancer cells following knockdown of AmotP130 identified pathways related with the cytoskeleton and cell motility that involved the Rho GTPase family. From database analyses, changes in the Rho GTPase family of proteins were identified as possible prognostic factors in patients with breast cancer. We have been suggested that AmotP130 suppressed the invasion ability through remodelling of the cytoskeleton of breast cancer cells, involving regulation of the Rho pathway. The cytoskeleton-related pathway components may provide novel, clinically therapeutic targets for breast cancer treatment.
Collapse
Affiliation(s)
- Zhe-Ling Chen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan-Wei Shen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shu-Ting Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Wang
- Department of Oncology, Shangluo Central Hospital, Shangluo, Shaanxi, China
| | - Meng Lv
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bi-Yuan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pan Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wen Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui-Yue Qiu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Liu
- Department of Biology & Biochemistry, University of Houston, Houston, TX, USA
| | - Pei-Jun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Jin Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
25
|
FKBP51 decreases cell proliferation and increases progestin sensitivity of human endometrial adenocarcinomas by inhibiting Akt. Oncotarget 2017; 8:80405-80415. [PMID: 29113312 PMCID: PMC5655207 DOI: 10.18632/oncotarget.18903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/15/2017] [Indexed: 12/23/2022] Open
Abstract
In this study, we investigated the role of FK506 binding protein 51 (FKBP51) in human endometrial adenocarcinoma progression. Immunohistochemical analysis showed decreased FKBP51 expression in endometrial adenocarcinoma tissues. Moreover, higher FKBP51 expression was observed in the normal secretory phase than in proliferative-phase endometrial tissues. FKBP51-shRNA transfected KLE cells showed high Ser473-phospho Akt with decreased p21 and p27 levels, which promoted S-G2/M phase cell cycle progression and proliferation. Conversely, FKBP51 overexpressing Ishikawa cells showed low Ser473-phospho Akt, which led to increased p21 and p27 levels and, in turn, G0/G1 cell cycle arrest and decreased cell proliferation. FKBP51 overexpression in progesterone receptor-positive Ishikawa cells sensitized them to medroxyprogesterone acetate (MPA; progestin) treatment by repressing Akt signaling. Conversely, FKBP51-shRNA knockdown in RL95-2 cells attenuated progestin sensitivity. These findings indicate FKBP51 inhibits cell proliferation and promotes progestin sensitivity in endometrial adenocarcinoma by decreasing Akt signaling.
Collapse
|
26
|
MYC Modulation around the CDK2/p27/SKP2 Axis. Genes (Basel) 2017; 8:genes8070174. [PMID: 28665315 PMCID: PMC5541307 DOI: 10.3390/genes8070174] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 12/20/2022] Open
Abstract
MYC is a pleiotropic transcription factor that controls a number of fundamental cellular processes required for the proliferation and survival of normal and malignant cells, including the cell cycle. MYC interacts with several central cell cycle regulators that control the balance between cell cycle progression and temporary or permanent cell cycle arrest (cellular senescence). Among these are the cyclin E/A/cyclin-dependent kinase 2 (CDK2) complexes, the CDK inhibitor p27KIP1 (p27) and the E3 ubiquitin ligase component S-phase kinase-associated protein 2 (SKP2), which control each other by forming a triangular network. MYC is engaged in bidirectional crosstalk with each of these players; while MYC regulates their expression and/or activity, these factors in turn modulate MYC through protein interactions and post-translational modifications including phosphorylation and ubiquitylation, impacting on MYC's transcriptional output on genes involved in cell cycle progression and senescence. Here we elaborate on these network interactions with MYC and their impact on transcription, cell cycle, replication and stress signaling, and on the role of other players interconnected to this network, such as CDK1, the retinoblastoma protein (pRB), protein phosphatase 2A (PP2A), the F-box proteins FBXW7 and FBXO28, the RAS oncoprotein and the ubiquitin/proteasome system. Finally, we describe how the MYC/CDK2/p27/SKP2 axis impacts on tumor development and discuss possible ways to interfere therapeutically with this system to improve cancer treatment.
Collapse
|
27
|
Mokhtari MJ, Koohpeima F, Mohammadi H. A comparison inhibitory effects of cisplatin and MNPs-PEG-cisplatin on the adhesion capacity of bone metastatic breast cancer. Chem Biol Drug Des 2017; 90:618-628. [DOI: 10.1111/cbdd.12985] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/01/2017] [Accepted: 03/11/2017] [Indexed: 12/25/2022]
Affiliation(s)
| | - Fatemeh Koohpeima
- Department of Operative Dentistry; School of Dentistry; Shiraz University of Medical Sciences; Shiraz Iran
| | - Hadi Mohammadi
- Young Researchers and Elite Club; Kermanshah Branch; Islamic Azad University; Kermanshah Iran
| |
Collapse
|
28
|
Human gingival fibroblast response to enamel matrix derivative, porcine recombinant 21.3-kDa amelogenin and 5.3-kDa tyrosine-rich amelogenin peptide. Hum Cell 2017; 30:181-191. [PMID: 28470386 PMCID: PMC5486862 DOI: 10.1007/s13577-017-0164-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Abstract
Enamel matrix derivative (EMD) containing a variety of protein fractions has been used for periodontal tissue regeneration. It is suggested that the proteins contained in EMD positively influence gingival fibroblasts migration and proliferation. Effects of EMD as well as of porcine recombinated 21.3-kDa amelogenin (prAMEL) and 5.3-kDa tyrosine-rich amelogenin peptide (prTRAP) on human gingival fibroblast (HGF-1, ATCC; USA) cell line were investigated. Real-time cell analysis (xCELLigence system; Roche Applied Science) was performed to determine the effects of EMD, prAMEL and prTRAP (12.5–50 μg/mL) on HGF-1 cell proliferation and migration. The effect of treatment on cell cycle was determined using flow cytometry. EMD significantly increased HGF-1 cell proliferation after 24- and 48-h incubation. Individually, prAMEL and prTRAP also increased HGF-1 cell proliferation; however, the difference was significant only for prAMEL 50 µg/mL. prAMEL and TRAP significantly increased HGF-1 cell migration after 60- and 72-h incubation. Cell cycle analysis showed significant decrease of the percentage of cells in the G0/G1 phase and a buildup of cells in the S and M phase observed after EMD and prAMEL stimulation. This process was ligand and concentration-dependent. The various molecular components in the enamel matrix derivative might contribute to the reported effects on gingival tissue regeneration; however, biologic effects of prAMEL and prTRAP individually were different from that of EMD.
Collapse
|
29
|
Jeannot P, Nowosad A, Perchey RT, Callot C, Bennana E, Katsube T, Mayeux P, Guillonneau F, Manenti S, Besson A. p27 Kip1 promotes invadopodia turnover and invasion through the regulation of the PAK1/Cortactin pathway. eLife 2017; 6. [PMID: 28287395 PMCID: PMC5388532 DOI: 10.7554/elife.22207] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/09/2017] [Indexed: 12/29/2022] Open
Abstract
p27Kip1 (p27) is a cyclin-CDK inhibitor and negative regulator of cell proliferation. p27 also controls other cellular processes including migration and cytoplasmic p27 can act as an oncogene. Furthermore, cytoplasmic p27 promotes invasion and metastasis, in part by promoting epithelial to mesenchymal transition. Herein, we find that p27 promotes cell invasion by binding to and regulating the activity of Cortactin, a critical regulator of invadopodia formation. p27 localizes to invadopodia and limits their number and activity. p27 promotes the interaction of Cortactin with PAK1. In turn, PAK1 promotes invadopodia turnover by phosphorylating Cortactin, and expression of Cortactin mutants for PAK-targeted sites abolishes p27’s effect on invadopodia dynamics. Thus, in absence of p27, cells exhibit increased invadopodia stability due to impaired PAK1-Cortactin interaction, but their invasive capacity is reduced compared to wild-type cells. Overall, we find that p27 directly promotes cell invasion by facilitating invadopodia turnover via the Rac1/PAK1/Cortactin pathway. DOI:http://dx.doi.org/10.7554/eLife.22207.001 When animals develop from embryos to adults, or try to heal wounds later in life, their cells have to move. Moving means that the cells must invade into their surroundings, a dense network of proteins called the extracellular matrix. The cell first attaches to the extracellular matrix; degrades it; and then moves into the newly opened space. Cells have developed specialized structures called invadosomes to enable all these steps. Invadosomes are never static, they first assemble where cells interact with extracellular matrix, they then release proteins that loosen the matrix, and finally disassemble again to allow cells to move. Invadosomes in cancer cells often become overactive, and can allow the tumor cells to spread throughout the body. A lot of different proteins are involved in controlling how and when cells move. p27 is a well-known protein usually found in a cell’s nucleus along with the cell’s DNA. Inside the nucleus, p27 suppresses tumor growth by stopping cells from dividing. However, often in cancer cells p27 moves outside of the cell’s nucleus where it contributes to cell movement via an unknown mechanism. To answer how p27 controls cell invasion, Jeannot et al. used a biochemical technique to uncover which proteins p27 binds to when it is outside of the nucleus. One of its interaction partners was called Cortactin. This protein is known to be an important building block of invadosomes, and is involved in both the assembly and disassembly of these structures. In further experiments, Jeannot studied mouse cells with or without p27 and human cancer cells that can be grown in the laboratory. The experiments revealed that p27 promotes an enzyme called PAK1 to also bind to Cortactin. PAK1 then modified Cortactin, causing whole invadosomes to disassemble, which in turn allowed cells to de-attach from the matrix and move forward. In contrast, cells lacking p27 had more stable invadosomes, attached more strongly to the matrix and were better at degrading it, but could not invade as well as cells with p27. Overall these experiments showed a new way that p27 promotes cell invasion. The next steps will include finding out exactly how the modification of Cortactin causes the invadosomes to disassemble. Furthermore, it will be important to study whether forcing p27 back into the nucleus can reduce the spread of cancer cells in the body. DOI:http://dx.doi.org/10.7554/eLife.22207.002
Collapse
Affiliation(s)
- Pauline Jeannot
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Ada Nowosad
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Renaud T Perchey
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Caroline Callot
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Evangeline Bennana
- 3P5 proteomics facility of the Université Paris Descartes, Inserm U1016 Institut Cochin, Sorbonne Paris Cité, Paris, France
| | | | - Patrick Mayeux
- 3P5 proteomics facility of the Université Paris Descartes, Inserm U1016 Institut Cochin, Sorbonne Paris Cité, Paris, France
| | - François Guillonneau
- 3P5 proteomics facility of the Université Paris Descartes, Inserm U1016 Institut Cochin, Sorbonne Paris Cité, Paris, France
| | - Stéphane Manenti
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Arnaud Besson
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,CNRS ERL5294, Toulouse, France
| |
Collapse
|
30
|
Mukherjee S, Brat DJ. Molecular Programs Underlying Asymmetric Stem Cell Division and Their Disruption in Malignancy. Results Probl Cell Differ 2017; 61:401-421. [PMID: 28409315 DOI: 10.1007/978-3-319-53150-2_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Asymmetric division of stem cells is a highly conserved and tightly regulated process by which a single stem cell produces two unequal daughter cells. One retains its stem cell identity while the other becomes specialized through a differentiation program and loses stem cell properties. Coordinating these events requires control over numerous intra- and extracellular biological processes and signaling networks. In the initial stages, critical events include the compartmentalization of fate determining proteins within the mother cell and their subsequent passage to the appropriate daughter cell in order to direct their destiny. Disturbance of these events results in an altered dynamic of self-renewing and differentiation within the cell population, which is highly relevant to the growth and progression of cancer. Other critical events include proper asymmetric spindle assembly, extrinsic regulation through micro-environmental cues, and non-canonical signaling networks that impact cell division and fate determination. In this review, we discuss mechanisms that maintain the delicate balance of asymmetric cell division in normal tissues and describe the current understanding how some of these mechanisms are deregulated in cancer.
Collapse
Affiliation(s)
- Subhas Mukherjee
- Departments of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Daniel J Brat
- Departments of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, 1701 Uppergate Drive, Building C, Rm#C5038, Atlanta, GA, USA.
| |
Collapse
|
31
|
Jeannot P, Callot C, Baer R, Duquesnes N, Guerra C, Guillermet-Guibert J, Bachs O, Besson A. Loss of p27Kip¹ promotes metaplasia in the pancreas via the regulation of Sox9 expression. Oncotarget 2016; 6:35880-92. [PMID: 26416424 PMCID: PMC4742148 DOI: 10.18632/oncotarget.5770] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 09/12/2015] [Indexed: 02/07/2023] Open
Abstract
p27Kip1 (p27) is a negative regulator of proliferation and a tumor suppressor via the inhibition of cyclin-CDK activity in the nucleus. p27 is also involved in the regulation of other cellular processes, including transcription by acting as a transcriptional co-repressor. Loss of p27 expression is frequently observed in pancreatic adenocarcinomas in human and is associated with decreased patient survival. Similarly, in a mouse model of K-Ras-driven pancreatic cancer, loss of p27 accelerates tumor development and shortens survival, suggesting an important role for p27 in pancreatic tumorigenesis. Here, we sought to determine how p27 might contribute to early events leading to tumor development in the pancreas. We found that K-Ras activation in the pancreas causes p27 mislocalization at pre-neoplastic stages. Moreover, loss of p27 or expression of a mutant p27 that does not bind cyclin-CDKs causes the mislocalization of several acinar polarity markers associated with metaplasia and induces the nuclear expression of Sox9 and Pdx1 two transcription factors involved in acinar-to-ductal metaplasia. Finally, we found that p27 directly represses transcription of Sox9, but not that of Pdx1. Thus, our results suggest that K-Ras activation, the earliest known event in pancreatic carcinogenesis, may cause loss of nuclear p27 expression which results in derepression of Sox9, triggering reprogrammation of acinar cells and metaplasia.
Collapse
Affiliation(s)
- Pauline Jeannot
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université de Toulouse, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Caroline Callot
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université de Toulouse, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Romain Baer
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université de Toulouse, Toulouse, France
| | - Nicolas Duquesnes
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université de Toulouse, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Carmen Guerra
- Molecular Oncology, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Julie Guillermet-Guibert
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université de Toulouse, Toulouse, France
| | - Oriol Bachs
- Department of Cell Biology, Immunology and Neurosciences, University of Barcelona - IDIBAPS, Barcelona, Spain
| | - Arnaud Besson
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université de Toulouse, Toulouse, France.,CNRS ERL5294, Toulouse, France
| |
Collapse
|
32
|
A novel HMGA1-CCNE2-YAP axis regulates breast cancer aggressiveness. Oncotarget 2016; 6:19087-101. [PMID: 26265440 PMCID: PMC4662477 DOI: 10.18632/oncotarget.4236] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/12/2015] [Indexed: 12/23/2022] Open
Abstract
High Mobility Group A1 (HMGA1) is an architectural chromatin factor that promotes neoplastic transformation and progression. However, the mechanism by which HMGA1 exerts its oncogenic function is not fully understood. Here, we show that cyclin E2 (CCNE2) acts downstream of HMGA1 to regulate the motility and invasiveness of basal-like breast cancer cells by promoting the nuclear localization and activity of YAP, the downstream mediator of the Hippo pathway. Mechanistically, the activity of MST1/2 and LATS1/2, the core kinases of the Hippo pathway, are required for the HMGA1- and CCNE2-mediated regulation of YAP localization. In breast cancer patients, high levels of HMGA1 and CCNE2 expression are associated with the YAP/TAZ signature, supporting this connection. Moreover, we provide evidence that CDK inhibitors induce the translocation of YAP from the nucleus to the cytoplasm, resulting in a decrease in its activity. These findings reveal an association between HMGA1 and the Hippo pathway that is relevant to stem cell biology, tissue homeostasis, and cancer.
Collapse
|
33
|
Chen Y, Huang Y, Zhu L, Chen M, Huang Y, Zhang J, He S, Li A, Chen R, Zhou J. SOX2 inhibits metastasis in gastric cancer. J Cancer Res Clin Oncol 2016; 142:1221-30. [PMID: 26960758 DOI: 10.1007/s00432-016-2125-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the potential role of SOX2 in gastric cancer (GC) metastasis. METHODS The SOX2 expression was detected using immunohistochemistry on a GC tissue microarray. The correlations of SOX2 expression with clinicopathological factors and 5-year survival were evaluated. To test the role of SOX2 in inhibiting GC metastasis, the cell transwell assay was performed. Real-time PCR and Western blot were used to explore the possible mechanism that SOX2 inhibits GC metastasis. RESULTS In the present study, SOX2 expression was downregulated in GC tissues when compared to matching normal tissues. Moreover, patients with high SOX2 expression in cancerous tissues had less lymph node metastasis and better treatment outcome. At the subcellular level, SOX2 inhibited the GC cell migration and invasion by upregulating p21 expression. Moreover, SOX2 was determined to associate with the nuclear p21 expression. GC patients with high SOX2 and nuclear p21 expression had synergistically less lymph node metastasis and the better overall survival. CONCLUSION Our results suggest that SOX2 is a promising and favorable metastatic biomarker for GC.
Collapse
Affiliation(s)
- Yansu Chen
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, People's Republic of China
- School of Public Health, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, 221002, People's Republic of China
| | - Yefei Huang
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, People's Republic of China
- School of Public Health, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, 221002, People's Republic of China
| | - Liwen Zhu
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, People's Republic of China
| | - Minjuan Chen
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, People's Republic of China
| | - Yulin Huang
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, People's Republic of China
| | - Jianbing Zhang
- Department of Pathology, Nantong Cancer Hospital, 30 North Tongyang Road, Pingchao, Nantong, 226361, Jiangsu Province, People's Republic of China
| | - Song He
- Department of Pathology, Nantong Cancer Hospital, 30 North Tongyang Road, Pingchao, Nantong, 226361, Jiangsu Province, People's Republic of China
| | - Aiping Li
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, People's Republic of China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
34
|
Duquesnes N, Callot C, Jeannot P, Daburon V, Nakayama KI, Manenti S, Davy A, Besson A. p57(Kip2) knock-in mouse reveals CDK-independent contribution in the development of Beckwith-Wiedemann syndrome. J Pathol 2016; 239:250-61. [PMID: 27015986 DOI: 10.1002/path.4721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/07/2016] [Accepted: 03/11/2016] [Indexed: 11/10/2022]
Abstract
CDKN1C encodes the cyclin-CDK inhibitor p57(Kip2) (p57), a negative regulator of the cell cycle and putative tumour suppressor. Genetic and epigenetic alterations causing loss of p57 function are the most frequent cause of Beckwith-Wiedemann syndrome (BWS), a genetic disorder characterized by multiple developmental anomalies and increased susceptibility to tumour development during childhood. So far, BWS development has been attributed entirely to the deregulation of proliferation caused by loss of p57-mediated CDK inhibition. However, a fraction of BWS patients have point mutations in CDKN1C located outside of the CDK inhibitory region, suggesting the involvement of other parts of the protein in the disease. To test this possibility, we generated knock-in mice deficient for p57-mediated cyclin-CDK inhibition (p57(CK) (-) ), the only clearly defined function of p57. Comparative analysis of p57(CK) (-) and p57(KO) mice provided clear evidence for CDK-independent roles of p57 and revealed that BWS is not caused entirely by CDK deregulation, as several features of BWS are caused by the loss of CDK-independent roles of p57. Thus, while the genetic origin of BWS is well understood, our results underscore that the underlying molecular mechanisms remain largely unclear. To probe these mechanisms further, we determined the p57 interactome. Several partners identified are involved in genetic disorders with features resembling those caused by CDKN1C mutation, suggesting that they could be involved in BWS pathogenesis and revealing a possible connection between seemingly distinct syndromes. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nicolas Duquesnes
- INSERM UMR1037, Cancer Research Centre of Toulouse, France.,Université de Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Caroline Callot
- INSERM UMR1037, Cancer Research Centre of Toulouse, France.,Université de Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Pauline Jeannot
- INSERM UMR1037, Cancer Research Centre of Toulouse, France.,Université de Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Virginie Daburon
- Université de Toulouse, France.,CNRS UMR5088 LBCMCP, Toulouse, France
| | - Keiichi I Nakayama
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Stephane Manenti
- INSERM UMR1037, Cancer Research Centre of Toulouse, France.,Université de Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Alice Davy
- Université de Toulouse, France.,CNRS UMR5547, Centre de Biologie du Développement, Toulouse, France
| | - Arnaud Besson
- INSERM UMR1037, Cancer Research Centre of Toulouse, France.,Université de Toulouse, France.,CNRS ERL5294, Toulouse, France
| |
Collapse
|
35
|
Bendris N, Lemmers B, Blanchard JM. Cell cycle, cytoskeleton dynamics and beyond: the many functions of cyclins and CDK inhibitors. Cell Cycle 2016; 14:1786-98. [PMID: 25789852 DOI: 10.1080/15384101.2014.998085] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While targeting experiments carried out on the genes encoding many cell cycle regulators have challenged our views of cell cycle control, they also suggest that redundancy might not be the only explanation for the observed perplexing phenotypes. Indeed, several observations hint at functions of cyclins and CDK inhibitors that cannot be accounted for by their sole role as kinase regulators. They are found involved in many cellular transactions, depending or not on CDKs that are not directly linked to cell cycle control, but participating to general mechanisms such as transcription, DNA repair or cytoskeleton dynamics. In this review we discuss the roles that these alternative functions might have in cancer cell proliferation and migration that sometime even challenge their definition as proliferation markers.
Collapse
Affiliation(s)
- Nawal Bendris
- a Institut de Génétique Moléculaire de Montpellier; CNRS; Montpellier; France; Université Montpellier 2 ; Place Eugène Bataillon; Montpellier , France
| | | | | |
Collapse
|
36
|
Nath A, Karthikeyan S. Enhanced Prediction and Characterization of CDK Inhibitors Using Optimal Class Distribution. Interdiscip Sci 2016; 9:292-303. [DOI: 10.1007/s12539-016-0151-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/11/2015] [Accepted: 01/28/2016] [Indexed: 11/28/2022]
|
37
|
Bahram F, Hydbring P, Tronnersjö S, Zakaria SM, Frings O, Fahlén S, Nilsson H, Goodwin J, von der Lehr N, Su Y, Lüscher B, Castell A, Larsson LG. Interferon-γ-induced p27KIP1 binds to and targets MYC for proteasome-mediated degradation. Oncotarget 2016; 7:2837-54. [PMID: 26701207 PMCID: PMC4823075 DOI: 10.18632/oncotarget.6693] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/21/2015] [Indexed: 11/25/2022] Open
Abstract
The Myc oncoprotein is tightly regulated at multiple levels including ubiquitin-mediated protein turnover. We recently demonstrated that inhibition of Cdk2-mediated phosphorylation of Myc at Ser-62 pharmacologically or through interferon (IFN)-γ-induced expression of p27(Kip1) (p27) repressed Myc's activity to suppress cellular senescence and differentiation. In this study we identified an additional activity of p27 to interfere with Myc independent of Ser-62 phosphorylation. p27 is required and sufficient for IFN-γ-induced turnover of Myc. p27 interacted with Myc in the nucleus involving the C-termini of the two proteins, including Myc box 4 of Myc. The C-terminus but not the Cdk2 binding fragment of p27 was sufficient for inducing Myc degradation. Protein expression data of The Cancer Genome Atlas breast invasive carcinoma set revealed significantly lower Myc protein levels in tumors with highly expressed p27 lacking phosphorylation at Thr-157--a marker for active p27 localized in the nucleus. Further, these conditions correlated with favorable tumor stage and patient outcome. This novel regulation of Myc by IFN-γ/p27(KIP1) potentially offers new possibilities for therapeutic intervention in tumors with deregulated Myc.
Collapse
Affiliation(s)
- Fuad Bahram
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Moreinx AB, Uppsala, Sweden
| | - Per Hydbring
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Susanna Tronnersjö
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- GE Healthcare, Uppsala, Sweden
| | - Siti Mariam Zakaria
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Oliver Frings
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Sara Fahlén
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | - Helén Nilsson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Pathology, Lund University, Lund, Sweden
| | - Jacob Goodwin
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Natalie von der Lehr
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- NatScience, Uppsala, Sweden
| | - Yingtao Su
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- Anxun International Co., Limited, Hong Kong, China
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Alina Castell
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Loukil A, Cheung CT, Bendris N, Lemmers B, Peter M, Blanchard JM. Cyclin A2: At the crossroads of cell cycle and cell invasion. World J Biol Chem 2015; 6:346-50. [PMID: 26629317 PMCID: PMC4657123 DOI: 10.4331/wjbc.v6.i4.346] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/18/2015] [Accepted: 10/12/2015] [Indexed: 02/05/2023] Open
Abstract
Cyclin A2 is an essential regulator of the cell division cycle through the activation of kinases that participate to the regulation of S phase as well as the mitotic entry. However, whereas its degradation by the proteasome in mid mitosis was thought to be essential for mitosis to proceed, recent observations show that a small fraction of cyclin A2 persists beyond metaphase and is degraded by autophagy. Its implication in the control of cytoskeletal dynamics and cell movement has unveiled its role in the modulation of RhoA activity. Since this GTPase is involved in both cell rounding early in mitosis and later, in the formation of the cleavage furrow, this suggests that cyclin A2 is a novel actor in cytokinesis. Taken together, these data point to this cyclin as a potential mediator of cell-niche interactions whose dysregulation could be taken as a hallmark of metastasis.
Collapse
|
39
|
Dickmanns A, Monecke T, Ficner R. Structural Basis of Targeting the Exportin CRM1 in Cancer. Cells 2015; 4:538-68. [PMID: 26402707 PMCID: PMC4588050 DOI: 10.3390/cells4030538] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 12/19/2022] Open
Abstract
Recent studies have demonstrated the interference of nucleocytoplasmic trafficking with the establishment and maintenance of various cancers. Nucleocytoplasmic transport is highly regulated and coordinated, involving different nuclear transport factors or receptors, importins and exportins, that mediate cargo transport from the cytoplasm into the nucleus or the other way round, respectively. The exportin CRM1 (Chromosome region maintenance 1) exports a plethora of different protein cargoes and ribonucleoprotein complexes. Structural and biochemical analyses have enabled the deduction of individual steps of the CRM1 transport cycle. In addition, CRM1 turned out to be a valid target for anticancer drugs as it exports numerous proto-oncoproteins and tumor suppressors. Clearly, detailed understanding of the flexibility, regulatory features and cooperative binding properties of CRM1 for Ran and cargo is a prerequisite for the design of highly effective drugs. The first compound found to inhibit CRM1-dependent nuclear export was the natural drug Leptomycin B (LMB), which blocks export by competitively interacting with a highly conserved cleft on CRM1 required for nuclear export signal recognition. Clinical studies revealed serious side effects of LMB, leading to a search for alternative natural and synthetic drugs and hence a multitude of novel therapeutics. The present review examines recent progress in understanding the binding mode of natural and synthetic compounds and their inhibitory effects.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| | - Thomas Monecke
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| | - Ralf Ficner
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| |
Collapse
|
40
|
Guo H, Li Y, Tian T, Han L, Ruan Z, Liang X, Wang W, Nan K. The role of cytoplasmic p57 in invasion of hepatocellular carcinoma. BMC Gastroenterol 2015; 15:104. [PMID: 26271467 PMCID: PMC4542127 DOI: 10.1186/s12876-015-0319-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 07/16/2015] [Indexed: 12/15/2022] Open
Abstract
Background Our previous research suggested that p57 downregulation could accelerate the growth and invasion of hepatocellular carcinoma in vitro and in vivo. Aim To evaluate the role of cytoplasmic p57 and its regulatory mechanism during hepatocellular carcinoma invasion. Methods We examined the subcellular localization of p57 by immunohistochemistry in 45 pairs of cancerous tissues and adjacent non-cancerous tissues. Moreover, we generated stable p57 knockdown hepatoma cell lines to investigate the mechanism of cytoplasmic p57-mediated regulation of invasion by immunoprecipitation, confocal immunofluorescence microscopy and western blot of nuclear and cytoplasmic extracts. Results Our results showed that cytoplasmic expression of p57 was reduced in specimens from patients with capsular invasion and metastasis (P < 0.05). Moreover, the level of p-cofilin was decreased in the group lacking cytoplasmic p57 expression (P < 0.05). Co-expression of p57 and p-cofilin was reduced in specimens from patients with tumors at later stages (III + IV), tumors showing capsular invasion and metastatic tumors. We further observed that p57 downregulation decreased the assembly of p57 and LIM domain kinase 1 and its kinase activity, subsequently reducing the level of p-cofilin in the cytoplasm. Conclusions Cytoplasmic p57 might be a key regulator in hepatocellular carcinoma invasion via the LIM domain kinase 1/p-cofilin pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12876-015-0319-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Guo
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Yi Li
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Tao Tian
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Lili Han
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Zhiping Ruan
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Xuan Liang
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Wenjuan Wang
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Kejun Nan
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, Shaanxi Province, 710061, P.R. China.
| |
Collapse
|
41
|
Alsaikhan B, Fahlman R, Ding J, Tredget E, Metcalfe PD. Proteomic profile of an acute partial bladder outlet obstruction. Can Urol Assoc J 2015; 9:E114-21. [PMID: 25844096 DOI: 10.5489/cuaj.2267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Partial bladder outlet obstruction (pBOO) is a ubiquitous problem in urology. From posterior urethral valves to prostatic hypertrophy, pBOO results in significant morbidity and mortality. However, the pathophysiology is not completely understood. Proteomics uses mass spectrometry to accurately quantify change in tissue protein concentration. Therefore, we have applied proteomic analysis to a rodent model to assess for protein changes after a surgically induced pBOO. We hypothesize that proteomic analysis after an acute obstruction will determine the most prevalent initial protein response and, potentially, novel molecular pathways. METHODS Sprague Dawley rats underwent a surgically induced pBOO (n = 3 per group) for 3, 7, or 14 days. Bladders were assessed for weight and urodynamic parameters. Proteomics used liquid-chromatography based mass spectrometry. Polymerase chain reaction (PCR) was performed on tissue samples to confirm increased mRNA transcription. RESULTS Bladder weight and capacity increased over the experimental period, but no changes were seen in bladder pressure. Statistically significant increases in protein quantities were seen in 3 proteins related to endoplasmic reticulum stress: GRP-78 (3.66-fold), RhoA (1.90-fold), and RhoA-GDP (1.95-fold), and 2 cytoskeleton molecules: actin (1.7-fold) and tubulin a/b (3.01-fold). Decorin and lumican, members of the small leucine rich proteoglycan (SLRP) family, were also elevated (0.35- and 0.34-fold, respectively). Real-time PCR data confirmed protein elevation. CONCLUSION Our experiment confirms that molecular changes occur very soon after the initiation of pBOO, and implicates several molecular pathways. We believe these insights may provide insight into novel prevention and treatment strategies targeted at the pathophysiology of pBOO.
Collapse
Affiliation(s)
- Bader Alsaikhan
- Division of Experimental Surgery, Department of Surgery, University of Alberta, Edmonton, AB
| | - Richard Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB
| | - Jie Ding
- Division of Experimental Surgery, Department of Surgery, University of Alberta, Edmonton, AB
| | - Edward Tredget
- Division of Plastic Surgery, Department of Surgery, University of Alberta, Edmonton, AB
| | - Peter D Metcalfe
- Division of Pediatric Surgery, Department of Surgery, University of Alberta, Edmonton, AB
| |
Collapse
|
42
|
Zhao D, Besser AH, Wander SA, Sun J, Zhou W, Wang B, Ince T, Durante MA, Guo W, Mills G, Theodorescu D, Slingerland J. Cytoplasmic p27 promotes epithelial-mesenchymal transition and tumor metastasis via STAT3-mediated Twist1 upregulation. Oncogene 2015; 34:5447-59. [PMID: 25684140 PMCID: PMC4537852 DOI: 10.1038/onc.2014.473] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/24/2014] [Accepted: 12/19/2014] [Indexed: 12/12/2022]
Abstract
p27 restrains normal cell growth, but PI3K-dependent C-terminal phosphorylation of p27 at threonine 157 (T157) and T198 promotes cancer cell invasion. Here, we describe an oncogenic feedforward loop in which p27pT157pT198 binds Janus kinase 2 (JAK2) promoting STAT3 (signal transducer and activator of transcription 3) recruitment and activation. STAT3 induces TWIST1 to drive a p27-dependent epithelial-mesenchymal transition (EMT) and further activates AKT contributing to acquisition and maintenance of metastatic potential. p27 knockdown in highly metastatic PI3K-activated cells reduces STAT3 binding to the TWIST1 promoter, TWIST1 promoter activity and TWIST1 expression, reverts EMT and impairs metastasis, whereas activated STAT3 rescues p27 knockdown. Cell cycle-defective phosphomimetic p27T157DT198D (p27CK-DD) activates STAT3 to induce a TWIST1-dependent EMT in human mammary epithelial cells and increases breast and bladder cancer invasion and metastasis. Data support a mechanism in which PI3K-deregulated p27 binds JAK2, to drive STAT3 activation and EMT through STAT3-mediated TWIST1 induction. Furthermore, STAT3, once activated, feeds forward to further activate AKT.
Collapse
Affiliation(s)
- D Zhao
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - A H Besser
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S A Wander
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J Sun
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Zhou
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - B Wang
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - T Ince
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Pathology, Stem Cell Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - M A Durante
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Guo
- Department of Bioinformatics and Computational Biology, and Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - G Mills
- Department of Bioinformatics and Computational Biology, and Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - D Theodorescu
- University of Colorado Cancer Center, University of Colorado, Aurora, CO, USA
| | - J Slingerland
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
43
|
Mukherjee S, Kong J, Brat DJ. Cancer stem cell division: when the rules of asymmetry are broken. Stem Cells Dev 2014; 24:405-16. [PMID: 25382732 DOI: 10.1089/scd.2014.0442] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Asymmetric division of stem cells is a highly conserved and tightly regulated process by which a single stem cell produces two daughter cells and simultaneously directs the differential fate of both: one retains its stem cell identity while the other becomes specialized and loses stem cell properties. Coordinating these events requires control over numerous intra- and extracellular biological processes and signaling networks. In the initial stages, critical events include the compartmentalization of fate determining proteins within the mother cell and their subsequent passage to the appropriate daughter cell. Disturbance of these events results in an altered dynamic of self-renewing and differentiation within the cell population, which is highly relevant to the growth and progression of cancer. Other critical events include proper asymmetric spindle assembly, extrinsic regulation through micro-environmental cues, and noncanonical signaling networks that impact cell division and fate determination. In this review, we discuss mechanisms that maintain the delicate balance of asymmetric cell division in normal tissues and describe the current understanding how some of these mechanisms are deregulated in cancer. The universe is asymmetric and I am persuaded that life, as it is known to us, is a direct result of the asymmetry of the universe or of its indirect consequences. The universe is asymmetric. -Louis Pasteur.
Collapse
Affiliation(s)
- Subhas Mukherjee
- 1 Department of Pathology and Laboratory Medicine, Emory University , Atlanta, Georgia
| | | | | |
Collapse
|
44
|
Ianzano ML, Croci S, Nicoletti G, Palladini A, Landuzzi L, Grosso V, Ranieri D, Dall'Ora M, Santeramo I, Urbini M, De Giovanni C, Lollini PL, Nanni P. Tumor suppressor genes promote rhabdomyosarcoma progression in p53 heterozygous, HER-2/neu transgenic mice. Oncotarget 2014; 5:108-19. [PMID: 24334679 PMCID: PMC3960193 DOI: 10.18632/oncotarget.1171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human sarcomas arise suddenly, thus preempting the study of preneoplastic and early neoplastic lesions. To explore the natural history of these tumors we studied male mice carrying a heterozygous deletion of p53 and an activated HER-2/neu transgene (BALB-p53Neu mice), that develop urethral rhabdomyosarcomas with nearly full penetrance and early onset (4 months of age). Among genes prominently upregulated in preneoplastic tissue, and more highly expressed in tumors, we found the insulin-like growth factor 2 (Igf2) and tumor suppressors, p19Arf and p21Cip1. In urethral tissues of male mice p53 was less expressed than in female mice, whereas HER-2/neu was more expressed, a combination not found in other skeletal muscles of the same mice that could contribute to the anatomic and sexual specificity of BALB-p53Neu rhabdomyosarcoma. Upregulation of p19Arf and p21Cip1 was additively determined by HER-2/neu activation and by p53 inactivation. Silencing of p19Arf or p21Cip1 in rhabdomyosarcoma cell lines can inhibit cell growth and motility, thus suggesting that these genes can contribute to growth autonomy and malignancy of tumor cells. In vivo injection of gene-silenced cells highlighted selective variations in organ-specific metastatic ability, indicating that overexpression of p19Arf and p21Cip1 controlled both tumor cell-intrinsic properties and microenvironmental interactions. The onset of pelvic rhabdomyosarcoma in BALB-p53Neu male mice is triggered by the coincidental overexpression of HER-2/neu and hypoexpression of the residual p53 allele, that foster p53 loss, Igf2 autocriny and overexpression of p19Arf and p21Cip1, a phenotype that could provide novel potential targets for cancer prevention and therapy.
Collapse
Affiliation(s)
- Marianna L Ianzano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The intracellular location and regulation of proteins within each cell is critically important and is typically deregulated in disease especially cancer. The clinical hypothesis for inhibiting the nucleo-cytoplasmic transport is based on the dependence of certain key proteins within malignant cells. This includes a host of well-characterized tumor suppressor and oncoproteins that require specific localization for their function. This aberrant localization of tumour suppressors and oncoproteins results in their their respective inactivation or over-activation. This incorrect localization occurs actively via the nuclear pore complex that spans the nuclear envelope and is mediated by transport receptors. Accordingly, given the significant need for novel, specific disease treatments, the nuclear envelope and the nuclear transport machinery have emerged as a rational therapeutic target in oncology to restore physiological nucleus/cytoplasmic homeostasis. Recent evidence suggests that this approach might be of substantial therapeutic use. This review summarizes the mechanisms of nucleo-cytoplasmic transport, its role in cancer biology and the therapeutic potential of targeting this critical cellular process.
Collapse
Affiliation(s)
- Richard Hill
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Portugal
| | | | | | | |
Collapse
|
46
|
The N-terminal region of p27 inhibits HIF-1α protein translation in ribosomal protein S6-dependent manner by regulating PHLPP-Ras-ERK-p90RSK axis. Cell Death Dis 2014; 5:e1535. [PMID: 25412313 PMCID: PMC4260754 DOI: 10.1038/cddis.2014.496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022]
Abstract
P27 was identified as a tumor suppressor nearly two decades, being implicated in cell-cycle control, differentiation, senescence, apoptosis and motility. Our present study, for the first time to the best of our knowledge, revealed a potential role of p27 in inhibiting S6-mediated hypoxia-inducible factor-1α (HIF-1α) protein translation, which contributed to the protection from environmental carcinogen (sodium arsenite)-induced cell transformation. Our findings showed that depletion of p27 expression by knockout and knockdown approaches efficiently enhanced S6 phosphorylation in arsenite response via overactivating Ras/Raf/MEK/ERK pathway, which consequently resulted in the stimulation of p90RSK (90 kDa ribosomal S6 kinase), a direct kinase for S6 phosphorylation. Although PI3K/AKT pathway was also involved in S6 activation, blocking AKT and p70S6K activation did not attenuate arsenite-induced S6 activation in p27−/− cells, suggesting p27 specifically targeted Ras/ERK pathway rather than PI3K/AKT pathway for inhibition of S6 activation in response to arsenite exposure. Further functional studies found that p27 had a negative role in cell transformation induced by chronic low-dose arsentie exposure. Mechanistic investigations showed that HIF-1α translation was upregulated in p27-deficient cells in an S6 phosphorylation-dependent manner and functioned as a driving force in arsenite-induced cell transformation. Knockdown of HIF-1α efficiently reversed arsenite-induced cell transformation in p27-depleted cells. Taken together, our findings provided strong evidence showing that by targeting Ras/ERK pathway, p27 provided a negative control over HIF-1α protein synthesis in an S6-dependent manner, and abrogated arsenite-induced cell transformation via downregulation of HIF-1α translation.
Collapse
|
47
|
The opposite prognostic significance of nuclear and cytoplasmic p21 expression in resectable gastric cancer patients. J Gastroenterol 2014; 49:1441-52. [PMID: 24127074 DOI: 10.1007/s00535-013-0900-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/06/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Protein p21(Cip1/Waf1) is a cyclin-dependent kinase inhibitor, which plays important roles in cell cycle arrest, senescence, and apoptosis. Interestingly, the nuclear and cytoplasmic p21 executes various functions in the cell. In this study, we investigated the prognostic impact of subcellular p21 expression in gastric cancer (GC). METHODS Expressions of subcellular p21 was assessed by immunohistochemistry using a tissue microarray in a training cohort and it went into a second testing cohort and finally to a validating cohort. Prognostic and predictive role of subcellular p21 expression status was evaluated. We also studied the roles of subcellular p21 in GC cell migration and invasion. RESULTS Nuclear and cytoplasmic p21 protein levels were significantly reduced and increased in GC lesions compared with adjacent non-cancerous tissues, respectively. Low nuclear p21 or high cytoplasmic p21 expression significantly correlated with shorter overall survival (OS), as well as with clinicopathologic characteristics in patients. Multivariate regression analysis showed that low nuclear and high cytoplasmic p21 expression, separately and together, were independent negative markers of OS. Finally, we found that nuclear p21 inhibits but cytoplasmic p21 promotes cell migration and invasion abilities. CONCLUSIONS These findings suggest that nuclear and cytoplasmic p21 protein expression in tumor are novel candidate prognostic markers in resectable human gastric carcinoma, and they exert distinct roles in cell migration and invasion.
Collapse
|
48
|
Tanaka T, Iino M. Sec6 regulated cytoplasmic translocation and degradation of p27 via interactions with Jab1 and Siah1. Cell Signal 2014; 26:2071-85. [DOI: 10.1016/j.cellsig.2014.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 11/25/2022]
|
49
|
Haque I, Banerjee S, De A, Maity G, Sarkar S, Majumdar M, Jha SS, McGragor D, Banerjee SK. CCN5/WISP-2 promotes growth arrest of triple-negative breast cancer cells through accumulation and trafficking of p27(Kip1) via Skp2 and FOXO3a regulation. Oncogene 2014; 34:3152-63. [PMID: 25132260 DOI: 10.1038/onc.2014.250] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/18/2014] [Accepted: 07/03/2014] [Indexed: 02/07/2023]
Abstract
The matricellular protein CCN5/WISP-2 represents a promising target in triple-negative breast cancer (TNBC) because treatment or induced activation of CCN5 in TNBC cells promotes cell growth arrest at the G0/G1 phase, reduces cell proliferation and delays tumor growth in the xenograft model. Our studies found that the p27(Kip1) tumor suppressor protein is upregulated and relocalized to the nucleus from cytoplasm by CCN5 in these cells and that these two events (upregulation and relocalization of p27(Kip1)) are critical for CCN5-induced growth inhibition of TNBC cells. In the absence of CCN5, p27(Kip1) resides mostly in the cytoplasm, which is associated with the aggressive nature of cancer cells. Mechanistically, CCN5 inhibits Skp2 expression, which seems to stabilize the p27(Kip1) protein in these cells. On the other hand, CCN5 also recruits FOXO3a to mediate the transcriptional regulation of p27(Kip1). The recruitment of FOXO3a is achieved by the induction of its expression and activity through shifting from cytoplasm to the nucleus. Our data indicate that CCN5 blocks PI3K/AKT signaling to dephosphorylate at S318, S253 and Thr32 in FOXO3a for nuclear relocalization and activation of FOXO3a. Moreover, inhibition of α6β1 receptors diminishes CCN5 action on p27(Kip1) in TNBC cells. Collectively, these data suggest that CCN5 effectively inhibits TNBC growth through the accumulation and trafficking of p27(Kip1) via Skp2 and FOXO3a regulation, and thus, activation of CCN5 may have the therapeutic potential to kill TNBC.
Collapse
Affiliation(s)
- I Haque
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - S Banerjee
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - A De
- Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA
| | - G Maity
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - S Sarkar
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Department of Anatomy and Cell Biology and Department of Pathology, University of Kansas Medical Center, Kansas City, MO, USA
| | - M Majumdar
- Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA
| | - S S Jha
- Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA
| | - D McGragor
- Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA
| | - S K Banerjee
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA [3] Department of Anatomy and Cell Biology and Department of Pathology, University of Kansas Medical Center, Kansas City, MO, USA
| |
Collapse
|
50
|
Gui P, Labrousse A, Van Goethem E, Besson A, Maridonneau-Parini I, Le Cabec V. Rho/ROCK pathway inhibition by the CDK inhibitor p27(kip1) participates in the onset of macrophage 3D-mesenchymal migration. J Cell Sci 2014; 127:4009-23. [PMID: 25015295 DOI: 10.1242/jcs.150987] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Infiltration of macrophages into tissue can promote tumour development. Depending on the extracellular matrix architecture, macrophages can adopt two migration modes: amoeboid migration--common to all leukocytes, and mesenchymal migration--restricted to macrophages and certain tumour cells. Here, we investigate the initiating mechanisms involved in macrophage mesenchymal migration. We show that a single macrophage is able to use both migration modes. Macrophage mesenchymal migration is correlated with decreased activity of Rho/Rho-associated protein kinase (ROCK) and is potentiated when ROCK is inhibited, suggesting that amoeboid inhibition participates in mechanisms that initiate mesenchymal migration. We identify the cyclin-dependent kinase (CDK) inhibitor p27(kip1) (also known as CDKN1B) as a new effector of macrophage 3D-migration. By using p27(kip1) mutant mice and small interfering RNA targeting p27(kip1), we show that p27(kip1) promotes mesenchymal migration and hinders amoeboid migration upstream of the Rho/ROCK pathway, a process associated with a relocation of the protein from the nucleus to the cytoplasm. Finally, we observe that cytoplasmic p27(kip1) is required for in vivo infiltration of macrophages within induced tumours in mice. This study provides the first evidence that silencing of amoeboid migration through inhibition of the Rho/ROCK pathway by p27(kip1) participates in the onset of macrophage mesenchymal migration.
Collapse
Affiliation(s)
- Philippe Gui
- Centre National de la Recherche Scientifique (CNRS), IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP64182, F-31077 Toulouse, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Arnaud Labrousse
- Centre National de la Recherche Scientifique (CNRS), IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP64182, F-31077 Toulouse, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Emeline Van Goethem
- Centre National de la Recherche Scientifique (CNRS), IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP64182, F-31077 Toulouse, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Arnaud Besson
- INSERM UMR1037-Cancer Research Center of Toulouse, Université de Toulouse, CNRS ERL5294, Toulouse, France
| | - Isabelle Maridonneau-Parini
- Centre National de la Recherche Scientifique (CNRS), IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP64182, F-31077 Toulouse, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Véronique Le Cabec
- Centre National de la Recherche Scientifique (CNRS), IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP64182, F-31077 Toulouse, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| |
Collapse
|