1
|
Sadeghzadeh J, Roqanian S, Jafarzadeh J, Zangbar HS, Nakhjiri E, Kalan AE, Farhoudi M, Ahmadian S, Shahabi P, Shahpasand K. Anti-cis P-tau attenuates tauopathy and enhances cognitive function following global cerebral ischemia in mice. Int Immunopharmacol 2025; 158:114834. [PMID: 40378437 DOI: 10.1016/j.intimp.2025.114834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/14/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025]
Abstract
Global cerebral ischemia/reperfusion (GCI/R) induces widespread neuronal degeneration, accompanied by tauopathy in the hippocampus and profound cognitive impairment. Tau, a microtubule-associated protein highly expressed in neurons, becomes neurotoxic upon hyperphosphorylation, disrupting mitochondrial integrity and destabilizing microtubule architecture. Despite extensive efforts, no practical therapeutic approach has emerged to counter tau-related pathology. This study established a murine GCI/R model using three cycles of bilateral common carotid artery occlusion (5 min per cycle) with 5-min reperfusion intervals. The presence of cis P-tau and cognitive deficits in the hippocampus was confirmed following GCI/R. Treatment with a cis P-tau-targeted monoclonal antibody effectively prevented cognitive deterioration and attenuated ultrastructural brain damage. These findings demonstrate that GCI/R promotes pathogenic tau formation and contributes to cognitive dysfunction. Targeting cis P-tau may represent a viable therapeutic strategy to mitigate neurodegeneration and support cognitive recovery following global cerebral ischemic injury.
Collapse
Affiliation(s)
- Jafar Sadeghzadeh
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shaqayeq Roqanian
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Jaber Jafarzadeh
- Department of Community Nutrition, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Nakhjiri
- Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi Kalan
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Parviz Shahabi
- Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Hagar HT, Fernandez-Vega V, Wang KW, Jordan LMO, Shumate J, Scampavia L, Tapayan AS, Nguyen HM, Spicer TP, Kuo MH. Hyperphosphorylated tau-based Alzheimer's Disease drug discovery: Identification of inhibitors of tau aggregation and cytotoxicity. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 33:100235. [PMID: 40319815 DOI: 10.1016/j.slasd.2025.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/14/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that affects more than 30 million people worldwide. Underlying the progressive decline of cognitive functions are the neurofibrillary tangles (NFTs) in neurons of the brain. The spatiotemporal distribution of NFTs predicts the progression of cognitive symptoms. In contrast, the senile plaques of amyloid-β aggregates, another major biomarker for AD, do not correlate with the clinical symptom development, consistent with the negligible benefits to cognitive functions in patients receiving anti-Aβ immunotherapies. A new drug discovery avenue targeting tau pathologies is therefore urgently needed. Using a recombinant hyperphosphorylated tau (p-tau) that presents characters key to the disease, e.g., formation of neurotoxic aggregates, we conducted a fluorescence p-tau aggregation assay and completed a 100K-compound high-throughput screen (HTS) and identified inhibitors of p-tau aggregation and cytotoxicity. This dual functional screen resulted in several potent compounds that effectively curbed both p-tau aggregation and cytotoxicity. Results presented in this work are the first HTS for small-molecule compounds that target the cellular toxicity of hyperphosphorylated tau. Top hits found in this screen and their analogues to be developed in the near future may lead to breakthroughs in the therapeutic development for Alzheimer's disease and other neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Hsiao-Tien Hagar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Virneliz Fernandez-Vega
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology in Center, High-Throughput Molecular Screening Center, Department of Molecular Medicine, Jupiter, Florida 33458, USA
| | - Kuang-Wei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Luis M Ortiz Jordan
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology in Center, High-Throughput Molecular Screening Center, Department of Molecular Medicine, Jupiter, Florida 33458, USA
| | - Justin Shumate
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology in Center, High-Throughput Molecular Screening Center, Department of Molecular Medicine, Jupiter, Florida 33458, USA
| | - Louis Scampavia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology in Center, High-Throughput Molecular Screening Center, Department of Molecular Medicine, Jupiter, Florida 33458, USA
| | - April Sweet Tapayan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Timothy P Spicer
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology in Center, High-Throughput Molecular Screening Center, Department of Molecular Medicine, Jupiter, Florida 33458, USA.
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
3
|
Uliassi E, Bolognesi ML, Milelli A. Targeting Tau Protein with Proximity Inducing Modulators: A New Frontier to Combat Tauopathies. ACS Pharmacol Transl Sci 2025; 8:654-672. [PMID: 40109749 PMCID: PMC11915046 DOI: 10.1021/acsptsci.4c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 03/22/2025]
Abstract
Dysregulation of correct protein tau homeostasis represents the seed for the development of several devastating central nervous system disorders, known as tauopathies, that affect millions of people worldwide. Despite massive public and private support to research funding, these diseases still represent unmet medical needs. In fact, the tau-targeting tools developed to date have failed to translate into the clinic. Recently, taking advantage of the modes that nature uses to mediate the flow of information in cells, researchers have developed a new class of molecules, called proximity-inducing modulators, which exploit spatial proximity to modulate protein function(s) and redirect cellular processes. In this perspective, after a brief discussion about tau protein and the classic tau-targeting approaches, we will discuss the different classes of proximity-inducing modulators developed so far and highlight the applications to modulate tau protein's function and tau-induced toxicity.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, Rimini 47921, Italy
| |
Collapse
|
4
|
Lucas L, Tsoi PS, Quan MD, Choi KJ, Ferreon JC, Ferreon ACM. Tubulin transforms Tau and α-synuclein condensates from pathological to physiological. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640500. [PMID: 40060635 PMCID: PMC11888465 DOI: 10.1101/2025.02.27.640500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Proteins phase-separate to form condensates that partition and concentrate biomolecules into membraneless compartments. These condensates can exhibit dichotomous behaviors in biology by supporting cellular physiology or instigating pathological protein aggregation 1-3 . Tau and α- synuclein (αSyn) are neuronal proteins that form heterotypic (Tau:αSyn) condensates associated with both physiological and pathological processes. Tau and αSyn functionally regulate microtubules 8-12 , but are also known to misfold and co-deposit in aggregates linked to various neurodegenerative diseases 4,5,6,7 , which highlights the paradoxically ambivalent effect of Tau:αSyn condensation in health and disease. Here, we show that tubulin modulates Tau:αSyn condensates by promoting microtubule interactions, competitively inhibiting the formation of homotypic and heterotypic pathological oligomers. In the absence of tubulin, Tau-driven protein condensation accelerates the formation of toxic Tau:αSyn heterodimers and amyloid fibrils. However, tubulin partitioning into Tau:αSyn condensates modulates protein interactions, promotes microtubule polymerization, and prevents Tau and αSyn oligomerization and aggregation. We distinguished distinct Tau and αSyn structural states adopted in tubulin-absent (pathological) and tubulin-rich (physiological) condensates, correlating compact conformations with aggregation and extended conformations with function. Furthermore, using various neuronal cell models, we showed that loss of stable microtubules, which occurs in Alzheimer's disease and Parkinsons disease patients 13,14 , results in pathological oligomer formation and loss of neurites, and that functional condensation using an inducible optogenetic Tau construct resulted in microtubule stablization. Our results identify that tubulin is a critical modulator in switching Tau:αSyn pathological condensates to physiological, mechanistically relating the loss of stable microtubules with disease progression. Tubulin restoration strategies and Tau-mediated microtubule stabilization can be potential therapies targeting both Tau-specific and Tau/αSyn mixed pathologies.
Collapse
|
5
|
Babu AT, Abdul Vahid A, Reselammal DS, Kizhakkeduth ST, Pinhero F, Vijayan V. Exploring the Potential Interaction between the Functional Prion Protein CPEB3 and the Amyloidogenic Pathogenic Protein Tau. J Phys Chem B 2025; 129:1916-1926. [PMID: 39908090 DOI: 10.1021/acs.jpcb.4c06423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Abnormal aggregation of tau protein is pathologically linked to Alzheimer's disease, while the aggregation of the prion-like RNA-binding protein (RBP) CPEB3 is functional and is associated with long-term memory. However, the interaction between these two memory-related proteins has not yet been explored. Our residue-specific NMR relaxation study revealed that the first prion domain of CPEB3 (PRD1) interacts with the 306VQIVYKPVDLSKV318 segment of tau and prevents the aggregation of tau-K18. Notably, this interaction is synergistic as it not only inhibits tau-K18 aggregation but also enhances PRD1 fibril formation. We also studied the interaction of different PRD1 subdomains with tau-K18 to elucidate the precise region of PRD1 that inhibits tau-K18 aggregation. This revealed that the PRD1-Q region is responsible for preventing tau-K18 aggregation. Inspired by this, we synthesized a 15 amino acid Poly-Q peptide that inhibits tau-K18 aggregation, suggesting its potential as a small drug-like molecule for Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Ann Teres Babu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Arshad Abdul Vahid
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Dhanya S Reselammal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Safwa T Kizhakkeduth
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Faina Pinhero
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
6
|
El-Desouky S, Abdel-Halim M, Fathalla RK, Abadi AH, Piazza GA, Salama M, El-Khodery SA, Youssef MA, Elfarrash S. A novel phosphodiesterase 5 inhibitor, RF26, improves memory impairment and ameliorates tau aggregation and neuroinflammation in the P301S tauopathy mouse model of Alzheimer's disease. Exp Neurol 2025; 384:115058. [PMID: 39549949 DOI: 10.1016/j.expneurol.2024.115058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/10/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Phosphodiesterase-5 (PDE5) inhibitors are primarily used in the treatment of erectile dysfunction and pulmonary hypertension, but have also been reported to have a potential therapeutic effect for the treatment of Alzheimer's disease (AD). This is likely to be through stimulation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling by elevating cGMP, a secondary messenger involved in processes of neuroplasticity. In the present study, we evaluated the efficacy of a novel PDE5 inhibitor, RF26, using P301S tauopathy mice model. A body of experimental evidence suggests that the development of tau inclusions leads to the neurodegeneration observed in tauopathies, including AD, Frontotemporal dementia (FTD), Supranuclear palsy and others. RF26 successfully targeted NO/cGMP signaling pathway and showed a significant improvement of spatial memory task performance of P301S mice using Morris Water Maze and T-maze. Furthermore, RF26 -treated mice showed a significant reduction of phosphorylated tau load, gliosis and downregulated pro-inflammatory cytokines. The presented data support the efficacy of RF26 as a potent PDE5 inhibitor and calls for further investigation as a potential therapeutic drug for Alzheimer's and other tauopathy related neurological disorders.
Collapse
Affiliation(s)
- Sara El-Desouky
- Medical experimental research center (MERC), Faculty of Medicine, Mansoura University, 35116 Mansoura, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Reem K Fathalla
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Gary A Piazza
- Department of Drug discovery and development, Harrison Collage of Pharmacy, Auburn University, Auburn, AL 36832, USA
| | - Mohamed Salama
- Institute of Global health and Human ecology, American University in Cairo, Egypt; Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, 35116 Mansoura, Egypt
| | - Sabry Ahmed El-Khodery
- Department of internal medicine, Faculty of Veterinary Medicine, Mansoura University, 35116 Mansoura, Egypt
| | - Mohamed A Youssef
- Department of internal medicine, Faculty of Veterinary Medicine, Mansoura University, 35116 Mansoura, Egypt
| | - Sara Elfarrash
- Medical experimental research center (MERC), Faculty of Medicine, Mansoura University, 35116 Mansoura, Egypt; Department of Medical Physiology, Faculty of Medicine, Mansoura University, 35116 Mansoura, Egypt.
| |
Collapse
|
7
|
Singh R, Panghal A, Jadhav K, Thakur A, Verma RK, Singh C, Goyal M, Kumar J, Namdeo AG. Recent Advances in Targeting Transition Metals (Copper, Iron, and Zinc) in Alzheimer's Disease. Mol Neurobiol 2024; 61:10916-10940. [PMID: 38809370 DOI: 10.1007/s12035-024-04256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Changes in the transition metal homeostasis in the brain are closely linked with Alzheimer's disease (AD), including intraneuronal iron accumulation and extracellular copper and zinc pooling in the amyloid plague. The brain copper, zinc, and iron surplus are commonly acknowledged characteristics of AD, despite disagreements among some. This has led to the theory that oxidative stress resulting from abnormal homeostasis of these transition metals may be a causative explanation behind AD. In the nervous system, the interaction of metals with proteins appears to be an essential variable in the development or suppression of neurodegeneration. Chelation treatment may be an option for treating neurodegeneration induced by transition metal ion dyshomeostasis. Some clinicians even recommend using chelating agents as an adjunct therapy for AD. The current review also looks at the therapeutic strategies that have been attempted, primarily with metal-chelating drugs. Metal buildup in the nervous system, as reported in the AD, could be the result of compensatory mechanisms designed to improve metal availability for physiological functions.
Collapse
Affiliation(s)
- Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institutes of Nano Science and Technology (INST), Sector 81. Mohali, Punjab, 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Krishna Jadhav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, ICFAI University, Baddi, Distt. Solan, Himachal Pradesh, 174103, India
| | - Rahul Kumar Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Charan Singh
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India.
| | - Ajay G Namdeo
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| |
Collapse
|
8
|
Kalmouni M, Oh Y, Alata W, Magzoub M. Designed Cell-Penetrating Peptide Constructs for Inhibition of Pathogenic Protein Self-Assembly. Pharmaceutics 2024; 16:1443. [PMID: 39598566 PMCID: PMC11597747 DOI: 10.3390/pharmaceutics16111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Peptides possess a number of pharmacologically desirable properties, including greater chemical diversity than other biomolecule classes and the ability to selectively bind to specific targets with high potency, as well as biocompatibility, biodegradability, and ease and low cost of production. Consequently, there has been considerable interest in developing peptide-based therapeutics, including amyloid inhibitors. However, a major hindrance to the successful therapeutic application of peptides is their poor delivery to target tissues, cells or subcellular organelles. To overcome these issues, recent efforts have focused on engineering cell-penetrating peptide (CPP) antagonists of amyloidogenesis, which combine the attractive intrinsic properties of peptides with potent therapeutic effects (i.e., inhibition of amyloid formation and the associated cytotoxicity) and highly efficient delivery (to target tissue, cells, and organelles). This review highlights some promising CPP constructs designed to target amyloid aggregation associated with a diverse range of disorders, including Alzheimer's disease, transmissible spongiform encephalopathies (or prion diseases), Parkinson's disease, and cancer.
Collapse
Affiliation(s)
| | | | | | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates; (Y.O.)
| |
Collapse
|
9
|
Kubota H, Kunisawa K, Hasegawa M, Kurahashi H, Kagotani K, Fujimoto Y, Hayashi A, Sono R, Tsuji T, Saito K, Nabeshima T, Mouri A. Soy lysolecithin prevents hypertension and cognitive impairment induced in mice by high salt intake by inhibiting intestinal inflammation. Neurochem Int 2024; 180:105858. [PMID: 39271020 DOI: 10.1016/j.neuint.2024.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
High salt (HS) intake induces hypertension and cognitive impairment. Preventive strategies include against dietary supplements. Soybean lecithin is a widely used phospholipid supplement. Lysolecithin is important in cell signaling, digestion, and absorption. This study aimed to investigate the effects of lysophosphatidylcholine containing >70% of the total phospholipids (LPC70), on hypertension and cognitive impairment induced in mice by HS intake. Mice were provided with HS solution (2% NaCl in drinking water) with or without LPC70 for 12 weeks. Blood pressure, cognitive function, and inflammatory response of intestine were determined. Hypertension and impaired object recognition memory induced by HS intake were implicated with increased inducible nitric oxide synthase in the small intestine and tau hyperphosphorylation in the prefrontal cortex. LPC70 treatment prevented cognitive impairment by suppressing inducible nitric oxide synthase and tau hyperphosphorylation. LPC70 may be valuable as a functional food component in preventing HS-induced cognitive impairment.
Collapse
Affiliation(s)
- Hisayoshi Kubota
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan; International Center for Brain Science (ICBS), Fujita Health University, Aichi, Japan
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan; International Center for Brain Science (ICBS), Fujita Health University, Aichi, Japan
| | - Masaya Hasegawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Hitomi Kurahashi
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Kazuhiro Kagotani
- Tsuji Oil Mills Co., Ltd, Mie, Japan; Tsuji Health & Beauty Science Laboratory, Mie University, Mie, Japan
| | | | | | | | | | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan; Laboratory of Health and Medical Science Innovation (HMSI), Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Toshitaka Nabeshima
- Laboratory of Health and Medical Science Innovation (HMSI), Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan; International Center for Brain Science (ICBS), Fujita Health University, Aichi, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan; International Center for Brain Science (ICBS), Fujita Health University, Aichi, Japan.
| |
Collapse
|
10
|
Soltan OM, Abdelrahman KS, Bass AKA, Takizawa K, Narumi A, Konno H. Design of Multi-Target drugs of HDACs and other Anti-Alzheimer related Targets: Current strategies and future prospects in Alzheimer's diseases therapy. Bioorg Chem 2024; 151:107651. [PMID: 39029320 DOI: 10.1016/j.bioorg.2024.107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia that develops spontaneously in the elderly. It's worth mentioning that as people age, the epigenetic profile of the central nervous system cells changes, which may speed up the development of various neurodegenerative disorders including AD. Histone deacetylases (HDACs) are a class of epigenetic enzymes that can control gene expression without altering the gene sequence. Moreover, a promising strategy for multi-target hybrid design was proposed to potentially improve drug efficacy and reduce side effects. These hybrids are monocular drugs that contain various pharmacophore components and have the ability to bind to different targets at the same time. The HDACs ability to synergistically boost the performance of other anti-AD drugs, as well as the ease with which HDACs inhibitor cap group, can be modified. This has prompted numerous medicinal chemists to design a novel generation of HDACs multi-target inhibitors. Different HDACs inhibitors and other ones such as acetylcholinesterase, butyryl-cholinesterase, phosphodiesterase 9, phosphodiesterase 5 or glycogen synthase kinase 3β inhibitors were merged into hybrids for treatment of AD. This review goes over the scientific rationale for targeting HDACs along with several other crucial targets in AD therapy. This review presents the latest hybrids of HDACs and other AD target pharmacophores.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Kamal S Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Amr K A Bass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia 6131567, Egypt
| | - Kazuki Takizawa
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Konno
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
11
|
Chang CJ, Taoufiq Z, Yamada H, Takei K, Tomiyama T, Umeda T, Hori T, Takahashi T. The microtubule-dynamin binding inhibitor peptide PHDP5 rescues spatial learning and memory deficits in Alzheimer's disease model mice. Brain Res 2024; 1838:148987. [PMID: 38718851 DOI: 10.1016/j.brainres.2024.148987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
Dynamin is a microtubule (MT) binding protein playing a key role in vesicle endocytosis. In a brain slice model, tau loaded in presynaptic terminals assembles MTs, thereby impairing vesicle endocytosis via depletion of cytosolic dynamin. The peptide PHDP5, derived from the pleckstrin homology domain of dynamin 1, inhibits dynamin-MT interaction and rescues endocytosis and synaptic transmission impaired by tau when co-loaded in presynaptic terminals. We tested whether in vivo administration of PHDP5 could rescue the learning/memory deficits observed in Alzheimer's disease (AD) model mice. A modified PHDP5 incorporating a cell-penetrating peptide (CPP) and a FITC fluorescent marker was delivered intranasally to Tau609 transgenic (Tg) and 3xTg-AD mice. FITC-positive puncta were observed in the hippocampus of mice infused with PHDP5 or scrambled (SPHDP5) peptide, but not in saline-infused controls. In the Morris water maze (MWM) test for spatial learning/memory, AD model mice treated with FITC-PHDP5-CPP showed prominent improvements in learning and memory, performing close to the level of saline-infused WT mice control. In contrast, mice treated with a scrambled construct (FITC-SPHDP5-CPP) showed no significant improvement. We conclude that PHDP5 can be a candidate for human AD therapy.
Collapse
Affiliation(s)
- Chia-Jung Chang
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| | - Zacharie Taoufiq
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Hiroshi Yamada
- Department of Neuroscience. Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Kohji Takei
- Department of Neuroscience. Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine School of Medicine, 530-0001 Osaka Japan
| | - Tomohiro Umeda
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine School of Medicine, 530-0001 Osaka Japan
| | - Tetsuya Hori
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| | - Tomoyuki Takahashi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| |
Collapse
|
12
|
Gaikwad S, Puangmalai N, Sonawane M, Montalbano M, Price R, Iyer MS, Ray A, Moreno S, Kayed R. Nasal tau immunotherapy clears intracellular tau pathology and improves cognitive functions in aged tauopathy mice. Sci Transl Med 2024; 16:eadj5958. [PMID: 38959324 DOI: 10.1126/scitranslmed.adj5958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Pathological tau aggregates cause cognitive decline in neurodegenerative tauopathies, including Alzheimer's disease (AD). These aggregates are prevalent within intracellular compartments. Current tau immunotherapies have shown limited efficacy in clearing intracellular tau aggregates and improving cognition in clinical trials. In this study, we developed toxic tau conformation-specific monoclonal antibody-2 (TTCM2), which selectively recognized pathological tau aggregates in brain tissues from patients with AD, dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). TTCM2 potently inhibited tau-seeding activity, an essential mechanism underlying tauopathy progression. To effectively target intracellular tau aggregates and ensure rapid delivery to the brain, TTCM2 was loaded in micelles (TTCM2-ms) and administered through the intranasal route. We found that intranasally administered TTCM2-ms efficiently entered the brain in hTau-tauopathy mice, targeting pathological tau in intracellular compartments. Moreover, a single intranasal dose of TTCM2-ms effectively cleared pathological tau, elevated synaptic proteins, and improved cognitive functions in aged tauopathy mice. Mechanistic studies revealed that TTCM2-ms cleared intracellular, synaptic, and seed-competent tau aggregates through tripartite motif-containing 21 (TRIM21), an intracellular antibody receptor and E3 ubiquitin ligase known to facilitate proteasomal degradation of cytosolic antibody-bound proteins. TRIM21 was found to be essential for TTCM2-ms-mediated clearance of tau pathology. Our study collectively provides evidence of the effectiveness of nasal tau immunotherapy in targeting and clearing intracellular tau pathology through TRIM21 and enhancing cognition in aged tauopathy mice. This study could be valuable in designing effective tau immunotherapies for AD and other tauopathies.
Collapse
Affiliation(s)
- Sagar Gaikwad
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Minal Sonawane
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rachel Price
- Department of Science, University "Roma Tre," Viale G. Marconi 446 00146 Rome, Italy
| | | | | | - Sandra Moreno
- Department of Science, University "Roma Tre," Viale G. Marconi 446 00146 Rome, Italy
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
13
|
Yao Y, Muench M, Alle T, Zhang B, Lucero B, Perez‐Tremble R, McGrosso D, Newman M, Gonzalez DJ, Lee VM, Ballatore C, Brunden KR. A small-molecule microtubule-stabilizing agent safely reduces Aβ plaque and tau pathology in transgenic mouse models of Alzheimer's disease. Alzheimers Dement 2024; 20:4540-4558. [PMID: 38884283 PMCID: PMC11247666 DOI: 10.1002/alz.13875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Intraneuronal inclusions composed of tau protein are found in Alzheimer's disease (AD) and other tauopathies. Tau normally binds microtubules (MTs), and its disengagement from MTs and misfolding in AD is thought to result in MT abnormalities. We previously identified triazolopyrimidine-containing MT-stabilizing compounds that provided benefit in AD mouse models and herein describe the characterization and efficacy testing of an optimized candidate, CNDR-51997. METHODS CNDR-51997 underwent pharmacokinetic, pharmacodynamic, safety pharmacology, and mouse tolerability testing. In addition, the compound was examined for efficacy in 5XFAD amyloid beta (Aβ) plaque mice and PS19 tauopathy mice. RESULTS CNDR-51997 significantly reduced Aβ plaques in 5XFAD mice and tau pathology in PS19 mice, with the latter also showing attenuated axonal dystrophy and gliosis. CNDR-51997 was well tolerated at doses that exceeded efficacy doses, with a good safety pharmacology profile. DISCUSSION CNDR-51997 may be a candidate for advancement as a potential therapeutic agent for AD and/or other tauopathies. Highlights There is evidence of microtubule alterations (MT) in Alzheimer's disease (AD) brain and in mouse models of AD pathology. Intermittent dosing with an optimized, brain-penetrant MT-stabilizing small-molecule, CNDR-51997, reduced both Aβ plaque and tau inclusion pathology in established mouse models of AD. CNDR-51997 attenuated axonal dystrophy and gliosis in a tauopathy mouse model, with a strong trend toward reduced hippocampal neuron loss. CNDR-51997 is well tolerated in mice at doses that are meaningfully greater than required for efficacy in AD mouse models, and the compound has a good safety pharmacology profile.
Collapse
Affiliation(s)
- Yuemang Yao
- Center for Neurodegenerative Disease ResearchPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Megan Muench
- Center for Neurodegenerative Disease ResearchPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Thibault Alle
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Bin Zhang
- Center for Neurodegenerative Disease ResearchPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Bobby Lucero
- Department of Chemistry and BiochemistryUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Roxanne Perez‐Tremble
- Center for Neurodegenerative Disease ResearchPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dominic McGrosso
- Department of PharmacologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Mira Newman
- Center for Neurodegenerative Disease ResearchPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David J. Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaSan DiegoCaliforniaUSA
- Department of PharmacologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Virginia M.‐Y. Lee
- Center for Neurodegenerative Disease ResearchPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Kurt R. Brunden
- Center for Neurodegenerative Disease ResearchPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
14
|
Hu K, Xie L, Wu W, Zhang J, Li Y, He J, Zhang Y, Lu D, Koeffler HP, Lin L, Yin D. CYR61 Acts as an Intracellular Microtubule-Associated Protein and Coordinates Mitotic Progression via PLK1-FBW7 Pathway. Int J Biol Sci 2024; 20:3140-3155. [PMID: 38904029 PMCID: PMC11186368 DOI: 10.7150/ijbs.93335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Cysteine-rich angiogenic inducer 61 (CYR61), also called CCN1, has long been characterized as a secretory protein. Nevertheless, the intracellular function of CYR61 remains unclear. Here, we found that CYR61 is important for proper cell cycle progression. Specifically, CYR61 interacts with microtubules and promotes microtubule polymerization to ensure mitotic entry. Moreover, CYR61 interacts with PLK1 and accumulates during the mitotic process, followed by degradation as mitosis concludes. The proteolysis of CYR61 requires the PLK1 kinase activity, which directly phosphorylates two conserved motifs on CYR61, enhancing its interaction with the SCF E3 complex subunit FBW7 and mediating its degradation by the proteasome. Mutations of phosphorylation sites of Ser167 and Ser188 greatly increase CYR61's stability, while deletion of CYR61 extends prophase and metaphase and delays anaphase onset. In summary, our findings highlight the precise control of the intracellular CYR61 by the PLK1-FBW7 pathway, accentuating its significance as a microtubule-associated protein during mitotic progression.
Collapse
Affiliation(s)
- Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Limin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
- Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Jingyuan Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Yu Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, P.R. China
| | - Jiehua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Daning Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - H. Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| |
Collapse
|
15
|
Sharma V, Chander Sharma P, Reang J, Yadav V, Kumar Tonk R, Majeed J, Sharma K. Impact of GSK-3β and CK-1δ on Wnt signaling pathway in alzheimer disease: A dual target approach. Bioorg Chem 2024; 147:107378. [PMID: 38643562 DOI: 10.1016/j.bioorg.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Alzheimer's disease (AD) is an enigmatic neurological illness that offers few treatment options. Recent exploration has highlighted the crucial connection of the Wnt signaling pathway in AD pathogenesis, shedding light on potential therapeutic targets. The present study focuses on the dual targeting of glycogen synthase kinase-3β (GSK-3β) and casein kinase-1δ (CK-1δ) within the framework of the Wnt signaling pathway as a possible technique for AD intervention. GSK-3β and CK-1δ are multifunctional kinases known for their roles in tau hyperphosphorylation, amyloid processing, and synaptic dysfunction, all of which are major hallmarks of Alzheimer's disease. They are intricately linked to Wnt signaling, which plays a pivotal part in sustaining neuronal function and synaptic plasticity. Dysregulation of the Wnt pathway in AD contributes to cognitive decline and neurodegeneration. This review delves into the molecular mechanisms by which GSK-3β and CK-1δ impact the Wnt signaling pathway, elucidating their roles in AD pathogenesis. We discuss the potential of small-molecule inhibitors along with their SAR studies along with the multi-targetd approach targeting GSK-3β and CK-1δ to modulate Wnt signaling and mitigate AD-related pathology. In summary, the dual targeting of GSK-3β and CK-1δ within the framework of the Wnt signaling pathway presents an innovative and promising avenue for future AD therapies, offering new hope for patients and caregivers in the quest to combat this challenging condition.
Collapse
Affiliation(s)
- Vinita Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | | | - Jurnal Reang
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Vivek Yadav
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Jaseela Majeed
- School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India; Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
16
|
Nguyen DLB, Okolicsanyi RK, Haupt LM. Heparan sulfate proteoglycans: Mediators of cellular and molecular Alzheimer's disease pathogenic factors via tunnelling nanotubes? Mol Cell Neurosci 2024; 129:103936. [PMID: 38750678 DOI: 10.1016/j.mcn.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Neurological disorders impact around one billion individuals globally (15 % approx.), with significant implications for disability and mortality with their impact in Australia currently amounts to 6.8 million deaths annually. Heparan sulfate proteoglycans (HSPGs) are complex extracellular molecules implicated in promoting Tau fibril formation resulting in Tau tangles, a hallmark of Alzheimer's disease (AD). HSPG-Tau protein interactions contribute to various AD stages via aggregation, toxicity, and clearance, largely via interactions with the glypican 1 and syndecan 3 core proteins. The tunnelling nanotubes (TNTs) pathway is emerging as a facilitator of intercellular molecule transport, including Tau and Amyloid β proteins, across extensive distances. While current TNT-associated evidence primarily stems from cancer models, their role in Tau propagation and its effects on recipient cells remain unclear. This review explores the interplay of TNTs, HSPGs, and AD-related factors and proposes that HSPGs influence TNT formation in neurodegenerative conditions such as AD.
Collapse
Affiliation(s)
- Duy L B Nguyen
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia; Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Queensland University of Technology (QUT), Australia.
| |
Collapse
|
17
|
Wang Y, Li H, He Q, Zou R, Cai J, Zhang L. Ferroptosis: underlying mechanisms and involvement in neurodegenerative diseases. Apoptosis 2024; 29:3-21. [PMID: 37848673 DOI: 10.1007/s10495-023-01902-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
Ferroptosis, a mode of cell death that was recently identified in 2012, is driven by iron-dependent lipid peroxidation and distinct from other mechanisms of cell death such as autophagy and apoptosis. Ferroptosis has the unique features of disruptions in iron equilibrium, iron-induced lipid peroxidation, and the accumulation of glutamate-induced cellular toxicity. The regulation of ferroptosis mainly involves the iron, lipid, and amino acid metabolic pathways, which are controlled by system Xc-, voltage-dependent anion channels, p53 and other pathways. Neurodegenerative diseases involve gradual neuronal loss predominantly within the central nervous system and are categorized into both sporadic and rare hereditary disorders. These diseases result in the progressive decline of specific neuron populations and their interconnections. Recent investigations have revealed a strong correlation between the manifestation and progression of neurodegenerative diseases and ferroptosis. The pharmacological modulation of ferroptosis, whether by induction or inhibition, exhibits promising prospects for therapeutic interventions for these diseases. This review aims to examine the literature on ferroptosis and its implications in various neurodegenerative diseases. We hope to offer novel insights into the potential therapies targeting ferroptosis in central nervous system neurodegenerative diseases. However, there are still limitations of this review. First, despite our efforts to maintain objectivity during our analysis, this review does not cover all the studies on ferroptosis and neurodegenerative diseases. Second, cell death in neurodegenerative diseases is not solely caused by ferroptosis. Future research should focus on the interplay of different cell death mechanisms to better elucidate the specific disease pathogenesis.
Collapse
Affiliation(s)
- Yi Wang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - HongJing Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - QianXiong He
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rong Zou
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - JinRui Cai
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
- Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Xining, 810008, Qinghai, China.
| |
Collapse
|
18
|
Fu Q, Zhang B, Chen X, Chu L. Liquid-liquid phase separation in Alzheimer's disease. J Mol Med (Berl) 2024; 102:167-181. [PMID: 38167731 DOI: 10.1007/s00109-023-02407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The pathological aggregation and misfolding of tau and amyloid-β play a key role in Alzheimer's disease (AD). However, the underlying pathological mechanisms remain unclear. Emerging evidences indicate that liquid-liquid phase separation (LLPS) has great impacts on regulating human health and diseases, especially neurodegenerative diseases. A series of studies have revealed the significance of LLPS in AD. In this review, we summarize the latest progress of LLPS in AD, focusing on the impact of metal ions, small-molecule inhibitors, and proteinaceous partners on tau LLPS and aggregation, as well as toxic oligomerization, the role of LLPS on amyloid-β (Aβ) aggregation, and the cross-interactions between amyloidogenic proteins in AD. Eventually, the fundamental methods and techniques used in LLPS study are introduced. We expect to present readers a deeper understanding of the relationship between LLPS and AD.
Collapse
Affiliation(s)
- Qinggang Fu
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liang Chu
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
19
|
Sołtys K, Tarczewska A, Bystranowska D. Modulation of biomolecular phase behavior by metal ions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119567. [PMID: 37582439 DOI: 10.1016/j.bbamcr.2023.119567] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Liquid-liquid phase separation (LLPS) appears to be a newly appreciated aspect of the cellular organization of biomolecules that leads to the formation of membraneless organelles (MLOs). MLOs generate distinct microenvironments where particular biomolecules are highly concentrated compared to those in the surrounding environment. Their thermodynamically driven formation is reversible, and their liquid nature allows them to fuse with each other. Dysfunctional biomolecular condensation is associated with human diseases. Pathological states of MLOs may originate from the mutation of proteins or may be induced by other factors. In most aberrant MLOs, transient interactions are replaced by stronger and more rigid interactions, preventing their dissolution, and causing their uncontrolled growth and dysfunction. For these reasons, there is great interest in identifying factors that modulate LLPS. In this review, we discuss an enigmatic and mostly unexplored aspect of this process, namely, the regulatory effects of metal ions on the phase behavior of biomolecules.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
20
|
Akyol O, Akyol S, Chou MC, Chen S, Liu CK, Selek S, Soares JC, Chen CH. Lipids and lipoproteins may play a role in the neuropathology of Alzheimer's disease. Front Neurosci 2023; 17:1275932. [PMID: 38033552 PMCID: PMC10687420 DOI: 10.3389/fnins.2023.1275932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Alzheimer's disease (AD) and other classes of dementia are important public health problems with overwhelming social, physical, and financial effects for patients, society, and their families and caregivers. The pathophysiology of AD is poorly understood despite the extensive number of clinical and experimental studies. The brain's lipid-rich composition is linked to disturbances in lipid homeostasis, often associated with glucose and lipid abnormalities in various neurodegenerative diseases, including AD. Moreover, elevated low-density lipoprotein (LDL) cholesterol levels may be related to a higher probability of AD. Here, we hypothesize that lipids, and electronegative LDL (L5) in particular, may be involved in the pathophysiology of AD. Although changes in cholesterol, triglyceride, LDL, and glucose levels are seen in AD, the cause remains unknown. We believe that L5-the most electronegative subfraction of LDL-may be a crucial factor in understanding the involvement of lipids in AD pathology. LDL and L5 are internalized by cells through different receptors and mechanisms that trigger separate intracellular pathways. One of the receptors involved in L5 internalization, LOX-1, triggers apoptotic pathways. Aging is associated with dysregulation of lipid homeostasis, and it is believed that alterations in lipid metabolism contribute to the pathogenesis of AD. Proposed mechanisms of lipid dysregulation in AD include mitochondrial dysfunction, blood-brain barrier disease, neuronal signaling, inflammation, and oxidative stress, all of which lead ultimately to memory loss through deficiency of synaptic integration. Several lipid species and their receptors have essential functions in AD pathogenesis and may be potential biomarkers.
Collapse
Affiliation(s)
- Omer Akyol
- Molecular Cardiology, Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, United States
| | | | - Mei-Chuan Chou
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shioulan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Kuan Liu
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Salih Selek
- Department of Psychiatry and Behavioral Sciences, UTHealth Houston McGovern Medical School, Houston, TX, United States
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, UTHealth Houston McGovern Medical School, Houston, TX, United States
| | - Chu-Huang Chen
- Molecular Cardiology, Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, United States
| |
Collapse
|
21
|
Bar S, Wilson KA, Hilsabeck TA, Alderfer S, Dammer EB, Burton JB, Shah S, Holtz A, Carrera EM, Beck JN, Chen JH, Kauwe G, Tracy TE, Seyfried NT, Schilling B, Ellerby LM, Kapahi P. Neuronal Glycogen Breakdown Mitigates Tauopathy via Pentose Phosphate Pathway-Mediated Oxidative Stress Reduction. RESEARCH SQUARE 2023:rs.3.rs-3526342. [PMID: 37986935 PMCID: PMC10659530 DOI: 10.21203/rs.3.rs-3526342/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Tauopathies encompass a range of neurodegenerative disorders, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD). Unfortunately, current treatment approaches for tauopathies have yielded limited success, underscoring the pressing need for novel therapeutic strategies. We observed distinct signatures of impaired glycogen metabolism in the Drosophila brain of the tauopathy model and the brain of AD patients, indicating a link between tauopathies and glycogen metabolism. We demonstrate that the breakdown of neuronal glycogen by activating glycogen phosphorylase (GlyP) ameliorates the tauopathy phenotypes in flies and induced pluripotent stem cell (iPSC) derived neurons from FTD patients. We observed that glycogen breakdown redirects the glucose flux to the pentose phosphate pathway to alleviate oxidative stress. Our findings uncover a critical role for increased GlyP activity in mediating the neuroprotection benefit of dietary restriction (DR) through the cAMP-mediated protein kinase A (PKA) activation. Our studies identify impaired glycogen metabolism as a key hallmark for tauopathies and offer a promising therapeutic target in tauopathy treatment.
Collapse
Affiliation(s)
- Sudipta Bar
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | | | | | | | - Eric B. Dammer
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory University, School of Medicine Core Labs, Atlanta, GA 30322, USA
| | | | - Samah Shah
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Anja Holtz
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | | | | | - Jackson H Chen
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Grant Kauwe
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Tara E. Tracy
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| |
Collapse
|
22
|
Sarukhanyan E, Dandekar T. In silico designed microtubule-stabilizer drugs against tauopathy in Alzheimer's disease. J Biomol Struct Dyn 2023; 41:8992-9012. [PMID: 36331069 DOI: 10.1080/07391102.2022.2139760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Microtubules are the main building blocks of the cytoskeleton that maintain the shape of the cell. Microtubule-associated proteins, such as Tau protein, facilitate their plasticity in cells. Highly phosphorylated Tau has weak affinity to microtubule and, hence, high probability of aggregation into neurofibrillary tangles (tauopathy). Alzheimer's disease evolves when Tau proteins are abnormally phosphorylated. To prevent tauopathy in Alzheimer's disease, we designed drugs de novo targeting them in silico to the phosphorylated Tau-microtubule complexes. Our molecular docking (AutoDock, MOE, GOLD) and molecular dynamics (GROMACS, 2019.6) simulation results revealed compound 23 (C12H28N4O5) as a potential drug candidate, since it can bind (-11.1 kcal/mol by AutoDock) and fix not only phosphorylated Tau on the surface of microtubules, but also prevent their aggregation into bundles. In addition, compound 23 has shown its ability to de-bundle already grouped phosphorylated peptides into single pieces.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Edita Sarukhanyan
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Liang F, Li M, Xu M, Zhang Y, Dong Y, Soriano SG, McCann ME, Yang G, Xie Z. Sevoflurane anaesthesia induces cognitive impairment in young mice through sequential tau phosphorylation. Br J Anaesth 2023; 131:726-738. [PMID: 37537117 PMCID: PMC10541551 DOI: 10.1016/j.bja.2023.06.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The volatile anaesthetic sevoflurane induces time (single or multiple exposures)-dependent effects on tau phosphorylation and cognitive function in young mice. The underlying mechanism for this remains largely undetermined. METHODS Mice received 3% sevoflurane for 0.5 h or 2 h daily for 3 days on postnatal day (P) 6, 9, and 12. Another group of mice received 3% sevoflurane for 0.5 h or 1.5 h (3 × 0.5) on P6. We investigated effects of sevoflurane anaesthesia on tau phosphorylation on P6 or P12 mice, on cognitive function from P31 to P37, and on protein interactions, using in vivo studies, in vitro phosphorylation assays, and nanobeam single-molecule level interactions in vitro. RESULTS An initial sevoflurane exposure induced CaMKIIα phosphorylation (132 [11]% vs 100 [6]%, P<0.01), leading to tau phosphorylation at serine 262 (164 [7]% vs 100 [26]%, P<0.01) and tau detachment from microtubules. Subsequent exposures to the sevoflurane induced GSK3β activation, which phosphorylated detached or free tau (tau phosphorylated at serine 262) at serine 202 and threonine 205, resulting in cognitive impairment in young mice. In vitro phosphorylation assays also demonstrated sequential tau phosphorylation. Nanobeam analysis of molecular interactions showed different interactions between tau or free tau and CaMKIIα or GSK3β, and between tau and tubulin at a single-molecule level. CONCLUSIONS Multiple exposures to sevoflurane can induce sequential tau phosphorylation, leading to cognitive impairment in young mice, highlighting the need to investigate the underlying mechanisms of anaesthesia-induced tau phosphorylation in developing brain.
Collapse
Affiliation(s)
- Feng Liang
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Mengzhu Li
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Miao Xu
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiying Zhang
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yuanlin Dong
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Sulpicio G Soriano
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Mary Ellen McCann
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Zhongcong Xie
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
24
|
Kubota H, Kunisawa K, Wulaer B, Hasegawa M, Kurahashi H, Sakata T, Tezuka H, Kugita M, Nagao S, Nagai T, Furuyashiki T, Narumiya S, Saito K, Nabeshima T, Mouri A. High salt induces cognitive impairment via the interaction of the angiotensin II-AT 1 and prostaglandin E2-EP 1 systems. Br J Pharmacol 2023; 180:2393-2411. [PMID: 37076133 DOI: 10.1111/bph.16093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND AND PURPOSE High salt (HS) intake has been associated with hypertension and cognitive impairment. It is well known that the angiotensin II (Ang II)-AT1 receptor and prostaglandin E2 (PGE2)-EP1 receptor systems are involved in hypertension and neurotoxicity. However, the involvement of these systems in HS-mediated hypertension and emotional and cognitive impairments remains unclear. EXPERIMENTAL APPROACH Mice were loaded with HS solution (2% NaCl drinking water) for 12 weeks, and blood pressure was monitored. Subsequently, effects of HS intake on emotional and cognitive function and tau phosphorylation in the prefrontal cortex (PFC) and hippocampus (HIP) were investigated. The involvement of Ang II-AT1 and PGE2-EP1 systems in HS-induced hypertension and neuronal and behavioural impairments was examined by treatment with losartan, an AT1 receptor blocker (ARB), or EP1 gene knockout. KEY RESULTS We demonstrate that hypertension and impaired social behaviour and object recognition memory following HS intake may be associated with tau hyperphosphorylation, decreased phosphorylation of Ca2+ /calmodulin-dependent protein kinase II (CaMKII), and postsynaptic density protein 95 (PSD95) expression in the PFC and HIP of mice. These changes were blocked by pharmacological treatment with losartan or EP1 receptor gene knockout. CONCLUSIONS AND IMPLICATIONS Our findings suggest that the interaction of Ang II-AT1 receptor and PGE2-EP1 receptor systems could be novel therapeutic targets for hypertension-induced cognitive impairment.
Collapse
Affiliation(s)
- Hisayoshi Kubota
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
| | - Bolati Wulaer
- Laboratory of Health and Medical Science Innovation (HMSI), Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
| | - Masaya Hasegawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
| | - Hitomi Kurahashi
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
| | - Takatoshi Sakata
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
| | - Hiroyuki Tezuka
- Department of Cellular Function Analysis, Research Promotion and Support Headquarters, Fujita Health University, Toyoake, Aichi, Japan
| | - Masanori Kugita
- Education and Research Facility of Animal Models for Human Diseases, Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi, Japan
| | - Shizuko Nagao
- Education and Research Facility of Animal Models for Human Diseases, Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Aichi, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Kuniaki Saito
- Laboratory of Health and Medical Science Innovation (HMSI), Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi, Japan
| | - Toshitaka Nabeshima
- Laboratory of Health and Medical Science Innovation (HMSI), Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi, Japan
| |
Collapse
|
25
|
Yu M, Risacher SL, Nho KT, Wen Q, Oblak AL, Unverzagt FW, Apostolova LG, Farlow MR, Brosch JR, Clark DG, Wang S, Deardorff R, Wu YC, Gao S, Sporns O, Saykin AJ. Spatial transcriptomic patterns underlying regional vulnerability to amyloid-β and tau pathologies and their relationships to cognitive dysfunction in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.12.23294017. [PMID: 37645867 PMCID: PMC10462206 DOI: 10.1101/2023.08.12.23294017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Amyloid-β (Aβ) and tau proteins accumulate within distinct neuronal systems in Alzheimer's disease (AD). Although it is not clear why certain brain regions are more vulnerable to Aβ and tau pathologies than others, gene expression may play a role. We studied the association between brain-wide gene expression profiles and regional vulnerability to Aβ (gene-to-Aβ associations) and tau (gene-to-tau associations) pathologies leveraging two large independent cohorts (n = 715) of participants along the AD continuum. We identified several AD susceptibility genes and gene modules in a gene co-expression network with expression profiles related to regional vulnerability to Aβ and tau pathologies in AD. In particular, we found that the positive APOE -to-tau association was only seen in the AD cohort, whereas patients with AD and frontotemporal dementia shared similar positive MAPT -to-tau association. Some AD candidate genes showed sex-dependent negative gene-to-Aβ and gene-to-tau associations. In addition, we identified distinct biochemical pathways associated with the gene-to-Aβ and the gene-to-tau associations. Finally, we proposed a novel analytic framework, linking the identified gene-to-pathology associations to cognitive dysfunction in AD at the individual level, suggesting potential clinical implication of the gene-to-pathology associations. Taken together, our study identified distinct gene expression profiles and biochemical pathways that may explain the discordance between regional Aβ and tau pathologies, and filled the gap between gene-to-pathology associations and cognitive dysfunction in individual AD patients that may ultimately help identify novel personalized pathogenetic biomarkers and therapeutic targets. One Sentence Summary We identified replicable cognition-related associations between regional gene expression profiles and selectively regional vulnerability to amyloid-β and tau pathologies in AD.
Collapse
|
26
|
Zhu R, Makwana KM, Zhang Y, Rajewski BH, Del Valle JR, Wang Y. Blocking tau transmission by biomimetic graphene nanoparticles. J Mater Chem B 2023; 11:7378-7388. [PMID: 37431684 PMCID: PMC10528742 DOI: 10.1039/d3tb00850a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Tauopathies are a class of neurodegenerative diseases resulting in cognitive dysfunction, executive dysfunction, and motor disturbance. The primary pathological feature of tauopathies is the presence of neurofibrillary tangles in the brain composed of tau protein aggregates. Moreover, tau aggregates can spread from neuron to neuron and lead to the propagation of tau pathology. Although numerous small molecules are known to inhibit tau aggregation and block tau cell-to-cell transmission, it is still challenging to use them for therapeutic applications due to poor specificity and low blood-brain barrier (BBB) penetration. Graphene nanoparticles were previously demonstrated to penetrate the BBB and are amenable to functionalization for targeted delivery. Moreover, these nanoscale biomimetic particles can self-assemble or assemble with various biomolecules including proteins. In this paper, we show that graphene quantum dots (GQDs), as graphene nanoparticles, block the seeding activity of tau fibrils by inhibiting the fibrillization of monomeric tau and triggering the disaggregation of tau filaments. This behavior is attributed to electrostatic and π-π stacking interactions of GQDs with tau. Overall, our studies indicate that GQDs with biomimetic properties can efficiently inhibit and disassemble pathological tau aggregates, and thus block tau transmission, which supports their future developments as a potential treatment for tauopathies.
Collapse
Affiliation(s)
- Runyao Zhu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Indiana 46556, USA.
| | - Kamlesh M Makwana
- Department of Chemistry & Biochemistry, University of Notre Dame, Indiana 46556, USA
| | - Youwen Zhang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Indiana 46556, USA.
| | - Benjamin H Rajewski
- Department of Chemistry & Biochemistry, University of Notre Dame, Indiana 46556, USA
| | - Juan R Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, Indiana 46556, USA
| | - Yichun Wang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Indiana 46556, USA.
| |
Collapse
|
27
|
Chen Y, Yu Y. Tau and neuroinflammation in Alzheimer's disease: interplay mechanisms and clinical translation. J Neuroinflammation 2023; 20:165. [PMID: 37452321 PMCID: PMC10349496 DOI: 10.1186/s12974-023-02853-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's Disease (AD) contributes to most cases of dementia. Its prominent neuropathological features are the extracellular neuritic plaques and intercellular neurofibrillary tangles composed of aggregated β-amyloid (Aβ) and hyperphosphorylated tau protein, respectively. In the past few decades, disease-modifying therapy targeting Aβ has been the focus of AD drug development. Even though it is encouraging that two of these drugs have recently received accelerated US Food and Drug Administration approval for AD treatment, their efficacy or long-term safety is controversial. Tau has received increasing attention as a potential therapeutic target, since evidence indicates that tau pathology is more associated with cognitive dysfunction. Moreover, inflammation, especially neuroinflammation, accompanies AD pathological processes and is also linked to cognitive deficits. Accumulating evidence indicates that inflammation has a complex and tight interplay with tau pathology. Here, we review recent evidence on the interaction between tau pathology, focusing on tau post-translational modification and dissemination, and neuroinflammatory responses, including glial cell activation and inflammatory signaling pathways. Then, we summarize the latest clinical trials targeting tau and neuroinflammation. Sustained and increased inflammatory responses in glial cells and neurons are pivotal cellular drivers and regulators of the exacerbation of tau pathology, which further contributes to its worsening by aggravating inflammatory responses. Unraveling the precise mechanisms underlying the relationship between tau pathology and neuroinflammation will provide new insights into the discovery and clinical translation of therapeutic targets for AD and other tau-related diseases (tauopathies). Targeting multiple pathologies and precision therapy strategies will be the crucial direction for developing drugs for AD and other tauopathies.
Collapse
Affiliation(s)
- Yijun Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
28
|
Gibbons GS, Gould H, Lee VMY, Crowe A, Brunden KR. Identification of small molecules and related targets that modulate tau pathology in a seeded primary neuron model. J Biol Chem 2023; 299:104876. [PMID: 37269953 PMCID: PMC10331484 DOI: 10.1016/j.jbc.2023.104876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of tau protein inclusions and amyloid beta (Aβ) plaques in the brain, with Aβ peptides generated by cleavage of the amyloid precursor protein (APP) by BACE1 and γ-secretase. We previously described a primary rat neuron assay in which tau inclusions form from endogenous rat tau after seeding cells with insoluble tau isolated from the human AD brain. Here, we used this assay to screen an annotated library of ∼8700 biologically active small molecules for their ability to reduce immuno-stained neuronal tau inclusions. Compounds causing ≥30% inhibition of tau aggregates with <25% loss of DAPI-positive cell nuclei underwent further confirmation testing and assessment of neurotoxicity, and non-neurotoxic hits were subsequently analyzed for inhibitory activity in an orthogonal ELISA that quantified multimeric rat tau species. Of the 173 compounds meeting all criteria, a subset of 55 inhibitors underwent concentration-response testing and 46 elicited a concentration-dependent reduction of neuronal tau inclusions that were distinct from measures of toxicity. Among the confirmed inhibitors of tau pathology were BACE1 inhibitors, several of which, along with γ-secretase inhibitors/modulators, caused a concentration-dependent lowering of neuronal tau inclusions and a reduction of insoluble tau by immunoblotting, although they did not decrease soluble phosphorylated tau species. In conclusion, we have identified a diverse set of small molecules and related targets that reduce neuronal tau inclusions. Notably, these include BACE1 and γ-secretase inhibitors, suggesting that a cleavage product from a shared substrate, such as APP, might affect tau pathology.
Collapse
Affiliation(s)
- Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hailey Gould
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alex Crowe
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kurt R Brunden
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
29
|
Job N, Thimmakondu VS, Thirumoorthy K. In Silico Drug Design and Analysis of Dual Amyloid-Beta and Tau Protein-Aggregation Inhibitors for Alzheimer's Disease Treatment. Molecules 2023; 28:molecules28031388. [PMID: 36771052 PMCID: PMC9919237 DOI: 10.3390/molecules28031388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 01/08/2023] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder that gradually leads to the state of dementia. The main features of AD include the deposition of amyloid-beta peptides (Aβ), forming senile plaques, and the development of neurofibrillary tangles due to the accumulation of hyperphosphorylated Tau protein (p-tau) within the brain cells. In this report, seven dual-inhibitor molecules (L1-7) that can prevent the aggregation of both Aβ and p-tau are suggested. The drug-like features and identification of the target proteins are analyzed by the in silico method. L1-7 show positive results in both Blood-Brain Barrier (BBB) crossing and gastrointestinal absorption, rendering to the results of the permeation method. The molecular docking test performed for L1-7 shows binding energies in the range of -4.9 to -6.0 kcal/mol towards Aβ, and -4.6 to -5.6 kcal/mol for p-tau. The drug's effectiveness under physiological conditions is assessed by the use of solvation models on the investigated systems. Further, the photophysical properties of L1-3 are predicted using TD-DFT studies.
Collapse
Affiliation(s)
- Nisha Job
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Venkatesan S. Thimmakondu
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
- Correspondence: (V.S.T.); (K.T.)
| | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
- Correspondence: (V.S.T.); (K.T.)
| |
Collapse
|
30
|
Nguyen NHT, Nguyen NT, Kim YH, Min J. Yeast-derived vacuoles as a novel carrier with enhanced hCMEC/D3 cell monolayer penetration. Biotechnol J 2023; 18:e2200393. [PMID: 36321515 DOI: 10.1002/biot.202200393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier (BBB) is a brain protection structure that restricts drug delivery from the blood to the central nervous system. Thus, we developed a novel drug carrier using yeast vacuoles to overcome this problem. The purpose of this study was to assess the drug transportability of yeast vacuoles using a human cerebral microvascular endothelial cell line (hCMEC/D3) cell monolayer. Here, we used daunorubicin (DNR) as a microtubule-targeting agent with the ability to disaggregate pre-formed fibrils and prevent Tau fibrillization. An in vitro model was developed by culturing hCMEC/D3 cells on Transwell inserts in EBM-2 endothelial basal medium until the cells formed a monolayer. Next, nano-sized yeast vacuoles were loaded with DNR, and the signals inside and outside the hMEC/D3 cell monolayer were detected using the GloMax® Explorer fluorometer. DNR penetrated the cell monolayer and was regulated by endocytosis via receptor-mediated macropinocytosis on the surface of the cell. Confocal imaging showed a significant increase in intracellular DNR fluorescence when the cells were treated with the vacuole-encapsulated drug. These results indicate that the drug penetrated the hCMEC/D3 cell monolayer via encapsulation into the vacuoles. Overall, yeast-derived vacuoles are promising candidates as drug carriers to the brain.
Collapse
Affiliation(s)
- Ngoc-Han Thi Nguyen
- Department of Bioprocess Engineering, Jeonbuk National University, Jeonju, South Korea
| | - Ngoc-Tu Nguyen
- School of Chemical Engineering, Jeonbuk National University, Jeonju, South Korea
| | - Yang Hoon Kim
- School of Biological Sciences, Chungbuk National University, Cheongju, South Korea
| | - Jiho Min
- Department of Bioprocess Engineering, Jeonbuk National University, Jeonju, South Korea.,School of Chemical Engineering, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
31
|
Schwab EDP, Queiroz R, Fiebrantz AKB, Bastos M, Bonini JS, Silva WCFND. Hypothesis on ontogenesis and pathophysiology of Alzheimer’s disease. EINSTEIN-SAO PAULO 2022; 20:eRW0170. [DOI: 10.31744/einstein_journal/2022rw0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/23/2022] [Indexed: 11/13/2022] Open
|
32
|
Rozza R, Janoš P, Spinello A, Magistrato A. Role of computational and structural biology in the development of small-molecule modulators of the spliceosome. Expert Opin Drug Discov 2022; 17:1095-1109. [PMID: 35983696 DOI: 10.1080/17460441.2022.2114452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION RNA splicing is a pivotal step of eukaryotic gene expression during which the introns are excised from the precursor (pre-)RNA and the exons are joined together to form mature RNA products (i.e a protein-coding mRNA or long non-coding (lnc)RNAs). The spliceosome, a complex ribonucleoprotein machine, performs pre-RNA splicing with extreme precision. Deregulated splicing is linked to cancer, genetic, and neurodegenerative diseases. Hence, the discovery of small-molecules targeting core spliceosome components represents an appealing therapeutic opportunity. AREA COVERED Several atomic-level structures of the spliceosome and distinct splicing-modulators bound to its protein/RNA components have been solved. Here, we review recent advances in the discovery of small-molecule splicing-modulators, discuss opportunities and challenges for their therapeutic applicability, and showcase how structural data and/or all-atom simulations can illuminate key facets of their mechanism, thus contributing to future drug-discovery campaigns. EXPERT OPINION This review highlights the potential of modulating pre-RNA splicing with small-molecules, and anticipates how the synergy of computer and wet-lab experiments will enrich our understanding of splicing regulation/deregulation mechanisms. This information will aid future structure-based drug-discovery efforts aimed to expand the currently limited portfolio of selective splicing-modulators.
Collapse
Affiliation(s)
- Riccardo Rozza
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| | - Pavel Janoš
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| | - Angelo Spinello
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, Palermo, Italy
| | - Alessandra Magistrato
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| |
Collapse
|
33
|
Xu YJ, Au NPB, Ma CHE. Functional and Phenotypic Diversity of Microglia: Implication for Microglia-Based Therapies for Alzheimer’s Disease. Front Aging Neurosci 2022; 14:896852. [PMID: 35693341 PMCID: PMC9178186 DOI: 10.3389/fnagi.2022.896852] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and is closely associated with the accumulation of β-amyloid (Aβ) and neurofibrillary tangles (NFTs). Apart from Aβ and NFT pathologies, AD patients also exhibit a widespread microglial activation in various brain regions with elevated production of pro-inflammatory cytokines, a phenomenon known as neuroinflammation. In healthy central nervous system, microglia adopt ramified, “surveying” phenotype with compact cell bodies and elongated processes. In AD, the presence of pathogenic proteins such as extracellular Aβ plaques and hyperphosphorylated tau, induce the transformation of ramified microglia into amoeboid microglia. Ameboid microglia are highly phagocytic immune cells and actively secrete a cascade of pro-inflammatory cytokines and chemokines. However, the phagocytic ability of microglia gradually declines with age, and thus the clearance of pathogenic proteins becomes highly ineffective, leading to the accumulation of Aβ plaques and hyperphosphorylated tau in the aging brain. The accumulation of pathogenic proteins further augments the neuroinflammatory responses and sustains the activation of microglia. The excessive production of pro-inflammatory cytokines induces a massive loss of functional synapses and neurons, further worsening the disease condition of AD. More recently, the identification of a subset of microglia by transcriptomic studies, namely disease-associated microglia (DAM), the progressive transition from homeostatic microglia to DAM is TREM2-dependent and the homeostatic microglia gradually acquire the state of DAM during the disease progression of AD. Recent in-depth transcriptomic analysis identifies ApoE and Trem2 from microglia as the major risk factors for AD pathogenesis. In this review, we summarize current understandings of the functional roles of age-dependent microglial activation and neuroinflammation in the pathogenesis of AD. To this end, the exponential growth in transcriptomic data provides a solid foundation for in silico drug screening and gains further insight into the development of microglia-based therapeutic interventions for AD.
Collapse
Affiliation(s)
- Yi-Jun Xu
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ngan Pan Bennett Au
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- *Correspondence: Chi Him Eddie Ma,
| |
Collapse
|
34
|
Cell models for Alzheimer’s and Parkinson’s disease: At the interface of biology and drug discovery. Biomed Pharmacother 2022; 149:112924. [PMID: 36068783 DOI: 10.1016/j.biopha.2022.112924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
|
35
|
Hori T, Eguchi K, Wang HY, Miyasaka T, Guillaud L, Taoufiq Z, Mahapatra S, Yamada H, Takei K, Takahashi T. Microtubule assembly by soluble tau impairs vesicle endocytosis and excitatory neurotransmission via dynamin sequestration in Alzheimer's disease mice synapse model. eLife 2022; 11:73542. [PMID: 35471147 PMCID: PMC9071263 DOI: 10.7554/elife.73542] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/20/2022] [Indexed: 11/27/2022] Open
Abstract
Elevation of soluble wild-type (WT) tau occurs in synaptic compartments in Alzheimer’s disease. We addressed whether tau elevation affects synaptic transmission at the calyx of Held in slices from mice brainstem. Whole-cell loading of WT human tau (h-tau) in presynaptic terminals at 10–20 µM caused microtubule (MT) assembly and activity-dependent rundown of excitatory neurotransmission. Capacitance measurements revealed that the primary target of WT h-tau is vesicle endocytosis. Blocking MT assembly using nocodazole prevented tau-induced impairments of endocytosis and neurotransmission. Immunofluorescence imaging analyses revealed that MT assembly by WT h-tau loading was associated with an increased MT-bound fraction of the endocytic protein dynamin. A synthetic dodecapeptide corresponding to dynamin 1-pleckstrin-homology domain inhibited MT-dynamin interaction and rescued tau-induced impairments of endocytosis and neurotransmission. We conclude that elevation of presynaptic WT tau induces de novo assembly of MTs, thereby sequestering free dynamins. As a result, endocytosis and subsequent vesicle replenishment are impaired, causing activity-dependent rundown of neurotransmission.
Collapse
Affiliation(s)
- Tetsuya Hori
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
| | - Kohgaku Eguchi
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Han-Ying Wang
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
| | - Tomohiro Miyasaka
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Laurent Guillaud
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
| | - Zacharie Taoufiq
- Cellular and Molecular Synaptic Function Unit,, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
| | - Satyajit Mahapatra
- Cellular and Molecular Synaptic Function Unit,, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
| | - Hiroshi Yamada
- Department of Neuroscience, Okayama University, Okayama, Japan
| | - Kohji Takei
- Department of Neuroscience, Okayama University, Okayama, Japan
| | - Tomoyuki Takahashi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
| |
Collapse
|
36
|
Shasaltaneh MD, Naghdi N, Ramezani S, Alizadeh L, Riazi GH. Protection of Beta Boswellic Acid against Streptozotocin-induced Alzheimer's Model by Reduction of Tau Phosphorylation Level and Enhancement of Reelin Expression. PLANTA MEDICA 2022; 88:367-379. [PMID: 34116571 DOI: 10.1055/a-1502-7083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease is a growing general health concern with huge implications for individuals and society. Beta boswellic acid, a major compound of the Boswellia serrata plant, has long been used for the treatment of various inflammatory diseases. The exact mechanism of beta boswellic acid action in Alzheimer's disease pathogenesis remains unclear. In the current study, the protective effect of beta boswellic acid on streptozotocin-induced sporadic Alzheimer's disease was surveyed. Alzheimer's disease model was induced using streptozotocin followed by an assessment of the treatment effects of beta boswellic acid in the presence of streptozotocin. The prevention effect of beta boswellic acid on Alzheimer's disease induction by streptozotocin was evaluated. Behavioral activities in the treated rats were evaluated. Histological analysis was performed. Phosphorylation of tau protein at residues Ser396 and Ser404 and the expression of reelin protein were determined. Glial fibrillary acidic protein immunofluorescence staining was applied in the hippocampus regions. Our findings indicated that beta boswellic acid decreased traveled distance and escape latency in the prevention (beta boswellic acid + streptozotocin) and treatment (streptozotocin + beta boswellic acid) groups compared to control during the acquisition test. It increased "time spent" (%) in the target quadrant. Reelin level was enhanced in rats treated with beta boswellic acid. Tau hyperphosphorylation (p-tau404) and glial fibrillary acidic protein were decreased in the prevention group while the expression of reelin protein in both groups was increased. We could suggest that the anti-inflammatory property of beta boswellic acid is one of the main factors involving in the improvement of learning and memory in rats. Therefore the antineurodegenerative effect of beta boswellic acid may be due to its ability to reactivate reelin protein.
Collapse
Affiliation(s)
| | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Sadrollah Ramezani
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- University of Sistan and Baluchestan, Zahedan, Iran
| | - Leila Alizadeh
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Gholam Hossein Riazi
- Laboratory of Neuro-organic Chemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
37
|
Bhatia S, Rawal R, Sharma P, Singh T, Singh M, Singh V. Mitochondrial Dysfunction in Alzheimer's Disease: Opportunities for Drug Development. Curr Neuropharmacol 2022; 20:675-692. [PMID: 33998995 PMCID: PMC9878959 DOI: 10.2174/1570159x19666210517114016] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major reasons for 60-80% cases of senile dementia occurring as a result of the accumulation of plaques and tangles in the hippocampal and cortical neurons of the brain leading to neurodegeneration and cell death. The other pathological features of AD comprise abnormal microvasculature, network abnormalities, interneuronal dysfunction, increased β-amyloid production and reduced clearance, increased inflammatory response, elevated production of reactive oxygen species, impaired brain metabolism, hyperphosphorylation of tau, and disruption of acetylcholine signaling. Among all these pathologies, Mitochondrial Dysfunction (MD), regardless of it being an inciting insult or a consequence of the alterations, is related to all the associated AD pathologies. Observed altered mitochondrial morphology, distribution and movement, increased oxidative stress, dysregulation of enzymes involved in mitochondrial functioning, impaired brain metabolism, and impaired mitochondrial biogenesis in AD subjects suggest the involvement of mitochondrial malfunction in the progression of AD. Here, various pre-clinical and clinical evidence establishing MD as a key mediator in the progression of neurodegeneration in AD are reviewed and discussed with an aim to foster future MD based drug development research for the management of AD.
Collapse
Affiliation(s)
- Shiveena Bhatia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rishi Rawal
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India;,Address correspondence to this author at the Chitkara College of Pharmacy, Chitkara University, Punjab, India; E-mails: ;
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India;,Address correspondence to this author at the Chitkara College of Pharmacy, Chitkara University, Punjab, India; E-mails: ;
| |
Collapse
|
38
|
Guan X, Iyaswamy A, Sreenivasmurthy SG, Su C, Zhu Z, Liu J, Kan Y, Cheung KH, Lu J, Tan J, Li M. Mechanistic Insights into Selective Autophagy Subtypes in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23073609. [PMID: 35408965 PMCID: PMC8998506 DOI: 10.3390/ijms23073609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic cells possess a plethora of regulatory mechanisms to maintain homeostasis and ensure proper biochemical functionality. Autophagy, a central, conserved self-consuming process of the cell, ensures the timely degradation of damaged cellular components. Several studies have demonstrated the important roles of autophagy activation in mitigating neurodegenerative diseases, especially Alzheimer's disease (AD). However, surprisingly, activation of macroautophagy has not shown clinical efficacy. Hence, alternative strategies are urgently needed for AD therapy. In recent years, selective autophagy has been reported to be involved in AD pathology, and different subtypes have been identified, such as aggrephagy, mitophagy, reticulophagy, lipophagy, pexophagy, nucleophagy, lysophagy and ribophagy. By clarifying the underlying mechanisms governing these various subtypes, we may come to understand how to control autophagy to treat AD. In this review, we summarize the latest findings concerning the role of selective autophagy in the pathogenesis of AD. The evidence overwhelmingly suggests that selective autophagy is an active mechanism in AD pathology, and that regulating selective autophagy would be an effective strategy for controlling this pathogenesis.
Collapse
Affiliation(s)
- Xinjie Guan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Sravan Gopalkrishnashetty Sreenivasmurthy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Chengfu Su
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Zhou Zhu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Jia Liu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Yuxuan Kan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
| | - King-Ho Cheung
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Jiahong Lu
- State Key Lab of Quality Research in Chinese Medicine, University of Macau, Macao, China;
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China
- Correspondence: (J.T.); (M.L.)
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
- Correspondence: (J.T.); (M.L.)
| |
Collapse
|
39
|
Ning S, Jorfi M, Patel SR, Kim DY, Tanzi RE. Neurotechnological Approaches to the Diagnosis and Treatment of Alzheimer’s Disease. Front Neurosci 2022; 16:854992. [PMID: 35401082 PMCID: PMC8989850 DOI: 10.3389/fnins.2022.854992] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, clinically defined by progressive cognitive decline and pathologically, by brain atrophy, neuroinflammation, and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles. Neurotechnological approaches, including optogenetics and deep brain stimulation, have exploded as new tools for not only the study of the brain but also for application in the treatment of neurological diseases. Here, we review the current state of AD therapeutics and recent advancements in both invasive and non-invasive neurotechnologies that can be used to ameliorate AD pathology, including neurostimulation via optogenetics, photobiomodulation, electrical stimulation, ultrasound stimulation, and magnetic neurostimulation, as well as nanotechnologies employing nanovectors, magnetic nanoparticles, and quantum dots. We also discuss the current challenges in developing these neurotechnological tools and the prospects for implementing them in the treatment of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Shen Ning
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Graduate Program for Neuroscience, Boston University School of Medicine, Boston, MA, United States
| | - Mehdi Jorfi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Mehdi Jorfi,
| | - Shaun R. Patel
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Rudolph E. Tanzi,
| |
Collapse
|
40
|
Effects of Deferasirox in Alzheimer’s Disease and Tauopathy Animal Models. Biomolecules 2022; 12:biom12030365. [PMID: 35327557 PMCID: PMC8945800 DOI: 10.3390/biom12030365] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
The accumulation of iron may contribute to Alzheimer’s disease (AD) and other tauopathies. The iron chelator desferrioxamine slows disease progression in AD patients. However, desferrioxamine requires injection, which is inconvenient and may hinder compliance. We therefore tested an oral iron chelator, desferasirox (Exjade), in transgenic animal models. Tg2576 mice overexpress the mutant human APP protein and produce the Aβ peptide. JNPL3 mice (Tau/Tau) overexpress the mutant human tau protein. Crossing these produced APP/Tau mice, overexpressing both APP and tau. Treating the three models with 1.6 mg deferasirox thrice weekly from age 8 to 14 months did not affect memory as measured by contextual fear conditioning or motor function as measured by rotarod, but tended to decrease hyperphosphorylated tau as measured by AT8 immunohistochemistry and immunoblotting. Deferasirox might act by decreasing iron, which aggregates tau, or directly binding tau to inhibit aggregation.
Collapse
|
41
|
Manos JD, Preiss CN, Venkat N, Tamm J, Reinhardt P, Kwon T, Wu J, Winter AD, Jahn TR, Yanamandra K, Titterton K, Karran E, Langlois X. Uncovering specificity of endogenous TAU aggregation in a human iPSC-neuron TAU seeding model. iScience 2022; 25:103658. [PMID: 35072001 PMCID: PMC8761709 DOI: 10.1016/j.isci.2021.103658] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/27/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Tau pathobiology has emerged as a key component underlying Alzheimer's disease (AD) progression; however, human neuronal in vitro models have struggled to recapitulate tau phenomena observed in vivo. Here, we aimed to define the minimal requirements to achieve endogenous tau aggregation in functional neurons utilizing human induced pluripotent stem cell (hiPSC) technology. Optimized hiPSC-derived cortical neurons seeded with AD brain-derived competent tau species or recombinant tau fibrils displayed increases in insoluble, endogenous tau aggregates. Importantly, MAPT-wild type and MAPT-mutant hiPSC-neurons exhibited unique propensities for aggregation dependent on the seed strain rather than the repeat domain identity, suggesting that successful templating of the recipient tau may be driven by the unique conformation of the seed. The in vitro model presented here represents the first successful demonstration of combining human neurons, endogenous tau expression, and AD brain-derived competent tau species, offering a more physiologically relevant platform to study tau pathobiology.
Collapse
Affiliation(s)
- Justine D. Manos
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Christina N. Preiss
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Nandini Venkat
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Joseph Tamm
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Peter Reinhardt
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Taekyung Kwon
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Jessica Wu
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Allison D. Winter
- Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Thomas R. Jahn
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Kiran Yanamandra
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Katherine Titterton
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Eric Karran
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Xavier Langlois
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| |
Collapse
|
42
|
Zhang L, Du X, Su Y, Niu S, Li Y, Liang X, Luo H. Quantitative assessment of AD markers using naked eyes: point-of-care testing with paper-based lateral flow immunoassay. J Nanobiotechnology 2021; 19:366. [PMID: 34789291 PMCID: PMC8597216 DOI: 10.1186/s12951-021-01111-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023] Open
Abstract
Aβ42 is one of the most extensively studied blood and Cerebrospinal fluid (CSF) biomarkers for the diagnosis of symptomatic and prodromal Alzheimer's disease (AD). Because of the heterogeneity and transient nature of Aβ42 oligomers (Aβ42Os), the development of technologies for dynamically detecting changes in the blood or CSF levels of Aβ42 monomers (Aβ42Ms) and Aβ42Os is essential for the accurate diagnosis of AD. The currently commonly used Aβ42 ELISA test kits usually mis-detected the elevated Aβ42Os, leading to incomplete analysis and underestimation of soluble Aβ42, resulting in a comprised performance in AD diagnosis. Herein, we developed a dual-target lateral flow immunoassay (dLFI) using anti-Aβ42 monoclonal antibodies 1F12 and 2C6 for the rapid and point-of-care detection of Aβ42Ms and Aβ42Os in blood samples within 30 min for AD diagnosis. By naked eye observation, the visual detection limit of Aβ42Ms or/and Aβ42Os in dLFI was 154 pg/mL. The test results for dLFI were similar to those observed in the enzyme-linked immunosorbent assay (ELISA). Therefore, this paper-based dLFI provides a practical and rapid method for the on-site detection of two biomarkers in blood or CSF samples without the need for additional expertise or equipment.
Collapse
Affiliation(s)
- Liding Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xuewei Du
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shiqi Niu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.
- , Wuhan, China.
| |
Collapse
|
43
|
Shimojo M, Ono M, Takuwa H, Mimura K, Nagai Y, Fujinaga M, Kikuchi T, Okada M, Seki C, Tokunaga M, Maeda J, Takado Y, Takahashi M, Minamihisamatsu T, Zhang M, Tomita Y, Suzuki N, Maximov A, Suhara T, Minamimoto T, Sahara N, Higuchi M. A genetically targeted reporter for PET imaging of deep neuronal circuits in mammalian brains. EMBO J 2021; 40:e107757. [PMID: 34636430 PMCID: PMC8591537 DOI: 10.15252/embj.2021107757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 01/27/2023] Open
Abstract
Positron emission tomography (PET) allows biomolecular tracking but PET monitoring of brain networks has been hampered by a lack of suitable reporters. Here, we take advantage of bacterial dihydrofolate reductase, ecDHFR, and its unique antagonist, TMP, to facilitate in vivo imaging in the brain. Peripheral administration of radiofluorinated and fluorescent TMP analogs enabled PET and intravital microscopy, respectively, of neuronal ecDHFR expression in mice. This technique can be used to the visualize neuronal circuit activity elicited by chemogenetic manipulation in the mouse hippocampus. Notably, ecDHFR-PET allows mapping of neuronal projections in non-human primate brains, demonstrating the applicability of ecDHFR-based tracking technologies for network monitoring. Finally, we demonstrate the utility of TMP analogs for PET studies of turnover and self-assembly of proteins tagged with ecDHFR mutants. These results establish opportunities for a broad spectrum of previously unattainable PET analyses of mammalian brain circuits at the molecular level.
Collapse
Affiliation(s)
- Masafumi Shimojo
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Maiko Ono
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Hiroyuki Takuwa
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Koki Mimura
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Yuji Nagai
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals DevelopmentNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Tatsuya Kikuchi
- Department of Radiopharmaceuticals DevelopmentNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Maki Okada
- Department of Radiopharmaceuticals DevelopmentNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Chie Seki
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Masaki Tokunaga
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Jun Maeda
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Yuhei Takado
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Manami Takahashi
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Takeharu Minamihisamatsu
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Ming‐Rong Zhang
- Department of Radiopharmaceuticals DevelopmentNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Yutaka Tomita
- Department of NeurologyKeio University School of MedicineTokyoJapan
| | - Norihiro Suzuki
- Department of NeurologyKeio University School of MedicineTokyoJapan
| | - Anton Maximov
- Department of NeuroscienceThe Scripps Research InstituteLa JollaCAUSA
| | - Tetsuya Suhara
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Takafumi Minamimoto
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Naruhiko Sahara
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Makoto Higuchi
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| |
Collapse
|
44
|
Wordeman L, Vicente JJ. Microtubule Targeting Agents in Disease: Classic Drugs, Novel Roles. Cancers (Basel) 2021; 13:5650. [PMID: 34830812 PMCID: PMC8616087 DOI: 10.3390/cancers13225650] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Microtubule-targeting agents (MTAs) represent one of the most successful first-line therapies prescribed for cancer treatment. They interfere with microtubule (MT) dynamics by either stabilizing or destabilizing MTs, and in culture, they are believed to kill cells via apoptosis after eliciting mitotic arrest, among other mechanisms. This classical view of MTA therapies persisted for many years. However, the limited success of drugs specifically targeting mitotic proteins, and the slow growing rate of most human tumors forces a reevaluation of the mechanism of action of MTAs. Studies from the last decade suggest that the killing efficiency of MTAs arises from a combination of interphase and mitotic effects. Moreover, MTs have also been implicated in other therapeutically relevant activities, such as decreasing angiogenesis, blocking cell migration, reducing metastasis, and activating innate immunity to promote proinflammatory responses. Two key problems associated with MTA therapy are acquired drug resistance and systemic toxicity. Accordingly, novel and effective MTAs are being designed with an eye toward reducing toxicity without compromising efficacy or promoting resistance. Here, we will review the mechanism of action of MTAs, the signaling pathways they affect, their impact on cancer and other illnesses, and the promising new therapeutic applications of these classic drugs.
Collapse
Affiliation(s)
| | - Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA;
| |
Collapse
|
45
|
Makwana KM, Sarnowski MP, Miao J, Lin YS, Del Valle JR. N-Amination Converts Amyloidogenic Tau Peptides into Soluble Antagonists of Cellular Seeding. ACS Chem Neurosci 2021; 12:3928-3938. [PMID: 34609825 PMCID: PMC9035343 DOI: 10.1021/acschemneuro.1c00528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The spread of neurofibrillary tangles composed of tau protein aggregates is a hallmark of Alzheimer's and related neurodegenerative diseases. Early oligomerization of tau involves conformational reorganization into parallel β-sheet structures and supramolecular assembly into toxic fibrils. Despite the need for selective inhibitors of tau propagation, β-rich protein assemblies are inherently difficult to target with small molecules. Here, we describe a minimalist approach to mimic the aggregation-prone modules within tau. We carried out a backbone residue scan and show that amide N-amination completely abolishes the tendency of these peptides to self-aggregate, rendering them soluble mimics of ordered β-strands from the tau R2 and R3 domains. Several N-amino peptides (NAPs) inhibit tau fibril formation in vitro. We further demonstrate that NAPs 12 and 13 are effective at blocking the cellular seeding of endogenous tau by interacting with monomeric or fibrillar forms of extracellular tau. Peptidomimetic 12 is serum stable, non-toxic to neuronal cells, and selectivity inhibits the fibrilization of tau over Aβ42. Structural analysis of our lead NAPs shows considerable conformational constraint imposed by the N-amino groups. The described backbone N-amination approach provides a rational basis for the mimicry of other aggregation-prone peptides that drive pathogenic protein assembly.
Collapse
Affiliation(s)
- Kamlesh M Makwana
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew P Sarnowski
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Juan R Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
46
|
Wang D, Huang X, Yan L, Zhou L, Yan C, Wu J, Su Z, Huang Y. The Structure Biology of Tau and Clue for Aggregation Inhibitor Design. Protein J 2021; 40:656-668. [PMID: 34401998 DOI: 10.1007/s10930-021-10017-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 12/22/2022]
Abstract
Tau is a microtubule-associated protein that is mainly expressed in central and peripheral nerve systems. Tau binds to tubulin and regulates assembly and stabilization of microtubule, thus playing a critical role in neuron morphology, axon development and navigation. Tau is highly stable under normal conditions; however, there are several factors that can induce or promote aggregation of tau, forming neurofibrillary tangles. Neurofibrillary tangles are toxic to neurons, which may be related to a series of neurodegenerative diseases including Alzheimer's disease. Thus, tau is widely accepted as an important therapeutic target for neurodegenerative diseases. While the monomeric structure of tau is highly disordered, the aggregate structure of tau is formed by closed packing of β-stands. Studies on the structure of tau and the structural transition mechanism provide valuable information on the occurrence, development, and therapy of tauopathies. In this review, we summarize recent progress on the structural investigation of tau and based on which we discuss aggregation inhibitor design.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Xianlong Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Lu Yan
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Luoqi Zhou
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Chang Yan
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Jinhu Wu
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China. .,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| |
Collapse
|
47
|
Zhao H, Huang X, Tong Z. Formaldehyde-Crosslinked Nontoxic Aβ Monomers to Form Toxic Aβ Dimers and Aggregates: Pathogenicity and Therapeutic Perspectives. ChemMedChem 2021; 16:3376-3390. [PMID: 34396700 DOI: 10.1002/cmdc.202100428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is characterized by the presence of senile plaques in the brain. However, medicines targeting amyloid-beta (Aβ) have not achieved the expected clinical effects. This review focuses on the formation mechanism of the Aβ dimer (the basic unit of oligomers and fibrils) and its tremendous potential as a drug target. Recently, age-associated formaldehyde and Aβ-derived formaldehyde have been found to crosslink the nontoxic Aβ monomer to form the toxic dimers, oligomers and fibrils. Particularly, Aβ-induced formaldehyde accumulation and formaldehyde-promoted Aβ aggregation form a vicious cycle. Subsequently, formaldehyde initiates Aβ toxicity in both the early-and late-onset AD. These facts also explain why AD drugs targeting only Aβ do not have the desired therapeutic effects. Development of the nanoparticle-based medicines targeting both formaldehyde and Aβ dimer is a promising strategy for improving the drug efficacy by penetrating blood-brain barrier and extracellular space into the cortical neurons in AD patients.
Collapse
Affiliation(s)
- Hang Zhao
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuerong Huang
- Wenzhou Medical University Affiliated Hospital 3, Department of Neurology, Wenzhou, 325200, China
| | - Zhiqian Tong
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
48
|
Shinohara M, Hirokawa J, Shimodaira A, Tashiro Y, Suzuki K, Gheni G, Fukumori A, Matsubara T, Morishima M, Saito Y, Murayama S, Sato N. ELISA Evaluation of Tau Accumulation in the Brains of Patients with Alzheimer Disease. J Neuropathol Exp Neurol 2021; 80:652-662. [PMID: 34283221 DOI: 10.1093/jnen/nlab047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the routine use of sandwich enzyme-linked immunosorbent assays (ELISAs) for quantifying tau levels in CSF and plasma, tau accumulations in the brains of patients with Alzheimer disease (AD) have rarely been evaluated by this method. Thus, by introducing several tau ELISAs that target different epitopes, we evaluated accumulated tau levels in postmortem brains depending on disease stage, brain areas, and other AD-related changes. Notably, tau levels in insoluble fraction determined by each ELISAs differ depending on the epitopes of antibodies: non-AD control samples yield relatively high signals when an antibody against the N-terminal region of tau is used. On the other hand, ELISAs combining antibodies against the later-middle to C-terminal regions of tau produced substantially increased signals from AD samples, compared to those from non-AD controls. Such ELISAs better distinguish AD and non-AD controls, and the results are more closely associated with Braak neurofibrillary tangles stage, Aβ accumulation, and glial markers. Moreover, these ELISAs can reflect the pattern of tau spread across brain regions. In conclusion, Tau ELISAs that combine antibodies against the later-middle to C-terminal regions of tau can better reflect neuropathological tau accumulation, which would enable to evaluate tau accumulation in the brain at a biochemical level.
Collapse
Affiliation(s)
- Mitsuru Shinohara
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Junko Hirokawa
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Akemi Shimodaira
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Yoshitaka Tashiro
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Kaoru Suzuki
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Ghupurjan Gheni
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Akio Fukumori
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Tomoyasu Matsubara
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Maho Morishima
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Yuko Saito
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Shigeo Murayama
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Naoyuki Sato
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| |
Collapse
|
49
|
Bush JA, Williams CC, Meyer SM, Tong Y, Haniff HS, Childs-Disney JL, Disney MD. Systematically Studying the Effect of Small Molecules Interacting with RNA in Cellular and Preclinical Models. ACS Chem Biol 2021; 16:1111-1127. [PMID: 34166593 PMCID: PMC8867596 DOI: 10.1021/acschembio.1c00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interrogation and manipulation of biological systems by small molecules is a powerful approach in chemical biology. Ideal compounds selectively engage a target and mediate a downstream phenotypic response. Although historically small molecule drug discovery has focused on proteins and enzymes, targeting RNA is an attractive therapeutic alternative, as many disease-causing or -associated RNAs have been identified through genome-wide association studies. As the field of RNA chemical biology emerges, the systematic evaluation of target validation and modulation of target-associated pathways is of paramount importance. In this Review, through an examination of case studies, we outline the experimental characterization, including methods and tools, to evaluate comprehensively the impact of small molecules that target RNA on cellular phenotype.
Collapse
Affiliation(s)
- Jessica A Bush
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Christopher C Williams
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Samantha M Meyer
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Yuquan Tong
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hafeez S Haniff
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
50
|
Moya GE, Rivera PD, Dittenhafer-Reed KE. Evidence for the Role of Mitochondrial DNA Release in the Inflammatory Response in Neurological Disorders. Int J Mol Sci 2021; 22:7030. [PMID: 34209978 PMCID: PMC8268735 DOI: 10.3390/ijms22137030] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are regarded as the metabolic centers of cells and are integral in many other cell processes, including the immune response. Each mitochondrion contains numerous copies of mitochondrial DNA (mtDNA), a small, circular, and bacterial-like DNA. In response to cellular damage or stress, mtDNA can be released from the mitochondrion and trigger immune and inflammatory responses. mtDNA release into the cytosol or bloodstream can occur as a response to hypoxia, sepsis, traumatic injury, excitatory cytotoxicity, or drastic mitochondrial membrane potential changes, some of which are hallmarks of neurodegenerative and mood disorders. Released mtDNA can mediate inflammatory responses observed in many neurological and mood disorders by driving the expression of inflammatory cytokines and the interferon response system. The current understanding of the role of mtDNA release in affective mood disorders and neurodegenerative diseases will be discussed.
Collapse
Affiliation(s)
| | - Phillip D. Rivera
- Department of Chemistry and Biology, Hope College, Holland, MI 49423, USA;
| | | |
Collapse
|