1
|
Xu W, Wang Y, Zhang C, Chai Y, Gao J, Cao Z, Xia Y, Li H. Radiation-induced esophagitis and lung injury during esophageal squamous cell cancer therapy is correlated to tumor gene expression phenotype. Toxicol Res (Camb) 2025; 14:tfaf062. [PMID: 40331088 PMCID: PMC12050034 DOI: 10.1093/toxres/tfaf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/13/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Radiation esophagitis (RE) and Radiation-induced lung injury (RILI) are the main side effects of radiotherapy for esophageal squamous cell cancer (ESCC), which seriously affect the quality of life and therapeutic effect of patients. Then, how to reduce the incidence of RE and RILI is an important topic. We try to establish RE and RILI's prediction scheme based on the gene expression patterns in tumor tissues from patients with ESCC. A total of 37 patients who pathological preliminary diagnosed as ESCC and received radical radiotherapy from 2016 January 1 to 2019 December 31 were enrolled in this study. Use 3-plex qPCR to detect gene expression in ESCC. Our results showed that gene expressions in the Mitogen-activated protein (MAP) kinase signaling (HRAS, MAP2K1, MAPK1, CRAF and KRAS) were positively related to Severe RE (SRE), while Fibroblast growth factor (FGF) signaling showed a negative correlation. We established a c-Index calculation model to predict SRE. Receiver operating characteristic curve were applied to determine the prognostic value of the risk model. Besides, patients with SRE seem to be more easily to develop higher-level of RILI. Taken together, we constructed a novel radiotherapy response-related gene signature, which may be developed into a powerful tool for forecasting the risk of SRE in ESCC radiotherapy patients.
Collapse
Affiliation(s)
- Wenwen Xu
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Yi Wang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Congshu Zhang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Yuqing Chai
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Junfeng Gao
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Zheng Cao
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Yunhong Xia
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, No. 100, Huaihai Avenue, Yaohai District, Hefei, Anhui 230000, China
| | - Hongxia Li
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| |
Collapse
|
2
|
Hasan MM, Kawabata T, Yan C, Sekiya R, Goto S, Urata Y, Li TS. Ionizing radiation induces mild and dose-independent damage to mitochondria in newt cells. Exp Cell Res 2025; 448:114575. [PMID: 40280319 DOI: 10.1016/j.yexcr.2025.114575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
In addition to remarkable regenerative abilities, newts demonstrate a heightened tolerance to radiation compared to mammals. Mitochondria play profound role in cell survival when cells undergo environmental stresses. Thus, our study sought to elucidate the impact of ionizing radiation (IR) on the mitochondria of a newt model Pleurodeles waltl. Primary cells derived from limb tissue of P. waltl were exposed to 0, 5, 10, or 15 Gy X-ray and analyzed at 24h post-irradiation (PIR). Analysis using MitoTracker Red labeling revealed a maximal (p < 0.001) in mitochondrial fission in cells exposed to 5 Gy IR, while mitochondrial fission in cells exposed to 10 and 15 Gy IR was comparable (p < 0.01). Mitochondrial superoxide levels increased in a reverse dose-dependent manner; notably, cells treated with 5 Gy IR produced significantly (p < 0.05) higher mitochondrial superoxide. Mitochondrial membrane potential (ΔΨm) decreased significantly (p < 0.01) with similar extent across all IR-treated groups. Though ΔΨm declined, the ATP content was not changed due to IR. Result from the MTT assay indicated no impairment in mitochondrial activity. Cell counting data suggest negligible impact of IR on viability of cells; however, the phase contrast imaging revealed senescent like morphology of cells. Taken together, cells of P. waltl show mild changes in morphology and function of the mitochondria in response to IR, but seem highly tolerant.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Tsuyoshi Kawabata
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Chen Yan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Reiko Sekiya
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yoshishige Urata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
3
|
Wijetunga NA, Yahalom J, Imber BS. The art of war: using genetic insights to understand and harness radiation sensitivity in hematologic malignancies. Front Oncol 2025; 14:1478078. [PMID: 40191738 PMCID: PMC11968681 DOI: 10.3389/fonc.2024.1478078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/20/2024] [Indexed: 04/09/2025] Open
Abstract
It is well established that hematologic malignancies are often considerably radiosensitive, which enables usage of far lower doses of therapeutic radiotherapy. This review summarizes the currently known genomic landscape of hematologic malignancies, particularly as it relates to radiosensitivity and the field of radiation oncology. By tracing the historical development of the modern understanding of radiosensitivity, we focus on the discovery and implications of pivotal mutated genes in hematologic malignancies such as TP53, ATM, and other genes critical to DNA repair pathways. These genetic insights have contributed significantly to the advancement of personalized medicine, aiming to enhance treatment precision and outcomes, and there is an opportunity to extend these insights to personalized radiotherapy. We explore the transition from early discoveries to the current efforts in integrating comprehensive genomic data into clinical practice. Specific examples from Hodgkin lymphoma, non-Hodgkin lymphoma, and plasma cell neoplasms illustrate how genetic mutations could influence radiosensitivity and impact subsequent radiotherapeutic response. Despite the advancements, challenges remain in translating these genetic insights into routine clinical practice, particularly due to the heterogeneity of alterations and the complex interactions within cancer signaling pathways. We emphasize the potential of radiogenomics to address these challenges by identifying genetic markers that predict radiotherapy response and toxicity, thereby refining treatment strategies. The need for robust decision support systems, standardized protocols, and ongoing education for healthcare providers is critical to the successful integration of genomic data into radiation therapy. As research continues to validate genetic markers and explore novel therapeutic combinations, the promise of personalized radiotherapy becomes increasingly attainable, offering the potential to significantly improve outcomes for patients with hematologic malignancies.
Collapse
Affiliation(s)
- N. Ari Wijetunga
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, United States
| | - Joachim Yahalom
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Brandon S. Imber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
4
|
Chaoui M, Bouhali O, Tayalati Y. FLASH radiotherapy: technical advances, evidence of the FLASH effect and mechanistic insights. Biomed Phys Eng Express 2025; 11:022003. [PMID: 40043321 DOI: 10.1088/2057-1976/adbcb1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
Cancer is one of the leading causes of death worldwide, responsible for nearly 10 million deaths in 2020, with approximately 50% of patients receiving radiation therapy as part of their treatment (Baskaret al2012). Preclinical investigations studies have shown that FLASH radiotherapy (FLASH-RT), delivering radiation in ultra-high dose rates (UHDR), preserves healthy tissue integrity and reduces toxicity, all while maintaining an effective tumor response compared to conventional radiotherapy (CONV-RT), the combined biological benefit was termed as FLASH effect. This article comprehensively surveys pertinent research conducted within FLASH-RT, explores the facilities used in this realm, delves into hypothesized mechanism perspectives, and addresses the challenges to trigger the FLASH effect. In addition, we discuss the potential prospects of FLASH-RT and examine the obstacles that require resolution before its clinical implementation can become a reality.
Collapse
Affiliation(s)
- Mustapha Chaoui
- Faculty of Sciences, University Mohammed V in Rabat, Morocco
| | - Othmane Bouhali
- Electrical Engineering, College of Science and Engineering, Hamad Bin Khalifa University Doha, Qatar
| | - Yahya Tayalati
- Faculty of Sciences, University Mohammed V in Rabat, Morocco
- Institute of Applied Physics, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
5
|
Kirtane AR, Bi J, Rajesh NU, Tang C, Jimenez M, Witt E, McGovern MK, Cafi AB, Hatfield SJ, Rosenstock L, Becker SL, Machado N, Venkatachalam V, Freitas D, Huang X, Chan A, Lopes A, Kim H, Kim N, Collins JE, Howard ME, Manchkanti S, Hong TS, Byrne JD, Traverso G. Radioprotection of healthy tissue via nanoparticle-delivered mRNA encoding for a damage-suppressor protein found in tardigrades. Nat Biomed Eng 2025:10.1038/s41551-025-01360-5. [PMID: 40011582 DOI: 10.1038/s41551-025-01360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
Patients undergoing radiation therapy experience debilitating side effects because of toxicity arising from radiation-induced DNA strand breaks in normal peritumoural cells. Here, inspired by the ability of tardigrades to resist extreme radiation through the expression of a damage-suppressor protein that binds to DNA and reduces strand breaks, we show that the local and transient expression of the protein can reduce radiation-induced DNA damage in oral and rectal epithelial tissues (which are commonly affected during radiotherapy for head-and-neck and prostate cancers, respectively). We used ionizable lipid nanoparticles supplemented with biodegradable cationic polymers to enhance the transfection efficiency and delivery of messenger RNA encoding the damage-suppressor protein into buccal and rectal tissues. In mice with orthotopic oral cancer, messenger RNA-based radioprotection of normal tissue preserved the efficacy of radiation therapy. The strategy may be broadly applicable to the protection of healthy tissue from DNA-damaging agents.
Collapse
Affiliation(s)
- Ameya R Kirtane
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jianling Bi
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Netra U Rajesh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Faculty of Applied Sciences and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Chaoyang Tang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Miguel Jimenez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Witt
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Megan K McGovern
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Arielle B Cafi
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Samual J Hatfield
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Lauren Rosenstock
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Sarah L Becker
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- School of Medicine, Oregon Health Science University, Portland, OR, USA
| | - Nicole Machado
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Faculty of Arts and Science, University of Toronto, Toronto, Ontario, Canada
- Department of Oncology, University of Oxford, Oxford, UK
| | - Veena Venkatachalam
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dylan Freitas
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xisha Huang
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvin Chan
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aaron Lopes
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hyunjoon Kim
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Nayoon Kim
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Joy E Collins
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle E Howard
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Srija Manchkanti
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James D Byrne
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA.
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Nguyen VK, Tsai SW, Cho IC, Chao TC, Hsiao IT, Huang HC, Liaw JW. Gold Nanoparticle-Enhanced Production of Reactive Oxygen Species for Radiotherapy and Phototherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:317. [PMID: 39997879 PMCID: PMC11858237 DOI: 10.3390/nano15040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/26/2025]
Abstract
Gold nanoparticles (GNPs) have gained significant attention as multifunctional agents in biomedical applications, particularly for enhancing radiotherapy. Their advantages, including low toxicity, high biocompatibility, and excellent conductivity, make them promising candidates for improving treatment outcomes across various radiation sources, such as femtosecond lasers, X-rays, Cs-137, and proton beams. However, a deeper understanding of their precise mechanisms in radiotherapy is essential for maximizing their therapeutic potential. This review explores the role of GNPs in enhancing reactive oxygen species (ROS) generation through plasmon-induced hot electrons or radiation-induced secondary electrons, leading to cellular damage in organelles such as mitochondria and the cytoskeleton. This additional pathway enhances radiotherapy efficacy, offering new therapeutic possibilities. Furthermore, we discuss emerging trends and future perspectives, highlighting innovative strategies for integrating GNPs into radiotherapy. This comprehensive review provides insights into the mechanisms, applications, and potential clinical impact of GNPs in cancer treatment.
Collapse
Affiliation(s)
- Viet-Khang Nguyen
- Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Shiao-Wen Tsai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - I-Chun Cho
- Radiation Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan; (I.-C.C.); (T.-C.C.)
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Tsi-Chian Chao
- Radiation Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan; (I.-C.C.); (T.-C.C.)
- Department of Medical Imaging and Radiological Science, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Ing-Tsung Hsiao
- Department of Medical Imaging and Radiological Science, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Hsiao-Chieh Huang
- Proton and Radiation Therapy Center, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan;
| | - Jiunn-Woei Liaw
- Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
- Proton and Radiation Therapy Center, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan;
- Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
7
|
Coelho D, Estêvão D, Oliveira MJ, Sarmento B. Radioresistance in rectal cancer: can nanoparticles turn the tide? Mol Cancer 2025; 24:35. [PMID: 39885557 PMCID: PMC11784129 DOI: 10.1186/s12943-025-02232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
Rectal cancer accounts for over 35% of the worldwide colorectal cancer burden representing a distinctive subset of cancers from those arising in the colon. Colorectal cancers exhibit a continuum of traits that differ with their location in the large intestine. Due to anatomical and molecular differences, rectal cancer is treated differently from colon cancer, with neoadjuvant chemoradiotherapy playing a pivotal role in the control of the locally advanced disease. However, radioresistance remains a major obstacle often correlated with poor prognosis. Multifunctional nanomedicines offer a promising approach to improve radiotherapy response rates, as well as to increase the intratumoral concentration of chemotherapeutic agents, such as 5-Fluorouracil. Here, we revise the main molecular differences between rectal and colon tumors, exploring the complex orchestration beyond rectal cancer radioresistance and the most promising nanomedicines reported in the literature to improve neoadjuvant therapy response rates.
Collapse
Affiliation(s)
- Diogo Coelho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal
- IUCS - Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Diogo Estêvão
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Cancer Research Institute, Ghent University, Ghent, Belgium
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, Porto, 4200-319, Portugal
| | - Maria José Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, Porto, 4200-319, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal.
- IUCS - Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal.
| |
Collapse
|
8
|
Akhunzianov AA, Rozhina EV, Filina YV, Rizvanov AA, Miftakhova RR. Resistance to Radiotherapy in Cancer. Diseases 2025; 13:22. [PMID: 39851486 PMCID: PMC11764699 DOI: 10.3390/diseases13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Radiation therapy or radiotherapy is a medical treatment that uses high doses of ionizing radiation to eliminate cancer cells and shrink tumors. It works by targeting the DNA within the tumor cells restricting their proliferation. Radiotherapy has been used for treating cancer for more than 100 years. Along with surgery and chemotherapy, it is one of the three main and most common approaches used in cancer therapy. Nowadays, radiotherapy has become a standard treatment option for a wide range of cancers around the world, including lung, breast, cervical, and colorectal cancers. Around 50% of all patients will require radiotherapy, 60% of whom are treated with curative intent. Moreover, it is commonly used for palliative treatment. Radiotherapy provides 5-year local control and overall survival benefit in 10.4% and 2.4% of all cancer patients, respectively. The highest local control benefit is reported for cervical (33%), head and neck (32%), and prostate (26%) cancers. But no benefit is observed in pancreas, ovary, liver, kidney, and colon cancers. Such relatively low efficiency is related to the development of radiation resistance, which results in cancer recurrence, metastatic dissemination, and poor prognosis. The identification of radioresistance biomarkers allows for improving the treatment outcome. These biomarkers mainly include proteins involved in metabolism and cell signaling pathways.
Collapse
Affiliation(s)
- Almaz A. Akhunzianov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elvira V. Rozhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yuliya V. Filina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Regina R. Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
9
|
Strandberg J, Louie A, Lee S, Hahn M, Srinivasan P, George A, De La Cruz A, Zhang L, Hernandez Borrero L, Huntington KE, De La Cruz P, Seyhan AA, Koffer PP, Wazer DE, DiPetrillo TA, Graff SL, Azzoli CG, Rounds SI, Klein-Szanto AJ, Tavora F, Yakirevich E, Abbas AE, Zhou L, El-Deiry WS. TRAIL agonists rescue mice from radiation-induced lung, skin, or esophageal injury. J Clin Invest 2025; 135:e173649. [PMID: 39808500 PMCID: PMC11870730 DOI: 10.1172/jci173649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
Radiotherapy can be limited by pneumonitis, which is impacted by innate immunity, including pathways regulated by TRAIL death receptor DR5. We investigated whether DR5 agonists could rescue mice from toxic effects of radiation and found that 2 different agonists, parenteral PEGylated trimeric TRAIL (TLY012) and oral TRAIL-inducing compound (TIC10/ONC201), could reduce pneumonitis, alveolar wall thickness, and oxygen desaturation. Lung protection extended to late effects of radiation including less fibrosis at 22 weeks in TLY012-rescued survivors versus unrescued surviving irradiated mice. Wild-type orthotopic breast tumor-bearing mice receiving 20 Gy thoracic radiation were protected from pneumonitis with disappearance of tumors. At the molecular level, radioprotection appeared to be due to inhibition of CCL22, a macrophage-derived chemokine previously associated with radiation pneumonitis and pulmonary fibrosis. Treatment with anti-CCL22 reduced lung injury in vivo but less so than TLY012. Pneumonitis severity was worse in female versus male mice, and this was associated with increased expression of X-linked TLR7. Irradiated mice had reduced esophagitis characterized by reduced epithelial disruption and muscularis externa thickness following treatment with the ONC201 analog ONC212. The discovery that short-term treatment with TRAIL pathway agonists effectively rescues animals from pneumonitis, dermatitis, and esophagitis following high doses of thoracic radiation exposure has important translational implications.
Collapse
Affiliation(s)
- Jillian Strandberg
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Biomedical Engineering Graduate Group, Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - Anna Louie
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Surgery, Warren Alpert Medical School of Brown University and Lifespan Health System, Providence, Rhode Island, USA
| | - Seulki Lee
- D&D Pharmatech, Seongnam-si, South Korea
| | - Marina Hahn
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Praveen Srinivasan
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Andrew George
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Arielle De La Cruz
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Leiqing Zhang
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Liz Hernandez Borrero
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Kelsey E. Huntington
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Group, Brown University, Providence, Rhode Island, USA
| | - Payton De La Cruz
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Group, Brown University, Providence, Rhode Island, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Paul P. Koffer
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Radiation Oncology, Warren Alpert Medical School, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - David E. Wazer
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Radiation Oncology, Warren Alpert Medical School, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - Thomas A. DiPetrillo
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Radiation Oncology, Warren Alpert Medical School, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - Stephanie L. Graff
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - Christopher G. Azzoli
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - Sharon I. Rounds
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Group, Brown University, Providence, Rhode Island, USA
- Division of Pulmonary Medicine, Warren Alpert Medical School of Brown University and Lifespan Health System, Providence, Rhode Island, USA
- Providence Veterans Administration Medical Center, Providence, Rhode Island, USA
| | | | - Fabio Tavora
- Argos Laboratory, Universidade Federal do Ceará Fortaleza, Ceará, Brazil
| | - Evgeny Yakirevich
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Abbas E. Abbas
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Division of Thoracic Surgery, Department of Surgery, Warren Alpert Medical School of Brown University and Lifespan Health System, Providence, Rhode Island, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Group, Brown University, Providence, Rhode Island, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Biomedical Engineering Graduate Group, Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Group, Brown University, Providence, Rhode Island, USA
- Division of Pulmonary Medicine, Warren Alpert Medical School of Brown University and Lifespan Health System, Providence, Rhode Island, USA
| |
Collapse
|
10
|
Bouzaki A, Green D, van Herk M, Shortall J, Puri T, Kerns S, Azria D, Farcy-Jacquet MP, Chang-Claude J, Choudhury A, Dunning A, Lambrecht M, Avuzzi B, Ruysscher DD, Seibold P, Sperk E, Talbot C, Vega A, Veldeman L, Webb A, Rosenstein B, West CM, Gioscio E, Rancati T, Osorio EV, McWilliam A. New rectum dose surface mapping methodology to identify rectal subregions associated with toxicities following prostate cancer radiotherapy. Phys Imaging Radiat Oncol 2025; 33:100701. [PMID: 39927213 PMCID: PMC11803856 DOI: 10.1016/j.phro.2025.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
Background and purpose Growing evidence suggests that spatial dose variations across the rectal surface influence toxicity risk after radiotherapy. Existing methodologies employ a fixed, arbitrary physical extent for rectal dose mapping, limiting their analysis. We developed a method to standardise rectum contours, unfold them into 2D cylindrical surface maps, and identify subregions where higher doses increase rectal toxicities. Materials and methods Data of 1,048 patients with prostate cancer from the REQUITE study were used. Deep learning based automatic segmentations were generated to ensure consistency. Rectum length was standardised using linear transformations superior and inferior to the prostate. The automatic contours were validated against the manual contours through contour variation assessment with cylindrical mapping. Voxel-based analysis of the dose surface maps for the manual and automatic contours against individual rectal toxicities was performed using Student's t permutation test and Cox Proportional Hazards Model (CPHM). Significance was defined by permutation testing. Results Our method enabled the analysis of 1,048 patients using automatic segmentation. Student's t-test showed significance (p < 0.05) in the lower posterior for clinical-reported proctitis and patient-reported bowel urgency. Univariable CPHM identified a 3 % increased risk per Gy for clinician-reported proctitis and a 2 % increased risk per Gy for patient-reported bowel urgency in the lower posterior. No other endpoints were significant. Conclusion We developed a methodology that unfolds the rectum to a 2D surface map. The lower posterior was significant for clinician-reported proctitis and patient-reported bowel urgency, suggesting that reducing the dose in the region could decrease toxicity risk.
Collapse
Affiliation(s)
- Artemis Bouzaki
- Division of Cancer Sciences, University of Manchester, Manchester, the United Kingdom of Great Britain and Northern Ireland
| | - Dylan Green
- Department of Engineering Science, University of Oxford, Oxford, the United Kingdom of Great Britain and Northern Ireland
| | - Marcel van Herk
- Division of Cancer Sciences, University of Manchester, Manchester, the United Kingdom of Great Britain and Northern Ireland
- The Christie NHS Foundation Trust, Manchester, the United Kingdom of Great Britain and Northern Ireland
| | - Jane Shortall
- Division of Cancer Sciences, University of Manchester, Manchester, the United Kingdom of Great Britain and Northern Ireland
- The Christie NHS Foundation Trust, Manchester, the United Kingdom of Great Britain and Northern Ireland
| | - Tanuj Puri
- Division of Cancer Sciences, University of Manchester, Manchester, the United Kingdom of Great Britain and Northern Ireland
| | - Sarah Kerns
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - David Azria
- Federation Universitaire d’Oncologie Radiothérapie d’Occitanie Méditerranée, Univ Montpellier, INSERM U1194 IRCM, Institut du Cancer Montpellier (ICM), Montpellier, France
| | - Marrie-Pierre Farcy-Jacquet
- Federation Universitaire d’Oncologie Radiothérapie d’Occitanie Méditerranée, Institut du Cancer Du Gard (ICG), CHU Carémeau, Nîmes, France
| | - Jenny Chang-Claude
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, the United Kingdom of Great Britain and Northern Ireland
- The Christie NHS Foundation Trust, Manchester, the United Kingdom of Great Britain and Northern Ireland
| | - Alison Dunning
- Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge, the United Kingdom of Great Britain and Northern Ireland
| | | | - Barbara Avuzzi
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center, GROW School, Maastricht, the Netherlands
| | - Petra Seibold
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Elena Sperk
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christopher Talbot
- Department of Genetics & Cancer Sciences, University of Leicester, the United Kingdom of Great Britain and Northern Ireland
| | - Ana Vega
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica (FPGMX), Santiago de Compostela, Spain
- Biomedical Network on Rare Diseases (CIBERER), Spain
| | - Liv Veldeman
- Ghent University Hospital, Belgium
- Ghent University, Ghent, Belgium
| | - Adam Webb
- Department of Genetics & Cancer Sciences, University of Leicester, the United Kingdom of Great Britain and Northern Ireland
| | - Barry Rosenstein
- Departments of Radiation Oncology & Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Catharine M. West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, the United Kingdom of Great Britain and Northern Ireland
| | - Eliana Gioscio
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, University of Manchester, Manchester, the United Kingdom of Great Britain and Northern Ireland
- The Christie NHS Foundation Trust, Manchester, the United Kingdom of Great Britain and Northern Ireland
| | - Alan McWilliam
- Division of Cancer Sciences, University of Manchester, Manchester, the United Kingdom of Great Britain and Northern Ireland
- The Christie NHS Foundation Trust, Manchester, the United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
11
|
Valceski M, Engels E, Vogel S, Paino J, Potter D, Hollis C, Khochaiche A, Barnes M, O’Keefe A, Cameron M, Roughley K, Rosenfeld A, Lerch M, Corde S, Tehei M. Microbeam Radiation Therapy Bio-Dosimetry Enhanced by Novel Radiosensitiser Combinations in the Treatment of Brain Cancer. Cancers (Basel) 2024; 16:4231. [PMID: 39766130 PMCID: PMC11674565 DOI: 10.3390/cancers16244231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Brain cancer is notoriously resistant to traditional treatments, including radiotherapy. Microbeam radiation therapy (MRT), arrays of ultra-fast synchrotron X-ray beams tens of micrometres wide (called peaks) and spaced hundreds of micrometres apart (valleys), is an effective alternative to conventional treatments. MRT's advantage is that normal tissues can be spared from harm whilst maintaining tumour control. Combining MRT with targeted radiosensitisers, such as nanoparticles, chemotherapeutic drugs, and halogenated pyrimidine drugs, can further improve radiotherapy by enhancing radiation damage. However, the underlying mechanisms of MRT are still being understood, which is essential to ensuring the reliable and successful use of MRT. Methods: An in vitro study was performed using γH2AX imaging, and quantification was performed via confocal microscopy and a clonogenic cell survival assay. Results: We show that methotrexate chemotherapeutics and iododeoxyuridine enhance MRT cell-killing and thulium oxide nanoparticles (TmNPs) broaden MRT peaks, and using γH2AX immunofluorescent confocal microscopy to quantify DNA damage, we further our knowledge of MRT mechanisms. γH2AX images verify the biological responses of cells aligning with the physical collimation of MRT, and we can accurately measure MRT microbeam characteristics bio-dosimetrically. The peak-to-valley dose ratio (PVDR), the ratio of the peak dose to the valley dose that characterises an MRT field, was accurately measured biologically using γH2AX imaging, despite studies previously finding this challenging. Conclusions: The measurement of biological PVDR has been performed for the first time with high-Z radiosensitisers, including nanoparticles, and several novel radiosensitiser-enhanced MRT mechanisms were discovered. Our results deepen our understanding of MRT with radiosensitisers, and can contribute to its accurate and future successful use in treating cancer.
Collapse
Affiliation(s)
- Michael Valceski
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Elette Engels
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Australian Synchrotron-Australia’s Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, Melbourne, VIC 3168, Australia
| | - Sarah Vogel
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jason Paino
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Dylan Potter
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Carolyn Hollis
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Abass Khochaiche
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Micah Barnes
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
- Australian Synchrotron-Australia’s Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, Melbourne, VIC 3168, Australia
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Alice O’Keefe
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Matthew Cameron
- Australian Synchrotron-Australia’s Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, Melbourne, VIC 3168, Australia
| | - Kiarn Roughley
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Stéphanie Corde
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
- Radiation Oncology Department, Prince of Wales Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Moeava Tehei
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
12
|
Harary PM, Rajaram S, Chen MS, Hori YS, Park DJ, Chang SD. Genomic predictors of radiation response: recent progress towards personalized radiotherapy for brain metastases. Cell Death Discov 2024; 10:501. [PMID: 39695143 DOI: 10.1038/s41420-024-02270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Radiotherapy remains a key treatment modality for both primary and metastatic brain tumors. Significant technological advances in precision radiotherapy, such as stereotactic radiosurgery and intensity-modulated radiotherapy, have contributed to improved clinical outcomes. Notably, however, molecular genetics is not yet widely used to inform brain radiotherapy treatment. By comparison, genetic testing now plays a significant role in guiding targeted therapies and immunotherapies, particularly for brain metastases (BM) of lung cancer, breast cancer, and melanoma. Given increasing evidence of the importance of tumor genetics to radiation response, this may represent a currently under-utilized means of enhancing treatment outcomes. In addition, recent studies have shown potentially actionable mutations in BM which are not present in the primary tumor. Overall, this suggests that further investigation into the pathways mediating radiation response variability is warranted. Here, we provide an overview of key mechanisms implicated in BM radiation resistance, including intrinsic and acquired resistance and intratumoral heterogeneity. We then discuss advances in tumor sampling methods, such as a collection of cell-free DNA and RNA, as well as progress in genomic analysis. We further consider how these tools may be applied to provide personalized radiotherapy for BM, including patient stratification, detection of radiotoxicity, and use of radiosensitization agents. In addition, we describe recent developments in preclinical models of BM and consider their relevance to investigating radiation response. Given the increase in clinical trials evaluating the combination of radiotherapy and targeted therapies, as well as the rising incidence of BM, it is essential to develop genomically informed approaches to enhance radiation response.
Collapse
Affiliation(s)
- Paul M Harary
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjeeth Rajaram
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Maggie S Chen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Yusuke S Hori
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David J Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Steven D Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
13
|
Matuszak N, Piotrowski I, Kruszyna-Mochalska M, Skrobala A, Mocydlarz-Adamcewicz M, Malicki J. Monte Carlo methods to assess biological response to radiation in peripheral organs and in critical organs near the target. Rep Pract Oncol Radiother 2024; 29:638-648. [PMID: 39759550 PMCID: PMC11698553 DOI: 10.5603/rpor.103525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/13/2024] [Indexed: 01/07/2025] Open
Abstract
Background The biological effects and clinical consequences of out-of-field radiation in peripheral organs can be difficult to determine, especially for low doses (0.1 Gy-1 Gy). In recent years, Monte Carlo (MC) methods have been proposed to more accurately predict nontarget doses. The aim of the present study was to assess the feasibility of using Monte Carlo methods to predict the biological response of tissues and critical organs to low dose radiation (0.1 to 1 Gy) based on results published in the literature. Materials and methods Literature review, including studies published by our group. Results and Conclusions It has long been assumed that radiation doses to peripheral organs located far from the target volume are too low to have any clinical impact. In recent years, however, concerns about the risk of treatment-induced secondary cancers, even in peripheral organs, have continued to grow in line with increasing life expectancy. At present, it is difficult in routine calculations to accurately determine radiation doses to the whole body and peripheral organs. Moreover, the potential clinical impact of these doses remains uncertain and the biological response to low dose radiation depends on the organ. In this context, MC methods can predict biological response in those organs. Monte Carlo methods have become a powerful tool to better predict the consequences of interactions between ionising radiation and biological matter. MC modelling can also help to characterise microscopic system dynamics and to provide a better understanding of processes occurring at the cellular, molecular, and nanoscales.
Collapse
Affiliation(s)
- Natalia Matuszak
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Igor Piotrowski
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Marta Kruszyna-Mochalska
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Agnieszka Skrobala
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | | | - Julian Malicki
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
14
|
Kondziołka J, Michalecki Ł, Hajek J, Lebiedowska A, Hartman-Petrycka M, Koprowski R, Wilczyński S. Hemoglobin Concentration as an Indicator of Skin Radiation Damage During Radiation Therapy Treatments. Int J Radiat Oncol Biol Phys 2024; 120:1076-1083. [PMID: 38838992 DOI: 10.1016/j.ijrobp.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 05/01/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE Acute radiation dermatitis (ARD) is the most common side effect reported by patients undergoing radiation therapy (RT). Currently, the assessment of the severity of the reaction is based on the visual assessment of the skin, which is a subjective method, depending on many factors. The main aim of this study was to investigate the usefulness of hyperspectral imaging (HSI) in the assessment of ARD and find physiological factors that could be correlated with ARD. METHODS AND MATERIALS In this clinical pilot trial, weekly acquisitions of hyperspectral camera images of irradiated skin were performed for 5 weeks of RT and at the posttreatment follow-up visit which took place 30 to 40 days after the last fraction of RT. At the same time, the severity of radiodermatitis was assessed based on the criteria of the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE). The content and concentration of chromophores in irradiated skin were quantitatively determined using a hyperspectral camera. RESULTS The use of HSI supported by image analysis and processing methods allowed for the determination of the content and distribution of hemoglobin and melanin in the irradiated skin. It was found that the hemoglobin concentration is correlated with the subjective assessment made according to the CTCAE protocol. CONCLUSIONS HSI is a sensitive and specific method of analyzing the concentration of chromophores in the skin, including hemoglobin. A clear correlation was found between hemoglobin concentration and CTCAE v.5 scale because of which HSI can be considered as an objective method of skin assessment during RT.
Collapse
Affiliation(s)
- Joanna Kondziołka
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland.
| | - Łukasz Michalecki
- The Radiotherapy Department, University Clinical Center of the Medical University of Silesia, Katowice, Poland
| | - Joanna Hajek
- The Radiotherapy Department, University Clinical Center of the Medical University of Silesia, Katowice, Poland
| | - Agata Lebiedowska
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Magdalena Hartman-Petrycka
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland.
| | - Robert Koprowski
- Faculty of Science and Technology, Institute of Biomedical Engineering, University of Silesia in Katowice, Sosnowiec, Poland
| | - Sławomir Wilczyński
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
15
|
Valceski M, Engels E, Vogel S, Paino J, Potter D, Hollis C, Khochaiche A, Barnes M, Cameron M, O'Keefe A, Roughley K, Rosenfeld A, Lerch M, Corde S, Tehei M. A novel approach to double-strand DNA break analysis through γ-H2AX confocal image quantification and bio-dosimetry. Sci Rep 2024; 14:27591. [PMID: 39528587 PMCID: PMC11554680 DOI: 10.1038/s41598-024-76683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
DNA damage occurs in all living cells. γ-H2AX imaging by fluorescent microscopy is widely used across disciplines in the analysis of double-strand break (DSB) DNA damage. Here we demonstrate a method for the quantitative analysis of such DBSs. Ionising radiation, well known to induce DSBs, is used in this demonstration, and additional DBSs are induced if high-Z nanoparticles are present during irradiation. As a deliberate test of the methodology, cells are exposed to a spatially fractionated ionising radiation field, characterised by regions of high and low absorbed radiation dose that are only ever qualitatively verified biologically via γ-H2AX imaging. Here we validate our bio-dosimetric quantification method using γ-H2AX assays in the assessment of DSB enhancement. Our method reliably quantifies DSB enhancement in cells when exposed to either a spatially contiguous or fractionated irradiation fields. Using the γ-H2AX assay, we deduce the biological dose response, and for the first time, demonstrate equivalence to the independently measured physical absorbed dose. Using our novel method, we are also able quantify the nanoparticle DSB enhancement at the cellular level, which is not possible using physical dose measurement techniques. Our method therefore provides a new paradigm in γ-H2AX image quantification of DSBs, as well as an independently validated bio-dosimetry technique.
Collapse
Affiliation(s)
- Michael Valceski
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Elette Engels
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Australian Synchrotron - Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Sarah Vogel
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jason Paino
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Dylan Potter
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Carolyn Hollis
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Abass Khochaiche
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Micah Barnes
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Matthew Cameron
- Australian Synchrotron - Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Alice O'Keefe
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Kiarn Roughley
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Stéphanie Corde
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Moeava Tehei
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
16
|
Dorobisz K, Dorobisz T, Pazdro-Zastawny K, Czyż K, Janczak M. The Influence of the Microbiome on the Complications of Radiotherapy and Its Effectiveness in Patients with Laryngeal Cancer. Cancers (Basel) 2024; 16:3707. [PMID: 39518144 PMCID: PMC11545705 DOI: 10.3390/cancers16213707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Radiotherapy is an effective method of treating cancer and affects 50% of patients. Intensity-modulated radiotherapy (IMRT) is a modernized method of classical radiation used in the treatment of laryngeal cancer. Treatment with intent to preserve the larynx is not always safe or complication-free. The microbiome may significantly influence the effectiveness of oncological treatment, especially radiotherapy, and may also be modified by the toxic response to radiation. OBJECTIVE The aim of the study was to prospectively assess the microbiome and its influence on radiotherapy toxicity in patients with laryngeal cancer. RESULTS Statistically significant risk factors for complications after radiotherapy were the percentage of Porphyromonas of at least 6.7%, the percentage of Fusobacterium of at least 2.6% and the percentage of Catonella of at least 2.6%. CONCLUSIONS The importance of the microbiome in oncology has been confirmed in many studies. Effective radiotherapy treatment and the prevention of radiation-induced oral mucositis is a challenge in oncology. The microbiome may be an important part of personalized cancer treatment. The assessment of the microbiome of patients diagnosed with cancer may provide the opportunity to predict the response to treatment and its effectiveness. The influence of the microbiome may be important in predicting the risk group for radiotherapy treatment failure. The possibility of modifying the microbiome may become a goal to improve the prognosis of patients with laryngeal cancer. Fusobacterium, Porphyromonas and Catonella are important risk factors for radiation-induced oral mucositis in patients with laryngeal cancer.
Collapse
Affiliation(s)
- Karolina Dorobisz
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, 50-367 Wroclaw, Poland
| | - Tadeusz Dorobisz
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Pazdro-Zastawny
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Czyż
- Institute of Animal Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Marzena Janczak
- Institute of Animal Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| |
Collapse
|
17
|
Chitapanarux I, Onchan W, Chakrabandhu S, Muangwong P, Autsavapromporn N, Ariyanon T, Akagi J, Mizoo A. Pilot Feasibility and Safety Study of Hydrogen Gas Inhalation in Locally Advanced Head and Neck Cancer Patients. Onco Targets Ther 2024; 17:863-870. [PMID: 39493677 PMCID: PMC11531231 DOI: 10.2147/ott.s478613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose Hydrogen (H2) gas inhalation might alleviate acute radiotherapy toxicities by scavenging free radicals produced by ionizing radiation and anti-inflammatory properties. This study aimed to investigate the feasibility and safety of H2 gas inhalation during concurrent chemoradiotherapy (CCRT) in patients with locally advanced head and neck cancer (LAHNC). Patients and Methods We designed a pilot prospective study combining CCRT with aerosol inhalation of H2 gas. Each patient was scheduled to receive daily intensity-modulated radiotherapy (IMRT) in 33 fractions on a weekday and six cycles of weekly chemotherapy. All patients inhaled H2 gas through a cannula or mask 1 hour per day, 1-2 hours before IMRT. The primary endpoint was the feasibility of H2 inhalation. Eighty percent of the patients who completed at least 20 applications of H2 gas inhalation were considered feasible. The secondary endpoints were safety profiles during H2 gas inhalation (vital signs and symptoms related to H2 gas inhalation) and acute toxicities during CCRT. Results We enrolled 10 patients with LAHNC between July 2023 and December 2023. All patients received 33 fractions of H2 gas inhalation on the same day as the IMRT. Vital signs during and at the end of H2 gas inhalation were stable in all patients. None of the 10 patients had hypertension or hypotension during any of the 33 inhalations. No adverse events related to H2 gas inhalation, such as cough, nasal bleeding, dizziness, headache, nausea, or vomiting, were reported. Grade 3 leukopenia was found in two patients (20%) during the 5th week of CCRT. Grade 2 radiation dermatitis and pharyngitis were found in three patients (30%). Conclusion H2 gas inhalation combined with CCRT is feasible and safe for patients with LAHNC.
Collapse
Affiliation(s)
- Imjai Chitapanarux
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wimrak Onchan
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Somvilai Chakrabandhu
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pooriwat Muangwong
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tapanut Ariyanon
- Division of Head and Neck Surgery and Oncology and Hyperbaric Oxygen Therapy, Department of Otolaryngology, Chiang Mai University, Chiang Mai, Thailand
| | - Junji Akagi
- Kumamoto Immunity Integrative Medical Clinic, Kumamoto, Japan
| | | |
Collapse
|
18
|
Rodrigues BV, Lopes PC, Mello-Moura AC, Flores-Fraile J, Veiga N. Literacy in the Scope of Radiation Protection for Healthcare Professionals Exposed to Ionizing Radiation: A Systematic Review. Healthcare (Basel) 2024; 12:2033. [PMID: 39451447 PMCID: PMC11507015 DOI: 10.3390/healthcare12202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Background: The use of radiation is important in different medical procedures, and to ensure a high level of good medical practice, radiation protection (RP) should be seen as a very important subject. This review shows information about the knowledge in the scope of radiation protection among healthcare professionals exposed to ionizing radiation. There are not many studies that evaluate the radiation exposure of healthcare professionals. Methods: A systematic search was performed, using PRISMA guidelines, in Pubmed and Scopus databases and manually to identify relevant articles to answer the PICOS question, "Is there an adequate level of literacy in the scope of radiation protection among healthcare professionals exposed to ionizing radiation?". This systematic review included cross-sectional studies with the following inclusion criteria: (i) in Portuguese, Spanish, or English; (ii) about literacy in the scope of radiation protection; (iii) published between 2017 and 2024; and (iv) participants must be dentists, radiographers, doctors, and nurses. The JBI critical assessment tool was used to assess the risk of bias. Results: The search identified 566 potentially relevant references, which, after applying inclusion/exclusion criteria, resulted in 12 articles. Studies found that the overall knowledge of these healthcare workers was unsatisfactory, and a lack of knowledge in radiation protection negatively affects health services' quality. Training is essential and must emphasize how radiation exposure can be minimized, safeguarding health professionals' trust and sense of security. Results showed that more years of experience make workers more attentive to protection measures, suggesting that training strategies focused on basic radiological risks and radiation safety are needed. Conclusions: Key findings recommend implementing a standardized national training program on the basic principles and safety of ionizing radiation for all healthcare professionals.
Collapse
Affiliation(s)
- Belinda V. Rodrigues
- Department of Surgery, Universidad de Salamanca, 37008 Salamanca, Spain; (B.V.R.); (J.F.-F.)
| | - Pedro C. Lopes
- Center for Interdisciplinary Research in Health, Faculty of Dental Medicine, Universidade Católica Portuguesa, 3504-505 Viseu, Portugal; (A.C.M.-M.); (N.V.)
| | - Anna C. Mello-Moura
- Center for Interdisciplinary Research in Health, Faculty of Dental Medicine, Universidade Católica Portuguesa, 3504-505 Viseu, Portugal; (A.C.M.-M.); (N.V.)
| | - Javier Flores-Fraile
- Department of Surgery, Universidad de Salamanca, 37008 Salamanca, Spain; (B.V.R.); (J.F.-F.)
| | - Nelio Veiga
- Center for Interdisciplinary Research in Health, Faculty of Dental Medicine, Universidade Católica Portuguesa, 3504-505 Viseu, Portugal; (A.C.M.-M.); (N.V.)
| |
Collapse
|
19
|
Bertolin A, Laura E, Cena I, Varago C, Di Chicco A, Franz L, Salemi M, Succo G, Nicolai P, Lionello M. The role of central neck dissection and adjuvant treatment in pT4aN0 laryngeal carcinoma treated with open partial horizontal laryngectomy. Eur Arch Otorhinolaryngol 2024; 281:5385-5393. [PMID: 38977487 DOI: 10.1007/s00405-024-08799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE The study aimed to identify parameters that could predict oncological and functional outcomes in patients with pT4aN0 laryngeal squamous cell carcinoma (LSCC) who underwent open partial horizontal laryngectomy (OPHL). The role of paratracheal neck dissection (PTND) was analyzed as the primary outcome. Additionally, the study compared the outcomes of patients who underwent postoperative radio/chemotherapy (PORT/PORCT) with those who refused or did not adhere to adjuvant treatments. METHODS Twenty-nine OPHL patients whose pathological exam was consistent with pT4aN0-x disease were enrolled and their clinical charts were retrospectively reviewed. The study analyzed oncological outcomes, such as local, regional, and distant recurrence rates (RR), overall survival (OS), disease-free survival (DFS), and disease-specific survival (DSS). Additionally, functional results were analyzed, including decannulation rate, hospitalization time, and postoperative complication rate. RESULTS The study revealed and overall recurrence rate of 27%. The final rates for OS and DSS were 68% and 79%, respectively. Based on the univariate analysis the PTND was significantly associated with longer DFS. No significant differences inoncological outcomes were observed between pT4a patients who underwent adjuvant radio/radiochemotherapy and those who did not, in terms of RR, DFS, DSS or OS. However, adjuvant treatment was found to significantly increase decannulation time. CONCLUSIONS In a properly super-selected subgroup of patients with pT4aN0 LSCC, OPHL may beconsidered as a conservative surgical option even without adjuvant treatment. However, for optimal oncological outcomes, it is strongly recommended to consider a central compartment dissection in cases of hypoglottic and anterior extra-laryngeal tumor extension.
Collapse
Affiliation(s)
- Andy Bertolin
- Otolaryngology Unit, Vittorio Veneto Hospital, via Forlanini 71, Vittorio Veneto, Treviso, Italy
| | - Elisa Laura
- Otolaryngology Unit, Vittorio Veneto Hospital, via Forlanini 71, Vittorio Veneto, Treviso, Italy
| | - Isida Cena
- Otolaryngology Unit, Vittorio Veneto Hospital, via Forlanini 71, Vittorio Veneto, Treviso, Italy
| | - Chiara Varago
- Otolaryngology Unit, Vittorio Veneto Hospital, via Forlanini 71, Vittorio Veneto, Treviso, Italy
| | - Alessandra Di Chicco
- Otolaryngology Unit, Head-Neck Surgery Section, Neuroscience Department, Padova University, Padova, Italy
| | - Leonardo Franz
- Phoniatrics and Audiology Section, Neuroscience Department, Padova University, Padova, Italy
| | | | - Giovanni Succo
- Otorhinolaryngology Unit, San Giovanni Bosco Hospital, Turin, 10154, Italy
| | - Piero Nicolai
- Otolaryngology Unit, Head-Neck Surgery Section, Neuroscience Department, Padova University, Padova, Italy
| | - Marco Lionello
- Otolaryngology Unit, Vittorio Veneto Hospital, via Forlanini 71, Vittorio Veneto, Treviso, Italy.
| |
Collapse
|
20
|
Adebisi AA, Onobun DE, Orji C, Ononye R. Barriers to the Completion of Radiation Therapy in Cervical Cancer Treatment in Nigeria: A Review of Socioeconomic, Geographical, and Psychosocial Factors. Cureus 2024; 16:e70747. [PMID: 39493197 PMCID: PMC11530964 DOI: 10.7759/cureus.70747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
Cervical cancer is a major health concern in Nigeria, where it is one of the primary causes of cancer-related deaths among women. Despite the crucial role of radiation therapy in treating cervical cancer, many patients in Nigeria do not complete their prescribed treatment courses. This review examines the barriers contributing to this issue. Factors such as low awareness and utilization of Pap smears, inadequate HPV vaccination, financial constraints, insufficient radiotherapy infrastructure, and the psychological burden of cancer treatment are explored. Limited screening and vaccination efforts exacerbate the high incidence of cervical cancer in Nigeria. Financial barriers are a primary obstacle, with many patients unable to afford the high cost of radiotherapy. Nigeria's radiotherapy infrastructure is severely lacking leading to significant treatment delays and cancellations. Geographical barriers further complicate access, as many patients must travel long distances to reach treatment centers. Psychosocial issues, including anxiety and depression, significantly impact treatment adherence and completion. These psychological factors, coupled with the physical side effects of radiotherapy, contribute to high rates of treatment interruption. To address these challenges, the review suggests enhancing cervical cancer prevention through increased human papillomavirus (HPV) vaccination and screening, expanding radiotherapy capacity by increasing the number of treatment centers, and providing comprehensive support systems to address financial and psychosocial barriers. By implementing these strategies, it is possible to improve treatment adherence and outcomes for cervical cancer patients in Nigeria.
Collapse
Affiliation(s)
| | - Daniel E Onobun
- Orthopedics, South Warwickshire University NHS Foundation Trust, Coventry, GBR
| | - Chijioke Orji
- Orthopedics, Liverpool University Hospitals NHS Foundation Trust, Liverpool, GBR
| | | |
Collapse
|
21
|
Palma-Rojo E, Barquinero JF, Pérez-Alija J, González JR, Armengol G. Differential biological effect of low doses of ionizing radiation depending on the radiosensitivity in a cell line model. Int J Radiat Biol 2024; 100:1527-1540. [PMID: 39288264 DOI: 10.1080/09553002.2024.2400514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Exposure to low doses (LD) of ionizing radiation (IR), such as the ones employed in computed tomography (CT) examination, can be associated with cancer risk. However, cancer development could depend on individual radiosensitivity. In the present study, we evaluated the differences in the response to a CT-scan radiation dose of 20 mGy in two lymphoblastoid cell lines with different radiosensitivity. MATERIALS AND METHODS Several parameters were studied: gene expression, DNA damage, and its repair, as well as cell viability, proliferation, and death. Results were compared with those after a medium dose of 500 mGy. RESULTS After 20 mGy of IR, the radiosensitive (RS) cell line showed an increase in DNA damage, and higher cell proliferation and apoptosis, whereas the radioresistant (RR) cell line was insensitive to this LD. Interestingly, the RR cell line showed a higher expression of an antioxidant gene, which could be used by the cells as a protective mechanism. After a dose of 500 mGy, both cell lines were affected by IR but with significant differences. The RS cells presented an increase in DNA damage and apoptosis, but a decrease in cell proliferation and cell viability, as well as less antioxidant response. CONCLUSIONS A differential biological effect was observed between two cell lines with different radiosensitivity, and these differences are especially interesting after a CT scan dose. If this is confirmed by further studies, one could think that individuals with radiosensitivity-related genetic variants may be more vulnerable to long-term effects of IR, potentially increasing cancer risk after LD exposure.
Collapse
Affiliation(s)
- Elia Palma-Rojo
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Joan-Francesc Barquinero
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Jaime Pérez-Alija
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Juan R González
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Gemma Armengol
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
22
|
Chary PS, Shaikh S, Rajana N, Bhavana V, Mehra NK. Unlocking nature's arsenal: Nanotechnology for targeted delivery of venom toxins in cancer therapy. BIOMATERIALS ADVANCES 2024; 162:213903. [PMID: 38824828 DOI: 10.1016/j.bioadv.2024.213903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/24/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
AIM The aim of the present review is to shed light on the nanotechnological approaches adopted to overcome the shortcomings associated with the delivery of venom peptides which possess inherent anti-cancer properties. BACKGROUND Venom peptides although have been reported to demonstrate anti-cancer effects, they suffer from several disadvantages such as in vivo instability, off-target adverse effects, limited drug loading and low bioavailability. This review presents a comprehensive compilation of different classes of nanocarriers while underscoring their advantages, disadvantages and potential to carry such peptide molecules for in vivo delivery. It also discusses various nanotechnological aspects such as methods of fabrication, analytical tools to assess these nanoparticulate formulations, modulation of nanocarrier polymer properties to enhance loading capacity, stability and improve their suitability to carry toxic peptide drugs. CONCLUSION Nanotechnological approaches bear great potential in delivering venom peptide-based molecules as anticancer agents by enhancing their bioavailability, stability, efficacy as well as offering a spatiotemporal delivery approach. However, the challenges associated with toxicity and biocompatibility of nanocarriers must be duly addressed. PERSPECTIVES The everlasting quest for new breakthroughs for safer delivery of venom peptides in human subjects is fuelled by unmet clinical needs in the current landscape of chemotherapy. In addition, exhaustive efforts are required in obtaining and purifying the venom peptides followed by designing and optimizing scale up technologies.
Collapse
Affiliation(s)
- Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
23
|
Borrmann K, Troschel FM, Brücksken KA, Espinoza-Sánchez NA, Rezaei M, Eder KM, Kemper B, Eich HT, Greve B. Antioxidants Hydroxytyrosol and Thioredoxin-Mimetic Peptide CB3 Protect Irradiated Normal Tissue Cells. Antioxidants (Basel) 2024; 13:961. [PMID: 39199207 PMCID: PMC11351936 DOI: 10.3390/antiox13080961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Reducing side effects in non-cancerous tissue is a key aim of modern radiotherapy. Here, we assessed whether the use of the antioxidants hydroxytyrosol (HT) and thioredoxin-mimetic peptide CB3 (TMP) attenuated radiation-induced normal tissue toxicity in vitro. We used primary human umbilical vein endothelial cells (HUVECs) and human epidermal keratinocytes (HaCaT) as normal tissue models. Cells were treated with HT and TMP 24 h or immediately prior to irradiation. Reactive oxygen species (ROS) were assessed via luminescent- and fluorescence-based assays, migration was investigated using digital holographic microscopy, and clonogenic survival was quantified by colony formation assays. Angiogenesis and wound healing were evaluated via time-dependent microscopy. Secreted cytokines were validated in quantitative polymerase chain reaction (qPCR) studies. Treatment with HT or TMP was well tolerated by cells. The application of either antioxidant before irradiation resulted in reduced ROS formation and a distinct decrease in cytokines compared to similarly irradiated, but otherwise untreated, controls. Antioxidant treatment also increased post-radiogenic migration and angiogenesis while accelerating wound healing. HT or TMP treatment immediately before radiotherapy increased clonogenic survival after radiotherapy, while treatment 24 h before radiotherapy enhanced baseline proliferation. Both antioxidants may decrease radiation-induced normal tissue toxicity and deserve further pre-clinical investigation.
Collapse
Affiliation(s)
- Katrin Borrmann
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| | | | | | - Nancy Adriana Espinoza-Sánchez
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149 Münster, Germany
| | - Maryam Rezaei
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Kai Moritz Eder
- Biomedical Technology Center, Medical Faculty, University of Münster, 48149 Münster, Germany (B.K.)
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, 48149 Münster, Germany (B.K.)
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
24
|
Gudur AK, Kale SR, Gudur RA, Bhosale SJ, More AL, Datkhile KD. Single Nucleotide Polymorphisms in APE1, hOGG1, RAD51 Genes and their Association with Radiotherapy Induced Toxicity among Head and Neck Cancer Patients. Asian Pac J Cancer Prev 2024; 25:2645-2654. [PMID: 39205561 PMCID: PMC11495438 DOI: 10.31557/apjcp.2024.25.8.2645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Radiotherapy (RT) is a crucial treatment for head and neck cancer however, it causes adverse reactions to the normal tissue and organs adjacent to target tumor. The present study was carried out to investigate possible association of single nucleotide polymorphism in DNA repair genes with toxicity effects of radiotherapy on normal tissue. METHODS Three hundred and fifty head and neck cancer patients receiving radiotherapy treatment were enrolled in this study. The adverse after effects of radiotherapy on the normal tissue in the form of skin reactions were recorded. Single nucleotide polymorphisms of APE1 (rs1130409), hOGG1 (rs1052133) and Rad51 (rs1801320, rs1801321) genes were studied by polymerase chain reaction-Restriction fragment length polymorphism (PCR-RFLP) and direct DNA sequencing methods and their association with development of severe radio-toxicity effects was evaluated logistic regression analysis. RESULTS The 172G/T polymorphism of Rad51 was 2.85 times higher and significantly associated with skin reactions (OR=2.85, 95% CI: 1.50-5.41; p=0.001) and severe oral mucositis (OR=4.96, 95% CI: 2.40-10.25; p<0.0001). These results suggested that the polymorphic nature of Rad51 is responsible for risk of radiotherapy adverse effects in HNC patients. The variant 326Cys and heterozygous 326Ser/Cys genotype of hOGG1 was significantly associated with high tumor grade (OR=3.16 95% CI: 1.66-5.99; p=0.0004, and OR=3.97 95% CI: 2.15-7.34; p=<0.0001 respectively). The homozygous variant 172TT genotype of Rad51 showed positive association with poor response of both tumor and nodes towards radiotherapy treatment (p=0.007 and p=0.022). CONCLUSIONS Interpretation of our results revealed significant association of rs1801321 SNP of Rad51 with development of adverse toxicity reactions in normal tissue of head and neck cancer patients treated with radiotherapy.
Collapse
Affiliation(s)
- Anand K Gudur
- Department of Oncology, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Shivani R Kale
- Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Rashmi A Gudur
- Department of Oncology, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Suresh J Bhosale
- Department of Oncology, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Ashwini L More
- Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Kailas D Datkhile
- Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| |
Collapse
|
25
|
Xu N, Wang J, Liu L, Gong C. Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. CHINESE CHEM LETT 2024; 35:109225. [DOI: 10.1016/j.cclet.2023.109225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Ming Z, Zhang Y, Song L, Chen M, Lin L, He Y, Liu W, Zhu Y, Zhang Y, Zhang G. Rare Earth Nanoprobes for Targeted Delineation of Triple Negative Breast Cancer and Enhancement of Radioimmunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309992. [PMID: 38774946 PMCID: PMC11304243 DOI: 10.1002/advs.202309992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Indexed: 08/09/2024]
Abstract
Radiotherapy demonstrates a synergistic effect with immunotherapy by inducing a transformation of "immune cold" tumors into "immune hot" tumors in triple negative breast cancer (TNBC). Nevertheless, the effectiveness of immunotherapy is constrained by low expression of tumor-exposed antigens, inadequate inflammation, and insufficient tumor infiltrating lymphocyte (TILs). To address this predicament, novel lutecium-based rare earth nanoparticles (RENPs) are synthesized with the aim of amplifying radiation effect and tumor immune response. The nanoprobe is characterized by neodymium-based down-conversion fluorescence, demonstrating robust photostability, biocompatibility, and targetability. The conjugation of RENPs with a CXCR4 targeted drug enables precise delineation of breast tumors using a near-infrared imaging system and improves radiation efficacy via lutetium-based radio-sensitizer in vivo. Furthermore, the study shows a notable enhancement of immune response through the induction of immunogenic cell death and recruitment of TILs, resulting in the inhibition of tumor progression both in vitro and in vivo models following the administration of nanoparticles. Hence, the novel multifunctional nanoprobes incorporating various lanthanide elements offer the potential for imaging-guided tumor delineation, radio-sensitization, and immune activation post-radiation, thus presenting an efficient radio-immunotherapeutic approach for TNBC.
Collapse
Affiliation(s)
- Zi‐He Ming
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Yong‐Qu Zhang
- Department of Breast CenterCancer Hospital of Shantou University Medical CollegeShantouGuangdong515041China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
| | - Liang Song
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350000China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth MaterialsHaixi InstituteChinese Academy of SciencesXiamenFujian361021China
| | - Min Chen
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
| | - Lin‐Ling Lin
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Yue‐Yang He
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Wan‐Ling Liu
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Yuan‐Yuan Zhu
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| | - Yun Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350000China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth MaterialsHaixi InstituteChinese Academy of SciencesXiamenFujian361021China
| | - Guo‐Jun Zhang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen University School of MedicineXiamen UniversityXiamenFujian361104China
- The Breast CenterYunnan Cancer HospitalThe Third Affiliated Hospital of Kunming Medical UniversityBeijing University Cancer HospitalKunmingYunnan650118China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast CancerXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Key Laboratory of Endocrine‐Related Cancer Precision MedicineXiang'an Hospital of Xiamen UniversityXiamenFujian361102China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid CancersXiamenFujian361102China
| |
Collapse
|
27
|
Muggiolu G, Sauvaigo S, Libert S, Millet M, Daguenet E, Bouleftour W, Maillet T, Deutsch E, Magné N. Baseline DSB repair prediction of chronic rare Grade ≥ 3 toxicities induced by radiotherapy using classification algorithms. JOURNAL OF RADIATION RESEARCH 2024; 65:540-548. [PMID: 38899572 PMCID: PMC11262860 DOI: 10.1093/jrr/rrae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/29/2024] [Indexed: 06/21/2024]
Abstract
Small fractions of patients suffer from radiotherapy late severe adverse events (AEs Grade ≥ 3), which are usually irreversible and badly affect their quality of life. A novel functional DNA repair assay characterizing several steps of double-strand break (DSB) repair mechanisms was used. DNA repair activities of peripheral blood mononuclear cells were monitored for 1 week using NEXT-SPOT assay in 177 breast and prostate cancer patients. Only seven patients had Grade ≥ 3 AEs, 6 months after radiotherapy initiation. The machine learning method established the importance of variables among demographic, clinical and DNA repair data. The most relevant ones, all related to DNA repair, were employed to build a predictor. Predictors constructed with random forest and minimum bounding sphere predicted late Grade ≥ 3 AEs with a sensitivity of 100% and specificity of 77.17 and 86.22%, respectively. This multiplex functional approach strongly supports a dominant role for DSB repair in the development of chronic AEs. It also showed that affected patients share specific features related to functional aspects of DSB repair. This strategy may be suitable for routine clinical analysis and paves the way for modelling DSB repair associated with severe AEs induced by radiotherapy.
Collapse
Affiliation(s)
- Giovanna Muggiolu
- LXRepair, Research Department, 5 Avenue du Grand Sablon, La Tronche 38700, France
| | - Sylvie Sauvaigo
- LXRepair, Research Department, 5 Avenue du Grand Sablon, La Tronche 38700, France
| | - Sarah Libert
- LXRepair, Research Department, 5 Avenue du Grand Sablon, La Tronche 38700, France
| | - Mathias Millet
- LXRepair, Research Department, 5 Avenue du Grand Sablon, La Tronche 38700, France
| | - Elisabeth Daguenet
- Clinical Research Department, Cancerology and Hematology Institute, CHU de Saint Etienne, 108 Avenue Albert Raimond, 42055 Cedex 02, France
| | - Wafa Bouleftour
- Clinical Research Department, Cancerology and Hematology Institute, CHU de Saint Etienne, 108 Avenue Albert Raimond, 42055 Cedex 02, France
| | - Thierry Maillet
- LXRepair, Research Department, 5 Avenue du Grand Sablon, La Tronche 38700, France
| | - Eric Deutsch
- Gustave Roussy Cancer Campus (GRCC), 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - Nicolas Magné
- Department of Radiation Oncology, Institut Bergonié, 229 Cr de l'Argonne, 33076 Bordeaux, France
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, Unité Mixte de Recherche CNRS5822/IP2I, University of Lyon, Ouliins, 69600, France
| |
Collapse
|
28
|
Berry CE, Kendig CB, An N, Fazilat AZ, Churukian AA, Griffin M, Pan PM, Longaker MT, Dixon SJ, Wan DC. Role of ferroptosis in radiation-induced soft tissue injury. Cell Death Discov 2024; 10:313. [PMID: 38969638 PMCID: PMC11226648 DOI: 10.1038/s41420-024-02003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 07/07/2024] Open
Abstract
Ionizing radiation has been pivotal in cancer therapy since its discovery. Despite its therapeutic benefits, IR causes significant acute and chronic complications due to DNA damage and the generation of reactive oxygen species, which harm nucleic acids, lipids, and proteins. While cancer cells are more vulnerable to ionizing radiation due to their inefficiency in repairing damage, healthy cells in the irradiated area also suffer. Various types of cell death occur, including apoptosis, necrosis, pyroptosis, autophagy-dependent cell death, immunogenic cell death, and ferroptosis. Ferroptosis, driven by iron-dependent lipid peroxide accumulation, has been recognized as crucial in radiation therapy's therapeutic effects and complications, with extensive research across various tissues. This review aims to summarize the pathways involved in radiation-related ferroptosis, findings in different organs, and drugs targeting ferroptosis to mitigate its harmful effects.
Collapse
Affiliation(s)
- Charlotte E Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Carter B Kendig
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas An
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Z Fazilat
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew A Churukian
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Phoebe M Pan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
29
|
Qiu J, Ahmad F, Ma J, Sun Y, Liu Y, Xiao Y, Xu L, Shu T, Zhang X. From synthesis to applications of biomolecule-protected luminescent gold nanoclusters. Anal Bioanal Chem 2024; 416:3923-3944. [PMID: 38705905 DOI: 10.1007/s00216-024-05303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Gold nanoclusters (AuNCs) are a class of novel luminescent nanomaterials that exhibit unique properties of ultra-small size, featuring strong anti-photo-bleaching ability, substantial Stokes shift, good biocompatibility, and low toxicity. Various biomolecules have been developed as templates or ligands to protect AuNCs with enhanced stability and luminescent properties for biomedical applications. In this review, the synthesis of AuNCs based on biomolecules including amino acids, peptides, proteins and DNA are summarized. Owing to the advantages of biomolecule-protected AuNCs, they have been employed extensively for diverse applications. The biological applications, particularly in bioimaging, biosensing, disease therapy and biocatalysis have been described in detail herein. Finally, current challenges and future potential prospects of bio-templated AuNCs in biological research are briefly discussed.
Collapse
Affiliation(s)
- Jiafeng Qiu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Faisal Ahmad
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianxin Ma
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanping Sun
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Liu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yelan Xiao
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Long Xu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China
| | - Tong Shu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Xueji Zhang
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
30
|
Hua S, Zhao J, Li L, Liu C, Zhou L, Li K, Huang Q, Zhou M, Wang K. Photosynthetic bacteria-based whole-cell inorganic-biohybrid system for multimodal enhanced tumor radiotherapy. J Nanobiotechnology 2024; 22:379. [PMID: 38943158 PMCID: PMC11212166 DOI: 10.1186/s12951-024-02654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
The whole-cell inorganic-biohybrid systems show special functions and wide potential in biomedical application owing to the exceptional interactions between microbes and inorganic materials. However, the hybrid systems are still in stage of proof of concept. Here, we report a whole-cell inorganic-biohybrid system composed of Spirulina platensis and gold nanoclusters (SP-Au), which can enhance the cancer radiotherapy through multiple pathways, including cascade photocatalysis. Such systems can first produce oxygen under light irradiation, then convert some of the oxygen to superoxide anion (•O2-), and further oxidize the glutathione (GSH) in tumor cells. With the combination of hypoxic regulation, •O2- production, GSH oxidation, and the radiotherapy sensitization of gold nanoclusters, the final radiation is effectively enhanced, which show the best antitumor efficacy than other groups in both 4T1 and A549 tumor models. Moreover, in vivo distribution experiments show that the SP-Au can accumulate in the tumor and be rapidly metabolized through biodegradation, further indicating its application potential as a new multiway enhanced radiotherapy sensitizer.
Collapse
Affiliation(s)
- Shiyuan Hua
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jun Zhao
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lin Li
- Department of Orthopedic Oncology, Spine Tumor Center, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Chaoyi Liu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Lihui Zhou
- Department of Neurosurgey, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 320000, China
| | - Kun Li
- Health Science Center, Ease China Normal University, Shanghai, 200241, China.
| | - Quan Huang
- Department of Orthopedic Oncology, Spine Tumor Center, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.
- University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China.
- Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Zhejiang University, Haining, 314400, China.
- The National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou, 310027, China.
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.
| |
Collapse
|
31
|
Zhou Y, Li K, Adelson DL. An unmet need for pharmacology: Treatments for radiation-induced gastrointestinal mucositis. Biomed Pharmacother 2024; 175:116767. [PMID: 38781863 DOI: 10.1016/j.biopha.2024.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Gastrointestinal mucositis (GIM) continues to be a significant issue in the management of abdominal cancer radiation treatments and chemotherapy, causing significant patient discomfort and therapy interruption or even cessation. This review will first focus on radiotherapy induced GIM, providing an understanding of its clinical landscape. Subsequently, the aetiology of GIM will be reviewed, highlighting diverse contributing factors. The cellular and tissue damage and associated molecular responses in GIM will be summarised in the context of the underlying complex biological processes. Finally, available drugs and pharmaceutical therapies will be evaluated, underscoring their insufficiency, and highlighting the need for further research and innovation. This review will emphasize the urgent need for improved pharmacologic therapeutics for GIM, which is a key research priority in oncology.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Zhendong Australia China Centre for Molecular Chinese Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Kun Li
- Beijing Zhendong Guangming Pharmaceutical Research Institute, Beijing 100120, China.
| | - David L Adelson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Zhendong Australia China Centre for Molecular Chinese Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
32
|
Akgül Ö, Martlı HF, Göktaş A, Pak MA, Tez M. Comparison of preoperative magnetic resonance imaging with postoperative pathology results in rectal cancer patients undergoing neoadjuvant therapy. ANZ J Surg 2024; 94:1133-1137. [PMID: 38345184 DOI: 10.1111/ans.18890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND Locally advanced rectal cancer often requires neoadjuvant treatment (NAT) before surgical intervention. This study aimed to assess the concordance between preoperative magnetic resonance imaging (MRI) findings and postoperative pathology results after NAT in rectal cancer patients. METHOD A retrospective analysis of 52 patients who underwent NAT and subsequent surgery at Ankara Bilkent City Hospital between May 2019 and May 2023 was conducted. Demographics, preoperative MRIs, time intervals between NAT, MRI, and surgery, and postoperative pathology were assessed. RESULTS The median age of the cohort was 59 years, with a male predominance (76.9%). Tumour T stage (κ = 0.157), lymph node stage (κ = 0.138), and circumferential resection margin (κ = 0.138) concordance showed poor agreement between post-neoadjuvant treatment (PNT) MRI and pathology. PNT MRI demonstrated a limited correlation with postoperative pathology. CONCLUSIONS While preoperative MRI is commonly used for restaging after NAT in rectal cancer, our study highlights its limited concordance with postoperative pathology. The sensitivity and specificity metrics, although reported in the literature, should be interpreted alongside concordance assessments for a comprehensive evaluation.
Collapse
Affiliation(s)
- Özgür Akgül
- Department of Surgery, University of Health Sciences, Ankara City Hospital, Çankaya, Ankara, Turkey
| | - Hüseyin Fahri Martlı
- Department of Surgery, University of Health Sciences, Ankara City Hospital, Çankaya, Ankara, Turkey
| | - Abidin Göktaş
- Department of Surgery, University of Health Sciences, Ankara City Hospital, Çankaya, Ankara, Turkey
| | - Mehmet Ali Pak
- Department of Surgery, University of Health Sciences, Ankara City Hospital, Çankaya, Ankara, Turkey
| | - Mesut Tez
- Department of Surgery, University of Health Sciences, Ankara City Hospital, Çankaya, Ankara, Turkey
| |
Collapse
|
33
|
Berry CE, Kendig C, Bs TL, Brenac C, Griffin M, Guo J, Kameni L, Dixon SJ, Longaker MT, Wan D. Ferroptosis Inhibition with Deferoxamine Alleviates Radiation-Induced Fibrosis. RESEARCH SQUARE 2024:rs.3.rs-4314380. [PMID: 38853919 PMCID: PMC11160928 DOI: 10.21203/rs.3.rs-4314380/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Radiation-induced fibrosis (RIF) is a debilitating sequelae of radiation therapy that has been shown to improve with topical treatment with the iron chelator deferoxamine (DFO). We investigated whether DFO exerts this effect through attenuation of ferroptosis, a recently described iron-dependent pathway of cell death. Methods Adult C57BL/6J mice were treated with topical DFO or ferrostastin-1 (Fer-1) and irradiated with 30 Grays of ionizing radiation to the dorsal skin to promote development of chronic RIF. Immunofluorescent staining with 4-hydroxynonenal (4-HNE) antibody was carried out directly following irradiation to assess ferroptosis activity. Perfusion testing with laser Doppler was performed throughout the healing interval. Eight weeks following radiation, dorsal skin was harvested and analyzed histologically and biomechanically. Results Immunohistochemical staining demonstrated lower presence of 4-HNE in non-irradiated skin, DFO-treated skin, and Fer-1-treated skin compared to irradiated, untreated skin. DFO resulted in histological measurements (dermal thickness and collagen content) that resembled normal skin, while Fer-1 treatment yielded less significant improvements. These results were mirrored by analysis of extracellular matrix ultrastructure and biomechanical testing, which recapitulated the ability of topical DFO treatment to alleviate RIF across these parameters while Fer-1 resulted in less notable improvement. Finally, perfusion levels in DFO treated irradiated skin were similar to measurements in normal skin, while Fer-1 treatment did not impact this feature. Conclusions Ferroptosis contributes to the development of RIF and attenuation of this process leads to reduced skin injury. DFO further improves RIF through additional enhancement of perfusion not seen with Fer-1.
Collapse
|
34
|
Saultier P, Michel G. How I treat long-term survivors of childhood acute leukemia. Blood 2024; 143:1795-1806. [PMID: 38227937 DOI: 10.1182/blood.2023019804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
ABSTRACT The population of survivors of childhood leukemia who reach adulthood is growing due to improved therapy. However, survivors are at risk of long-term complications. Comprehensive follow-up programs play a key role in childhood leukemia survivor care. The major determinant of long-term complications is the therapeutic burden accumulated over time. Relapse chemotherapy, central nervous system irradiation, hematopoietic stem cell transplantation, and total body irradiation are associated with greater risk of long-term complications. Other parameters include clinical characteristics such as age and sex as well as environmental, genetic, and socioeconomic factors, which can help stratify the risk of long-term complications and organize follow-up program. Early diagnosis improves the management of several late complications such as anthracycline-related cardiomyopathy, secondary cancers, metabolic syndrome, development defects, and infertility. Total body irradiation is the treatment associated with worse long-term toxicity profile with a wide range of complications. Patients treated with chemotherapy alone are at a lower risk of long-term complications, although the optimal long-term follow-up remains unclear. Novel immunotherapies and targeted therapy are generally associated with a better short-term safety profile but still require careful long-term toxicity monitoring. Advances in understanding genetic susceptibility to long-term complications could enable tailored therapeutic strategies for leukemia treatment and optimized follow-up programs.
Collapse
Affiliation(s)
- Paul Saultier
- Department of Pediatric Hematology, Immunology and Oncology, Aix Marseille Université, APHM, INSERM, INRAe, C2VN, La Timone Children's Hospital, Marseille, France
| | - Gérard Michel
- Department of Pediatric Hematology, Immunology and Oncology, Aix Marseille Université, APHM, CERESS, La Timone Children's Hospital, Marseille, France
| |
Collapse
|
35
|
Hewala TIM, El-Benhawy SA, Elwany YN, Hammoury SI, Seada MA. Dosimetry and Biochemical Comparison of Early Radiation-Induced Lung Toxicity in Breast Cancer Patients Treated with 3D-CRT and IMRT: the Role of Serum Interleukin-6 and Pulmonary Surfactant Protein-D. Asian Pac J Cancer Prev 2024; 25:1707-1713. [PMID: 38809643 PMCID: PMC11318830 DOI: 10.31557/apjcp.2024.25.5.1707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Radiation-induced lung disease is a potentially fatal, dose-limiting toxicity commonly seen after radiotherapy of thoracic malignancies, including breast cancer. AIM To evaluate and compare the early lung toxicity induced by 3D-CRT and IMRT radiotherapy treatment modalities in breast cancer female patients using biochemical, dosimetry and clinical data. SUBJECTS AND METHODS this study included 15 normal healthy controls, 15 breast cancer patients treated with IMRT, and 15 breast cancer patients treated with 3D-CRT. One blood sample was obtained from the control group and 3 blood samples were withdrawn from cases before RT, after RT and after 3 months of RT. RESULT IMRT delivered higher radiation dose to the breast tumor and lower doses to the lung as an organ at risk. There was a non-significant increase in the serum levels of IL-6 before IMRT and 3D-CRT compared with its levels in the control group. There were significant increases in serum levels of IL-6 after RT (IMRT and 3DCRT) compared with its levels before RT. There was a non-significant decrease in the serum levels of IL-6 after 3 months of RT (IMRT and 3D-CRT) compared with its serum levels immediately after RT. There was a non-significant increase in the serum levels of SP-D before RT (IMRT and 3D-CRT) compared with its levels in the control group. There were significant-increases in serum levels of SP-D after RT (IMRT and 3D-CRT) compared with its levels before RT. There was a non-significant decrease in the serum levels of SP-D after 3 months of radiotherapy (IMRT and 3D-CRT) compared with its serum levels immediately after RT. CONCLUSION serum of levels IL-6 and SP-D can be used to diagnose the occurrence of early lung toxicity due to radiotherapy and the rate of recovery from radiation pneumonitis is apparent in case of IMRT than 3D-CRT.
Collapse
Affiliation(s)
| | - Sanaa Ali El-Benhawy
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Yasmine Nagy Elwany
- lecturer of Cancer Management and Research Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Sabbah I. Hammoury
- Medical Physics Department, Alexandria Ayadi Elmostakbl Oncology Center, Alexandria, Egypt.
| | - Mohamed A. Seada
- Faculty of Applied Medical Science, Pharous University, Alexandria, Egypt.
| |
Collapse
|
36
|
Chaudary N, Hill RP, Milosevic M. Targeting the CXCL12/CXCR4 pathway to reduce radiation treatment side effects. Radiother Oncol 2024; 194:110194. [PMID: 38447871 DOI: 10.1016/j.radonc.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
High precision, image-guided radiotherapy (RT) has increased the therapeutic ratio, enabling higher tumor and lower normal tissue doses, leading to improved patient outcomes. Nevertheless, some patients remain at risk of developing serious side effects.In many clinical situations, the radiation tolerance of normal tissues close to the target volume limits the dose that can safely be delivered and thus the potential for tumor control and cure. This is particularly so in patients being re-treated for tumor progression or a second primary tumor within a previous irradiated volume, scenarios that are becoming more frequent in clinical practice.Various normal tissue 'radioprotective' drugs with the potential to reduce side effects have been studied previously. Unfortunately, most have failed to impact clinical practice because of lack of therapeutic efficacy, concern about concurrent tumor protection or excessive drug-related toxicity. This review highlights the evidence indicating that targeting the CXCL12/CXCR4 pathway can mitigate acute and late RT-induced injury and reduce treatment side effects in a manner that overcomes these previous translational challenges. Pre-clinical studies involving a broad range of normal tissues commonly affected in clinical practice, including skin, lung, the gastrointestinal tract and brain, have shown that CXCL12 signalling is upregulated by RT and attracts CXCR4-expressing inflammatory cells that exacerbate acute tissue injury and late fibrosis. These studies also provide convincing evidence that inhibition of CXCL12/CXCR4 signalling during or after RT can reduce or prevent RT side effects, warranting further evaluation in clinical studies. Greater dialogue with the pharmaceutical industry is needed to prioritize the development and availability of CXCL12/CXCR4 inhibitors for future RT studies.
Collapse
Affiliation(s)
- Naz Chaudary
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Richard P Hill
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Michael Milosevic
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
37
|
McPartland C, Salib A, Banks J, Mark JR, Lallas CD, Trabulsi EJ, Gomella LG, Goldberg H, Leiby B, Den R, Chandrasekar T. Risk of Secondary Malignancies After Pelvic Radiation: A Population-based Analysis. EUR UROL SUPPL 2024; 63:52-61. [PMID: 38558762 PMCID: PMC10979055 DOI: 10.1016/j.euros.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Background and objective Radiation therapy has increasingly been used in the management of pelvic malignancies. However, the use of radiation continues to pose a risk of a secondary malignancy to its recipients. This study investigates the risk of secondary malignancy development following radiation for primary pelvic malignancies. Methods A retrospective cohort review of the Surveillance, Epidemiology, and End Results database from 1975 to 2016 was performed. Primary pelvic malignancies were subdivided based on the receipt of radiation, and secondary malignancies were stratified as pelvic or nonpelvic to investigate the local effect of radiation. Key findings and limitations A total of 2 102 192 patients were analyzed (1 189 108 with prostate, 315 026 with bladder, 88 809 with cervical, 249 535 with uterine, and 259 714 with rectal/anal cancer). The incidence rate (defined as cases per 1000 person years) of any secondary malignancies (including but not limited to secondary pelvic malignancies) was higher in radiation patients than in nonradiation patients (incidence rate ratio [IRR] 1.04, confidence interval [CI] 1.03-1.05), with significantly greater rates noted in radiation patients with prostate (IRR 1.22, CI 1.21-1.24), uterine (IRR 1.34), and cervical (IRR 1.80, CI 1.72-1.88) cancer. While the overall incidence rate of any secondary pelvic malignancy was lower in radiation patients (IRR 0.79, CI 0.78-0.81), a greater incidence was still noted in the same cohorts including radiation patients with prostate (IRR 1.42, CI 1.39-1.45), uterine (IRR 1.15, CI 1.08-1.21), and cervical (IRR 1.72, CI 1.59-1.86) cancer. Conclusions and clinical implications Except for localized cervical cancer, when put in the context of median overall survival, the impact of radiation likely does not carry enough weight to change practice patterns. Radiation for pelvic malignancies increases the risk for several secondary malignancies, and more specifically, secondary pelvic malignancies, but with a relatively low absolute risk of secondary malignancies, the benefits of radiation warrant continued use for most pelvic malignancies. Practice changes should be considered for radiation utilization in malignancies with excellent cancer-specific survival such as cervical cancer. Patient summary The use of radiation for the management of pelvic malignancies induces a risk of secondary malignancies to its recipients. However, the absolute risk being low, the benefits of radiation warrant its continued use, and a change in practice patterns is unlikely.
Collapse
Affiliation(s)
- Connor McPartland
- Department of Urology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Urology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Andrew Salib
- Department of Urology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joshua Banks
- Division of Biostatistics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - James R. Mark
- Department of Urology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Costas D. Lallas
- Department of Urology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Leonard G. Gomella
- Department of Urology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hanan Goldberg
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, NY, USA
| | - Benjamin Leiby
- Division of Biostatistics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert Den
- Department of Radiation Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Thenappan Chandrasekar
- Department of Urology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Urology, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
38
|
Pecorari IL, Qama E, Akbar N, Colley P, Fang CH, Agarwal V. The Effect of Preoperative Cabergoline on Prolactinoma Fibrosis: A Case Series. J Neurol Surg Rep 2024; 85:e66-e73. [PMID: 38751869 PMCID: PMC11095984 DOI: 10.1055/s-0044-1786740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/08/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Prolactinomas are a common intracranial neoplasm and constitute most pituitary tumors. Although patients can present with variable hormone dysregulation and symptom severity, the use of dopamine agonists remains a first-line treatment. While bromocriptine has been found to increase tumor fibrosis, the effect of cabergoline on collagen deposition has been disputed. The aim of this article is to understand the influence of cabergoline on tumor fibrosis prior to resection. Case Presentations Four male patients who underwent prolactinoma resection were included in this report. The average age was 39.8 years (range: 26-52 years). Pre-treatment prolactin levels ranged from 957.8 to 16,487.4 ng/mL. Three patients received cabergoline for at least 1 month prior to surgery (treatment range: 1-6 months). One patient had surgery without prior cabergoline use. Pathology reports confirmed each tumor to be of lactotroph origin. For each sample, Masson's trichrome staining was performed and the percentage of sample fibrosis was quantified using an artificial intelligence imaging software. Among those who received preoperative cabergoline, the extent of tumor fibrosis was in the range of 50 to 70%. In contrast, specimen fibrosis was approximately 15% without cabergoline use. Conclusion This report demonstrates that a short duration of preoperative cabergoline can cause significant prolactinoma fibrosis. Understanding the effect of cabergoline on tumor consistency prior to surgery is essential as increased fibrosis can lead to more difficult tumor removal, reduce the extent of resection, and increase surgical complications. Considering these effects, further studies regarding the use of surgery prior to cabergoline for prolactinoma management are warranted.
Collapse
Affiliation(s)
- Isabella L. Pecorari
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, New York, United States
- Department of Neurological Surgery, Montefiore Medical Center, Bronx, New York, United States
| | - Eros Qama
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States
- Department of Pathology, Montefiore Medical Center, Bronx, New York, United States
| | - Nadeem Akbar
- Department of Otorhinolaryngology – Head and Neck Surgery, Albert Einstein College of Medicine, Bronx, New York, United States
- Department of Otorhinolaryngology – Head and Neck Surgery, Montefiore Medical Center, Bronx, New York, United States
| | - Patrick Colley
- Department of Otorhinolaryngology – Head and Neck Surgery, Albert Einstein College of Medicine, Bronx, New York, United States
- Department of Otorhinolaryngology – Head and Neck Surgery, Montefiore Medical Center, Bronx, New York, United States
| | - Christina H. Fang
- Department of Otorhinolaryngology – Head and Neck Surgery, Albert Einstein College of Medicine, Bronx, New York, United States
- Department of Otorhinolaryngology – Head and Neck Surgery, Montefiore Medical Center, Bronx, New York, United States
| | - Vijay Agarwal
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, New York, United States
- Department of Neurological Surgery, Montefiore Medical Center, Bronx, New York, United States
| |
Collapse
|
39
|
Kerkhove L, Geirnaert F, Dufait I, De Ridder M. Ferroptosis: Frenemy of Radiotherapy. Int J Mol Sci 2024; 25:3641. [PMID: 38612455 PMCID: PMC11011408 DOI: 10.3390/ijms25073641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Recently, it was established that ferroptosis, a type of iron-dependent regulated cell death, plays a prominent role in radiotherapy-triggered cell death. Accordingly, ferroptosis inducers attracted a lot of interest as potential radio-synergizing drugs, ultimately enhancing radioresponses and patient outcomes. Nevertheless, the tumor microenvironment seems to have a major impact on ferroptosis induction. The influence of hypoxic conditions is an area of interest, as it remains the principal hurdle in the field of radiotherapy. In this review, we focus on the implications of hypoxic conditions on ferroptosis, contemplating the plausibility of using ferroptosis inducers as clinical radiosensitizers. Furthermore, we dive into the prospects of drug repurposing in the domain of ferroptosis inducers and radiosensitizers. Lastly, the potential adverse effects of ferroptosis inducers on normal tissue were discussed in detail. This review will provide an important framework for subsequent ferroptosis research, ascertaining the feasibility of ferroptosis inducers as clinical radiosensitizers.
Collapse
Affiliation(s)
| | | | | | - Mark De Ridder
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (L.K.); (F.G.); (I.D.)
| |
Collapse
|
40
|
Wu L, Chen L, Li H, Wang Y, Xu K, Chen W, Zhang A, Wang Y, Shi C. Nocardia rubra cell-wall skeleton mitigates whole abdominal irradiation-induced intestinal injury via regulating macrophage function. BURNS & TRAUMA 2024; 12:tkad045. [PMID: 38444637 PMCID: PMC10914217 DOI: 10.1093/burnst/tkad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 08/16/2023] [Indexed: 03/07/2024]
Abstract
Background Ionizing radiation (IR)-induced intestinal injury is a major side effect and dose-limiting toxicity in patients receiving radiotherapy. There is an urgent need to identify an effective and safe radioprotectant to reduce radiation-induced intestinal injury. Immunoregulation is considered an effective strategy against IR-induced injury. The purpose of this article was to investigate the protective effect of Nocardia rubra cell wall skeleton (Nr-CWS), an immunomodulator, on radiation-induced intestinal damage and to explore its potential mechanism. Methods C57BL/6 J male mice exposed to 12 Gy whole abdominal irradiation (WAI) were examined for survival rate, morphology and function of the intestine and spleen, as well as the gut microbiota, to comprehensively evaluate the therapeutic effects of Nr-CWS on radiation-induced intestinal and splenetic injury. To further elucidate the underlying mechanisms of Nr-CWS-mediated intestinal protection, macrophages were depleted by clodronate liposomes to determine whether Nr-CWS-induced radioprotection is macrophage dependent, and the function of peritoneal macrophages stimulated by Nr-CWS was detected in vitro. Results Our data showed that Nr-CWS promoted the recovery of intestinal barrier function, enhanced leucine-rich repeat-containing G protein-coupled receptor 5+ intestinal stem cell survival and the regeneration of intestinal epithelial cells, maintained intestinal flora homeostasis, protected spleen morphology and function, and improved the outcome of mice exposed to 12 Gy WAI. Mechanistic studies indicated that Nr-CWS recruited macrophages to reduce WAI-induced intestinal damage. Moreover, macrophage depletion by clodronate liposomes blocked Nr-CWS-induced radioprotection. In vitro, we found that Nr-CWS activated the nuclear factor kappa-B signaling pathway and promoted the phagocytosis and migration ability of peritoneal macrophages. Conclusions Our study suggests the therapeutic effect of Nr-CWS on radiation-induced intestinal injury, and provides possible therapeutic strategy and potential preventive and therapeutic drugs to alleviate it.
Collapse
Affiliation(s)
- Lingling Wu
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Long Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Huijuan Li
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yawei Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Kexin Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
- College of Biological Engineering, Chongqing University 400044, Chongqing, China
| | - Wanchao Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Aihua Zhang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Yu Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chunmeng Shi
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| |
Collapse
|
41
|
Singh RR, Mondal I, Janjua T, Popat A, Kulshreshtha R. Engineered smart materials for RNA based molecular therapy to treat Glioblastoma. Bioact Mater 2024; 33:396-423. [PMID: 38059120 PMCID: PMC10696434 DOI: 10.1016/j.bioactmat.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive malignancy of the central nervous system (CNS) that remains incurable despite the multitude of improvements in cancer therapeutics. The conventional chemo and radiotherapy post-surgery have only been able to improve the prognosis slightly; however, the development of resistance and/or tumor recurrence is almost inevitable. There is a pressing need for adjuvant molecular therapies that can successfully and efficiently block tumor progression. During the last few decades, non-coding RNAs (ncRNAs) have emerged as key players in regulating various hallmarks of cancer including that of GBM. The levels of many ncRNAs are dysregulated in cancer, and ectopic modulation of their levels by delivering antagonists or overexpression constructs could serve as an attractive option for cancer therapy. The therapeutic potential of several types of ncRNAs, including miRNAs, lncRNAs, and circRNAs, has been validated in both in vitro and in vivo models of GBM. However, the delivery of these RNA-based therapeutics is highly challenging, especially to the tumors of the brain as the blood-brain barrier (BBB) poses as a major obstacle, among others. Also, since RNA is extremely fragile in nature, careful considerations must be met while designing a delivery agent. In this review we have shed light on how ncRNA therapy can overcome the limitations of its predecessor conventional therapy with an emphasis on smart nanomaterials that can aide in the safe and targeted delivery of nucleic acids to treat GBM. Additionally, critical gaps that currently exist for successful transition from viral to non-viral vector delivery systems have been identified. Finally, we have provided a perspective on the future directions, potential pathways, and target areas for achieving rapid clinical translation of, RNA-based macromolecular therapy to advance the effective treatment of GBM and other related diseases.
Collapse
Affiliation(s)
- Ravi Raj Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Queensland –IIT Delhi Academy of Research (UQIDAR)
| | - Indranil Mondal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Taskeen Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
42
|
Radonic S, Schneider U, Besserer J, Meier VS, Rohrer Bley C. Risk adaptive planning with biology-based constraints may lead to higher tumor control probability in tumors of the canine brain: A planning study. Phys Med 2024; 119:103317. [PMID: 38430675 DOI: 10.1016/j.ejmp.2024.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Classical radiation protocols are guided by physical dose delivered homogeneously over the target. Protocols are chosen to keep normal tissue complication probability (NTCP) at an acceptable level. Organs at risk (OAR) adjacent to the target volume could lead to underdosage of the tumor and a decrease of tumor control probability (TCP). The intent of our study was to explore a biology-based dose escalation: by keeping NTCP for OAR constant, radiation dose was to be maximized, allowing to result in heterogeneous dose distributions. METHODS We used computed tomography datasets of 25 dogs with brain tumors, previously treated with 10x4 Gy (40 Gy to PTV D50). We generated 3 plans for each patient: A) original treatment plan with homogeneous dose distribution, B) heterogeneous dose distribution with strict adherence to the same NTCPs as in A), and C) heterogeneous dose distribution with adherence to NTCP <5%. For plan comparison, TCPs and TCP equivalent doses (homogenous target dose which results in the same TCP) were calculated. To enable the use of the generalized equivalent uniform dose (gEUD) metric of the tumor target in plan optimization, the calculated TCP values were used to obtain the volume effect parameter a. RESULTS As intended, NTCPs for all OARs did not differ from plan A) to B). In plan C), however, NTCPs were significantly higher for brain (mean 2.5% (SD±1.9, 95%CI: 1.7,3.3), p<0.001), optic chiasm (mean 2.0% (SD±2.2, 95%CI: 1.0,2.8), p=0.010) compared to plan A), but no significant increase was found for the brainstem. For 24 of 25 of the evaluated patients, the heterogenous plans B) and C) led to an increase in target dose and projected increase in TCP compared to the homogenous plan A). Furthermore, the distribution of the projected individual TCP values as a function of the dose was found to be in good agreement with the population TCP model. CONCLUSION Our study is a first step towards risk-adaptive radiation dose optimization. This strategy utilizes a biologic objective function based on TCP and NTCP instead of an objective function based on physical dose constraints.
Collapse
Affiliation(s)
- Stephan Radonic
- Department of Physics, University of Zurich, Zurich, Switzerland; Division of Radiation Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Uwe Schneider
- Department of Physics, University of Zurich, Zurich, Switzerland; Radiotherapie Hirslanden AG, Rain 34, Aarau, Switzerland
| | - Jürgen Besserer
- Department of Physics, University of Zurich, Zurich, Switzerland; Radiotherapie Hirslanden AG, Rain 34, Aarau, Switzerland
| | - Valeria S Meier
- Department of Physics, University of Zurich, Zurich, Switzerland; Division of Radiation Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Sesink A, Becerra M, Ruan JL, Leboucher S, Dubail M, Heinrich S, Jdey W, Petersson K, Fouillade C, Berthault N, Dutreix M, Girard PM. The AsiDNA™ decoy mimicking DSBs protects the normal tissue from radiation toxicity through a DNA-PK/p53/p21-dependent G1/S arrest. NAR Cancer 2024; 6:zcae011. [PMID: 38476631 PMCID: PMC10928987 DOI: 10.1093/narcan/zcae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
AsiDNA™, a cholesterol-coupled oligonucleotide mimicking double-stranded DNA breaks, was developed to sensitize tumour cells to radio- and chemotherapy. This drug acts as a decoy hijacking the DNA damage response. Previous studies have demonstrated that standalone AsiDNA™ administration is well tolerated with no additional adverse effects when combined with chemo- and/or radiotherapy. The lack of normal tissue complication encouraged further examination into the role of AsiDNA™ in normal cells. This research demonstrates the radioprotective properties of AsiDNA™. In vitro, AsiDNA™ induces a DNA-PK/p53/p21-dependent G1/S arrest in normal epithelial cells and fibroblasts that is absent in p53 deficient and proficient tumour cells. This cell cycle arrest improved survival after irradiation only in p53 proficient normal cells. Combined administration of AsiDNA™ with conventional radiotherapy in mouse models of late and early radiation toxicity resulted in decreased onset of lung fibrosis and increased intestinal crypt survival. Similar results were observed following FLASH radiotherapy in standalone or combined with AsiDNA™. Mechanisms comparable to those identified in vitro were detected both in vivo, in the intestine and ex vivo, in precision cut lung slices. Collectively, the results suggest that AsiDNA™ can partially protect healthy tissues from radiation toxicity by triggering a G1/S arrest in normal cells.
Collapse
Affiliation(s)
- Anouk Sesink
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Margaux Becerra
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Jia-Ling Ruan
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
| | - Sophie Leboucher
- Histology platform, Institut Curie, CNRS UMR3348, 91405 Orsay, France
| | - Maxime Dubail
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Sophie Heinrich
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Wael Jdey
- Valerio Therapeutics, 49 Bd du Général Martial Valin, 75015 Paris, France
| | - Kristoffer Petersson
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Charles Fouillade
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Nathalie Berthault
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Marie Dutreix
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Pierre-Marie Girard
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| |
Collapse
|
44
|
Cogno N, Bauer R, Durante M. Mechanistic model of radiotherapy-induced lung fibrosis using coupled 3D agent-based and Monte Carlo simulations. COMMUNICATIONS MEDICINE 2024; 4:16. [PMID: 38336802 PMCID: PMC10858213 DOI: 10.1038/s43856-024-00442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Mechanistic modelling of normal tissue toxicities is unfolding as an alternative to the phenomenological normal tissue complication probability models. The latter, currently used in the clinics, rely exclusively on limited patient data and neglect spatial dose distribution information. Among the various approaches, agent-based models are appealing as they provide the means to include patient-specific parameters and simulate long-term effects in complex systems. However, Monte Carlo tools remain the state-of-the-art for modelling radiation transport and provide measurements of the delivered dose with unmatched precision. METHODS In this work, we develop and characterize a coupled 3D agent-based - Monte Carlo model that mechanistically simulates the onset of the radiation-induced lung fibrosis in an alveolar segment. To the best of our knowledge, this is the first such model. RESULTS Our model replicates extracellular matrix patterns, radiation-induced lung fibrosis severity indexes and functional subunits survivals that show qualitative agreement with experimental studies and are consistent with our past results. Moreover, in accordance with experimental results, higher functional subunits survival and lower radiation-induced lung fibrosis severity indexes are achieved when a 5-fractions treatment is simulated. Finally, the model shows increased sensitivity to more uniform protons dose distributions with respect to more heterogeneous ones from photon irradiation. CONCLUSIONS This study lays thus the groundwork for further investigating the effects of different radiotherapeutic treatments on the onset of radiation-induced lung fibrosis via mechanistic modelling.
Collapse
Affiliation(s)
- Nicolò Cogno
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291, Darmstadt, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289, Darmstadt, Germany
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roman Bauer
- Department of Computer Science, University of Surrey, Guildford, GU2 7XH, UK
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291, Darmstadt, Germany.
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289, Darmstadt, Germany.
- Department of Physics "Ettore Pancini", University Federico II, Naples, Italy.
| |
Collapse
|
45
|
Masuda T, Inaniwa T. Effects of cellular radioresponse on therapeutic helium-, carbon-, oxygen-, and neon-ion beams: a simulation study. Phys Med Biol 2024; 69:045003. [PMID: 38232394 DOI: 10.1088/1361-6560/ad1f87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Objective. Helium, oxygen, and neon ions in addition to carbon ions will be used for hypofractionated multi-ion therapy to maximize the therapeutic effectiveness of charged-particle therapy. To use new ions in cancer treatments based on the dose-fractionation protocols established in carbon-ion therapy, this study examined the cell-line-specific radioresponse to therapeutic helium-, oxygen-, and neon-ion beams within wide dose ranges.Approach. Response of cells to ions was described by the stochastic microdosimetric kinetic model. First, simulations were made for the irradiation of one-field spread-out Bragg peak beams in water with helium, carbon, oxygen, and neon ions to achieve uniform survival fractions at 37%, 10%, and 1% for human salivary gland tumor (HSG) cells, the reference cell line for the Japanese relative biological effectiveness weighted dose system, within the target region defined at depths from 90 to 150 mm. The HSG cells were then replaced by other cell lines with different radioresponses to evaluate differences in the biological dose distributions of each ion beam with respect to those of carbon-ion beams.Main results. For oxygen- and neon-ion beams, the biological dose distributions within the target region were almost equivalent to those of carbon-ion beams, differing by less than 5% in most cases. In contrast, for helium-ion beams, the biological dose distributions within the target region were largely different from those of carbon-ion beams, more than 10% in several cases.Significance.From the standpoint of tumor control evaluated by the clonogenic cell survival, this study suggests that the dose-fractionation protocols established in carbon-ion therapy could be reasonably applied to oxygen- and neon-ion beams while some modifications in dose prescription would be needed when the protocols are applied to helium-ion beams. This study bridges the gap between carbon-ion therapy and hypofractionated multi-ion therapy.
Collapse
Affiliation(s)
- Takamitsu Masuda
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| |
Collapse
|
46
|
Mu Q, Deng H, An X, Liu G, Liu C. Designing nanodiscs as versatile platforms for on-demand therapy. NANOSCALE 2024; 16:2220-2234. [PMID: 38192208 DOI: 10.1039/d3nr05457h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Nowadays, there has been an increasing utilization of nanomedicines for disease treatment. Nanodiscs (NDs) have emerged as a novel platform technology that garners significant attention in biomedical research and drug discovery. NDs are nanoscale phospholipid bilayer discs capable of incorporating membrane proteins and lipids within a native-like environment. They are assembled using amphiphilic biomacromolecular materials, such as apolipoprotein A1 or membrane scaffold proteins (MSPs), peptides, and styrene-maleic acid polymers (SMAs). NDs possess well-defined sizes and shapes, offering a stable, homogeneous, and biologically relevant environment for studying membrane proteins and lipids. Their unique properties have made them highly desirable for diverse applications, including cancer immunotherapy, vaccine development, antibacterial and antiviral therapy, and treating Alzheimer's disease (AD) and diabetes-related conditions. This review discusses the classifications, advantages, and applications of NDs in disease therapy.
Collapse
Affiliation(s)
- Qianwen Mu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Haolan Deng
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoyu An
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
47
|
Bigos KJA, Quiles CG, Lunj S, Smith DJ, Krause M, Troost EGC, West CM, Hoskin P, Choudhury A. Tumour response to hypoxia: understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours. Front Oncol 2024; 14:1331355. [PMID: 38352889 PMCID: PMC10861654 DOI: 10.3389/fonc.2024.1331355] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Hypoxia is a common feature of solid tumours affecting their biology and response to therapy. One of the main transcription factors activated by hypoxia is hypoxia-inducible factor (HIF), which regulates the expression of genes involved in various aspects of tumourigenesis including proliferative capacity, angiogenesis, immune evasion, metabolic reprogramming, extracellular matrix (ECM) remodelling, and cell migration. This can negatively impact patient outcomes by inducing therapeutic resistance. The importance of hypoxia is clearly demonstrated by continued research into finding clinically relevant hypoxia biomarkers, and hypoxia-targeting therapies. One of the problems is the lack of clinically applicable methods of hypoxia detection, and lack of standardisation. Additionally, a lot of the methods of detecting hypoxia do not take into consideration the complexity of the hypoxic tumour microenvironment (TME). Therefore, this needs further elucidation as approximately 50% of solid tumours are hypoxic. The ECM is important component of the hypoxic TME, and is developed by both cancer associated fibroblasts (CAFs) and tumour cells. However, it is important to distinguish the different roles to develop both biomarkers and novel compounds. Fibronectin (FN), collagen (COL) and hyaluronic acid (HA) are important components of the ECM that create ECM fibres. These fibres are crosslinked by specific enzymes including lysyl oxidase (LOX) which regulates the stiffness of tumours and induces fibrosis. This is partially regulated by HIFs. The review highlights the importance of understanding the role of matrix stiffness in different solid tumours as current data shows contradictory results on the impact on therapeutic resistance. The review also indicates that further research is needed into identifying different CAF subtypes and their exact roles; with some showing pro-tumorigenic capacity and others having anti-tumorigenic roles. This has made it difficult to fully elucidate the role of CAFs within the TME. However, it is clear that this is an important area of research that requires unravelling as current strategies to target CAFs have resulted in worsened prognosis. The role of immune cells within the tumour microenvironment is also discussed as hypoxia has been associated with modulating immune cells to create an anti-tumorigenic environment. Which has led to the development of immunotherapies including PD-L1. These hypoxia-induced changes can confer resistance to conventional therapies, such as chemotherapy, radiotherapy, and immunotherapy. This review summarizes the current knowledge on the impact of hypoxia on the TME and its implications for therapy resistance. It also discusses the potential of hypoxia biomarkers as prognostic and predictive indictors of treatment response, as well as the challenges and opportunities of targeting hypoxia in clinical trials.
Collapse
Affiliation(s)
- Kamilla JA. Bigos
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Conrado G. Quiles
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Sapna Lunj
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Danielle J. Smith
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Mechthild Krause
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
| | - Esther GC. Troost
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Radiooncology – OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany
| | - Catharine M. West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, United Kingdom
| | - Peter Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Christie Hospital NHS Foundation Trust, Manchester, Germany
| |
Collapse
|
48
|
Skrodzki D, Molinaro M, Brown R, Moitra P, Pan D. Synthesis and Bioapplication of Emerging Nanomaterials of Hafnium. ACS NANO 2024; 18:1289-1324. [PMID: 38166377 DOI: 10.1021/acsnano.3c08917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A significant amount of progress in nanotechnology has been made due to the development of engineered nanoparticles. The use of metallic nanoparticles for various biomedical applications has been extensively investigated. Biomedical research is highly focused on them because of their inert nature, nanoscale structure, and similar size to many biological molecules. The intrinsic characteristics of these particles, including electronic, optical, physicochemical, and surface plasmon resonance, that can be altered by altering their size, shape, environment, aspect ratio, ease of synthesis, and functionalization properties, have led to numerous biomedical applications. Targeted drug delivery, sensing, photothermal and photodynamic therapy, and imaging are some of these. The promising clinical results of NBTXR3, a high-Z radiosensitizing nanomaterial derived from hafnium, have demonstrated translational potential of this metal. This radiosensitization approach leverages the dependence of energy attenuation on atomic number to enhance energy-matter interactions conducive to radiation therapy. High-Z nanoparticle localization in tumor issue differentially increases the effect of ionizing radiation on cancer cells versus nearby healthy ones and mitigates adverse effects by reducing the overall radiation burden. This principle enables material multifunctionality as contrast agents in X-ray-based imaging. The physiochemical properties of hafnium (Z = 72) are particularly advantageous for these applications. A well-placed K-edge absorption energy and high mass attenuation coefficient compared to elements in human tissue across clinical energy ranges leads to significant attenuation. Chemical reactivity allows for variety in nanoparticle synthesis, composition, and functionalization. Nanoparticles such as hafnium oxide exhibit excellent biocompatibility due to physiochemical inertness prior to incidence with ionizing radiation. Additionally, the optical and electronic properties are applicable in biosensing, optical component coatings, and semiconductors. The wide interest has prompted extensive research in design and synthesis to facilitate property fine-tuning. This review summarizes synthetic methods for hafnium-based nanomaterials and applications in therapy, imaging, and biosensing with a mechanistic focus. A discussion and future perspective section highlights clinical progress and elaborates on current challenges. By focusing on factors impacting applicational effectiveness and examining limitations this review aims to support researchers and expedite clinical translation of future hafnium-based nanomedicine.
Collapse
Affiliation(s)
- David Skrodzki
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew Molinaro
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Richard Brown
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Parikshit Moitra
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dipanjan Pan
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, 101 Huck Life Sciences Building, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
49
|
Trencsényi G, Csikos C, Képes Z. Targeted Radium Alpha Therapy in the Era of Nanomedicine: In Vivo Results. Int J Mol Sci 2024; 25:664. [PMID: 38203834 PMCID: PMC10779852 DOI: 10.3390/ijms25010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific binding to tumor-related antigens and cell surface receptors. Although earlier studies have already demonstrated the anti-tumor potential of alpha-emitting radium (Ra) isotopes-Radium-223 and Radium-224 (223/224Ra)-in the treatment of skeletal metastases, their inability to complex with target-specific moieties hindered application beyond bone targeting. To exploit the therapeutic gains of Ra across a wider spectrum of cancers, nanoparticles have recently been embraced as carriers to ensure the linkage of 223/224Ra to target-affine vectors. Exemplified by prior findings, Ra was successfully bound to several nano/microparticles, including lanthanum phosphate, nanozeolites, barium sulfate, hydroxyapatite, calcium carbonate, gypsum, celestine, or liposomes. Despite the lengthened tumor retention and the related improvement in the radiotherapeutic effect of 223/224Ra coupled to nanoparticles, the in vivo assessment of the radiolabeled nanoprobes is a prerequisite prior to clinical usage. For this purpose, experimental xenotransplant models of different cancers provide a well-suited scenario. Herein, we summarize the latest achievements with 223/224Ra-doped nanoparticles and related advances in targeted alpha radiotherapy.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| | - Csaba Csikos
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| |
Collapse
|
50
|
Park J, Hu W, Jin IH, Liu H, Zang Y. A Bayesian adaptive biomarker stratified phase II randomized clinical trial design for radiotherapies with competing risk survival outcomes. Stat Methods Med Res 2024; 33:80-95. [PMID: 38062757 PMCID: PMC11227940 DOI: 10.1177/09622802231215801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
In recent decades, many phase II clinical trials have used survival outcomes as the primary endpoints. If radiotherapy is involved, the competing risk issue often arises because the time to disease progression can be censored by the time to normal tissue complications, and vice versa. Besides, many existing research has examined that patients receiving the same radiotherapy dose may yield distinct responses due to their heterogeneous radiation susceptibility statuses. Therefore, the "one-size-fits-all" strategy often fails, and it is more relevant to evaluate the subgroup-specific treatment effect with the subgroup defined by the radiation susceptibility status. In this paper, we propose a Bayesian adaptive biomarker stratified phase II trial design evaluating the subgroup-specific treatment effects of radiotherapy. We use the cause-specific hazard approach to model the competing risk survival outcomes. We propose restricting the candidate radiation doses based on each patient's radiation susceptibility status. Only the clinically feasible personalized dose will be considered, which enhances the benefit for the patients in the trial. In addition, we propose a stratified Bayesian adaptive randomization scheme such that more patients will be randomized to the dose reporting more favorable survival outcomes. Numerical studies and an illustrative trial example have shown that the proposed design performed well and outperformed the conventional design ignoring the competing risk issue.
Collapse
Affiliation(s)
- Jina Park
- Department of Applied Statistics, Yonsei University, South Korea
- Department of Statistics and Data Science, Yonsei University, South Korea
| | | | - Ick Hoon Jin
- Department of Applied Statistics, Yonsei University, South Korea
- Department of Statistics and Data Science, Yonsei University, South Korea
| | - Hao Liu
- Department of Biostatistics and Epidemiology, Cancer Institute of New Jersey, Rutgers University, USA
| | - Yong Zang
- Department of Biostatistics and Health Data Sciences, Center of Computational Biology and Bioinformatics, Indiana University, USA
| |
Collapse
|