1
|
Guo J, Chen X, Li X, Wang X, Shao M, Song X, Zhang L, Huang S, Patterson AV, Smaill JB, Zhou Y, Yu X, Chen Y, Lu X. Optimization of Aminoindazole derivatives as highly selective covalent inhibitors for wild-type and mutant FGFR4. Bioorg Chem 2025; 160:108469. [PMID: 40252369 DOI: 10.1016/j.bioorg.2025.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
The Fibroblast growth factor receptor 4 (FGFR4) has emerged as a potential oncogenic driver in hepatocellular carcinoma (HCC), primarily due to aberrations in the FGFR4-FGF19 signaling axis. Although the FGFR4-selective inhibitors have been reported, none have received approval. Further, the clinical acquired resistance caused by FGFR4 mutations has become an unmet clinical need for cancer therapy. In this study, we designed and synthesized a series of 3-amido-1H-indazole-based FGFR4 irreversible inhibitors, targeting both wild-type FGFR4 and the gatekeeper and molecular brake mutants. The representative compound, 48c, exhibited potent inhibitory activity against FGFR4WT kinase (IC50 = 2.9 nM) and picomolar activity against FGFR4WT, FGFR4V550L, and FGFR4V550M-driven Ba/F3 cell lines (IC50 < 0.1, 0.3, and 0.3 nM, respectively). 48c exhibited high selectivity across a panel of 66 kinases harboring a cysteine at the hinge region, highlighting its potential as a promising therapeutic candidate for overcoming resistance in FGFR4-associated tumors.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaofei Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xuan Wang
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Min Shao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaojuan Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lin Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shengjie Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 92019, New Zealand
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 92019, New Zealand
| | - Yang Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiangrong Yu
- Department of Radiology, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Xiaoyun Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Amberntsson S, Foster AJ, Chouhan B, Wilkinson S, Harlfinger S, Smith G, Kettle JG, Niedbala M, Kavanagh S, Williams DP. Use of new approach methodology for hepatic safety assessment of covalent inhibitor drug candidates. Toxicol Res (Camb) 2025; 14:tfaf054. [PMID: 40421426 PMCID: PMC12103896 DOI: 10.1093/toxres/tfaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 05/28/2025] Open
Abstract
Interest in inhibiting target proteins through covalent binding mechanisms has increased in the last decade due to the potential for beneficial pharmacological properties. However, the inherent targeted covalent inhibitor (TCI) adverse off-target reactivity risk requires a mitigation strategy early during drug discovery. The aim of this research was to design a pre-clinical hepatic safety assessment strategy for TCIs considering risk associated with electrophilic warhead reactivity and reactive metabolites formation at clinically-relevant plasma concentrations. The mitigation strategy was applied to compound 35, a potent irreversible inhibitor to KRASG12C. Drug induced liver injury was assessed in primary human hepatocyte spheroids. GSH and ATP depletion were investigated for compound 35 and 6 other marketed TCIs containing an acrylamide warhead which binds irreversibly to cysteine-containing target proteins. None of the TCIs showed GSH depletion prior to ATP depletion after 7-days exposure, suggesting that GSH depletion was not driving cytotoxicity in the spheroids. The calculated hepatotoxicity margin towards plasma exposure of 2.5 for compound 35 was found to be in the same range as for the two KRASG12Cinhibitors adagrasib and sotorasib, with clinically reported treatment-related adverse aminotransferase elevations leading to dose modifications. The safety evaluation reported here suggests no negative discrepancy in liver toxicity for compound 35 versus similar approved TCI's. Finally, the risk associated with detected oxidative metabolites was further mitigated as the pan-CYP450 inhibitor 1-aminobenzotriazole (ABT) had no effect on the cytotoxicity response following incubation of compound 35 in the presence and absence of ABT.
Collapse
Affiliation(s)
- Sara Amberntsson
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Pepparredsleden 1, SE-431 83 Mölndal, Sweden
| | - Alison J Foster
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Bhavik Chouhan
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Pepparredsleden 1, SE-431 83 Mölndal, Sweden
| | - Stephen Wilkinson
- DMPK, Oncology, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Stephanie Harlfinger
- DMPK, Oncology, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Graham Smith
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Jason G Kettle
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Michael Niedbala
- Oncology R&D, AstraZeneca, 35 Gatehouse Dr, Waltham, MA 02145 US
| | - Stefan Kavanagh
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Dominic P Williams
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| |
Collapse
|
3
|
Kaito S, Sato K, Sasaki T, Hosaka T, Shizu R, Takeshita JI, Yoshinari K. Association between drug-induced heart failure and CYP1A1, CYP1B1, and CYP3A4 inhibition: Utility of cytochrome P450 inhibition assay for evaluating cardiotoxicity of drug candidates. Toxicol In Vitro 2025; 107:106075. [PMID: 40258480 DOI: 10.1016/j.tiv.2025.106075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/04/2025] [Accepted: 04/15/2025] [Indexed: 04/23/2025]
Abstract
Unpredictable adverse drug reactions (ADRs) present a significant challenge in drug development and require advanced prediction systems for ADRs. Previously, we identified a connection between drug-induced liver injury (DILI) and the inhibition of CYP1A1 or CYP1B1, reporting the usefulness of this inhibition data from these cytochrome P450s (P450s) for predicting DILI. This study aimed to investigate the utility of P450 inhibition data in predicting drug-induced organ toxicities beyond DILI. We selected 364 drugs with ADR information as test drugs from the public database SIDER (Side Effect Resource). Our focus was on 10 groups of ADRs affecting the liver, kidney, heart, blood/hematopoietic system, intestines, muscle, and lungs, as classified by MedDRA. The inhibitory activities of 10 human P450s were evaluated in vitro using recombinant enzymes and luminescent substrates. Our analyses revealed notable associations between heart failure and the inhibition of CYP1A1, CYP1B1, and CYP3A4. Heart failure-positive drugs tended to exhibit strong inhibition of these P450s compared to heart failure-negative drugs. Furthermore, most drugs that inhibited two or three of the three P450 forms were found to be heart failure-positive. These results suggest that the inhibition assay data for CYP1A1, CYP1B1, and CYP3A4 help assess drug-induced cardiotoxicity during drug development.
Collapse
Affiliation(s)
- Shunnosuke Kaito
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kiyomi Sato
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takamitsu Sasaki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takuomi Hosaka
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ryota Shizu
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Jun-Ichi Takeshita
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kouichi Yoshinari
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
4
|
Kline GM, Boinon L, Guerrero A, Kutseikin S, Cruz G, Williams MP, Paxman RJ, Balch WE, Kelly JW, Mu T, Wiseman RL. Phenylhydrazone-based Endoplasmic Reticulum Proteostasis Regulator Compounds with Enhanced Biological Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.646800. [PMID: 40236048 PMCID: PMC11996566 DOI: 10.1101/2025.04.04.646800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Pharmacological enhancement of endoplasmic reticulum (ER) proteostasis is an attractive strategy to mitigate pathology linked to etiologically-diverse protein misfolding diseases. However, despite this promise, few compounds have been identified that enhance ER proteostasis through defined mechanisms of action. We previously identified the phenylhydrazone-based compound AA263 as a compound that promotes adaptive ER proteostasis remodeling through mechanisms including activation of the ATF6 signaling arm of the unfolded protein response (UPR). However, the protein target(s) of AA263 and the potential for further development of this class of ER proteostasis regulators had not been previously explored. Here, we employ chemical proteomics to demonstrate that AA263 covalently targets a subset of ER protein disulfide isomerases, revealing a molecular mechanism for the activation of ATF6 afforded by this compound. We then use medicinal chemistry to establish next-generation AA263 analogs showing improved potency and efficacy for ATF6 activation, as compared to the parent compound. Finally, we show that treatment with these AA263 analogs enhances secretory pathway proteostasis to correct the pathologic protein misfolding and trafficking of both a destabilized, disease-associated α1-antitrypsin (A1AT) variant and an epilepsy-associated GABA A receptor variant. These results establish AA263 analogs with enhanced potential for correcting imbalanced ER proteostasis associated with etiologically-diverse protein misfolding disorders.
Collapse
|
5
|
Kim H, Park HJ. Current hPSC-derived liver organoids for toxicity testing: Cytochrome P450 enzymes and drug metabolism. Toxicol Res 2025; 41:105-121. [PMID: 40013078 PMCID: PMC11850699 DOI: 10.1007/s43188-024-00275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 02/28/2025] Open
Abstract
Drug-induced hepatotoxicity is the leading cause of attrition of drug candidates and withdrawal of marketed drugs owing to safety concerns. In most hepatotoxicity cases, the parent drugs are metabolized by cytochrome P450 (CYP) enzymes, generating reactive metabolites that bind to intracellular organelles and proteins, ultimately causing hepatocellular damage. A major limitation of animal models, which are widely used for toxicity assessment, is the discrepancy in CYP-mediated drug metabolism and toxicological outcomes owing to species differences between humans and animals. Two-dimensional (2D) hepatocytes were first developed as a promising alternative model using human pluripotent stem cells (hPSCs). However, their CYP expression was similar to that of the fetal liver, and they lacked CYP-mediated hepatic metabolism. CYP expression in hPSC-derived hepatic models is closely correlated with liver maturity. Therefore, liver organoids that are more mature than hPSC-derived hepatic models and mimic the structure and physiological functions of the human liver have emerged as new alternatives. In this review, we explored the role and essentiality of CYPs in human hepatotoxicity, their expression, and epigenetic regulation in hPSC-derived hepatocytes and liver organoids, as well as the current state of liver organoid technology in terms of CYP expression and activity, drug metabolism, and toxicity. We also discussed the current challenges and future directions for the practical use of liver organoids. In conclusion, we highlight the importance of methods and metrics for accurately assessing CYP expression and activity in liver organoids to enable the development of feasible models that reproduce hepatotoxicity in humans.
Collapse
Affiliation(s)
- Hyemin Kim
- Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Han-Jin Park
- Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Tao H, Yang B, Farhangian A, Xu K, Li T, Zhang ZY, Li J. Covalent-Allosteric Inhibitors: Do We Get the Best of Both Worlds? J Med Chem 2025; 68:4040-4052. [PMID: 39937154 DOI: 10.1021/acs.jmedchem.4c02760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Covalent-allosteric inhibitors (CAIs) may achieve the best of both worlds: increased potency, long-lasting effects, and reduced drug resistance typical of covalent ligands, along with enhanced specificity and decreased toxicity inherent in allosteric modulators. Therefore, CAIs can be an effective strategy to transform many undruggable targets into druggable ones. However, CAIs are challenging to design. In this perspective, we analyze the discovery of known CAIs targeting three protein families: protein phosphatases, protein kinases, and GTPases. We also discuss how computational methods and tools can play a role in addressing the practical challenges of rational CAI design.
Collapse
Affiliation(s)
- Hui Tao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bo Yang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Atena Farhangian
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Xu
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tongtong Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianing Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Dalton SE, Di Pietro O, Hennessy E. A Medicinal Chemistry Perspective on FDA-Approved Small Molecule Drugs with a Covalent Mechanism of Action. J Med Chem 2025; 68:2307-2313. [PMID: 39899741 DOI: 10.1021/acs.jmedchem.4c02661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Covalent modification of disease-driving proteins as a therapeutic strategy has experienced a well-documented resurgence since 2010. However, the earliest FDA approval dates for covalent drugs are in the 1940s, although the covalent mechanism of action may not have been known at the time. This article discloses a data set of all FDA-approved small molecule drugs acting via a covalent mechanism of action, annotated by indication, biological target, reactive group on the drug, biological reactive partner (i.e., amino acid residue, cofactor, etc.), chemical reaction mechanism, bioactivation requirements, key references, and reversibility profile. We discuss these data in the context of addressing key questions posed by the Merck Discovery Chemistry community when considering a chemical series with a covalent mechanism of action.
Collapse
Affiliation(s)
- Samuel E Dalton
- Department of Discovery Chemistry, MSD, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Ornella Di Pietro
- Department of Discovery Chemistry, MSD, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Elisabeth Hennessy
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| |
Collapse
|
8
|
Leclercq L, de Vries R, Koppen V, Verboven P, Cuyckens F, Wynant I, Vermeulen WAA, Naisbitt D, Ford M, Meng X, Sakamoto S, Fukushima T, Snoeys J. CYP3A4-Mediated Bioactivation of the β-Amyloid Precursor Protein-Cleaving Enzyme 1 Inhibitor JNJ-54861911 Results in Redox-Neutral Addition of Glutathione via Catalysis by Glutathione S-Transferase α1, Identified as the Major Target Protein in Human Hepatocytes. Chem Res Toxicol 2025; 38:58-72. [PMID: 39662968 DOI: 10.1021/acs.chemrestox.4c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The β-amyloid precursor protein-cleaving enzyme 1 (BACE1) inhibitor JNJ-54861911, a candidate for the treatment of Alzheimer's disease, was withdrawn from clinical trials due to drug-induced liver injury (DILI). This paper describes our investigation of the metabolism of JNJ-54861911 to understand the potential contribution to the observed DILI. In human hepatocytes, JNJ-54861911 is metabolized by CYP450 3A4 to a reactive intermediate (RI), which undergoes glutathione (GSH) addition at C6 of the 2-amino-4-methyl-1,3-thiazin-4-yl moiety via glutathione S-transferase α1 (GSTA1) catalysis. Despite the preponderant role of CYP3A4 as an enabler, the adduct has the same level of oxidation as that of JNJ-54861911. The exact mechanism of RI formation might involve a sulfoxide (with further reduction) or tautomeric forms of JNJ-54861911 bearing a reactive thiazinium cation activating both the C2 and C6 positions. The cell pellet from the human hepatocyte incubated with 14C-JNJ-54861911 was analyzed via gel electrophoresis, resulting in the identification of a major protein adduct on GSTA1, a cross-link resulting from the addition of GSH and lysine 120 to JNJ-54861911, most likely on position C6 and on the nitrile, respectively. Ultimately, this major adduct might only account for 15-25% of the total covalent binding (CVB). Other important contributors to CVB might exist, like the bioactivation of the major diaminothiazine metabolite (DIAT). The level of covalent binding (CVB) burden (fraction of the dose resulting in CVB) is clearly below 1 mg/day, with a low daily dose of 25 mg. Despite this limited magnitude of CVB, it could still contribute to the liver enzyme elevations observed in approximately 20% of the patients and to the few cases of severe immune-mediated DILI. The latter could occur through a haptenization phenomenon and/or by inducing stress in hepatocytes. Such stress may activate an innate immune response, which, in turn, promotes the adaptive immune response.
Collapse
Affiliation(s)
- Laurent Leclercq
- Translational Pharmacokinetics, Pharmacodynamics and Investigative Toxicology, Janssen Research & Development, LLC, 2340 Beerse, Belgium
| | - Ronald de Vries
- Advanced Material Characterization & Investigations (AMCI), Janssen Research & Development, LLC, 2340 Beerse, Belgium
| | - Valérie Koppen
- Chemical and Pharmaceutical Development & Supply, Analytical Development, Janssen Research & Development, LLC, 2340 Beerse, Belgium
| | - Peter Verboven
- Translational Pharmacokinetics, Pharmacodynamics and Investigative Toxicology, Janssen Research & Development, LLC, 2340 Beerse, Belgium
| | - Filip Cuyckens
- Translational Pharmacokinetics, Pharmacodynamics and Investigative Toxicology, Janssen Research & Development, LLC, 2340 Beerse, Belgium
| | - Inneke Wynant
- Translational Pharmacokinetics, Pharmacodynamics and Investigative Toxicology, Janssen Research & Development, LLC, 2340 Beerse, Belgium
| | - Wim A A Vermeulen
- Advanced Material Characterization & Investigations (AMCI), Janssen Research & Development, LLC, 2340 Beerse, Belgium
| | - Dean Naisbitt
- Department of Pharmacology and Therapeutics, University of Liverpool, L69 3GE Liverpool, U.K
| | - Megan Ford
- Department of Pharmacology and Therapeutics, University of Liverpool, L69 3GE Liverpool, U.K
| | - Xiaoli Meng
- Department of Pharmacology and Therapeutics, University of Liverpool, L69 3GE Liverpool, U.K
| | - Shingo Sakamoto
- DMPK & Analytical Sciences 2, Laboratory for Drug Discovery and Development, Shionogi, Toyonaka City 5610825, Osaka, Japan
| | - Tamio Fukushima
- Non-Clinical Safety, Laboratory for Drug Discovery and Development, Shionogi, Toyonaka City 6510825, Osaka, Japan
| | - Jan Snoeys
- Translational Pharmacokinetics, Pharmacodynamics and Investigative Toxicology, Janssen Research & Development, LLC, 2340 Beerse, Belgium
| |
Collapse
|
9
|
Qian Y, Zhao J, Wu H, Kong X. Innate immune regulation in inflammation resolution and liver regeneration in drug-induced liver injury. Arch Toxicol 2025; 99:115-126. [PMID: 39395921 DOI: 10.1007/s00204-024-03886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Drug-induced liver injury (DILI) is an acute liver injury that poses a significant threat to human health. In severe cases, it can progress into chronic DILI or even lead to liver failure. DILI is typically caused by either intrinsic hepatotoxicity or idiosyncratic metabolic or immune responses. In addition to the direct damage drugs inflict on hepatocytes, the immune responses and liver inflammation triggered by hepatocyte death can further exacerbate DILI. Initially, we briefly discussed the differences in immune cell activation based on the type of liver cell death (hepatocytes, cholangiocytes, and LSECs). We then focused on the role of various immune cells (including macrophages, monocytes, neutrophils, dendritic cells, liver sinusoidal endothelial cells, eosinophils, natural killer cells, and natural killer T cells) in both the liver injury and liver regeneration stages of DILI. This article primarily reviews the role of innate immune regulation mediated by these immune cells in resolving inflammation and promoting liver regeneration during DILI, as well as therapeutic approaches targeting these immune cells for the treatment of DILI. Finally, we discussed the activation and function of liver progenitor cells (LPCs) during APAP-induced massive hepatic necrosis and the involvement of chronic inflammation in DILI.
Collapse
Affiliation(s)
- Yihan Qian
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, China.
| |
Collapse
|
10
|
Nikzad N, Punchihewa BT, Minda V, Gutheil WG, Rafiee M. An Electrochemical Pipette for the Study of Drug Metabolite. Anal Chem 2024; 96:20026-20032. [PMID: 39624981 DOI: 10.1021/acs.analchem.4c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Electrochemistry offers an effective means of mimicking enzymatic metabolic pathways, particularly the oxidative pathways catalyzed by the cytochrome P450 superfamily. The electrochemical generation and identification of metabolites are time-sensitive, necessitating adjustable cell designs for an accurate mechanistic interpretation. We present a thin-layer electrode (TLE) that addresses the needs of both the analytical and synthetic electrochemical generation of drug metabolites. The TLE's ability to conduct experiments on a minute-to-hour time scale allows for detailed observation of reaction mechanisms for metabolites not easily identified by traditional methods. The utility of the TLE for drug metabolites was benchmarked for electrochemical oxidation of acetaminophen, acebutolol, and 2-acetyl-4-butyramidophenol, known to produce quinone imine metabolites, i.e., NAPQI, upon oxidation. When combined with a microelectrode (μE), the TLE enables probing of the concentration profiles for metabolic oxidation of these drugs. The micromole scale and pipette-type structure of the TLE facilitate comprehensive structural elucidation of intermediates and products using chromatographic and spectroscopic techniques.
Collapse
Affiliation(s)
- Nastaran Nikzad
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110, United States
| | - Buwanila T Punchihewa
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110, United States
| | - Vidit Minda
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64108, United States
| | - William G Gutheil
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64108, United States
| | - Mohammad Rafiee
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110, United States
| |
Collapse
|
11
|
Gkekas I, Katsamakas S, Mylonas S, Fotopoulou T, Magoulas GΕ, Tenchiu AC, Dimitriou M, Axenopoulos A, Rossopoulou N, Kostova S, Wanker EE, Katsila T, Papahatjis D, Gorgoulis VG, Koufaki M, Karakasiliotis I, Calogeropoulou T, Daras P, Petrakis S. AI Promoted Virtual Screening, Structure-Based Hit Optimization, and Synthesis of Novel COVID-19 S-RBD Domain Inhibitors. J Chem Inf Model 2024; 64:8562-8585. [PMID: 39535926 PMCID: PMC11600510 DOI: 10.1021/acs.jcim.4c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new, highly pathogenic severe-acute-respiratory syndrome coronavirus 2 (SARS-CoV-2) that infects human cells through its transmembrane spike (S) glycoprotein. The receptor-binding domain (RBD) of the S protein interacts with the angiotensin-converting enzyme II (ACE2) receptor of the host cells. Therefore, pharmacological targeting of this interaction might prevent infection or spread of the virus. Here, we performed a virtual screening to identify small molecules that block S-ACE2 interaction. Large compound libraries were filtered for drug-like properties, promiscuity and protein-protein interaction-targeting ability based on their ADME-Tox descriptors and also to exclude pan-assay interfering compounds. A properly designed AI-based virtual screening pipeline was applied to the remaining compounds, comprising approximately 10% of the starting data sets, searching for molecules that could bind to the RBD of the S protein. All molecules were sorted according to their screening score, grouped based on their structure and postfiltered for possible interaction patterns with the ACE2 receptor, yielding 31 hits. These hit molecules were further tested for their inhibitory effect on Spike RBD/ACE2 (19-615) interaction. Six compounds inhibited the S-ACE2 interaction in a dose-dependent manner while two of them also prevented infection of human cells from a pseudotyped virus whose entry is mediated by the S protein of SARS-CoV-2. Of the two compounds, the benzimidazole derivative CKP-22 protected Vero E6 cells from infection with SARS-CoV-2, as well. Subsequent, hit-to-lead optimization of CKP-22 was effected through the synthesis of 29 new derivatives of which compound CKP-25 suppressed the Spike RBD/ACE2 (19-615) interaction, reduced the cytopathic effect of SARS-CoV-2 in Vero E6 cells (IC50 = 3.5 μM) and reduced the viral load in cell culture supernatants. Early in vitro ADME-Tox studies showed that CKP-25 does not possess biodegradation or liver metabolism issues, while isozyme-specific CYP450 experiments revealed that CKP-25 was a weak inhibitor of the CYP450 system. Moreover, CKP-25 does not elicit mutagenic effect on Escherichia coli WP2 uvrA strain. Thus, CKP-25 is considered a lead compound against COVID-19 infection.
Collapse
Affiliation(s)
- Ioannis Gkekas
- Institute
of Applied Biosciences, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
| | - Sotirios Katsamakas
- Information
Technologies Institute, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Stelios Mylonas
- Information
Technologies Institute, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
| | - Theano Fotopoulou
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - George Ε. Magoulas
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Alia Cristina Tenchiu
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Marios Dimitriou
- Laboratory
of Biology, Department of Medicine, Democritus
University of Thrace, Alexandroupolis 68100, Greece
| | - Apostolos Axenopoulos
- Information
Technologies Institute, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
| | - Nafsika Rossopoulou
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Simona Kostova
- Max-Delbrueck-Center
for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Erich E. Wanker
- Max-Delbrueck-Center
for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Theodora Katsila
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Demetris Papahatjis
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Vassilis G. Gorgoulis
- Molecular
Carcinogenesis Group, Department of Histology and Embryology, Medical
School, National and Kapodistrian University
of Athens, Athens 11635, Greece
- Ninewells
Hospital and Medical School, University
of Dundee, DD19SY Dundee, U.K.
| | - Maria Koufaki
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Ioannis Karakasiliotis
- Laboratory
of Biology, Department of Medicine, Democritus
University of Thrace, Alexandroupolis 68100, Greece
| | - Theodora Calogeropoulou
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Petros Daras
- Information
Technologies Institute, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
| | - Spyros Petrakis
- Institute
of Applied Biosciences, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
| |
Collapse
|
12
|
Zhou M, Qian Y, Du M, Wang J, Li J, Wang W. Metabolite identification of emerging disinfection byproduct dibromo-benzoquinone in vivo and in vitro: Multi-strategy mass-spectrometry annotation and toxicity characterization. ENVIRONMENT INTERNATIONAL 2024; 193:109134. [PMID: 39522490 DOI: 10.1016/j.envint.2024.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) of high toxicity and also are shared active toxic intermediates of multiple halogenated organic pollutants. Due to the strong oxidizing property and electrophilicity, HBQs exhibit extremely diverse metabolism pathways in organisms. The identification of toxic-decisive metabolites is pivotal, albeit challenging, for understanding the toxicity mechanisms of HBQs. We employed dibromo-benzoquinone (DBBQ) as a representative HBQ, and established a systematic analytical strategy using high-resolution mass spectrometry, which collectively coupled suspect screening (SS), mass defect filtering (MDF), product ion filtering (PIF), isotopic signature filtering (ISF), and molecular networking (MN). As a result, 20 biotransformation products of DBBQ were identified in vivo and in vitro, involving metabolism reactions such as hydroxylation, methylation, methoxylation, acetylation, sulfonation, glucuronidation, glutathionylation, dimerization, and conjugation with amino acids or fatty acids. Quantitative structure-activity relationship (QSAR) analysis and cytotoxicity experiments consistently demonstrated the significantly high toxicity of the fatty acid conjugate compared to the parent compound DBBQ and other metabolites, pinpointing the important role of the fatty acid conjugation in determining the metabolism and toxicity of HBQs. The research conducted a comprehensive evaluation of the metabolism of a typical HBQ with the combination of multiple analytical and toxicity characterization methods, therefore screen out the most important metabolism pathway of HBQs.
Collapse
Affiliation(s)
- Meijiao Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Yichao Qian
- Hangzhou Huihong Environmental Technology Co., Ltd., Hangzhou, Zhejiang 310058, China
| | - Mine Du
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Jun Wang
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Jinhua Li
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Wei Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
13
|
Zelter A, Riffle M, Shteynberg DD, Zhong G, Riddle EB, Hoopmann MR, Jaschob D, Moritz RL, Davis TN, MacCoss MJ, Isoherranen N. Detection and Quantification of Drug-Protein Adducts in Human Liver. J Proteome Res 2024; 23:5143-5152. [PMID: 39442081 PMCID: PMC11537226 DOI: 10.1021/acs.jproteome.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Covalent protein adducts formed by drugs or their reactive metabolites are risk factors for adverse reactions, and inactivation of cytochrome P450 (CYP) enzymes. Characterization of drug-protein adducts is limited due to lack of methods identifying and quantifying covalent adducts in complex matrices. This study presents a workflow that combines data-dependent and data-independent acquisition (DDA and DIA) based liquid chromatography with tandem mass spectrometry (LC-MS/MS) to detect very low abundance adducts resulting from CYP mediated drug metabolism in human liver microsomes (HLMs). HLMs were incubated with raloxifene as a model compound and adducts were detected in 78 proteins, including CYP3A and CYP2C family enzymes. Experiments with recombinant CYP3A and CYP2C enzymes confirmed adduct formation in all CYPs tested, including CYPs not subject to time-dependent inhibition by raloxifene. These data suggest adducts can be benign. DIA analysis showed variable adduct abundance in many peptides between livers, but no concomitant decrease of unadducted peptides. This study sets a new standard for adduct detection in complex samples, offering insights into the human adductome resulting from reactive metabolite exposure. The methodology presented will aid mechanistic studies to identify, quantify and differentiate between adducts that result in adverse drug reactions and those that are benign.
Collapse
Affiliation(s)
- Alex Zelter
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Michael Riffle
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | | | - Guo Zhong
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Ellen B. Riddle
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | | | - Daniel Jaschob
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Trisha N. Davis
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Michael J. MacCoss
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Nina Isoherranen
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Hamidullah, Alam A, Elhenawy AA, Ali M, Latif A, Khan A, Al-Harrasi A, Ahmad M. Novel benzimidazole-based azine derivatives as potent urease inhibitors: synthesis, in vitro and in silico approach. Future Med Chem 2024; 16:2337-2350. [PMID: 39311079 PMCID: PMC11622760 DOI: 10.1080/17568919.2024.2401311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 09/02/2024] [Indexed: 12/08/2024] Open
Abstract
Aim: In light of various biological activities of benzimidazole and azines, this study focuses on reporting novel derivatives of benzimidazole nucleus.Methods: Twenty novel azines of benzimidazole were synthesized, characterized and tested for in vitro urease inhibitory activity.Results: All these derivatives showed excellent to good inhibition in the range of IC50 values 14.21 ± 1.87 to 76.11 ± 1.81 μM by comparing with standard thiourea 21.14 ± 0.42 μM. Docking studies were performed for the targeted benzimidazole derivatives to understand the binding mechanics. The results indicated higher binding efficacy compared with the reference inhibitor.Conclusion: This work identifies potential lead candidates for novel urease inhibitors, which with industrial support may be harnessed for the development of new drugs.
Collapse
Affiliation(s)
- Hamidullah
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Alam
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Latif
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, PC 616, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, PC 616, Nizwa, Sultanate of Oman
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
15
|
Lucas SCC, Milbradt AG, Blackwell JH, Bonomo S, Brierley A, Cassar DJ, Freeman J, Hadfield TE, Morrill LA, Riemens R, Sarda S, Schiesser S, Wiktelius D, Ahmed S, Bostock MJ, Börjesson U, De Fusco C, Guerot C, Hargreaves D, Hewitt S, Lamb ML, Su N, Whatling R, Wheeler M, Kettle JG. Design of a Lead-Like Cysteine-Targeting Covalent Library and the Identification of Hits to Cys55 of Bfl-1. J Med Chem 2024; 67:11209-11225. [PMID: 38916990 DOI: 10.1021/acs.jmedchem.4c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Covalent hit identification is a viable approach to identify chemical starting points against difficult-to-drug targets. While most researchers screen libraries of <2k electrophilic fragments, focusing on lead-like compounds can be advantageous in terms of finding hits with improved affinity and with a better chance of identifying cryptic pockets. However, due to the increased molecular complexity, larger numbers of compounds (>10k) are desirable to ensure adequate coverage of chemical space. Herein, the approach taken to build a library of 12k covalent lead-like compounds is reported, utilizing legacy compounds, robust library chemistry, and acquisitions. The lead-like covalent library was screened against the antiapoptotic protein Bfl-1, and six promising hits that displaced the BIM peptide from the PPI interface were identified. Intriguingly, X-ray crystallography of lead-like compound 8 showed that it binds to a previously unobserved conformation of the Bfl-1 protein and is an ideal starting point for the optimization of Bfl-1 inhibitors.
Collapse
Affiliation(s)
- Simon C C Lucas
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - J Henry Blackwell
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Silvia Bonomo
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Andrew Brierley
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Doyle J Cassar
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Jared Freeman
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolic Disorders (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Thomas E Hadfield
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Lucas A Morrill
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Rick Riemens
- Medicinal Chemistry, Oncology R&D, Acerta B. V., a Part of the AstraZeneca Group, Oss 5349, The Netherlands
| | - Sunil Sarda
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Stefan Schiesser
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Daniel Wiktelius
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Samiyah Ahmed
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Mark J Bostock
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ulf Börjesson
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Claudia De Fusco
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Carine Guerot
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - David Hargreaves
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Sarah Hewitt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Michelle L Lamb
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nancy Su
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Ryan Whatling
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Matthew Wheeler
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Jason G Kettle
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| |
Collapse
|
16
|
Pallardy M, Bechara R, Whritenour J, Mitchell-Ryan S, Herzyk D, Lebrec H, Merk H, Gourley I, Komocsar WJ, Piccotti JR, Balazs M, Sharma A, Walker DB, Weinstock D. Drug hypersensitivity reactions: review of the state of the science for prediction and diagnosis. Toxicol Sci 2024; 200:11-30. [PMID: 38588579 PMCID: PMC11199923 DOI: 10.1093/toxsci/kfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Drug hypersensitivity reactions (DHRs) are a type of adverse drug reaction that can occur with different classes of drugs and affect multiple organ systems and patient populations. DHRs can be classified as allergic or non-allergic based on the cellular mechanisms involved. Whereas nonallergic reactions rely mainly on the innate immune system, allergic reactions involve the generation of an adaptive immune response. Consequently, drug allergies are DHRs for which an immunological mechanism, with antibody and/or T cell, is demonstrated. Despite decades of research, methods to predict the potential for a new chemical entity to cause DHRs or to correctly attribute DHRs to a specific mechanism and a specific molecule are not well-established. This review will focus on allergic reactions induced by systemically administered low-molecular weight drugs with an emphasis on drug- and patient-specific factors that could influence the development of DHRs. Strategies for predicting and diagnosing DHRs, including potential tools based on the current state of the science, will also be discussed.
Collapse
Affiliation(s)
- Marc Pallardy
- Université Paris-Saclay, INSERM, Inflammation Microbiome Immunosurveillance, Orsay, 91400, France
| | - Rami Bechara
- Université Paris-Saclay, INSERM, CEA, Center for Research in Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB), Le Kremlin Bicêtre, 94270, France
| | - Jessica Whritenour
- Pfizer Worldwide Research, Development and Medical, Groton, Connecticut 06340, USA
| | - Shermaine Mitchell-Ryan
- The Health and Environmental Science Institute, Immunosafety Technical Committee, Washington, District of Columbia 20005, USA
| | - Danuta Herzyk
- Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Herve Lebrec
- Amgen Inc., Translational Safety and Bioanalytical Sciences, South San Francisco, California 94080, USA
| | - Hans Merk
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, 52062, Germany
| | - Ian Gourley
- Janssen Research & Development, LLC, Immunology Clinical Development, Spring House, Pennsylvania 19002, USA
| | - Wendy J Komocsar
- Immunology Business Unit, Eli Lilly and Company, Indianapolis, Indiana 46225, USA
| | | | - Mercedesz Balazs
- Genentech, Biochemical and Cellular Pharmacology, South San Francisco, California 94080, USA
| | - Amy Sharma
- Pfizer, Drug Safety Research & Development, New York 10017, USA
| | - Dana B Walker
- Novartis Institute for Biomedical Research, Preclinical Safety-Translational Immunology and Clinical Pathology, Cambridge, Massachusetts 02139, USA
| | - Daniel Weinstock
- Janssen Research & Development, LLC, Preclinical Sciences Translational Safety, Spring House, Pennsylvania 19002, USA
| |
Collapse
|
17
|
Akagi Y, Yamakoshi H, Iwabuchi Y. Development of a fluorous trapping reagent for rapid detection of electrophilic reactive metabolites. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3810-3814. [PMID: 38855885 DOI: 10.1039/d4ay00577e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A cysteine-based fluorous trapping reagent, Rf8CYS, was developed. Rf8CYS formed adducts with soft and hard electrophilic reactive metabolites. These fluorous-tagged adducts were purified via both fluorous solid-phase extraction and the direct injection method. The highly sensitive mass spectrometric detection of an unprecedented adduct of the ticlopidine metabolite was realized.
Collapse
Affiliation(s)
- Yusuke Akagi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan.
- Toxicology Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-13-2 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Hiroyuki Yamakoshi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan.
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan.
| |
Collapse
|
18
|
Gul S, Alam A, Zainab, Assad M, Elhenawy AA, Islam MS, Shah SAA, Parveen Z, Shah TA, Ahmad M. Exploring the synthesis, molecular structure and biological activities of novel Bis-Schiff base derivatives: A combined theoretical and experimental approach. J Mol Struct 2024; 1306:137828. [DOI: 10.1016/j.molstruc.2024.137828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
|
19
|
Alam A, Gul S, Zainab, Khan M, Elhenawy AA, Islam MS, Ali M, Ali Shah SA, Latif A, Ahmad M. Synthesis of 2,4-dihydroxyacetophenone derivatives as potent PDE-1 and -3 inhibitors: in vitro and in silico insights. Future Med Chem 2024; 16:1185-1203. [PMID: 38989989 PMCID: PMC11382721 DOI: 10.1080/17568919.2024.2342707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/08/2024] [Indexed: 07/12/2024] Open
Abstract
Aim: Synthesis of novel bis-Schiff bases having potent inhibitory activity against phosphodiesterase (PDE-1 and -3) enzymes, potentially offering therapeutic implications for various conditions. Methods: Bis-Schiff bases were synthesized by refluxing 2,4-dihydroxyacetophenone with hydrazine hydrate, followed by treatment of substituted aldehydes with the resulting hydrazone to obtain the product compounds. After structural confirmation, the compounds were screened for their in vitro PDE-1 and -3 inhibitory activities. Results: The prepared compounds exhibited noteworthy inhibitory efficacy against PDE-1 and -3 enzymes by comparing with suramin standard. To clarify the binding interactions between the drugs, PDE-1 and -3 active sites, molecular docking studies were carried out. Conclusion: The potent compounds discovered in this study may be good candidates for drug development.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Pakistan
| | - Sana Gul
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Pakistan
| | - Zainab
- College of Chemistry & Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Majid Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, 42300 Bandar Puncak Alam,Selangor D. E., Malaysia
| | - Abdul Latif
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Pakistan
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Pakistan
| |
Collapse
|
20
|
Alam A, Zainab, Elhenawy AA, Ur Rehman N, Shahidul Islam M, Dahlous KA, Talab F, Shah SAA, Ali M, Ahmad M. Synthesis of Flurbiprofen Based Amide Derivatives as Potential Leads for Diabetic Management: In Vitro α‐glucosidase Inhibition, Molecular Docking and DFT Simulation Approach. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 11/25/2024]
Abstract
AbstractThis research is based on the synthesis, characterization and in vitro α‐glucosidase inhibitory activity of fourteen amides (2 a–2 n) of flurbiprofen drug. Seven compounds in the series displayed potent inhibitory activity having IC50 values (IC50=5.67±0.89 μM) to (IC50=17.87±2.39 μM) in comparison with acarbose standard (IC50=875.75±1.24 μM). The FMO of 2 a–2 n molecules was quantified by the DFT assay. The promising value for energygap explained the higher poteny agannist α‐glucosidase. MEP provides the insights into the distribution of electrostatic potential on the molecular surface of 2 a–2 n, showing that C=O group has the highest negative potential. The AIM investigation revealed minimal hydrogen bond energy and non‐covalent interactions. This suggests that these molecules may have limited hydrogen bonding and non‐covalent interactions, which could be relevant to their chemical behavior. Molecular docking and (MEP) showed the C=O group, with its high negative potential, is a key in recognizing the catalytic non‐polar regions of enzymes, such as TYR72, GLU277, and ARG442. Similarly, the hydrophobic regions of investigated compounds play a significant role in identifying essential amino acids like ASP352 and ARG442, which are vital for the ligand's proper orientation and subsequent biological activity.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Zainab
- College of Chemistry and Materials Science Hebei Normal University Shijiazhuang 050024 China
| | - Ahmed A. Elhenawy
- Department of Chemistry Al-Azhar University, Nasr City 11884 Cairo Egypt
| | - Najeeb Ur Rehman
- Natural & Medical Sciences Research Center University of Nizwa Nizwa 616 Oman
| | - Mohammad Shahidul Islam
- Department of Chemistry College of Science King Saud University P.O, Box 2455 Riyadh 11451 Saudi Arabia
| | - Kholood A. Dahlous
- Department of Chemistry College of Science King Saud University P.O, Box 2455 Riyadh 11451 Saudi Arabia
| | - Faiz Talab
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy Universiti Teknologi MARA Puncak Alam Campus 42300 Bandar Puncak Alam, Selangor D. E. Malaysia
| | - Mumtaz Ali
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Manzoor Ahmad
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| |
Collapse
|
21
|
Jin L, Cheng S, Ding W, Huang J, van Eldik R, Ji L. Insight into chemically reactive metabolites of aliphatic amine pollutants: A de novo prediction strategy and case study of sertraline. ENVIRONMENT INTERNATIONAL 2024; 186:108636. [PMID: 38593692 DOI: 10.1016/j.envint.2024.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The uncommon metabolic pathways of organic pollutants are easily overlooked, potentially leading to idiosyncratic toxicity. Prediction of their biotransformation associated with the toxic effects is the very purpose that this work focuses, to develop a de novo method to mechanistically predict the reactive toxicity pathways of uncommon metabolites from start aliphatic amine molecules, which employed sertraline triggered by CYP450 enzymes as a model system, as there are growing concerns about the effects on human health posed by antidepressants in the aquatic environment. This de novo prediction strategy combines computational and experimental methods, involving DFT calculations upon sequential growth, in vitro and in vivo assays, dissecting chemically reactive mechanism relevant to toxicity, and rationalizing the fundamental factors. Significantly, desaturation and debenzylation-aromatization as the emerging metabolic pathways of sertraline have been elucidated, with the detection of DNA adducts of oxaziridine metabolite in mice, highlighting the potential reactive toxicity. Molecular orbital analysis supports the reactivity preference for toxicological-relevant C-N desaturation over N-hydroxylation of sertraline, possibly extended to several other aliphatic amines based on the Bell-Evans-Polanyi principle. It was further validated toward some other wide-concerned aliphatic amine pollutants involving atrazine, ε-caprolactam, 6PPD via in silico and in vitro assays, thereby constituting a complete path for de novo prediction from case study to general applications.
Collapse
Affiliation(s)
- Lingmin Jin
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shiyang Cheng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jingru Huang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Rudi van Eldik
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstr. 1, 91058 Erlangen, Germany; Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
22
|
Ullah N, Alam A, Zainab, Elhenawy AA, Naz S, Islam MS, Ahmad S, Shah SAA, Ahmad M. Investigating Novel Thiophene Carbaldehyde Based Thiazole Derivatives as Potential Hits for Diabetic Management: Synthesis, In Vitro and In Silico Approach. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202304601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 11/25/2024]
Abstract
AbstractThis research work is based on synthesis of eleven novel thiazole derivatives (3 a‐k) of thiophene carbaldehyde. All the synthesized compounds were successfully synthesized, characterized by 1H‐NMR and EI‐MS spectroscopic techniques and finally subjected for their in vitro α‐glucosidase inhibitory activity. Seven derivatives 3 i (IC50=10.21±1.84 μM), 3 b (IC50=11.14±0.99 μM), 3 f (IC50=13.21±2.76 μM), 3 h (IC50=14.21±0.31 μM), 3 k (IC50=15.21±1.02 μM), 3 e (IC50=16.21±1.32 μM), and 3 c (IC50=18.21±1.89 μM), in the series displayed excellent inhibitory potential better than the standard acarbose. However, two compounds 3 g (IC50=33.21±1.99 μM) and 3 d (IC50=42.31±2.12 μM) showed significant activity while two compounds 3 j and 3 a were found less active with IC50 values of 82.31±0.31 and 88.36±1.21 μM respectively. Additional research revealed that the compounds are not exhibiting any cytotoxic effects. The molecular docking study of these derivatives showed their good binding potential for α‐glucosidase active site with excellent interactions and docking scores.
Collapse
Affiliation(s)
- Najeeb Ullah
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Aftab Alam
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| | - Zainab
- College of Chemistry and Materials Science Hebei Normal University Shijiazhuang 050024 China
| | | | - Saira Naz
- Department of Chemistry Bacha Khan University Charsadda Pakistan
| | - Mohammad Shahidul Islam
- Department of Chemistry College of Science King Saud University P.O, Box 2455 Riyadh 11451 Saudi Arabia
| | - Shujaat Ahmad
- Department of Pharmacy Shaheed Benazir Bhutto University Sheringal, Dir (Upper) Khyber Pakhtunkhwa Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy Universiti Teknologi MARA Puncak Alam Campus 42300 Bandar Puncak Alam Selangor D. E. Malaysia
| | - Manzoor Ahmad
- Department of Chemistry University of Malakand P.O. Box 18800 Dir Lower Pakistan
| |
Collapse
|
23
|
Bessone F, Hillotte GL, Ahumada N, Jaureguizahar F, Medeot AC, Roma MG. UDCA for Drug-Induced Liver Disease: Clinical and Pathophysiological Basis. Semin Liver Dis 2024; 44:1-22. [PMID: 38378025 DOI: 10.1055/s-0044-1779520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Drug-induced liver injury (DILI) is an adverse reaction to medications and other xenobiotics that leads to liver dysfunction. Based on differential clinical patterns of injury, DILI is classified into hepatocellular, cholestatic, and mixed types; although hepatocellular DILI is associated with inflammation, necrosis, and apoptosis, cholestatic DILI is associated with bile plugs and bile duct paucity. Ursodeoxycholic acid (UDCA) has been empirically used as a supportive drug mainly in cholestatic DILI, but both curative and prophylactic beneficial effects have been observed for hepatocellular DILI as well, according to preliminary clinical studies. This could reflect the fact that UDCA has a plethora of beneficial effects potentially useful to treat the wide range of injuries with different etiologies and pathomechanisms occurring in both types of DILI, including anticholestatic, antioxidant, anti-inflammatory, antiapoptotic, antinecrotic, mitoprotective, endoplasmic reticulum stress alleviating, and immunomodulatory properties. In this review, a revision of the literature has been performed to evaluate the efficacy of UDCA across the whole DILI spectrum, and these findings were associated with the multiple mechanisms of UDCA hepatoprotection. This should help better rationalize and systematize the use of this versatile and safe hepatoprotector in each type of DILI scenarios.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Geraldine L Hillotte
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Natalia Ahumada
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Fernanda Jaureguizahar
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
24
|
Zhang Y, Liu X, Li F, Yin J, Yang H, Li X, Liu X, Chai X, Niu T, Zeng S, Jia Q, Zhu F. INTEDE 2.0: the metabolic roadmap of drugs. Nucleic Acids Res 2024; 52:D1355-D1364. [PMID: 37930837 PMCID: PMC10767827 DOI: 10.1093/nar/gkad1013] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023] Open
Abstract
The metabolic roadmap of drugs (MRD) is a comprehensive atlas for understanding the stepwise and sequential metabolism of certain drug in living organisms. It plays a vital role in lead optimization, personalized medication, and ADMET research. The MRD consists of three main components: (i) the sequential catalyses of drug and its metabolites by different drug-metabolizing enzymes (DMEs), (ii) a comprehensive collection of metabolic reactions along the entire MRD and (iii) a systematic description on efficacy & toxicity for all metabolites of a studied drug. However, there is no database available for describing the comprehensive metabolic roadmaps of drugs. Therefore, in this study, a major update of INTEDE was conducted, which provided the stepwise & sequential metabolic roadmaps for a total of 4701 drugs, and a total of 22 165 metabolic reactions containing 1088 DMEs and 18 882 drug metabolites. Additionally, the INTEDE 2.0 labeled the pharmacological properties (pharmacological activity or toxicity) of metabolites and provided their structural information. Furthermore, 3717 drug metabolism relationships were supplemented (from 7338 to 11 055). All in all, INTEDE 2.0 is highly expected to attract broad interests from related research community and serve as an essential supplement to existing pharmaceutical/biological/chemical databases. INTEDE 2.0 can now be accessible freely without any login requirement at: http://idrblab.org/intede/.
Collapse
Affiliation(s)
- Yang Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xingang Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Children's Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Hao Yang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xuedong Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xinyu Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Chai
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Tianle Niu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Su Zeng
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qingzhong Jia
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Feng Zhu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
25
|
Bian Y, Ma S, Yao Q, Hu T, Ge M, Li H, Zheng S, Gu Z, Feng H, Yu Z, Huang C, Zhang H, Zhao L, Miao L. Pharmacokinetics, metabolism, excretion and safety of iruplinalkib (WX-0593), a novel ALK inhibitor, in healthy subjects: a phase I human radiolabeled mass balance study. Expert Opin Investig Drugs 2024; 33:63-72. [PMID: 38224050 DOI: 10.1080/13543784.2024.2305134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Iruplinalkib is a novel anaplastic lymphoma kinase (ALK) inhibitor for the treatment of ALK-positive crizotinib-resistant NSCLC. RESEARCH DESIGN AND METHODS A single oral dose of 120 mg/3.7 MBq [14C]iruplinalkib was administered to healthy subjects. Blood, urine and fecal samples were collected and analyzed for iruplinalkib and its metabolites. The safety of iruplinalkib was also assessed. RESULTS Iruplinalkib was absorbed quickly and eliminated slowly from plasma, with a Tmax of 1.5 h and t1/2 of 28.6 h. About 88.85% of iruplinalkib was excreted at 312 h, including 20.23% in urine and 68.63% in feces. Seventeen metabolites of iruplinalkib were identified, and M3b (demethylation), M7 (cysteine conjugation), M11 (oxidative dehydrogenation and cysteine conjugation of M3b) and M12 (oxidative dehydrogenation and cysteine conjugation) were considered the prominent metabolites in humans. Iruplinalkib-related compounds were found to be covalently bound to proteins, accounting for 7.70% in plasma and 17.96% in feces, which suggested chemically reactive metabolites were formed. There were no serious adverse events observed in the study. CONCLUSIONS Iruplinalkib was widely metabolized and excreted mainly through feces in humans. Unchanged iruplinalkib, cysteine conjugates and covalent protein binding products were the main drug-related compounds in circulation. Iruplinalkib was well tolerated at the study dose. TRIAL REGISTRATION The trial is registered at ClinicalTrials.gov (Identifier: Anonymized).
Collapse
Affiliation(s)
- Yicong Bian
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Sheng Ma
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qingqing Yao
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Hu
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | - Zheming Gu
- Value Pharmaceutical Services Co., Ltd., Nanjing, China
| | - Hao Feng
- Value Pharmaceutical Services Co., Ltd., Nanjing, China
| | - Zhenwen Yu
- Value Pharmaceutical Services Co., Ltd., Nanjing, China
| | - Chenrong Huang
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Zhang
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liyan Miao
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Wohlgemuth R. Synthesis of Metabolites and Metabolite-like Compounds Using Biocatalytic Systems. Metabolites 2023; 13:1097. [PMID: 37887422 PMCID: PMC10608848 DOI: 10.3390/metabo13101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Methodologies for the synthesis and purification of metabolites, which have been developed following their discovery, analysis, and structural identification, have been involved in numerous life science milestones. The renewed focus on the small molecule domain of biological cells has also created an increasing awareness of the rising gap between the metabolites identified and the metabolites which have been prepared as pure compounds. The design and engineering of resource-efficient and straightforward synthetic methodologies for the production of the diverse and numerous metabolites and metabolite-like compounds have attracted much interest. The variety of metabolic pathways in biological cells provides a wonderful blueprint for designing simplified and resource-efficient synthetic routes to desired metabolites. Therefore, biocatalytic systems have become key enabling tools for the synthesis of an increasing number of metabolites, which can then be utilized as standards, enzyme substrates, inhibitors, or other products, or for the discovery of novel biological functions.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland;
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
27
|
He C, Mao Y, Wan H. Preclinical evaluation of chemically reactive metabolites and mitigation of bioactivation in drug discovery. Drug Discov Today 2023; 28:103621. [PMID: 37201781 DOI: 10.1016/j.drudis.2023.103621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
The formation of reactive metabolites (RMs) is thought to be one of the pathogeneses for some idiosyncratic adverse drug reactions (IADRs) which are considered one of the leading causes of some drug attritions and/or recalls. Minimizing or eliminating the formation of RMs via chemical modification is a useful tactic to reduce the risk of IADRs and time-dependent inhibition (TDI) of cytochrome P450 enzymes (CYPs). The RMs should be carefully handled before making a go-no-go decision. Herein, we highlight the role of RMs in the occurrence of IADRs and CYP TDI, the risk of structural alerts, the approaches of RM assessment at the discovery stage and strategies to minimize or eliminate RM liability. Finally, some considerations for developing a RM-positive drug candidate are suggested.
Collapse
Affiliation(s)
- Chunyong He
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical, No. 279 Wenjing Road, Shanghai 200245, China.
| | - Yuchang Mao
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical, No. 279 Wenjing Road, Shanghai 200245, China
| | - Hong Wan
- Department of DMPK/Bioanalysis, Shanghai Medicilon, No. 585 Chuanda Road, Shanghai 201299, China.
| |
Collapse
|
28
|
Chakraborty S, Kannihalli A, Mohanty A, Ray S. The Promises of Proteomics and Metabolomics for Unravelling the Mechanism and Side Effect Landscape of Beta-Adrenoceptor Antagonists in Cardiovascular Therapeutics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:87-92. [PMID: 36854142 DOI: 10.1089/omi.2023.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Cardiovascular medicine witnessed notable advances for the past decade. Multiomics research offers a new lens for precision/personalized medicine for existing and emerging drugs used in the cardiovascular clinic. Beta-blockers are vital in treating hypertension and chronic heart failure. However, clinical use of beta-blockers is also associated with side effects and person-to-person variations in their pharmacokinetics and pharmacodynamics. A comprehensive understanding of the mechanisms that underpin the side effect landscape of beta-blockers is imperative to optimize their therapeutic value. In addition, current research emphasizes the circadian clock's vital roles in regulating pharmacological parameters. Administration of the beta-blockers at specific dosing times could potentially improve their effectiveness and reduce their toxic effects. The rapid development of mass spectrometry technologies with chemical proteomics and thermal proteome profiling methods has also substantially advanced our understanding of underlying side effects mechanisms by unbiased deconvolution of drug targets and off-targets. Metabolomics is steadily demonstrating its utility for conducting mechanistic and toxicological analyses of pharmacological compounds. This article discusses the promises of cutting-edge proteomics and metabolomics approaches to investigate the molecular targets, mechanism of action, adverse effects, and dosing time dependency of beta-blockers.
Collapse
Affiliation(s)
| | - Arpita Kannihalli
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Abhishek Mohanty
- Cardiology Department, Continental Hospitals, Nanakaramguda, India
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
29
|
Ai Y, Yang Z, Yang Z, Wan S, Huang C, Huang C, Li M, Li Z, Zhang J, Zhang T. Discovery and Computational Studies of Potent Covalent Kinase Inhibitors with α-Substituent Electrophiles Targeting Cysteine. J Chem Inf Model 2023; 63:493-506. [PMID: 36632804 DOI: 10.1021/acs.jcim.2c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Both reversible noncovalent inhibitors and irreversible covalent inhibitors targeting tyrosine kinases have their disadvantages. The reversible covalent inhibitors with electrophilic group cyanoacrylamide as warheads reacting with cysteine residues could solve the dilemmas. However, there are still several unresolved issues regarding the electrophilic groups. In this manuscript, a series of EGFR inhibitors with double electron-withdrawing substituents introduced into the Cα position on the olefin bond were designed and synthesized. The binding structures and characteristics of inhibitors with the kinase in both the first noncovalent binding phase and the second covalent binding step were explored and combined with molecular docking and molecular dynamics simulations. Then, the reverse β-elimination reactions of the thiol-Michael adducts were investigated by applying density functional theory calculations. In addition, the effects of different electrophilic substituents of Cα on the binding between the inhibitors and kinase were elucidated. The results suggested that the electrophilicity and size of the electron-withdrawing groups play an important role in the specific interactions during the reaction. The compounds with the electron-withdrawing groups that had medium electrostatic and steric complementarity to the kinase active site could cooperatively stabilize the complexes and showed relatively good potent activities in the kinase assay experiment. The mechanical and structural information in this study could enhance our understanding of the functioning of the electron-withdrawing groups in the covalent inhibitors. The results might help to design efficient cysteine targeting inhibitors in the future.
Collapse
Affiliation(s)
- Yangcheng Ai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Zichao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Zilong Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Shanhe Wan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Chunhui Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Chuan Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Mingxia Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Zhonghuang Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Jiajie Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Tingting Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou510006, PR China
| |
Collapse
|
30
|
Wu Y, Chen L, Chen J, Xue H, He Q, Zhong D, Diao X. Covalent Binding Mechanism of Furmonertinib and Osimertinib With Human Serum Albumin. Drug Metab Dispos 2023; 51:8-16. [PMID: 36328480 DOI: 10.1124/dmd.122.001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
As third-generation tyrosine kinase inhibitors, furmonertinib and osimertinib exhibit better efficacy than first- and second-generation tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer. However, radioactive pharmacokinetics studies showed that parent-related components remain in human plasma for at least 21 days after oral administration. Similar pharmacokinetic profiles were found in pyrotinib and neratinib, which have been identified to covalently bind with human serum albumin at Lys-190, leading to low extraction recovery in protein precipitation. However, the binding mechanism of furmonertinib and osimertinib in human plasma has not been confirmed. Comprehensive techniques were used to investigate the mechanism of this binding, including ultra high-performance liquid chromatography coupled with high-resolution mass spectrometry and online/offline radioactivity profiling. SDS-PAGE and further autoradiography were also used to detect drug-protein adducts. We found that most furmonertinib exists in the human plasma following ex vivo incubation in the form of protein-drug adducts. Only lysine-furmonertinb adducts were found in pronase digests. A standard reference of lysine-furmonertinib was synthesized and confirmed by NMR. Through peptide mapping analysis, we confirmed that furmonertinib almost exclusively binds with human serum albumin (HSA) in plasma following ex vivo incubation, via Michael addition at Lys-195 and Lys-199, instead of Lys-190. Two peptides found to bond with furmonertinib were ASSAKQR and LKCASLQK. Osimertinib was also found to bond with Lys-195 and Lys-199 of HSA via peptide mapping analysis. SIGNIFICANCE STATEMENT: Here we report that furmonertinib and osimertinib can covalently bind with human serum albumin at the site of Lys-195 and Lys-199 instead of Lys-190, potentially leading to the long duration of drug-protein adducts in the human body.
Collapse
Affiliation(s)
- Yali Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Lili Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Jian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Hao Xue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Qingfeng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Dafang Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Xingxing Diao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| |
Collapse
|
31
|
The in vitro/in vivo metabolic pathways analysis of lobetyol, lobetyolin, and lobetyolinin, three polyacetylenes from Codonopsis Radix, by UHPLC-Q/TOF-MS and UHPLC-MS/MS. J Pharm Biomed Anal 2022; 223:115140. [DOI: 10.1016/j.jpba.2022.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
32
|
Di Zeo-Sánchez DE, Segovia-Zafra A, Matilla-Cabello G, Pinazo-Bandera JM, Andrade RJ, Lucena MI, Villanueva-Paz M. Modeling drug-induced liver injury: current status and future prospects. Expert Opin Drug Metab Toxicol 2022; 18:555-573. [DOI: 10.1080/17425255.2022.2122810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Gonzalo Matilla-Cabello
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| | - José M. Pinazo-Bandera
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- Plataforma ISCIII de Ensayos Clínicos. UICEC-IBIMA, 29071, Malaga, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
33
|
Distal kinetic deuterium isotope effect: Phenyl ring deuteration attenuates N-demethylation of Lu AF35700. Bioorg Med Chem Lett 2022; 72:128879. [PMID: 35809818 DOI: 10.1016/j.bmcl.2022.128879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022]
Abstract
The N-demethylation of zicronapine (7) and three of its deuterated analogs 8 - 10 has been studied in human in vitro metabolism systems. While the N-deuterio-methyl analog 8 did not behave differently from the parent in human liver microsomes, a significantly reduced rate of N-demethylation was observed as a consequence of benzene ring deuteration (compound 7vs.9). Additional deuteration of the N-methyl group, which as mentioned had shown no effect in isolation, further decreased the rate of the N-demethylation reaction (compound 10vs.9). This paper presents and discusses this unprecedented 'distal kinetic isotope effect' that was observed when incubating the test compounds with human liver microsomes or recombinant human CYP450 liver enzymes.
Collapse
|
34
|
Jia X, Wen X, Russo DP, Aleksunes LM, Zhu H. Mechanism-driven modeling of chemical hepatotoxicity using structural alerts and an in vitro screening assay. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129193. [PMID: 35739723 PMCID: PMC9262097 DOI: 10.1016/j.jhazmat.2022.129193] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 05/20/2023]
Abstract
Traditional experimental approaches to evaluate hepatotoxicity are expensive and time-consuming. As an advanced framework of risk assessment, adverse outcome pathways (AOPs) describe the sequence of molecular and cellular events underlying chemical toxicities. We aimed to develop an AOP that can be used to predict hepatotoxicity by leveraging computational modeling and in vitro assays. We curated 869 compounds with known hepatotoxicity classifications as a modeling set and extracted assay data from PubChem. The antioxidant response element (ARE) assay, which quantifies transcriptional responses to oxidative stress, showed a high correlation to hepatotoxicity (PPV=0.82). Next, we developed quantitative structure-activity relationship (QSAR) models to predict ARE activation for compounds lacking testing results. Potential toxicity alerts were identified and used to construct a mechanistic hepatotoxicity model. For experimental validation, 16 compounds in the modeling set and 12 new compounds were selected and tested using an in-house ARE-luciferase assay in HepG2-C8 cells. The mechanistic model showed good hepatotoxicity predictivity (accuracy = 0.82) for these compounds. Potential false positive hepatotoxicity predictions by only using ARE results can be corrected by incorporating structural alerts and vice versa. This mechanistic model illustrates a potential toxicity pathway for hepatotoxicity, and this strategy can be expanded to develop predictive models for other complex toxicities.
Collapse
Affiliation(s)
- Xuelian Jia
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA
| | - Xia Wen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Daniel P Russo
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Hao Zhu
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA; Department of Chemistry, Rutgers University, Camden, NJ 08102, USA.
| |
Collapse
|
35
|
Hu X, Wu JL, Miao W, Long F, Pan H, Peng T, Yao X, Li N. Covalent Protein Modification: An Unignorable Factor for Bisphenol A-Induced Hepatotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9536-9545. [PMID: 35593067 DOI: 10.1021/acs.est.2c01307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Covalent modification of proteins by reactive pollutants/metabolites might trigger various toxicities resulting from the disruption of protein structures and/or functions, which is critical for understanding the mechanism of pollutants-induced toxicity. However, this mechanism has rarely been touched on due to the lack of a methodology. In this research, the protein modification of bisphenol A (BPA) in rats was characterized using a series of liquid chromatography-tandem mass spectrometry (LC-MS) approaches. BPA-modified cysteine (Cys1) was first released from proteins via enzymatic hydrolysis and identified using LC-MS. Moreover, the positive correlation between Cys1 and hepatotoxicity indicated the involvement of protein modification in BPA toxicity. Then, in vitro incubation of BPA with amino acids and protein confirmed that BPA could specifically modify cysteine residues of proteins after bioactivation and provided four additional modification patterns. Finally, 24 BPA-modified proteins were identified from the liver of BPA-exposed rats using proteomic analysis, and they were mainly enriched in oxidative stress-related pathways. The modification on superoxide dismutases, catalase, and glutathione S-transferases disrupted their enzymatic functions, leading to oxidative damage. These results revealed that the covalent protein modification is an unignorable factor for BPA hepatotoxicity. Moreover, the workflow can be applied to identify protein adducts of other emerging contaminants and possible risk.
Collapse
Affiliation(s)
- Xiaolan Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| | - Wen Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| | - Fei Long
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510180, China
| | - Hudan Pan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| | - Tao Peng
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| |
Collapse
|
36
|
Gorbunov A, Bardin A, Ilyushonok S, Kovach J, Petrenko A, Sukhodolov N, Krasnov K, Krasnov N, Zorin I, Obornev A, Babakov V, Radilov A, Podolskaya E. Multiwell photocatalytic microreactor device integrating drug biotransformation modeling and sample preparation on a MALDI target. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Hamdy J, Emadeldin N, Hamed MM, Frakolaki E, Katsamakas S, Vassilaki N, Zoidis G, Hirsch AKH, Abdel-Halim M, Abadi AH. Design and Synthesis of Novel Bis-Imidazolyl Phenyl Butadiyne Derivatives as HCV NS5A Inhibitors. Pharmaceuticals (Basel) 2022; 15:632. [PMID: 35631457 PMCID: PMC9146377 DOI: 10.3390/ph15050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
In today’s global plan to completely eradicate hepatitis C virus (HCV), the essential list of medications used for HCV treatment are direct-acting antivirals (DAAs), as interferon-sparing regimens have become the standard-of-care (SOC) treatment. HCV nonstructural protein 5A (NS5A) inhibitors are a very common component of these regimens. Food and Drug Administration (FDA)-approved NS5A inhibitors, although very potent, do not have the same potency against all eight genotypes of HCV. Therefore, this study aims to synthesize NS5A inhibitor analogues with high potency pan-genotypic activity and high metabolic stability. Starting from an NS5A inhibitor scaffold previously identified by our research group, we made several modifications. Two series of compounds were created to test the effect of changing the length and spatial conformation (para-para vs. meta-meta-positioned bis-imidazole-proline-carbamate), replacing amide groups in the linker with imidazole groups, as well as different end-cap compositions and sizes. The frontrunner inhibits genotype 1b (Con1) replicon, with an EC50 value in the picomolar range, and showed high genotypic coverage with nanomolar range EC50 values against four more genotypes. This together with its high metabolic stability (t½ > 120 min) makes it a potential preclinical candidate.
Collapse
Affiliation(s)
- Jehad Hamdy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (J.H.); (N.E.)
| | - Nouran Emadeldin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (J.H.); (N.E.)
| | - Mostafa M. Hamed
- Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.M.H.); (A.K.H.H.)
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece; (E.F.); (N.V.)
| | - Sotirios Katsamakas
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece;
| | - Niki Vassilaki
- Molecular Virology Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece; (E.F.); (N.V.)
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece;
| | - Anna K. H. Hirsch
- Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (J.H.); (N.E.)
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (J.H.); (N.E.)
| |
Collapse
|
38
|
Abstract
Covalent drugs have made a major impact on human health but until recently were shunned by the pharmaceutical industry over concerns about the potential for toxicity. A resurgence has occurred driven by the clinical success of targeted covalent inhibitors (TCIs), with eight drugs approved over the past decade. The opportunity to create unique drugs by exploiting the covalent mechanism of action has enabled clinically decisive target product profiles to be achieved. TCIs have revolutionized the treatment paradigm for non-small-cell lung cancer and chronic lymphocytic leukemia. This Perspective will highlight the clinical and financial success of this class of drugs and provide early insight into toxicity, a key factor that had hindered progress in the field. Further innovation in the TCI approach, including expanding beyond cysteine-directed electrophiles, kinases, and cancer, highlights the broad opportunity to deliver a new generation of breakthrough therapies.
Collapse
Affiliation(s)
- Juswinder Singh
- Ankaa Therapeutics, M2D2 Incubator, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| |
Collapse
|
39
|
Huang C, Fischer C, Machacek MR, Bogen S, Biftu T, Huang X, Reutershan MH, Otte R, Hong Q, Wu Z, Yu Y, Park M, Chen L, Biju P, Knemeyer I, Lu P, Kochansky CJ, Hicks MB, Liu Y, Helmy R, Fradera X, Donofrio A, Close J, Maddess ML, White C, Sloman DL, Sciammetta N, Lu J, Gibeau C, Simov V, Zhang H, Fuller P, Witter D. Diminishing GSH-Adduct Formation of Tricyclic Diazepine-based Mutant IDH1 Inhibitors. ACS Med Chem Lett 2022; 13:734-741. [PMID: 35450359 PMCID: PMC9014435 DOI: 10.1021/acsmedchemlett.2c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022] Open
Abstract
Mutant isocitrate dehydrogenase 1 (IDH1) has been identified as an attractive oncology target for which >70% of grade II and III gliomas and ∼10% of acute myeloid leukemia (AML) harbor somatic IDH1 mutations. These mutations confer a neomorphic gain of function, leading to the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG). We identified and developed a potent, selective, and orally bioavailable brain-penetrant tricyclic diazepine scaffold that inhibits mutant IDH1. During the course of in vitro metabolism studies, GSH-adduct metabolites were observed. The hypothesis for GSH-adduct formation was driven by the electron-rich nature of the tricyclic core. Herein, we describe our efforts to reduce the electron-rich nature of the core. Ultimately, a strategy focused on core modifications to block metabolic hot spots coupled with substitution pattern changes (C8 N → C linked) led to the identification of new tricyclic analogues with minimal GSH-adduct formation across species while maintaining an overall balanced profile.
Collapse
Affiliation(s)
- Chunhui Huang
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | | | - Stephane Bogen
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Tesfaye Biftu
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xianhai Huang
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Ryan Otte
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Qingmei Hong
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Zhicai Wu
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yang Yu
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Min Park
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Lei Chen
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Ian Knemeyer
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Ping Lu
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | | | - Yong Liu
- Merck & Co., Inc., Rahway, New Jersey 07065 United States
| | - Roy Helmy
- Merck & Co., Inc., Rahway, New Jersey 07065 United States
| | - Xavier Fradera
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Josh Close
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Catherine White
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - David L. Sloman
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Jun Lu
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Craig Gibeau
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Vladimir Simov
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Hongjun Zhang
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Peter Fuller
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - David Witter
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| |
Collapse
|
40
|
Kramlinger VM, Dalvie D, Heck CJS, Kalgutkar AS, O'Neill J, Su D, Teitelbaum AM, Totah RA. Future of Biotransformation Science in the Pharmaceutical Industry. Drug Metab Dispos 2022; 50:258-267. [PMID: 34921097 DOI: 10.1124/dmd.121.000658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/23/2021] [Indexed: 11/22/2022] Open
Abstract
Over the past decades, the number of scientists trained in departments dedicated to traditional medicinal chemistry, biotransformation and/or chemical toxicology have seemingly declined. Yet, there remains a strong demand for such specialized skills in the pharmaceutical industry, particularly within drug metabolism/pharmacokinetics (DMPK) departments. In this position paper, the members of the Biotransformation, Mechanisms, and Pathways Focus Group (BMPFG) steering committee reflect on the diverse roles and responsibilities of scientists trained in the biotransformation field in pharmaceutical companies and contract research organizations. The BMPFG is affiliated with the International Society for the Study of Xenobiotics (ISSX) and was specifically created to promote the exchange of ideas pertaining to topics of current and future interest involving the metabolism of xenobiotics (including drugs). The authors also delve into the relevant education and diverse training skills required to successfully nurture the future cohort of industry biotransformation scientists and guide them toward a rewarding career path. The ability of scientists with a background in biotransformation and organic chemistry to creatively solve complex drug metabolism problems encountered during research and development efforts on both small and large molecular modalities is exemplified in five relevant case studies. Finally, the authors stress the importance and continued commitment to training the next generation of biotransformation scientists who are not only experienced in the metabolism of conventional small molecule therapeutics, but are also equipped to tackle emerging challenges associated with new drug discovery modalities including peptides, protein degraders, and antibodies. SIGNIFICANCE STATEMENT: Biotransformation and mechanistic drug metabolism scientists are critical to advancing chemical entities through discovery and development, yet the number of scientists academically trained for this role is on the decline. This position paper highlights the continuing demand for biotransformation scientists and the necessity of nurturing creative ways to train them and guarantee the future growth of this field.
Collapse
Affiliation(s)
- Valerie M Kramlinger
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts (V.M.K.)
- Bristol Myers Squibb, San Diego, California (D.D.)
- Medicine Design, Pfizer Worldwide Research, Groton, Connecticut (C.J.S.H.); Medicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts (A.S.K.); Charles River Laboratories Edinburgh Ltd, Tranent, Scotland (J.O.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (D.S.)
- Drug Metabolism and Pharmacokinetics Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.M.T.); and Medicinal Chemistry, University of Washington, Seattle, Washington (R.A.T.)
| | - Deepak Dalvie
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts (V.M.K.)
- Bristol Myers Squibb, San Diego, California (D.D.)
- Medicine Design, Pfizer Worldwide Research, Groton, Connecticut (C.J.S.H.); Medicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts (A.S.K.); Charles River Laboratories Edinburgh Ltd, Tranent, Scotland (J.O.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (D.S.)
- Drug Metabolism and Pharmacokinetics Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.M.T.); and Medicinal Chemistry, University of Washington, Seattle, Washington (R.A.T.)
| | - Carley J S Heck
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts (V.M.K.)
- Bristol Myers Squibb, San Diego, California (D.D.)
- Medicine Design, Pfizer Worldwide Research, Groton, Connecticut (C.J.S.H.); Medicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts (A.S.K.); Charles River Laboratories Edinburgh Ltd, Tranent, Scotland (J.O.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (D.S.)
- Drug Metabolism and Pharmacokinetics Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.M.T.); and Medicinal Chemistry, University of Washington, Seattle, Washington (R.A.T.)
| | - Amit S Kalgutkar
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts (V.M.K.)
- Bristol Myers Squibb, San Diego, California (D.D.)
- Medicine Design, Pfizer Worldwide Research, Groton, Connecticut (C.J.S.H.); Medicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts (A.S.K.); Charles River Laboratories Edinburgh Ltd, Tranent, Scotland (J.O.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (D.S.)
- Drug Metabolism and Pharmacokinetics Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.M.T.); and Medicinal Chemistry, University of Washington, Seattle, Washington (R.A.T.)
| | - James O'Neill
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts (V.M.K.)
- Bristol Myers Squibb, San Diego, California (D.D.)
- Medicine Design, Pfizer Worldwide Research, Groton, Connecticut (C.J.S.H.); Medicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts (A.S.K.); Charles River Laboratories Edinburgh Ltd, Tranent, Scotland (J.O.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (D.S.)
- Drug Metabolism and Pharmacokinetics Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.M.T.); and Medicinal Chemistry, University of Washington, Seattle, Washington (R.A.T.)
| | - Dian Su
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts (V.M.K.)
- Bristol Myers Squibb, San Diego, California (D.D.)
- Medicine Design, Pfizer Worldwide Research, Groton, Connecticut (C.J.S.H.); Medicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts (A.S.K.); Charles River Laboratories Edinburgh Ltd, Tranent, Scotland (J.O.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (D.S.)
- Drug Metabolism and Pharmacokinetics Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.M.T.); and Medicinal Chemistry, University of Washington, Seattle, Washington (R.A.T.)
| | - Aaron M Teitelbaum
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts (V.M.K.)
- Bristol Myers Squibb, San Diego, California (D.D.)
- Medicine Design, Pfizer Worldwide Research, Groton, Connecticut (C.J.S.H.); Medicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts (A.S.K.); Charles River Laboratories Edinburgh Ltd, Tranent, Scotland (J.O.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (D.S.)
- Drug Metabolism and Pharmacokinetics Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.M.T.); and Medicinal Chemistry, University of Washington, Seattle, Washington (R.A.T.)
| | - Rheem A Totah
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts (V.M.K.)
- Bristol Myers Squibb, San Diego, California (D.D.)
- Medicine Design, Pfizer Worldwide Research, Groton, Connecticut (C.J.S.H.); Medicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts (A.S.K.); Charles River Laboratories Edinburgh Ltd, Tranent, Scotland (J.O.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (D.S.)
- Drug Metabolism and Pharmacokinetics Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.M.T.); and Medicinal Chemistry, University of Washington, Seattle, Washington (R.A.T.)
| |
Collapse
|
41
|
Wang Z, Wang C, He B, Zhang W, Liu L, Deng M, Lü M, Qi X, Liang S. Determination of Daphnetin and its 8-O-Methylated Metabolite in Rat Plasma by UFLC-MS/MS: Application to a Pharmacokinetic Study. Chromatographia 2022. [DOI: 10.1007/s10337-022-04131-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Murad HAS, Alqurashi TMA, Hussien MA. Interactions of selected cardiovascular active natural compounds with CXCR4 and CXCR7 receptors: a molecular docking, molecular dynamics, and pharmacokinetic/toxicity prediction study. BMC Complement Med Ther 2022; 22:35. [PMID: 35120520 PMCID: PMC8817505 DOI: 10.1186/s12906-021-03488-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The chemokine CXCL12 and its two receptors (CXCR4 and CXCR7) are involved in inflammation and hematopoietic cell trafficking. This study was designed to investigate molecular docking interactions of four popular cardiovascular-active natural compounds; curcumin, resveratrol, quercetin, and eucalyptol; with these receptors and to predict their drug-like properties. We hypothesize that these compounds can modify CXCL12/CXCR4/CXCR7 pathway offering benefits for coronary artery disease patients. METHODS Docking analyses were carried and characterized by Molecular Environment (MOE) software. Protein Data Bank ( http://www.rcsb.org/ ) has been retrieved from protein structure generation and crystal structures of CXCR4 and CXCR7 receptors (PDB code = 3ODU and 6K3F). The active sites of these receptors were evaluated and extracted from full protein and molecular docking protocol was done for compounds against them. The presented parameters included docking scores, ligand binding efficiency, and hydrogen bonding. The pharmacokinetic/toxic properties (ADME/T) were calculated using SwissADME, ProTox-II, and Pred-hERG softwares to predict drug-like properties of the compounds. The thermochemical and molecular orbital analysis, and molecular dynamics simulations were also done. RESULTS All compounds showed efficient interactions with the CXCR4 and CXCR7 receptors. The docking scores toward proteins 3ODU of CXCR4 and 6K3F of CXCR7 were - 7.71 and - 7.17 for curcumin, - 5.97 and - 6.03 for quercetin, - 5.68 and - 5.49 for trans-resveratrol, and - 4.88 and - 4.70 for (1 s,4 s)-eucalyptol respectively indicating that all compounds, except quercetin, have more interactions with CXCR4 than with CXCR7. The structurally and functionally important residues in the interactive sites of docked CXCR4-complex and CXCR7-complex were identified. The ADME analysis showed that the compounds have drug-like properties. Only (1 s,4 s)-Eucalyptol has potential weak cardiotoxicity. The results of thermochemical and molecular orbital analysis and molecular dynamics simulation validated outcomes of molecular docking study. CONCLUSIONS Curcumin showed the top binding interaction against active sites of CXCR4 and CXCR7 receptors, with the best safety profile, followed by quercetin, resveratrol, and eucalyptol. All compounds demonstrated drug-like properties. Eucalyptol has promising potential because it can be used by inhalation or skin massage. To our knowledge, this is the first attempt to find binding interactions of these natural agents with CXCR4 and CXCR7 receptors and to predict their druggability.
Collapse
Affiliation(s)
- Hussam Aly Sayed Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | | | - Mostafa Aly Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Department of Chemistry, Faculty of Science, Port-Said University, Port-Said, 42521, Egypt
| |
Collapse
|
43
|
Adel IM, ElMeligy MF, Elkasabgy NA. Conventional and Recent Trends of Scaffolds Fabrication: A Superior Mode for Tissue Engineering. Pharmaceutics 2022; 14:306. [DOI: https:/doi.org/10.3390/pharmaceutics14020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Tissue regeneration is an auto-healing mechanism, initiating immediately following tissue damage to restore normal tissue structure and function. This falls in line with survival instinct being the most dominant instinct for any living organism. Nevertheless, the process is slow and not feasible in all tissues, which led to the emergence of tissue engineering (TE). TE aims at replacing damaged tissues with new ones. To do so, either new tissue is being cultured in vitro and then implanted, or stimulants are implanted into the target site to enhance endogenous tissue formation. Whichever approach is used, a matrix is used to support tissue growth, known as ‘scaffold’. In this review, an overall look at scaffolds fabrication is discussed, starting with design considerations and different biomaterials used. Following, highlights of conventional and advanced fabrication techniques are attentively presented. The future of scaffolds in TE is ever promising, with the likes of nanotechnology being investigated for scaffold integration. The constant evolvement of organoids and biofluidics with the eventual inclusion of organ-on-a-chip in TE has shown a promising prospect of what the technology might lead to. Perhaps the closest technology to market is 4D scaffolds following the successful implementation of 4D printing in other fields.
Collapse
Affiliation(s)
- Islam M. Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mohamed F. ElMeligy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
44
|
Adel IM, ElMeligy MF, Elkasabgy NA. Conventional and Recent Trends of Scaffolds Fabrication: A Superior Mode for Tissue Engineering. Pharmaceutics 2022; 14:306. [PMID: 35214038 PMCID: PMC8877304 DOI: 10.3390/pharmaceutics14020306] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Tissue regeneration is an auto-healing mechanism, initiating immediately following tissue damage to restore normal tissue structure and function. This falls in line with survival instinct being the most dominant instinct for any living organism. Nevertheless, the process is slow and not feasible in all tissues, which led to the emergence of tissue engineering (TE). TE aims at replacing damaged tissues with new ones. To do so, either new tissue is being cultured in vitro and then implanted, or stimulants are implanted into the target site to enhance endogenous tissue formation. Whichever approach is used, a matrix is used to support tissue growth, known as 'scaffold'. In this review, an overall look at scaffolds fabrication is discussed, starting with design considerations and different biomaterials used. Following, highlights of conventional and advanced fabrication techniques are attentively presented. The future of scaffolds in TE is ever promising, with the likes of nanotechnology being investigated for scaffold integration. The constant evolvement of organoids and biofluidics with the eventual inclusion of organ-on-a-chip in TE has shown a promising prospect of what the technology might lead to. Perhaps the closest technology to market is 4D scaffolds following the successful implementation of 4D printing in other fields.
Collapse
Affiliation(s)
- Islam M. Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (M.F.E.); (N.A.E.)
| | | | | |
Collapse
|
45
|
Stein A, Hilken née Thomopoulou P, Frias C, Hopff SM, Varela P, Wilke N, Mariappan A, Neudörfl JM, Fedorov AY, Gopalakrishnan J, Gigant B, Prokop A, Schmalz HG. B-nor-methylene Colchicinoid PT-100 Selectively Induces Apoptosis in Multidrug-Resistant Human Cancer Cells via an Intrinsic Pathway in a Caspase-Independent Manner. ACS OMEGA 2022; 7:2591-2603. [PMID: 35097257 PMCID: PMC8792921 DOI: 10.1021/acsomega.1c04659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/31/2021] [Indexed: 05/14/2023]
Abstract
Colchicine, the main active alkaloid from Colchicum autumnale L., is a potent tubulin binder and represents an interesting lead structure for the development of potential anticancer chemotherapeutics. We report on the synthesis and investigation of potentially reactive colchicinoids and their surprising biological activities. In particular, the previously undescribed colchicinoid PT-100, a B-ring contracted 6-exo-methylene colchicinoid, exhibits extraordinarily high antiproliferative and apoptosis-inducing effects on various types of cancer cell lines like acute lymphoblastic leukemia (Nalm6), acute myeloid leukemia (HL-60), Burkitt-like lymphoma (BJAB), human melanoma (MelHO), and human breast adenocarcinoma (MCF7) cells at low nanomolar concentrations. Apoptosis induction proved to be especially high in multidrug-resistant Nalm6-derived cancer cell lines, while healthy human leukocytes and hepatocytes were not affected by the concentration range studied. Furthermore, caspase-independent initiation of apoptosis via an intrinsic pathway was observed. PT-100 also shows strong synergistic effects in combination with vincristine on BJAB and Nalm6 cells. Cocrystallization of PT-100 with tubulin dimers revealed its (noncovalent) binding to the colchicine-binding site of β-tubulin at the interface to the α-subunit. A pronounced effect of PT-100 on the cytoskeleton morphology was shown by fluorescence microscopy. While the reactivity of PT-100 as a weak Michael acceptor toward thiols was chemically proven, it remains unclear whether this contributes to the remarkable biological properties of this unusual colchicinoid.
Collapse
Affiliation(s)
- Andreas Stein
- Department
of Chemistry, University of Cologne, 50939 Cologne, Germany
| | | | - Corazon Frias
- Department
of Paediatric Oncology, Children’s
Hospital Cologne, 50735 Cologne, Germany
| | - Sina M. Hopff
- Department
of Paediatric Oncology, Children’s
Hospital Cologne, 50735 Cologne, Germany
| | - Paloma Varela
- Université
Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the
Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Nicola Wilke
- Department
of Paediatric Oncology, Children’s
Hospital Cologne, 50735 Cologne, Germany
| | - Arul Mariappan
- Laboratory
for Centrosome and Cytoskeleton Biology, Institute of Human Genetics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Alexey Yu Fedorov
- Department
of Organic Chemistry, N.I. Lobachevsky State
University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russian
Federation
| | - Jay Gopalakrishnan
- Laboratory
for Centrosome and Cytoskeleton Biology, Institute of Human Genetics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Benoît Gigant
- Université
Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the
Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Aram Prokop
- Department
of Paediatric Oncology, Children’s
Hospital Cologne, 50735 Cologne, Germany
- Department
of Pediatric Hematology/Oncology, Helios
Clinic Schwerin, 19055 Schwerin, Germany
- MSH
Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
| | | |
Collapse
|
46
|
Bussy U, Boisseau R, Croyal M, Temgoua RCT, Boujtita M. In-line formation and identification of toxic reductive metabolites of aristolochic acid using electrochemistry mass spectrometry coupling. Anal Bioanal Chem 2022; 414:2363-2370. [DOI: 10.1007/s00216-022-03874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 11/01/2022]
|
47
|
Agwunobi DO, Li M, Wang N, Chang G, Zhang X, Xue X, Yu Z, Wang H, Liu J. Proteomic analysis suggests that monoterpenes in lemongrass disrupt Ca 2+ homeostasis in Haemaphysalis longicornis leading to mitochondrial depolarization and cytotoxicity. Proteomics 2022; 22:e2100156. [PMID: 34997954 DOI: 10.1002/pmic.202100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
Complex mixtures of bioactive ingredients in plant essential oils present complex chemistries which involve different modes of action. An increasing body of scientific reports has recently focused on the acaricidal activities of plant essential oils attributed to their monoterpene components, but information about their underlying molecular mechanism of action is scarce. Here, after the chemical analysis of lemongrass oil, a proteomic analysis of the ovary, salivary gland, and midgut of Haemaphysalis longicornis exposed to Cymbopogon citratus (lemongrass) essential oil was performed via data-independent acquisition mass spectrometry (DIA-MS) technology to further elucidate the molecular mechanisms involved. Pathway analysis reveals the activation of metabolic pathways mediated by oxidoreductases and transferases. Furthermore, the upregulation of various calcium-associated proteins and the upregulation of cytochrome c1, cytochrome c oxidase polypeptide IV, and programmed cell death protein 6-like isoform X1 suggest a cytotoxic mode of action via the formation of reactive oxygen species (ROS), mitochondrial Ca2+ overload, mitochondrial uncoupling, and depolarization, and ATP depletion leading to either apoptotic or necrotic death. Morphological alterations observed after the RNAi of a major detoxification enzyme (glutathione S-transferase) merit further investigation. Hence, the cytotoxic mode of action exhibited by C. citratus oil could be vital for the development of eco-friendly acaricide.
Collapse
Affiliation(s)
- Desmond O Agwunobi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mengxue Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ningmei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Guomin Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaojing Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaomin Xue
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhijun Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
48
|
Yu JS, Nothias LF, Wang M, Kim DH, Dorrestein PC, Kang KB, Yoo HH. Tandem Mass Spectrometry Molecular Networking as a Powerful and Efficient Tool for Drug Metabolism Studies. Anal Chem 2022; 94:1456-1464. [DOI: 10.1021/acs.analchem.1c04925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Sang Yu
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Mingxun Wang
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Dong Hyun Kim
- Department of Pharmacology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Kyo Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
49
|
Pal R, Singh K, Khan SA, Chawla P, Kumar B, Akhtar MJ. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur J Med Chem 2021; 226:113890. [PMID: 34628237 DOI: 10.1016/j.ejmech.2021.113890] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022]
Abstract
Several generations of antiepileptic drugs (AEDs) are available in the market for the treatment of seizures, but these are amalgamated with acute to chronic side effects. The most common side effects of AEDs are dose-related, but some are idiosyncratic adverse drug reactions (ADRs) that transpire due to the formation of reactive metabolite (RM) after the bioactivation process. Because of the adverse reactions patients usually discontinue the medication in between the treatment. The AEDs such as valproic acid, lamotrigine, phenytoin etc., can be categorized under such types because they form the RM which may prevail with life-threatening adverse effects or immune-mediated reactions. Hepatotoxicity, teratogenicity, cutaneous hypersensitivity, dizziness, addiction, serum sickness reaction, renal calculi, metabolic acidosis are associated with the metabolites of drugs such as arene oxide, N-desmethyldiazepam, 2-(1-hydroxyethyl)-2-methylsuccinimide, 2-(sulphamoy1acetyl)-phenol, E-2-en-VPA and 4-en-VPA and carbamazepine-10,11-epoxide, etc. The major toxicities are associated with the moieties that are either capable of forming RM or the functional groups may itself be too reactive prior to the metabolism. These functional groups or fragment structures are typically known as structural alerts or toxicophores. Therefore, minimizing the bioactivation potential of lead structures in the early phases of drug discovery by a modification to low-risk drug molecules is a priority for the pharmaceutical companies. Additionally, excellent potency and pharmacokinetic (PK) behaviour help in ensuring that appropriate (low dose) candidate drugs progress into the development phase. The current review discusses about RMs in the anticonvulsant drugs along with their mechanism vis-a-vis research efforts that have been taken to minimize the toxic effects of AEDs therapy.
Collapse
Affiliation(s)
- Rohit Pal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India; Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman.
| |
Collapse
|
50
|
Xue Y, Ren X, Zhu Z, Lei P, Liu M, Wan M, Zhong D, Huang H, Diao X. Site-specific protein modification by 3-n-butylphthalide in primary hepatocytes: Covalent protein adducts diminished by glutathione and N-acetylcysteine. Life Sci 2021; 287:120125. [PMID: 34762904 DOI: 10.1016/j.lfs.2021.120125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022]
Abstract
AIMS 3-n-Butylphthalide (NBP) is widely used for the treatment of cerebral ischaemic stroke but can causeliver injury in clinical practice. This study aims to elucidate the underlying mechanisms and propose potential preventive strategies. MAIN METHODS NBP and its four major metabolites, 3-hydroxy-NBP (3-OH-NBP), 10-hydroxy-NBP, 10-keto-NBP and NBP-11-oic acid, were synthesized and evaluated in primary human or rat hepatocytes (PHHs, PRHs). NBP-related substances or amino acid adducts were identified and semi-quantitated by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The target proteins and binding sites were identified by shotgun proteomics based on peptide mass fingerprinting coupled with tandem mass spectrometry and verified by molecular docking. KEY FINDINGS The toxicity of NBP and its four major metabolites were compared in both PHHs and PRHs, and 3-OH-NBP was found to be the most toxic metabolite. 3-OH-NBP induced remarkable cell death and oxidative stresses in hepatocytes, which correlated well with the levels of glutathione and N-acetylcysteine adducts (3-GSH-NBP and 3-NAC-NBP) in cell supernatants. Additionally, 3-OH-NBP covalently conjugated with intracellular Cys, Lys and Ser, with preferable binding to Cys sites at Myh9 Cys1380, Prdx4 Cys53, Vdac2 Cys48 and Vdac3 Cys36. Furthermore, we found that CYP3A4 induction by rifampicin augmented NBP-induced cell toxicity and supplementing with GSH or NAC alleviated the oxidative stresses and reactive metabolites caused by 3-OH-NBP. SIGNIFICANCE Our work suggests that glutathione depletion, mitochondrial injury and covalent protein modification are the main causes of NBP-induced hepatotoxicity, which may be prevented by exogenous GSH or NAC supplementation and avoiding concomitant use of CYP3A4 inducers.
Collapse
Affiliation(s)
- Yaru Xue
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuelian Ren
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengdan Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Institute of Big Data Research, Beijing 100871, China
| | - Peng Lei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mengling Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mimi Wan
- Waters Technology (Shanghai), Co., Ltd, Shanghai 201203, China
| | - Dafang Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|