1
|
Li Y. Novel Therapeutic Strategies Targeting Fibroblasts to Improve Heart Disease. J Cell Physiol 2025; 240:e31504. [PMID: 39690827 DOI: 10.1002/jcp.31504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
Cardiac fibrosis represents the terminal pathological manifestation of various heart diseases, with the formation of fibroblasts playing a pivotal role in this process. Consequently, targeting the formation and function of fibroblasts holds significant potential for improving outcomes in heart disease. Recent research reveals the considerable potential of fibroblasts in ameliorating cardiac conditions, demonstrating different functional characteristics at various time points and spatial locations. Therefore, precise modulation of fibroblast activity may offer an effective approach for treating cardiac fibrosis and achieving targeted therapeutic outcomes. In this review, we focus on the fate and inhibition of fibroblasts, analyze their dynamic changes in cardiac diseases, and propose a framework for identifying markers of fibroblast activation mechanisms and selecting optimal time windows for therapeutic intervention. By synthesizing research findings in these areas, we aim to provide new strategies and directions for the precise treatment of fibroblasts in cardiac diseases.
Collapse
Affiliation(s)
- Yujuan Li
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Li S, Lu L, Xian W, Li J, Xu S, Chen J, Wang Y. Time spent in outdoor light is associated with increased blood pressure, increased hypertension risk, and decreased hypotension risk. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117349. [PMID: 39561567 DOI: 10.1016/j.ecoenv.2024.117349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE Light exposure is thought to be associated with blood pressure (BP). However, the existing evidence is inconsistent, and the underlying mechanisms remain unclear. METHODS This cohort study enrolled over 300,000 participants from the UK Biobank. Information on the time spent in outdoor light during typical summer and winter days was collected using questionnaires. Cases of hypertension and hypotension were identified using the 10th edition of the International Classification of Diseases codes. Cox proportional hazards regression models were employed to estimate the lightBP associations, and restricted cubic splines were utilized to detect potential nonlinear associations. Subgroup analyses were conducted to identify effect modifiers, and causal mediation analyses were performed to explore potential mechanisms. RESULTS Using summer light exposure as an illustration, after a median follow-up of 13.4 years, each additional hour of summer light exposure was found to be associated with an increased risk of hypertension (hazard ratio [HR] 1.011, 95 % confidence interval [CI] 1.0061.017, P-nonlinear=0.803) and a decreased risk of hypotension (0.988, 0.9770.998, P-nonlinear=0.109). The lightBP association was found to be stronger in females (P=0.022), those with short sleep durations (P=0.049), and those with a high genetic risk of hypertension (P<0.001). Potential mechanisms included increases in biological age (proportion mediated, 24.1 %, P<0.001), neutrophil count (5.4 %, P<0.001), body mass index (32.0 %, P<0.001), etc. CONCLUSIONS: Our study revealed a positive lightBP association. Potential mechanisms include inflammation, aging, and lifestyle changes. Further epidemiological and experimental investigations are necessary to validate these findings.
Collapse
Affiliation(s)
- Sicheng Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Liyong Lu
- Center for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; NHC Key Lab of Health Economics and Policy Research (Shandong University), Jinan, Shandong, China
| | - Wenpan Xian
- Department of Stomatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jiawei Li
- Department of Epidemiology and Health Statistics, West China School of Public Health / West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuaiming Xu
- Department of Epidemiology and Health Statistics, West China School of Public Health / West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiajin Chen
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
3
|
Manoharan MM, Montes GC, Acquarone M, Swan KF, Pridjian GC, Nogueira Alencar AK, Bayer CL. Metabolic theory of preeclampsia: implications for maternal cardiovascular health. Am J Physiol Heart Circ Physiol 2024; 327:H582-H597. [PMID: 38968164 PMCID: PMC11442029 DOI: 10.1152/ajpheart.00170.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Preeclampsia (PE) is a multisystemic disorder of pregnancy that not only causes perinatal mortality and morbidity but also has a long-term toll on the maternal and fetal cardiovascular system. Women diagnosed with PE are at greater risk for the subsequent development of hypertension, ischemic heart disease, cardiomyopathy, cerebral edema, seizures, and end-stage renal disease. Although PE is considered heterogeneous, inefficient extravillous trophoblast (EVT) migration leading to deficient spiral artery remodeling and increased uteroplacental vascular resistance is the likely initiation of the disease. The principal pathophysiology is placental hypoxia, causing subsequent oxidative stress, leading to mitochondrial dysfunction, mitophagy, and immunological imbalance. The damage imposed on the placenta in turn results in the "stress response" categorized by the dysfunctional release of vasoactive components including oxidative stressors, proinflammatory factors, and cytokines into the maternal circulation. These bioactive factors have deleterious effects on systemic endothelial cells and coagulation leading to generalized vascular dysfunction and hypercoagulability. A better understanding of these metabolic factors may lead to novel therapeutic approaches to prevent and treat this multisystemic disorder. In this review, we connect the hypoxic-oxidative stress and inflammation involved in the pathophysiology of PE to the resulting persistent cardiovascular complications in patients with preeclampsia.
Collapse
Affiliation(s)
- Mistina M Manoharan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, United States
| | - Guilherme C Montes
- Department of Pharmacology and Psychobiology, Roberto Alcântara Gomes Institute Biology (IBRAG), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Mariana Acquarone
- Department of Neurology, Tulane University, New Orleans, Louisiana, United States
| | - Kenneth F Swan
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| | - Gabriella C Pridjian
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| | | | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, United States
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
4
|
Colom G, Hernandez-Albors A, Barallat J, Galan A, Bayes-Genis A, Salvador JP, Marco MP. A multiplexed immunochemical microarray for the determination of cardiovascular disease biomarkers. Mikrochim Acta 2023; 191:53. [PMID: 38151630 PMCID: PMC10752916 DOI: 10.1007/s00604-023-06119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023]
Abstract
A fluorescence antibody microarray has been developed for the determination of relevant cardiovascular disease biomarkers for the analysis of human plasma samples. Recording characteristic protein molecular fingerprints to assess individual's states of health could allow diagnosis to go beyond the simple identification of the disease, providing information on its stage or prognosis. Precisely, cardiovascular diseases (CVDs) are complex disorders which involve different degenerative processes encompassing a collection of biomarkers related to disease progression or stage. The novel approach that we propose is a fluorescent microarray chip has been developed accomplishing simultaneous determination of the most significant cardiac biomarkers in plasma aiming to determine the CVD status stage of the patient. As proof of concept, we have chosen five relevant biomarkers, C-reactive protein (CRP) as biomarker of inflammation, cystatin C (CysC) as biomarker of renal failure that is directly related with heart failure, cardiac troponin I (cTnI) as already established biomarker for cardiac damage, heart fatty acid binding protein as biomarker of ischemia (H-FABP), and finally, NT-proBNP (N-terminal pro-brain natriuretic peptide), a well-established heart failure biomarker. After the optimization of the multiplexed microarray, the assay allowed the simultaneous determination of 5 biomarkers in a buffer solution reaching LODs of 15 ± 5, 3 ± 1, 24 ± 3, 25 ± 3, and 3 ± 1 ng mL-1, for CRP, CysC, H-FABP, cTnI, and NT-proBNP, respectively. After solving the matrix effect, and demonstrating the accuracy for each biomarker, the chip was able to determine 24 samples per microarray chip. Then, the microarray has been used on a small pilot clinical study with 29 plasma samples from clinical patients which suffered different CVD and other related disorders. Results show the superior capability of the chip to provide clinical information related to the disease in terms of turnaround time (1 h 30 min total assay and measurement) and amount of information delivered in respect to reference technologies used in hospital laboratories (clinical analyzers). Despite the failure to detect c-TnI at the reported threshold, the microarray technology could be a powerful approach to diagnose the cardiovascular disease at early stage, monitor its progress, and eventually providing information about an eminent potential risk of suffering a myocardial infarction. The microarray chip here reported could be the starting point for achieving powerful multiplexed diagnostic technologies for the diagnosis of CVDs or any other pathology for which biomarkers have been identified at different stages of the disease.
Collapse
Affiliation(s)
- Gloria Colom
- Nanobiotechnology for Diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Alejandro Hernandez-Albors
- Nanobiotechnology for Diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Jaume Barallat
- Biochemistry Department, Metropolitan North Clinical Laboratory (LCMN), Germans Trias i Pujol Universitary Hospital, Ctra. de Canyet, s/n, Badalona, Barcelona, Spain
| | - Amparo Galan
- Institut del Cor Germans Trias I Pujol, Ctra. de Canyet, 1-3, 08916, Badalona, Spain
| | - Antoni Bayes-Genis
- Institut del Cor Germans Trias I Pujol, Ctra. de Canyet, 1-3, 08916, Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Juan-Pablo Salvador
- Nanobiotechnology for Diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Maria-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| |
Collapse
|
5
|
Chen C, Liu S, Liu J, Zheng Z, Zheng Y, Lin Z, Liu Y. No causal effect of genetically determined circulating homocysteine levels on psoriasis in the European population: evidence from a Mendelian randomization study. Front Immunol 2023; 14:1288632. [PMID: 38022504 PMCID: PMC10663369 DOI: 10.3389/fimmu.2023.1288632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background Although numerous studies demonstrated a link between plasma homocysteine (Hcy) levels and psoriasis, there still exists a certain level of controversy. Therefore, we conducted a Mendelian randomization study to investigate whether homocysteine plays a causative role in the development or exacerbation of psoriasis. Methods A two-sample Mendelian randomization (MR) analysis was conducted. Summary-level data for psoriasis were acquired from the latest R9 release results from the FinnGen consortium (9,267 cases and 364,071 controls). Single nucleotide polymorphisms (SNPs) robustly linked with plasma Hcy levels at the genome-wide significance threshold (p < 5 × 10-8) (18 SNPs) were recognized from the genome-wide meta-analysis on total Hcy concentrations (n = 44,147 participants) in individuals of European ancestry. MR analyses were performed utilizing the random-effect inverse variance-weighted (IVW), weighted median, and MR-Egger regression methods to estimate the associations between the ultimately filtrated SNPs and psoriasis. Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy. Results MR analyses revealed no causal effects of plasma Hcy levels on psoriasis [IVW: odds ratio (OR) = 0.995 (0.863-1.146), p = 0.941; weighed median method: OR = 0.985 (0.834-1.164), p = 0.862; MR-Egger regression method: OR = 0.959 (0.704-1.305), p = 0.795]. The sensitivity analyses displayed no evidence of heterogeneity and directional pleiotropy, and the causal estimates of Hcy levels were not influenced by any individual SNP. Conclusion Our study findings did not demonstrate a causal effect of genetically determined circulating Hcy levels on psoriasis.
Collapse
Affiliation(s)
- Chaojian Chen
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Shuo Liu
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Junhao Liu
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Ziqi Zheng
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Yixi Zheng
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Zhongliang Lin
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Yuchun Liu
- The Intensive Care Unit, Jieyang People’s Hospital, Jieyang, China
| |
Collapse
|
6
|
Zhang Z, Zhu H, Dang P, Wang J, Chang W, Wang X, Alghamdi N, Lu A, Zang Y, Wu W, Wang Y, Zhang Y, Cao S, Zhang C. FLUXestimator: a webserver for predicting metabolic flux and variations using transcriptomics data. Nucleic Acids Res 2023; 51:W180-W190. [PMID: 37216602 PMCID: PMC10320190 DOI: 10.1093/nar/gkad444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/29/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/, and stand-alone tools for local use are available at https://github.com/changwn/scFEA. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Zixuan Zhang
- College of Software, College of Computer Science and Technology, Jilin University, Changchun 130012, China
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Haiqi Zhu
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Computer Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Pengtao Dang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Electric Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Jia Wang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Computer Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Wennan Chang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiao Wang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Computer Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Norah Alghamdi
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alex Lu
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yong Zang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wenzhuo Wu
- Department of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yijie Wang
- Department of Computer Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Yu Zhang
- College of Software, College of Computer Science and Technology, Jilin University, Changchun 130012, China
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sha Cao
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Chen J, Yin D, Dou K. Intensified glycemic control by HbA1c for patients with coronary heart disease and Type 2 diabetes: a review of findings and conclusions. Cardiovasc Diabetol 2023; 22:146. [PMID: 37349787 PMCID: PMC10288803 DOI: 10.1186/s12933-023-01875-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
The occurrence and development of coronary heart disease (CHD) are closely linked to fluctuations in blood glucose levels. While the efficacy of intensified treatment guided by HbA1c levels remains uncertain for individuals with diabetes and CHD, this review summarizes the findings and conclusions regarding HbA1c in the context of CHD. Our review showed a curvilinear correlation between regulated level of HbA1c and therapeutic effectiveness of intensified glycemic control among patients with type 2 diabetes and coronary heart disease. It is necessary to optimize the dynamic monitoring indicators of HbA1c, combine genetic profiles, haptoglobin phenotypes for example and select more suitable hypoglycemic drugs to establish more appropriate glucose-controlling guideline for patients with CHD at different stage of diabetes.
Collapse
Affiliation(s)
- Jingyang Chen
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Dong Yin
- Cardiometabolic Medicine Center, Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Kefei Dou
- Cardiometabolic Medicine Center, Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| |
Collapse
|
8
|
Chen GL, Zeng B, Jiang H, Daskoulidou N, Saurabh R, Chitando RJ, Xu SZ. Ca 2+ Influx through TRPC Channels Is Regulated by Homocysteine-Copper Complexes. Biomolecules 2023; 13:952. [PMID: 37371532 DOI: 10.3390/biom13060952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
An elevated level of circulating homocysteine (Hcy) has been regarded as an independent risk factor for cardiovascular disease; however, the clinical benefit of Hcy lowering-therapy is not satisfying. To explore potential unrevealed mechanisms, we investigated the roles of Ca2+ influx through TRPC channels and regulation by Hcy-copper complexes. Using primary cultured human aortic endothelial cells and HEK-293 T-REx cells with inducible TRPC gene expression, we found that Hcy increased the Ca2+ influx in vascular endothelial cells through the activation of TRPC4 and TRPC5. The activity of TRPC4 and TRPC5 was regulated by extracellular divalent copper (Cu2+) and Hcy. Hcy prevented channel activation by divalent copper, but monovalent copper (Cu+) had no effect on the TRPC channels. The glutamic acids (E542/E543) and the cysteine residue (C554) in the extracellular pore region of the TRPC4 channel mediated the effect of Hcy-copper complexes. The interaction of Hcy-copper significantly regulated endothelial proliferation, migration, and angiogenesis. Our results suggest that Hcy-copper complexes function as a new pair of endogenous regulators for TRPC channel activity. This finding gives a new understanding of the pathogenesis of hyperhomocysteinemia and may explain the unsatisfying clinical outcome of Hcy-lowering therapy and the potential benefit of copper-chelating therapy.
Collapse
Affiliation(s)
- Gui-Lan Chen
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Bo Zeng
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Hongni Jiang
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Nikoleta Daskoulidou
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Rahul Saurabh
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Rumbidzai J Chitando
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Shang-Zhong Xu
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
9
|
Xiao X, Deng H, Lin X, Ali ASM, Viscardi A, Guo Z, Qiao L, He Y, Han J. Selenium nanoparticles: Properties, preparation methods, and therapeutic applications. Chem Biol Interact 2023; 378:110483. [PMID: 37044285 DOI: 10.1016/j.cbi.2023.110483] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Selenium nanoparticles (SeNPs) are a unique type of nano-sized elemental selenium that have recently found wide application in biomedicine. It has been shown that the properties of SeNPs can be varied by different fabrication methods. Moreover, SeNPs have various therapeutic effects in medical applications due to their excellent biological and adaptable physical properties. At the same time, SeNPs can be used as a carrier medium for various therapeutic substances, which can bring out the full curative effects of the drugs. In this review, the differences in bioactivity properties of SeNPs prepared from different substances were reviewed; the therapeutic effects and mechanisms of SeNPs in cancer, inflammation, neurodegenerative diseases, diabetes, reproductive diseases, cardiovascular diseases, and other diseases were discussed; and the importance of the development of SeNPs was further emphasized.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Huan Deng
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Xue Lin
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Ahmed Sameir Mohamed Ali
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Angelo Viscardi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Ziwei Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Lichun Qiao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Yujie He
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Jing Han
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
10
|
Xu G, Lv J, Huang M, Zhu L, Tan S, Ding C. Comparison of Pairwise Venous and Fingertip Plasma Using Quantitative Proteomics Based on Data-Independent Acquisition. J Proteome Res 2023; 22:1347-1358. [PMID: 36882937 DOI: 10.1021/acs.jproteome.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Blood contains a great deal of health-related information and can be used to monitor human health status. Clinically, venous or fingertip blood is usually used for blood tests. However, the clinical application settings of the two sources of blood are unclear. In this study, the proteomes of pairwise venous plasma (VP) and fingertip plasma (FP) were analyzed, and the levels of 3797 proteins were compared between VP and FP. The Spearman's correlation coefficient for the relationship between protein levels of VP and FP ranges from 0.64 to 0.78 (p < 0.0001). The common pathways of VP and FP are related to cell-cell adhesion, protein stabilization, innate immune response, and complement activation, the classical pathway. The VP-overrepresented pathway is related to actin filament organization, while the FP-overrepresented pathway is related to the hydrogen peroxide catabolic process. ADAMTSL4, ADIPOQ, HIBADH, and XPO5 both in VP and FP are potential gender-related proteins. Notably, the VP proteome has a higher interpretation on age than the FP proteome, and CD14 is a potential age-related protein in VP but not in FP. Our study mapped the different proteomes between VP and FP, which can provide value for the standardization of clinical blood tests.
Collapse
Affiliation(s)
- Ganfei Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Jiacheng Lv
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Mingjing Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Lingli Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China.,State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
11
|
Choi YJ, Ailshire JA, Kim JK, Crimmins EM. Diet Quality and Biological Risk in a National Sample of Older Americans. J Aging Health 2022; 34:539-549. [PMID: 34779298 PMCID: PMC9098695 DOI: 10.1177/08982643211046818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives: Using comprehensive measures of biological risk, this study aims to investigate the relationship between intake of individual dietary components, overall diet quality, and biological dysregulation. Methods: We analyzed nationally representative data from 3734 older adults who participated in the Health and Retirement Study Venous Blood Study in 2016 and Health Care and Nutrition Survey in 2013. Results: Eleven out of 13 individual dietary components were associated with lower biological risk. Respondents with poor/suboptimal quality diet had higher biological risk than those with good quality diet. Discussion: Findings from this study emphasize the importance of healthy eating in improving health of older adults. Encouraging intake of fruits, greens and beans, whole grains, and fatty acids, while limiting consumption of sodium, added sugar, and saturated fat would improve overall diet quality and contribute to the prevention of chronic diseases and morbidity.
Collapse
Affiliation(s)
- Yeon Jin Choi
- University of Southern California, Los Angeles, CA, USA
| | | | - Jung Ki Kim
- University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
12
|
Song J, Shi X, Li X, Zheng J. Choline diet improves serum lipid parameters and alters egg composition in breeder ducks. Vet Med Sci 2022; 8:1553-1562. [PMID: 35384400 PMCID: PMC9297749 DOI: 10.1002/vms3.798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Choline is an important nutrient, playing key roles in numerous metabolic pathways relevant to animal health. OBJECTIVES The objective of this study was to evaluate the effect of dietary choline on the lipid parameters, cardiovascular health (CVH), and levels of egg trimethylamine (TMA) and cholesterol in breeder ducks during the late laying period. METHODS A total of 60 Jingjiang ducks were randomly separated into six replicates of 10 ducks each. After peak production until 65 weeks of age, the birds were fed a control basal diet. The same ducks served as the control group until 65 weeks of age, when the same ducks served as the choline-supplemented group, after 15 days of dietary choline supplementation at 2955 mg/kg choline above and over the basal diet initially provided. The 15 days of choline supplementation included an initial 5-day acclimatisation period. RESULTS Dietary choline supplementation increased serum TMA (p < 0.01), high-density lipoprotein cholesterol, very low-density lipoprotein, and triglyceride levels in older breeder ducks. However, it did not change the levels of trimethylamine N-oxide but decreased the atherosclerosis index compared with those of the control group (p < 0.01). Moreover, it increased (p < 0.01) the egg yolk TMA levels but did not change the concentrations of cholesterol in egg yolk. CONCLUSIONS Dietary choline supplementation had a beneficial effect on lipid parameters and CVH in older breeder ducks, although it increased the serum and egg yolk TMA levels.
Collapse
Affiliation(s)
- Jianlou Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, National Engineering Laboratory for Animal BreedingChina Agricultural UniversityBeijingChina
| | - Xuefeng Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, National Engineering Laboratory for Animal BreedingChina Agricultural UniversityBeijingChina
| | - Xingzheng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, National Engineering Laboratory for Animal BreedingChina Agricultural UniversityBeijingChina
| | - Jiangxia Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, National Engineering Laboratory for Animal BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
13
|
Li N, An P, Wang J, Zhang T, Qing X, Wu B, Sun L, Ding X, Niu L, Xie Z, Zhang M, Guo X, Chen X, Cai T, Luo J, Wang F, Yang F. Plasma proteome profiling combined with clinical and genetic features reveals the pathophysiological characteristics of β-thalassemia. iScience 2022; 25:104091. [PMID: 35378860 PMCID: PMC8976145 DOI: 10.1016/j.isci.2022.104091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/11/2022] Open
Abstract
The phenotype of β-thalassemia underlies multigene interactions, making clinical stratification complicated. An increasing number of genetic modifiers affecting the disease severity have been identified, but are still unable to meet the demand of precision diagnosis. Here, we systematically conducted a comparative plasma proteomic profiling on patients with β-thalassemia and healthy controls. Among 246 dysregulated proteins, 13 core protein signatures with excellent biomarker potential are proposed. The combination of proteome and patients' clinical data revealed patients with codons 41/42 -TTCT mutations have an elevated risk of higher iron burden, dysplasia, and osteoporosis than patients with other genotypes. Notably, 85 proteins correlating to fetal hemoglobin (Hb F) were identified, among which the abundance of 27 proteins may affect the transfusion burden in patients with β-thalassemia. The current study thus provides protein signatures as potential diagnostic biomarkers or therapeutic clues for β-thalassemia. 246 dysregulated proteins are detected in plasma of patients with β-thalassemia 13 potential biomarkers and 27 proteins related to disease progression are found Variations in plasma proteome reveal the disease pathophysiological characteristics Codons 41/42 -TTCT carriers have higher ferritin levels compared to non-carriers
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqing Qing
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Wu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Ding
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Niu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhensheng Xie
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengmeng Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojing Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tanxi Cai
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianming Luo
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021 China
| | - Fudi Wang
- The Fourth Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058 , China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Lipoprotein-associated phospholipase A 2: A paradigm for allosteric regulation by membranes. Proc Natl Acad Sci U S A 2022; 119:2102953118. [PMID: 34996868 PMCID: PMC8764669 DOI: 10.1073/pnas.2102953118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
Lp-PLA2 is a physiologically important human enzyme and an inflammatory biomarker for assessing risk factors associated with cardiovascular diseases. It is associated with low- and high-density lipoproteins in human plasma and acts on the outside of the phospholipid monolayer that coats these particles, in stark contrast to traditional PLA2 enzymes that act on bilayer membranes. This study addresses the allosteric activation of Lp-PLA2 by phospholipid monolayers and membranes, its precise selectivity and specificity for particular oxidized and short acyl-chain phospholipid substrates not previously possible. Of particular importance, this work identifies and confirms by site-directed mutagenesis a phospholipid head-group binding pocket distinct from known drug inhibitor binding pockets that informs us about Lp-PLA2’s mechanism of action and creates opportunities for additional therapeutic approaches. Lipoprotein-associated phospholipase A2 (Lp-PLA2) associates with low- and high-density lipoproteins in human plasma and specifically hydrolyzes circulating oxidized phospholipids involved in oxidative stress. The association of this enzyme with the lipoprotein’s phospholipid monolayer to access its substrate is the most crucial first step in its catalytic cycle. The current study demonstrates unequivocally that a significant movement of a major helical peptide region occurs upon membrane binding, resulting in a large conformational change upon Lp-PLA2 binding to a phospholipid surface. This allosteric regulation of an enzyme’s activity by a large membrane-like interface inducing a conformational change in the catalytic site defines a unique dimension of allosterism. The mechanism by which this enzyme associates with phospholipid interfaces to select and extract a single phospholipid substrate molecule and carry out catalysis is key to understanding its physiological functioning. A lipidomics platform was employed to determine the precise substrate specificity of human recombinant Lp-PLA2 and mutants. This study uniquely elucidates the association mechanism of this enzyme with membranes and its resulting conformational change as well as the extraction and binding of specific oxidized and short acyl-chain phospholipid substrates. Deuterium exchange mass spectrometry coupled with molecular dynamics simulations was used to define the precise specificity of the subsite for the oxidized fatty acid at the sn-2 position of the phospholipid backbone. Despite the existence of several crystal structures of this enzyme cocrystallized with inhibitors, little was understood about Lp-PLA2‘s specificity toward oxidized phospholipids.
Collapse
|
15
|
Vitamin D Status in a Rural Italian Population. REPORTS 2021. [DOI: 10.3390/reports5010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Vitamin D is known as an antirachitic factor, although it also plays a critical role in several nonskeletal diseases. In our study, we evaluated vitamin D status and sex, age and seasonal association in a general population cohort living in central Italy. Data from 1174 men and 2274 women aged 20–81 were analyzed, and stored serum samples were assayed for 25-hydroxyvitamin D (25(OH)D). Vitamin D was low in both sexes with values significantly lower in women than in men; furthermore, its deficiency was highly correlated with age. The younger men had just sufficient 25(OH)D levels (32.3 ng/mL ± 13.2), which decreased with increasing age. The younger women showed insufficient 25(OH)D levels (24.8 ng/mL ± 11.9) that, as with men, further decreased with increasing age. This study demonstrated that hypovitaminosis D may be a very frequent condition also in a rural central Italian area with remarkable solar irradiation throughout the year. Our data clearly indicated an evident seasonal trend: at the end of the winter, serum 25(OH)D levels of the examined cohort were below the official sufficient value for both adult sexes. Sufficient levels were just reached in summer for men and only at the end of summer for young women.
Collapse
|
16
|
Identification of Key Exosome Gene Signature in Mediating Coronary Heart Disease by Weighted Gene Correlation Network Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3440498. [PMID: 34692829 PMCID: PMC8536412 DOI: 10.1155/2021/3440498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/07/2021] [Accepted: 09/18/2021] [Indexed: 12/04/2022]
Abstract
Background Coronary heart disease (CHD) is the most prevalent disease with an unelucidated pathogenetic mechanism and is mediated by complex molecular interactions of exosomes. Here, we aimed to identify differentially expressed exosome genes for the disease development and prognosis of CHD. Method Six CHD samples and 32 normal samples were downloaded from the exoRbase database to identify the candidate genes in the CHD. The differentially expressed genes (DEGs) were identified. And then, weighted gene correlation network analysis (WGCNA) was used to investigate the modules in coexpressed genes between CHD samples and normal samples. DEGs and the module of the WGCNA were intersected to obtain the most relevant exosome genes. After that, the function enrichment analyses and protein-protein interaction network (PPI) were performed for the particular module using STRING and Cytoscape software. Finally, the CIBERSORT algorithm was used to analyze the immune infiltration of exosome genes between CHD samples and normal samples. Result We obtain a total of 715 overlapping exosome genes located at the intersection of the DEGs and key modules. The Gene Ontology enrichment of DEGs in the blue module included inflammatory response, neutrophil degranulation, and activation of CHD. In addition, protein-protein networks were constructed, and hub genes were identified, such as LYZ, CAMP, HP, ORM1, and LTF. The immune infiltration profiles varied significantly between normal controls and CHD. Finally, we found that mast cells activated and eosinophils had a positive correlation. B cell memory had a significant negative correlation with B cell naive. Besides, neutrophils and mast cells were significantly increased in CHD patients. Conclusion The underlying mechanism may be related to neutrophil degranulation and the immune response. The hub genes and the difference in immune infiltration identified in the present study may provide new insights into the diagnostic and provide candidate targets for CHD.
Collapse
|
17
|
Liu M, Zhang H, Wang G. Hyperhomocysteinemia Promotes Carotid Artery Damage in Newly Diagnosed Type 2 Diabetic Patients Without Hypercholesterolemia. Metab Syndr Relat Disord 2021; 19:575-580. [PMID: 34669508 DOI: 10.1089/met.2021.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The relationship between serum homocysteine levels and carotid artery damage in subjects with newly diagnosed type 2 diabetes mellitus remains unclear. The effect of hyperhomocysteinemia (HHCY) on carotid artery damage in patients with different cholesterol levels needs to be further investigated. Methods: In total 456 newly diagnosed type 2 diabetes from Beijing Chaoyang Hospital were recruited into the study. Patients were divided into four groups according to the levels of serum homocysteine and cholesterol. Carotid artery damage was defined as thickened intima-media and/or plaque formation. Results: In all the subjects, 80.2% patients had HHCY. The incidence of carotid artery injury was significantly lower in diabetic patients with normal homocysteine levels and nonhypercholesterolemia. Spearman correlation analysis showed homocysteine was positively correlated with free fatty acid and negatively correlated with glucose metabolism parameters. Logistic regression showed HHCY was correlated with carotid artery injury after adjusting for traditional cerebrovascular risk factors in type 2 diabetes without hypercholesterolemia (odds risk = 3.197, P = 0.022). Whereas HHCY was not associated with carotid artery injury in either total study population or hypercholesterolemia subgroup. Conclusions: HHCY was correlated with carotid artery damage in newly diagnosed type 2 diabetic subjects without hypercholesterolemia. How to improve the adverse vascular outcomes mediated by HHCY for diabetic patients needed further investigation.
Collapse
Affiliation(s)
- Man Liu
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
A Review of Novel Cardiac Biomarkers in Acute or Chronic Cardiovascular Diseases: The Role of Soluble ST2 (sST2), Lipoprotein-Associated Phospholipase A2 (Lp-PLA2), Myeloperoxidase (MPO), and Procalcitonin (PCT). DISEASE MARKERS 2021; 2021:6258865. [PMID: 34422136 PMCID: PMC8371622 DOI: 10.1155/2021/6258865] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 01/15/2023]
Abstract
While the received traditional predictors are still the mainstay in the diagnosis and prognosis of CVD events, increasing studies have focused on exploring the ancillary effect of biomarkers for the aspiring of precision. Under which circumstances, soluble ST2 (sST2), lipoprotein-associated phospholipase A2 (Lp-PLA2), myeloperoxidase (MPO), and procalcitonin (PCT) have recently emerged as promising markers in the field of both acute and chronic cardiovascular diseases. Existent clinical studies have demonstrated the significant associations between these markers with various CVD outcomes, which further verified the potentiality of markers in helping risk stratification and diagnostic and therapeutic work-up of patients. The current review article is aimed at illuminating the applicability of these four novels and often neglected cardiac biomarkers in common clinical scenarios, including acute myocardial infarction, acute heart failure, and chronic heart failure, especially in the emergency department. By thorough classification, combination, and discussion of biomarkers with clinical and instrumental evaluation, we hope the current study can provide insights into biomarkers and draw more attention to their importance.
Collapse
|
19
|
GDF15 and Cardiac Cells: Current Concepts and New Insights. Int J Mol Sci 2021; 22:ijms22168889. [PMID: 34445593 PMCID: PMC8396208 DOI: 10.3390/ijms22168889] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Growth and differentiation factor 15 (GDF15) belongs to the transforming growth factor-β (TGF-β) superfamily of proteins. Glial-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL) is an endogenous receptor for GDF15 detected selectively in the brain. GDF15 is not normally expressed in the tissue but is prominently induced by “injury”. Serum levels of GDF15 are also increased by aging and in response to cellular stress and mitochondrial dysfunction. It acts as an inflammatory marker and plays a role in the pathogenesis of cardiovascular diseases, metabolic disorders, and neurodegenerative processes. Identified as a new heart-derived endocrine hormone that regulates body growth, GDF15 has a local cardioprotective role, presumably due to its autocrine/paracrine properties: antioxidative, anti-inflammatory, antiapoptotic. GDF15 expression is highly induced in cardiomyocytes after ischemia/reperfusion and in the heart within hours after myocardial infarction (MI). Recent studies show associations between GDF15, inflammation, and cardiac fibrosis during heart failure and MI. However, the reason for this increase in GDF15 production has not been clearly identified. Experimental and clinical studies support the potential use of GDF15 as a novel therapeutic target (1) by modulating metabolic activity and (2) promoting an adaptive angiogenesis and cardiac regenerative process during cardiovascular diseases. In this review, we comment on new aspects of the biology of GDF15 as a cardiac hormone and show that GDF15 may be a predictive biomarker of adverse cardiac events.
Collapse
|
20
|
Stillman CM, Jakicic J, Rogers R, Alfini AJ, Smith JC, Watt J, Kang C, Erickson KI. Changes in cerebral perfusion following a 12-month exercise and diet intervention. Psychophysiology 2021; 58:e13589. [PMID: 32343445 DOI: 10.1111/psyp.13589] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/17/2019] [Accepted: 04/03/2020] [Indexed: 01/18/2023]
Abstract
Overweight and obesity may damage the cerebrovascular architecture, resulting in a significant reduction in cerebral blood flow. To date, there have been few randomized clinical trials (RCT) examining whether obesity-related reductions in cerebral blood flow could be modified by weight loss. Further, it is unknown whether the behavioral intervention strategy for weight loss (i.e., diet alone or diet combined with exercise) differentially influences cerebral blood flow in adults with overweight or obesity. The primary aim of this study was to determine whether a 12-month RCT of exercise and diet increases cerebral blood flow in 125 midlife (Mean age ± SD = 44.63 ± 8.36 years) adults with overweight and obesity. Further, we evaluated whether weight loss via diet combined with aerobic exercise has an added effect on changes in cerebral blood flow compared to weight loss via diet alone and whether there were regionally specific effects of the type of behavioral intervention on cerebral blood flow patterns. Consistent with our predictions, a 12-month diet and exercise program resulting in 10% weight loss increased cerebral blood flow. These effects were widespread and extended throughout frontal, parietal, and subcortical regions. Further, there was some regional specificity of effects for both diet-only and diet combined with exercise. Our results demonstrate that weight-related reductions in cerebral blood flow can be modified by 10% weight loss over the course of 12 months and that interventions involving exercise exposure may provide unique effects on cerebral blood flow compared to interventions involving only diet.
Collapse
Affiliation(s)
| | - John Jakicic
- Department of Health and Physical Activity, University of Pittsburgh, Pittsburgh, PA, USA
| | - Renee Rogers
- Department of Health and Physical Activity, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alfonso J Alfini
- Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA
| | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, USA
| | - Jennifer Watt
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chaeryon Kang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Deng M, Yin Y, Zhang Q, Zhou X, Hou G. Identification of Inflammation-Related Biomarker Lp-PLA2 for Patients With COPD by Comprehensive Analysis. Front Immunol 2021; 12:670971. [PMID: 34093570 PMCID: PMC8176901 DOI: 10.3389/fimmu.2021.670971] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a complex and persistent lung disease and lack of biomarkers. The aim of this study is to screen and verify effective biomarkers for medical practice. Methods Differential expressed genes analysis and weighted co-expression network analysis were used to explore potential biomarker. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene set enrichment analysis (GSEA) analysis were used to explore potential mechanism. CIBERSORTx website was used to evaluate tissue-infiltrating immune cells. Enzyme-linked immunosorbent assay (ELISA) was used to assess the concentrations of the Lp-PLA2 in serum. Results Ten genes were selected via combined DEGs and WGCNA. Furthermore, PLA2G7 was choose based on validation from independent datasets. Immune infiltrate and enrichment analysis suggest PLA2G7 may regulate immune pathway via macrophages. Next, Lp-PLA2(coded by PLA2G7 gene) level was upregulated in COPD patients, increased along with The Global Average of COPD (GOLD) stage. In additional, Lp-PLA2 level was significant correlate with FEV1/FVC, BMI, FFMI, CAT score, mMRC score and 6MWD of COPD patients. Finally, the predictive efficiency of Lp-PLA2 level (AUC:0.796) and derived nomogram model (AUC:0.884) in exercise tolerance was notably superior to that of the sit-to-stand test and traditional clinical features. Conclusion Lp-PLA2 is a promising biomarker for COPD patients and is suitable for assessing exercise tolerance in clinical practice.
Collapse
Affiliation(s)
- Mingming Deng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Qin Zhang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Xiaoming Zhou
- Department of Pulmonary and Critical Care Medicine, Fourth Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| |
Collapse
|
22
|
Geyer PE, Mann SP, Treit PV, Mann M. Plasma Proteomes Can Be Reidentifiable and Potentially Contain Personally Sensitive and Incidental Findings. Mol Cell Proteomics 2021; 20:100035. [PMID: 33444735 PMCID: PMC7950134 DOI: 10.1074/mcp.ra120.002359] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
The goal of clinical proteomics is to identify, quantify, and characterize proteins in body fluids or tissue to assist diagnosis, prognosis, and treatment of patients. In this way, it is similar to more mature omics technologies, such as genomics, that are increasingly applied in biomedicine. We argue that, similar to those fields, proteomics also faces ethical issues related to the kinds of information that is inherently obtained through sample measurement, although their acquisition was not the primary purpose. Specifically, we demonstrate the potential to identify individuals both by their characteristic, individual-specific protein levels and by variant peptides reporting on coding single nucleotide polymorphisms. Furthermore, it is in the nature of blood plasma proteomics profiling that it broadly reports on the health status of an individual-beyond the disease under investigation. Finally, we show that private and potentially sensitive information, such as ethnicity and pregnancy status, can increasingly be derived from proteomics data. Although this is potentially valuable not only to the individual, but also for biomedical research, it raises ethical questions similar to the incidental findings obtained through other omics technologies. We here introduce the necessity of-and argue for the desirability for-ethical and human-rights-related issues to be discussed within the proteomics community. Those thoughts are more fully developed in our accompanying manuscript. Appreciation and discussion of ethical aspects of proteomic research will allow for deeper, better-informed, more diverse, and, most importantly, wiser guidelines for clinical proteomics.
Collapse
Affiliation(s)
- Philipp E Geyer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; Faculty of Health Sciences, NNF Center for Protein Research, University of Copenhagen, Copenhagen, Denmark; OmicEra Diagnostics GmbH, Planegg, Germany.
| | - Sebastian Porsdam Mann
- Department of Media, Cognition and Communication, University of Copenhagen, Copenhagen, Denmark; Uehiro Center for Practical Ethics, Oxford University, Oxford, UK
| | - Peter V Treit
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; Faculty of Health Sciences, NNF Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Murray KD, Singh MV, Zhuang Y, Uddin MN, Qiu X, Weber MT, Tivarus ME, Wang HZ, Sahin B, Zhong J, Maggirwar SB, Schifitto G. Pathomechanisms of HIV-Associated Cerebral Small Vessel Disease: A Comprehensive Clinical and Neuroimaging Protocol and Analysis Pipeline. Front Neurol 2020; 11:595463. [PMID: 33384655 PMCID: PMC7769815 DOI: 10.3389/fneur.2020.595463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: We provide an in-depth description of a comprehensive clinical, immunological, and neuroimaging study that includes a full image processing pipeline. This approach, although implemented in HIV infected individuals, can be used in the general population to assess cerebrovascular health. Aims: In this longitudinal study, we seek to determine the effects of neuroinflammation due to HIV-1 infection on the pathomechanisms of cerebral small vessel disease (CSVD). The study focuses on the interaction of activated platelets, pro-inflammatory monocytes and endothelial cells and their impact on the neurovascular unit. The effects on the neurovascular unit are evaluated by a novel combination of imaging biomarkers. Sample Size: We will enroll 110 HIV-infected individuals on stable combination anti-retroviral therapy for at least three months and an equal number of age-matched controls. We anticipate a drop-out rate of 20%. Methods and Design: Subjects are followed for three years and evaluated by flow cytometric analysis of whole blood (to measure platelet activation, platelet monocyte complexes, and markers of monocyte activation), neuropsychological testing, and brain MRI at the baseline, 18- and 36-month time points. MRI imaging follows the recommended clinical small vessel imaging standards and adds several advanced sequences to obtain quantitative assessments of brain tissues including white matter microstructure, tissue susceptibility, and blood perfusion. Discussion: The study provides further understanding of the underlying mechanisms of CSVD in chronic inflammatory disorders such as HIV infection. The longitudinal study design and comprehensive approach allows the investigation of quantitative changes in imaging metrics and their impact on cognitive performance.
Collapse
Affiliation(s)
- Kyle D Murray
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States
| | - Meera V Singh
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Md Nasir Uddin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Xing Qiu
- Department of Biostatistics, University of Rochester, Rochester, NY, United States
| | - Miriam T Weber
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Madalina E Tivarus
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States.,Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Henry Z Wang
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| | - Bogachan Sahin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Jianhui Zhong
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States.,Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States.,Department of Biostatistics, University of Rochester, Rochester, NY, United States
| | - Sanjay B Maggirwar
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester, Rochester, NY, United States.,Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| |
Collapse
|
24
|
Qamar W, Alqahtani S, Ahamad SR, Ali N, Altamimi MA. Untargeted GC-MS investigation of serum metabolomics of coronary artery disease patients. Saudi J Biol Sci 2020; 27:3727-3734. [PMID: 33304184 PMCID: PMC7715060 DOI: 10.1016/j.sjbs.2020.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 01/03/2023] Open
Abstract
Recent advances in metabolomics provide tools to investigate human metabolome in order to establish new parameters to study different approaches towards diagnostics, diseases and their treatment. The present study focused on the untargeted identification of metabolites in serum of patients with coronary artery disease who were under treatment at the time of sample collection. AUCs (Area Under the Curves) from different peaks were considered for the analysis and comparison purposes. The metabolome was studied using GC–MS (Gas Chromatography Mass Spectrometry) and the metabolites were identified with NIST (The National Institute of Standards and Technology) and Wiley library matches. A total of 17 metabolites were identified and focused on to compare with the metabolome of healthy individuals. T test analysis found significant differences in alanine, malonic acid, ribitol, D-glucose, mannose (P < 0.001), acetohydroxamic acid, N-carboxyglycine, and aminobutyrate (P < 0.05). Principal Component Analysis of serum metabolites data found three components out of 17 metabolites; RC1 (Acetohydroxamic acid, alanine, D-glucose, malonic acid, mannose, N-carboxy glycine and ribitol), RC2 (Heptadecanoic acid, hexadecanoic acid, octadecanoic acid and Trans-9-octadecanoic acid), RC3 (Aminobutyrate, D-sorbit, gamma lactone, valine, benzene propanoic acid and lactic acid). No correlation was found among the components.
Collapse
Affiliation(s)
- Wajhul Qamar
- Central Laboratory, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Kingdom of Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Kingdom of Saudi Arabia
| | - Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Syed Rizwan Ahamad
- Central Laboratory, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Kingdom of Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad A. Altamimi
- Central Laboratory, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Kingdom of Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Corresponding author at: Central Laboratory, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Kingdom of Saudi Arabia, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
25
|
Rochette L, Zeller M, Cottin Y, Vergely C. Insights Into Mechanisms of GDF15 and Receptor GFRAL: Therapeutic Targets. Trends Endocrinol Metab 2020; 31:939-951. [PMID: 33172749 DOI: 10.1016/j.tem.2020.10.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/25/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
Growth and differentiation factor 15 (GDF15) belongs to the transforming growth factor-β (TGF-β) superfamily proteins. GDF15 acts as an inflammatory marker, and it plays a role in pathogenesis of tumors, ischemic diseases, metabolic disorders, and neurodegenerative processes. GDF15 is not normally expressed in the tissue; it is prominently induced following 'injury'. GDF15 functions are critical for the regulation of endothelial adaptations after vascular damage. Recently, four research groups simultaneously identified glial-derived neurotrophic factor (GDNF)-family receptor α-like (GFRAL) in the brain, an orphan receptor as the receptor for GDF15, signaling through the coreceptor RET. In this article, new aspects of the biology of GDF15 and receptor GFRAL, and their relationship with various pathologies, are commented on.
Collapse
Affiliation(s)
- Luc Rochette
- Research team, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA 7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 boulevard Jeanne d' Arc, 21079 DIJON, France.
| | - Marianne Zeller
- Research team, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA 7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 boulevard Jeanne d' Arc, 21079 DIJON, France
| | - Yves Cottin
- Research team, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA 7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 boulevard Jeanne d' Arc, 21079 DIJON, France; Cardiology Unit, Dijon University Hospital Center, Dijon, France
| | - Catherine Vergely
- Research team, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA 7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 boulevard Jeanne d' Arc, 21079 DIJON, France
| |
Collapse
|
26
|
Metformin decreased myocardial fibrosis and apoptosis in hyperhomocysteinemia -induced cardiac hypertrophy. Curr Res Transl Med 2020; 69:103270. [PMID: 33268288 DOI: 10.1016/j.retram.2020.103270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/23/2020] [Accepted: 10/04/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hyperhomocysteinemia (HHcy) is one of the major risk factors of cardiovascular diseases. Metformin acts as a cardioprotective role in several cardiovascular diseases, including ischemia/reperfusion, atherosclerosis, and myocardial infarction. However, whether metformin protects against HHcy-induced cardiac hypertrophy is unclear. METHODS AND RESULTS HHcy model was established in C57BL/6 mice with high L-methionine (L-MET) diet for 12 weeks. AC16 cells were exposed to homocysteine (Hcy) and then intervened with different concentrations of metformin in in vitro studies. The results showed that HHcy was able to induce cardiac hypertrophy, and metformin could abrogate this effect. HHcy increased the fibrosis area and induced apoptosis in the myocardium, whereas metformin could reverse the detrimental effects above. TUNEL assay showed that metformin was able to decrease Hcy-induced apoptosis in AC16 cells. Moreover, western blotting assay revealed that metformin could decrease Hcy-induced expression of Bax and cleaved caspase3, and increase the expression of Bcl-2. CONCLUSIONS This study demonstrates that metformin is able to attenuate HHcy-induced cardiac hypertrophy by decreasing myocardial fibrosis and apoptosis.
Collapse
|
27
|
Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5245308. [PMID: 33014272 PMCID: PMC7512065 DOI: 10.1155/2020/5245308] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Dyslipidaemia has a prominent role in the onset of notorious atherosclerosis, a disease of medium to large arteries. Atherosclerosis is the prime root of cardiovascular events contributing to the most considerable number of morbidity and mortality worldwide. Factors like cellular senescence, genetics, clonal haematopoiesis, sedentary lifestyle-induced obesity, or diabetes mellitus upsurge the tendency of atherosclerosis and are foremost pioneers to definitive transience. Accumulation of oxidized low-density lipoproteins (Ox-LDLs) in the tunica intima triggers the onset of this disease. In the later period of progression, the build-up plaques rupture ensuing thrombosis (completely blocking the blood flow), causing myocardial infarction, stroke, and heart attack, all of which are common atherosclerotic cardiovascular events today. The underlying mechanism is very well elucidated in literature but the therapeutic measures remains to be unleashed. Researchers tussle to demonstrate a clear understanding of treating mechanisms. A century of research suggests that lowering LDL, statin-mediated treatment, HDL, and lipid-profile management should be of prime interest to retard atherosclerosis-induced deaths. We shall brief the Ox-LDL-induced atherogenic mechanism and the treating measures in line to impede the development and progression of atherosclerosis.
Collapse
|
28
|
Andújar-Vera F, García-Fontana C, Lozano-Alonso S, González-Salvatierra S, Iglesias-Baena I, Muñoz-Torres M, García-Fontana B. Association between oxidative-stress-related markers and calcified femoral artery in type 2 diabetes patients. J Pharm Biomed Anal 2020; 190:113535. [PMID: 32858413 DOI: 10.1016/j.jpba.2020.113535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 11/17/2022]
Abstract
Currently, there are not many in-depth studies focusing on the protein analysis of antioxidants involved in the calcification of the femoral artery. In this context, this study aimed to increase the knowledge of the molecular redox mechanisms involved in this process. Samples from calcified femoral artery sections of seven patients diagnosed with type 2 diabetes (T2D) and critical ischemia were analyzed. The isolated proteins were identified using liquid chromatography and mass-mass spectrometry and were used to generate a protein-protein interaction (PPI) network. Subsequently, highly interconnected regions within the PPI network were identified to obtain a representative module linked to oxidative stress. The proteins of this module with a higher degree of centrality (hubs) were selected to validate them by datamining, transcriptomic and proteomic assays. The analysis of modules of the femoral PPI network showed a module with mainly antioxidant function in which superoxide dismutase 2 (SOD2) was reported as the most important hub. SOD2 was validated at transcriptomic and proteomic level and confirmed by datamining. These results indicate that SOD activity is highly linked to the atherosclerotic process. We suggest that SOD2 could be a potential therapeutic target to prevent the calcification of the femoral artery. The maintenance of optimal SOD2 levels and its cofactors could be used as a preventive strategy for vascular calcification and the related cardiovascular complications in T2D patients.
Collapse
Affiliation(s)
- Francisco Andújar-Vera
- Instituto De Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain; Fundación para la Investigación Biosanitaria de Andalucía Oriental (FIBAO), Avda. de Madrid 15, 18012 Granada, Spain.
| | - Cristina García-Fontana
- Instituto De Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain; Fundación para la Investigación Biosanitaria de Andalucía Oriental (FIBAO), Avda. de Madrid 15, 18012 Granada, Spain.
| | - Silvia Lozano-Alonso
- Instituto De Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain; Angiology and Vascular Surgery Unit, Universitary San Cecilio Hospital, Avda. del conocimiento s/n, 18016 Granada, Spain.
| | - Sheila González-Salvatierra
- Instituto De Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain; Fundación para la Investigación Biosanitaria de Andalucía Oriental (FIBAO), Avda. de Madrid 15, 18012 Granada, Spain; Department of Medicine, University of Granada, Avda. de la investigación 11, 18016 Granada, Spain.
| | | | - Manuel Muñoz-Torres
- Instituto De Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain; Department of Medicine, University of Granada, Avda. de la investigación 11, 18016 Granada, Spain; Endocrinology and Nutrition Unit, Universitary San Cecilio Hospital, Avda. del conocimiento s/n, 18016 Granada, Spain; CIBERFES, Instituto de Salud Carlos III, Avda. Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Beatriz García-Fontana
- Instituto De Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain; CIBERFES, Instituto de Salud Carlos III, Avda. Monforte de Lemos 3-5, 28029 Madrid, Spain.
| |
Collapse
|
29
|
Zheng Z, Liu L, Zhou K, Ding L, Zeng J, Zhang W. Anti-Oxidant and Anti-Endothelial Dysfunctional Properties of Nano-Selenium in vitro and in vivo of Hyperhomocysteinemic Rats. Int J Nanomedicine 2020; 15:4501-4521. [PMID: 32606691 PMCID: PMC7320884 DOI: 10.2147/ijn.s255392] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/25/2020] [Indexed: 02/01/2023] Open
Abstract
Purpose Elevation of blood homocysteine (Hcy) level (hyperhomocysteinemia) is a risk factor for cardiovascular disorders and is closely associated with endothelial dysfunction. The present study aims to investigate the protective effect and underlying mechanism of nanoscale selenium (Nano-Se) in Hcy-mediated vascular endothelial cell dysfunction in vitro and in vivo. Materials and Methods By incubating vascular endothelial cells with exogenous Hcy and generating hyperhomocysteinemic rat model, the effects of Nano-Se on hyperhomocysteinemia-mediated endothelial dysfunction and its essential mechanisms were investigated. Results Nano-Se inhibited Hcy-induced mitochondrial oxidative damage and apoptosis by preventing the downregulation of glutathione peroxidase enzyme 1 and 4 (GPX1, GPX4) in the vascular endothelial cells, thus effectively prevented the vascular damage in vitro and in vivo in the hyperhomocysteinemic rats. Nano-Se possessed similar protective effects but lower toxicity against Hcy in vascular endothelial cells when compared with other forms of Se. Conclusion The application of Nano-Se could serve as a novel promising strategy against Hcy-mediated vascular dysfunction with reduced risk of Se toxicity.
Collapse
Affiliation(s)
- Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Lijuan Liu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Kaiwen Zhou
- The First Clinical Medical College, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Lu Ding
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China.,Jiangxi Hypertension Research Institute, Nanchang, Jiangxi 330006, People's Republic of China
| | - Junyi Zeng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China.,Jiangxi Hypertension Research Institute, Nanchang, Jiangxi 330006, People's Republic of China
| | - Wan Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China.,Jiangxi Hypertension Research Institute, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
30
|
Kim MJ, Jung SK. Nutraceuticals for prevention of atherosclerosis: Targeting monocyte infiltration to the vascular endothelium. J Food Biochem 2020; 44:e13200. [PMID: 32189369 DOI: 10.1111/jfbc.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death, globally, and is a serious problem in developing countries. Preventing atherosclerosis is key to reducing the risk of developing CVD. Similar to carcinogenesis, atherogenesis can be divided into four stages: initiation, promotion, progression, and acute events. The current study focuses on the promotion stage, which is characterized by circular monocyte penetration into vascular endothelial cells, monocyte differentiation into macrophages, and the formation of foam cells. This early stage of atherogenesis is a major target for nutraceuticals. We discuss nutraceuticals that can potentially inhibit monocyte adhesion to the vascular endothelium, thereby preventing the promotional stage of atherosclerosis. The mechanisms through which these nutraceuticals prevent monocyte adhesion are classified according to the following targets: NF-κB, ROS, MAPKs, and AP-1. Additionally, we discuss promising targets for nutraceuticals that can regulate monocyte adhesion to the endothelium. PRACTICAL APPLICATIONS: Introduction of atherogenesis with initiation, promotion, progression, and acute events provide specific information and factors for each step in the development of atherosclerosis. Functional food or pharmaceutical researchers can set target stages and use them to develop materials that control atherosclerosis. In particular, because it focuses on vascular inflammation via interaction between monocytes and vascular endothelial cells, it provides specific information to researchers developing functional foods that regulate this process. Therefore, this manuscript, unlike previous papers, will provide material information and potential mechanisms of action to researchers who want to develop functional foods that control vascular inflammation rather than vascular lipids.
Collapse
Affiliation(s)
- Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea.,Institute of Agricultural Science & Technology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
31
|
Huth C, Bauer A, Zierer A, Sudduth-Klinger J, Meisinger C, Roden M, Peters A, Koenig W, Herder C, Thorand B. Biomarker-defined pathways for incident type 2 diabetes and coronary heart disease-a comparison in the MONICA/KORA study. Cardiovasc Diabetol 2020; 19:32. [PMID: 32164753 PMCID: PMC7066738 DOI: 10.1186/s12933-020-01003-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
Background Biomarkers may contribute to our understanding of the pathophysiology of various diseases. Type 2 diabetes (T2D) and coronary heart disease (CHD) share many clinical and lifestyle risk factors and several biomarkers are associated with both diseases. The current analysis aims to assess the relevance of biomarkers combined to pathway groups for the development of T2D and CHD in the same cohort. Methods Forty-seven serum biomarkers were measured in the MONICA/KORA case-cohort study using clinical chemistry assays and ultrasensitive molecular counting technology. The T2D (CHD) analyses included 689 (568) incident cases and 1850 (2004) non-cases from three population-based surveys. At baseline, the study participants were 35–74 years old. The median follow-up was 14 years. We computed Cox regression models for each biomarker, adjusted for age, sex, and survey. Additionally, we assigned the biomarkers to 19 etiological pathways based on information from literature. One age-, sex-, and survey-controlled average variable was built for each pathway. We used the R2PM coefficient of determination to assess the explained disease risk. Results The associations of many biomarkers, such as several cytokines or the iron marker soluble transferrin receptor (sTfR), were similar in strength for T2D and CHD, but we also observed important differences. Lipoprotein (a) (Lp(a)) and N-terminal pro B-type natriuretic peptide (NT-proBNP) even demonstrated opposite effect directions. All pathway variables together explained 49% of the T2D risk and 21% of the CHD risk. The insulin-like growth factor binding protein 2 (IGFBP-2, IGF/IGFBP system pathway) best explained the T2D risk (about 9% explained risk, independent of all other pathway variables). For CHD, the myocardial-injury- and lipid-related-pathways were most important and both explained about 4% of the CHD risk. Conclusions The biomarker-derived pathway variables explained a higher proportion of the T2D risk compared to CHD. The ranking of the pathways differed between the two diseases, with the IGF/IGFBP-system-pathway being most strongly associated with T2D and the myocardial-injury- and lipid-related-pathways with CHD. Our results help to better understand the pathophysiology of the two diseases, with the ultimate goal of pointing out targets for lifestyle intervention and drug development to ideally prevent both T2D and CHD development.
Collapse
Affiliation(s)
- Cornelia Huth
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Alina Bauer
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Astrid Zierer
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | | | - Christa Meisinger
- Chair of Epidemiology, Ludwig-Maximilians-Universität München, UNIKA-T Augsburg, Augsburg, Germany.,Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Koenig
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany.,Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
32
|
Wang T, Ren C, Ni J, Ding H, Qi Q, Yan C, Deng B, Dai J, Li G, Ding Y, Jin G. Genetic Association of Plasma Homocysteine Levels with Gastric Cancer Risk: A Two-Sample Mendelian Randomization Study. Cancer Epidemiol Biomarkers Prev 2020; 29:487-492. [PMID: 31748259 DOI: 10.1158/1055-9965.epi-19-0724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/19/2019] [Accepted: 11/15/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The association of plasma homocysteine level (PHL) with gastric cancer risk was reported in observational studies. However, the causality is challenging due to confounding factors and the lack of evidence from well-designed cohort studies. Herein, we performed a two-sample Mendelian randomization (MR) analysis to investigate whether PHL is causally related to gastric cancer risk. METHODS We performed the MR analysis based on the results from genome-wide association studies consisting of 2,631 patients with gastric cancer and 4,373 controls. An externally weighted genetic risk score (wGRS) was constructed with 15 SNPs with well-established associations with PHL. We utilized logistic regression model to estimate associations of PHL-related SNPs and wGRS with gastric cancer risk in total population and in strata by sex, age, and study site, in addition to a series of sensitivity analyses. RESULTS High genetically predicted PHL was associated with an increased gastric cancer risk (per SD increase in the wGRS: OR = 1.07; 95% confidence interval, 1.01-1.12; P = 0.011), which was consistent in sensitivity analyses. Subgroup analyses provided evidence of a stronger association with gastric cancer risk in women than in men. MR-Egger and weighted median regression suggested that potentially unknown pleiotropic effects were not biasing the association between PHL and gastric cancer risk. CONCLUSIONS These results revealed that genetically predicted high PHL was associated with an increased gastric cancer risk, suggesting that high PHL may have a causal role in the etiology of gastric cancer. IMPACT These findings provide causal inference for PHL on gastric cancer risk, suggesting a causal role of high PHL in the etiology of gastric cancer.
Collapse
Affiliation(s)
- Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Chuanli Ren
- Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Jing Ni
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hui Ding
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Qi
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Bin Deng
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yanbing Ding
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Shen W, Gao C, Cueto R, Liu L, Fu H, Shao Y, Yang WY, Fang P, Choi ET, Wu Q, Yang X, Wang H. Homocysteine-methionine cycle is a metabolic sensor system controlling methylation-regulated pathological signaling. Redox Biol 2020; 28:101322. [PMID: 31605963 PMCID: PMC6812029 DOI: 10.1016/j.redox.2019.101322] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Homocysteine-Methionine (HM) cycle produces universal methyl group donor S-adenosylmethione (SAM), methyltransferase inhibitor S-adenosylhomocysteine (SAH) and homocysteine (Hcy). Hyperhomocysteinemia (HHcy) is established as an independent risk factor for cardiovascular disease (CVD) and other degenerative disease. We selected 115 genes in the extended HM cycle (31 metabolic enzymes and 84 methyltransferases), examined their protein subcellular location/partner protein, investigated their mRNA levels and mapped their corresponding histone methylation status in 35 disease conditions via mining a set of public databases and intensive literature research. We have 6 major findings. 1) All HM metabolic enzymes are located only in the cytosol except for cystathionine-β-synthase (CBS), which was identified in both cytosol and nucleus. 2) Eight disease conditions encountered only histone hypomethylation on 8 histone residues (H3R2/K4/R8/K9/K27/K36/K79 and H4R3). Nine disease conditions had only histone hypermethylation on 8 histone residues (H3R2/K4/K9/K27/K36/K79 and H4R3/K20). 3) We classified 9 disease types with differential HM cycle expression pattern. Eleven disease conditions presented most 4 HM cycle pathway suppression. 4) Three disease conditions had all 4 HM cycle pathway suppression and only histone hypomethylation on H3R2/K4/R8/K9/K36 and H4R3. 5) Eleven HM cycle metabolic enzymes interact with 955 proteins. 6) Five paired HM cycle proteins interact with each other. We conclude that HM cycle is a key metabolic sensor system which mediates receptor-independent metabolism-associated danger signal recognition and modulates SAM/SAH-dependent methylation in disease conditions and that hypomethylation on frequently modified histone residues is a key mechanism for metabolic disorders, autoimmune disease and CVD. We propose that HM metabolism takes place in the cytosol, that nuclear methylation equilibration requires a nuclear-cytosol transfer of SAM/SAH/Hcy, and that Hcy clearance is essential for genetic protection.
Collapse
Affiliation(s)
- Wen Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Chao Gao
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Ramon Cueto
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Lu Liu
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hangfei Fu
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Ying Shao
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - William Y Yang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Pu Fang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Eric T Choi
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Division of Vascular & Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Xiaofeng Yang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Mabbott S, Fernandes SC, Schechinger M, Cote GL, Faulds K, Mace CR, Graham D. Detection of cardiovascular disease associated miR-29a using paper-based microfluidics and surface enhanced Raman scattering. Analyst 2020; 145:983-991. [DOI: 10.1039/c9an01748h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A paper-based microfluidics self-testing device capable of colorimetric and SERS-based sensing of cardiovascular disease associated miR-29a has been developed for improving patient care and triage.
Collapse
Affiliation(s)
- Samuel Mabbott
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow
- UK
| | | | - Monika Schechinger
- Department of Biomedical Engineering
- Texas A&M University
- USA
- Health Technology and Innovation Building
- Texas A&M University
| | - Gerard L. Cote
- Department of Biomedical Engineering
- Texas A&M University
- USA
- Health Technology and Innovation Building
- Texas A&M University
| | - Karen Faulds
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow
- UK
| | | | - Duncan Graham
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow
- UK
| |
Collapse
|
35
|
Ricotti R, De Feudis M, Peri C, Corazzari M, Genoni G, Giordano M, Mancioppi V, Agosti E, Bellone S, Prodam F. Haptoglobin Phenotypes Are Associated with the Postload Glucose and Insulin Levels in Pediatric Obesity. Int J Endocrinol 2020; 2020:6035138. [PMID: 32695161 PMCID: PMC7368219 DOI: 10.1155/2020/6035138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/04/2020] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Haptoglobin (Hp) is a protein involved in the acute-phase reaction of inflammation. Humans have three major phenotypes (Hp1-1, Hp1-2, and Hp2-2). Several studies have shown altered Hp regulation in adults with obesity and metabolic alterations. The Hp2-2 phenotype is associated with a high cardiovascular risk. Our aim was to investigate if Hp levels and the Hp2-2 phenotype are associated with glucose metabolism in pediatric obesity. METHODS We retrospectively studied 192 participants (92 males and 100 females), aged 4-18 years. Clinical and biochemical data were collected. The Hp phenotype (Hp1-1, Hp1-2, and Hp2-2) was identified through Western immunoblot. RESULTS Subjects carrying Hp1-1, Hp1-2, and Hp2-2 phenotypes were 13.6, 50.8, and 35.6%, respectively. Hp serum, fasting glucose, and insulin levels, as well as HOMA-IR, were similar among groups. Postload glucose and insulin levels (as insulin AUC) were progressively higher from the Hp1-1 to Hp2-2 phenotype. CONCLUSION To our knowledge, this is the first study on Hp phenotypes conducted in a pediatric population with obesity. We showed that the presence of Hp2 allele is associated with a worse response of glucose load in terms of both glucose and insulin levels. Thus, the Hp2-2 phenotype could predispose in pediatrics, at the same degree of obesity, to a worse glycemic and insulinemic compensation.
Collapse
Affiliation(s)
- Roberta Ricotti
- Department of Health Sciences, University of Piemonte Orientale, Novara 28100, Italy
| | - Marilisa De Feudis
- Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy
| | - Caterina Peri
- Department of Health Sciences, University of Piemonte Orientale, Novara 28100, Italy
| | - Marco Corazzari
- Department of Health Sciences, University of Piemonte Orientale, Novara 28100, Italy
- Interdisciplinary Research Center of Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara 28100, Italy
| | - Giulia Genoni
- Department of Health Sciences, University of Piemonte Orientale, Novara 28100, Italy
| | - Mara Giordano
- Department of Health Sciences, University of Piemonte Orientale, Novara 28100, Italy
- Interdisciplinary Research Center of Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara 28100, Italy
| | - Valentina Mancioppi
- Department of Health Sciences, University of Piemonte Orientale, Novara 28100, Italy
| | - Emanuela Agosti
- Department of Health Sciences, University of Piemonte Orientale, Novara 28100, Italy
| | - Simonetta Bellone
- Department of Health Sciences, University of Piemonte Orientale, Novara 28100, Italy
- Interdisciplinary Research Center of Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara 28100, Italy
| | - Flavia Prodam
- Department of Health Sciences, University of Piemonte Orientale, Novara 28100, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy
- Interdisciplinary Research Center of Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara 28100, Italy
| |
Collapse
|
36
|
Miao L, Deng GX, Yin RX, Nie RJ, Yang S, Wang Y, Li H. No causal effects of plasma homocysteine levels on the risk of coronary heart disease or acute myocardial infarction: A Mendelian randomization study. Eur J Prev Cardiol 2019; 28:227–234. [PMID: 33838042 DOI: 10.1177/2047487319894679] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although many observational studies have shown an association between plasma homocysteine levels and cardiovascular diseases, controversy remains. In this study, we estimated the role of increased plasma homocysteine levels on the etiology of coronary heart disease and acute myocardial infarction. METHODS A two-sample Mendelian randomization study on disease was conducted, i.e. "coronary heart disease" (n = 184,305) and "acute myocardial infarction" (n = 181,875). Nine single nucleotide polymorphisms, which were genome-wide significantly associated with plasma homocysteine levels in 57,644 subjects from the Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease (C4D) Genetics (CARDIoGRAMplusC4D) consortium genome-wide association study and were known to be associated at p < 5×10-8, were used as an instrumental variable. RESULTS None of the nine single nucleotide polymorphisms were associated with coronary heart disease or acute myocardial infarction (p > 0.05 for all). Mendelian randomization analysis revealed no causal effects of plasma homocysteine levels, either on coronary heart disease (inverse variance weighted; odds ratio = 1.015, 95% confidence interval = 0.923-1.106, p = 0.752) or on acute myocardial infarction (inverse variance weighted; odds ratio = 1.037, 95% confidence interval = 0.932-1.142, p = 0.499). The results were consistent in sensitivity analyses using the weighted median and Mendelian randomization-Egger methods, and no directional pleiotropy (p = 0.213 for coronary heart disease and p = 0.343 for acute myocardial infarction) was observed. Sensitivity analyses confirmed that plasma homocysteine levels were not significantly associated with coronary heart disease or acute myocardial infarction. CONCLUSIONS The findings from this Mendelian randomization study indicate no causal relationship between plasma homocysteine levels and coronary heart disease or acute myocardial infarction. Conflicting findings from observational studies might have resulted from residual confounding or reverse causation.
Collapse
Affiliation(s)
- Liu Miao
- Department of Cardiology, The First Affiliated Hospital, Guangxi Medical University, China
| | - Guo-Xiong Deng
- Department of Cardiology, The First Affiliated Hospital, Guangxi Medical University, China
| | - Rui-Xing Yin
- Department of Cardiology, The First Affiliated Hospital, Guangxi Medical University, China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, China
| | - Rong-Jun Nie
- Department of Cardiology, The First Affiliated Hospital, Guangxi Medical University, China
| | - Shuo Yang
- Department of Cardiology, The First Affiliated Hospital, Guangxi Medical University, China
| | - Yong Wang
- Department of Cardiology, Liuzhou People's Hospital, China
| | - Hui Li
- Clinical Laboratory of The Affiliated Cancer Hospital, Guangxi Medical University, China
| |
Collapse
|
37
|
Ghibu S, Craciun CE, Rusu R, Morgovan C, Mogosan C, Rochette L, Gal AF, Dronca M. Impact of Alpha-Lipoic Acid Chronic Discontinuous Treatment in Cardiometabolic Disorders and Oxidative Stress Induced by Fructose Intake in Rats. Antioxidants (Basel) 2019; 8:antiox8120636. [PMID: 31835800 PMCID: PMC6943500 DOI: 10.3390/antiox8120636] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022] Open
Abstract
Insulin resistance (IR) and cardiometabolic disorders are the main consequences of today’s alimentary behavior. This study evaluates the effects of a chronic-discontinuous treatment with alpha-lipoic acid (AL), an antioxidant substance that improves glycemic control associated with diabetes mellitus, on metabolic disorders and plasma oxidative stress induced by fructose intake, in rats. Sprague-Dawley rats (48 animals) were randomized into two series (n = 24): rats fed with standard chow or with standard chow supplemented with 60% fructose. In each of the two series, for 2 weeks/month over 12 weeks, a group of rats (n = 12) was intraperitoneally injected with NaCl 0.9%, and a second group (n = 12) received AL 50 mg/kg/day. Body weight, glycemia, and systolic blood pressure were monitored throughout the study. After 12 weeks, IR, plasma lipoproteins, uric acid, transaminase activities, and oxidative stress markers were assessed. The high fructose-enriched diet induced cardiometabolic disorders (hypertension, hyperglycemia, IR and dyslipidemia), an increase in uric acid concentration, transaminase activities and C-reactive protein level. This diet also enhanced plasma products of lipid and protein oxidation, homocysteine level, and decreased GSH/GSSG ratio. In this field, there is evidence to indicate that oxidative stress plays an important role in the etiology of diabetic complications. AL discontinuous treatment prevents the metabolic disorders induced by fructose intake, reduced plasma lipid and protein oxidation-products, and restored the GHS/GSSG ratio. Our study proves a promising potential of the chronic-discontinuous treatment of AL and highlights the pleiotropic effects of this antioxidant substance in metabolic disorders such as diabetes.
Collapse
Affiliation(s)
- Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Cristina Elena Craciun
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Razvan Rusu
- Department of Medical Biochemistry, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (R.R.); (M.D.)
| | - Claudiu Morgovan
- Preclinical Department, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Cristina Mogosan
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
- Correspondence: or (C.M.); (L.R.)
| | - Luc Rochette
- Equipe d’Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d’Arc, 21000 Dijon, France
- Correspondence: or (C.M.); (L.R.)
| | - Adrian Florin Gal
- Department of Cell Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Maria Dronca
- Department of Medical Biochemistry, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (R.R.); (M.D.)
| |
Collapse
|
38
|
Liu H, Liu J, Zhao H, Wang H. Relationship between glycated hemoglobin and low Ankle-Brachial Index: a cross-sectional observational study from the Beijing Vascular Disease Evaluation Study (BEST Study). INT ANGIOL 2019; 38:502-507. [PMID: 31782279 DOI: 10.23736/s0392-9590.19.04210-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Studies have confirmed that the low Ankle Brachial Index (ABI) and high glycated hemoglobin (HbA1c) level were both risk factors of cardiovascular disease (CVD). However, the association has rarely been explored between ABI and HbA1c. This study was to evaluate the independent relationship between HbA1c and low ABI. METHODS A total of 3102 subjects (male 1539, female 1563, aged 67.72±10.69 years) were enrolled into the study from 2010 to 2018. The odds ratio (OR) and linear regression coefficient of low ABI group (defined as ABI≤0.9) and ABI value in associations with the HbA1c were modelled using multivariable logistic and linear regression analyses by adjusting for possible confounders. RESULTS Compared with participants with normal ABI, those presenting the low ABI showed a significantly older age, smoking rate, higher level of heart rate (HR), systolic blood pressure (SBP), pulse pressure (PP), fasting plasma glucose (FPG), triglyceride (TG), highly sensitive C-reactive protein (hs-CRP), HbA1c and carotid femoral pulse wave velocity (CF-PWV); and higher prevalence rate of hypertension, diabetes, coronary artery disease (CAD); and higher rate on medication of statins, diabetes drug and cardiovascular drug (all P<0.001). After multiple adjustment for age, sex, smoke, FPG, blood lipids, hs-CRP, SBP, diastolic blood pressure (DBP), PP, CF-PWV, hypertension, diabetes, CAD and medications, the OR of HbA1c for low ABI was of statistical significance (95% CI: 1.204-1.410, P<0.001). After further multivariate adjustment analysis by linear regression, with left and right ABI as dependent variables, the results showed that HbA1c was independently linearly correlated to left and right ABI (all P<0.001). CONCLUSIONS HbA1c was an independent associated factor of lower ABI and linearly correlated to ABI level independent of fasting plasma glucose and other cardiovascular factors. We should not only focus on the HbA1c in diabetes mellitus patients, but also people with lower ABI.
Collapse
Affiliation(s)
- Huan Liu
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing, China
| | - Jinbo Liu
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing, China
| | - Hongwei Zhao
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing, China
| | - Hongyu Wang
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing, China -
| | | |
Collapse
|
39
|
Ahuié Kouakou G, Gagnon H, Lacasse V, Wagner JR, Naylor S, Klarskov K. Dehydroascorbic acid S-Thiolation of peptides and proteins: Role of homocysteine and glutathione. Free Radic Biol Med 2019; 141:233-243. [PMID: 31228548 DOI: 10.1016/j.freeradbiomed.2019.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/05/2023]
Abstract
Ascorbic acid (vitamin C) plays a significant role in the prevention of oxidative stress. In this process, ascorbate is oxidized to dehydroascorbate (DHA). We have investigated the impact of DHA on peptide/protein intramolecular disulfide formation as well as S-glutathionylation and S-homocysteinylation. S-glutathionylation of peptides/proteins is a reversible, potential regulatory mechanism in oxidative stress. Although the exact role of protein S-homocysteinylation is unknown, it has been proposed to be of importance in pathobiological processes such as onset of cardiovascular disease. Using an in vitro model system, we demonstrate that DHA causes disulfide bond formation within the active site of recombinant human glutaredoxin (Grx-1). DHA also facilities the formation of S-glutathionylation and S-homocysteinylation of a model peptide (AcFHACAAK) as well as Grx-1. We discuss the possible mechanisms of peptide/protein S-thiolation, which can occur either via thiol exchange or a thiohemiketal intermediate. A thiohemiketal DHA-peptide adduct was detected by mass spectrometry and its location on the peptide/protein cysteinyl thiol group was unambiguously confirmed by tandem mass spectrometry. This demonstrates that peptide/protein S-thiolation mediated by DHA is not limited to thiol exchange reactions but also takes place directly via the formation of a thiohemiketal peptide intermediate. Finally, we investigated a potential reducing role of glutathione (GSH) in the presence of S-homocysteinylated peptide/protein adducts. S-homocysteinylated AcFHACAAK, human hemoglobin α-chain and Grx-1 were incubated with GSH. Both peptide and proteins were reduced, and homocysteine replaced with GS-adducts by thiol exchange, as a function of time.
Collapse
Affiliation(s)
- Grace Ahuié Kouakou
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Canada
| | - Hugo Gagnon
- PhenoSwitch Bioscience, 975 Rue Léon-Trépanier, Sherbrooke, QC J1G 5J6, Canada
| | - Vincent Lacasse
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Canada
| | - Stephen Naylor
- ReNeuroGen LLC, 2160 San Fernando Drive, Elm Grove, WI, 53122, USA
| | - Klaus Klarskov
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Canada.
| |
Collapse
|
40
|
Cahill LE, Sacks FM, Rimm EB, Jensen MK. Cholesterol efflux capacity, HDL cholesterol, and risk of coronary heart disease: a nested case-control study in men. J Lipid Res 2019; 60:1457-1464. [PMID: 31142574 DOI: 10.1194/jlr.p093823] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/09/2019] [Indexed: 01/03/2023] Open
Abstract
The capacity of HDLs to accept cholesterol effluxing from macrophages has been proposed as a new biomarker of HDLs' anti-atherogenic function. Whether cholesterol efflux capacity (CEC) is independent of HDL cholesterol (HDL-C) as a biomarker for coronary heart disease (CHD) risk in a generally healthy primary-prevention population remains unanswered. Therefore, in this nested case-control study, we simultaneously assessed CEC (using J774 cells) and plasma HDL-C levels as predictors of CHD in healthy middle-aged and older men not receiving treatment affecting blood lipid concentrations. We used risk-set sampling of participants free of disease at baseline from the Health Professionals Follow-Up Study, and matched cases (n = 701) to controls 1:1 for age, smoking, and blood sampling date. We applied conditional logistic regression models to calculate the multivariable relative risk and 95% CIs of CHD over 16 years of follow-up. CEC and HDL-C were correlated (r = 0.50, P < 0.0001). The risk (95% CI) of CHD per one SD higher CEC was 0.82 (0.71-0.96), but completely attenuated to 1.08 (0.85-1.37) with HDL-C in the model. The association per one SD between HDL-C and CHD (0.66; 0.58-0.76) was essentially unchanged (0.68; 0.53-0.88) after adjustment for CEC. These findings indicate that CEC's ability to predict CHD may not be independent of HDL-C in a cohort of generally healthy men.
Collapse
Affiliation(s)
- Leah E Cahill
- Departments of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA .,Department of Medicine Dalhousie University, Halifax, Nova Scotia, Canada
| | - Frank M Sacks
- Departments of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA.,Genetics and Complex Diseases Harvard T. H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Eric B Rimm
- Departments of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Epidemiology Harvard T. H. Chan School of Public Health, Boston, MA
| | - Majken K Jensen
- Departments of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA
| |
Collapse
|
41
|
Li W, Dorans KS, Wilker EH, Rice MB, Ljungman PL, Schwartz JD, Coull BA, Koutrakis P, Gold DR, Keaney JF, Vasan RS, Benjamin EJ, Mittleman MA. Short-term exposure to ambient air pollution and circulating biomarkers of endothelial cell activation: The Framingham Heart Study. ENVIRONMENTAL RESEARCH 2019; 171:36-43. [PMID: 30654247 PMCID: PMC6478022 DOI: 10.1016/j.envres.2018.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Short-term exposure to air pollution has been associated with cardiovascular events, potentially by promoting endothelial cell activation and inflammation. A few large-scale studies have examined the associations and have had mixed results. METHODS We included 3820 non-current smoking participants (mean age 56 years, 54% women) from the Framingham Offspring cohort examinations 7 (1998-2001) and 8 (2005-2008), and Third Generation cohort examination 1 (2002-2005), who lived within 50 km of a central monitoring station. We calculated the 1- to 7-day moving averages of fine particulate matter (PM2.5), black carbon (BC), sulfate (SO42-), nitrogen oxides (NOx), and ozone before examination visits. We used linear mixed effect models for P-selectin, monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1, lipoprotein-associated phospholipase A2 activity and mass, and osteoprotegerin that were measured up to twice, and linear regression models for CD40 ligand and interleukin-18 that were measured once, adjusting for demographics, life style and clinical factors, socioeconomic position, time, and meteorology. RESULTS We found negative associations of PM2.5 and BC with P-selectin, of ozone with MCP-1, and of SO42- and NOx with osteoprotegerin. At the 5-day moving average, a 5 µg/m3 higher PM2.5 was associated with 1.6% (95% CI: - 2.8, - 0.3) lower levels of P-selectin; a 10 ppb higher ozone was associated with 1.7% (95% CI: - 3.2, - 0.1) lower levels of MCP-1; and a 20 ppb higher NOx was associated with 2.0% (95% CI: - 3.6, - 0.4) lower levels of osteoprotegerin. CONCLUSIONS We did not find evidence of positive associations between short-term air pollution exposure and endothelial cell activation. On the contrary, short-term exposure to higher levels of ambient pollutants were associated with lower levels of P-selectin, MCP-1, and osteoprotegerin in the Framingham Heart Study.
Collapse
Affiliation(s)
- Wenyuan Li
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Kirsten S Dorans
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Tulane School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Elissa H Wilker
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mary B Rice
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Petter L Ljungman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joel D Schwartz
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States
| | - Brent A Coull
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States
| | - Petros Koutrakis
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States
| | - Diane R Gold
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - John F Keaney
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Ramachandran S Vasan
- Boston University Schools of Medicine and Public Health, Boston, MA, United States; National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, United States
| | - Emelia J Benjamin
- Boston University Schools of Medicine and Public Health, Boston, MA, United States; National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, United States
| | - Murray A Mittleman
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
42
|
Battram T, Hoskins L, Hughes DA, Kettunen J, Ring SM, Smith GD, Timpson NJ. Coronary artery disease, genetic risk and the metabolome in young individuals. Wellcome Open Res 2019; 3:114. [PMID: 30740535 PMCID: PMC6348437 DOI: 10.12688/wellcomeopenres.14788.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Genome-wide association studies have identified genetic variants associated with coronary artery disease (CAD) in adults - the leading cause of death worldwide. It often occurs later in life, but variants may impact CAD-relevant phenotypes early and throughout the life-course. Cohorts with longitudinal and genetic data on thousands of individuals are letting us explore the antecedents of this adult disease. Methods: 148 metabolites, with a focus on the lipidome, measured using nuclear magnetic resonance ( 1H-NMR) spectroscopy, and genotype data were available from 5,907 individuals at ages 7, 15, and 17 years from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Linear regression was used to assess the association between the metabolites and an adult-derived genetic risk score (GRS) of CAD comprising 146 variants. Individual variant-metabolite associations were also examined. Results: The CAD-GRS associated with 118 of 148 metabolites (false discovery rate [FDR] < 0.05), the strongest associations being with low-density lipoprotein (LDL) and atherogenic non-LDL subgroups. Nine of 146 variants in the GRS associated with one or more metabolites (FDR < 0.05). Seven of these are within lipid loci: rs11591147 PCSK9, rs12149545 HERPUD1-CETP, rs17091891 LPL, rs515135 APOB, rs602633 CELSR2-PSRC1, rs651821 APOA5, rs7412 APOE-APOC1. All associated with metabolites in the LDL or atherogenic non-LDL subgroups or both including aggregate cholesterol measures. The other two variants identified were rs112635299 SERPINA1 and rs2519093 ABO. Conclusions: Genetic variants that influence CAD risk in adults are associated with large perturbations in metabolite levels in individuals as young as seven. The variants identified are mostly within lipid-related loci and the metabolites they associated with are primarily linked to lipoproteins. Along with further research, this knowledge could allow for preventative measures, such as increased monitoring of at-risk individuals and perhaps treatment earlier in life, to be taken years before any symptoms of the disease arise.
Collapse
Affiliation(s)
- Thomas Battram
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luke Hoskins
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - David A. Hughes
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Johannes Kettunen
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Susan M. Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
43
|
Campos MTFDS, Valente FMQ, Araújo RMA, Bressan J. Mourning and Takotsubo cardiomyopathy: neuroendocrine implications and nutritional management. Rev Assoc Med Bras (1992) 2018; 64:952-959. [PMID: 30517244 DOI: 10.1590/1806-9282.64.10.952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 11/21/2022] Open
Abstract
This article aims to make reference to some recent mourning aspects considered risk factors for cardiovascular disease, specifically the Takotsubo cardiomyopathy. The objective was to describe the stress from the death of a loved one combining it to the possibility of occurrence of Takotsubo cardiomyopathy through the perception of a traumatic event by the cortex, which triggers the subcortical brain circuit affecting the endocrine response. Given the growing acknowledgement of this cardiomyopathy, it is possible to contextualize the nutritional behaviours and decisions surrounding it, whose benefits must exceed the condition of temporary cardiac dysfunction and extend to food choices that have some influence in the limbic system. It is a descriptive analysis that aims to problematize the theme into reflections based on this experience, considering the foundation with the science of nutrition.
Collapse
Affiliation(s)
| | | | - Raquel Maria Amaral Araújo
- Associated Professor. Department of Nutrition and Health - DNS, Federal University of Viçosa (UFV), campus Viçosa, Viçosa (MG), Brasil
| | - Josefina Bressan
- Senior Professor. Department of Nutrition and Health/UFV. Post-Graduation Program of Nutrition Sciences, Federal University of Viçosa, Viçosa (MG), Brasil
| |
Collapse
|
44
|
Lee EJ, Oh H, Kang BG, Kang MK, Kim DY, Kim YH, Lee JY, Ji JG, Lim SS, Kang YH. Lipid-Lowering Effects of Medium-Chain Triglyceride-Enriched Coconut Oil in Combination with Licorice Extracts in Experimental Hyperlipidemic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10447-10457. [PMID: 30244576 DOI: 10.1021/acs.jafc.8b04080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Coconut oil has gained in popularity over recent years as a healthy oil due to its potential cardiovascular benefits. Coconut oil contains medium chain triglycerides (MCT) including lauric acid and capric acid that display beneficial properties in human health. Licorice ( Glycyrrhiza uralensis) is used as a sweetener and in traditional Chinese medicine with anti-inflammatory, antimicrobial, and antioxidant activities. This study investigated the in vivo effects of medium chain-triglycerides (MCT)-coconut oil (MCO) and its combination with licorice extract (LE-MCO) on serum lipid profile, hepatic steatosis, and local fat pad proteins in diet-induced obese mice. No liver toxicity was observed in 45% fat diet (HFD)-fed mice orally treated with LE, MCO, and LE-MCO for 12 weeks. Their supplementation reduced HFD-enhanced body weight, blood glucose, and insulin in mice. Plasma levels of both PLTP and LCAT were boosted in LE-MCO-administered mice. Supplementation of LE-MCO diminished plasma levels of TG and TC with concomitant reduction of the LDL-C level and tended to raise blood HDL-C level compared to that of HFD alone-mice. Treatment of LE-MCO encumbered the hepatic induction of hepatosteatosis-related proteins of SREBP2, SREBP1c, FAS, ACC, and CD36 in HFD-fed mice. Substantial suppression of this induction was also observed in the liver of mice treated with MCO. Oral administration of LE-MCO to HFD mice boosted hepatic activation of AMPK and the induction of UCP-1 and FATP1 in brown fat. Conversely, LE-MCO disturbed hepatic PPAR-LXR-RXR signaling in HFD-fed animals and reversed HFD-elevated epididymal PPARγ. Collectively, oral administration of LE-MCO may impede hyperlipidemia and hepatosteatosis through curtailing hepatic lipid synthesis.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Department of Food Science and Nutrition , Hallym University , Chuncheon 24252 , Korea
| | - Hyeongjoo Oh
- Department of Food Science and Nutrition , Hallym University , Chuncheon 24252 , Korea
| | - Beom Goo Kang
- Department of Food Science and Nutrition , Hallym University , Chuncheon 24252 , Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition , Hallym University , Chuncheon 24252 , Korea
| | - Dong Yeon Kim
- Department of Food Science and Nutrition , Hallym University , Chuncheon 24252 , Korea
| | - Yun-Ho Kim
- Department of Food Science and Nutrition , Hallym University , Chuncheon 24252 , Korea
| | | | | | - Soon Sung Lim
- Department of Food Science and Nutrition , Hallym University , Chuncheon 24252 , Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition , Hallym University , Chuncheon 24252 , Korea
| |
Collapse
|
45
|
Battram T, Hoskins L, Hughes DA, Kettunen J, Ring SM, Smith GD, Timpson NJ. Coronary artery disease, genetic risk and the metabolome in young individuals. Wellcome Open Res 2018; 3:114. [PMID: 30740535 PMCID: PMC6348437 DOI: 10.12688/wellcomeopenres.14788.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Genome-wide association studies have identified genetic variants associated with coronary artery disease (CAD) in adults - the leading cause of death worldwide. It often occurs later in life, but variants may impact CAD-relevant phenotypes early and throughout the life-course. Cohorts with longitudinal and genetic data on thousands of individuals are letting us explore the antecedents of this adult disease. Methods: 149 metabolites, with a focus on the lipidome, measured using nuclear magnetic resonance ( 1H-NMR) spectroscopy, and genotype data were available from 5,905 individuals at ages 7, 15, and 17 years from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Linear regression was used to assess the association between the metabolites and an adult-derived genetic risk score (GRS) of CAD comprising 146 variants. Individual variant-metabolite associations were also examined. Results: The CAD-GRS associated with 118 of 149 metabolites (false discovery rate [FDR] < 0.05), the strongest associations being with low-density lipoprotein (LDL) and atherogenic non-LDL subgroups. Nine of 146 variants in the GRS associated with one or more metabolites (FDR < 0.05). Seven of these are within lipid loci: rs11591147 PCSK9, rs12149545 HERPUD1-CETP, rs17091891 LPL, rs515135 APOB, rs602633 CELSR2-PSRC1, rs651821 APOA5, rs7412 APOE-APOC1. All associated with metabolites in the LDL or atherogenic non-LDL subgroups or both including aggregate cholesterol measures. The other two variants identified were rs112635299 SERPINA1 and rs2519093 ABO. Conclusions: Genetic variants that influence CAD risk in adults are associated with large perturbations in metabolite levels in individuals as young as seven. The variants identified are mostly within lipid-related loci and the metabolites they associated with are primarily linked to lipoproteins. This knowledge could allow for preventative measures, such as increased monitoring of at-risk individuals and perhaps treatment earlier in life, to be taken years before any symptoms of the disease arise.
Collapse
Affiliation(s)
- Thomas Battram
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luke Hoskins
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - David A. Hughes
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Johannes Kettunen
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Susan M. Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
46
|
|
47
|
Lemos BS, Medina-Vera I, Malysheva OV, Caudill MA, Fernandez ML. Effects of Egg Consumption and Choline Supplementation on Plasma Choline and Trimethylamine-N-Oxide in a Young Population. J Am Coll Nutr 2018; 37:716-723. [PMID: 29764315 DOI: 10.1080/07315724.2018.1466213] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: Plasma trimethylamine-N-oxide (TMAO) concentrations have been associated with cardiovascular disease risk. Eggs are a rich source of choline, which is a precursor of TMAO.Objective: The effects of egg intake versus daily choline supplementation were evaluated on plasma choline and TMAO in a young, healthy population.Methods: Thirty participants (14 males, 16 females; 25.6 ± 2.3 years; body mass index = 24.3 ± 2.9 kg/m2) were enrolled in this 13-week crossover intervention. After a 2-week washout, participants were randomized to consume either 3 eggs/d or a choline bitartrate supplement (∼ 400 mg choline total in eggs or supplement) for 4 weeks. Following a 3-week washout, participants were switched to the alternate treatment. Dietary records were measured at the end of each period. Plasma TMAO and choline were measured at baseline and at the end of each dietary intervention. Gene expression of scavenger receptors associated with plasma TMAO were quantified at the end of each intervention.Results: Compared to the choline supplement, intake of total fat, cholesterol, selenium, and vitamin E were higher (p < 0.05), whereas carbohydrate intake was lower (p < 0.001) with consumption of 3 eggs/d. Fasting plasma choline increased 20% (p = 0.023) with egg intake, while no changes were observed with choline supplementation. Plasma TMAO levels were not different between dietary treatments or compared to baseline.Conclusions: Dietary choline appears to be more bioavailable via egg consumption when compared to a choline supplement. Plasma TMAO concentrations were not affected in healthy participants after 4 weeks of taking ∼400 mg/d choline either via eggs or choline supplementation.
Collapse
Affiliation(s)
- Bruno S Lemos
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, US
| | - Isabel Medina-Vera
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, US
| | - Olga V Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, US
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, US
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, US
| |
Collapse
|
48
|
Costanzo S, De Curtis A, Di Castelnuovo A, Persichillo M, Bonaccio M, Pounis G, Cerletti C, Donati MB, de Gaetano G, Iacoviello L. Serum vitamin D deficiency and risk of hospitalization for heart failure: Prospective results from the Moli-sani study. Nutr Metab Cardiovasc Dis 2018; 28:298-307. [PMID: 29331539 DOI: 10.1016/j.numecd.2017.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Evidence indicates that Vitamin D deficiency may be associated with increased risk of cardiovascular disease, although findings on risk of heart failure (HF) are controversial. We investigated the relationship between serum Vitamin D and the incidence of hospitalization for HF in a large prospective cohort of Italian adults. METHODS AND RESULTS 19,092 (49% men, age range 35-99 years) HF-free individuals from the Moli-sani study, with complete data on serum Vitamin D (25-hydroxyvitamin) levels and incident hospitalized HF, were analysed. The cohort was followed up for a median of 6.2 years. Baseline serum Vitamin D levels were categorized in deficient (<10 ng/mL), insufficient (10-29 ng/mL), and normal (≥30 ng/mL) Incident cases of hospitalization for HF were identified by linkage with the regional hospital discharge registry. Hazard ratios (HRs) were calculated using Cox-proportional hazard models. The prevalence of normal, insufficient or deficient levels of Vitamin D was 12.2%, 79.6% and 8.2%, respectively. During follow-up, 562 admissions to hospital for HF were identified. The incidence of HF was 1.6%, 2.9% and 5.3%, respectively in subjects with normal, insufficient and deficient levels of Vitamin D. After multivariable analysis, individuals with deficiency of Vitamin D had a higher risk of hospitalization for HF (HR: 1.61, 95%CI: 1.06-2.43) than those with normal levels. Further adjustment for subclinical inflammation did not substantially change the association between Vitamin D deficiency and HF. CONCLUSION Deficiency of Vitamin D was associated, independently of known HF risk factors, with an increased risk of hospitalization for HF in an Italian adult population.
Collapse
Affiliation(s)
- S Costanzo
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, Pozzilli (IS), Italy.
| | - A De Curtis
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, Pozzilli (IS), Italy
| | - A Di Castelnuovo
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, Pozzilli (IS), Italy
| | - M Persichillo
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, Pozzilli (IS), Italy
| | - M Bonaccio
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, Pozzilli (IS), Italy
| | - G Pounis
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, Pozzilli (IS), Italy
| | - C Cerletti
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, Pozzilli (IS), Italy
| | - M B Donati
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, Pozzilli (IS), Italy
| | - G de Gaetano
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, Pozzilli (IS), Italy
| | - L Iacoviello
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, Pozzilli (IS), Italy; Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, 21100 Varese, Italy
| |
Collapse
|
49
|
2-Formyl-komarovicine promotes adiponectin production in human mesenchymal stem cells through PPARγ partial agonism. Bioorg Med Chem 2018; 26:1069-1075. [DOI: 10.1016/j.bmc.2018.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
|
50
|
Lemos BS, Medina-Vera I, Blesso CN, Fernandez ML. Intake of 3 Eggs per Day When Compared to a Choline Bitartrate Supplement, Downregulates Cholesterol Synthesis without Changing the LDL/HDL Ratio. Nutrients 2018; 10:nu10020258. [PMID: 29495288 PMCID: PMC5852834 DOI: 10.3390/nu10020258] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/08/2018] [Accepted: 02/17/2018] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular disease (CVD) risk is associated with high concentrations of low-density lipoprotein cholesterol (LDL-C). The impact of dietary cholesterol on plasma lipid concentrations still remains a concern. The effects of egg intake in comparison to choline bitartrate supplement was studied in a young, healthy population. Thirty participants were enrolled for a 13-week intervention. After a 2-week run-in period, subjects were randomized to consume either 3 eggs/day or a choline bitartrate supplement (~400 mg choline for both treatments) for 4-weeks each. After a 3-week washout period, they were allocated to the alternate treatment. Dietary records, plasma lipids, apolipoproteins (apo) concentrations, and peripheral blood mononuclear cell expression of regulatory genes for cholesterol homeostasis were assessed at the end of each intervention. Dietary intakes of saturated and monounsaturated fat were higher with the consumption of eggs compared to the choline period. In addition, higher plasma concentrations of total cholesterol (7.5%), high density lipoprotein cholesterol (HDL-C) (5%) and LDL-C (8.1%) were observed with egg consumption (p < 0.01), while no change was seen in LDL-C/HDL-C ratio, a key marker of heart disease risk. Compared to choline supplementation, intake of eggs resulted in higher concentrations of plasma apoA-I (8%) and apoE (17%) with no changes in apoB. Sterol regulatory element-binding protein 2 and 3-hydroxy-3-methylglutaryl-CoA reductase expression were lower with egg consumption by 18% and 31%, respectively (p < 0.05), suggesting a compensation to the increased dietary cholesterol load. Therefore, dietary cholesterol from eggs appears to regulate endogenous synthesis of cholesterol in such a way that the LDL-C/HDL-C ratio is maintained.
Collapse
Affiliation(s)
- Bruno S Lemos
- Department of Nutritional Sciences, University of Connecticut, Storrs, Mansfield, CT 06269, USA.
| | - Isabel Medina-Vera
- Departamento de Metodologia de Investigacion, Instituto Nacional de Pediatria, CD Mexico 04530, Mexico.
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Mansfield, CT 06269, USA.
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, Mansfield, CT 06269, USA.
| |
Collapse
|