1
|
Lazo PA. VRK2 kinase pathogenic pathways in cancer and neurological diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119949. [PMID: 40187568 DOI: 10.1016/j.bbamcr.2025.119949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The VRK2 ser-thr kinase, belonging to the dark kinome, is implicated in the pathogenesis of cancer progression, neurological and psychiatric diseases. The VRK2 gene codes for two isoforms. The main isoform (VRK2A) is mainly located in the cytoplasm, and anchored to different types of membranes, such as the endoplasmic reticulum, mitochondria and nuclear envelope. The VRK2A isoform interacts with signaling modules assembled on scaffold proteins such as JIP1 or KSR1, forming stable complexes and blocking the activation of regulatory signaling pathways by altering their intracellular localization and the balance among them. VRK2 regulates apoptosis, nuclear membrane organization, immune responses, and Cajal bodies. Wild-type VRK2 is overexpressed in tumors and contributes to cancer development. In cells and tumors with low levels of nuclear VRK1, VRK2 generates by alternative splicing a shorter isoform (VRK2B) that lacks the C-terminal hydrophobic tail and permits its relocation to nuclei. Furthermore, rare VRK2 gene variants are associated with different neurological or psychiatric diseases such as schizophrenia, epilepsy, bipolar disorder, depression, autism, circadian clock alterations and insomnia, but their pathogenic mechanism is unknown. These diseases are a likely consequence of an altered balance among different signaling pathways that are regulated by VRK2.
Collapse
Affiliation(s)
- Pedro A Lazo
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
2
|
Sun R, Zhao Y, Liu Y, Zhang M, Qiu Z, Ma X, Wei L, Lu W, Liu Z, Jiang J. Extracellular matrix stiffness in endometrial cancer: driving progression and modulating treatment sensitivity via the ROCK1/YAP1 axis. Cell Death Dis 2025; 16:380. [PMID: 40368918 PMCID: PMC12078694 DOI: 10.1038/s41419-025-07697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025]
Abstract
Endometrial cancer (EC) is among the most prevalent gynecological malignancies, with advanced or recurrent cases posing significant treatment challenges due to limited responses to conventional therapies. Growing evidence highlights the critical role of extracellular matrix (ECM) stiffness in driving tumor progression by shaping the tumor microenvironment. In this study, we demonstrate that ECM stiffness is significantly higher in EC tissues compared to normal endometrium, correlating with elevated expression of ROCK1, a mechanosensitive kinase. Using atomic force microscopy (AFM), we quantified ECM stiffness, while polyacrylamide gels with varying stiffness were employed to mimic ECM conditions in vitro. Bioinformatics analyses, immunofluorescence, Western blotting, and co-immunoprecipitation experiments revealed that ROCK1 modulates the phosphorylation of YAP1, promoting its nuclear localization and transcriptional activity, thereby driving aggressive tumor behaviors, including enhanced proliferation, migration, invasion, and reduced apoptosis. Pharmacological inhibition of ROCK1 with Y-27632 mitigated these effects, suppressing tumor growth, restoring apoptosis, and inducing cell cycle arrest. Treatment with Y-27632 improved sensitivity to chemotherapy and radiotherapy, and significantly enhanced macrophage-mediated phagocytosis, thereby boosting anti-tumor immune responses. In hormone-resistant EC cells, ROCK1 inhibition restored sensitivity to progesterone therapy. Notably, in vivo experiments in a xenograft mouse model confirmed the therapeutic potential of Y-27632, as combination therapy with progesterone showed superior tumor-suppressive effects compared to monotherapy. These findings underscore the dual role of ECM stiffness and ROCK1 in driving tumor progression and influencing treatment outcomes. By elucidating the relationship between ECM stiffness, ROCK1/YAP1 signaling, and treatment sensitivity, this study highlights the potential of targeting the ROCK1/YAP1 axis as a therapeutic strategy. ROCK1 serves as both a biomarker for prognosis and a target for improving personalized treatment approaches, offering new avenues to enhance clinical outcomes for EC patients.
Collapse
Affiliation(s)
- Rui Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yao Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Mengyao Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaohong Ma
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Lina Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Lu
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Zhiming Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
3
|
Huang Y, Li W, Zhou Y, Bai J, Li N, Su Z, Cheng X. Strategies for p53 Activation and Targeted Inhibitors of the p53-Mdm2/MdmX Interaction. Cells 2025; 14:583. [PMID: 40277907 PMCID: PMC12025665 DOI: 10.3390/cells14080583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
p53 is a tumor suppressor gene and is regarded as one of the most crucial genes in protecting humans against cancer. The protein Mdm2 and its homolog MdmX serve as negative regulators of p53. In nearly half of cancer cells, there is an overexpression of Mdm2 and MdmX, which inhibit p53 activity. Furthermore, Mdm2's E3 ubiquitin ligase activity promotes the ubiquitination and degradation of p53. Therefore, blocking the interaction between p53 and Mdm2/MdmX to prevent the degradation of wild-type p53 is an effective strategy for inhibiting tumor growth. This paper primarily discusses the regulatory relationship between p53, MdmX and Mdm2, and provides a review of the current status of p53-Mdm2/MdmX inhibitors. It aims to offer a theoretical foundation and research direction for the future discovery and design of targeted inhibitors against the p53-Mdm2/MdmX interaction.
Collapse
Affiliation(s)
- Ye Huang
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.H.); (W.L.); (Y.Z.); (J.B.); (N.L.)
| | - Wang Li
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.H.); (W.L.); (Y.Z.); (J.B.); (N.L.)
| | - Yuke Zhou
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.H.); (W.L.); (Y.Z.); (J.B.); (N.L.)
| | - Jinping Bai
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.H.); (W.L.); (Y.Z.); (J.B.); (N.L.)
| | - Ning Li
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.H.); (W.L.); (Y.Z.); (J.B.); (N.L.)
| | - Zhengding Su
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Xiyao Cheng
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.H.); (W.L.); (Y.Z.); (J.B.); (N.L.)
| |
Collapse
|
4
|
Farhat J, Alzyoud L, AlWahsh M, Acharjee A, Al‐Omari B. Advancing Precision Medicine: The Role of Genetic Testing and Sequencing Technologies in Identifying Biological Markers for Rare Cancers. Cancer Med 2025; 14:e70853. [PMID: 40249565 PMCID: PMC12007469 DOI: 10.1002/cam4.70853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/26/2025] [Accepted: 03/26/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Genetic testing and sequencing technologies offer a comprehensive understanding of cancer genetics, providing rapid and cost-effective solutions. In particular, these advanced technologies play an important role in assessing the complexities of the rare cancer types affecting several systems including the bone, endocrine, digestive, vascular, and soft tissue. This review will explore how genetic testing and sequencing technologies have contributed to the identification of biomarkers across several rare cancer types in diagnostic, therapeutic, and prognostic stages, thereby advancing PM. METHODS A comprehensive literature search was conducted across PubMed (MEDLINE), EMBASE, and Web of Science using keywords related to sequencing technologies, genetic testing, and cancer. There were no restrictions on language, methodology, age, or publication date. Both primary and secondary research involving humans or animals were considered. RESULTS In practice, fluorescence in situ hybridization, karyotype, microarrays and other genetic tests are mainly applied to identify specific genetic alterations and mutations associated with cancer progression. Sequencing technologies, such as next generation sequencing, polymerase chain reaction, whole genome or exome sequencing, enable the rapid analysis of millions of DNA fragments. These techniques assess genome structure, genetic changes, gene expression profiles, and epigenetic variations. Consequently, they help detect main intrinsic markers that are crucial for personalizing diagnosis, treatment options, and prognostic assessments, leading to better patient prognosis. This highlights why these methods are now considered as primary tools in rare cancer research. However, these methods still face multiple limitations, including false positive results, limited precision, and high costs. CONCLUSION Genetic testing and sequencing technologies have significantly advanced the field of rare cancer research by enabling the identification of key biomarkers for precision diagnosis, treatment, and prognosis. Despite existing limitations, their integration into clinical and research fields continues to improve the development of personalized medicine strategies for rare and complex cancer types.
Collapse
Affiliation(s)
- Joviana Farhat
- Department of Epidemiology and Population Health, College of Medicine and Health SciencesKhalifa UniversityAbu DhabiUAE
| | - Lara Alzyoud
- College of PharmacyAl Ain UniversityAbu DhabiUAE
- Health and Biomedical Research CenterAl Ain UniversityAbu DhabiUAE
| | - Mohammad AlWahsh
- Leibniz‐Institut Für Analytische Wissenschaften‐ISAS e.V.DortmundGermany
- Institute of Pathology and Medical Research Center (ZMF) University Medical Center MannheimHeid Elberg UniversityMannheimGermany
- Department of Pharmacy, Faculty of PharmacyAlZaytoonah University of JordanAmmanJordan
| | - Animesh Acharjee
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Basem Al‐Omari
- Department of Epidemiology and Population Health, College of Medicine and Health SciencesKhalifa UniversityAbu DhabiUAE
| |
Collapse
|
5
|
Wang H, Wang Q, Chen YH, Chen X, Zheng DK, Xie Z, Feng DM, Liu L, Li J, Liu Y. Phlecarinatones H-N: Abietane-type diterpenoids from Phlegmariurus carinatus with proliferative inhibitory effect on U251 glioblastoma cells. PHYTOCHEMISTRY 2025; 232:114356. [PMID: 39675447 DOI: 10.1016/j.phytochem.2024.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
Thirteen abietane-type diterpenoids, including seven previously undescribed compounds and six known analogs, were isolated from the root and aerial parts of Phlegmariurus carinatus. Their structures were elucidated by comprehensive spectroscopic data analysis (UV, IR, NMR, and HRESIMS) and quantum chemical calculations (calculated ECD or 13C NMR). Notably, these compounds exhibited high structural diversity. Compounds 1-8 possessed six distinct fused ring systems. Phlecarinatones I (2) and J (3) were identified as rare 6,7-seco-abietane diterpenoids featuring a five-membered lactone ring B. Compounds (1-12) were evaluated for their anti-proliferative activities in the U251 cell line. In particular, phlecarinatone I (2) exhibited potential inhibitory effects on U251 cell proliferation, with an IC50 value of 13.88 ± 1.82 μM. To elucidate the underlying molecular mechanism, p53 signal pathway was enriched from our RNA-seq data. Further investigations using western blot and immunofluorescence assays confirmed that p53 expression was up-regulated in a concentration-independent manner. Additionally, molecular docking studies suggested 2 likely binds to the MDM2-p53 binding region. Finally, an shRNA-mediated MDM2 knockdown experiment provided definitive evidence that 2 acts as a potent inhibitor of glioma proliferation, operating via the modulation of the MDM2-p53 pathway. These findings suggest that 2 might be a valuable of lead compound with anti-proliferative activity.
Collapse
Affiliation(s)
- Hua Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China; Jiangxi Provincal Key Laboratory of Tissue Engineering, 2024SSY06291, Gannan Medical University, Ganzhou, Jiangxi, 341000, China; School of Medical Information Engineering, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Qiang Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yong-Hong Chen
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Xi Chen
- Xiangya School of Pharmaceutical Sciences, Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Dong-Kun Zheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zhen Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Du-Min Feng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Lin Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jing Li
- Xiangya School of Pharmaceutical Sciences, Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Yang Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China; Jiangxi Provincal Key Laboratory of Tissue Engineering, 2024SSY06291, Gannan Medical University, Ganzhou, Jiangxi, 341000, China; School of Pharmacy, Nanchang Medical College, Nanchang, Jiangxi, 330052, China.
| |
Collapse
|
6
|
Gu MY, Ma WL, Ma ZM, Ma LN, Ding XC. Expression of PSMD2 gene in hepatocellular carcinoma and its correlation with immune checkpoints and prognosis. Sci Rep 2025; 15:10111. [PMID: 40128277 PMCID: PMC11933310 DOI: 10.1038/s41598-025-94504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent and fatal tumor globally, characterized by a complex pathogenesis and poor prognosis. Despite significant advancements in the application of immune checkpoint inhibitors (ICIs) for cancer treatment, the efficacy of immunotherapy in HCC remains suboptimal. PSMD2, a crucial regulator of the ubiquitin-proteasome system, has attracted increasing attention for its involvement in various cancers; however, its functions and mechanisms in HCC are still poorly understood. This study aims to investigate the expression of PSMD2 in HCC, its association with prognosis, and its interaction with immune checkpoints, thus establishing a foundation for further exploration of its role in immune evasion in HCC. We analyzed the expression levels of PSMD2 in HCC and adjacent normal tissues utilizing the GEPIA and TIMER databases. Cox regression analysis was performed using R software to evaluate the relationship between PSMD2 expression and prognosis. Furthermore, we assessed the correlation between PSMD2 and immune cell infiltration, as well as immune checkpoints, including PD1, PD-L1, and CTLA-4, using R tools. Additionally, we examined the association between PSMD2 expression and immune therapy response through Tumor Immune Dysfunction and Exclusion (TIDE) analysis. Finally, we constructed a protein-protein interaction (PPI) network using the STRING database and Cytoscape software, followed by Gene Set Enrichment Analysis (GSEA). PSMD2 was significantly overexpressed in HCC and was closely correlated with poor prognosis (HR = 1.61, P = 2.0e-4). Immune infiltration analysis demonstrated that PSMD2 was positively correlated with several immune checkpoint genes, including PD1, PD-L1, and CTLA-4, as well as various immune cell types. TIDE analysis indicated that elevated PSMD2 expression was significantly associated with increased immune evasion potential and a poor response to immunotherapy. Furthermore, GSEA enrichment analysis revealed that PSMD2 is primarily enriched in the p53 signaling pathway, the ubiquitin-mediated proteolysis pathway, and other cancer-related pathways. The elevated expression of PSMD2 in HCC is not only correlated with poor prognosis but may also play a role in immune evasion by modulating tumor immunity, thereby affecting patient responses to immunotherapy. Consequently, PSMD2 presents a promising novel therapeutic target and potential biomarker for immunotherapy in HCC.
Collapse
Affiliation(s)
| | - Wan-Long Ma
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Zi-Min Ma
- Weiluo Microbial Pathogens Monitoring Technology Co., Ltd. of Beijing, Beijing, 102200, China
| | - Li-Na Ma
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
- Infectious Disease Clinical Research Center of Ningxia, 804 Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
- Department of Infectious Disease, General Hospital of Xiang Medical University, 804 Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| | - Xiang-Chun Ding
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
- Infectious Disease Clinical Research Center of Ningxia, 804 Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
- Department of Infectious Disease, General Hospital of Xiang Medical University, 804 Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
7
|
Kobar K, Tuzi L, Fiene JA, Burnley E, Galpin KJC, Midgen C, Laverty B, Subasri V, Wen TT, Hirst M, Moksa M, Carles A, Cao Q, Shlien A, Malkin D, Prykhozhij SV, Berman JN. tp53 R217H and R242H mutant zebrafish exhibit dysfunctional p53 hallmarks and recapitulate Li-Fraumeni syndrome phenotypes. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167612. [PMID: 39643218 DOI: 10.1016/j.bbadis.2024.167612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/28/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Li-Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome associated with a highly penetrant cancer spectrum characterized by germline TP53 mutations. We characterized the first LFS zebrafish hotspot mutants, tp53 R217H and R242H (human R248H and R273H), and found these mutants exhibit partial-to-no activation of p53 target genes, have defective cell-cycle checkpoints, and display partial-to-full resistance to apoptosis, although the R217H mutation has hypomorphic characteristics. Spontaneous tumor development histologically resembling human sarcomas was observed as early as 6 months. tp53 R242H mutants had a higher lifetime tumor incidence compared to tp53 null and R217H mutants, suggesting it is a more aggressive mutation. We observed mutation-specific tumor phenotypes across tp53 mutants with associated diverse transcriptomic and DNA methylome profiles in tp53 mutant larvae, impacting metabolism, cell signalling, and biomacromolecule synthesis and degradation. These tp53 zebrafish mutants demonstrate fidelity to their human counterparts and provide new insights into underlying tumorigenesis mechanisms and kinetics that suggest metabolic rewiring and cellular signalling changes occur prior to tumor initiation, which will guide targeted therapeutics for LFS.
Collapse
Affiliation(s)
- Kim Kobar
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Lissandra Tuzi
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jennifer A Fiene
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Erin Burnley
- Translational and Molecular Medicine Program, University of Ottawa, Ottawa, ON, Canada
| | | | - Craig Midgen
- Department of Pathology, IWK Health Centre, Halifax, NS, Canada
| | - Brianne Laverty
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Vallijah Subasri
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, Canada; Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada
| | - Timmy T Wen
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada; Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Annaick Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Qi Cao
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Adam Shlien
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Canada
| | - David Malkin
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Department of Pediatrics, Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Sergey V Prykhozhij
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Jason N Berman
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Hatletvedt ND, Engebrethsen C, Geisler J, Geisler S, Aas T, Lønning PE, Gansmo LB, Knappskog S. The impact of functional MDM2-polymorphisms on neutrophil counts in breast cancer patients during neoadjuvant chemotherapy. BMC Cancer 2025; 25:308. [PMID: 39979836 PMCID: PMC11843751 DOI: 10.1186/s12885-025-13675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Functional polymorphisms in the MDM2 promoters have been linked to cancer risk and several non-malignant conditions. Their potential role in bone marrow function during chemotherapy is largely unknown. METHODS We investigated the potential associations between genotypes of MDM2 SNP309 (rs2279744), SNP285 (rs117039649) and del1518 (rs3730485) and neutrophil counts in breast cancer patients receiving neoadjuvant sequential epirubicin and docetaxel, with additional G-CSF, in the DDP-trial (NCT00496795). We applied longitudinal ratios, post vs. pre-treatment, of neutrophil counts as our main measure. Differences by genotypes were tested by Jonckheere-Terpstra test for ranked alternatives, while dominant and recessive models were tested by Mann-Whitney U test, and additional sub-analyses were performed for genotype combinations. RESULTS The SNP309 reference T-allele was associated with a better sustained neutrophil count (p = 0.035). A similar association was observed for the alternative del-allele of the del1518 (p = 0.049). Additionally, in combined genotype-analyses, patients with the SNP309 TT genotype and at least one copy of the del1518 del-allele had particularly favorable sustained neutrophil counts during chemotherapy treatment (p = 0.005). CONCLUSIONS Our study provides evidence that MDM2 promoter polymorphisms may be associated with neutrophil counts and bone marrow recovery during chemotherapy treatment in breast cancer patients. TRIAL REGISTRATION The DDP-trial was registered at ClinicalTrials.gov (NCT00496795; registration date 2007-07-04).
Collapse
Affiliation(s)
- Nora D Hatletvedt
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Christina Engebrethsen
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stephanie Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Turid Aas
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Per E Lønning
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Liv B Gansmo
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway.
- Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
9
|
Andrysik Z, Espinosa JM. Harnessing p53 for targeted cancer therapy: new advances and future directions. Transcription 2025; 16:3-46. [PMID: 40031988 PMCID: PMC11970777 DOI: 10.1080/21541264.2025.2452711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
10
|
Datta RR, Akdogan D, Tezcan EB, Onal P. Versatile roles of disordered transcription factor effector domains in transcriptional regulation. FEBS J 2025. [PMID: 39888268 DOI: 10.1111/febs.17424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/25/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Transcription, a crucial step in the regulation of gene expression, is tightly controlled and involves several essential processes, such as chromatin organization, recognition of the specific genomic sequences, DNA binding, and ultimately recruiting the transcriptional machinery to facilitate transcript synthesis. At the center of this regulation are transcription factors (TFs), which comprise at least one DNA-binding domain (DBD) and an effector domain (ED). Although the structure and function of DBDs have been well studied, our knowledge of the structure and function of effector domains is limited. EDs are of particular importance in generating distinct transcriptional responses between protein members of the same TF family that have similar DBDs and specificities. The study of transcriptional activity conferred by effector domains has traditionally been conducted through examining protein-protein interactions. However, recent research has uncovered alternative mechanisms by which EDs regulate gene expression, such as the formation of condensates that increase the local concentration of transcription factors, cofactors, and coregulated genes, as well as DNA binding. Here, we provide a comprehensive overview of the known roles of transcription factor EDs, with a specific focus on disordered regions. Additionally, we emphasize the significance of intrinsically disordered regions (IDRs) during transcriptional regulation. We examine the mechanisms underlying the establishment and maintenance of transcriptional specificity through the structural properties of predominantly disordered EDs. We then provide a comprehensive overview of the current understanding of these domains, including their physical and chemical characteristics, as well as their functional roles.
Collapse
Affiliation(s)
| | - Dilan Akdogan
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Elif B Tezcan
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Pinar Onal
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| |
Collapse
|
11
|
Klett T, Stahlecker J, Jaag S, Masberg B, Knappe C, Lämmerhofer M, Coles M, Stehle T, Boeckler FM. Covalent Fragments Acting as Tyrosine Mimics for Mutant p53-Y220C Rescue by Nucleophilic Aromatic Substitution. ACS Pharmacol Transl Sci 2024; 7:3984-3999. [PMID: 39698266 PMCID: PMC11651176 DOI: 10.1021/acsptsci.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
The tumor suppressor p53 is frequently mutated in human cancers. The Y220C mutant is the ninth most common p53 cancer mutant and is classified as a structural mutant, as it leads to strong thermal destabilization and degradation by creating a solvent-accessible hydrophobic cleft. To identify small molecules that thermally stabilize p53, we employed DSF to screen SNAr-type electrophiles from our covalent fragment library (CovLib) for binding to different structural (Y220C, R282W) and DNA contact (R273H) mutants of p53. The reactive fragments SN001, SN006, and SN007 were detected to specifically stabilize Y220C, indicating the arylation of Cys220 in the mutational cleft, as confirmed by X-ray crystallography. The fragments occupy the central cavity and mimic the ring system of the WT tyrosine lost by the mutation. Surpassing previously reported noncovalent ligands, SN001 stabilized T-p53C-Y220C concentration-dependently up to 4.45 °C and, due to its small size, represents a promising starting point for optimization.
Collapse
Affiliation(s)
- Theresa Klett
- Lab
for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität
Tübingen, 72076 Tübingen, Germany
| | - Jason Stahlecker
- Lab
for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität
Tübingen, 72076 Tübingen, Germany
| | - Simon Jaag
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Benedikt Masberg
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Cornelius Knappe
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Murray Coles
- Department
of Protein Evolution, Max-Planck-Institute
for Biology, 72076 Tübingen, Germany
| | - Thilo Stehle
- Interfaculty
Institute of Biochemistry, Eberhard Karls
Universität Tübingen, 72076 Tübingen, Germany
| | - Frank M. Boeckler
- Lab
for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität
Tübingen, 72076 Tübingen, Germany
- Interfaculty
Institute for Biomedical Informatics (IBMI), Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Li K, Hu W, Wang Y, Chen W, Wen H, Liu J, Li W, Wang B. Searching for novel MDM2/MDMX dual inhibitors through a drug repurposing approach. J Enzyme Inhib Med Chem 2024; 39:2288810. [PMID: 38059334 PMCID: PMC11721856 DOI: 10.1080/14756366.2023.2288810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Disruption of p53-MDM2/MDMX interaction by smaller inhibitors is a promising therapeutic intervention gaining tremendous interest. However, no MDM2/MDMX inhibitors have been marketed so far. Drug repurposing is a validated, practical approach to drug discovery. In this regard, we employed structure-based virtual screening in a reservoir of marketed drugs and identified nintedanib as a new MDM2/MDMX dual inhibitor. The computational structure analysis and biochemical experiments uncover that nintedanib binds MDM2/MDMX similarly to RO2443, a dual MDM2/MDMX inhibitor. Furthermore, the mechanistic study reveals that nintedanib disrupts the physical interaction of p53-MDM2/MDMX, enabling the transcriptional activation of p53 and the subsequent cell cycle arrest and growth inhibition in p53+/+ cancer cells. Lastly, structural minimisation of nintedanib yields H3 with the equivalent potency. In summary, this work provides a solid foundation for reshaping nintedanib as a valuable lead compound for the further design of MDM2/MDMX dual inhibitors.
Collapse
Affiliation(s)
- Keting Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenshu Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingjie Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Lazo PA. Nuclear functions regulated by the VRK1 kinase. Nucleus 2024; 15:2353249. [PMID: 38753965 PMCID: PMC11734890 DOI: 10.1080/19491034.2024.2353249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
In the nucleus, the VRK1 Ser-Thr kinase is distributed in nucleoplasm and chromatin, where it has different roles. VRK1 expression increases in response to mitogenic signals. VRK1 regulates cyclin D1 expression at G0 exit and facilitates chromosome condensation at the end of G2 and G2/M progression to mitosis. These effects are mediated by the phosphorylation of histone H3 at Thr3 by VRK1, and later in mitosis by haspin. VRK1 regulates the apigenetic patterns of histones in processes requiring chromating remodeling, such as transcription, replication and DNA repair. VRK1 is overexpressed in tumors, facilitating tumor progression and resistance to genotoxic treatments. VRK1 also regulates the organization of Cajal bodies assembled on coilin, which are necessary for the assembly of different types of RNP complexes. VRK1 pathogenic variants cuase defects in Cajal bodies, functionally altering neurons with long axons and leading to neurological diseases, such as amyotrophic laterla sclerosis, spinal muscular atrophy, distal hereditay motor neuropathies and Charcot-Marie-Tooth.
Collapse
Affiliation(s)
- Pedro A. Lazo
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
14
|
Técher H, Kemiha S, Aobuli X, Kolinjivadi AM. Oncogenic RAS in Cancers from the DNA Replication Stress and Senescence Perspective. Cancers (Basel) 2024; 16:3993. [PMID: 39682179 DOI: 10.3390/cancers16233993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Rat Sarcoma (RAS)-driven cancers have been one of the main foci in the field of cancer science for over four decades. Despite significant improvement in understanding the biology of RAS oncogene, the method to target RAS-mutated cancers is still unclear. In recent years, the role for RAS beyond its hyperproliferation has been extensively documented. In this review, we systematically address and dwell on the details of the mechanisms of RAS oncogene-mediated alteration in the DNA replication and DNA damage response (DDR) pathways, focusing on lung cancers. We further extend this molecular connection towards cytosolic DNA accumulation, innate immune activation and senescence in RAS-addicted cancers. At the end, we briefly speculate on the potential strategies for targeting RAS mutated lung cancers, considering various approaches targeting DNA replication, DNA repair and the cGAS-STING pro-inflammatory pathway. These new lines of therapy, especially when used in combinations, may enhance treatment efficacy and overcome the challenges associated with these mutations.
Collapse
Affiliation(s)
- Hervé Técher
- Université Côte d'Azur, Institute for Research on Cancer and Aging of Nice-IRCAN, CNRS, INSERM, 06100 Nice, France
| | - Samira Kemiha
- Université Côte d'Azur, Institute for Research on Cancer and Aging of Nice-IRCAN, CNRS, INSERM, 06100 Nice, France
| | - Xieraili Aobuli
- Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Arun Mouli Kolinjivadi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
15
|
Shahzad M, Amin MK, Daver NG, Shah MV, Hiwase D, Arber DA, Kharfan-Dabaja MA, Badar T. What have we learned about TP53-mutated acute myeloid leukemia? Blood Cancer J 2024; 14:202. [PMID: 39562552 PMCID: PMC11576745 DOI: 10.1038/s41408-024-01186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
TP53 is a tumor suppressor gene frequently mutated in human cancers and is generally associated with poor outcomes. TP53 mutations are found in approximately 5% to 10% of patients with de novo acute myeloid leukemia (AML), more frequently observed in elderly patients and those with therapy-related AML. Despite recent advances in molecular profiling and the emergence of targeted therapies, TP53-mutated AML remains a challenge to treat. Current treatment strategies, including conventional chemotherapy, hypomethylating agents, and venetoclax-based therapies, have shown limited efficacy in TP53-mutated AML, with low response rates and poor overall survival. Allogeneic hematopoietic stem cell transplantation is a potentially curative option; however, its efficacy in TP53-mutated AML depends on comorbid conditions and disease status at transplantation. Novel therapeutic modalities, including immune-based therapies, did show promise in early-phase studies but did not translate into effective therapies in randomized controlled trials. This review provides a comprehensive overview of TP53 mutations in AML, outcomes based on allelic burden, clinical implications, and therapeutic challenges.
Collapse
Affiliation(s)
- Moazzam Shahzad
- Division of Hematology and Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Muhammad Kashif Amin
- Division of Hematologic Malignancies & Cellular Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Devendra Hiwase
- Department of Hematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | - Talha Badar
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
16
|
Huwaimel B, Younes KM, Abouzied AS, Elkashlan AM, Alheibshy FN, Alobaida A, Turki A, Alquwaiay SA, Alqahatani N, Alsuwayagh SA. Phytochemical composition, in vitro cytotoxicity, and in silico docking properties of Tamarix tetragyna L. Sci Rep 2024; 14:25462. [PMID: 39462121 PMCID: PMC11513052 DOI: 10.1038/s41598-024-73961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Tamarix tetragyna is a plant grows in Mediterranean area and some Arab countries. It possesses numerous medicinal values. Purpose of our study is to explore biological activity of tamarix tetragyna extracts of both leaves and stem with investigating their phytochemical composition. The investigated extracts' phyto-constituent composition was determined using gas chromatographic-mass spectrometric method. In addition, in vitro cytoxicity activity versus cancer cell lines such MCF-7, HepG-2, HCT-116, and A-549 was examined by MTT assay method, together with exploring its apoptosis effect by flow cytometry and western blot analysis techniques. Moreover, some phytochemical compounds were identified, and in-silico evaluated against anticancer molecular targets. Plant extracts showed good cytotoxic activity against both A-549 and HCT-116 cancer cell lines. With an IC50 value of 23.90 µg/ml that led to apoptosis and G2/M-phase arrest in A-549 cells, cytotoxicity data demonstrate leaves' extract effectiveness against these cells. Upon GC-MS analysis, it revealed presence of some bioactive components such as Stigmast-5-en-3-ol and 2-methoxy-4-vinyl phenol, which are known for their cytotoxic activity. Our findings suggest that methanolic extracts of Tamarix tetragyna parts may have potential therapeutic uses as anticancer against A-549 cells, which opens up further avenues for investigation into its industrial applications.
Collapse
Affiliation(s)
- Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail, 55473, Saudi Arabia
| | - Kareem M Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Akram M Elkashlan
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Cairo, Egypt.
| | - Fawaz N Alheibshy
- Department of pharmaceutics, College of Pharmacy, University of Ha'il, Hail, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Aden University, 6075, Aden, Yemen
| | - Ahmed Alobaida
- Department of pharmaceutics, College of Pharmacy, University of Ha'il, Hail, Saudi Arabia
| | - Abdullah Turki
- College of Pharmacy, University of Ha'il, Hail, 81442, Saudi Arabia
| | | | - Naif Alqahatani
- College of Pharmacy, University of Ha'il, Hail, 81442, Saudi Arabia
| | | |
Collapse
|
17
|
Guzenko VV, Bachurin SS, Khaitin AM, Dzreyan VA, Kalyuzhnaya YN, Bin H, Demyanenko SV. Acetylation of p53 in the Cerebral Cortex after Photothrombotic Stroke. Transl Stroke Res 2024; 15:970-985. [PMID: 37580538 DOI: 10.1007/s12975-023-01183-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
p53 expression and acetylation are crucial for the survival and death of neurons in penumbra. At the same time, the outcome of ischemia for penumbra cells depends largely on the histone acetylation status, but the effect of histone acetyltransferases and deacetylases on non-histone proteins like p53 is largely understudied. With combined in silico and in vitro approach, we have identified enzymes capable of acetylation/deacetylation, distribution, stability, and pro-apoptotic activity of p53 in ischemic penumbra in the course of post-stroke recovery, and also detected involved loci of acetylation in p53. The dynamic regulation of the acetylation of p53 at lysine 320 is controlled by acetyltransferase PCAF and histone deacetylases HDAC1 and HDAC6. The in silico simulation have made it possible to suggest the acetylation of p53 at lysine 320 acetylation may facilitate the shuttling of p53 between the nucleus and cytoplasm in penumbra neurons. Acetylation of p53 at lysine 320 is more preferable than acetylation at lysine 373 and probably promotes survival and repair of penumbra neurons after stroke. Strategies to increase p53 acetylation at lysine 320 via increasing PCAF activity, inhibiting HDAC1 or HDAC6, inhibiting p53, or a combination of these interventions may have therapeutic benefits for stroke recovery and would be promising for neuroprotective therapy of stroke.
Collapse
Affiliation(s)
- V V Guzenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - S S Bachurin
- Department of General and Clinical Biochemistry no.2, Rostov State Medical University, Nakhichevansky lane, Rostov-on-Don, 344022, Russia
| | - A M Khaitin
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - V A Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - Y N Kalyuzhnaya
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - He Bin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - S V Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia.
- Department of General and Clinical Biochemistry no.2, Rostov State Medical University, Nakhichevansky lane, Rostov-on-Don, 344022, Russia.
| |
Collapse
|
18
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
19
|
Mak ECL, Chen Z, Lee LCC, Leung PKK, Yip AMH, Shum J, Yiu SM, Yam VWW, Lo KKW. Exploiting the Potential of Iridium(III) bis-Nitrone Complexes as Phosphorogenic Bifunctional Reagents for Phototheranostics. J Am Chem Soc 2024; 146:25589-25599. [PMID: 39248725 DOI: 10.1021/jacs.4c07251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Cross-linking strategies have found wide applications in chemical biology, enabling the labeling of biomolecules and monitoring of protein-protein interactions. Nitrone exhibits remarkable versatility and applicability in bioorthogonal labeling due to its high reactivity with strained alkynes via the strain-promoted alkyne-nitrone cycloaddition (SPANC) reaction. In this work, four cyclometalated iridium(III) polypyridine complexes functionalized with two nitrone units were designed as novel phosphorogenic bioorthogonal reagents for bioimaging and phototherapeutics. The complexes showed efficient emission quenching, which is attributed to an efficient nonradiative decay pathway via the low-lying T1/S0 minimum energy crossing point (MECP), as revealed by computational studies. However, the complexes displayed significant emission enhancement and lifetime extension upon reaction with (1R,8S,9s)-bicyclo[6.1.0]non-4-yne (BCN) derivatives. In particular, they showed a remarkably higher reaction rate toward a bis-cyclooctyne derivative (bis-BCN) compared with its monomeric counterpart (mono-BCN). Live-cell imaging and (photo)cytotoxicity studies revealed higher photocytotoxicity in bis-BCN-pretreated cells, which is ascribed to the enhanced singlet oxygen (1O2) photosensitization resulting from the elimination of the nitrone-associated quenching pathway. Importantly, the cross-linking properties and enhanced reactivity of the complexes make them highly promising candidates for the development of hydrogels and stapled/cyclized peptides, offering intriguing photophysical, photochemical, and biological properties. Notably, a nanosized hydrogel (2-gel) demonstrated potential as a drug delivery system, while a stapled peptide (2-bis-pDIKK) exhibited p53-Mdm2 inhibitory activity related to apoptosis and a cyclized peptide (2-bis-RGD) showed cancer selectivity.
Collapse
Affiliation(s)
- Eunice Chiu-Lam Mak
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Ziyong Chen
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Peter Kam-Keung Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Alex Man-Hei Yip
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Justin Shum
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
20
|
Li Z, Xu Y, Hu Y, He Z, Zhang Z, Zhou J, Zhou T, Wang H. The critical role of SETDB1-mediated CCND1/PI3K/AKT pathway via p53-RS di-methylation at K370 in the proliferation of WRL68 cells induced by nicotine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116686. [PMID: 38971100 DOI: 10.1016/j.ecoenv.2024.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Constituents of cigarette smoke are known to be carcinogens. Additionally, there is mounting evidence that the liver is an organ susceptible to tobacco carcinogenicity. Nicotine, the primary constituent of tobacco, plays a role in cancer progression. In our previous study, it was found that nicotine enhances the proliferation of a human normal fetal hepatic (WRL68) cell due to the activation of p53 mutation at Ser249 (p53-RS)/STAT1/CCND1 signaling pathway. Here, we further elucidated the mechanism of regulating this pathway. Firstly, dose-dependent increase of SETDB1 protein level in WRL68 cells upon exposure to nicotine (1.25, 2.5, and 5 μM), significantly enhanced cellular proliferation. In addition, the upregulation of SETDB1 protein was necessary for the nuclear translocation of p53-RS to establish a ternary complex with STAT1 and SETDB1, which facilitated p53-RS di-methylation at K370 (p53-RS/K370me2). After that, the activation of CCND1/PI3K/AKT pathway was initiated when STAT1 stability was enhanced by p53-RS/K370me2, ultimately resulting in cell proliferation. Altogether, the study revealed that the increase in SETDB1 expression could potentially have a significant impact on the activation of CCND1/PI3K/AKT pathway through p53-RS/K370me2, leading to the proliferation of WRL68 cells induced by nicotine, which could contribute to hepatocellular carcinoma for smokers. Besides, the results of this study provided a foundation for the development of anticancer therapies for cancers associated with tobacco use.
Collapse
Affiliation(s)
- Zihan Li
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Yuqin Xu
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Yuxin Hu
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zihan He
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zhongwei Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Jianming Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Tong Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Huai Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China.
| |
Collapse
|
21
|
Ryu S, Nakashima H, Tanaka Y, Mukai R, Ishihara Y, Tominaga T, Ohshima T. Ribosomal Protein S4 X-Linked as a Novel Modulator of MDM2 Stability by Suppressing MDM2 Auto-Ubiquitination and SCF Complex-Mediated Ubiquitination. Biomolecules 2024; 14:885. [PMID: 39199272 PMCID: PMC11351588 DOI: 10.3390/biom14080885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Mouse double minute 2 (MDM2) is an oncoprotein that is frequently overexpressed in tumors and enhances cellular transformation. Owing to the important role of MDM2 in modulating p53 function, it is crucial to understand the mechanism underlying the regulation of MDM2 levels. We identified ribosomal protein S4X-linked (RPS4X) as a novel binding partner of MDM2 and showed that RPS4X promotes MDM2 stability. RPS4X suppressed polyubiquitination of MDM2 by suppressing homodimer formation and preventing auto-ubiquitination. Moreover, RPS4X inhibited the interaction between MDM2 and Cullin1, a scaffold protein of the Skp1-Cullin1-F-box protein (SCF) complex and an E3 ubiquitin ligase for MDM2. RPS4X expression in cells enhanced the steady-state level of MDM2 protein. RPS4X was associated not only with MDM2 but also with Cullin1 and then blocked the MDM2/Cullin1 interaction. This is the first report of an interaction between ribosomal proteins (RPs) and Cullin1. Our results contribute to the elucidation of the MDM2 stabilization mechanism in cancer cells, expanding our understanding of the new functions of RPs.
Collapse
Affiliation(s)
- Satsuki Ryu
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (S.R.); (H.N.); (T.T.)
| | - Hiroki Nakashima
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (S.R.); (H.N.); (T.T.)
| | - Yuka Tanaka
- Faculty of Science and Engineering, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan;
| | - Risa Mukai
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101-1709, USA;
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan;
| | - Takashi Tominaga
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (S.R.); (H.N.); (T.T.)
| | - Takayuki Ohshima
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (S.R.); (H.N.); (T.T.)
- Faculty of Science and Engineering, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan;
| |
Collapse
|
22
|
Yan L, Shi J, Zhu J. Cellular and molecular events in colorectal cancer: biological mechanisms, cell death pathways, drug resistance and signalling network interactions. Discov Oncol 2024; 15:294. [PMID: 39031216 PMCID: PMC11265098 DOI: 10.1007/s12672-024-01163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide, affecting millions each year. It emerges from the colon or rectum, parts of the digestive system, and is closely linked to both genetic and environmental factors. In CRC, genetic mutations such as APC, KRAS, and TP53, along with epigenetic changes like DNA methylation and histone modifications, play crucial roles in tumor development and treatment responses. This paper delves into the complex biological underpinnings of CRC, highlighting the pivotal roles of genetic alterations, cell death pathways, and the intricate network of signaling interactions that contribute to the disease's progression. It explores the dysregulation of apoptosis, autophagy, and other cell death mechanisms, underscoring the aberrant activation of these pathways in CRC. Additionally, the paper examines how mutations in key molecular pathways, including Wnt, EGFR/MAPK, and PI3K, fuel CRC development, and how these alterations can serve as both diagnostic and prognostic markers. The dual function of autophagy in CRC, acting as a tumor suppressor or promoter depending on the context, is also scrutinized. Through a comprehensive analysis of cellular and molecular events, this research aims to deepen our understanding of CRC and pave the way for more effective diagnostics, prognostics, and therapeutic strategies.
Collapse
Affiliation(s)
- Lei Yan
- Medical Department, The Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Jia Shi
- Department of Obstetrics and Gynecology, The Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Jiazuo Zhu
- Department of Oncology, Xuancheng City Central Hospital, No. 117 Tong Road, Xuancheng, Anhui, China.
| |
Collapse
|
23
|
Li JL, McClellan JC, Zhang H, Gao G, Huo D. Multi-tissue transcriptome-wide association studies identified 235 genes for intrinsic subtypes of breast cancer. J Natl Cancer Inst 2024; 116:1105-1115. [PMID: 38400758 PMCID: PMC11223833 DOI: 10.1093/jnci/djae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Although genome-wide association studies (GWAS) of breast cancer (BC) identified common variants which differ between intrinsic subtypes, genes through which these variants act to impact BC risk have not been fully established. Transcriptome-wide association studies (TWAS) have identified genes associated with overall BC risk, but subtype-specific differences are largely unknown. METHODS We performed two multi-tissue TWAS for each BC intrinsic subtype, including an expression-based approach that collated TWAS signals from expression quantitative trait loci (eQTLs) across multiple tissues and a novel splicing-based approach that collated signals from splicing QTLs (sQTLs) across intron clusters and subsequently across tissues. We used summary statistics for five intrinsic subtypes including Luminal A-like, Luminal B-like, Luminal B/HER2-negative-like, HER2-enriched-like, and triple-negative BC, generated from 106 278 BC cases and 91 477 controls in the Breast Cancer Association Consortium. RESULTS Overall, we identified 235 genes in 88 loci that were associated with at least one of the five intrinsic subtypes. Most genes were subtype-specific, and many have not been reported in previous TWAS. We discovered common variants that modulate expression of CHEK2 confer increased risk to Luminal A-like BC, in contrast to the viewpoint that CHEK2 primarily harbors rare, penetrant mutations. Additionally, our splicing-based TWAS provided population-level support for MDM4 splice variants that increased the risk of triple-negative BC. CONCLUSION Our comprehensive, multi-tissue TWAS corroborated previous GWAS loci for overall BC risk and intrinsic subtypes, while underscoring how common variation that impacts expression and splicing of genes in multiple tissue types can be used to further elucidate the etiology of BC.
Collapse
Affiliation(s)
- James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Julian C McClellan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Haoyu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Guimin Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, IL, USA
| |
Collapse
|
24
|
Huang Y, Che X, Wang PW, Qu X. p53/MDM2 signaling pathway in aging, senescence and tumorigenesis. Semin Cancer Biol 2024; 101:44-57. [PMID: 38762096 DOI: 10.1016/j.semcancer.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
A wealth of evidence has emerged that there is an association between aging, senescence and tumorigenesis. Senescence, a biological process by which cells cease to divide and enter a status of permanent cell cycle arrest, contributes to aging and aging-related diseases, including cancer. Aging populations have the higher incidence of cancer due to a lifetime of exposure to cancer-causing agents, reduction of repairing DNA damage, accumulated genetic mutations, and decreased immune system efficiency. Cancer patients undergoing cytotoxic therapies, such as chemotherapy and radiotherapy, accelerate aging. There is growing evidence that p53/MDM2 (murine double minute 2) axis is critically involved in regulation of aging, senescence and oncogenesis. Therefore, in this review, we describe the functions and mechanisms of p53/MDM2-mediated senescence, aging and carcinogenesis. Moreover, we highlight the small molecular inhibitors, natural compounds and PROTACs (proteolysis targeting chimeras) that target p53/MDM2 pathway to influence aging and cancer. Modification of p53/MDM2 could be a potential strategy for treatment of aging, senescence and tumorigenesis.
Collapse
Affiliation(s)
- Youyi Huang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Peter W Wang
- Department of Medicine, Oasis Medical Research Center, Watertown, MA 02472, USA.
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
25
|
Wu Q, Berglund AE, Macaulay RJ, Etame AB. The Role of Mesenchymal Reprogramming in Malignant Clonal Evolution and Intra-Tumoral Heterogeneity in Glioblastoma. Cells 2024; 13:942. [PMID: 38891074 PMCID: PMC11171993 DOI: 10.3390/cells13110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma (GBM) is the most common yet uniformly fatal adult brain cancer. Intra-tumoral molecular and cellular heterogeneities are major contributory factors to therapeutic refractoriness and futility in GBM. Molecular heterogeneity is represented through molecular subtype clusters whereby the proneural (PN) subtype is associated with significantly increased long-term survival compared to the highly resistant mesenchymal (MES) subtype. Furthermore, it is universally recognized that a small subset of GBM cells known as GBM stem cells (GSCs) serve as reservoirs for tumor recurrence and progression. The clonal evolution of GSC molecular subtypes in response to therapy drives intra-tumoral heterogeneity and remains a critical determinant of GBM outcomes. In particular, the intra-tumoral MES reprogramming of GSCs using current GBM therapies has emerged as a leading hypothesis for therapeutic refractoriness. Preventing the intra-tumoral divergent evolution of GBM toward the MES subtype via new treatments would dramatically improve long-term survival for GBM patients and have a significant impact on GBM outcomes. In this review, we examine the challenges of the role of MES reprogramming in the malignant clonal evolution of glioblastoma and provide future perspectives for addressing the unmet therapeutic need to overcome resistance in GBM.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Robert J. Macaulay
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
26
|
Trejo-Solís C, Castillo-Rodríguez RA, Serrano-García N, Silva-Adaya D, Vargas-Cruz S, Chávez-Cortéz EG, Gallardo-Pérez JC, Zavala-Vega S, Cruz-Salgado A, Magaña-Maldonado R. Metabolic Roles of HIF1, c-Myc, and p53 in Glioma Cells. Metabolites 2024; 14:249. [PMID: 38786726 PMCID: PMC11122955 DOI: 10.3390/metabo14050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
The metabolic reprogramming that promotes tumorigenesis in glioblastoma is induced by dynamic alterations in the hypoxic tumor microenvironment, as well as in transcriptional and signaling networks, which result in changes in global genetic expression. The signaling pathways PI3K/AKT/mTOR and RAS/RAF/MEK/ERK stimulate cell metabolism, either directly or indirectly, by modulating the transcriptional factors p53, HIF1, and c-Myc. The overexpression of HIF1 and c-Myc, master regulators of cellular metabolism, is a key contributor to the synthesis of bioenergetic molecules that mediate glioma cell transformation, proliferation, survival, migration, and invasion by modifying the transcription levels of key gene groups involved in metabolism. Meanwhile, the tumor-suppressing protein p53, which negatively regulates HIF1 and c-Myc, is often lost in glioblastoma. Alterations in this triad of transcriptional factors induce a metabolic shift in glioma cells that allows them to adapt and survive changes such as mutations, hypoxia, acidosis, the presence of reactive oxygen species, and nutrient deprivation, by modulating the activity and expression of signaling molecules, enzymes, metabolites, transporters, and regulators involved in glycolysis and glutamine metabolism, the pentose phosphate cycle, the tricarboxylic acid cycle, and oxidative phosphorylation, as well as the synthesis and degradation of fatty acids and nucleic acids. This review summarizes our current knowledge on the role of HIF1, c-Myc, and p53 in the genic regulatory network for metabolism in glioma cells, as well as potential therapeutic inhibitors of these factors.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | | | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Ciudad de Mexico 14330, Mexico
| | - Salvador Vargas-Cruz
- Departamento de Cirugía, Hospital Ángeles del Pedregal, Camino a Sta. Teresa, Ciudad de Mexico 10700, Mexico;
| | | | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de Mexico 14080, Mexico;
| | - Sergio Zavala-Vega
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| |
Collapse
|
27
|
Pan L, Wu J, Wang N. Association of Gene Polymorphisms with Normal Tension Glaucoma: A Systematic Review and Meta-Analysis. Genes (Basel) 2024; 15:491. [PMID: 38674425 PMCID: PMC11050218 DOI: 10.3390/genes15040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Normal tension glaucoma (NTG) is becoming a more and more serious problem, especially in Asia. But the pathological mechanisms are still not illustrated clearly. We carried out this research to uncover the gene polymorphisms with NTG. METHODS We searched in Web of Science, Embase, Pubmed and Cochrane databases for qualified case-control studies investigating the association between single nucleotide polymorphisms (SNPs) and NTG risk. Odds ratios (ORs) and 95% confidence intervals (CIs) for each SNP were estimated by fixed- or random-effect models. Sensitivity analysis was also performed to strengthen the reliability of the results. RESULTS Fifty-six studies involving 33 candidate SNPs in 14 genetic loci were verified to be eligible for our meta-analysis. Significant associations were found between 16 SNPs (rs166850 of OPA1; rs10451941 of OPA1; rs735860 of ELOVL5; rs678350 of HK2; c.603T>A/Met98Lys of OPTN; c.412G>A/Thr34Thr of OPTN; rs10759930 of TLR4; rs1927914 of TLR4; rs1927911 of TLR4; c.*70C>G of EDNRA; rs1042522/-Arg72Pro of P53; rs10483727 of SIX1-SIX6; rs33912345 of SIX1-SIX6; rs2033008 of NCK2; rs3213787 of SRBD1 and c.231G>A of EDNRA) with increased or decreased risk of NTG. CONCLUSIONS In this study, we confirmed 16 genetic polymorphisms in 10 genes (OPA1, ELOVL5, HK2, OPTN, TLR4, EDNRA, P53, NCK2, SRBD1 and SIX1-SIX6) were associated with NTG.
Collapse
Affiliation(s)
- Lijie Pan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing 100730, China;
| | - Jian Wu
- School of Life Sciences, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Henan Academy of Innovations in Medical Science, No. 2 Biotechnology Street, Hangkonggang District, Zhengzhou 450000, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing 100730, China;
| |
Collapse
|
28
|
Yang H, Li S, Li W, Yang Y, Zhang Y, Zhang S, Hao Y, Cao W, Xu F, Wang H, Du G, Wang J. Actinomycin D synergizes with Doxorubicin in triple-negative breast cancer by inducing P53-dependent cell apoptosis. Carcinogenesis 2024; 45:262-273. [PMID: 37997385 DOI: 10.1093/carcin/bgad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVES There are three major subtypes of breast cancer, ER+, HER2+ and triple-negative breast cancer (TNBC), namely ER-, PR-, HER2-. TNBC is the most aggressive breast cancer with poor prognosis and no target drug up to now. Actinomycin D (ActD) is a bioactive metabolite of marine bacteria that has been reported to have antitumor activity. The aim of study is to investigate whether ActD has a synergetic effect on TNBC with Doxorubicin (Dox), the major chemotherapeutic drug for TNBC, and explore the underlying mechanism. METHODS TNBC cell lines HCC1937, MDA-MB-436 and nude mice were used in the study. Drug synergy determination, LDH assay, MMP assay, Hoechst 33342 staining, Flow cytometry, Flexible docking and CESTA assay were carried out. The expression of proteins associated with apoptosis was checked by Western blot and siRNA experiments were performed to investigate the role of P53 and PUMA induced by drugs. RESULTS There was much higher apoptosis rate of cells in the ActD + Dox group than that in ActD group or Dox group. Expression of MDM2 and BCL-2 was reduced while expression of P53, PUMA and BAX were increased in the groups treated with ActD + Dox or Dox compared to the control group. Furthermore, P53 siRNA or PUMA siRNA tremendously abrogated the cell apoptosis in the groups treated by ActD, Dox and ActD + Dox. Flexible docking and CESTA showed that ActD can bind MDM2. CONCLUSIONS ActD had a synergetic effect on TNBC with Dox via P53-dependent apoptosis and it may be a new choice for treatment of TNBC.
Collapse
Affiliation(s)
- Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Sha Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yue Hao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wanxin Cao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fang Xu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Zhou X, Wu D, Mi T, Li R, Guo T, Li W. Icaritin activates p53 and inhibits aerobic glycolysis in liver cancer cells. Chem Biol Interact 2024; 392:110926. [PMID: 38431053 DOI: 10.1016/j.cbi.2024.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Metabolic reprogramming enables cancer cells to generate energy mainly through aerobic glycolysis, which is achieved by increasing the expression levels of glycolysis-related enzymes. Therefore, the development of drugs targeting aerobic glycolysis could be an effective strategy for cancer treatment. Icaritin (ICT) is an active ingredient from the Chinese herbal plant Epimedium with several biological activities, but its anti-cancer mechanism remains inconclusive. Using normal hepatocytes and hepatoma cells, our results showed that ICT suppressed cell proliferation and clonal formation and decreased glucose consumption and lactate production in liver cancer cells. In consistent, the mRNA and protein levels of several aerobic glycolysis-related genes were decreased upon ICT treatment. Furthermore, our results demonstrated that the expression levels of the aerobic glycolysis-related proteins were correlated with the p53 status in hepatoma cells. Using PFT-α or siRNA-p53, our results confirmed that ICT regulated aerobic glycolysis in a p53-dependent manner. In addition, ICT was found to stabilize p53 at the post-translational level which might be mediated by inhibiting MDM2 expression and affecting its interaction with p53. Finally, our results demonstrated that ICT increased the levels of ROS that activated p53 via the p38 MAPK pathway. In conclusion, ICT increased intracellular ROS levels in liver cancer cells, which promoted the stabilization and activation of p53, inhibiting the expression of aerobic glycolysis-related genes and glycolysis, and ultimately leading to the suppression of liver cancer development.
Collapse
Affiliation(s)
- Xiangyang Zhou
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, Hebei, 071000, China
| | - Di Wu
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, Hebei, 071000, China
| | - Tian Mi
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, Hebei, 071000, China
| | - Ruohan Li
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
| | - Tao Guo
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, Hebei, 071000, China.
| | - Wenjuan Li
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, Hebei, 071000, China.
| |
Collapse
|
30
|
Chen W, Geng D, Chen J, Han X, Xie Q, Guo G, Chen X, Zhang W, Tang S, Zhong X. Roles and mechanisms of aberrant alternative splicing in melanoma - implications for targeted therapy and immunotherapy resistance. Cancer Cell Int 2024; 24:101. [PMID: 38462618 PMCID: PMC10926661 DOI: 10.1186/s12935-024-03280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Despite advances in therapeutic strategies, resistance to immunotherapy and the off-target effects of targeted therapy have significantly weakened the benefits for patients with melanoma. MAIN BODY Alternative splicing plays a crucial role in transcriptional reprogramming during melanoma development. In particular, aberrant alternative splicing is involved in the efficacy of immunotherapy, targeted therapy, and melanoma metastasis. Abnormal expression of splicing factors and variants may serve as biomarkers or therapeutic targets for the diagnosis and prognosis of melanoma. Therefore, comprehensively integrating their roles and related mechanisms is essential. This review provides the first detailed summary of the splicing process in melanoma and the changes occurring in this pathway. CONCLUSION The focus of this review is to provide strategies for developing novel diagnostic biomarkers and summarize their potential to alter resistance to targeted therapies and immunotherapy.
Collapse
Affiliation(s)
- Wanxian Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Deyi Geng
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Jiasheng Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xiaosha Han
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Qihu Xie
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Genghong Guo
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xuefen Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Wancong Zhang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Shijie Tang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xiaoping Zhong
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China.
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
31
|
Xiao Y, Liu R, Li N, Li Y, Huang X. Role of the ubiquitin-proteasome system on macrophages in the tumor microenvironment. J Cell Physiol 2024; 239:e31180. [PMID: 38219045 DOI: 10.1002/jcp.31180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment, and their different polarization states play multiple roles in tumors by secreting cytokines, chemokines, and so on, which are closely related to tumor development. In addition, the enrichment of TAMs is often associated with poor prognosis of tumors. Thus, targeting TAMs is a potential tumor treatment strategy, in which therapeutic approaches such as reducing TAMs numbers, remodeling TAMs phenotypes, and altering their functions are being extensively investigated. Meanwhile, the ubiquitin-proteasome system (UPS), an important mechanism of protein hydrolysis in eukaryotic cells, participates in cellular processes by regulating the activity and stability of key proteins. Interestingly, UPS plays a dual role in the process of tumor development, and its role in TAMs deserve to be investigated in depth. This review builds on this foundation to further explore the multiple roles of UPS on TAMs and identifies a promising approach to treat tumors by targeting TAMs with UPS.
Collapse
Affiliation(s)
- Yue Xiao
- First School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Ruiqian Liu
- School of Future Technology, Nanchang University, Nanchang, China
| | - Na Li
- School of Future Technology, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
32
|
Actis S, Cazzaniga M, Bounous VE, D'Alonzo M, Rosso R, Accomasso F, Minella C, Biglia N. Emerging evidence on the role of breast microbiota on the development of breast cancer in high-risk patients. Carcinogenesis 2023; 44:718-725. [PMID: 37793149 DOI: 10.1093/carcin/bgad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
Cancer is a multi-factorial disease, and the etiology of breast cancer (BC) is due to a combination of both genetic and environmental factors. Breast tissue shows a unique microbiota, Proteobacteria and Firmicutes are the most abundant bacteria in breast tissue, and several studies have shown that the microbiota of healthy breast differs from that of BC. Breast microbiota appears to be correlated with different characteristics of the tumor, and prognostic clinicopathologic features. It also appears that there are subtle differences between the microbial profiles of the healthy control and high-risk patients. Genetic predisposition is an extremely important risk factor for BC. BRCA1/2 germline mutations and Li-Fraumeni syndrome are DNA repair deficiency syndromes inherited as autosomal dominant characters that substantially increase the risk of BC. These syndromes exhibit incomplete penetrance of BC expression in carrier subjects. The action of breast microbiota on carcinogenesis might explain why women with a mutation develop cancer and others do not. Among the potential biological pathways through which the breast microbiota may affect tumorigenesis, the most relevant appear to be DNA damage caused by colibactin and other bacterial-derived genotoxins, β-glucuronidase-mediated estrogen deconjugation and reactivation, and HPV-mediated cancer susceptibility. In conclusion, in patients with a genetic predisposition, an unfavorable breast microbiota may be co-responsible for the onset of BC. Prospectively, the ability to modulate the microbiota may have an impact on disease onset and progression in patients at high risk for BC.
Collapse
Affiliation(s)
- Silvia Actis
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | | | - Valentina Elisabetta Bounous
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Marta D'Alonzo
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Roberta Rosso
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Francesca Accomasso
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Carola Minella
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Nicoletta Biglia
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| |
Collapse
|
33
|
Meng F, Ai C, Yan G, Wang G. Tumor-suppressive zinc finger protein 24 (ZNF24) sensitizes colorectal cancer cells to 5-fluorouracil by inhibiting the Wnt pathway and activating the p53 signaling. Exp Cell Res 2023; 433:113796. [PMID: 37774763 DOI: 10.1016/j.yexcr.2023.113796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/16/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Carcinogenesis and colorectal cancer (CRC) development are associated with dysregulation of various pathways, including Wnt and p53. 5-fluorouracil (5-FU) is a common chemotherapeutic agent for CRC treatment, but its efficacy is restricted by drug resistance. Doxycycline is an orally active tetracycline antibiotic known for its antimicrobial and anticancer cell proliferation activities. This study intends to delineate the potential role of bioinformatically predicted ZNF24 in the 5-FU resistance of CRC cells. The expression of ZNF24 was measured in clinically collected CRC tissues and cells. Afterward, ectopic ZNF24 expression was induced by DOX to evaluate the viability, colony-forming ability and sphere-forming ability of CRC cells. It was found that ZNF24 was validated to be poorly expressed in CRC tissues, and ectopic expression of ZNF24 was revealed to restrict the malignant phenotypes of CRC cells. In addition, restored ZNF24 attenuated 5-FU resistance of CRC cells by inhibiting the Wnt pathway and activating p53 signaling. Furthermore, an inhibitor of Wnt production 2 (IWP-2) treatment was an alternative to ZNF24 up-regulation in sensitizing CRC cells to 5-FU treatment. In conclusion, our results indicate that ZNF24 inhibits 5-FU resistance of CRC cells by suppressing the Wnt pathway and activating p53 signaling, which offers a potential strategy for managing chemoresistance in CRC.
Collapse
Affiliation(s)
- Fanqi Meng
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Chunlong Ai
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Guoqiang Yan
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
34
|
Rakotopare J, Toledo F. p53 in the Molecular Circuitry of Bone Marrow Failure Syndromes. Int J Mol Sci 2023; 24:14940. [PMID: 37834388 PMCID: PMC10573108 DOI: 10.3390/ijms241914940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Mice with a constitutive increase in p53 activity exhibited features of dyskeratosis congenita (DC), a bone marrow failure syndrome (BMFS) caused by defective telomere maintenance. Further studies confirmed, in humans and mice, that germline mutations affecting TP53 or its regulator MDM4 may cause short telomeres and alter hematopoiesis, but also revealed features of Diamond-Blackfan anemia (DBA) or Fanconi anemia (FA), two BMFSs, respectively, caused by defects in ribosomal function or DNA repair. p53 downregulates several genes mutated in DC, either by binding to promoter sequences (DKC1) or indirectly via the DREAM repressor complex (RTEL1, DCLRE1B), and the p53-DREAM pathway represses 22 additional telomere-related genes. Interestingly, mutations in any DC-causal gene will cause telomere dysfunction and subsequent p53 activation to further promote the repression of p53-DREAM targets. Similarly, ribosomal dysfunction and DNA lesions cause p53 activation, and p53-DREAM targets include the DBA-causal gene TSR2, at least 9 FA-causal genes, and 38 other genes affecting ribosomes or the FA pathway. Furthermore, patients with BMFSs may exhibit brain abnormalities, and p53-DREAM represses 16 genes mutated in microcephaly or cerebellar hypoplasia. In sum, positive feedback loops and the repertoire of p53-DREAM targets likely contribute to partial phenotypic overlaps between BMFSs of distinct molecular origins.
Collapse
Affiliation(s)
- Jeanne Rakotopare
- Genetics of Tumor Suppression, Institut Curie, CEDEX 05, 75248 Paris, France;
- CNRS UMR3244, 75005 Paris, France
- Faculty of Science and Engineering, Sorbonne University, 75005 Paris, France
- Institut Curie, PSL Research University, 75005 Paris, France
| | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, CEDEX 05, 75248 Paris, France;
- CNRS UMR3244, 75005 Paris, France
- Faculty of Science and Engineering, Sorbonne University, 75005 Paris, France
- Institut Curie, PSL Research University, 75005 Paris, France
| |
Collapse
|
35
|
Malla BA, Ali A, Maqbool I, Dar NA, Ahmad SB, Alsaffar RM, Rehman MU. Insights into molecular docking and dynamics to reveal therapeutic potential of natural compounds against P53 protein. J Biomol Struct Dyn 2023; 41:8762-8781. [PMID: 36281711 DOI: 10.1080/07391102.2022.2137241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022]
Abstract
P53 is eminent tumour suppressor protein that plays a prominent role in cell cycle arrest, DNA repair, senescence, differentiation and initiation of apoptosis. P53 is an attractive drug target and the high toxicity of some cancer chemotherapy drugs increase the demand for new anti-cancer drugs from natural products. In this current scenario, identification of promising anticancer compounds from natural sources by repurposing approach is still relevant for the early prevention and effective management of cancer. In present study, we docked natural compounds like podophyllotoxin, quercetin and rutin along standard drugs (MG-132 and Bay 61-3606) against p53 protein. ADME/T analysis predicted toxicity of phytochemicals and drugs. In silico docking analysis of podophyllotoxin, quercetin and rutin gave HDOCK docking scores of -187.87, -148. 97 and -143.85, whereas control drugs MG-132 and Bay 61-3606 showed docking scores of -159.59 and -140.71 against p53 respectively. AutoDock analysis of rutin and MG-132 showed highest binding affinity scores of -7.3 and -6.8 kcal/mol against p53. Molecular dynamic simulation for p53 protein displayed stable conformation and convergence. In this study, P53-rutin complex showed free binding energy score of 11.84 kcal/mol and P53-MG-132 complex reported free energy score of 16.3 kcal/mol. Protein contacts atlas gives non-covalent contacts framework by exploring interfaces of individual subunits and protein-ligand interactions. STRING tool predicts physical and functional interactions between proteins. The results of this study revealed that rutin and MG-132 could be promising inhibitors against targeted p53 protein and this could prove detrimental for molecular therapeutics and drug-designing strategies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bashir Ahmad Malla
- Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| | - Aarif Ali
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| | - Irfan Maqbool
- Department of Clinical Biochemistry, SKIMS Soura, Srinagar, J&K, India
| | - Nazir Ahmad Dar
- Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, SKUAST-K, Shuhama Alusteng, J&K, India
| | - Rana M Alsaffar
- Department Of Pharmacology & Toxicology, College Of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Shoaib TH, Abdelmoniem N, Mukhtar RM, Alqhtani AT, Alalawi AL, Alawaji R, Althubyani MS, Mohamed SGA, Mohamed GA, Ibrahim SRM, Hussein HGA, Alzain AA. Molecular Docking and Molecular Dynamics Studies Reveal the Anticancer Potential of Medicinal-Plant-Derived Lignans as MDM2-P53 Interaction Inhibitors. Molecules 2023; 28:6665. [PMID: 37764441 PMCID: PMC10536213 DOI: 10.3390/molecules28186665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The interaction between the tumor suppressor protein p53 and its negative regulator, the MDM2 oncogenic protein, has gained significant attention in cancer drug discovery. In this study, 120 lignans reported from Ferula sinkiangensis and Justicia procumbens were assessed for docking simulations on the active pocket of the MDM2 crystal structure bound to Nutlin-3a. The docking analysis identified nine compounds with higher docking scores than the co-crystallized reference. Subsequent AMDET profiling revealed satisfactory pharmacokinetic and safety parameters for these natural products. Three compounds, namely, justin A, 6-hydroxy justicidin A, and 6'-hydroxy justicidin B, were selected for further investigation due to their strong binding affinities of -7.526 kcal/mol, -7.438 kcal/mol, and -7.240 kcal/mol, respectively, which surpassed the binding affinity of the reference inhibitor Nutlin-3a (-6.830 kcal/mol). To assess the stability and reliability of the binding of the candidate hits, a molecular dynamics simulation was performed over a duration of 100 ns. Remarkably, the thorough analysis demonstrated that all the hits exhibited stable molecular dynamics profiles. Based on their effective binding to MDM2, favorable pharmacokinetic properties, and molecular dynamics behavior, these compounds represent a promising starting point for further refinement. Nevertheless, it is essential to synthesize the suggested compounds and evaluate their activity through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Tagyedeen H. Shoaib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (N.A.); (R.M.M.)
| | - Nihal Abdelmoniem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (N.A.); (R.M.M.)
| | - Rua M. Mukhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (N.A.); (R.M.M.)
| | - Amal Th. Alqhtani
- Pharmaceutical Care Services, Madinah Cardiac Center, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia; (A.T.A.); (M.S.A.)
| | - Abdullah L. Alalawi
- Pharmaceutical Care Services, King Salman Medical City, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia;
| | - Razan Alawaji
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
| | - Mashael S. Althubyani
- Pharmaceutical Care Services, Madinah Cardiac Center, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia; (A.T.A.); (M.S.A.)
| | - Shaimaa G. A. Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sabrin R. M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Hazem G. A. Hussein
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (N.A.); (R.M.M.)
| |
Collapse
|
37
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
38
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
39
|
Guo Y, Tang Y, Lu G, Gu J. p53 at the Crossroads between Doxorubicin-Induced Cardiotoxicity and Resistance: A Nutritional Balancing Act. Nutrients 2023; 15:nu15102259. [PMID: 37242146 DOI: 10.3390/nu15102259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapeutic drug, but its long-term use can cause cardiotoxicity and drug resistance. Accumulating evidence demonstrates that p53 is directly involved in DOX toxicity and resistance. One of the primary causes for DOX resistance is the mutation or inactivation of p53. Moreover, because the non-specific activation of p53 caused by DOX can kill non-cancerous cells, p53 is a popular target for reducing toxicity. However, the reduction in DOX-induced cardiotoxicity (DIC) via p53 suppression is often at odds with the antitumor advantages of p53 reactivation. Therefore, in order to increase the effectiveness of DOX, there is an urgent need to explore p53-targeted anticancer strategies owing to the complex regulatory network and polymorphisms of the p53 gene. In this review, we summarize the role and potential mechanisms of p53 in DIC and resistance. Furthermore, we focus on the advances and challenges in applying dietary nutrients, natural products, and other pharmacological strategies to overcome DOX-induced chemoresistance and cardiotoxicity. Lastly, we present potential therapeutic strategies to address key issues in order to provide new ideas for increasing the clinical use of DOX and improving its anticancer benefits.
Collapse
Affiliation(s)
- Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
40
|
Rahmé R, Braun T, Manfredi JJ, Fenaux P. TP53 Alterations in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Biomedicines 2023; 11:biomedicines11041152. [PMID: 37189770 DOI: 10.3390/biomedicines11041152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
TP53 mutations are less frequent in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) than in solid tumors, except in secondary and therapy-related MDS/AMLs, and in cases with complex monosomal karyotype. As in solid tumors, missense mutations predominate, with the same hotspot mutated codons (particularly codons 175, 248, 273). As TP53-mutated MDS/AMLs are generally associated with complex chromosomal abnormalities, it is not always clear when TP53 mutations occur in the pathophysiological process. It is also uncertain in these MDS/AML cases, which often have inactivation of both TP53 alleles, if the missense mutation is only deleterious through the absence of a functional p53 protein, or through a potential dominant-negative effect, or finally a gain-of-function effect of mutant p53, as demonstrated in some solid tumors. Understanding when TP53 mutations occur in the disease course and how they are deleterious would help to design new treatments for those patients who generally show poor response to all therapeutic approaches.
Collapse
Affiliation(s)
- Ramy Rahmé
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université Paris Cité, 75010 Paris, France
- Ecole Doctorale Hématologie-Oncogenèse-Biothérapies, Université Paris Cité, 75010 Paris, France
- Clinical Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Sorbonne Paris Nord, 93000 Bobigny, France
| | - Thorsten Braun
- Clinical Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Sorbonne Paris Nord, 93000 Bobigny, France
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre Fenaux
- Senior Hematology Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, 75010 Paris, France
| |
Collapse
|
41
|
Tatavosian R, Donovan MG, Galbraith MD, Duc HN, Szwarc MM, Joshi MU, Frieman A, Bilousova G, Cao Y, Smith KP, Song K, Rachubinski AL, Andrysik Z, Espinosa JM. Cell differentiation modifies the p53 transcriptional program through a combination of gene silencing and constitutive transactivation. Cell Death Differ 2023; 30:952-965. [PMID: 36681780 PMCID: PMC10070495 DOI: 10.1038/s41418-023-01113-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
The p53 transcription factor is a master regulator of cellular responses to stress that is commonly inactivated in diverse cancer types. Despite decades of research, the mechanisms by which p53 impedes tumorigenesis across vastly different cellular contexts requires further investigation. The bulk of research has been completed using in vitro studies of cancer cell lines or in vivo studies in mouse models, but much less is known about p53 action in diverse non-transformed human tissues. Here, we investigated how different cellular states modify the p53 transcriptional program in human cells through a combination of computational analyses of publicly available large-scale datasets and in vitro studies using an isogenic system consisting of induced pluripotent stem cells (iPSCs) and two derived lineages. Analysis of publicly available mRNA expression and genetic dependency data demonstrated wide variation in terms of expression and function of a core p53 transcriptional program across various tissues and lineages. To monitor the impact of cell differentiation on the p53 transcriptome within an isogenic cell culture system, we activated p53 by pharmacological inhibition of its negative regulator MDM2. Using cell phenotyping assays and genome wide transcriptome analyses, we demonstrated that cell differentiation confines and modifies the p53 transcriptional network in a lineage-specific fashion. Although hundreds of p53 target genes are transactivated in iPSCs, only a small fraction is transactivated in each of the differentiated lineages. Mechanistic studies using small molecule inhibitors and genetic knockdowns revealed the presence of two major regulatory mechanisms contributing to this massive heterogeneity across cellular states: gene silencing by epigenetic regulatory complexes and constitutive transactivation by lineage-specific transcription factors. Altogether, these results illuminate the impact of cell differentiation on the p53 program, thus advancing our understanding of how this tumor suppressor functions in different contexts.
Collapse
Affiliation(s)
- Roubina Tatavosian
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Micah G Donovan
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Huy N Duc
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maria M Szwarc
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Molishree U Joshi
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Amy Frieman
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ganna Bilousova
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yingqiong Cao
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Section of Developmental Pediatrics, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Joaquin M Espinosa
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
42
|
Wang F, Cheng H, Zhang Q, Guo J. Genetic mutations in ribosomal biogenesis gene TCOF1 identified in human neural tube defects. Mol Genet Genomic Med 2023; 11:e2150. [PMID: 36808708 PMCID: PMC10178795 DOI: 10.1002/mgg3.2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Rare mutations in multiple genes have been associated with human neural tube defects (NTDs), but their causative roles in NTDs disease are poorly understood. Insufficiency of the ribosomal biogenesis gene treacle ribosome biogenesis factor 1(Tcof1) results in cranial NTDs and craniofacial malformations in mice. Here, we aimed to identify genetic association of TCOF1 with human NTDs. METHODS High-throughput sequencing targeted on TCOF1 was performed on samples from 355 human cases affected by NTDs and 225 controls from a Han Chinese population. RESULTS Four novel missense variants were found in the NTD cohort. Cell-based assays indicated that the p.(A491G) variant carried by an individual, who shows anencephaly and single-nostril abnormality, attenuates production of total proteins, suggesting a loss-of-function mutation in ribosomal biogenesis. Importantly, this variant promotes nucleolar disruption and stabilizes p53 protein, highlighting an unbalancing effect on cell apoptosis. CONCLUSIONS This study explored the functional impact of a missense variant in TCOF1, implicating a set of novel causative biological factors involved in the pathogenicity of human NTDs, particularly whom combined with craniofacial abnormality.
Collapse
Affiliation(s)
- Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Haiqin Cheng
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China.,Department of Biochemistry and Molecular Biology, Ministry of Education Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
43
|
Stoica SI, Onose G, Pitica IM, Neagu AI, Ion G, Matei L, Dragu LD, Radu LE, Chivu-Economescu M, Necula LG, Anghelescu A, Diaconu CC, Munteanu C, Bleotu C. Molecular Aspects of Hypoxic Stress Effects in Chronic Ethanol Exposure of Neuronal Cells. Curr Issues Mol Biol 2023; 45:1655-1680. [PMID: 36826052 PMCID: PMC9955714 DOI: 10.3390/cimb45020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Experimental models of a clinical, pathophysiological context are used to understand molecular mechanisms and develop novel therapies. Previous studies revealed better outcomes for spinal cord injury chronic ethanol-consuming patients. This study evaluated cellular and molecular changes in a model mimicking spinal cord injury (hypoxic stress induced by treatment with deferoxamine or cobalt chloride) in chronic ethanol-consuming patients (ethanol-exposed neural cultures (SK-N-SH)) in order to explain the clinical paradigm of better outcomes for spinal cord injury chronic ethanol-consuming patients. The results show that long-term ethanol exposure has a cytotoxic effect, inducing apoptosis. At 24 h after the induction of hypoxic stress (by deferoxamine or cobalt chloride treatments), reduced ROS in long-term ethanol-exposed SK-N-SH cells was observed, which might be due to an adaptation to stressful conditions. In addition, the HIF-1α protein level was increased after hypoxic treatment of long-term ethanol-exposed cells, inducing fluctuations in its target metabolic enzymes proportionally with treatment intensity. The wound healing assay demonstrated that the cells recovered after stress conditions, showing that the ethanol-exposed cells that passed the acute step had the same proliferation profile as the cells unexposed to ethanol. Deferoxamine-treated cells displayed higher proliferative activity than the control cells in the proliferation-migration assay, emphasizing the neuroprotective effect. Cells have overcome the critical point of the alcohol-induced traumatic impact and adapted to ethanol (a chronic phenomenon), sustaining the regeneration process. However, further experiments are needed to ensure recovery efficiency is more effective in chronic ethanol exposure.
Collapse
Affiliation(s)
- Simona Isabelle Stoica
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | - Ioana Madalina Pitica
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Ana Iulia Neagu
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Gabriela Ion
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Laura Denisa Dragu
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Lacramioara-Elena Radu
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | | | - Laura Georgiana Necula
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Aurelian Anghelescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | | | - Constantin Munteanu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
- Grigore T. Popa University of Medicine and Pharmacy of Iași, 700454 Iași, Romania
- Romanian Academy of Scientists, 54 Spl. Independenței Str., District 5, 050085 Bucharest, Romania
| | - Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
- Romanian Academy of Scientists, 54 Spl. Independenței Str., District 5, 050085 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., District 5, 060101 Bucharest, Romania
| |
Collapse
|
44
|
Legartová S, Fagherazzi P, Goswami P, Brazda V, Lochmanová G, Koutná I, Bártová E. Irradiation potentiates p53 phosphorylation and p53 binding to the promoter and coding region of the TP53 gene. Biochimie 2023; 204:154-168. [PMID: 36167255 DOI: 10.1016/j.biochi.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 01/12/2023]
Abstract
An essential factor of the DNA damage response is 53BP1, a multimeric protein that inhibits the resection-dependent double-strand break (DBS) repair. The p53 protein is a tumor suppressor known as a guardian of the genome. Although the interaction between 53BP1 and its p53 partner is well-known in regulating gene expression, a question remains whether genome injury can affect the interaction between 53BP1 and p53 proteins or p53 binding to DNA. Here, using mass spectrometry, we determine post-translational modifications and interaction properties of 53BP1 and p53 proteins in non-irradiated and γ-irradiated cells. In addition, we used Atomic Force Microscopy (AFM) and Fluorescent Lifetime Imaging Microscopy combined with Fluorescence Resonance Energy Transfer (FLIM-FRET) for studies of p53 binding to DNA. Also, we used local laser microirradiation as a tool of advanced confocal microscopy, showing selected protein accumulation at locally induced DNA lesions. We observed that 53BP1 and p53 proteins accumulate at microirradiated chromatin but with distinct kinetics. The density of 53BP1 (53BP1pS1778) phosphorylated form was lower in DNA lesions than in the non-specified form. By mass spectrometry, we found 22 phosphorylations, 4 acetylation sites, and methylation of arginine 1355 within the DNA-binding domain of the 53BP1 protein (aa1219-1711). The p53 protein was phosphorylated on 8 amino acids and acetylated on the N-terminal domain. Post-translational modifications (PTMs) of 53BP1 were not changed in cells exposed to γ-radiation, while γ-rays increased the level of S6ph and S15ph in p53. Interaction analysis showed that 53BP1 and p53 proteins have 54 identical interaction protein partners, and AFM revealed that p53 binds to both non-specific and TP53-specific sequences (AGACATGCCTA GGCATGTCT). Irradiation by γ-rays enhanced the density of the p53 protein at the AGACATGCCTAGGCATGTCT region, and the binding of p53 S15ph to the TP53 promoter was potentiated in irradiated cells. These findings show that γ-irradiation, in general, strengthens the binding of phosphorylated p53 protein to the encoding gene.
Collapse
Affiliation(s)
- Soňa Legartová
- Department of Cell Biology and Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Paolo Fagherazzi
- Department of Cell Biology and Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Pratik Goswami
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Vaclav Brazda
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Gabriela Lochmanová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Irena Koutná
- The International Clinical Research Center of St. Anne's University Hospital in Brno (FNUSA-ICRC), Pekařská 53, 656 91, Brno, Czech Republic
| | - Eva Bártová
- Department of Cell Biology and Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| |
Collapse
|
45
|
Unaffected Li-Fraumeni Syndrome Carrier Parent Demonstrates Allele-Specific mRNA Stabilization of Wild-Type TP53 Compared to Affected Offspring. Genes (Basel) 2022; 13:genes13122302. [PMID: 36553570 PMCID: PMC9778056 DOI: 10.3390/genes13122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Li-Fraumeni Syndrome (LFS) is an autosomal dominant disorder where an oncogenic TP53 germline mutation is inherited by offspring of a carrier parent. p53 is a key tumor suppressor regulating cell cycle arrest in response to DNA damage. Unexpectedly, some mutant TP53 carriers remain unaffected, while their children develop cancer early in life. To begin unravelling this paradox, the response of dermal fibroblasts (dFb) isolated from a child with LFS was compared to those from her unaffected father after UV exposure. Phospho-Chk1[S345], a key activator of cell cycle arrest, was increased by UV induction in the LFS patient compared to their unaffected parent dFb. This result, along with previous findings of reduced CDKN1A/p21 UV induction in affected dFb, suggest that cell cycle dysregulation may contribute to cancer onset in the affected LFS subject but not the unaffected parent. Mutant p53 protein and its promoter binding affinity were also higher in dFb from the LFS patient compared to their unaffected parent. These results were as predicted based on decreased mutant TP53 allele-specific mRNA expression previously found in unaffected dFb. Investigation of the potential mechanism regulating this TP53 allele-specific expression found that, while epigenetic promoter methylation was not detectable, TP53 wild-type mRNA was specifically stabilized in the unaffected dFb. Hence, the allele-specific stabilization of wild-type TP53 mRNA may allow an unaffected parent to counteract genotoxic stress by means more characteristic of homozygous wild-type TP53 individuals than their affected offspring, providing protection from the oncogenesis associated with LFS.
Collapse
|
46
|
Amendolare A, Marzano F, Petruzzella V, Vacca RA, Guerrini L, Pesole G, Sbisà E, Tullo A. The Underestimated Role of the p53 Pathway in Renal Cancer. Cancers (Basel) 2022; 14:cancers14235733. [PMID: 36497215 PMCID: PMC9736171 DOI: 10.3390/cancers14235733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The TP53 tumor suppressor gene is known as the guardian of the genome, playing a pivotal role in controlling genome integrity, and its functions are lost in more than 50% of human tumors due to somatic mutations. This percentage rises to 90% if mutations and alterations in the genes that code for regulators of p53 stability and activity are taken into account. Renal cell carcinoma (RCC) is a clear example of cancer that despite having a wild-type p53 shows poor prognosis because of the high rate of resistance to radiotherapy or chemotherapy, which leads to recurrence, metastasis and death. Remarkably, the fact that p53 is poorly mutated does not mean that it is functionally active, and increasing experimental evidences have demonstrated this. Therefore, RCC represents an extraordinary example of the importance of p53 pathway alterations in therapy resistance. The search for novel molecular biomarkers involved in the pathways that regulate altered p53 in RCC is mandatory for improving early diagnosis, evaluating the prognosis and developing novel potential therapeutic targets for better RCC treatment.
Collapse
Affiliation(s)
- Alessandra Amendolare
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70121 Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
| | - Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
| | - Vittoria Petruzzella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, 70121 Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
| | - Luisa Guerrini
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70121 Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
| | - Elisabetta Sbisà
- Institute of Biomedical Technologies, National Research Council—CNR, 70126 Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
- Correspondence: ; Tel.: +39-0805929672
| |
Collapse
|
47
|
Traweek RS, Cope BM, Roland CL, Keung EZ, Nassif EF, Erstad DJ. Targeting the MDM2-p53 pathway in dedifferentiated liposarcoma. Front Oncol 2022; 12:1006959. [PMID: 36439412 PMCID: PMC9684653 DOI: 10.3389/fonc.2022.1006959] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/19/2022] [Indexed: 10/12/2023] Open
Abstract
Dedifferentiated liposarcoma (DDLPS) is an aggressive adipogenic cancer with poor prognosis. DDLPS tumors are only modestly sensitive to chemotherapy and radiation, and there is a need for more effective therapies. Genetically, DDLPS is characterized by a low tumor mutational burden and frequent chromosomal structural abnormalities including amplification of the 12q13-15 chromosomal region and the MDM2 gene, which are defining features of DDLPS. The MDM2 protein is an E3 ubiquitin ligase that targets the tumor suppressor, p53, for proteasomal degradation. MDM2 amplification or overexpression in human malignancies is associated with cell-cycle progression and worse prognosis. The MDM2-p53 interaction has thus garnered interest as a therapeutic target for DDLPS and other malignancies. MDM2 binds p53 via a hydrophobic protein interaction that is easily accessible with synthetic analogues. Multiple agents have been developed, including Nutlins such as RG7112 and small molecular inhibitors including SAR405838 and HDM201. Preclinical in vitro and animal models have shown promising results with MDM2 inhibition, resulting in robust p53 reactivation and cancer cell death. However, multiple early-phase clinical trials have failed to show a benefit with MDM2 pathway inhibition for DDLPS. Mechanisms of resistance are being elucidated, and novel inhibitors and combination therapies are currently under investigation. This review provides an overview of these strategies for targeting MDM2 in DDLPS.
Collapse
Affiliation(s)
- Raymond S. Traweek
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brandon M. Cope
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christina L. Roland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Emily Z. Keung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elise F. Nassif
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Derek J. Erstad
- Division of Surgical Oncology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
48
|
Zhao W, Yang J, Xie X, Li C, Zhang W, Chen E, Guo Y, Yan L, Fang F, Yao H, Liu X. A MDM2 inhibitor MX69 inhibits adipocytes adipogenesis and differentiation. Biochem Biophys Res Commun 2022; 625:9-15. [PMID: 35944364 DOI: 10.1016/j.bbrc.2022.07.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/02/2022]
Abstract
Adipose tissue, a key regulator of systemic energy homeostasis, can synthesize and store triglycerides to meet long-term energy demands. In response to nutrient overload, adipose tissue expands by hypertrophy or hyperplasia. As an oncogene, MDM2 has exerted diverse biological activities including human development, tissue regeneration, and inflammation, in addition to major oncogenic activities. Recently, some studies indicated that MDM2 plays an important role in adipose tissue function. However, the role of MX69, a MDM2 inhibitor, in adipose tissue function has not been fully elucidated. Here, we administered MX69 intraperitoneally to high-fat diet-induced obesity (DIO) wild type C57BL/6 mice and found that MX69 could promote the body weight and white adipose tissue weight of DIO mice. Moreover, MX69 had no effects on glucose tolerance and insulin sensitivity in DIO mice. And MX69 treatment decreased the size of adipocytes and fat deposition in adipose tissue and inhibited 3T3-L1 preadipocytes differentiation. Mechanistically, MX69 inhibited the protein levels of MDM2 and the mRNA levels of genes related to adipogenesis and differentiation. In summary, our results indicated that MDM2 has a crucial and complex role in regulating adipose tissue function.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jiahui Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xianghong Xie
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chunmei Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Weihong Zhang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, China
| | - Enhui Chen
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yanfang Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Li Yan
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Fude Fang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Hong Yao
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Xiaojun Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
49
|
Wang B, Gao J, Zhao Z, Zhong X, Cui H, Hou H, Zhang Y, Zheng J, Di J, Liu Y. Identification of a small-molecule RPL11 mimetic that inhibits tumor growth by targeting MDM2-p53 pathway. Mol Med 2022; 28:109. [PMID: 36071402 PMCID: PMC9450376 DOI: 10.1186/s10020-022-00537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Targeting ribosome biogenesis to activate p53 has recently emerged as a therapeutic strategy in human cancer. Among various ribosomal proteins, RPL11 centralizes the nucleolar stress-sensing pathway by binding MDM2, leading to MDM2 inactivation and p53 activation. Therefore, the identification of MDM2-binding RPL11-mimetics would be valuable for anti-cancer therapeutics. METHODS Based on the crystal structure of the interface between RPL11 and MDM2, we have identified 15 potential allosteric modulators of MDM2 through the virtual screening. RESULTS One of these compounds, named S9, directly binds MDM2 and competitively inhibits the interaction between RPL11 and MDM2, leading to p53 stabilization and activation. Moreover, S9 inhibits cancer cell proliferation in vitro and in vivo. Mechanistic study reveals that MDM2 is required for S9-induced G2 cell cycle arrest and apoptosis, whereas p53 contributes to S9-induced apoptosis. CONCLUSIONS Putting together, S9 may serve as a lead compound for the development of an anticancer drug that specifically targets RPL11-MDM2-p53 pathway.
Collapse
Affiliation(s)
- Bingwu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Jian Gao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, China
| | - Zhongjun Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xuefei Zhong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Hao Cui
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Hui Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Yanping Zhang
- Department of Radiation and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, USA
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| | - Yong Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China. .,The State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
50
|
Mejía-Hernández JO, Raghu D, Caramia F, Clemons N, Fujihara K, Riseborough T, Teunisse A, Jochemsen AG, Abrahmsén L, Blandino G, Russo A, Gamell C, Fox SB, Mitchell C, Takano EA, Byrne D, Miranda PJ, Saleh R, Thorne H, Sandhu S, Williams SG, Keam SP, Haupt Y, Haupt S. Targeting MDM4 as a Novel Therapeutic Approach in Prostate Cancer Independent of p53 Status. Cancers (Basel) 2022; 14:3947. [PMID: 36010941 PMCID: PMC9405814 DOI: 10.3390/cancers14163947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Metastatic prostate cancer is a lethal disease in patients incapable of responding to therapeutic interventions. Invasive prostate cancer spread is caused by failure of the normal anti-cancer defense systems that are controlled by the tumour suppressor protein, p53. Upon mutation, p53 malfunctions. Therapeutic strategies to directly re-empower the growth-restrictive capacities of p53 in cancers have largely been unsuccessful, frequently because of a failure to discriminate responses in diseased and healthy tissues. Our studies sought alternative prostate cancer drivers, intending to uncover new treatment targets. We discovered the oncogenic potency of MDM4 in prostate cancer cells, both in the presence and absence of p53 and also its mutation. We uncovered that sustained depletion of MDM4 is growth inhibitory in prostate cancer cells, involving either apoptosis or senescence, depending on the cell and genetic context. We identified that the potency of MDM4 targeting could be potentiated in prostate cancers with mutant p53 through the addition of a first-in-class small molecule drug that was selected as a p53 reactivator and has the capacity to elevate oxidative stress in cancer cells to drive their death.
Collapse
Affiliation(s)
- Javier Octavio Mejía-Hernández
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Dinesh Raghu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Franco Caramia
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicholas Clemons
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kenji Fujihara
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Thomas Riseborough
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Amina Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333 Leiden, The Netherlands
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333 Leiden, The Netherlands
| | | | - Giovanni Blandino
- Translational Oncology Research Unit, IRCSS Regina Elena National Cancer Institute, 0144 Rome, Italy
| | - Andrea Russo
- Surgical Pathology Unit, Department of Research, Advanced Diagnostics and Technological Innovation, IRCSS Regina Elena National Cancer Institute, 0144 Rome, Italy
| | - Cristina Gamell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen B. Fox
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Catherine Mitchell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Elena A. Takano
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - David Byrne
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Panimaya Jeffreena Miranda
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Reem Saleh
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Heather Thorne
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Scott G. Williams
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Simon P. Keam
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ygal Haupt
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sue Haupt
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|