1
|
Gandhi S, Chandna S, Chinnadurai V, Vidyarthi P. A Novel Serum Inflammation Risk-Index (SIRI-RT)-Driven Nomogram for Predicting Secondary Malignancy Outcomes Post-Radiotherapy. Cancers (Basel) 2025; 17:1290. [PMID: 40282466 PMCID: PMC12025649 DOI: 10.3390/cancers17081290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Radiation is often used as the primary treatment for a range of cancers. Nonetheless, its ability to trigger secondary tumors has emerged as a significant issue. Therefore, gaining insight into and predicting radiation-induced secondary cancers is essential for enhancing the long-term prognosis of cancer survivors. BACKGROUND AND OBJECTIVES Previous studies have identified several factors; however, research on the use of serum-based inflammatory markers as prognostic tools for predicting radiation-induced secondary malignancies is limited. Investigating the potential of serum-based inflammation prognostic scores could provide a minimally invasive and affordable method for the early prediction of secondary malignancies. METHODS We retrospectively analyzed a patient cohort with radiation-induced secondary malignancy from the electronic database MIMIC-IV to investigate whether a serum-based inflammatory marker score can serve as a predictive tool. RESULTS This study seeks not only to assess the efficacy of the risk score, but also to develop a clinical utility tool nomogram for predicting the occurrence of radiation-induced secondary cancers. A RISM of 4.28% was observed in a cohort from the MIMIC-IV database using SIRI-RT as a risk index, with the Charlson comorbidity index, chemotherapy, and creatinine levels as significant confounding risk factors. CONCLUSIONS Our study suggests that elevated serum-based inflammation prognostic scores and the nomogram developed herein can be used to predict a greater likelihood of developing secondary malignancies following radiation therapy.
Collapse
Affiliation(s)
| | - Sudhir Chandna
- Institute of Nuclear Medicine and Allied Sciences, Delhi 110054, India; (S.G.); (V.C.)
| | | | | |
Collapse
|
2
|
He J, Ren X, Zhang Q, Wang S, Li Z, Cai K, Li M, Hu Y, Ran Q, Luo Z. Nanoradiosentizers with X ray-actuatable supramolecular aptamer building units for programmable immunostimulatory T cell engagement. Biomaterials 2025; 315:122924. [PMID: 39489019 DOI: 10.1016/j.biomaterials.2024.122924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
The insufficient activation and impaired effector functions of T cells in the immunosuppressive tumor microenvironment (TME) substantially reduces the immunostimulatory effects of radiotherapy. Herein, a multifunctional nanoradiosensitizer is established by integrating molecularly engineered aptamer precursors into cisplatin-loaded liposomes for enhancing radio-immunotherapy of solid tumors. Exposure to ionizing radiation (IR) following the nanoradiosensitizer treatment would induce pronounced immunogenic death (ICD) of tumor cells through cisplatin-mediated radiosensitization while also trigger the detachment of the aptamer precursors, which further self-assemble into PD-L1/PD-1-bispecific aptamer-based T cell engagers (CA) through the bridging effect of tumor-derived ATP to direct T cell binding onto tumor cells in the post-IR TME in a spatial-temporally programmable manner. The CA-mediated post-IR tumor-T cell engagement could override the immunosuppressive barriers in TME and enhance T cell-mediated recognition and elimination of tumor cells while minimizing systemic toxicities. Overall, this work offers an innovative approach to enhance the radio-immunotherapeutic efficacy in the clinics.
Collapse
Affiliation(s)
- Jinming He
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Xijiao Ren
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qiqi Zhang
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Shuang Wang
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Zhongjun Li
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Qian Ran
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
3
|
Rella R, Belli P, Romanucci G, Bufi E, Clauser P, Masiello V, Marazzi F, Morciano F, Gori E, Tommasini O, Fornasa F, Conti M. Association between mammographic breast density and outcome in patients with unilateral invasive breast cancer receiving neoadjuvant chemotherapy. Breast Cancer Res Treat 2025; 210:157-166. [PMID: 39531133 DOI: 10.1007/s10549-024-07548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE To analyze the relationship between mammographic breast density and tumor response and outcome at follow-up, in terms of overall survival (OS) and disease-free survival (DFS), in patients with unilateral invasive breast cancer receiving neoadjuvant chemotherapy (NACT). METHODS A total of 228 women (mean age, 47.6 years ± 10 [SD]; range: 24-74 years) with invasive breast cancer who underwent NACT were included in this observational retrospective study. Clinical, radiological and histopatological data were retrieved. Categorization of breast density was performed by two radiologists in consensus on mammography acquired at the time of diagnosis according to BI-RADS categories. Association between density categories and tumor response was analyzed in the overall population and in subgroups defined by menopausal status, tumor phenotype and stage at diagnosis. Kaplan-Meier (KM) curves were used to estimate the OS and DFS probabilities. Subgroup analyses based on menopausal status and tumor phenotype were performed. RESULTS A total of 30 patients (13.2%) achieved pathological complete response (pCR). No association between density categories and pCR was found (P = 0.973), even at subgroups analysis. The median follow-up time was 92 months. Patients with dense breast showed the longest DFS (P = 0.0094), results confirmed in premenopausal patients (P = 0.0024) and in triple negative breast cancers (P = 0.0292). Density category did not show a statistically significant association with OS. CONCLUSION Breast cancer patients receiving NACT with extremely dense breasts showed better DFS. No evidence of breast density as a predictive marker for complete pathological response or as a prognostic factor in terms of OS was found.
Collapse
Affiliation(s)
- Rossella Rella
- UOC Diagnostica Per Immagini, Ospedale G.B. Grassi, Via Gian Carlo Passeroni, 28, 00122, Rome, Italy
| | - Paolo Belli
- UOC Di Radiologia Toracica e Cardiovascolare, Dipartimento Di Diagnostica Per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
- Facoltà Di Medicina E Chirurgia, Università Cattolica Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Giovanna Romanucci
- UOSD Breast Unit ULSS9, Ospedale Di Marzana, Piazzale Lambranzi, 1, 37142, Verona, Italy
| | - Enida Bufi
- UOC Di Radiologia Toracica e Cardiovascolare, Dipartimento Di Diagnostica Per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Paola Clauser
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Valeria Masiello
- UOC Di Radioterapia Oncologica, Dipartimento Di Diagnostica Per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Fabio Marazzi
- UOC Di Radioterapia Oncologica, Dipartimento Di Diagnostica Per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Francesca Morciano
- Facoltà Di Medicina E Chirurgia, Università Cattolica Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Elisabetta Gori
- Facoltà Di Medicina E Chirurgia, Università Cattolica Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Oscar Tommasini
- UOC Diagnostica Per Immagini, Ospedale G.B. Grassi, Via Gian Carlo Passeroni, 28, 00122, Rome, Italy
| | - Francesca Fornasa
- UOSD Breast Unit ULSS9, Ospedale Di Marzana, Piazzale Lambranzi, 1, 37142, Verona, Italy
| | - Marco Conti
- UOC Di Radiologia Toracica e Cardiovascolare, Dipartimento Di Diagnostica Per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy.
| |
Collapse
|
4
|
He M, Chen S, Yu H, Fan X, Wu H, Wang Y, Wang H, Yin X. Advances in nanoparticle-based radiotherapy for cancer treatment. iScience 2025; 28:111602. [PMID: 39834854 PMCID: PMC11743923 DOI: 10.1016/j.isci.2024.111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Radiotherapy has long been recognized as an effective conventional approach in both clinical and scientific research, primarily through mechanisms involving DNA destruction or the generation of reactive oxygen species to target tumors. However, significant challenges persist, including the unavoidable damage to normal tissues and the development of radiation resistance. As a result, nanotechnology-based radiotherapy has garnered considerable attention for its potential to enhance precision in irradiation, improve radiosensitization, and achieve therapeutic advancements. Importantly, radiotherapy alone frequently falls short of fully eradicating tumors. Consequently, to augment the efficacy of radiotherapy, it is often integrated with other therapeutic strategies. This review elucidates the mechanisms of radiotherapy sensitization based on diverse nanoparticles. Typically, radiotherapy is sensitized through augmenting reactive oxygen species production, targeted radiotherapy, hypoxia relief, enhancement of antitumor immune microenvironment, and G2/M cell cycle arrest. Moreover, the incorporation of nanoparticle-based anti-tumor strategies with radiotherapy markedly enhances the current state of radiotherapy. Additionally, a compilation of clinical trials utilizing nano-radioenhancers is presented. Finally, future prospects for clinical translation in this field are thoroughly examined.
Collapse
Affiliation(s)
- Meijuan He
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shixiong Chen
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai General Hospital Branch of National Center for Translational Medicine (Shanghai), Shanghai 201620, China
| | - Hongwei Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xuhui Fan
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hong Wu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yihui Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai General Hospital Branch of National Center for Translational Medicine (Shanghai), Shanghai 201620, China
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai General Hospital Branch of National Center for Translational Medicine (Shanghai), Shanghai 201620, China
- Jiading Branch of Shanghai General Hospital, Shanghai 201803, China
| | - Xiaorui Yin
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
5
|
Shah V, Lam HY, Leong CHM, Sakaizawa R, Shah JS, Kumar AP. Epigenetic Control of Redox Pathways in Cancer Progression. Antioxid Redox Signal 2025. [PMID: 39815993 DOI: 10.1089/ars.2023.0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Significance: Growing evidence indicates the importance of redox reactions homeostasis, mediated predominantly by reactive oxygen species (ROS) in influencing the development, differentiation, progression, metastasis, programmed cell death, tumor microenvironment, and therapeutic resistance of cancer. Therefore, reviewing the ROS-linked epigenetic changes in cancer is fundamental to understanding the progression and prevention of cancer. Recent Advances: We review in depth the molecular mechanisms involved in ROS-mediated epigenetic changes that lead to alteration of gene expression by altering DNA, modifying histones, and remodeling chromatin and noncoding RNA. Critical Issues: In cancerous cells, alterations of the gene-expression regulatory elements could be generated by the virtue of imbalance in tumor microenvironment. Various oxidizing agents and mitochondrial electron transport chain are the major pathways that generate ROS. ROS plays a key role in carcinogenesis by activating pro-inflammatory signaling pathways and DNA damage. This loss of ROS-mediated epigenetic regulation of the signaling pathways may promote tumorigenesis. We address all such aspects in this review. Future Directions: Developments in this growing field of epigenetics are expected to contribute to further our understanding of human health and diseases such as cancer and to test the clinical applications of redox-based therapy. Recent studies of the cancer-epigenetic landscape have revealed pervasive deregulation of the epigenetic factors in cancer. Thus, the study of interaction between ROS and epigenetic factors in cancer holds a great promise in the development of effective and targeted treatment modalities. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Vandit Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Charlene Hoi-Mun Leong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reo Sakaizawa
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jigna S Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Gockeln L, Wirsdörfer F, Jendrossek V. CD73/adenosine dynamics in treatment-induced pneumonitis: balancing efficacy with risks of adverse events in combined radio-immunotherapies. Front Cell Dev Biol 2025; 12:1471072. [PMID: 39872847 PMCID: PMC11769960 DOI: 10.3389/fcell.2024.1471072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Consolidation with PD-1/PD-L1-based immune checkpoint blockade after concurrent platinum-based chemo-radiotherapy has become the new standard of care for advanced stage III unresectable non-small cell lung cancer (NSCLC) patients. In order to further improve therapy outcomes, innovative combinatorial treatment strategies aim to target additional immunosuppressive barriers in the tumor microenvironment such as the CD73/adenosine pathway. CD73 and adenosine are known as crucial endogenous regulators of lung homeostasis and inflammation, but also contribute to an immunosuppressive tumor microenvironment. Furthermore, the CD73/adenosine pathway can also limit the immune-activating effects of cytotoxic therapies by degrading the pro-inflammatory danger molecule ATP, which is released into the tumor microenvironment and normal lung tissue upon therapy-induced cell damage. Thus, while targeting CD73 may enhance the efficacy of radio-immunotherapies in cancer treatment by mitigating tumor immune escape and improving immune-mediated tumor killing, it also raises concerns about increased immune-related adverse events (irAEs) in the normal tissue. In fact, combined radio-immunotherapies bear an increased risk of irAEs in the lungs, and additional pharmacologic inhibition of CD73 may further enhance the risk of overwhelming or overlapping pulmonary toxicity and thereby limit therapy outcome. This review explores how therapeutic interventions targeting CD73/adenosine dynamics could enhance radiation-induced immune activation in combined radio-immunotherapies, whilst potentially driving irAEs in the lung. We specifically investigate the interactions between radiotherapy and the CD73/adenosine pathway in radiation pneumonitis. Additionally, we compare the incidence of (radiation) pneumonitis reported in relevant trials to determine if there is an increased risk of irAEs in the clinical setting. By understanding these dynamics, we aim to inform future strategies for optimizing radio-immunotherapy regimens, ensuring effective cancer control while preserving pulmonary integrity and patient quality of life.
Collapse
Affiliation(s)
| | | | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Li L, Ge Z, Liu S, Zheng K, Li Y, Chen K, Fu Y, Lei X, Cui Z, Wang Y, Huang J, Liu Y, Duan M, Sun Z, Chen J, Li L, Shen P, Wang G, Chen J, Li R, Li C, Yang Z, Ning Y, Luo A, Chen B, Seim I, Liu X, Wang F, Yao Y, Guo F, Yang M, Liu CH, Fan G, Wang L, Yang D, Zhang L. Multi-omics landscape and molecular basis of radiation tolerance in a tardigrade. Science 2024; 386:eadl0799. [PMID: 39446960 DOI: 10.1126/science.adl0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/05/2024] [Indexed: 10/26/2024]
Abstract
Tardigrades are captivating organisms known for their resilience in extreme environments, including ultra-high-dose radiation, but the underlying mechanisms of this resilience remain largely unknown. Using genome, transcriptome, and proteome analysis of Hypsibius henanensis sp. nov., we explored the molecular basis contributing to radiotolerance in this organism. A putatively horizontally transferred gene, DOPA dioxygenase 1 (DODA1), responds to radiation and confers radiotolerance by synthesizing betalains-a type of plant pigment with free radical-scavenging properties. A tardigrade-specific radiation-induced disordered protein, TRID1, facilitates DNA damage repair through a mechanism involving phase separation. Two mitochondrial respiratory chain complex assembly proteins, BCS1 and NDUFB8, accumulate to accelerate nicotinamide adenine dinucleotide (NAD+) regeneration for poly(adenosine diphosphate-ribosyl)ation (PARylation) and subsequent poly(adenosine diphosphate-ribose) polymerase 1 (PARP1)-mediated DNA damage repair. These three observations expand our understanding of mechanisms of tardigrade radiotolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572006, China
| | | | | | | | | | | | | | | | | | | | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
8
|
Paquette B, Oweida A. Combination of radiotherapy and immunotherapy in duality with the protumoral action of radiation. Cancer Radiother 2024; 28:484-492. [PMID: 39304400 DOI: 10.1016/j.canrad.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/22/2024]
Abstract
Radiotherapy is widely used to treat various cancers. Its combination with immune checkpoint inhibitors is intensively studied preclinically and clinically. Although the first results were very encouraging, the number of patients who respond positively remains low, and the therapeutic benefit is often temporary. This review summarizes how radiation can stimulate an antitumor immune response and its combination with immunotherapy based on inhibiting immune checkpoints. We will provide an overview of radiotherapy parameters that should be better controlled to avoid downregulating the antitumor immune response. The low response rate of combining radiotherapy and immunotherapy could, at least in part, be caused by the stimulation of cancer cell invasion and metastasis development that occur at similar doses and number of radiation fractions. To end on a positive note, we explore how a targeted inhibition of the inflammatory cytokines induced by radiation with a cyclooxygenase-2 inhibitor could both support an antitumor immune response and block radiation-induced metastasis formation.
Collapse
Affiliation(s)
- Benoît Paquette
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | - Ayman Oweida
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
9
|
Chen Y, Li C, Yang J, Wang M, Wang Y, Cheng S, Huang W, Yuan G, Xie M. Intravascular elimination of circulating tumor cells and cascaded embolization with multifunctional 3D tubular scaffolds. J Mater Chem B 2024; 12:9018-9029. [PMID: 39158001 DOI: 10.1039/d4tb01151a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The primary tumor ("root") and circulating tumor cells (CTCs; "seeds") are vital factors in tumor progression. However, current treatment strategies mainly focus on inhibiting the tumor while ignoring CTCs, resulting in tumor metastasis. Here, we design a multifunctional 3D scaffold with interconnected macropores, excellent photothermal ability and perfect bioaffinity as a blood vessel implantable device. When implanted upstream of the primary tumor, the scaffold intercepts CTCs fleeing back to the primary tumor and then forms "micro-thrombi" to block the supply of nutrients and oxygen to the tumor for embolization therapy. The scaffold implanted downstream of the tumor efficiently captures and photothermally kills the CTCs that escape from the tumor, thereby preventing metastasis. Experiments using rabbits demonstrated excellent biosafety of this scaffold with 86% of the CTC scavenging rate, 99% of the tumor inhibition rate and 100% of CTC killing efficiency. The multifunctional 3D scaffold synergistically inhibits the "root" and eliminates the "seeds" of the tumor, demonstrating its potential for localized cancer therapy with few side effects and high antitumor efficacy.
Collapse
Affiliation(s)
- Yijing Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Cuiwen Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Jinghui Yang
- School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yike Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Shibo Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Weihua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guohua Yuan
- School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Min Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Terranova ML. Physiological Roles of Eumelanin- and Melanogenesis-Associated Diseases: A Look at the Potentialities of Engineered and Microbial Eumelanin in Clinical Practice. Bioengineering (Basel) 2024; 11:756. [PMID: 39199714 PMCID: PMC11351163 DOI: 10.3390/bioengineering11080756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
This paper aims to highlight the physiological actions exerted by eumelanin present in several organs/tissues of the human body and to rationalise the often conflicting functional roles played by this biopolymer on the basis of its peculiar properties. Besides pigmentary disorders, a growing number of organ injuries and degenerative pathologies are presently ascribed to the modification of physiological eumelanin levels in terms of alterations in its chemical/structural features, and of a partial loss or uneven distribution of the pigment. The present review analyses the more recent research dedicated to the physiological and pathological actions of eumelanin and provides an insight into some melanogenesis-associated diseases of the skin, eye, ear, and brain, including the most significant neurodegenerative disorders. Also described are the potentialities of therapies based on the localised supply of exogeneous EU and the opportunities that EU produced via synthetic biology offers in order to redesign therapeutical and diagnostic applications.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Dip.to di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", 00133 Roma, Italy
| |
Collapse
|
11
|
Zhou Z, Huang S, Fan F, Xu Y, Moore C, Li S, Han C. The multiple faces of cGAS-STING in antitumor immunity: prospects and challenges. MEDICAL REVIEW (2021) 2024; 4:173-191. [PMID: 38919400 PMCID: PMC11195429 DOI: 10.1515/mr-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 06/27/2024]
Abstract
As a key sensor of double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) detects cytosolic dsDNA and initiates the synthesis of 2'3' cyclic GMP-AMP (cGAMP) that activates the stimulator of interferon genes (STING). This finally promotes the production of type I interferons (IFN-I) that is crucial for bridging innate and adaptive immunity. Recent evidence show that several antitumor therapies, including radiotherapy (RT), chemotherapy, targeted therapies and immunotherapies, activate the cGAS-STING pathway to provoke the antitumor immunity. In the last decade, the development of STING agonists has been a major focus in both basic research and the pharmaceutical industry. However, up to now, none of STING agonists have been approved for clinical use. Considering the broad expression of STING in whole body and the direct lethal effect of STING agonists on immune cells in the draining lymph node (dLN), research on the optimal way to activate STING in tumor microenvironment (TME) appears to be a promising direction. Moreover, besides enhancing IFN-I signaling, the cGAS-STING pathway also plays roles in senescence, autophagy, apoptosis, mitotic arrest, and DNA repair, contributing to tumor development and metastasis. In this review, we summarize the recent advances on cGAS-STING pathway's response to antitumor therapies and the strategies involving this pathway for tumor treatment.
Collapse
Affiliation(s)
- Zheqi Zhou
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Sanling Huang
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Fangying Fan
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yan Xu
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Casey Moore
- Departments of Immunology, Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sirui Li
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
12
|
Pennel K, Dutton L, Melissourgou-Syka L, Roxburgh C, Birch J, Edwards J. Novel radiation and targeted therapy combinations for improving rectal cancer outcomes. Expert Rev Mol Med 2024; 26:e14. [PMID: 38623751 PMCID: PMC11140547 DOI: 10.1017/erm.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/29/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Neoadjuvant radiotherapy (RT) is commonly used as standard treatment for rectal cancer. However, response rates are variable and survival outcomes remain poor, highlighting the need to develop new therapeutic strategies. Research is focused on identifying novel methods for sensitising rectal tumours to RT to enhance responses and improve patient outcomes. This can be achieved through harnessing tumour promoting effects of radiation or preventing development of radio-resistance in cancer cells. Many of the approaches being investigated involve targeting the recently published new dimensions of cancer hallmarks. This review article will discuss key radiation and targeted therapy combination strategies being investigated in the rectal cancer setting, with a focus on exploitation of mechanisms which target the hallmarks of cancer.
Collapse
Affiliation(s)
- Kathryn Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Louise Dutton
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Lydia Melissourgou-Syka
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
- CRUK Scotland Institute, Glasgow, G611BD, UK
| | - Campbell Roxburgh
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
- Academic Unit of Surgery, Glasgow Royal Infirmary, University of Glasgow, Glasgow, G4 0SF, UK
| | - Joanna Birch
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
13
|
Ji Q, Guo Y, Li Z, Zhang X. WTAP regulates the production of reactive oxygen species, promotes malignant progression, and is closely related to the tumor microenvironment in glioblastoma. Aging (Albany NY) 2024; 16:5601-5617. [PMID: 38535989 PMCID: PMC11006471 DOI: 10.18632/aging.205666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/13/2024] [Indexed: 04/06/2024]
Abstract
RNA modifications have been substantiated to regulate the majority of physiological activities in the organism, including the metabolism of reactive oxygen species (ROS), which plays an important role in cells. As for the effect of RNA modification genes on ROS metabolism in glioblastoma (GBM), it has not been studied yet. Therefore, this study aims to screen the RNA modification genes that are most related to ROS metabolism and explore their effects on the biological behavior of GBM in vitro. Here, an association between WTAP and ROS metabolism was identified by bioinformatics analysis, and WTAP was highly expressed in GBM tissue compared with normal brain tissue, which was confirmed by western blotting and immunohistochemical staining. When using a ROS inducer to stimulate GBM cells in the WTAP overexpression group, the ROS level increased more significantly and the expression levels of superoxide dismutase 1 (SOD1) and catalase (CAT) also increased. Next, colony formation assay, wound healing assay, and transwell assay were performed to investigate the proliferation, migration, and invasion of GBM cells. The results showed that WTAP, as an oncogene, promoted the malignant progression of GBM cells. Functional enrichment analysis predicted that WTAP was involved in the regulation of tumor/immune-related functional pathways. Western blotting was used to identify that WTAP had a regulatory effect on the phosphorylation of PI3K/Akt signaling. Finally, based on functional enrichment analysis, we further performed immune-related analysis on WTAP. In conclusion, this study analyzed WTAP from three aspects, which provided new ideas for the treatment of GBM.
Collapse
Affiliation(s)
- Qiankun Ji
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou 466000, Henan, P.R. China
| | - Yazhou Guo
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou 466000, Henan, P.R. China
| | - Zibo Li
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou 466000, Henan, P.R. China
| | - Xiaoyang Zhang
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou 466000, Henan, P.R. China
| |
Collapse
|
14
|
Elmi M, Dass JH, Dass CR. The Various Roles of PEDF in Cancer. Cancers (Basel) 2024; 16:510. [PMID: 38339261 PMCID: PMC10854708 DOI: 10.3390/cancers16030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a natural immunomodulator, anti-inflammatory, anti-angiogenic, anti-tumour growth and anti-metastasis factor, which can enhance tumour response to PEDF but can also conversely have pro-cancerous effects. Inflammation is a major cause of cancer, and it has been proven that PEDF has anti-inflammatory properties. PEDF's functional activity can be investigated through measuring metastatic and metabolic biomarkers that will be discussed in this review.
Collapse
Affiliation(s)
- Mitra Elmi
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.E.); (J.H.D.)
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| | - Joshua H. Dass
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.E.); (J.H.D.)
- Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Crispin R. Dass
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.E.); (J.H.D.)
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
15
|
Song D, Ding Y. A new target of radiotherapy combined with immunotherapy: regulatory T cells. Front Immunol 2024; 14:1330099. [PMID: 38259489 PMCID: PMC10800811 DOI: 10.3389/fimmu.2023.1330099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Radiotherapy is one important treatment for malignant tumours. It is widely believed today that radiotherapy has not only been used as a local tumour treatment method, but also can induce systemic anti-tumour responses by influencing the tumour microenvironment, but its efficacy is limited by the tumour immunosuppression microenvironment. With the advancement of technology, immunotherapy has entered a golden age of rapid development, gradually occupying a place in clinical tumour treatment. Regulatory T cells (Tregs) widely distributing in the tumour microenvironment play an important role in mediating tumour development. This article analyzes immunotherapy, the interaction between Tregs, tumours and radiotherapy. It briefly introduces immunotherapies targeting Tregs, aiming to provide new strategies for radiotherapy combined with Immunotherapy.
Collapse
Affiliation(s)
| | - Yun Ding
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
16
|
Zarakowska E, Guz J, Mijewski P, Wasilow A, Wozniak J, Roszkowski K, Foksinski M, Gackowski D, Olinski R. Intracellular ascorbate is a safe-guard and/or reservoir for plasma vitamin C in prostate cancer patients undergoing radiotherapy. Free Radic Biol Med 2024; 210:230-236. [PMID: 38036068 DOI: 10.1016/j.freeradbiomed.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Prostate cancer (PC) represents one of the most common cancer types worldwide and many patients suffering from this kind of cancer are treated with radiotherapy (RTH). Ionizing irradiation is closely associated with reactive oxygen species (ROS) production and oxidative stress. Over the years the role of vitamin C (VC) in cancer prevention has been highlighted as it may be mediated by its ability to neutralize pro-carcinogenic ROS. However, the debate concerning the presence of VC in blood and its beneficial effect on the survival of cancer patients is inconsistent and controversial. To our best knowledge until recently there have been no studies concerning such a role of intracellular VC (iVC). In the present study, blood and intracellular concentrations of vitamin C were analyzed along with the level of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), as an established marker of the stress condition, in leukocytes of PC patients during the course of radiotherapy. The level of intracellular vitamin C significantly decreased in PC patients in comparison with the healthy group, while there were no differences in blood VC. It was observed that a sub-group of the PC patients reacted to RTH decreasing VC in leukocytes (group A), while the other sub-group acted the other way round, significantly increasing its level (group B). Under stressful conditions (RTH) leukocytes react in two different ways. Both ways are in good agreement with two well recognized functions, proposed for iVC; it may serve as a save factor, to protect the cellular DNA, increasing its concentration inside the cell (group B), and as a reservoir decreasing the VC level inside leukocytes and releasing VC into the plasma to rescue its physiological level (group A). It was also demonstrated that there was a relationship between the level of 8-oxodG in leukocytes' DNA and the markers of RTH toxicity.
Collapse
Affiliation(s)
- Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland.
| | - Jolanta Guz
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland.
| | - Pawel Mijewski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland.
| | - Aleksandra Wasilow
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland.
| | - Jakub Wozniak
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland.
| | - Krzysztof Roszkowski
- Department of Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-821 Bydgoszcz, Poland.
| | - Marek Foksinski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland.
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland.
| | - Ryszard Olinski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland.
| |
Collapse
|
17
|
Wu L, Hong X, Yang C, Yang Y, Li W, Lu L, Cai M, Cao D, Zhuang G, Deng L. Noncanonical MAVS signaling restrains dendritic cell-driven antitumor immunity by inhibiting IL-12. Sci Immunol 2023; 8:eadf4919. [PMID: 38039379 DOI: 10.1126/sciimmunol.adf4919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/06/2023] [Indexed: 12/03/2023]
Abstract
Mitochondrial antiviral signaling protein (MAVS)-mediated cytosolic RNA sensing plays a central role in tumor immunogenicity. However, the effects of host MAVS signaling on antitumor immunity remain unclear. Here, we demonstrate that the host MAVS pathway supports tumor growth and impairs antitumor immunity, whereas MAVS deficiency in dendritic cells (DCs) promotes tumor-reactive CD8+ T cell responses. Specifically, CD8+ T cell priming capacity was enhanced by MAVS ablation in a type I interferon-independent, but IL-12-dependent, manner. Mechanistically, loss of the RIG-I/MAVS cascade activated the noncanonical NF-κB pathway and in turn induced IL-12 production by DCs. MAVS-restrained IL-12 promoted cross-talk between CD8+ T cells and DCs, which was licensed by IFN-γ. Moreover, ablation of host MAVS sensitized tumors to immunotherapy and attenuated radiation resistance, thereby facilitating the maintenance of effector CD8+ T cells. These findings demonstrate that the host MAVS pathway acts as an immune regulator of DC-driven antitumor immunity and support the development of immunotherapies that antagonize MAVS signaling in DCs.
Collapse
Affiliation(s)
- Lingling Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaochuan Hong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanqin Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenwen Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lu Lu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meichun Cai
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 200217, Shanghai, China
| | - Dongqing Cao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guanglei Zhuang
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 200217, Shanghai, China
| | - Liufu Deng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
18
|
Atajanova T, Rahman MM, Konieczkowski DJ, Morris ZS. Radiation-associated secondary malignancies: a novel opportunity for applying immunotherapies. Cancer Immunol Immunother 2023; 72:3445-3452. [PMID: 37658906 PMCID: PMC10992240 DOI: 10.1007/s00262-023-03532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Radiation is commonly used as a treatment intended to cure or palliate cancer patients. Despite remarkable advances in the precision of radiotherapy delivery, even the most advanced forms inevitably expose some healthy tissues surrounding the target site to radiation. On rare occasions, this results in the development of radiation-associated secondary malignancies (RASM). RASM are typically high-grade and carry a poorer prognosis than their non-radiated counterparts. RASM are characterized by a high mutation burden, increased T cell infiltration, and a microenvironment that bears unique inflammatory signatures of prior radiation, including increased expression of various cytokines (e.g., TGF-β, TNF-α, IL4, and IL10). Interestingly, these cytokines have been shown to up-regulate the expression of PD-1 and/or PD-L1-an immune checkpoint receptor/ligand pair that is commonly targeted by immune checkpoint blocking immunotherapies. Here, we review the current understanding of the tumor-immune interactions in RASM, highlight the distinct clinical and molecular characteristics of RASM that may render them immunologically "hot," and propose a rationale for the formal testing of immune checkpoint blockade as a treatment approach for patients with RASM.
Collapse
Affiliation(s)
- Tavus Atajanova
- Biochemistry and Biophysics Program, Amherst College, Amherst, MA, 01002, USA
- Department of Sociology, Amherst College, Amherst, MA, 01002, USA
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Md Mahfuzur Rahman
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - David J Konieczkowski
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, 53726, USA.
| |
Collapse
|
19
|
Lyons KM, Cannon RD, Beumer J, Bakr MM, Love RM. Microbial Analysis of Obturators During Maxillofacial Prosthodontic Treatment Over an 8-Year Period. Cleft Palate Craniofac J 2023; 60:1426-1441. [PMID: 35642284 DOI: 10.1177/10556656221104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to investigate the microbial colonization (by Candida species, anaerobic and facultative anaerobic bacteria) of maxillary obturators used for the restoration of maxillary defects, including during radiotherapy. Retrospective cohort study. Fifteen patients requiring a maxillary obturator prosthesis had swabs of their obturators and adjacent tissues taken at different stages of their treatment over a period of 8 years. Identification of microbial species from the swabs was carried out using randomly amplified polymorphic DNA polymerase chain reaction (RAPD PCR) analysis, checkerboard DNA-DNA hybridization, CHROMagar Candida chromogenic agar, and DNA sequencing. Candida species were detected in all patients and all patients developed mucositis and candidiasis during radiotherapy which was associated with an increase in colonization of surfaces with Candida spp., particularly C albicans. Microbial colonization increased during radiotherapy and as an obturator aged, and decreased following a reline, delivery of a new prosthesis, or antifungal treatment during radiotherapy. Microbial colonization of maxillary obturators was related to the stage of treatment, age of the obturator material, radiotherapy and antifungal medications, and antifungal treatment may be recommended if C albicans colonization of palatal tissues is greater than 105 colony-forming units per cm2 following the first week of radiotherapy.
Collapse
Affiliation(s)
- Karl M Lyons
- Department of Oral Rehabilitation and Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard D Cannon
- Department of Oral Sciences and Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - John Beumer
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Mahmoud M Bakr
- School of Medicine and Dentistry, Griffith University, Queensland, Australia
| | - Robert M Love
- School of Medicine and Dentistry, Griffith University, Queensland, Australia
| |
Collapse
|
20
|
Aboussekhra A, Alraouji NN, Al-Mohanna FH, Al-Khalaf H. Ionizing radiation normalizes the features of active breast cancer stromal fibroblasts and suppresses their paracrine pro-carcinogenic effects. Transl Oncol 2023; 37:101780. [PMID: 37672859 PMCID: PMC10485626 DOI: 10.1016/j.tranon.2023.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Radiotherapy is an important therapeutic strategy for breast cancer patients through reducing the chances of recurrence and metastasis, which are fueled by cancer-associated fibroblasts (CAFs). Thereby, we addressed here the effect of various doses of X-rays on breast CAFs and their adjacent counterparts. METHODS We have used WST1 and annexin V-associated with flow cytometry to test the cytotoxic effects of X-rays. Immunoblotting and ELISA was used to assess the expression/secretion of various proteins. Immunohistochemistry was utilized to determine the level of β-galactosidase and Ki-67. Sphere formation assay was used to test the ability of breast cancer cells to form tumorspheres. Orthotopic tumor xenografts were also used to evaluate the effect of X-ray-treated breast stromal fibroblasts on breast cancer tumor growth in vivo. RESULTS Breast stromal fibroblasts showed high resistance to X-rays. While the low dose (5 Gy) inhibited cell proliferation and the active features of CAFs, the higher doses (16 and 50 Gy) promoted senescence. However, this was not accompanied by the senescence-associated secretory phenotype (SASP), but rather a reduction in the synthesis/secretion of various cancer-associated cytokines. Additionally, X-rays suppressed the features of active breast stromal fibroblasts, and their paracrine pro-carcinogenic effects. The ablative dose (16 Gy) inhibited the capacity of active stromal fibroblasts to promote the pro-metastatic processes epithelial-to-mesenchymal transition, the formation of cancer stem cells, as well as the growth of humanized orthotopic breast tumor xenografts. CONCLUSION Together, these findings indicate that X-rays can normalize the features of active breast stromal fibroblasts through promoting senescence without SASP.
Collapse
Affiliation(s)
- Abdelilah Aboussekhra
- Department of Molecular Oncology, Cancer Biology and Experimental Therapeutics Section, King Faisal Specialist Hospital and Research Center, MBC # 03, PO BOX 3354, Riyadh 11211, Saudi Arabia.
| | - Noura N Alraouji
- Department of Molecular Oncology, Cancer Biology and Experimental Therapeutics Section, King Faisal Specialist Hospital and Research Center, MBC # 03, PO BOX 3354, Riyadh 11211, Saudi Arabia
| | - Falah H Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Huda Al-Khalaf
- Department of Molecular Oncology, Cancer Biology and Experimental Therapeutics Section, King Faisal Specialist Hospital and Research Center, MBC # 03, PO BOX 3354, Riyadh 11211, Saudi Arabia; The Healthy Aging Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11211, Saudi Arabia
| |
Collapse
|
21
|
Sartorius D, Blume ML, Fleischer JR, Ghadimi M, Conradi LC, De Oliveira T. Implications of Rectal Cancer Radiotherapy on the Immune Microenvironment: Allies and Foes to Therapy Resistance and Patients' Outcome. Cancers (Basel) 2023; 15:5124. [PMID: 37958298 PMCID: PMC10650490 DOI: 10.3390/cancers15215124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Aside from surgical resection, locally advanced rectal cancer is regularly treated with neoadjuvant chemoradiotherapy. Since the concept of cancer treatment has shifted from only focusing on tumor cells as drivers of disease progression towards a broader understanding including the dynamic tumor microenvironment (TME), the impact of radiotherapy on the TME and specifically the tumor immune microenvironment (TIME) is increasingly recognized. Both promoting as well as suppressing effects on anti-tumor immunity have been reported in response to rectal cancer (chemo-)radiotherapy and various targets for combination therapies are under investigation. A literature review was conducted searching the PubMed database for evidence regarding the pleiotropic effects of (chemo-)radiotherapy on the rectal cancer TIME, including alterations in cytokine levels, immune cell populations and activity as well as changes in immune checkpoint proteins. Radiotherapy can induce immune-stimulating and -suppressive alterations, potentially mediating radioresistance. The response is influenced by treatment modalities, including the dosage administered and the highly individual intrinsic pre-treatment immune status. Directly addressing the main immune cells of the TME, this review aims to highlight therapeutical implications since efficient rectal cancer treatment relies on personalized strategies combining conventional therapies with immune-modulating approaches, such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| |
Collapse
|
22
|
Hao Y, Ren T, Huang X, Li M, Lee JH, Chen Q, Liu R, Tang Q. Rapid phosphorylation of glucose-6-phosphate dehydrogenase by casein kinase 2 sustains redox homeostasis under ionizing radiation. Redox Biol 2023; 65:102810. [PMID: 37478541 PMCID: PMC10404535 DOI: 10.1016/j.redox.2023.102810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
Exposure to ionizing radiation leads to oxidative damages in living cells. NADPH provides the indispensable reducing power to regenerate the reduced glutathione to maintain cellular redox equilibria. In mammalian cells, pentose phosphate pathway (PPP) is the major route to produce NADPH by using glycolytic intermediates, and the rate-limiting step of PPP is controlled by glucose-6-phosphate dehydrogenase (G6PD). Nevertheless, whether G6PD is timely co-opted under ionizing radiation to cope with oxidative stress remains elusive. Here we show that cellular G6PD activity is induced 30 min after ionizing radiation, while its protein expression is mostly unchanged. Mechanistically, casein kinase 2 (CK2) phosphorylates G6PD T145 under ionizing radiation, which consolidates the enzymatic activity of G6PD by facilitating G6PD binding with its substrate NADP+. Further, CK2-dependent G6PD T145 phosphorylation promotes NADPH production, decreases ROS level and supports cell proliferation under ionizing radiation. Our findings report a new anti-oxidative signaling route under ionizing radiation, by which CK2-mediated rapid activation of G6PD orchestrates NADPH synthesis to maintain redox homeostasis, thereby highlighting its potential value in the early treatment of ionizing radiation-induced injuries.
Collapse
Affiliation(s)
- Yilong Hao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, PR China
| | - Tao Ren
- Oncology Department (Key Clinical Specialty of Sichuan Province), The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, PR China
| | - Xiaoke Huang
- Department of Urology, Xindu District People's Hospital of Chengdu, Chengdu, 610500, China
| | - Mi Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduated School of Dong-A University, Busan, 49315, Republic of Korea
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, PR China.
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Qingfeng Tang
- Department of Urology, Xindu District People's Hospital of Chengdu, Chengdu, 610500, China.
| |
Collapse
|
23
|
Jia H, Wei P, Zhou S, Hu Y, Zhang C, Liang L, Li B, Gan Z, Xia Y, Jiang H, Shao M, Guo S, Yang Z, Zhong J, Ren F, Zhang H, Zhang Y, Zhao T. Attenuated Salmonella carrying siRNA-PD-L1 and radiation combinatorial therapy induces tumor regression on HCC through T cell-mediated immuno-enhancement. Cell Death Discov 2023; 9:318. [PMID: 37640735 PMCID: PMC10462685 DOI: 10.1038/s41420-023-01603-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent type of aggressive liver cancer, accounts for the majority of liver cancer diagnoses and fatalities. Despite recent advancements in HCC treatment, it remains one of the deadliest cancers. Radiation therapy (RT) is among the locoregional therapy modalities employed to treat unresectable or medically inoperable HCC. However, radioresistance poses a significant challenge. It has been demonstrated that RT induced the upregulation of programmed death ligand 1 (PD-L1) on tumor cells, which may affect response to PD-1-based immunotherapy, providing a rationale for combining PD-1/PD-L1 inhibitors with radiation. Here, we utilized attenuated Salmonella as a carrier to explore whether attenuated Salmonella carrying siRNA-PD-L1 could effectively enhance the antitumor effect of radiotherapy on HCC-bearing mice. Our results showed that a combination of siRNA-PD-L1 and radiotherapy had a synergistic antitumor effect by inhibiting the expression of PD-L1 induced by radiation therapy. Mechanistic insights indicated that the combination treatment significantly suppressed tumor cell proliferation, promoted cell apoptosis, and stimulated immune cell infiltration and activation in tumor tissues. Additionally, the combination treatment increased the ratios of CD4+ T, CD8+ T, and NK cells from the spleen in tumor-bearing mice. This study presents a novel therapeutic strategy for HCC treatment, especially for patients with RT resistance.
Collapse
Affiliation(s)
- Huijie Jia
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Pengkun Wei
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Shijie Zhou
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Yuanyuan Hu
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Chunjing Zhang
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Lirui Liang
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Bingqing Li
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Zerui Gan
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Yuanling Xia
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Hanyu Jiang
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Mingguang Shao
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Sheng Guo
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Zishan Yang
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Jiateng Zhong
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Feng Ren
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Huiyong Zhang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Science And Technology, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China.
| | - Tiesuo Zhao
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China.
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China.
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China.
| |
Collapse
|
24
|
Asurappulige HSH, Thomas AD, Morse HR. Genotoxicity of cytokines at chemotherapy-induced 'storm' concentrations in a model of the human bone marrow. Mutagenesis 2023; 38:201-215. [PMID: 37326959 PMCID: PMC10448863 DOI: 10.1093/mutage/gead018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
Donor cell leukaemia (DCL) is a complication of haematopoietic stem cell transplantation where donated cells become malignant within the patient's bone marrow. As DCL predominates as acute myeloid leukaemia, we hypothesized that the cytokine storm following chemotherapy played a role in promoting and supporting leukaemogenesis. Cytokines have also been implicated in genotoxicity; thus, we explored a cell line model of the human bone marrow (BM) to secrete myeloid cytokines following drug treatment and their potential to induce micronuclei. HS-5 human stromal cells were exposed to mitoxantrone (MTX) and chlorambucil (CHL) and, for the first time, were profiled for 80 cytokines using an array. Fifty-four cytokines were detected in untreated cells, of which 24 were upregulated and 10 were downregulated by both drugs. FGF-7 was the lowest cytokine to be detected in both untreated and treated cells. Eleven cytokines not detected at baseline were detected following drug exposure. TNFα, IL6, GM-CSF, G-CSF, and TGFβ1 were selected for micronuclei induction. TK6 cells were exposed to these cytokines in isolation and in paired combinations. Only TNFα and TGFβ1 induced micronuclei at healthy concentrations, but all five cytokines induced micronuclei at storm levels, which was further increased when combined in pairs. Of particular concern was that some combinations induced micronuclei at levels above the mitomycin C positive control; however, most combinations were less than the sum of micronuclei induced following exposure to each cytokine in isolation. These data infer a possible role for cytokines through chemotherapy-induced cytokine storm, in the instigation and support of leukaemogenesis in the BM, and implicate the need to evaluate individuals for variability in cytokine secretion as a potential risk factor for complications such as DCL.
Collapse
Affiliation(s)
- Harshini S H Asurappulige
- School of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Adam D Thomas
- School of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - H Ruth Morse
- School of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
25
|
Zhang Y, Lv N, Li M, Liu M, Wu C. Cancer-associated fibroblasts: tumor defenders in radiation therapy. Cell Death Dis 2023; 14:541. [PMID: 37607935 PMCID: PMC10444767 DOI: 10.1038/s41419-023-06060-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment that are involved in multiple aspects of cancer progression and considered contributors to tumor immune escape. CAFs exhibit a unique radiation resistance phenotype, and can survive clinical radiation doses; however, ionizing radiation can induce changes in their secretions and influence tumor progression by acting on tumor and immune cells. In this review, we describe current knowledge of the effects of radiation therapies on CAFs, as well as summarizing understanding of crosstalk among CAFs, tumor cells, and immune cells. We highlight the important role of CAFs in radiotherapy resistance, and discuss current and future radiotherapy strategies for targeting CAFs.
Collapse
Affiliation(s)
- Yalin Zhang
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Na Lv
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Manshi Li
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Ming Liu
- Department of Clinical Epidemiology, Fourth Affiliated Hospital of China Medical University, Liaoning, China.
| | - Chunli Wu
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China.
| |
Collapse
|
26
|
Chen Q, Chen J, Zhang Q, Yang P, Gu R, Ren H, Dai Y, Huang S, Wu J, Wu X, Hu Y, Yuan A. Combining High-Z Sensitized Radiotherapy with CD73 Blockade to Boost Tumor Immunotherapy. ACS NANO 2023. [PMID: 37327456 DOI: 10.1021/acsnano.2c11403] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Radiation therapy (RT) has the capacity to induce immunogenic death in tumor cells, thereby potentially inducing in situ vaccination (ISV) to prime systemic antitumor immune responses. However, RT alone is often faced with various limitations during ISV induction, such as insufficient X-ray deposition and an immunosuppressive microenvironment. To overcome these limitations, we constructed nanoscale coordination particles AmGd-NPs by self-assembling high-Z metal gadolinium (Gd) and small molecular CD73 inhibitor AmPCP. Then, AmGd-NPs could synergize with RT to enhance immunogenic cell death, improve phagocytosis, and promote antigen presentation. Additionally, AmGd-NPs could also gradually release AmPCP to inhibit CD73's enzymatic activity and prevent the conversion of extracellular ATP to adenosine (Ado), thereby driving a proinflammatory tumor microenvironment that promotes DC maturation. As a result, AmGd-NPs sensitized RT induced potent in situ vaccination and boosted CD8+ T cell-dependent antitumor immune responses against both primary and metastatic tumors, which could also be potentiated by immune checkpoint inhibitory therapy.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing 210093, China
| | - Jing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing 210093, China
| | - Qingqing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing 210093, China
| | - Peizheng Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing 210093, China
| | - Rong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing 210093, China
| | - Hao Ren
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing 210093, China
| | - Yue Dai
- Evaluation Center of Jiangsu Medical Products Administration, Nanjing 210093, China
| | - Shiqian Huang
- State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
27
|
Hill IE, Boyd M, Milligan K, Jenkins CA, Sorensen A, Jirasek A, Graham D, Faulds K. Understanding radiation response and cell cycle variation in brain tumour cells using Raman spectroscopy. Analyst 2023; 148:2594-2608. [PMID: 37166147 PMCID: PMC10228487 DOI: 10.1039/d3an00121k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
Radiation therapy is currently utilised in the treatment of approximately 50% of cancer patients. A move towards patient tailored radiation therapy would help to improve the treatment outcome for patients as the inter-patient and intra-patient heterogeneity of cancer leads to large differences in treatment responses. In radiation therapy, a typical treatment outcome is cell cycle arrest which leads to cell cycle synchronisation. As treatment is typically given over multiple fractions it is important to understand how variation in the cell cycle can affect treatment response. Raman spectroscopy has previously been assessed as a method for monitoring radiation response in cancer cells and has shown promise in detecting the subtle biochemical changes following radiation exposure. This study evaluated Raman spectroscopy as a potential tool for monitoring cellular response to radiation in synchronised versus unsynchronised UVW human glioma cells in vitro. Specifically, it was hypothesised that the UVW cells would demonstrate a greater radiation resistance if the cell cycle phase of the cells was synchronised to the G1/S boundary prior to radiation exposure. Here we evaluated whether Raman spectroscopy, combined with cell cycle analysis and DNA damage and repair analysis (γ-H2AX assay), could discriminate the subtle cellular changes associated with radiation response. Raman spectroscopy combined with principal component analysis (PCA) was able to show the changes in radiation response over 24 hours following radiation exposure. Spectral changes were assigned to variations in protein, specifically changes in protein signals from amides as well as changes in lipid expression. A different response was observed between cells synchronised in the cell cycle and unsynchronised cells. After 24 hours following irradiation, the unsynchronised cells showed greater spectral changes compared to the synchronised cells demonstrating that the cell cycle plays an important role in the radiation resistance or sensitivity of the UVW cells, and that radiation resistance could be induced by controlling the cell cycle. One of the main aims of cancer treatment is to stop the proliferation of cells by controlling or halting progression through the cell cycle, thereby highlighting the importance of controlling the cell cycle when studying the effects of cancer treatments such as radiation therapy. Raman spectroscopy has been shown to be a useful tool for evaluating the changes in radiation response when the cell cycle phase is controlled and therefore highlighting its potential for assessing radiation response and resistance.
Collapse
Affiliation(s)
- Iona E Hill
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Marie Boyd
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G1 1XQ, UK
| | - Kirsty Milligan
- Department of Physics, The University of British Columbia, Kelowna, Canada
| | - Cerys A Jenkins
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Annette Sorensen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G1 1XQ, UK
| | - Andrew Jirasek
- Department of Physics, The University of British Columbia, Kelowna, Canada
| | - Duncan Graham
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Karen Faulds
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
28
|
Baaz M, Cardilin T, Lignet F, Zimmermann A, El Bawab S, Gabrielsson J, Jirstrand M. Model-based assessment of combination therapies - ranking of radiosensitizing agents in oncology. BMC Cancer 2023; 23:409. [PMID: 37149596 PMCID: PMC10164338 DOI: 10.1186/s12885-023-10899-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/27/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND To increase the chances of finding efficacious anticancer drugs, improve development times and reduce costs, it is of interest to rank test compounds based on their potential for human use as early as possible in the drug development process. In this paper, we present a method for ranking radiosensitizers using preclinical data. METHODS We used data from three xenograft mice studies to calibrate a model that accounts for radiation treatment combined with radiosensitizers. A nonlinear mixed effects approach was utilized where between-subject variability and inter-study variability were considered. Using the calibrated model, we ranked three different Ataxia telangiectasia-mutated inhibitors in terms of anticancer activity. The ranking was based on the Tumor Static Exposure (TSE) concept and primarily illustrated through TSE-curves. RESULTS The model described data well and the predicted number of eradicated tumors was in good agreement with experimental data. The efficacy of the radiosensitizers was evaluated for the median individual and the 95% population percentile. Simulations predicted that a total dose of 220 Gy (5 radiation sessions a week for 6 weeks) was required for 95% of tumors to be eradicated when radiation was given alone. When radiation was combined with doses that achieved at least 8 [Formula: see text] of each radiosensitizer in mouse blood, it was predicted that the radiation dose could be decreased to 50, 65, and 100 Gy, respectively, while maintaining 95% eradication. CONCLUSIONS A simulation-based method for calculating TSE-curves was developed, which provides more accurate predictions of tumor eradication than earlier, analytically derived, TSE-curves. The tool we present can potentially be used for radiosensitizer selection before proceeding to subsequent phases of the drug discovery and development process.
Collapse
Affiliation(s)
- Marcus Baaz
- Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg, Sweden.
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden.
| | - Tim Cardilin
- Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg, Sweden
| | - Floriane Lignet
- Translational Medicine, Quantitative Pharmacology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Astrid Zimmermann
- Translation Innovation Platform Oncology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Samer El Bawab
- Translational Medicine, Quantitative Pharmacology, Merck Healthcare KGaA, Darmstadt, Germany
- Present Address: Translational Medicine, Servier, Suresnes, France
| | | | - Mats Jirstrand
- Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg, Sweden
| |
Collapse
|
29
|
Li ZZ, He JY, Wu Q, Liu B, Bu LL. Recent advances in targeting myeloid-derived suppressor cells and their applications to radiotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:233-264. [PMID: 37438019 DOI: 10.1016/bs.ircmb.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of heterogenous immature myeloid cells with potent immune suppressive properties that not only constrain anti-tumor immune activation and functions, promote tumor progression, but also contribute to treatment resistance and tumor relapse. Targeting MDSCs may be a promising new cancer treatment method, but there is still a problem of low treatment efficiency. Combined application with radiotherapy may be a potential method to solve this problem. Drug delivery systems (DDSs) provide more efficient targeted drug delivery capability and can reduce the toxicity and side effects of drugs. Recent advance in DDSs targeting development, recruitment, differentiation, and elimination of MDSCs have shown promising effect in reversing immune inhibition and in overcoming radiotherapy resistance. In this review, we systematically summarized DDSs applied to target MDSCs for the first time, and classified and discussed it according to its different mechanisms of action. In addition, this paper also reviewed the biological characteristics of MDSCs and their role in the initiation, progression, and metastasis of cancer. Moreover, this review also summarizes the role of DDSs targeting MDSCs in radiosensitization. Finally, the future development of DDSs targeting MDSCs is also prospected.
Collapse
Affiliation(s)
- Zi-Zhan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jing-Yu He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
30
|
Lutsyk M, Taha T, Billan S. Can lymphocytes serve as a predictor of response to preoperative chemoradiation therapy for locally advanced rectal cancer? Front Oncol 2023; 13:1138299. [PMID: 37077836 PMCID: PMC10109464 DOI: 10.3389/fonc.2023.1138299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
IntroductionThe aim of this study is to identify factors that may predict the response of locally advanced rectal cancer tumors (LARC) to neoadjuvant chemoradiotherapy (CRT) and to evaluate the effect of circulating lymphocytes on pathological tumor response.MethodsThis retrospective study included neoadjuvant CRT-treated, LARC-diagnosed patients at the Rambam Health Care Campus in Haifa, Israel. CHAID analysis, t-test, χ2 test, and ROC curve analyses were performed to explore the association between pathological complete response (pCR) and several factors including patient demographics, tumor characteristics, type of treatment, and levels of circulating lymphocytes measured on a weekly basis.ResultsOut of 198 patients enrolled in the study, pCR was achieved in 50 patients (25%). ROC curve and CHAID analyses showed that absolute lymphopenia was significantly associated with lower pCR rates (p=0.046 and p=0.001, respectively). Other factors that were found to have a significant impact were radiation therapy type (p=0.033) and tumor distance from the anal verge (p= 0.041).ConclusionAn absolute decrease in the level of circulating lymphocytes during preoperative CRT to LARC is associated with poorer tumor response to treatment and thus may serve as a predictive biomarker for treatment resistance.
Collapse
Affiliation(s)
| | - Tarek Taha
- The Baruch Padeh Medical Center, Poriya, Poriah, Israel
- *Correspondence: Tarek Taha,
| | | |
Collapse
|
31
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part II: Hematopoietic system, lung and liver. JOURNAL OF RADIATION RESEARCH 2023; 64:228-249. [PMID: 36773331 PMCID: PMC10036110 DOI: 10.1093/jrr/rrad003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data have greatly contributed to the estimation of the dose and dose-rate effectiveness factor (DDREF) for human populations, studies using animal models have made significant contributions to provide quantitative data with mechanistic insights. The current article aims at compiling the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. This review focuses specifically on the results that explain the biological mechanisms underlying dose-rate effects and their potential involvement in radiation-induced carcinogenic processes. Since the adverse outcome pathway (AOP) concept together with the key events holds promise for improving the estimation of radiation risk at low doses and low dose-rates, the review intends to scrutinize dose-rate dependency of the key events in animal models and to consider novel key events involved in the dose-rate effects, which enables identification of important underlying mechanisms for linking animal experimental and human epidemiological studies in a unified manner.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author, Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel:+81-95-819-7116; Fax:+81-95-819-7117; E-mail:
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
32
|
Pfau LC, Glasow A, Seidel C, Patties I. Imidazolyl Ethanamide Pentandioic Acid (IEPA) as Potential Radical Scavenger during Tumor Therapy in Human Hematopoietic Stem Cells. Molecules 2023; 28:molecules28052008. [PMID: 36903253 PMCID: PMC10004037 DOI: 10.3390/molecules28052008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Radiochemotherapy-associated leuco- or thrombocytopenia is a common complication, e.g., in head and neck cancer (HNSCC) and glioblastoma (GBM) patients, often compromising treatments and outcomes. Currently, no sufficient prophylaxis for hematological toxicities is available. The antiviral compound imidazolyl ethanamide pentandioic acid (IEPA) has been shown to induce maturation and differentiation of hematopoietic stem and progenitor cells (HSPCs), resulting in reduced chemotherapy-associated cytopenia. In order for it to be a potential prophylaxis for radiochemotherapy-related hematologic toxicity in cancer patients, the tumor-protective effects of IEPA should be precluded. In this study, we investigated the combinatorial effects of IEPA with radio- and/or chemotherapy in human HNSCC and GBM tumor cell lines and HSPCs. Treatment with IEPA was followed by irradiation (IR) or chemotherapy (ChT; cisplatin, CIS; lomustine, CCNU; temozolomide, TMZ). Metabolic activity, apoptosis, proliferation, reactive oxygen species (ROS) induction, long-term survival, differentiation capacity, cytokine release, and DNA double-strand breaks (DSBs) were measured. In tumor cells, IEPA dose-dependently diminished IR-induced ROS induction but did not affect the IR-induced changes in metabolic activity, proliferation, apoptosis, or cytokine release. In addition, IEPA showed no protective effect on the long-term survival of tumor cells after radio- or chemotherapy. In HSPCs, IEPA alone slightly enhanced CFU-GEMM and CFU-GM colony counts (2/2 donors). The IR- or ChT-induced decline of early progenitors could not be reversed by IEPA. Our data indicate that IEPA is a potential candidate for the prevention of hematologic toxicity in cancer treatment without affecting therapeutic benefits.
Collapse
|
33
|
Combined Loco-Regional and Systemic Treatment Strategies for Hepatocellular Carcinoma: From Basics to New Developments. Cardiovasc Intervent Radiol 2023; 46:175-186. [PMID: 36478027 DOI: 10.1007/s00270-022-03327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Recent advances in systemic therapeutic options have led to improved survival in patients with advanced hepatocellular carcinoma. In order to optimize patient outcomes across different disease stages, attempts are being made at exploiting combinations of loco-regional treatments and systemic therapeutic regimens. The possibilities of a beneficial synergistic effect are strongly supported by biological evidence of changes in tumor microenvironment and systemic immunity. With the advent of newer interventional technologies and newer biological and immunological drugs, these possibilities keep on gaining interest and expectations, yet many questions remain unanswered as to how to best manipulate and combine the two therapeutic approaches.This review aims at providing a general overview of biological foundations, preliminary clinical applications, critical issues and future directions of this constantly growing field.
Collapse
|
34
|
Wang Z, Wang T, Chen X, Cheng J, Wang L. Pterostilbene regulates cell proliferation and apoptosis in non-small-cell lung cancer via targeting COX-2. Biotechnol Appl Biochem 2023; 70:106-119. [PMID: 35231150 DOI: 10.1002/bab.2332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/05/2022] [Indexed: 11/11/2022]
Abstract
Non-small-cell lung cancer (NSCLC), occupying a great proportion of lung cancer, threatens the health of patients, and the cyclooxygenase-2 (COX-2) expression is found to be upregulated in lung cancer. Pterostilbene (PTE) is perceived as a novel method for clinical therapy due to its high performance. However, the mechanism underlying and the interaction between PTE and COX-2 remain vague. We simulated radiation circumstances and transfected cells with the interference of PTE and COX-2. Our results showed that radiation or PTE treatment alone restrained cell proliferation and viability while stimulating cell apoptosis, and the above properties were strengthened when the two were in combination. The COX-2 expression was promoted by radiation but was reduced by PTE. PTE reversed the effects of radiation on the COX-2 expression. COX-2 knockdown suppressed COX-2 expression and proliferation and enhanced apoptosis of cells suffering radiation, while COX-2 overexpression reversed the inhibition of PTE. Our study suggested PTE regulated NSCLC cell proliferation and apoptosis via targeting COX-2, which might shed a light on cancer therapy.
Collapse
Affiliation(s)
- Zhimin Wang
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Tingting Wang
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Xu Chen
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Jing Cheng
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Lijuan Wang
- Respiratory and Critical Care Medicine Department, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| |
Collapse
|
35
|
Zhang H, Mao Z, Kang Y, Zhang W, Mei L, Ji X. Redox regulation and its emerging roles in cancer treatment. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
He L, Yu X, Li W. Recent Progress and Trends in X-ray-Induced Photodynamic Therapy with Low Radiation Doses. ACS NANO 2022; 16:19691-19721. [PMID: 36378555 DOI: 10.1021/acsnano.2c07286] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The prominence of photodynamic therapy (PDT) in treating superficial skin cancer inspires innovative solutions for its congenitally deficient shadow penetration of the visible-light excitation. X-ray-induced photodynamic therapy (X-PDT) has been proven to be a successful technique in reforming the conventional PDT for deep-seated tumors by creatively utilizing penetrating X-rays as external excitation sources and has witnessed rapid developments over the past several years. Beyond the proof-of-concept demonstration, recent advances in X-PDT have exhibited a trend of minimizing X-ray radiation doses to quite low values. As such, scintillating materials used to bridge X-rays and photosensitizers play a significant role, as do diverse well-designed irradiation modes and smart strategies for improving the tumor microenvironment. Here in this review, we provide a comprehensive summary of recent achievements in X-PDT and highlight trending efforts using low doses of X-ray radiation. We first describe the concept of X-PDT and its relationships with radiodynamic therapy and radiotherapy and then dissect the mechanism of X-ray absorption and conversion by scintillating materials, reactive oxygen species evaluation for X-PDT, and radiation side effects and clinical concerns on X-ray radiation. Finally, we discuss a detailed overview of recent progress regarding low-dose X-PDT and present perspectives on possible clinical translation. It is expected that the pursuit of low-dose X-PDT will facilitate significant breakthroughs, both fundamentally and clinically, for effective deep-seated cancer treatment in the near future.
Collapse
|
37
|
Barcellos-Hoff MH. The radiobiology of TGFβ. Semin Cancer Biol 2022; 86:857-867. [PMID: 35122974 DOI: 10.1016/j.semcancer.2022.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023]
Abstract
Ionizing radiation is a pillar of cancer therapy that is deployed in more than half of all malignancies. The therapeutic effect of radiation is attributed to induction of DNA damage that kills cancers cells, but radiation also affects signaling that alters the composition of the tumor microenvironment by activating transforming growth factor β (TGFβ). TGFβ is a ubiquitously expressed cytokine that acts as biological lynchpin to orchestrate phenotypes, the stroma, and immunity in normal tissue; these activities are subverted in cancer to promote malignancy, a permissive tumor microenvironment and immune evasion. The radiobiology of TGFβ unites targets at the forefront of oncology-the DNA damage response and immunotherapy. The cancer cell intrinsic and extrinsic network of TGFβ responses in the irradiated tumor form a barrier to both genotoxic treatments and immunotherapy response. Here, we focus on the mechanisms by which radiation induces TGFβ activation, how TGFβ regulates DNA repair, and the dynamic regulation of the tumor immune microenvironment that together oppose effective cancer therapy. Strategies to inhibit TGFβ exploit fundamental radiobiology that may be the missing link to deploying TGFβ inhibitors for optimal patient benefit from cancer treatment.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
38
|
Wang J, Han Y, Li Y, Zhang F, Cai M, Zhang X, Chen J, Ji C, Ma J, Xu F. Targeting Tumor Physical Microenvironment for Improved Radiotherapy. SMALL METHODS 2022; 6:e2200570. [PMID: 36116123 DOI: 10.1002/smtd.202200570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Radiotherapy has led to important clinical advances; existing cancer radiotherapy resistance is one remaining major challenge. Recently, biophysical cues in the tumor microenvironment (TME) have been regarded as the new hallmarks of cancer, playing pivotal roles in various cancer behaviors and treatment responses, including radiotherapy resistance. With recent advances in micro/nanotechnologies and functional biomaterials, radiotherapy exerts great influence on biophysical cues in TME, which, in turn, significantly affect the response to radiotherapy. Besides, various strategies have emerged that target biophysical cues in TME, to potentially enhance radiotherapy efficacy. Therefore, this paper reviews the four biophysical cues (i.e., extracellular matrix (ECM) microarchitecture, ECM stiffness, interstitial fluid pressure, and solid stress) that may play important roles in radiotherapy resistance, their possible mechanisms for inducing it, and their change after radiotherapy. The emerging therapeutic strategies targeting the biophysical microenvironment, to explore the mechanism of radiotherapy resistance and develop effective strategies to revert it for improved treatment efficacy are further summarized.
Collapse
Affiliation(s)
- Jin Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yulong Han
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yuan Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Fengping Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Mengjiao Cai
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xinyue Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jie Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Chao Ji
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
39
|
Wang Z, Xu W, Yang Y, Gao G, Teng C, Ge Z, Zhang H, Yuan Z, Ding G, Wang Y, Li P, Xu Y, Li P, Hu Z, Zhang Z, Qu X. Impact of changing treatment strategy based on circulating tumor cells on postoperative survival of breast cancer. Front Oncol 2022; 12:1006909. [PMID: 36263206 PMCID: PMC9573986 DOI: 10.3389/fonc.2022.1006909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background We sought to explore the impact of changing treatment strategy based on circulating tumor cells (CTC) on postoperative survival of breast cancer. Methods We retrospectively analyzed records of patients who underwent surgery for early-stage breast cancer at Beijing Friendship Hospital from January 2016 to January 2018 and regularly underwent CTC examination after surgery. During the regular examination and CTC monitoring, the patients with positive CTC results and without distant metastasis had their treatment regimen changed. Results Of 109 patients who received CTC examination regularly after surgery, 61 (56.0%) were CTC-positive during postoperative follow-up, including 33 ER or PR-positive, and 28 ER and PR-negative patients. Of the 33 ER or PR-positive patients, 20 changed endocrine therapy drugs. Compared with those without replacement, those with changed endocrine therapy strategy had higher CTC clearance rates (90.0% vs. 53.8%, p=0.04) and significantly lower CTC-positive values (1.70 ± 1.72 vs. 0.62 ± 0.65, p = 0.04). Among the 28 patients who were CTC positive and ER and PR-negative, 11 used capecitabine. Compared with non-users, the capecitabine users had higher CTC clearance rates (100.0% vs. 52.9%, p=0.01) and more significant decrease in CTC-positive values (2.09 ± 1.14 vs. 0.82 ± 1.67, p=0.04). Disease-free survival (DFS) at 1, 3, and 5 years was significantly longer in those who changed treatment than in those who did not (respectively, 96.6% vs. 89.6%, 92.8% vs. 56.9%, 69.0% vs. 47.8%, p<0.01). By changing the treatment strategy, CTC-positive patients achieved DFS that was not significantly different from CTC-negative patients (95.0% vs. 97.7%, 77.5% vs. 82.9%, 57.6% vs. 59.9%, p=0.20). Conclusion Timely change of treatment strategy for breast cancer patients with positive CTC results after surgery may improve CTC clearance rate and DFS.
Collapse
Affiliation(s)
- Zihan Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Xu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanlian Yang
- Chinese Academy of Sciences (CAS) Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoxuan Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Changsheng Teng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhicheng Ge
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huiming Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhu Yuan
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guoqian Ding
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yang Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peixin Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yaqian Xu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ping Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | - Zhiyuan Hu
- Chinese Academy of Sciences (CAS) Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhongtao Zhang, ; Xiang Qu,
| | - Xiang Qu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhongtao Zhang, ; Xiang Qu,
| |
Collapse
|
40
|
Ionizing radiation induced DNA damage via ROS production in nano ozonized oil treated B-16 melanoma and OV-90 ovarian cells. Biochem Biophys Res Commun 2022; 615:143-149. [PMID: 35623299 DOI: 10.1016/j.bbrc.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
In this study, we aimed to investigate ozonized oil nanoemulsions (OZNEs) as a radiosensitizer within B-16 melanoma and OV-90 ovarian cells under X-ray irradiation in vitro. Radiation sensitivity of OZNE treated B-16 melanoma cells and OV-90 ovarian cells were evaluated by performing cell cycle analysis, Reactive Oxygen Species (ROS) and ɣ-H2AX assays by flow cytometry. OZNEs induced G0-1 phase arrest of B-16 melanoma cells for all radiation doses and G2/M arrest for 8 Gy and 15 Gy doses. OZNE treated B-16 melanoma and OV-90 ovarian cells induced DNA damage via the increase in ROS production, as well as significant increase in the expression of ɣ-H2AX under even low doses of radiation (2 Gy). Thus, OZNEs are suggested to help to optimize cancer RT as a radiosensitizer and further studies will significantly outperform recent advances in this field.
Collapse
|
41
|
Clonal evolution and expansion associated with therapy resistance and relapse of colorectal cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108445. [PMID: 36371022 DOI: 10.1016/j.mrrev.2022.108445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Colorectal cancer (CRC) arises by a continuous process of genetic diversification and clonal evolution. Multiple genes and pathways have a role in tumor initiation and progression. The gradual accumulation of genetic and epigenetic processes leads to the establishment of adenoma and cancer. The important 'driver' mutations in tumor suppressor genes (such as TP53, APC, and SMAD4) and oncogenes (such as KRAS, NRAS, MET, and PIK3CA) confer selective growth advantages and cause CRC advancement. Clonal evolution induced by therapeutic pressure, as well as intra-tumoral heterogeneity, has been a great challenge in the treatment of metastatic CRC. Tumors often develop resistance to treatments as a result of intra-tumor heterogeneity, clonal evolution, and selection. Hence, the development of a multidrug personalized approach should be prioritized to pave the way for therapeutics repurposing and combination therapy to arrest tumor progression. This review summarizes how selective drug pressure can impact tumor evolution, resulting in the formation of polyclonal resistance mechanisms, ultimately promoting cancer progression. Current strategies for targeting clonal evolution are described. By understanding sources and consequences of tumor heterogeneity, customized and effective treatment plans to combat drug resistance may be devised.
Collapse
|
42
|
Potievskii MB, Shegai PV, Kaprin AD. Prospects for the Application of Methods of Evolutionary Biology in Oncology. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Utilizing Carbon Ions to Treat Medulloblastomas that Exhibit Chromothripsis. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose of Review
Novel radiation therapies with accelerated charged particles such as protons and carbon ions have shown encouraging results in oncology. We present recent applications as well as benefits and risks associated with their use.
Recent Findings
We discuss the use of carbon ion radiotherapy to treat a specific type of aggressive pediatric brain tumors, namely medulloblastomas with chromothripsis. Potential reasons for the resistance to conventional treatment, such as the presence of cancer stem cells with unique properties, are highlighted. Finally, advantages of particle radiation alone and in combination with other therapies to overcome resistance are featured.
Summary
Provided that future preclinical studies confirm the evidence of high effectiveness, favorable toxicity profiles, and no increased risk of secondary malignancy, carbon ion therapy may offer a promising tool in pediatric (neuro)oncology and beyond.
Collapse
|
44
|
Metformin combined with local irradiation provokes abscopal effects in a murine rectal cancer model. Sci Rep 2022; 12:7290. [PMID: 35508498 PMCID: PMC9068771 DOI: 10.1038/s41598-022-11236-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/18/2022] [Indexed: 11/20/2022] Open
Abstract
Although preoperative chemoradiation therapy can down-stage locally advanced rectal cancer (LARC), it has little effect on distant metastases. Metformin exerts an anti-cancer effect partly through the activation of host immunity. LuM1, a highly lung metastatic subclone of colon 26, was injected subcutaneously (sc) in BALB/c mice and treated with metformin and/or local radiation (RT). Lung metastases and the primary tumors were evaluated and the phenotypes of immune cells in the spleen and lung metastases were examined with flow cytometry and immunohistochemistry. Local RT, but not metformin, partially delayed the growth of sc tumor which was augmented with metformin. Lung metastases were unchanged in metformin or RT alone, but significantly reduced in the combined therapy. The ratios of splenic T cells tended to be low in the RT group, which were increased by the addition of metformin. IFN-γ production of the splenic CD4(+) and CD8(+) T cells was enhanced and CD49b (+) CD335(+) activated NK cells was increased after combined treatment group. Density of NK cells infiltrating in lung metastases was increased after combination treatment. Metformin effectively enhances local and abscopal effects of RT though the activation of cell-mediated immunity and might be clinically useful for LARC.
Collapse
|
45
|
Lynch OF, Calvi LM. Immune Dysfunction, Cytokine Disruption, and Stromal Changes in Myelodysplastic Syndrome: A Review. Cells 2022; 11:580. [PMID: 35159389 PMCID: PMC8834462 DOI: 10.3390/cells11030580] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are myeloid neoplasms characterized by bone marrow dysfunction and increased risk of transformation to leukemia. MDS represent complex and diverse diseases that evolve from malignant hematopoietic stem cells and involve not only the proliferation of malignant cells but also the dysfunction of normal bone marrow. Specifically, the marrow microenvironment-both hematopoietic and stromal components-is disrupted in MDS. While microenvironmental disruption has been described in human MDS and murine models of the disease, only a few current treatments target the microenvironment, including the immune system. In this review, we will examine current evidence supporting three key interdependent pillars of microenvironmental alteration in MDS-immune dysfunction, cytokine skewing, and stromal changes. Understanding the molecular changes seen in these diseases has been, and will continue to be, foundational to developing effective novel treatments that prevent disease progression and transformation to leukemia.
Collapse
Affiliation(s)
- Olivia F. Lynch
- School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA;
| | - Laura M. Calvi
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
46
|
Du SS, Chen GW, Yang P, Chen YX, Hu Y, Zhao QQ, Zhang Y, Liu R, Zheng DX, Zhou J, Fan J, Zeng ZC. Radiation Therapy Promotes Hepatocellular Carcinoma Immune Cloaking via PD-L1 Upregulation Induced by cGAS-STING Activation. Int J Radiat Oncol Biol Phys 2022; 112:1243-1255. [PMID: 34986380 DOI: 10.1016/j.ijrobp.2021.12.162] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Radiation therapy (RT) is one of the main treatments for patients with unresectable hepatocellular carcinoma (HCC). Emerging evidence indicates that the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) stimulator of interferon gene (STING) pathway is crucial in RT-induced antitumor immune responses. Here, we discovered that activation of the cancer cell-intrinsic cGAS-STING pathway mediated immune cloaking after RT-induced DNA damage. METHODS AND MATERIALS Key regulatory proteins in the cGAS-STING signaling pathway in human and murine HCC cell lines were knocked out or down using CRISPR and CRISPR-associated protein 9 or small interfering RNA. The underlying mechanism of immune cloaking and clinical significance of cGAS-STING-induced programmed cell death ligand 1 (PD-L1) expression were studied with both ex vivo analyses and in vitro experiments. RESULTS RT upregulated PD-L1 in patients with HCC, which correlated with poor survival. RT activated cGAS-STING, increasing immune-checkpoint PD-L1 expression in human and mouse liver cancer cells. Ionizing radiation activated the STING-TANK-binding kinase 1 (TBK1)-interferon regulatory factor 3 (IRF3) innate immune pathway, leading to PD-L1 upregulation in HCC cells and inhibiting cytotoxic T-lymphocyte activity and protecting tumor cells from immune-mediated eradication. Knockdown of cGAS, STING, TBK1, and IRF3 reversed the antitumor effect of cytotoxic T-lymphocyte-mediated cytotoxicity after ionizing radiation in vitro or in vivo. RT potentiated the antitumor effect of programmed cell death protein 1 and PD-L1 axis blockade and augmented cytotoxic T-cell (CTL) infiltration in HCC tumors in immunocompetent mice. CD8 depletion compromised the synergetic antitumor effect of combined RT and anti-PD-L1 blockade, demonstrating that CD8+ CTLs are required for antitumor immunity induced by combination therapy. CONCLUSIONS Our results identified an immune-cloaking mechanism for RT-activated, innate immune cGAS-STING and suggested that RT enhances HCC immunotherapy.
Collapse
Affiliation(s)
- Shi-Suo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Gen-Wen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Yang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Xing Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Hu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian-Qian Zhao
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rong Liu
- Interventional Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan-Xue Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- and Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- and Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Splenic red pulp macrophages provide a niche for CML stem cells and induce therapy resistance. Leukemia 2022; 36:2634-2646. [PMID: 36163264 PMCID: PMC7613762 DOI: 10.1038/s41375-022-01682-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022]
Abstract
Disease progression and relapse of chronic myeloid leukemia (CML) are caused by therapy resistant leukemia stem cells (LSCs), and cure relies on their eradication. The microenvironment in the bone marrow (BM) is known to contribute to LSC maintenance and resistance. Although leukemic infiltration of the spleen is a hallmark of CML, it is unknown whether spleen cells form a niche that maintains LSCs. Here, we demonstrate that LSCs preferentially accumulate in the spleen and contribute to disease progression. Spleen LSCs were located in the red pulp close to red pulp macrophages (RPM) in CML patients and in a murine CML model. Pharmacologic and genetic depletion of RPM reduced LSCs and decreased their cell cycling activity in the spleen. Gene expression analysis revealed enriched stemness and decreased myeloid lineage differentiation in spleen leukemic stem and progenitor cells (LSPCs). These results demonstrate that splenic RPM form a niche that maintains CML LSCs in a quiescent state, resulting in disease progression and resistance to therapy.
Collapse
|
48
|
Meng J, Li Y, Wan C, Sun Y, Dai X, Huang J, Hu Y, Gao Y, Wu B, Zhang Z, Jiang K, Xu S, Lovell JF, Hu Y, Wu G, Jin H, Yang K. Targeting senescence-like fibroblasts radiosensitizes non-small cell lung cancer and reduces radiation-induced pulmonary fibrosis. JCI Insight 2021; 6:146334. [PMID: 34877934 PMCID: PMC8675198 DOI: 10.1172/jci.insight.146334] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer cell radioresistance is the primary cause of the decreased curability of non–small cell lung cancer (NSCLC) observed in patients receiving definitive radiotherapy (RT). Following RT, a set of microenvironmental stress responses is triggered, including cell senescence. However, cell senescence is often ignored in designing effective strategies to resolve cancer cell radioresistance. Herein, we identify the senescence-like characteristics of cancer-associated fibroblasts (CAFs) after RT and clarify the formidable ability of senescence-like CAFs in promoting NSCLC cell proliferation and radioresistance through the JAK/STAT pathway. Specific induction of senescence-like CAF apoptosis using FOXO4-DRI, a FOXO4-p53–interfering peptide, resulted in remarkable effects on radiosensitizing NSCLC cells in vitro and in vivo. In addition, in this study, we also uncovered an obvious therapeutic effect of FOXO4-DRI on alleviating radiation-induced pulmonary fibrosis (RIPF) by targeting senescence-like fibroblasts in vivo. In conclusion, by targeting senescence, we offer a strategy that simultaneously decreases radioresistance of NSCLC and the incidence of RIPF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Jonathan F Lovell
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | |
Collapse
|
49
|
Ravichandran A, Clegg J, Adams MN, Hampson M, Fielding A, Bray LJ. 3D Breast Tumor Models for Radiobiology Applications. Cancers (Basel) 2021; 13:5714. [PMID: 34830869 PMCID: PMC8616164 DOI: 10.3390/cancers13225714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a leading cause of cancer-associated death in women. The clinical management of breast cancers is normally carried out using a combination of chemotherapy, surgery and radiation therapy. The majority of research investigating breast cancer therapy until now has mainly utilized two-dimensional (2D) in vitro cultures or murine models of disease. However, there has been significant uptake of three-dimensional (3D) in vitro models by cancer researchers over the past decade, highlighting a complimentary model for studies of radiotherapy, especially in conjunction with chemotherapy. In this review, we underline the effects of radiation therapy on normal and malignant breast cells and tissues, and explore the emerging opportunities that pre-clinical 3D models offer in improving our understanding of this treatment modality.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Julien Clegg
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Mark N. Adams
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Madison Hampson
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
| | - Andrew Fielding
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Laura J. Bray
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| |
Collapse
|
50
|
Cinat D, Coppes RP, Barazzuol L. DNA Damage-Induced Inflammatory Microenvironment and Adult Stem Cell Response. Front Cell Dev Biol 2021; 9:729136. [PMID: 34692684 PMCID: PMC8531638 DOI: 10.3389/fcell.2021.729136] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells ensure tissue homeostasis and regeneration after injury. Due to their longevity and functional requirements, throughout their life stem cells are subject to a significant amount of DNA damage. Genotoxic stress has recently been shown to trigger a cascade of cell- and non-cell autonomous inflammatory signaling pathways, leading to the release of pro-inflammatory factors and an increase in the amount of infiltrating immune cells. In this review, we discuss recent evidence of how DNA damage by affecting the microenvironment of stem cells present in adult tissues and neoplasms can affect their maintenance and long-term function. We first focus on the importance of self-DNA sensing in immunity activation, inflammation and secretion of pro-inflammatory factors mediated by activation of the cGAS-STING pathway, the ZBP1 pathogen sensor, the AIM2 and NLRP3 inflammasomes. Alongside cytosolic DNA, the emerging roles of cytosolic double-stranded RNA and mitochondrial DNA are discussed. The DNA damage response can also initiate mechanisms to limit division of damaged stem/progenitor cells by inducing a permanent state of cell cycle arrest, known as senescence. Persistent DNA damage triggers senescent cells to secrete senescence-associated secretory phenotype (SASP) factors, which can act as strong immune modulators. Altogether these DNA damage-mediated immunomodulatory responses have been shown to affect the homeostasis of tissue-specific stem cells leading to degenerative conditions. Conversely, the release of specific cytokines can also positively impact tissue-specific stem cell plasticity and regeneration in addition to enhancing the activity of cancer stem cells thereby driving tumor progression. Further mechanistic understanding of the DNA damage-induced immunomodulatory response on the stem cell microenvironment might shed light on age-related diseases and cancer, and potentially inform novel treatment strategies.
Collapse
Affiliation(s)
- Davide Cinat
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|