1
|
Biju T, Venkatesh C, Honnasiddappa DB, Sajjan M, Mahadeva NK, Dinesh BGH, Kumar BS, Ganjipete S, Ramar M, Kunjiappan S, Theivendren P, Madasamy S, Chidambaram K, Ammunje DN, Pavadai P. ATAD2 bromodomain in cancer therapy: current status and future perspectives. Int J Biol Macromol 2025; 311:143948. [PMID: 40334884 DOI: 10.1016/j.ijbiomac.2025.143948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/22/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
ATPase family AAA domain-containing protein 2, or ATAD2, is a novel carcinogen, essential for cancer development, chromatin remodeling, and transcriptional control. It contains a bromodomain, which binds to acetylated histones to control gene expression. It also impacts pathways that regulate the cell cycle, DNA replication, and hormone signalling. ATAD2 is overexpressed in several malignancies, including colorectal, lung, ovarian, and breast cancers, and cancer metastasis. Investigations into the function of ATAD2 in oncogenesis and its interactions may offer fresh approaches to creating cancer treatment plans. Although preclinical research is very encouraging, many unresolved aspects regarding therapeutic development remain, including toxicity being explored concurrently. Investigations into the function of ATAD2 in oncogenesis may offer fresh approaches to developing chemotherapy strategies. Most of ATAD2's molecular mechanisms behind carcinogenesis and functions are discussed here. Additionally, we included progress, including potential monoclonal antibodies, RNA-based therapies, and small chemical inhibitors, in the review. Therefore, we guarantee this study will provide researchers with new opportunities and directions for cancer therapeutics.
Collapse
Affiliation(s)
- Tincy Biju
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Chidananda Venkatesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Darshana Ballagere Honnasiddappa
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Mallikarjun Sajjan
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Nayan Kumar Mahadeva
- Department of Pharmacognosy, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Basavana Gowda Hosur Dinesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Bandral Sunil Kumar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Srinivas Ganjipete
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Mohankumar Ramar
- Department of Pharmaceutical Sciences, UConn School of Pharmacy, Storrs CT-06269, USA
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry & Analysis, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai, Tamil Nadu 600117, India
| | - Sundar Madasamy
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India.
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India.
| |
Collapse
|
2
|
Yang Y, Dou X, Sun Y, Wang M, Wang J, Cao X, Xie H, Xie L, Tian W, Nie J, Chen Y, Liu C, Zhang L. Enhancer Profiling Reveals a Protective Role of RXRα Against Calcium Oxalate-Induced Crystal Deposition and Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411735. [PMID: 40091688 DOI: 10.1002/advs.202411735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/28/2025] [Indexed: 03/19/2025]
Abstract
During the formation of kidney stones, the interaction between crystals and tubular epithelial cells (TECs) leads to tubular injury and dysfunction, which in turn promote stone formation. However, the molecular mechanisms underlying these changes in TECs remain elusive. Drug screening revealed that JQ1 inhibited the adhesion of calcium oxalate (CaOx) crystals to TECs. Its therapeutic effect is further confirmed in a glyoxylic acid-induced CaOx crystal deposition mouse model. Utilizing epigenomic and transcriptomic profiling, dynamic enhancer landscape and gene expression program associated with nephrolithiasis are charted. Bioinformatic analysis pinpointing the RXRα as a central transcription factor (TF) modulating enhancer activity. Importantly, the animal studies revealed that RXRα deletion promoted the CaOx crystal deposition, while its activation by Bexarotene (Bex), an FDA-approved drug, mitigated this progression. Mechanistically, under normal circumstances, RXRα inhibited nephrolithiasis-promoting genes by recruiting the HDAC3/SMART complex to repress enhancer activity. Yet, with the progression of CaOx crystal deposition, RXRα expression decreased, leading to enhancer activation and subsequent upregulation of nephrolithiasis-promoting genes. In summary, the work illustrates an epigenetic mechanism underlying TECs fate transition during CaOx crystal deposition and highlights the therapeutic potential of JQ1 and Bex in managing kidney stone diseases.
Collapse
Affiliation(s)
- Yu Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xudan Dou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yongzhan Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Mengyao Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jing Wang
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xinyi Cao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Haijie Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Linguo Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Weiping Tian
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jing Nie
- Biobank of Peking University First Hospital, Beijing, 100034, China
| | - Yupeng Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Chunyu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Lirong Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
3
|
Hong L, Ni M, Xue F, Jiang T, Wu X, Li C, Liang S, Chen T, Luo C, Wu Q. The Role of HDAC3 in Pulmonary Diseases. Lung 2025; 203:47. [PMID: 40097842 DOI: 10.1007/s00408-025-00798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
Histone deacetylases (HDACs), a class of enzymes involved in epigenetic modifications, play a pivotal role in modulating chromatin structure and gene expression. Among these, histone deacetylase 3 (HDAC3) has emerged as a key regulator in diverse cellular pathophysiological processes. The remarkable therapeutic potential of HDAC inhibitors in lung cancer has intensified research into the role of HDAC3 in pulmonary diseases. Through deacetylating histones and non-histone proteins, HDAC3 has been increasingly recognized for its critical involvement in regulating inflammatory responses, fibrotic processes, and oncogenic signaling pathways, positioning it as a compelling therapeutic target. This review systematically examines the structural and functional features of HDAC3 and discusses its multifaceted contributions to pulmonary pathologies, including lung injury, pulmonary fibrosis, and lung cancer. Additionally, we critically evaluate advances in HDAC inhibitor-based therapies for lung cancer, with emphasis on the development of HDAC3-targeted therapies. As a promising therapeutic target for pulmonary diseases, HDAC3 needs to be further investigated to elucidate its regulatory mechanisms and facilitate the development of selective inhibitors for clinical translation.
Collapse
Affiliation(s)
- Leyu Hong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Ming Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Fei Xue
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Tao Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Xuanpeng Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Chenxi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Shuhao Liang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Tianhao Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Chao Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Qifei Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
| |
Collapse
|
4
|
Marques O, Horvat NK, Zechner L, Colucci S, Sparla R, Zimmermann S, Neufeldt CJ, Altamura S, Qiu R, Müdder K, Weiss G, Hentze MW, Muckenthaler MU. Inflammation-driven NF-κB signaling represses ferroportin transcription in macrophages via HDAC1 and HDAC3. Blood 2025; 145:866-880. [PMID: 39656097 DOI: 10.1182/blood.2023023417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/25/2024] [Indexed: 02/21/2025] Open
Abstract
ABSTRACT Anemia of inflammation is a prevalent comorbidity in patients with chronic inflammatory disorders. Inflammation causes hypoferremia and iron-restricted erythropoiesis by limiting ferroportin (FPN)-mediated iron export from macrophages that recycle senescent erythrocytes. Macrophage cell surface expression of FPN is reduced by hepcidin-induced degradation and/or by repression of FPN (Slc40a1) transcription via cytokine and Toll-like receptor (TLR) stimulation. Although the mechanisms underlying hepcidin-mediated control of FPN have been extensively studied, those inhibiting Slc40a1 messenger RNA (mRNA) expression remain unknown. We applied targeted RNA interference and pharmacological screens in macrophages stimulated with the TLR2/6 ligand FSL1 and identified critical signaling regulators of Slc40a1 mRNA repression downstream of TLRs and NF-κB signaling. Interestingly, the NF-κB regulatory hub is equally relevant for Slc40a1 mRNA repression driven by the TLR4 ligand lipopolysaccharide, the cytokine tumor necrosis factor β/lymphotoxin-alpha (LTA), and heat-killed bacteria. Mechanistically, macrophage stimulation with heat-killed Staphylococcus aureus recruits the histone deacetylases (HDACs) HDAC1 and HDAC3 to the antioxidant response element (ARE) located in the Slc40a1 promoter. Accordingly, pretreatment with a pan-HDAC inhibitor abrogates Slc40a1 mRNA repression in response to inflammatory cues, suggesting that HDACs act downstream of NF-κB to repress Slc40a1 transcription. Consistently, recruitment of HDAC1 and HDAC3 to the Slc40a1 ARE after stimulation with heat-killed S aureus is dependent on NF-κB signaling. These results support a model in which the ARE integrates the transcriptional responses of Slc40a1 triggered by signals from redox, metabolic, and inflammatory pathways. This work identifies the long-sought mechanism of Slc40a1 transcriptional downregulation upon inflammation, paving the way for therapeutic interventions at this critical juncture.
Collapse
Affiliation(s)
- Oriana Marques
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
| | - Natalie K Horvat
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Laura Zechner
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Silvia Colucci
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
| | - Richard Sparla
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
| | - Stefan Zimmermann
- Department for Infectious Diseases, Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
| | - Ruiyue Qiu
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Katja Müdder
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg/Mannheim, Germany
- Center for Translational Biomedical Iron Research, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Leydon AR, Downing B, Solano Sanchez J, Loll-Krippleber R, Belliveau NM, Rodriguez-Mias RA, Bauer AJ, Watson IJ, Bae L, Villén J, Brown GW, Nemhauser JL. A function of TPL/TBL1-type corepressors is to nucleate the assembly of the preinitiation complex. J Cell Biol 2025; 224:e202404103. [PMID: 39652081 PMCID: PMC11627113 DOI: 10.1083/jcb.202404103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/04/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
The plant corepressor TPL is recruited to diverse chromatin contexts, yet its mechanism of repression remains unclear. Previously, we leveraged the fact that TPL retains its function in a synthetic transcriptional circuit in the yeast model Saccharomyces cerevisiae to localize repressive function to two distinct domains. Here, we employed two unbiased whole-genome approaches to map the physical and genetic interactions of TPL at a repressed locus. We identified SPT4, SPT5, and SPT6 as necessary for repression with SPT4 acting as a bridge connecting TPL to SPT5 and SPT6. We discovered the association of multiple additional constituents of the transcriptional preinitiation complex at TPL-repressed promoters, specifically those involved early in transcription initiation. These findings were validated in yeast and plants, including a novel method to analyze the conditional loss of function of essential genes in plants. Our findings support a model where TPL nucleates preassembly of the transcription activation machinery to facilitate the rapid onset of transcription once repression is relieved.
Collapse
Affiliation(s)
| | - Benjamin Downing
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Andrew J. Bauer
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Lena Bae
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Grant W. Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON, USA
| | | |
Collapse
|
6
|
Ritter MJ, Amano I, Hollenberg AN. Transcriptional Cofactors for Thyroid Hormone Receptors. Endocrinology 2025; 166:bqae164. [PMID: 39679543 PMCID: PMC11702866 DOI: 10.1210/endocr/bqae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Thyroid hormone (TH) is essential throughout life. Its actions are mediated primarily by the thyroid hormone receptor (THR), which is a nuclear receptor. Classically, the THRs act as inducible transcription factors. In the absence of TH, a corepressor complex is recruited to the THR to limit TH-related gene expression. In the presence of TH, the corepressor complex is dismissed and a coactivator complex is recruited to facilitate TH-related gene expression. These coregulators can interact with multiple nuclear receptors and are also key in maintaining normal physiologic function. The nuclear receptor corepressor 1 (NCOR1) and the nuclear receptor corepressor 2 (NCOR2) have been the most extensively studied corepressors of the THR involved in histone deacetylation. The steroid receptor coactivator/p160 (SRC) family and in particular, SRC-1, plays a key role in histone acetylation associated with the THR. The Mediator Complex is also required for pretranscription machinery assembly. This mini-review focuses on how these transcriptional cofactors influence TH-action and signaling, primarily via histone modifications.
Collapse
Affiliation(s)
- Megan J Ritter
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Izuki Amano
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Anthony N Hollenberg
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
7
|
He R, He Z, Zhang T, Liu B, Gao M, Li N, Geng Q. HDAC3 in action: Expanding roles in inflammation and inflammatory diseases. Cell Prolif 2025; 58:e13731. [PMID: 39143689 PMCID: PMC11693555 DOI: 10.1111/cpr.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 08/16/2024] Open
Abstract
Inflammation serves as the foundation for numerous physiological and pathological processes, driving the onset and progression of various diseases. Histone deacetylase 3 (HDAC3), an essential chromatin-modifying protein within the histone deacetylase superfamily, exerts its transcriptional inhibitory role through enzymatic histone modification to uphold normal physiological function, growth, and development of the body. With both enzymatic and non-enzymatic activities, HDAC3 plays a pivotal role in regulating diverse transcription factors associated with inflammatory responses and related diseases. This review examines the involvement of HDAC3 in inflammatory responses while exploring its therapeutic potential as a target for treating inflammatory diseases, thereby offering valuable insights for clinical applications.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhuokun He
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Tianyu Zhang
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Bohao Liu
- Department of Thoracic SurgeryJilin UniversityChangchunChina
| | - Minglang Gao
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ning Li
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qing Geng
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
8
|
Wang G, Zhang E, Chen A, Meng D. Single-cell RNA-seq analysis revealed the stemness of a specific cluster of B cells in acute lymphoblastic leukemia progression. PeerJ 2024; 12:e18296. [PMID: 39465162 PMCID: PMC11505884 DOI: 10.7717/peerj.18296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024] Open
Abstract
Background Childhood acute lymphoblastic leukemia (ALL) is a common pediatric cancer. The heterogeneous characterization of B cells in ALL progression poses new challenges to researchers. We used single-cell sequencing to explore the critical role of B cells in regulating the ALL immune microenvironment. Method We collected the single cell (sc) RNA-seq data of ALL and health sample from the gene expression omnibus (GEO) database, the "Seurat" and "harmony" R package was used for quality control and scRNA-seq analysis, in which the CellMarker2.0 database was used for cell type annotation. Subsequently, the FindAllMarkers function was used to identify the differentially expressed genes (DEGs) among various cell types and the DAVID database was applied for the biological process of DEGs. Then, the "inferCNV" package was used for copy number variation, regulons and cell communication were performed by SCENIC tool and CellChat package. The role of the target gene in regulating ALL progression was assessed using RT-qPCR, Transwell and scratch healing assays. Results We identified nine mainly cell clusters after scRNA-seq analysis, in which the B cells had higher infiltration proportion in the ALL samples and were sub-clustered into five cell sub-groups. The B cells 1 is closely associated with cell proliferation and stemness (TNFAIP3 and KDM5B), and the significant CNV of amplification occurred on chr6 and chr21 that supported stemness of B cells1. RXRB is a key transcription factor mediated the proliferation of B cells 1, which in turn suppressed hematopoietic stem cells (HSCs) proliferation and promoted cytotoxic NK/T cells activation through diverse cell communication ways. One of the key regulators of B cells is MYC, which promotes the migration and invasive ability of cell line leukemia cell lines. Conclusion This study reveals the stemness characteristics of B cells and their critical role in ALL progression, a finding that provides new potential directions for the development of targeted therapies against ALL.
Collapse
Affiliation(s)
- Guifang Wang
- Department of Pediatric Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Ensheng Zhang
- Department of Pediatric Hematology, Shandong Maternal and Child Health Hospital, Jinan, Shandong, China
| | - An Chen
- Department of Otolaryngology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Dachuan Meng
- Department of Pediatric Hematology, Shandong Maternal and Child Health Hospital, Jinan, Shandong, China
| |
Collapse
|
9
|
Asmamaw MD, He A, Zhang LR, Liu HM, Gao Y. Histone deacetylase complexes: Structure, regulation and function. Biochim Biophys Acta Rev Cancer 2024; 1879:189150. [PMID: 38971208 DOI: 10.1016/j.bbcan.2024.189150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Histone deacetylases (HDACs) are key epigenetic regulators, and transcriptional complexes with deacetylase function are among the epigenetic corepressor complexes in the nucleus that target the epigenome. HDAC-bearing corepressor complexes such as the Sin3 complex, NuRD complex, CoREST complex, and SMRT/NCoR complex are common in biological systems. These complexes activate the otherwise inactive HDACs in a solitary state. HDAC complexes play vital roles in the regulation of key biological processes such as transcription, replication, and DNA repair. Moreover, deregulated HDAC complex function is implicated in human diseases including cancer. Therapeutic strategies targeting HDAC complexes are being sought actively. Thus, illustration of the nature and composition of HDAC complexes is vital to understanding the molecular basis of their functions under physiologic and pathologic conditions, and for designing targeted therapies. This review presents key aspects of large multiprotein HDAC-bearing complexes including their structure, function, regulatory mechanisms, implication in disease development, and role in therapeutics.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Ang He
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|
10
|
Hantusch B, Kenner L, Stanulović VS, Hoogenkamp M, Brown G. Targeting Androgen, Thyroid Hormone, and Vitamin A and D Receptors to Treat Prostate Cancer. Int J Mol Sci 2024; 25:9245. [PMID: 39273194 PMCID: PMC11394715 DOI: 10.3390/ijms25179245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The nuclear hormone family of receptors regulates gene expression. The androgen receptor (AR), upon ligand binding and homodimerization, shuttles from the cytosol into the nucleus to activate gene expression. Thyroid hormone receptors (TRs), retinoic acid receptors (RARs), and the vitamin D receptor (VDR) are present in the nucleus bound to chromatin as a heterodimer with the retinoid X receptors (RXRs) and repress gene expression. Ligand binding leads to transcription activation. The hormonal ligands for these receptors play crucial roles to ensure the proper conduct of very many tissues and exert effects on prostate cancer (PCa) cells. Androgens support PCa proliferation and androgen deprivation alone or with chemotherapy is the standard therapy for PCa. RARγ activation and 3,5,3'-triiodo-L-thyronine (T3) stimulation of TRβ support the growth of PCa cells. Ligand stimulation of VDR drives growth arrest, differentiation, and apoptosis of PCa cells. Often these receptors are explored as separate avenues to find treatments for PCa and other cancers. However, there is accumulating evidence to support receptor interactions and crosstalk of regulatory events whereby a better understanding might lead to new combinatorial treatments.
Collapse
Affiliation(s)
- Brigitte Hantusch
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1010 Vienna, Austria;
- Comprehensive Cancer Center, Medical University Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1010 Vienna, Austria;
- Comprehensive Cancer Center, Medical University Vienna, 1090 Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Christian Doppler Laboratory for Applied Metabolomics, Medical University Vienna, 1090 Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Vesna S. Stanulović
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (V.S.S.); (M.H.)
| | - Maarten Hoogenkamp
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (V.S.S.); (M.H.)
| | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
11
|
Watson N, Kuppuswamy S, Ledford WL, Sukumari-Ramesh S. The role of HDAC3 in inflammation: mechanisms and therapeutic implications. Front Immunol 2024; 15:1419685. [PMID: 39050859 PMCID: PMC11266039 DOI: 10.3389/fimmu.2024.1419685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Histone deacetylases (HDACs) are critical regulators of inflammatory gene expression, and the efficacy of pan-HDAC inhibitors has been implicated in various disease conditions. However, it remains largely unclear how HDACs precisely regulate inflammation. To this end, evaluating the isoform-specific function of HDACs is critical, and the isoform-specific targeting could also circumvent the off-target effects of pan-HDAC inhibitors. This review provides an overview of the roles of HDAC3, a class I HDAC isoform, in modulating inflammatory responses and discusses the molecular mechanisms by which HDAC3 regulates inflammation associated with brain pathology, arthritis, cardiovascular diseases, lung pathology, allergic conditions, and kidney disorders. The articles also identify knowledge gaps in the field for future studies. Despite some conflicting reports, the selective inhibition of HDAC3 has been demonstrated to play a beneficial role in various inflammatory pathologies. Exploring the potential of HDAC3 inhibition to improve disease prognosis is a promising avenue requiring further investigation.
Collapse
Affiliation(s)
| | | | | | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
12
|
Yang JH, Hansen AS. Enhancer selectivity in space and time: from enhancer-promoter interactions to promoter activation. Nat Rev Mol Cell Biol 2024; 25:574-591. [PMID: 38413840 PMCID: PMC11574175 DOI: 10.1038/s41580-024-00710-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
The primary regulators of metazoan gene expression are enhancers, originally functionally defined as DNA sequences that can activate transcription at promoters in an orientation-independent and distance-independent manner. Despite being crucial for gene regulation in animals, what mechanisms underlie enhancer selectivity for promoters, and more fundamentally, how enhancers interact with promoters and activate transcription, remain poorly understood. In this Review, we first discuss current models of enhancer-promoter interactions in space and time and how enhancers affect transcription activation. Next, we discuss different mechanisms that mediate enhancer selectivity, including repression, biochemical compatibility and regulation of 3D genome structure. Through 3D polymer simulations, we illustrate how the ability of 3D genome folding mechanisms to mediate enhancer selectivity strongly varies for different enhancer-promoter interaction mechanisms. Finally, we discuss how recent technical advances may provide new insights into mechanisms of enhancer-promoter interactions and how technical biases in methods such as Hi-C and Micro-C and imaging techniques may affect their interpretation.
Collapse
Affiliation(s)
- Jin H Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
| |
Collapse
|
13
|
Cheng KM, Hsu WL, Ma YL, Liu YC, Lee EHY. Novel role of NCoR1 in impairing spatial memory through the mediation of a novel interacting protein DEC2. Cell Mol Life Sci 2024; 81:273. [PMID: 38900294 PMCID: PMC11335199 DOI: 10.1007/s00018-024-05321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Long-term memory formation requires de novo RNA and protein synthesis. Using differential display PCR, we found that the NCoR1 cDNA fragment is differentially expressed between fast learners and slow learners, with fast learners showing a lower expression level than slow learners in the water maze learning task. Fast learners also show lower NCoR1 mRNA and protein expression levels. In addition, spatial training decreases both NCoR1 mRNA and protein expression, whereas NCoR1 conditional knockout (cKO) mice show enhanced spatial memory. In studying the molecular mechanism, we found that spatial training decreases the association between NCoR1 and DEC2. Both NCoR1 and DEC2 suppress the expression of BDNF, integrin α3 and SGK1 through C/EBPα binding to their DNA promoters, but overexpression of DEC2 in NCoR1 cKO mice rescues the decreased expression of these proteins compared with NCoR1 loxP mice overexpressing DEC2. Further, spatial training decreases DEC2 expression. Spatial training also enhances C/EBPα binding to Bdnf, Itga3 and Sgk1 promoters, an effect also observed in fast learners, and both NCoR1 and DEC2 control C/EBPα activity. Whereas knockdown of BDNF, integrin α3 or SGK1 expression impairs spatial learning and memory, it does not affect Y-maze performance, suggesting that BDNF, integrin α3 and SGK1 are involved in long-term memory formation, but not short-term memory formation. Moreover, NCoR1 expression is regulated by the JNK/c-Jun signaling pathway. Collectively, our findings identify DEC2 as a novel interacting protein of NCoR1 and elucidate the novel roles and mechanisms of NCoR1 and DEC2 in negative regulation of spatial memory formation.
Collapse
Affiliation(s)
- Kuang-Min Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Wei-Lun Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Yun-Li Ma
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Yen-Chen Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Eminy H Y Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
14
|
Powała K, Żołek T, Brown G, Kutner A. Molecular Interactions of Selective Agonists and Antagonists with the Retinoic Acid Receptor γ. Int J Mol Sci 2024; 25:6568. [PMID: 38928275 PMCID: PMC11203493 DOI: 10.3390/ijms25126568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
All-trans retinoic acid (ATRA), the major active metabolite of all-trans retinol (vitamin A), is a key hormonal signaling molecule. In the adult organism, ATRA has a widespread influence on processes that are crucial to the growth and differentiation of cells and, in turn, the acquisition of mature cell functions. Therefore, there is considerable potential in the use of retinoids to treat diseases. ATRA binds to the retinoic acid receptors (RAR) which, as activated by ATRA, selectively regulate gene expression. There are three main RAR isoforms, RARα, RARβ, and RARγ. They each have a distinct role, for example, RARα and RARγ regulate myeloid progenitor cell differentiation and hematopoietic stem cell maintenance, respectively. Hence, targeting an isoform is crucial to developing retinoid-based therapeutics. In principle, this is exemplified when ATRA is used to treat acute promyelocytic leukemia (PML) and target RARα within PML-RARα oncogenic fusion protein. ATRA with arsenic trioxide has provided a cure for the once highly fatal leukemia. Recent in vitro and in vivo studies of RARγ have revealed the potential use of agonists and antagonists to treat diseases as diverse as cancer, heterotopic ossification, psoriasis, and acne. During the final drug development there may be a need to design newer compounds with added modifications to improve solubility, pharmacokinetics, or potency. At the same time, it is important to retain isotype specificity and activity. Examination of the molecular interactions between RARγ agonists and the ligand binding domain of RARγ has revealed aspects to ligand binding that are crucial to RARγ selectivity and compound activity and key to designing newer compounds.
Collapse
Affiliation(s)
- Katarzyna Powała
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland
| | - Teresa Żołek
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland
| | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Andrzej Kutner
- Department of Drug Chemistry Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland;
| |
Collapse
|
15
|
Jan N, Sofi S, Abo Mansoor A, Abdelrahim A, Ahmad I, Almilabairy A, Ahmad F, Mir MA. Exploring the role of trifarotene against RAR-α: an investigation of expression pattern and clinicopathological significance of RAR-α in breast cancer. Front Pharmacol 2024; 15:1361679. [PMID: 38910889 PMCID: PMC11190336 DOI: 10.3389/fphar.2024.1361679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction The members retinoic acid receptors (RARs) (α, β, and γ) and retinoid X receptors (RXRs) (α, β, and γ) belong to the retinoid receptor family. They regulate the biological action of classical retinoids through nuclear retinoid receptors, a transcription factor that is regulated by ligands. Through the binding of particular retinoic acid-responsive elements (RAREs) located in target gene promoters, RARs and members of the RXRs form heterodimers. By binding to its nuclear receptors and triggering the transcription of the target genes downstream, retinoic acid (RA) mediates the expression of certain genes. Retinoids so mainly control gene expression to carry out their biological actions. RARs are essential for many biological processes, such as development, immunity, reproduction, organogenesis, and homeostasis. Apart from their physiological functions, RARs are also linked to pathologies and tumors due to mutations, protein fusions, changes in expression levels, or abnormal post-translational changes that lead to aberrant functions and homeostasis breakdown. The oncogenic development of animal tissues or cultured cells is linked to altered expression of retinoid receptors. The RAR-α is over-expressed in several malignancies. Increased invasion and migration in several cancer forms, including HNSC carcinoma, pediatric low-grade gliomas, lung adenocarcinoma, and breast cancer, have been linked to its upregulated expression. Numerous approved therapeutic regimens targeting RAR-α have been developed, improving patient survival rates. Objective This study's main objective was to identify novel RAR-α-targeting drugs and evaluate the expression patterns of RAR-α in breast cancer patients. Methodology In-silico investigation using a variety of bioinformatics tools like UALCAN, TISCH, TIMER 2.0, ENRICHR, and others were employed to examine the expression of RAR-α. Further we evaluated in-silico inhibition of RAR-α with trifarotene and also tested the cytotoxicity of trifarotene in breast cancer cells. Results Our research indicates that RAR-α is upregulated in several malignancies including Breast Cancer. It regulates granulocyte differentiation and has an association with the retinoic acid receptor signaling pathway and cellular response to estrogen stimulus. Furthermore, trifarotene was found as a potential synthetic compound that targets RAR-α through in silico and in-vitro study. Discussion Overall, this research indicates that elevated expression of RAR-α enhances the onset of breast cancer. Using trifarotene medication to target RAR-α will significantly boost the response of breast cancer individuals to treatment and delay the development of resistance to drugs.
Collapse
Affiliation(s)
- Nusrat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Shazia Sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Adel Abo Mansoor
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences (CAMS), King Khalid University, Abha, Saudi Arabia
| | - Adil Abdelrahim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences (CAMS), King Khalid University, Abha, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences (CAMS), King Khalid University, Abha, Saudi Arabia
| | - Abdullah Almilabairy
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
| | - Fuzail Ahmad
- College of Applied Sciences Almaarefa University, Riyadh, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
16
|
Shi YB, Fu L, Tanizaki Y. Intestinal remodeling during Xenopus metamorphosis as a model for studying thyroid hormone signaling and adult organogenesis. Mol Cell Endocrinol 2024; 586:112193. [PMID: 38401883 PMCID: PMC10999354 DOI: 10.1016/j.mce.2024.112193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Intestinal development takes places in two phases, the initial formation of neonatal (mammals)/larval (anurans) intestine and its subsequent maturation into the adult form. This maturation occurs during postembryonic development when plasma thyroid hormone (T3) level peaks. In anurans such as the highly related Xenopus laevis and Xenopus tropicalis, the larval/tadpole intestine is drastically remodeled from a simple tubular structure to a complex, multi-folded adult organ during T3-dependent metamorphosis. This involved complete degeneration of larval epithelium via programmed cell death and de novo formation of adult epithelium, with concurrent maturation of the muscles and connective tissue. Here, we will summarize our current understanding of the underlying molecular mechanisms, with a focus on more recent genetic and genome-wide studies.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
17
|
Tsitkov S, Valentine K, Kozareva V, Donde A, Frank A, Lei S, E Van Eyk J, Finkbeiner S, Rothstein JD, Thompson LM, Sareen D, Svendsen CN, Fraenkel E. Disease related changes in ATAC-seq of iPSC-derived motor neuron lines from ALS patients and controls. Nat Commun 2024; 15:3606. [PMID: 38697975 PMCID: PMC11066062 DOI: 10.1038/s41467-024-47758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS), like many other neurodegenerative diseases, is highly heritable, but with only a small fraction of cases explained by monogenic disease alleles. To better understand sporadic ALS, we report epigenomic profiles, as measured by ATAC-seq, of motor neuron cultures derived from a diverse group of 380 ALS patients and 80 healthy controls. We find that chromatin accessibility is heavily influenced by sex, the iPSC cell type of origin, ancestry, and the inherent variance arising from sequencing. Once these covariates are corrected for, we are able to identify ALS-specific signals in the data. Additionally, we find that the ATAC-seq data is able to predict ALS disease progression rates with similar accuracy to methods based on biomarkers and clinical status. These results suggest that iPSC-derived motor neurons recapitulate important disease-relevant epigenomic changes.
Collapse
Affiliation(s)
- Stanislav Tsitkov
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kelsey Valentine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Velina Kozareva
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aneesh Donde
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aaron Frank
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Susan Lei
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steve Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA, USA
- Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA, USA
| | - Dhruv Sareen
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Clive N Svendsen
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
18
|
Leydon AR, Downing B, Sanchez JS, Loll-Krippleber R, Belliveau NM, Rodriguez-Mias RA, Bauer A, Watson IJ, Bae L, Villén J, Brown GW, Nemhauser JL. A conserved function of corepressors is to nucleate assembly of the transcriptional preinitiation complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587599. [PMID: 38617365 PMCID: PMC11014602 DOI: 10.1101/2024.04.01.587599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The plant corepressor TPL is recruited to diverse chromatin contexts, yet its mechanism of repression remains unclear. Previously, we have leveraged the fact that TPL retains its function in a synthetic transcriptional circuit in the yeast model Saccharomyces cerevisiae to localize repressive function to two distinct domains. Here, we employed two unbiased whole genome approaches to map the physical and genetic interactions of TPL at a repressed locus. We identified SPT4, SPT5 and SPT6 as necessary for repression with the SPT4 subunit acting as a bridge connecting TPL to SPT5 and SPT6. We also discovered the association of multiple additional constituents of the transcriptional preinitiation complex at TPL-repressed promoters, specifically those involved in early transcription initiation events. These findings were validated in yeast and plants through multiple assays, including a novel method to analyze conditional loss of function of essential genes in plants. Our findings support a model where TPL nucleates preassembly of the transcription activation machinery to facilitate rapid onset of transcription once repression is relieved.
Collapse
Affiliation(s)
| | - Benjamin Downing
- Department of Biology, University of Washington, Seattle, 98195, USA
| | | | | | | | | | - Andrew Bauer
- Department of Biology, University of Washington, Seattle, 98195, USA
| | | | - Lena Bae
- Department of Biology, University of Washington, Seattle, 98195, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, 98195, USA
| | - Grant W. Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, Ontario, CA
| | | |
Collapse
|
19
|
Chen N, Zhao M, Wu N, Guo Y, Cao B, Zhan B, Li Y, Zhou T, Zhu F, Guo C, Shi Y, Wang Q, Li Y, Zhang L. ACSS2 controls PPARγ activity homeostasis to potentiate adipose-tissue plasticity. Cell Death Differ 2024; 31:479-496. [PMID: 38332049 PMCID: PMC11043345 DOI: 10.1038/s41418-024-01262-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
The appropriate transcriptional activity of PPARγ is indispensable for controlling inflammation, tumor and obesity. Therefore, the identification of key switch that couples PPARγ activation with degradation to sustain its activity homeostasis is extremely important. Unexpectedly, we here show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) critically controls PPARγ activity homeostasis via SIRT1 to enhance adipose plasticity via promoting white adipose tissues beiging and brown adipose tissues thermogenesis. Mechanistically, ACSS2 binds directly acetylated PPARγ in the presence of ligand and recruits SIRT1 and PRDM16 to activate UCP1 expression. In turn, SIRT1 triggers ACSS2 translocation from deacetylated PPARγ to P300 and thereafter induces PPARγ polyubiquitination and degradation. Interestingly, D-mannose rapidly activates ACSS2-PPARγ-UCP1 axis to resist high fat diet induced obesity in mice. We thus reveal a novel ACSS2 function in coupling PPARγ activation with degradation via SIRT1 and suggest D-mannose as a novel adipose plasticity regulator via ACSS2 to prevent obesity.
Collapse
Affiliation(s)
- Nuo Chen
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Zhao
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Wu
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaxin Guo
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baihui Cao
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bing Zhan
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yubin Li
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tian Zhou
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Faliang Zhu
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chun Guo
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongyu Shi
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qun Wang
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
20
|
Li Y, Zhu C, Yao J, Zhu C, Li Z, Liu HY, Zhu M, Li K, Ahmed AA, Li S, Hu P, Cai D. Lithocholic Acid Alleviates Deoxynivalenol-Induced Inflammation and Oxidative Stress via PPARγ-Mediated Epigenetically Transcriptional Reprogramming in Porcine Intestinal Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5452-5462. [PMID: 38428036 DOI: 10.1021/acs.jafc.3c08044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Deoxynivalenol (DON) is a common mycotoxin that induces intestinal inflammation and oxidative damage in humans and animals. Given that lithocholic acid (LCA) has been suggested to inhibit intestinal inflammation, we aimed to investigate the protective effects of LCA on DON-exposed porcine intestinal epithelial IPI-2I cells and the underlying mechanisms. Indeed, LCA rescued DON-induced cell death in IPI-2I cells and reduced DON-stimulated inflammatory cytokine levels and oxidative stress. Importantly, the nuclear receptor PPARγ was identified as a key transcriptional factor involved in the DON-induced inflammation and oxidative stress processes in IPI-2I cells. The PPARγ function was found compromised, likely due to the hyperphosphorylation of the p38 and ERK signaling pathways. In contrast, the DON-induced inflammatory responses and oxidative stress were restrained by LCA via PPARγ-mediated reprogramming of the core inflammatory and antioxidant genes. Notably, the PPARγ-modulated transcriptional regulations could be attributed to the altered recruitments of coactivator SRC-1/3 and corepressor NCOR1/2, along with the modified histone marks H3K27ac and H3K18la. This study emphasizes the protective actions of LCA on DON-induced inflammatory damage and oxidative stress in intestinal epithelial cells via PPARγ-mediated epigenetically transcriptional reprogramming, including histone acetylation and lactylation.
Collapse
Affiliation(s)
- Yanwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Jiacheng Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Cuipeng Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Zhaojian Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Miaonan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Abdelkareem A Ahmed
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Natural Resources, Gaborone 0027, Botswana
| | - Shicheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, P. R. China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, P. R. China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, P. R. China
| |
Collapse
|
21
|
Teichmann T, Malacarne P, Zehr S, Günther S, Pflüger-Müller B, Warwick T, Brandes RP. NCoR1 limits angiogenic capacity by altering Notch signaling. J Mol Cell Cardiol 2024; 188:65-78. [PMID: 38359551 DOI: 10.1016/j.yjmcc.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Corepressors negatively regulate gene expression by chromatin compaction. Targeted regulation of gene expression could provide a means to control endothelial cell phenotype. We hypothesize that by targeting corepressor proteins, endothelial angiogenic function can be improved. To study this, the expression and function of nuclear corepressors in human umbilical vein endothelial cells (HUVEC) and in murine organ culture was studied. RNA-seq revealed that nuclear receptor corepressor 1 (NCoR1), silencing mediator of retinoid and thyroid hormone receptors (SMRT) and repressor element-1 silencing transcription factor (REST) are the highest expressed corepressors in HUVECs. Knockout and knockdown strategies demonstrated that the depletion of NCoR1 increased the angiogenic capacity of endothelial cells, whereas depletion of SMRT or REST did not. Interestingly, the effect was VEGF signaling independent. NCoR1 depletion significantly upregulated angiogenesis-associated genes, especially tip cell genes, including ESM1, DLL4 and NOTCH4, as observed by RNA- and ATAC-seq. Confrontation assays comparing cells with and without NCoR1-deficiency revealed that loss of NCoR1 promotes a tip-cell position during spheroid sprouting. Moreover, a proximity ligation assay identified NCoR1 as a direct binding partner of the Notch-signaling-related transcription factor RBPJk. Luciferase assays showed that siRNA-mediated knockdown of NCOR1 promotes RBPJk activity. Furthermore, NCoR1 depletion prompts upregulation of several elements in the Notch signaling cascade. Downregulation of NOTCH4, but not NOTCH1, prevented the positive effect of NCOR1 knockdown on spheroid outgrowth. Collectively, these data indicate that decreasing NCOR1 expression is an attractive approach to promote angiogenic function.
Collapse
Affiliation(s)
- Tom Teichmann
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main 60590, Germany; German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Pedro Malacarne
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main 60590, Germany; German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Simonida Zehr
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main 60590, Germany; German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Stefan Günther
- Max-Planck-Institute for Heart- and Lung Research (MPI-HLR), Bad Nauheim 61231, Germany
| | - Beatrice Pflüger-Müller
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main 60590, Germany; German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main 60590, Germany; German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany.
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main 60590, Germany; German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Qiu S, Xian Z, Chen J, Huang P, Wang H, Wang H, Xu J. Microglia nuclear receptor corepressor 1 deficiency alleviates neuroinflammation in mice. Neurosci Lett 2024; 822:137643. [PMID: 38242347 DOI: 10.1016/j.neulet.2024.137643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Given the established role of nuclear receptor corepressor 1 (NCoR1) in sensing environmental cues and the importance of inflammation in neurodegenerative diseases, elucidation of NCoR1 involvement in neuroinflammation has notable implications. Yet, its regulatory mechanism remains largely unclear. Under in vitro conditions, NCoR1 expression peaked and then decreased at 12 h after lipopolysaccharides (LPS) stimulation in BV2 cells, However, NCoR1 knockdown using si-RNA attenuated microglial inflammation, evident by reduced the levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), phosphorylated-JNK and high mobility group box-1 (HMGB1). Furthermore, NCoR1 suppression could counteract the decline in mitochondrial membrane potential while simultaneously enhancing the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). Under in vivo conditions, microglia-specific NCoR1 knockout (MNKO) mice after LPS injections alleviated the symptoms of anhedonia, diminished autonomic activity and cognitive impairment. Additionally, MNKO mice showed attenuation of microglial activation, downregulated HMGB1 and COX2, and upregulated PGC-1α expression in the cortex. In conclusion, these findings suggest that NCoR1 deficiency leads to a modest reduction in neuroinflammation, possibly attributed to the increased expression of PGC-1α.
Collapse
Affiliation(s)
- Shuqin Qiu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zihong Xian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junyu Chen
- Department of Neurology, Guangzhou First People's Hospital Baiyun Hospital, Guangzhou 510450, China
| | - Peng Huang
- Women and Children Medical Research Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Honghao Wang
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510006, China
| | - Haitao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China
| | - Jiangping Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China.
| |
Collapse
|
23
|
Abe Y, Kofman ER, Ouyang Z, Cruz-Becerra G, Spann NJ, Seidman JS, Troutman TD, Stender JD, Taylor H, Fan W, Link VM, Shen Z, Sakai J, Downes M, Evans RM, Kadonaga JT, Rosenfeld MG, Glass CK. A TLR4/TRAF6-dependent signaling pathway mediates NCoR coactivator complex formation for inflammatory gene activation. Proc Natl Acad Sci U S A 2024; 121:e2316104121. [PMID: 38165941 PMCID: PMC10786282 DOI: 10.1073/pnas.2316104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 01/04/2024] Open
Abstract
The nuclear receptor corepressor (NCoR) forms a complex with histone deacetylase 3 (HDAC3) that mediates repressive functions of unliganded nuclear receptors and other transcriptional repressors by deacetylation of histone substrates. Recent studies provide evidence that NCoR/HDAC3 complexes can also exert coactivator functions in brown adipocytes by deacetylating and activating PPARγ coactivator 1α (PGC1α) and that signaling via receptor activator of nuclear factor kappa-B (RANK) promotes the formation of a stable NCoR/HDAC3/PGC1β complex that coactivates nuclear factor kappa-B (NFκB)- and activator protein 1 (AP-1)-dependent genes required for osteoclast differentiation. Here, we demonstrate that activation of Toll-like receptor (TLR) 4, but not TLR3, the interleukin 4 (IL4) receptor nor the Type I interferon receptor, also promotes assembly of an NCoR/HDAC3/PGC1β coactivator complex. Receptor-specific utilization of TNF receptor-associated factor 6 (TRAF6) and downstream activation of extracellular signal-regulated kinase 1 (ERK1) and TANK-binding kinase 1 (TBK1) accounts for the common ability of RANK and TLR4 to drive assembly of an NCoR/HDAC3/PGC1β complex in macrophages. ERK1, the p65 component of NFκB, and the p300 histone acetyltransferase (HAT) are also components of the induced complex and are associated with local histone acetylation and transcriptional activation of TLR4-dependent enhancers and promoters. These observations identify a TLR4/TRAF6-dependent signaling pathway that converts NCoR from a corepressor of nuclear receptors to a coactivator of NFκB and AP-1 that may be relevant to functions of NCoR in other developmental and homeostatic processes.
Collapse
Affiliation(s)
- Yohei Abe
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Eric R. Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Stem Cell Program, University of California San Diego, La Jolla, CA92093
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA92093
| | - Zhengyu Ouyang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Grisel Cruz-Becerra
- Department of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Nathanael J. Spann
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Jason S. Seidman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Ty D. Troutman
- Department of Medicine, University of California San Diego, La Jolla, CA92093
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH45229
| | - Joshua D. Stender
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Havilah Taylor
- Department and School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Weiwei Fan
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Verena M. Link
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Faculty of Biology, Department II, Ludwig-Maximilians Universität München, Munich82152, Germany
| | - Zeyang Shen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA92093
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo153-8904, Japan
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai980-8575, Japan
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - James T. Kadonaga
- Department of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Michael G. Rosenfeld
- Department and School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
24
|
Hou C, Yan L, Sun K, Zhou T, Zou Y, Xiong W, Duan SZ. Nuclear receptor corepressor 1 deficiency exacerbates asthma by modulating macrophage polarization. Cell Death Discov 2023; 9:429. [PMID: 38030614 PMCID: PMC10687133 DOI: 10.1038/s41420-023-01724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/02/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophage polarization plays an important role in asthma. Nuclear receptor corepressor 1 (NCOR1) plays an important role in metabolic and cardiovascular diseases by regulating the function of macrophages. The aim of this research was to examine the role and mechanism of macrophage NCOR1 in the development of asthma. We used ovalbumin (OVA) to induce macrophage NCOR1-deficient mice for asthma formation. Our results revealed that macrophage NCOR1 deficiency markedly enhanced allergic airway inflammation. In addition, NCOR1 deficiency in macrophages was found to enhance M2 polarization. Mechanistic studies suggested that NCOR1 promoted macrophage polarization by interacting with PPARγ, contributing to the pathogenesis of asthma. In conclusion, macrophage NCOR1 deficiency promoted the regulation of M2 programming by enhancing PPARγ expression to exacerbate asthma. Macrophage NCOR1 might be a potential target for the treatment of asthma.
Collapse
Affiliation(s)
- Chenchen Hou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lifeng Yan
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ke Sun
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200031, China
| | - Tianyu Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuxin Zou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
25
|
Nabekura T, Deborah EA, Tahara S, Arai Y, Love PE, Kako K, Fukamizu A, Muratani M, Shibuya A. Themis2 regulates natural killer cell memory function and formation. Nat Commun 2023; 14:7200. [PMID: 37938555 PMCID: PMC10632368 DOI: 10.1038/s41467-023-42578-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
Immunological memory is a hallmark of the adaptive immune system. Although natural killer (NK) cells are innate immune cells important for the immediate host defence, they can differentiate into memory NK cells. The molecular mechanisms controlling this differentiation are yet to be fully elucidated. Here we identify the scaffold protein Themis2 as a critical regulator of memory NK cell differentiation and function. Themis2-deficient NK cells expressing Ly49H, an activating NK receptor for the mouse cytomegalovirus (MCMV) antigen m157, show enhanced differentiation into memory NK cells and augment host protection against MCMV infection. Themis2 inhibits the effector function of NK cells after stimulation of Ly49H and multiple activating NK receptors, though not specific to memory NK cells. Mechanistically, Themis2 suppresses Ly49H signalling by attenuating ZAP70/Syk phosphorylation, and it also translocates to the nucleus, where it promotes Zfp740-mediated repression to regulate the persistence of memory NK cells. Zfp740 deficiency increases the number of memory NK cells and enhances the effector function of memory NK cells, which further supports the relevance of the Themis2-Zfp740 pathway. In conclusion, our study shows that Themis2 quantitatively and qualitatively regulates NK cell memory formation.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Ibaraki, 305-8575, Japan.
| | - Elfira Amalia Deborah
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Saeko Tahara
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuya Arai
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Koichiro Kako
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Shibuya
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
26
|
Zhao S, Lu J, Pan B, Fan H, Byrum SD, Xu C, Kim A, Guo Y, Kanchi KL, Gong W, Sun T, Storey AJ, Burkholder NT, Mackintosh SG, Kuhlers PC, Edmondson RD, Strahl BD, Diao Y, Tackett AJ, Raab JR, Cai L, Song J, Wang GG. TNRC18 engages H3K9me3 to mediate silencing of endogenous retrotransposons. Nature 2023; 623:633-642. [PMID: 37938770 PMCID: PMC11000523 DOI: 10.1038/s41586-023-06688-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/27/2023] [Indexed: 11/09/2023]
Abstract
Trimethylation of histone H3 lysine 9 (H3K9me3) is crucial for the regulation of gene repression and heterochromatin formation, cell-fate determination and organismal development1. H3K9me3 also provides an essential mechanism for silencing transposable elements1-4. However, previous studies have shown that canonical H3K9me3 readers (for example, HP1 (refs. 5-9) and MPP8 (refs. 10-12)) have limited roles in silencing endogenous retroviruses (ERVs), one of the main transposable element classes in the mammalian genome13. Here we report that trinucleotide-repeat-containing 18 (TNRC18), a poorly understood chromatin regulator, recognizes H3K9me3 to mediate the silencing of ERV class I (ERV1) elements such as LTR12 (ref. 14). Biochemical, biophysical and structural studies identified the carboxy-terminal bromo-adjacent homology (BAH) domain of TNRC18 (TNRC18(BAH)) as an H3K9me3-specific reader. Moreover, the amino-terminal segment of TNRC18 is a platform for the direct recruitment of co-repressors such as HDAC-Sin3-NCoR complexes, thus enforcing optimal repression of the H3K9me3-demarcated ERVs. Point mutagenesis that disrupts the TNRC18(BAH)-mediated H3K9me3 engagement caused neonatal death in mice and, in multiple mammalian cell models, led to derepressed expression of ERVs, which affected the landscape of cis-regulatory elements and, therefore, gene-expression programmes. Collectively, we describe a new H3K9me3-sensing and regulatory pathway that operates to epigenetically silence evolutionarily young ERVs and exert substantial effects on host genome integrity, transcriptomic regulation, immunity and development.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Bo Pan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Huitao Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- The First Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Chenxi Xu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Arum Kim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krishna L Kanchi
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Tongyu Sun
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nathaniel T Burkholder
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Peyton C Kuhlers
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian D Strahl
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yarui Diao
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jesse R Raab
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ling Cai
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, USA.
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
Torres HM, Yeo D, Westendorf JJ. Pulling rank with RNA: RANKL promotes the association of PGC-1β/RNA complexes with NCoR/HDAC3 to activate gene expression in osteoclasts. Mol Cell 2023; 83:3397-3399. [PMID: 37802020 PMCID: PMC10835765 DOI: 10.1016/j.molcel.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023]
Abstract
In this issue, Abe et al1 report a novel mechanism by which RANKL stimulates osteoclast differentiation and bone resorption through non-coding RNAs that bind PGC-1β and convert the NCoR/HDAC3 co-repressor complex into a co-activator of AP-1- and NFκB-regulated genes.
Collapse
Affiliation(s)
- Haydee M Torres
- Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Dongwook Yeo
- Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jennifer J Westendorf
- Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
28
|
Abe Y, Kofman ER, Almeida M, Ouyang Z, Ponte F, Mueller JR, Cruz-Becerra G, Sakai M, Prohaska TA, Spann NJ, Resende-Coelho A, Seidman JS, Stender JD, Taylor H, Fan W, Link VM, Cobo I, Schlachetzki JCM, Hamakubo T, Jepsen K, Sakai J, Downes M, Evans RM, Yeo GW, Kadonaga JT, Manolagas SC, Rosenfeld MG, Glass CK. RANK ligand converts the NCoR/HDAC3 co-repressor to a PGC1β- and RNA-dependent co-activator of osteoclast gene expression. Mol Cell 2023; 83:3421-3437.e11. [PMID: 37751740 PMCID: PMC10591845 DOI: 10.1016/j.molcel.2023.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
The nuclear receptor co-repressor (NCoR) complex mediates transcriptional repression dependent on histone deacetylation by histone deacetylase 3 (HDAC3) as a component of the complex. Unexpectedly, we found that signaling by the receptor activator of nuclear factor κB (RANK) converts the NCoR/HDAC3 co-repressor complex to a co-activator of AP-1 and NF-κB target genes that are required for mouse osteoclast differentiation. Accordingly, the dominant function of NCoR/HDAC3 complexes in response to RANK signaling is to activate, rather than repress, gene expression. Mechanistically, RANK signaling promotes RNA-dependent interaction of the transcriptional co-activator PGC1β with the NCoR/HDAC3 complex, resulting in the activation of PGC1β and inhibition of HDAC3 activity for acetylated histone H3. Non-coding RNAs Dancr and Rnu12, which are associated with altered human bone homeostasis, promote NCoR/HDAC3 complex assembly and are necessary for RANKL-induced osteoclast differentiation in vitro. These findings may be prototypic for signal-dependent functions of NCoR in other biological contexts.
Collapse
Affiliation(s)
- Yohei Abe
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Eric R Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Zhengyu Ouyang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Filipa Ponte
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jasmine R Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Grisel Cruz-Becerra
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Biochemistry and Molecular Biology, Nippon Medical School Hospital, Tokyo 113-8602, Japan
| | - Thomas A Prohaska
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ana Resende-Coelho
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jason S Seidman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Joshua D Stender
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Havilah Taylor
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Fan
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Verena M Link
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Faculty of Biology, Department II, Ludwig-Maximilians Universität München, Planegg-Martinsried 82152, Germany
| | - Isidoro Cobo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Takao Hamakubo
- Department of Protein-Protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo 113-8602, Japan
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - James T Kadonaga
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Michael G Rosenfeld
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
29
|
Hu Y, Wang R, Liu J, Wang Y, Dong J. Lipid droplet deposition in the regenerating liver: A promoter, inhibitor, or bystander? Hepatol Commun 2023; 7:e0267. [PMID: 37708445 PMCID: PMC10503682 DOI: 10.1097/hc9.0000000000000267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/29/2023] [Indexed: 09/16/2023] Open
Abstract
Liver regeneration (LR) is a complex process involving intricate networks of cellular connections, cytokines, and growth factors. During the early stages of LR, hepatocytes accumulate lipids, primarily triacylglycerol, and cholesterol esters, in the lipid droplets. Although it is widely accepted that this phenomenon contributes to LR, the impact of lipid droplet deposition on LR remains a matter of debate. Some studies have suggested that lipid droplet deposition has no effect or may even be detrimental to LR. This review article focuses on transient regeneration-associated steatosis and its relationship with the liver regenerative response.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics. Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
30
|
Arnosti DN. Soft repression and chromatin modification by conserved transcriptional corepressors. Enzymes 2023; 53:69-96. [PMID: 37748837 DOI: 10.1016/bs.enz.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Transcriptional regulation in eukaryotic cells involves the activity of multifarious DNA-binding transcription factors and recruited corepressor complexes. Together, these complexes interact with the core transcriptional machinery, chromatin, and nuclear environment to effect complex patterns of gene regulation. Much focus has been paid to the action of master regulatory switches that are key to developmental and environmental responses, as these genetic elements have important phenotypic effects. The regulation of widely-expressed metabolic control genes has been less well studied, particularly in cases in which physically-interacting repressors and corepressors have subtle influences on steady-state expression. This latter phenomenon, termed "soft repression" is a topic of increasing interest as genomic approaches provide ever more powerful tools to uncover the significance of this level of control. This review provides an oversight of classic and current approaches to the study of transcriptional repression in eukaryotic systems, with a specific focus on opportunities and challenges that lie ahead in the study of soft repression.
Collapse
Affiliation(s)
- David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
31
|
Shi MY, Yu HC, Han CY, Bang IH, Park HS, Jang KY, Lee S, Son JB, Kim ND, Park BH, Bae EJ. p21-activated kinase 4 suppresses fatty acid β-oxidation and ketogenesis by phosphorylating NCoR1. Nat Commun 2023; 14:4987. [PMID: 37591884 PMCID: PMC10435519 DOI: 10.1038/s41467-023-40597-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
PPARα corepressor NCoR1 is a key regulator of fatty acid β-oxidation and ketogenesis. However, its regulatory mechanism is largely unknown. Here, we report that oncoprotein p21-activated kinase 4 (PAK4) is an NCoR1 kinase. Specifically, PAK4 phosphorylates NCoR1 at T1619/T2124, resulting in an increase in its nuclear localization and interaction with PPARα, thereby repressing the transcriptional activity of PPARα. We observe impaired ketogenesis and increases in PAK4 protein and NCoR1 phosphorylation levels in liver tissues of high fat diet-fed mice, NAFLD patients, and hepatocellular carcinoma patients. Forced overexpression of PAK4 in mice represses ketogenesis and thereby increases hepatic fat accumulation, whereas genetic ablation or pharmacological inhibition of PAK4 exhibites an opposite phenotype. Interestingly, PAK4 protein levels are significantly suppressed by fasting, largely through either cAMP/PKA- or Sirt1-mediated ubiquitination and proteasome degradation. In this way, our findings provide evidence for a PAK4-NCoR1/PPARα signaling pathway that regulates fatty acid β-oxidation and ketogenesis.
Collapse
Affiliation(s)
- Min Yan Shi
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Hwang Chan Yu
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Chang Yeob Han
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - In Hyuk Bang
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | | | - Nam Doo Kim
- VORONOI BIO Inc., Incheon, 21984, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea.
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
32
|
Biswas VK, Sen K, Ahad A, Ghosh A, Verma S, Pati R, Prusty S, Nayak SP, Podder S, Kumar D, Gupta B, Raghav SK. NCoR1 controls Mycobacterium tuberculosis growth in myeloid cells by regulating the AMPK-mTOR-TFEB axis. PLoS Biol 2023; 21:e3002231. [PMID: 37590294 PMCID: PMC10465006 DOI: 10.1371/journal.pbio.3002231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/29/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) defends host-mediated killing by repressing the autophagolysosome machinery. For the first time, we report NCoR1 co-repressor as a crucial host factor, controlling Mtb growth in myeloid cells by regulating both autophagosome maturation and lysosome biogenesis. We found that the dynamic expression of NCoR1 is compromised in human peripheral blood mononuclear cells (PBMCs) during active Mtb infection, which is rescued upon prolonged anti-mycobacterial therapy. In addition, a loss of function in myeloid-specific NCoR1 considerably exacerbates the growth of M. tuberculosis in vitro in THP1 differentiated macrophages, ex vivo in bone marrow-derived macrophages (BMDMs), and in vivo in NCoR1MyeKO mice. We showed that NCoR1 depletion controls the AMPK-mTOR-TFEB signalling axis by fine-tuning cellular adenosine triphosphate (ATP) homeostasis, which in turn changes the expression of proteins involved in autophagy and lysosomal biogenesis. Moreover, we also showed that the treatment of NCoR1 depleted cells by Rapamycin, Antimycin-A, or Metformin rescued the TFEB activity and LC3 levels, resulting in enhanced Mtb clearance. Similarly, expressing NCoR1 exogenously rescued the AMPK-mTOR-TFEB signalling axis and Mtb killing. Overall, our data revealed a central role of NCoR1 in Mtb pathogenesis in myeloid cells.
Collapse
Affiliation(s)
- Viplov Kumar Biswas
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Kaushik Sen
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Abdul Ahad
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
| | - Arup Ghosh
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Surbhi Verma
- Molecular Medicine: Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Rashmirekha Pati
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
| | - Subhasish Prusty
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sourya Prakash Nayak
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
| | - Sreeparna Podder
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Dhiraj Kumar
- Molecular Medicine: Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Bhawna Gupta
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Sunil Kumar Raghav
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| |
Collapse
|
33
|
Haftorn KL, Romanowska J, Lee Y, Page CM, Magnus PM, Håberg SE, Bohlin J, Jugessur A, Denault WRP. Stability selection enhances feature selection and enables accurate prediction of gestational age using only five DNA methylation sites. Clin Epigenetics 2023; 15:114. [PMID: 37443060 PMCID: PMC10339624 DOI: 10.1186/s13148-023-01528-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND DNA methylation (DNAm) is robustly associated with chronological age in children and adults, and gestational age (GA) in newborns. This property has enabled the development of several epigenetic clocks that can accurately predict chronological age and GA. However, the lack of overlap in predictive CpGs across different epigenetic clocks remains elusive. Our main aim was therefore to identify and characterize CpGs that are stably predictive of GA. RESULTS We applied a statistical approach called 'stability selection' to DNAm data from 2138 newborns in the Norwegian Mother, Father, and Child Cohort study. Stability selection combines subsampling with variable selection to restrict the number of false discoveries in the set of selected variables. Twenty-four CpGs were identified as being stably predictive of GA. Intriguingly, only up to 10% of the CpGs in previous GA clocks were found to be stably selected. Based on these results, we used generalized additive model regression to develop a new GA clock consisting of only five CpGs, which showed a similar predictive performance as previous GA clocks (R2 = 0.674, median absolute deviation = 4.4 days). These CpGs were in or near genes and regulatory regions involved in immune responses, metabolism, and developmental processes. Furthermore, accounting for nonlinear associations improved prediction performance in preterm newborns. CONCLUSION We present a methodological framework for feature selection that is broadly applicable to any trait that can be predicted from DNAm data. We demonstrate its utility by identifying CpGs that are highly predictive of GA and present a new and highly performant GA clock based on only five CpGs that is more amenable to a clinical setting.
Collapse
Affiliation(s)
- Kristine L Haftorn
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
- Institute of Health and Society, University of Oslo, Oslo, Norway.
| | - Julia Romanowska
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, 5020, Bergen, Norway
| | - Yunsung Lee
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Division for Mental and Physical Health, Department of Physical Health and Aging, Norwegian Institute of Public Health, Oslo, Norway
| | - Per M Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon Bohlin
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Division for Infection Control and Environmental Health, Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, 5020, Bergen, Norway
| | - William R P Denault
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
34
|
Geiger M, Oppi S, Nusser-Stein S, Costantino S, Mohammed SA, Gorica E, Hoogerland JA, Matter CM, Guillaumon AT, Ruschitzka F, Paneni F, Oosterveer MH, Stein S. Genetic deletion of hepatic NCOR1 protects from atherosclerosis by promoting alternative bile acid-metabolism and sterol excretion. Cardiovasc Diabetol 2023; 22:144. [PMID: 37349757 PMCID: PMC10288794 DOI: 10.1186/s12933-023-01865-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND The nuclear receptor corepressor 1 (NCOR1) plays an important role in the regulation of gene expression in immunometabolic conditions by connecting chromatin-modifying enzymes, coregulators and transcription factors. NCOR1 has been shown to be involved in cardiometabolic diseases. Recently, we demonstrated that the deletion of macrophage NCOR1 aggravates atherosclerosis by promoting CD36-triggered foam cell formation via PPARG derepression. PURPOSE Since NCOR1 modulates the function of several key regulators involved in hepatic lipid and bile acid metabolism, we hypothesized that its deletion in hepatocytes alters lipid metabolism and atherogenesis. METHODS To test this hypothesis, we generated hepatocyte-specific Ncor1 knockout mice on a Ldlr-/- background. Besides assessing the progression of the disease in thoracoabdominal aortae en face, we analyzed hepatic cholesterol and bile acid metabolism at expression and functional levels. RESULTS Our data demonstrate that liver-specific Ncor1 knockout mice on an atherosclerosis-prone background develop less atherosclerotic lesions than controls. Interestingly, under chow diet, plasma cholesterol levels of liver-specific Ncor1 knockout mice were slightly higher compared to control, but strongly reduced compared to control mice after feeding them an atherogenic diet for 12 weeks. Moreover, the hepatic cholesterol content was decreased in liver-specific Ncor1 knockout compared to control mice. Our mechanistic data revealed that NCOR1 reprograms the synthesis of bile acids towards the alternative pathway, which in turn reduce bile hydrophobicity and enhances fecal cholesterol excretion. CONCLUSIONS Our data suggest that hepatic Ncor1 deletion in mice decreases atherosclerosis development by reprograming bile acid metabolism and enhancing fecal cholesterol excretion.
Collapse
Affiliation(s)
- Martin Geiger
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland.
| | - Sara Oppi
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
| | - Stefanie Nusser-Stein
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
| | - Joanne A Hoogerland
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian M Matter
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Research and Education, University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Ana T Guillaumon
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, Campinas, Brazil
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, CH-8091, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Maaike H Oosterveer
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sokrates Stein
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland.
| |
Collapse
|
35
|
Tanizaki Y, Shibata Y, Na W, Shi YB. Cell cycle activation in thyroid hormone-induced apoptosis and stem cell development during Xenopus intestinal metamorphosis. Front Endocrinol (Lausanne) 2023; 14:1184013. [PMID: 37265708 PMCID: PMC10230048 DOI: 10.3389/fendo.2023.1184013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Amphibian metamorphosis resembles mammalian postembryonic development, a period around birth when many organs mature into their adult forms and when plasma thyroid hormone (T3) concentration peaks. T3 plays a causative role for amphibian metamorphosis. This and its independence from maternal influence make metamorphosis of amphibians, particularly anurans such as pseudo-tetraploid Xenopus laevis and its highly related diploid species Xenopus tropicalis, an excellent model to investigate how T3 regulates adult organ development. Studies on intestinal remodeling, a process that involves degeneration of larval epithelium via apoptosis and de novo formation of adult stem cells followed by their proliferation and differentiation to form the adult epithelium, have revealed important molecular insights on T3 regulation of cell fate during development. Here, we review some evidence suggesting that T3-induced activation of cell cycle program is important for T3-induced larval epithelial cell death and de novo formation of adult intestinal stem cells.
Collapse
|
36
|
He R, Liu B, Geng B, Li N, Geng Q. The role of HDAC3 and its inhibitors in regulation of oxidative stress and chronic diseases. Cell Death Discov 2023; 9:131. [PMID: 37072432 PMCID: PMC10113195 DOI: 10.1038/s41420-023-01399-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 04/20/2023] Open
Abstract
HDAC3 is a specific and crucial member of the HDAC family. It is required for embryonic growth, development, and physiological function. The regulation of oxidative stress is an important factor in intracellular homeostasis and signal transduction. Currently, HDAC3 has been found to regulate several oxidative stress-related processes and molecules dependent on its deacetylase and non-enzymatic activities. In this review, we comprehensively summarize the knowledge of the relationship of HDAC3 with mitochondria function and metabolism, ROS-produced enzymes, antioxidant enzymes, and oxidative stress-associated transcription factors. We also discuss the role of HDAC3 and its inhibitors in some chronic cardiovascular, kidney, and neurodegenerative diseases. Due to the simultaneous existence of enzyme activity and non-enzyme activity, HDAC3 and the development of its selective inhibitors still need further exploration in the future.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Boxin Geng
- School of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
37
|
Shi YB, Tanizaki Y, Wang S, Fu L. Essential and subtype-dependent function of thyroid hormone receptors during Xenopus metamorphosis. VITAMINS AND HORMONES 2023; 123:503-523. [PMID: 37717996 PMCID: PMC11285022 DOI: 10.1016/bs.vh.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Thyroid hormone (T3) plays critical roles in organ metabolism and development in vertebrates. Anuran metamorphosis is perhaps the most dramatic and best studied developmental process controlled by T3. Many changes in different organs/tissues during anuran metamorphosis resemble the maturation/remodeling of the corresponding organs/tissues during mammalian postembryonic development. The plasma T3 level peaks during both anuran metamorphosis and mammalian postembryonic development. T3 exerts its developmental function through transcriptional regulation via T3 receptors (TRs). Studies on the metamorphosis of two highly related anurans, pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis, have led to a dual function model for TRs during development. This has been supported by strong molecular and genetic evidence. Here we review some of the evidence with a focus on more recent gene knockout studies in Xenopus tropicalis. These studies have not only supported the model but also revealed novel and TR subtype-specific roles during Xenopus development, particularly a critical role of TRα in controlling developmental timing and rate.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Shouhong Wang
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
38
|
Tanizaki Y, Bao L, Shi YB. Steroid-receptor coactivator complexes in thyroid hormone-regulation of Xenopus metamorphosis. VITAMINS AND HORMONES 2023; 123:483-502. [PMID: 37717995 PMCID: PMC11274430 DOI: 10.1016/bs.vh.2023.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Anuran metamorphosis is perhaps the most drastic developmental change regulated by thyroid hormone (T3) in vertebrate. It mimics the postembryonic development in mammals when many organs/tissues mature into adult forms and plasma T3 level peaks. T3 functions by regulating target gene transcription through T3 receptors (TRs), which can recruit corepressor or coactivator complexes to target genes in the absence or presence of T3, respectively. By using molecular and genetic approaches, we and others have investigated the role of corepressor or coactivator complexes in TR function during the development of two highly related anuran species, the pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis. Here we will review some of these studies that demonstrate a critical role of coactivator complexes, particularly those containing steroid receptor coactivator (SRC) 3, in regulating metamorphic rate and ensuring the completion of metamorphosis.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
39
|
Du LJ, Sun JY, Zhang WC, Liu Y, Liu Y, Lin WZ, Liu T, Zhu H, Wang YL, Shao S, Zhou LJ, Chen BY, Lu H, Li RG, Jia F, Duan SZ. NCOR1 maintains the homeostasis of vascular smooth muscle cells and protects against aortic aneurysm. Cell Death Differ 2023; 30:618-631. [PMID: 36151473 PMCID: PMC9984378 DOI: 10.1038/s41418-022-01065-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/08/2022] Open
Abstract
Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays critical roles in the pathogenesis of aortic aneurysm (AA). The function of nuclear receptor corepressor1 (NCOR1) in regulation of VSMC phenotype and AA is unclear. Herein, using smooth muscle NCOR1 knockout mice, we demonstrated that smooth muscle NCOR1 deficiency decreased both mRNA and protein levels of contractile genes, impaired stress fibers formation and RhoA pathway activation, reduced synthesis of elastin and collagens, and induced the expression and activity of MMPs, manifesting a switch from contractile to degradative phenotype of VSMCs. NCOR1 modulated VSMC phenotype through 3 different mechanisms. First, NCOR1 deficiency increased acetylated FOXO3a to inhibit the expression of Myocd, which downregulated contractile genes. Second, deletion of NCOR1 derepressed NFAT5 to induce the expression of Rgs1, thus impeding RhoA activation. Third, NCOR1 deficiency increased the expression of Mmp12 and Mmp13 by derepressing ATF3. Finally, a mouse model combined apoE knockout mice with angiotensin II was used to study the role of smooth muscle NCOR1 in the development of AA. The results showed that smooth muscle NCOR1 deficiency increased the incidence of aortic aneurysms and exacerbated medial degeneration in angiotensin II-induced AA mouse model. Collectively, our data illustrated that NCOR1 interacts with FOXO3a, NFAT5, and ATF3 to maintain contractile phenotype of VSMCs and suppress AA development. Manipulation of smooth muscle NCOR1 may be a potential approach for AA treatment.
Collapse
Affiliation(s)
- Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Jian-Yong Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wu-Chang Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yong-Li Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Shuai Shao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Hongjian Lu
- Department of Rehabilitation, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, 226001, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of Neurosurgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
40
|
Yang X, Weber AA, Mennillo E, Paszek M, Wong S, Le S, Teo JYA, Chang M, Benner CW, Tukey RH, Chen S. Oral arsenic administration to humanizedUDP-glucuronosyltransferase1 neonatal mice induces UGT1A1 through a dependence on Nrf2 and PXR. J Biol Chem 2023; 299:102955. [PMID: 36720308 PMCID: PMC9996368 DOI: 10.1016/j.jbc.2023.102955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Inorganic arsenic (iAs) is an environmental toxicant that can lead to severe health consequences, which can be exacerbated if exposure occurs early in development. Here, we evaluated the impact of oral iAs treatment on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) mice. We found that oral administration of iAs to neonatal hUGT1 mice that display severe neonatal hyperbilirubinemia leads to induction of intestinal UGT1A1 and a reduction in total serum bilirubin values. Oral iAs administration accelerates neonatal intestinal maturation, an event that is directly associated with UGT1A1 induction. As a reactive oxygen species producer, oral iAs treatment activated the Keap-Nrf2 pathway in the intestinal tract and liver. When Nrf2-deficient hUGT1 mice (hUGT1/Nrf2-/-) were treated with iAs, it was shown that activated Nrf2 contributed significantly toward intestinal maturation and UGT1A1 induction. However, hepatic UGT1A1 was not induced upon iAs exposure. We previously demonstrated that the nuclear receptor PXR represses liver UGT1A1 in neonatal hUGT1 mice. When PXR was deleted in hUGT1 mice (hUGT1/Pxr-/-), derepression of UGT1A1 was evident in both liver and intestinal tissue in neonates. Furthermore, when neonatal hUGT1/Pxr-/- mice were treated with iAs, UGT1A1 was superinduced in both tissues, confirming PXR release derepressed key regulatory elements on the gene that could be activated by iAs exposure. With iAs capable of generating reactive oxygen species in both liver and intestinal tissue, we conclude that PXR deficiency in neonatal hUGT1/Pxr-/- mice allows greater access of activated transcriptional modifiers such as Nrf2 leading to superinduction of UGT1A1.
Collapse
Affiliation(s)
- Xiaojing Yang
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - André A Weber
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Elvira Mennillo
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Miles Paszek
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Samantha Wong
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sabrina Le
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Jia Ying Ashley Teo
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Max Chang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Christopher W Benner
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Shujuan Chen
- Laboratory of Environmental Toxicology, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
41
|
Ren J, Zeng Q, Wu H, Liu X, Guida MC, Huang W, Zhai Y, Li J, Ocorr K, Bodmer R, Tang M. Deacetylase-dependent and -independent role of HDAC3 in cardiomyopathy. J Cell Physiol 2023; 238:647-658. [PMID: 36745702 PMCID: PMC10152801 DOI: 10.1002/jcp.30957] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/14/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023]
Abstract
Cardiomyopathy is a common disease of cardiac muscle that negatively affects cardiac function. HDAC3 commonly functions as corepressor by removing acetyl moieties from histone tails. However, a deacetylase-independent role of HDAC3 has also been described. Cardiac deletion of HDAC3 causes reduced cardiac contractility accompanied by lipid accumulation, but the molecular function of HDAC3 in cardiomyopathy remains unknown. We have used powerful genetic tools in Drosophila to investigate the enzymatic and nonenzymatic roles of HDAC3 in cardiomyopathy. Using the Drosophila heart model, we showed that cardiac-specific HDAC3 knockdown (KD) leads to prolonged systoles and reduced cardiac contractility. Immunohistochemistry revealed structural abnormalities characterized by myofiber disruption in HDAC3 KD hearts. Cardiac-specific HDAC3 KD showed increased levels of whole-body triglycerides and increased fibrosis. The introduction of deacetylase-dead HDAC3 mutant in HDAC3 KD background showed comparable results with wild-type HDAC3 in aspects of contractility and Pericardin deposition. However, deacetylase-dead HDAC3 mutants failed to improve triglyceride accumulation. Our data indicate that HDAC3 plays a deacetylase-independent role in maintaining cardiac contractility and preventing Pericardin deposition as well as a deacetylase-dependent role to maintain triglyceride homeostasis.
Collapse
Affiliation(s)
- Jieyu Ren
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Hongmei Wu
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Xuewen Liu
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Maria C. Guida
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yiyuan Zhai
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Junjie Li
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Karen Ocorr
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Rolf Bodmer
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Min Tang
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| |
Collapse
|
42
|
Kim S, Wysocka J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol Cell 2023; 83:373-392. [PMID: 36693380 PMCID: PMC9898153 DOI: 10.1016/j.molcel.2022.12.032] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023]
Abstract
Uncovering the cis-regulatory code that governs when and how much each gene is transcribed in a given genome and cellular state remains a central goal of biology. Here, we discuss major layers of regulation that influence how transcriptional outputs are encoded by DNA sequence and cellular context. We first discuss how transcription factors bind specific DNA sequences in a dosage-dependent and cooperative manner and then proceed to the cofactors that facilitate transcription factor function and mediate the activity of modular cis-regulatory elements such as enhancers, silencers, and promoters. We then consider the complex and poorly understood interplay of these diverse elements within regulatory landscapes and its relationships with chromatin states and nuclear organization. We propose that a mechanistically informed, quantitative model of transcriptional regulation that integrates these multiple regulatory layers will be the key to ultimately cracking the cis-regulatory code.
Collapse
Affiliation(s)
- Seungsoo Kim
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
43
|
Huang Z, Efthymiadou A, Liang N, Fan R, Treuter E. Antagonistic action of GPS2 and KDM1A at enhancers governs alternative macrophage activation by interleukin 4. Nucleic Acids Res 2023; 51:1067-1086. [PMID: 36610795 PMCID: PMC9943668 DOI: 10.1093/nar/gkac1230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
The Th2 cytokine interleukin 4 (IL4) promotes macrophage differentiation into alternative subtypes and plays important roles in physiology, in metabolic and inflammatory diseases, in cancer and in tissue regeneration. While the regulatory transcription factor networks governing IL4 signaling are already well-characterized, it is currently less understood which transcriptional coregulators are involved and how they operate mechanistically. In this study, we discover that G protein pathway suppressor 2 (GPS2), a core subunit of the HDAC3 corepressor complex assembled by SMRT and NCOR, represses IL4-dependent enhancer activation in mouse macrophages. Our genome-wide and gene-specific characterization revealed that, instead of directly repressing STAT6, chromatin-bound GPS2 cooperates with SMRT and NCOR to antagonize enhancer activation by lysine demethylase 1A (KDM1A, LSD1). Mechanistically, corepressor depletion increased KDM1A recruitment to enhancers linked to IL4-induced genes, accompanied by demethylation of the repressive histone marks H3K9me2/3 without affecting H3K4me1/2, the classic KDM1A substrates for demethylation in other cellular contexts. This in turn caused enhancer and gene activation already in the absence of IL4/STAT6 and sensitized the STAT6-dependent IL4 responsiveness of macrophages. Thus, our work identified with the antagonistic action of a GPS2-containing corepressor complex and the lysine demethylase KDM1A a hitherto unknown epigenetic corepressor-coactivator switching mechanism that governs alternative macrophage activation.
Collapse
Affiliation(s)
- Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Astradeni Efthymiadou
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Ning Liang
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Rongrong Fan
- Correspondence may also be addressed to Rongrong Fan. Tel: +46 8 524 81161;
| | - Eckardt Treuter
- To whom correspondence should be addressed. Tel: +46 8 524 81060;
| |
Collapse
|
44
|
Shi YB, Tanizaki Y, Wang S, Fu L. Essential and subtype-dependent function of thyroid hormone receptors during Xenopus metamorphosis. VITAMINS AND HORMONES 2023. [DOI: 10.1016/bs.vh.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
45
|
Ma XX, Meng XQ, Wang YL, Liu Y, Shi XR, Shao S, Duan SZ, Lu HX. Ncor1 Deficiency Promotes Osteoclastogenesis and Exacerbates Periodontitis. J Dent Res 2023; 102:72-81. [PMID: 35983582 DOI: 10.1177/00220345221116927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nuclear receptor corepressor 1 (Ncor1) has been reported to regulate different transcription factors in different biological processes, including metabolism, inflammation, and circadian rhythms. However, the role of Ncor1 in periodontitis has not been elucidated. The aims of the present study were to investigate the role of Ncor1 in experimental periodontitis and to explore the underlying mechanisms through an experimental periodontitis model in myeloid cell-specific Ncor1-deficient mice. Myeloid cell-specific Ncor1 knockout (MNKO) mice were generated, and experimental periodontitis induced by ligation using 5-0 silk sutures was established. Ncor1 flox/flox mice were used as littermate controls (LC). Histological staining and micro-computed tomography scanning were used to evaluate osteoclastogenesis and alveolar bone resorption. Flow cytometry was conducted to observe the effect of Ncor1 on myeloid cells. RNA sequencing was used to explore the differentially targeted genes in osteoclastogenesis in the absence of Ncor1. Coimmunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP) experiments, and dual luciferase assays were performed to explore the relationship between NCoR1 and the targeted gene. Alveolar bone resorption in the MNKO mice was significantly greater than that in the LC mice after periodontitis induction and osteoclastogenesis in vitro. The percentage of CD11b+ cells, particularly CD11b+ Ly6G+ neutrophils, was substantially higher in gingival tissues in the MNKO mice than in the LC mice. Results of RNA sequencing demonstrated that CCAAT enhancer binding protein α (Cebpα) was one of the most differentially expressed genes between the MNKO and LC groups. Mechanistically, Co-IP assays, ChIP experiments, and dual luciferase assays revealed that NCOR1 interacted with peroxisome proliferator-activated receptor gamma (PPARγ) and cooperated with HDAC3 to control the transcription of Cebpα. In conclusion, Ncor1 deficiency promoted osteoclast and neutrophil formation in mice with experimental periodontitis. It regulated the transcription of Cebpα via PPARγ to promote osteoclast differentiation.
Collapse
Affiliation(s)
- X X Ma
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, 639 Zhizaoju Road, Shanghai, China
| | - X Q Meng
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, China
| | - Y L Wang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, China
| | - Y Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, China
| | - X R Shi
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, China
| | - S Shao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Z Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, China
| | - H X Lu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, 639 Zhizaoju Road, Shanghai, China
| |
Collapse
|
46
|
Ji K, Dou W, Zhang N, Wen B, Zhong M, Zhang Q, Xu S, Zhou J, Liu J. Retinoic acid receptor gamma is required for proliferation of pancreatic cancer cells. Cell Biol Int 2023; 47:144-155. [PMID: 36183362 DOI: 10.1002/cbin.11917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 01/19/2023]
Abstract
Despite the expectation that retinoic acid receptor could be the potential therapeutic targets for pancreatic cancers, there has been the lack of information about the role and the impact of retinoic acid receptor gamma (RARγ, RARG) on pancreatic cancer, unlike other two RARs. Herein, we applied TCGA and GEO database to show that the expression and prognosis of RARG is closely related to pancreatic cancer, which demonstrates that RARG is commonly overexpressed in human pancreatic cancer and is an independent diagnostic marker predicting the poor prognosis of pancreatic cancer patients. In addition, we demonstrated that the reduction in the expression of RARG in human pancreatic cancer cells dramatically suppress their proliferation and tumor growth in vivo, partially attributable to the downregulation of tumor-supporting biological processes such as cell proliferation, antiapoptosis and metabolism and the decreased expression of various oncogenes like MYC and STAT3. Mechanistically, RARG binds on the promoters of MYC, STAT3, and SLC2A1 which is distinguished from well-known conventional Retinotic acid response elements (RAREs) and that the binding is likely to be responsible for the epigenetic activation in the level of chromatin, assessed by the measurement of deposition of the gene activation marker histone H3 K27 acetylation (H3K27ac) using ChIP-qPCR. In this study, we reveal that RARG plays important role in the tumorigenesis of pancreatic cancer and represents new therapeutic targets for human pancreatic cancer.
Collapse
Affiliation(s)
- Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenlong Dou
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ningfang Zhang
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingyan Zhong
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qianbing Zhang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuxiang Xu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianlong Zhou
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, China
| | - Jingfeng Liu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.,Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, China
| |
Collapse
|
47
|
Maneix L, Iakova P, Moree SE, Hsu JI, Mistry RM, Stossi F, Lulla P, Sun Z, Sahin E, Yellapragada SV, Catic A. Proteasome Inhibitors Silence Oncogenes in Multiple Myeloma through Localized Histone Deacetylase 3 (HDAC3) Stabilization and Chromatin Condensation. CANCER RESEARCH COMMUNICATIONS 2022; 2:1693-1710. [PMID: 36846090 PMCID: PMC9949381 DOI: 10.1158/2767-9764.crc-22-0255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Proteasome inhibitors have become the standard of care for multiple myeloma (MM). Blocking protein degradation particularly perturbs the homeostasis of short-lived polypeptides such as transcription factors and epigenetic regulators. To determine how proteasome inhibitors directly impact gene regulation, we performed an integrative genomics study in MM cells. We discovered that proteasome inhibitors reduce the turnover of DNA-associated proteins and repress genes necessary for proliferation through epigenetic silencing. Specifically, proteasome inhibition results in the localized accumulation of histone deacetylase 3 (HDAC3) at defined genomic sites, which reduces H3K27 acetylation and increases chromatin condensation. The loss of active chromatin at super-enhancers critical for MM, including the super-enhancer controlling the proto-oncogene c-MYC, reduces metabolic activity and cancer cell growth. Epigenetic silencing is attenuated by HDAC3 depletion, suggesting a tumor-suppressive element of this deacetylase in the context of proteasome inhibition. In the absence of treatment, HDAC3 is continuously removed from DNA by the ubiquitin ligase SIAH2. Overexpression of SIAH2 increases H3K27 acetylation at c-MYC-controlled genes, increases metabolic output, and accelerates cancer cell proliferation. Our studies indicate a novel therapeutic function of proteasome inhibitors in MM by reshaping the epigenetic landscape in an HDAC3-dependent manner. As a result, blocking the proteasome effectively antagonizes c-MYC and the genes controlled by this proto-oncogene.
Collapse
Affiliation(s)
- Laure Maneix
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Polina Iakova
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Shannon E. Moree
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Joanne I. Hsu
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Ragini M. Mistry
- Integrated Microscopy Core and GCC Center for Advanced Microscopy and Image Informatics, Baylor College of Medicine, Houston, Texas
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Integrated Microscopy Core and GCC Center for Advanced Microscopy and Image Informatics, Baylor College of Medicine, Houston, Texas
| | - Premal Lulla
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Zheng Sun
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ergun Sahin
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Sarvari V. Yellapragada
- Department of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - André Catic
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
48
|
Aylon Y, Furth N, Mallel G, Friedlander G, Nataraj NB, Dong M, Hassin O, Zoabi R, Cohen B, Drendel V, Salame TM, Mukherjee S, Harpaz N, Johnson R, Aulitzky WE, Yarden Y, Shema E, Oren M. Breast cancer plasticity is restricted by a LATS1-NCOR1 repressive axis. Nat Commun 2022; 13:7199. [PMID: 36443319 PMCID: PMC9705295 DOI: 10.1038/s41467-022-34863-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Breast cancer, the most frequent cancer in women, is generally classified into several distinct histological and molecular subtypes. However, single-cell technologies have revealed remarkable cellular and functional heterogeneity across subtypes and even within individual breast tumors. Much of this heterogeneity is attributable to dynamic alterations in the epigenetic landscape of the cancer cells, which promote phenotypic plasticity. Such plasticity, including transition from luminal to basal-like cell identity, can promote disease aggressiveness. We now report that the tumor suppressor LATS1, whose expression is often downregulated in human breast cancer, helps maintain luminal breast cancer cell identity by reducing the chromatin accessibility of genes that are characteristic of a "basal-like" state, preventing their spurious activation. This is achieved via interaction of LATS1 with the NCOR1 nuclear corepressor and recruitment of HDAC1, driving histone H3K27 deacetylation near NCOR1-repressed "basal-like" genes. Consequently, decreased expression of LATS1 elevates the expression of such genes and facilitates slippage towards a more basal-like phenotypic identity. We propose that by enforcing rigorous silencing of repressed genes, the LATS1-NCOR1 axis maintains luminal cell identity and restricts breast cancer progression.
Collapse
Affiliation(s)
- Yael Aylon
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Noa Furth
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Giuseppe Mallel
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Gilgi Friedlander
- grid.13992.300000 0004 0604 7563Department of Life Sciences Core Facilities, The Nancy & Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nishanth Belugali Nataraj
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Meng Dong
- grid.502798.10000 0004 0561 903XDr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Ori Hassin
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Rawan Zoabi
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Benjamin Cohen
- grid.13992.300000 0004 0604 7563Department of Immunology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Vanessa Drendel
- grid.416008.b0000 0004 0603 4965Department of Pathology, Robert Bosch Hospital, Stuttgart, Germany
| | - Tomer Meir Salame
- grid.13992.300000 0004 0604 7563Flow Cytometry Unit, Department of Life Sciences Core Facilities, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Saptaparna Mukherjee
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nofar Harpaz
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Randy Johnson
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Walter E. Aulitzky
- grid.416008.b0000 0004 0603 4965Department of Hematology, Oncology and Palliative Medicine, Robert Bosch Hospital, Stuttgart, Germany
| | - Yosef Yarden
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Efrat Shema
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Moshe Oren
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
49
|
Zhang Y, Sun C, Li Y, Qin J, Amancherla K, Jing Y, Hu Q, Liang K, Zhang Z, Ye Y, Huang LA, Nguyen TK, Egranov SD, Zhao Z, Wu A, Xi Y, Yao J, Hung MC, Calin GA, Cheng J, Lim B, Lehmann LH, Salem JE, Johnson DB, Curran MA, Yu D, Han L, Darabi R, Yang L, Moslehi JJ, Lin C. Hormonal therapies up-regulate MANF and overcome female susceptibility to immune checkpoint inhibitor myocarditis. Sci Transl Med 2022; 14:eabo1981. [PMID: 36322628 PMCID: PMC9809130 DOI: 10.1126/scitranslmed.abo1981] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have been increasingly used in combination for cancer treatment but are associated with myocarditis. Here, we report that tumor-bearing mice exhibited response to treatment with combinatorial anti-programmed cell death 1 and anti-cytotoxic T lymphocyte antigen-4 antibodies but also presented with cardiovascular toxicities observed clinically with ICI therapy, including myocarditis and arrhythmia. Female mice were preferentially affected with myocarditis compared to male mice, consistent with a previously described genetic model of ICI myocarditis and emerging clinical data. Mechanistically, myocardial tissue from ICI-treated mice, the genetic mouse model, and human heart tissue from affected patients with ICI myocarditis all exhibited down-regulation of MANF (mesencephalic astrocyte-derived neurotrophic factor) and HSPA5 (heat shock 70-kDa protein 5) in the heart; this down-regulation was particularly notable in female mice. ICI myocarditis was amplified by heart-specific genetic deletion of mouse Manf and was attenuated by administration of recombinant MANF protein, suggesting a causal role. Ironically, both MANF and HSPA5 were transcriptionally induced by liganded estrogen receptor β and inhibited by androgen receptor. However, ICI treatment reduced serum estradiol concentration to a greater extent in female compared to male mice. Treatment with an estrogen receptor β-specific agonist and androgen depletion therapy attenuated ICI-associated cardiac effects. Together, our data suggest that ICI treatment inhibits estradiol-dependent expression of MANF/HSPA5 in the heart, curtailing the cardiomyocyte response to immune injury. This endocrine-cardiac-immune pathway offers new insights into the mechanisms of sex differences in cardiac disease and may offer treatment strategies for ICI myocarditis.
Collapse
Affiliation(s)
- Yaohua Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 10069, China.,Corresponding author. (Y.Z.); (L.Y.); (J.J.M.); and (C.L.)
| | - Chengcao Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yajuan Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Current address: Incyte Corporation, Wilmington, DE 19803, USA
| | - Juan Qin
- Section of Cardio-Oncology & Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kaushik Amancherla
- Department of Medicine, Vanderbilt University of Medical Center, Nashville, TN 37232
| | - Ying Jing
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Current address: The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Lisa A. Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tina K. Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sergey D. Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zilong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Andrew Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yutao Xi
- Texas Heart Institute, St. Luke’s Hospital, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan.,Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - George A. Calin
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jie Cheng
- Texas Heart Institute, St. Luke’s Hospital, Houston, TX 77030, USA
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lorenz H. Lehmann
- Department of Cardiology, Heidelberg University Hospital, Heidelberg, Germany; Cardio-Oncology Unit, Heidelberg University Hospital, Heidelberg, Germany; German Cardiovascular Research Center (DZHK), partner site Heidelberg/Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joe-Elie Salem
- Deprtment of Pharmacology, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, INSERM, CIC-1901, UNICO-GRECO Cardiooncology Program, Paris, France
| | - Douglas B. Johnson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Michael A. Curran
- Department of Immunology and Scientific Director of the Oncology Research for Biologics and Immunotherapy Translation (ORBIT), The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Corresponding author. (Y.Z.); (L.Y.); (J.J.M.); and (C.L.)
| | - Javid J. Moslehi
- Section of Cardio-Oncology & Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA,Corresponding author. (Y.Z.); (L.Y.); (J.J.M.); and (C.L.)
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Corresponding author. (Y.Z.); (L.Y.); (J.J.M.); and (C.L.)
| |
Collapse
|
50
|
A single helix repression domain is functional across diverse eukaryotes. Proc Natl Acad Sci U S A 2022; 119:e2206986119. [PMID: 36191192 PMCID: PMC9564828 DOI: 10.1073/pnas.2206986119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The corepressor TOPLESS (TPL) and its paralogs coordinately regulate a large number of genes critical to plant development and immunity. As in many members of the larger pan-eukaryotic Tup1/TLE/Groucho corepressor family, TPL contains a Lis1 Homology domain (LisH), whose function is not well understood. We have previously found that the LisH in TPL-and specifically the N-terminal 18 amino acid alpha-helical region (TPL-H1)-can act as an autonomous repression domain. We hypothesized that homologous domains across diverse LisH-containing proteins could share the same function. To test that hypothesis, we built a library of H1s that broadly sampled the sequence and evolutionary space of LisH domains, and tested their activity in a synthetic transcriptional repression assay in Saccharomyces cerevisiae. Using this approach, we found that repression activity was highly conserved and likely the ancestral function of this motif. We also identified key residues that contribute to repressive function. We leveraged this new knowledge for two applications. First, we tested the role of mutations found in somatic cancers on repression function in two human LisH-containing proteins. Second, we validated function of many of our repression domains in plants, confirming that these sequences should be of use to synthetic biology applications across many eukaryotes.
Collapse
|