1
|
Wang M, Zhang Z, Yang Y, Peng X, Yin H. A targeted MAVS fusion protein for controlled innate immune activation and antitumor therapy. Oncoimmunology 2025; 14:2478850. [PMID: 40085508 PMCID: PMC11913393 DOI: 10.1080/2162402x.2025.2478850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
Targeted therapies leveraging the innate immune system are emerging as promising cancer treatments. The mitochondrial antiviral signaling protein (MAVS) plays a crucial role in initiating innate immune responses, but its clinical use is limited by the risk of uncontrolled activation and systemic toxicity. To address this, we developed a novel therapeutic agent, the truncated interferon activation switch (TRIAS), combining MAVS truncates with a tumor antigen-targeting single-chain variable fragment (scFv). This design ensures antigen-dependent, controlled activation. Lentiviral delivery of TRIAS induced significant antitumor responses, including complete tumor regression in some cases. Flow cytometry (FCM) analysis further confirmed that tumor cells were the predominant population expressing the transgene. TRIAS-expressing tumor cells exhibited enhanced antitumor activity, likely due to increased cytokine release and upregulated major histocompatibility complex (MHC) expression, enabling tumor cells to function as antigen-presenting cells. This activated other immune cells, driving adaptive immune responses. Additionally, TRIAS promoted a proinflammatory shift in the tumor microenvironment (TME). In conclusion, TRIAS was validated as an innovative immunotherapeutic agent with MAVS-like immune-activating properties and tightly controlled mechanisms, offering a safer and more effective approach for clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Muhan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhijie Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - YouYou Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaoyi Peng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Li C, Liao J, Chen B, Wang Q. Heterogeneity of the tumor immune cell microenvironment revealed by single-cell sequencing in head and neck cancer. Crit Rev Oncol Hematol 2025; 209:104677. [PMID: 40023465 DOI: 10.1016/j.critrevonc.2025.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025] Open
Abstract
Head and neck cancer (HNC) is the sixth most common disease in the world. The recurrence rate of patients is relatively high, and the heterogeneity of tumor immune microenvironment (TIME) cells may be an important reason for this. Single-cell sequencing (SCS) is currently the most promising and mature application in cancer research. It can identify unique genes expressed in cells and study tumor heterogeneity. According to current research, the heterogeneity of immune cells has become an important factor affecting the occurrence and development of HNC. SCSs can provide effective therapeutic targets and prognostic factors for HNC patients through analyses of gene expression levels and cell heterogeneity. Therefore, this study analyzes the basic theory of HNC and the development of SCS technology, elaborating on the application of SCS technology in HNC and its potential value in identifying HNC therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Jia Liao
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Bo Chen
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan 629000, China.
| |
Collapse
|
3
|
Xu XL, Wu CC, Cheng H. Prognostic significance of preoperative Naples prognostic score for disease-free and overall survival in oral cavity squamous cell carcinoma post-surgery. BMC Cancer 2025; 25:757. [PMID: 40264051 PMCID: PMC12016317 DOI: 10.1186/s12885-025-14146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Oral cavity squamous cell carcinoma (OCSCC) is a common malignancy with high morbidity and mortality. This research seeks to assess the correlation between Naples Prognostic Score (NPS) and survival outcomes in patients with OCSCC who are receiving surgical treatment, highlighting its potential as a prognostic tool for predicting patient outcomes. METHODS This retrospective study included 589 OCSCC patients from two large regional medical centers in central China, treated between February 2008 and September 2019. Inclusion criteria mandated confirmed OCSCC diagnosis, age ≥ 18 years, and radical surgery, while patients with distant metastasis, multiple tumors, or insufficient data were excluded. Data on 29 clinicopathological variables, including demographic details, tumor characteristics, and nutritional/inflammatory markers, were collected. The statistical approach included both univariate and multivariate Cox regression models to determine factors associated with disease-free survival (DFS) and overall survival (OS). Additionally, Kaplan-Meier survival analysis was employed to evaluate the effect of adjuvant radiotherapy on survival in various NPS subgroups. RESULTS Surgical margin status, ENE, NPS, age-adjusted Charlson comorbidity index (ACCI), and American Joint Committee on Cancer (AJCC) stage were identified as independent prognostic factors for DFS. Similarly, Eastern Cooperative Oncology Group Performance Status (ECOG PS), surgical margin status, extranodal extension (ENE), NPS, ACCI, and AJCC stage were found to be independent prognostic factors for OS. A higher NPS was associated with a poorer prognosis. In AJCC stage III-IVb patients with NPS 1-2, adjuvant radiotherapy significantly improved both DFS and OS. Likewise, in AJCC stage III-IVb patients with NPS 3-4, adjuvant radiotherapy was associated with better DFS and OS outcomes. However, no significant impact of adjuvant radiotherapy was observed in patients with AJCC stage I-II or in those with NPS 0, regardless of stage. This underscores the importance of NPS in stratifying patients for adjuvant therapy. CONCLUSION The Naples Prognostic Score is a beneficial prognostic indicator for survival in OCSCC patients. Its integration into clinical practice may assist in risk stratification and treatment decision-making, particularly for those undergoing adjuvant radiotherapy.
Collapse
Affiliation(s)
- Xue-Lian Xu
- Department of Radiotherapy Oncology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453100, China
| | - Chen-Chen Wu
- Department of Radiotherapy Oncology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453100, China
| | - Hao Cheng
- Department of Radiotherapy Oncology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453100, China.
- Department of Radiotherapy Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
4
|
Herbst M, Köksal H, Brunn S, Zanetti D, Domocos I, De Stefani V, Gatti M, Vivalda F, Pereira P, Nater M, Cecconi V, Sartori AA, van den Broek M. Cancer-cell-derived cGAMP limits the activity of tumor-associated CD8 + T cells. Cell Rep 2025; 44:115510. [PMID: 40178978 DOI: 10.1016/j.celrep.2025.115510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/19/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Using a mouse tumor model with inducible cancer-cell-intrinsic cyclic GMP-AMP (cGAMP) synthase (cGAS) expression, we show that cancer-cell-derived cGAMP is essential and sufficient to trigger a sustained type I interferon response within the tumor microenvironment. This leads to improved CD8+ T cell-dependent tumor restriction. However, cGAMP limits the proliferation, survival, and function of stimulator of IFN genes (STING)-expressing, but not of STING-deficient, CD8+ T cells. In vivo, STING deficiency in CD8+ T cells enhances tumor restriction. Consequently, cancer-cell-derived cGAMP both drives and limits the anti-tumor potential of CD8+ T cells. Mechanistically, T cell-intrinsic STING is associated with pro-apoptotic and antiproliferative gene signatures. Our findings suggest that STING signaling acts as a checkpoint in CD8+ T cells that balances tumor immunity.
Collapse
Affiliation(s)
- Michael Herbst
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Hakan Köksal
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Silvan Brunn
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Dominik Zanetti
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ioana Domocos
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Viola De Stefani
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Marco Gatti
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Francesca Vivalda
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Paulo Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Marc Nater
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Maries van den Broek
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Lee S, Yang X, Masarik K, Ahmed T, Zheng L, Zhan H. The Immune-Modulatory Function of Megakaryocytes in the Hematopoietic Niche of Myeloproliferative Neoplasms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646152. [PMID: 40235969 PMCID: PMC11996561 DOI: 10.1101/2025.04.01.646152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Myeloproliferative neoplasms (MPNs) are clonal stem cell disorders characterized by dysregulated megakaryopoiesis and neoplastic hematopoietic stem cell (HSC) expansion. Using a murine model with MK-specific JAK2V617F expression, we establish an MPN aging model where mutant MKs drive HSC expansion and a progressive decline in wild-type HSC function. Compared to wild-type MKs, JAK2V617F MKs exhibit heightened inflammation and innate immune activation with aging, including increased antigen presentation, elevated pro-inflammatory cytokines, skewed T cell populations, and impaired T cell functions in the marrow niche. Enhanced MK immunomodulatory function is linked to mutant cell expansion and MPN progression in a chimeric murine model with co-existing wild-type and JAK2V617F mutant HSCs. LINE-1 (long-interspersed element-1), a retrotransposon linked to innate immune activation and aging, is upregulated in mutant MKs during aging in murine models. We validated that LINE-1-encoded protein ORF1p is expressed in marrow MKs in 12 of 13 MPN patients but absent in control samples from patients undergoing orthopedic surgery (n=5). These findings suggest that MKs reprogram the marrow immune microenvironment, impairing normal HSC function while promoting neoplastic expansion in MPNs. LINE-1 activation in mutant MKs may be a key driver of immune dysregulation in MPNs. Key Points JAK2V617F mutant MKs reprogram the marrow immune microenvironment to promote neoplastic HSC expansion in MPNs.LINE-1 activation in diseased MKs triggers chronic inflammation and immune dysfunction in MPNs.
Collapse
|
6
|
Liu Y, Wu Z, Li Y, Chen Y, Zhao X, Wu M, Xia Y. Metabolic reprogramming and interventions in angiogenesis. J Adv Res 2025; 70:323-338. [PMID: 38704087 PMCID: PMC11976431 DOI: 10.1016/j.jare.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Endothelial cell (EC) metabolism plays a crucial role in the process of angiogenesis. Intrinsic metabolic events such as glycolysis, fatty acid oxidation, and glutamine metabolism, support secure vascular migration and proliferation, energy and biomass production, as well as redox homeostasis maintenance during vessel formation. Nevertheless, perturbation of EC metabolism instigates vascular dysregulation-associated diseases, especially cancer. AIM OF REVIEW In this review, we aim to discuss the metabolic regulation of angiogenesis by EC metabolites and metabolic enzymes, as well as prospect the possible therapeutic opportunities and strategies targeting EC metabolism. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we discuss various aspects of EC metabolism considering normal and diseased vasculature. Of relevance, we highlight that the implications of EC metabolism-targeted intervention (chiefly by metabolic enzymes or metabolites) could be harnessed in orchestrating a spectrum of pathological angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Yun Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yikun Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yating Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Cao M, Luan J, Zhai C, Liu H, Zhang Z, Guo N. Targeting leukocyte immunoglobulin‑like receptor B2 in the tumor microenvironment: A new treatment prospect for solid tumors (Review). Oncol Lett 2025; 29:181. [PMID: 39990807 PMCID: PMC11843431 DOI: 10.3892/ol.2025.14927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Leukocyte immunoglobulin-like receptor B2 (LILRB2) functions as an immunosuppressive receptor that has a prominent role in immune regulation. The expression of LILRB2 is higher in a variety of solid malignant tumors compared with that in corresponding normal tissues. LILRB2 can be expressed in tumor cells and tumor stromal cells within the tumor microenvironment. Upregulation of LILRB2 in tumors is significantly associated with a poorer tumor phenotype, increased tolerance to certain therapeutic drugs, tumor immune escape and shorter patient overall survival time. Therefore, LILRB2 can be utilized as a novel biomarker to predict the prognosis of patients with solid malignant tumors, and targeting LILRB2 may be an effective strategy for targeted cancer therapy. The present review provides a general overview of the role and mechanisms of LILRB2 in the microenvironment of solid tumors, and emphasizes the significance of targeting LILRB2 as a promising approach for tumor-specific therapy.
Collapse
Affiliation(s)
- Meng Cao
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Cui Zhai
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Huan Liu
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Zhenhao Zhang
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Na Guo
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
8
|
Pekkle Lam HY, Liang TR, Jiang SJ, Peng SY. Schistosoma mansoni soluble egg antigen suppresses colorectal cancer growth in vitro and in vivo. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:241-250. [PMID: 39653602 DOI: 10.1016/j.jmii.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/28/2024] [Accepted: 11/22/2024] [Indexed: 03/18/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common malignant disease around the world. Because the hosts' immunity plays a great part in regulating tumor cells' growth and progression, immunotherapies have therefore aroused great interest in treating cancers. Currently, scientists have investigated the use of Schistosoma-derived soluble egg antigens (SEA), which is known as a strong immune modulator, in treating a series of immune-related diseases. METHODS In this study, we investigated the anti-tumor effect of SEA against CRC using in vitro cell lines, HCT-116 and DLD-1, as well as in vivo mouse xenograft model. Approaches such as migration assay, invasion assay, and western blotting were done to analyze the anti-tumor effect of SEA. Furthermore, qRT-PCR and ELISA were performed to identify the immune profile of SEA-treated cells as well as SEA-treated xenograft mice. RESULTS In vitro studies suggested that SEA can dose-dependently inhibit the growth and progression of HCT-116 and DLD-1 cells. This inhibition was accompanied by a reduction of epithelial-mesenchymal transition (EMT), inflammasome inactivation, and apoptosis. SEA also downregulated the expression of IL-4 and IL-10 in the CRC cells, which may be the reason why their growth and progression were suppressed. In vivo studies showed a similar beneficial effect of SEA, as local administration of 25 μg SEA significantly inhibits tumor cell growth. SEA treatment also shifts the host's immunity from a pro-tumorigenic response to an anti-tumor response. CONCLUSION In conclusion, SEA may provide a beneficial effect against CRC, and further investigation may give promise in CRC treatment.
Collapse
Affiliation(s)
- Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ting-Ruei Liang
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
9
|
Tang Q, Li J, Zhang L, Zeng S, Bao Q, Hu W, He L, Huang G, Wang L, Liu Y, Zhao X, Yang S, Hu C. Orlistat facilitates immunotherapy via AKT-FOXO3a-FOXM1-mediated PD-L1 suppression. J Immunother Cancer 2025; 13:e008923. [PMID: 40139835 PMCID: PMC11951015 DOI: 10.1136/jitc-2024-008923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/02/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The immunotherapy targeting cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death ligand-1 (PD-L1) has achieved significant breakthroughs, but further improvements are still needed in cancer treatment. METHODS We investigated orlistat, a drug approved by the Food and Drug Administration for the treatment of obesity and found that it can enhance the efficacy of CTLA-4 blockade immunotherapy. We conducted both in vivo and in vitro experiments to explore the mechanism by which orlistat increased antitumor immunity. RESULTS Orlistat enhances the efficacy of anti-CTLA-4 immunotherapy by suppressing tumor cell PD-L1 protein expression and boosting the transcription of interferon-stimulated genes (ISGs) and MHC-I. Mechanistically, orlistat inhibits AKT activity and subsequent phosphorylation of forkhead box O3a (FOXO3a) at its threonine (T) 32, serine (S) 253, thereby downregulating Forkhead box M1 (FOXM1) expression, which ultimately suppresses PD-L1 transcription. Specifically, inhibition of FOXM1 leads to FOXO3a accumulation through impaired AKT activity. FOXM1 activates protein kinase B (AKT) via acting as a scaffold to facilitate 3-phosphoinositide-dependent protein kinase 1 (PDK1) and AKT and interaction. In addition, orlistat enhances phosphorylated signal transducer and activator of transcription 1 (p-STAT1) at tyrosine (Y) 701, resulting in upregulation of ISGs and MHC-I. CONCLUSIONS Orlistat plays a crucial role in modulating the immune response and supporting the combination with CTLA-4 blockade to promote antitumor immunotherapy.
Collapse
Affiliation(s)
- Qingyun Tang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Jie Li
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Lianhua Zhang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Shuo Zeng
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Qiyu Bao
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Weichao Hu
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Lijiao He
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Guiping Huang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Liting Wang
- Army Military Medical University, Chongqing, China
| | - Yunyi Liu
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Xiaoyan Zhao
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Changjiang Hu
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| |
Collapse
|
10
|
Arakawa Y, Arakawa A, Vural S, He M, Vollmer S, Prinz JC. Down-Regulation of HLA-C Expression on Melanocytes May Contribute to the Therapeutic Efficacy of UVB Phototherapy in Psoriasis. Int J Mol Sci 2025; 26:2858. [PMID: 40243413 PMCID: PMC11988605 DOI: 10.3390/ijms26072858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
UVB phototherapy effectively treats psoriasis. Although it suppresses both innate and adaptive immunity, it remains unclear why UVB irradiation is primarily effective for T-cell-mediated but not inflammatory skin diseases of other etiologies. Using a Vα3S1/Vβ13S1 T-cell receptor (TCR) from a lesional psoriatic CD8+ T-cell clone, we recently demonstrated that in psoriasis, the major psoriasis risk allele HLA-C*06:02 mediates an autoimmune response of CD8+ T-cells against melanocytes by presenting a melanocyte autoantigen. We now investigate the effect of UVB irradiation on melanocyte immunogenicity using the psoriatic Vα3S1/Vβ13S1 TCR in a reporter assay. The immunogenicity of melanocytes for the Vα3S1/Vβ13S1 TCR depended on the up-regulation of HLA-C expression by IFN-γ. UVB irradiation reduced the stimulatory capacity of IFN-γ-conditioned melanocytes for the Vα3S1/Vβ13S1 TCR by suppressing key IFN-γ-induced MHC-class I transcriptional regulators (STAT1, IRF1, NLRC5), the HLA-C-specific transcription factor Oct1, and by inducing miR-148a, which specifically inhibits HLA-C expression. This resulted in the suppression of the IFN-γ-induced expression of HLA-class I molecules and, in particular, an almost complete loss of HLA-C expression. We conclude that suppression of the inflammatory increase in HLA-class I expression and antigen-presentation may contribute to the efficacy of UVB phototherapy in T-cell-mediated skin diseases. The pronounced downregulation of HLA-C on melanocytes could render psoriasis, as HLA-C-associated disease, particularly susceptible to this effect.
Collapse
Affiliation(s)
- Yukiyasu Arakawa
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Akiko Arakawa
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Seçil Vural
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Mengwen He
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Sigrid Vollmer
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Jörg C Prinz
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| |
Collapse
|
11
|
Liu M, Hernandez MO, Castven D, Lee HP, Wu W, Wang L, Forgues M, Hernandez JM, Marquardt JU, Ma L. Tumor cell villages define the co-dependency of tumor and microenvironment in liver cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642107. [PMID: 40161587 PMCID: PMC11952337 DOI: 10.1101/2025.03.07.642107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Spatial cellular context is crucial in shaping intratumor heterogeneity. However, understanding how each tumor establishes its unique spatial landscape and what factors drive the landscape for tumor fitness remains significantly challenging. Here, we analyzed over 2 million cells from 50 tumor biospecimens using spatial single-cell imaging and single-cell RNA sequencing. We developed a deep learning-based strategy to spatially map tumor cell states and the architecture surrounding them, which we referred to as Spatial Dynamics Network (SDN). We found that different tumor cell states may be organized into distinct clusters, or 'villages', each supported by unique SDNs. Notably, tumor cell villages exhibited village-specific molecular co-dependencies between tumor cells and their microenvironment and were associated with patient outcomes. Perturbation of molecular co-dependencies via random spatial shuffling of the microenvironment resulted in destabilization of the corresponding villages. This study provides new insights into understanding tumor spatial landscape and its impact on tumor aggressiveness.
Collapse
Affiliation(s)
- Meng Liu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Maria O. Hernandez
- Spatial Imaging Technology Resource, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Darko Castven
- Department of Medicine I, University Medical Center, Lübeck, Germany
| | - Hsin-Pei Lee
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Wenqi Wu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Limin Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jonathan M. Hernandez
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Jens U. Marquardt
- Department of Medicine I, University Medical Center, Lübeck, Germany
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
12
|
Almawash S. Revolutionary Cancer Therapy for Personalization and Improved Efficacy: Strategies to Overcome Resistance to Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2025; 17:880. [PMID: 40075727 PMCID: PMC11899125 DOI: 10.3390/cancers17050880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a significant public health issue worldwide, standing as a primary contributor to global mortality, accounting for approximately 10 million fatalities in 2020 [...].
Collapse
Affiliation(s)
- Saud Almawash
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
13
|
Sheikh KA, Amjad M, Irfan MT, Anjum S, Majeed T, Riaz MU, Jassim AY, Sharif EAM, Ibrahim WN. Exploring TGF-β Signaling in Cancer Progression: Prospects and Therapeutic Strategies. Onco Targets Ther 2025; 18:233-262. [PMID: 39989503 PMCID: PMC11846535 DOI: 10.2147/ott.s493643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 02/25/2025] Open
Abstract
Cancer persists as a ubiquitous global challenge despite the remarkable advances. It is caused by uncontrolled cell growth and metastasis. The Transforming Growth Factor-beta (TGF-β) signaling pathway is considered a primary regulator of various normal physiological processes in the human body. Recently, factors determining the nature of TGF-β response have received attention, specifically its signaling pathway which can be an attractive therapeutic target for various cancer treatments. The TGF-β receptor is activated by its ligands and undergoes transduction of signals via canonical (SMAD dependent) or non-canonical (SMAD independent) signaling pathways regulating several cellular functions. Furthermore, the cross talk of the TGF-β signaling pathway cross with other signaling pathways has shown the controlled regulation of cellular functions. This review highlights the cross talk between various major signaling pathways and TGF-β. These signaling pathways include Wnt, NF-κB, PI3K/Akt, and Hedgehog (Hh). TGF-β signaling pathway has a dual role at different stages. It can suppress tumor formation at early stages and promote progression at advanced stages. This complex behaviour of TGF-β has made it a promising target for therapeutic interventions. Moreover, many strategies have been designed to control TGF-β signaling pathways at different levels, inhibiting tumor-promoting while enhancing tumor-suppressive effects, each with unique molecular mechanisms and clinical implications. This review also discusses various therapeutic inhibitors including ligand traps, small molecule inhibitors (SMIs), monoclonal antibodies (mAbs), and antisense oligonucleotides which target specific components of TGF-β signaling pathway to inhibit TGF-β signaling and are studied in both preclinical and clinical trials for different types of cancer. The review also highlights the prospect of TGF-β signaling in normal physiology and in the case of dysregulation, TGF-β inhibitors, and different therapeutic effects in cancer therapy along with the perspective of combinational therapies to treat cancer.
Collapse
Affiliation(s)
- Khansa Ali Sheikh
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Momna Amjad
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | | | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Tanveer Majeed
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Muhammad Usman Riaz
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Elham Abdullatif M Sharif
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Becherucci G, Ruffolo C, Scarpa M, Scognamiglio F, Stepanyan A, Maretto I, Kotsafti A, De Simoni O, Pilati P, Franzato B, Scapinello A, Bergamo F, Massani M, Stecca T, Pozza A, Cataldo I, Brignola S, Pellegrini V, Fassan M, Guzzardo V, Dal Santo L, Salmaso R, Carlotta C, Dei Tos AP, Angriman I, Spolverato G, Chiminazzo V, Negro S, Vignotto C, Marchegiani F, Facci L, Rivella G, Bao QR, Baldo A, Pucciarelli S, Zizzo M, Businello G, Salmaso B, Parini D, Pirozzolo G, Recordare A, Tagliente G, Bordignon G, Merenda R, Licia L, Pozza G, Godina M, Mondi I, Verdi D, Da Lio C, Guerriero S, Piccioli A, Portale G, Zuin M, Cipollari C, Noaro G, Cola R, Candioli S, Gavagna L, Ricagna F, Ortenzi M, Guerrieri M, Tomassi M, Tedeschi U, Marinelli L, Barbareschi M, Bertalot G, Brolese A, Ceccarini L, Antoniutti M, Porzionato A, Agostini M, Cavallin F, Tussardi G, Di Camillo B, Bardini R, Castagliuolo I, Scarpa M. IMMUNOREACT 8: Immune markers of local tumor spread in patients undergoing transanal excision for clinically N0 rectal cancer. Surgery 2025; 178:108902. [PMID: 39572264 DOI: 10.1016/j.surg.2024.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Transanal excision of rectal cancer can be considered the definitive surgical treatment if the depth spread is T1 or lower, and the lesion is completely included within the resection margin. This study aims to analyze the immune microenvironment in healthy rectal mucosa as a possible predictor of tumor infiltration depth, lateral tumor spread, and recurrence of rectal cancer after transanal local excision. METHODS This study is a subanalysis of data from the IMMUNOREACT 1 and 2 trials (NCT04915326 and NCT04917263, respectively) including all the patients who underwent transanal excision of rectal cancer. This multicentric study collected healthy mucosa surrounding the neoplasms of patients with rectal cancer. A panel of immune markers was investigated at immunohistochemistry: CD3, CD4, CD8, CD8β, Tbet, FoxP3, PD-L1, MSH6, and PMS2 and CD80. Flow cytometry determined the proportion of epithelial cells expressing CD80, CD86, CD40, HLA ABC or HLA DR and the proportion of activated CD8+ T cells, CD4+ Th1 cells, and Treg. RESULTS Receiver operating characteristic curve analysis for predicting deep tumor spread showed an area under the curve of 0.70 (95% confidence interval: 0.60-0.80) for CD25+FoxP3+ cell rate and 0.74 (95% confidence interval: 0.53-0.92) for CK+CD86+ cell rate. Receiver operating characteristic curve analysis for predicting lateral tumor spread showed an area under the curve of 0.82 (95% confidence interval: 0.61-0.99) for CD8+CD38+ MFI, 0.96 (95% confidence interval: 0.85-0.99) for CD8β infiltration, and 0.97 (95% confidence interval: 0.87-0.99) for CK+HLAabc+ cell rate. Receiver operating characteristic curve analysis for predicting recurrence showed an area under the curve of 0.93 (95% confidence interval: 0.76-0.99) for CD8+CD38+ MFI and 0.94 (95% confidence interval: 0.78-0.99) for CD8+CD28+ MFI. Low CD8+CD38+ MFI and low CD8+CD28+ MFI were associated with shorter disease-free survival (P = .025 and P = .021, respectively). CONCLUSION Our study showed that the association between the high proportion of epithelial cells acting as presenting cells and deep or lateral tumor spread may be explained by the presence of a greater tumor load at the site. Moreover, it showed that weak activation of CD8+ T cells within the rectal mucosa is associated with lateral tumor spread and eventually a higher recurrence rate. The mucosal level of CD8β infiltration detected at immunohistochemistry might be tested as a marker of lateral tumor spread and potentially translated into clinical practice.
Collapse
Affiliation(s)
| | - Cesare Ruffolo
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | - Melania Scarpa
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | | | - Astghik Stepanyan
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | - Isacco Maretto
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | - Andromachi Kotsafti
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Ottavia De Simoni
- Oncological Surgery Unit, Veneto Institute of Oncology IOV-IRCCS, Castelfranco Veneto, Italy
| | - Pierluigi Pilati
- Oncological Surgery Unit, Veneto Institute of Oncology IOV-IRCCS, Castelfranco Veneto, Italy
| | - Boris Franzato
- Oncological Surgery Unit, Veneto Institute of Oncology IOV-IRCCS, Castelfranco Veneto, Italy
| | - Antonio Scapinello
- Pathology Unit, Veneto Institute of Oncology IOV-IRCCS, Castelfranco Veneto, Italy
| | - Francesca Bergamo
- Oncology 1 Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Marco Massani
- General Surgery 3 Unit, Azienda ULSS n 2 Marca Trevigiana, Treviso, Italy
| | - Tommaso Stecca
- General Surgery 3 Unit, Azienda ULSS n 2 Marca Trevigiana, Treviso, Italy
| | - Anna Pozza
- General Surgery 3 Unit, Azienda ULSS n 2 Marca Trevigiana, Treviso, Italy
| | - Ivana Cataldo
- Pathology Unit, Azienda ULSS n 2 Marca Trevigiana, Treviso, Italy
| | - Stefano Brignola
- Pathology Unit, Azienda ULSS n 2 Marca Trevigiana, Treviso, Italy
| | | | - Matteo Fassan
- Pathology Unit, Azienda ULSS n 2 Marca Trevigiana, Treviso, Italy
| | - Vincenza Guzzardo
- Pathology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Luca Dal Santo
- Pathology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Roberta Salmaso
- Pathology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Ceccon Carlotta
- Pathology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | | | - Imerio Angriman
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | - Gaya Spolverato
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | | | - Silvia Negro
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | - Chiara Vignotto
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | | | - Luca Facci
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | - Giorgio Rivella
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | - Quoc Riccardo Bao
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | - Andrea Baldo
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | | | - Maurizio Zizzo
- General Surgery Unit, Arcispedale Santa Maria Nuova IRCCS, Reggio Emilia, Italy
| | | | | | - Dario Parini
- General Surgery Unit, Azienda ULSS n 5 Polesana, Rovigo, Italy
| | | | | | | | | | - Roberto Merenda
- General Surgery Unit, Azienda ULSS 3 Serenissima, Venezia, Italy
| | - Laurino Licia
- Pathology Unit, Azienda ULSS 3 Serenissima, Venezia, Italy
| | - Giulia Pozza
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | - Mario Godina
- General Surgery Unit, Azienda ULSS 3 Serenissima, Dolo, Italy
| | - Isabella Mondi
- General Surgery Unit, Azienda ULSS 3 Serenissima, MIrano, Italy
| | - Daunia Verdi
- General Surgery Unit, Azienda ULSS 3 Serenissima, MIrano, Italy
| | - Corrado Da Lio
- General Surgery Unit, Azienda ULSS 3 Serenissima, MIrano, Italy
| | | | | | - Giuseppe Portale
- General Surgery Unit, Azienda ULSS 7 Pedemontana, Santorso, Italy
| | - Matteo Zuin
- General Surgery Unit, Azienda ULSS 6 Euganea, Cittadella, Italy
| | | | - Giulia Noaro
- General Surgery Unit, Azienda ULSS 6, Schiavonia, Italy
| | - Roberto Cola
- General Surgery Unit, Azienda ULSS 6, Schiavonia, Italy
| | | | - Laura Gavagna
- General Surgery Unit, Azienda ULSS 1 Dolomiti, Belluno, Italy
| | - Fabio Ricagna
- General Surgery Unit, Azienda ULSS 1 Dolomiti, Belluno, Italy
| | - Monica Ortenzi
- General Surgery Unit, Azienda Ospedaliero Universitaria Ospedali Riuniti di Ancona, Italy
| | - Mario Guerrieri
- General Surgery Unit, Azienda Ospedaliero Universitaria Ospedali Riuniti di Ancona, Italy
| | | | | | - Laura Marinelli
- General Surgery Unit, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Mattia Barbareschi
- Pathology Unit, Azienda Provinciale per i Servizi Sanitari, Trento, Italy; Centre for Medical Sciences-CISMed, University of Trento, Italy
| | - Giovanni Bertalot
- Pathology Unit, Azienda Provinciale per i Servizi Sanitari, Trento, Italy; Centre for Medical Sciences-CISMed, University of Trento, Italy
| | - Alberto Brolese
- General Surgery Unit, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | | | | | - Andrea Porzionato
- Department of Molecular Medicine, Università degli Studi di Padova, Italy
| | - Marco Agostini
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | | | - Gaia Tussardi
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, Università degli Studi di Padova, Italy
| | - Romeo Bardini
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padova, Italy
| | | | - Marco Scarpa
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padova, Italy.
| |
Collapse
|
15
|
Dos Santos Sanches N, Panahipour L, Wang L, Imani A, Marchiolli CL, Cervantes LCC, Stein MCRV, Berton SA, Souza FÁ, Okamoto R, Júnior IRG, Gruber R. Cytokine expression of soft tissue cells cultured with titanium discs and their respective supernatants in vitro. Clin Oral Investig 2025; 29:62. [PMID: 39809969 PMCID: PMC11732886 DOI: 10.1007/s00784-024-06123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025]
Abstract
OBJECTIVE Titanium surface modifications improve osseointegration in dental and orthopedic implants. However, soft tissue cells can also reach the implant surface in immediate loading protocols. While previous research focused on osteogenic cells, the early response of soft tissue cells still needs to be better understood. MATERIAL AND METHODS We have established a bioassay to this aim where human gingival fibroblasts, HSC2 oral squamous carcinoma cells, and murine bone marrow cells were cultured onto titanium discs or exposed to the respective supernatants for overnight. Modifications were double acid-etching (SLA), and coating with simulated body fluid (SBF) with or without odanacatib (ODN), a selective cathepsin K inhibitor reducing bone resorption. RESULTS Our findings indicate that direct contact with titanium discs, with all surface modifications, slightly reduces cell viability. Growing gingival fibroblasts on discs consistently showed a trend toward increased IL8 expression. In HSC2 cells, this setting significantly increased IL1 and IL8 expression, confirmed by the immunoassay. Murine bone marrow macrophages also showed an increase in IL1 and IL6 expressions. Supernatants of the respective discs failed to cause these changes. Although ODN coating inhibited cathepsin K, osteoclastogenesis remained unchanged. CONCLUSIONS These findings suggest that titanium discs do not provide a favorable in vitro surface for oral soft tissue cells as they lose viability and respond with a moderately increased expression of inflammatory cytokines. CLINICAL RELEVANCE The soft tissue surrounding a dental implant can impact rehabilitation success. Understanding how soft tissue cells respond to titanium surface is potentially relevant to understand clinical outcomes.
Collapse
Affiliation(s)
- Natália Dos Santos Sanches
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, 16015-050Sao Paulo, , Brazil
| | - Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Lei Wang
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Atefe Imani
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Caroline Liberato Marchiolli
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, 16015-050Sao Paulo, , Brazil
| | - Lara Cristina Cunha Cervantes
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, 16015-050Sao Paulo, , Brazil
- University of Brazil, 15600-000, São Paulo, Fernandópolis, Brazil
| | - Maria Cristina Ruiz Voms Stein
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, 16015-050Sao Paulo, , Brazil
| | - Sara Alves Berton
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, 16015-050Sao Paulo, , Brazil
| | - Francisley Ávila Souza
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, 16015-050Sao Paulo, , Brazil
| | - Roberta Okamoto
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, 16015-050Sao Paulo, , Brazil
| | - Idelmo Rangel Garcia Júnior
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, 16015-050Sao Paulo, , Brazil
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria.
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
16
|
McIlroy G, Gaskell C, Jackson A, Yafai E, Tasker R, Thomas C, Fox S, Boucher R, Ghebretinsea F, Harrison C, Mead AJ, McMullin MF. Fedratinib combined with ropeginterferon alfa-2b in patients with myelofibrosis (FEDORA): study protocol for a multicentre, open-label, Bayesian phase II trial. BMC Cancer 2025; 25:56. [PMID: 39789479 PMCID: PMC11720754 DOI: 10.1186/s12885-024-13383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Myelofibrosis (MF) is a clonal haematopoietic disease, with median overall survival for patients with primary MF only 6.5 years. The most frequent gene mutation found in patients is JAK2V617F, causing constitutive activation of the kinase and activation of downstream signalling. Fedratinib is an oral selective JAK2 inhibitor. It has shown activity in MF and is well-tolerated, but combination with other therapies is likely needed to achieve clonal remission. Combining a JAK2 inhibitor with an interferon may be synergistic, as haematopoietic cells are activated from quiescence (a typical kinase resistance mechanism) rendering them more sensitive to inhibition. Ropeginterferon alfa-2b is a next generation pegylated interferon-α-2b with high tolerability and clinical activity in patients with MF, however, evidence of tolerability and activity in combination with fedratinib is lacking in this setting. The aim of the FEDORA trial is to assess tolerability, safety, and activity of fedratinib with ropeginterferon alfa-2b in patients with MF who require treatment to justify further investigation in a phase III trial. METHODS FEDORA is a single arm, multicentre, open-label, Bayesian phase II trial to assess tolerability, safety, and activity of fedratinib with ropeginterferon alfa-2b aiming to recruit 30 patients. Patients with JAK2V617F positive primary or secondary MF, who are aged ≥ 18 years, have intermediate-1 with palpable splenomegaly of > 5cm, intermediate-2, or high-risk disease according to the Dynamic International Prognostic Scoring System (DIPSS), and who require treatment are eligible. The primary outcome is tolerability, whereby the combination is deemed intolerable in a patient if drug-related toxicities in the first four months of treatment lead to: either drug being discontinued; delays in treatment exceeding 28 consecutive days; or death. FEDORA uses a within-patient dose escalation regimen to ensure each patient reaches a personalised dose combination that is acceptable. DISCUSSION FEDORA is using a Bayesian trial design and aims to provide evidence of the tolerability, safety, and activity of combining fedratinib with ropeginterferon alfa-2b upon which the decision as to whether a phase III trial is warranted will be based. TRIAL REGISTRATION EudraCT number: 2021-004056-42. ISRCTN 88,102,629.
Collapse
Affiliation(s)
- Graham McIlroy
- Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Charlotte Gaskell
- Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Aimee Jackson
- Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emily Yafai
- Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rachel Tasker
- Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Catherine Thomas
- Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sonia Fox
- Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rebecca Boucher
- Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Fitsum Ghebretinsea
- Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Claire Harrison
- Department of Clinical Haematology, Guy's and St Thomas' National Health Service (NHS) Foundation Trust, London, UK
| | - Adam J Mead
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR, Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Mary Frances McMullin
- Centre for Medical Education, Queen's University Belfast, Belfast City Hospital, Lisburn Road, Belfast, UK
| |
Collapse
|
17
|
Deng YT, You J, He Y, Zhang Y, Li HY, Wu XR, Cheng JY, Guo Y, Long ZW, Chen YL, Li ZY, Yang L, Zhang YR, Chen SD, Ge YJ, Huang YY, Shi LM, Dong Q, Mao Y, Feng JF, Cheng W, Yu JT. Atlas of the plasma proteome in health and disease in 53,026 adults. Cell 2025; 188:253-271.e7. [PMID: 39579765 DOI: 10.1016/j.cell.2024.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/17/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024]
Abstract
Large-scale proteomics studies can refine our understanding of health and disease and enable precision medicine. Here, we provide a detailed atlas of 2,920 plasma proteins linking to diseases (406 prevalent and 660 incident) and 986 health-related traits in 53,026 individuals (median follow-up: 14.8 years) from the UK Biobank, representing the most comprehensive proteome profiles to date. This atlas revealed 168,100 protein-disease associations and 554,488 protein-trait associations. Over 650 proteins were shared among at least 50 diseases, and over 1,000 showed sex and age heterogeneity. Furthermore, proteins demonstrated promising potential in disease discrimination (area under the curve [AUC] > 0.80 in 183 diseases). Finally, integrating protein quantitative trait locus data determined 474 causal proteins, providing 37 drug-repurposing opportunities and 26 promising targets with favorable safety profiles. These results provide an open-access comprehensive proteome-phenome resource (https://proteome-phenome-atlas.com/) to help elucidate the biological mechanisms of diseases and accelerate the development of disease biomarkers, prediction models, and therapeutic targets.
Collapse
Affiliation(s)
- Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia You
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hai-Yun Li
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ji-Yun Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zi-Wen Long
- Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Lin Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ze-Yu Li
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Le-Ming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital Fudan University, Shanghai, China.
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, UK.
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Kulbay M, Tuli N, Mazza M, Jaffer A, Juntipwong S, Marcotte E, Tanya SM, Nguyen AXL, Burnier MN, Demirci H. Oncolytic Viruses and Immunotherapy for the Treatment of Uveal Melanoma and Retinoblastoma: The Current Landscape and Novel Advances. Biomedicines 2025; 13:108. [PMID: 39857692 PMCID: PMC11762644 DOI: 10.3390/biomedicines13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Intraocular malignant tumors are rare; however, they can cause serious life-threatening complications. Uveal melanoma (UM) and retinoblastoma (RB) are the most common intraocular tumors in adults and children, respectively, and come with a great disease burden. For many years, several different treatment modalities for UM and RB have been proposed, with chemotherapy for RB cases and plaque radiation therapy for localized UM as first-line treatment options. Extraocular extension, recurrence, and metastasis constitute the major challenges of conventional treatments. To overcome these obstacles, immunotherapy, which encompasses different treatment options such as oncolytic viruses, antibody-mediated immune modulations, and targeted immunotherapy, has shown great potential as a novel therapeutic tool for cancer therapy. These anti-cancer treatment options provide numerous advantages such as selective cancer cell death and the promotion of an anti-tumor immune response, and they prove useful in preventing vision impairment due to macular and/or optic disc involvement. Numerous factors such as the vector choice, route of administration, dosing, and patient characteristics must be considered when engineering an oncolytic virus or other forms of immunotherapy vectors. This manuscript provides an in-depth review of the molecular design of oncolytic viruses (e.g., virus capsid proteins and encapsulation technologies, vectors for delivery, cell targeting) and immunotherapy. The most recent advances in preclinical- and clinical-phase studies are further summarized. The recent developments in virus-like drug conjugates (i.e., AU011), oncolytic viruses for metastatic UM, and targeted immunotherapies have shown great results in clinical trials for the future clinical application of these novel technologies in the treatment algorithm of certain intraocular tumors.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3J1, Canada; (M.K.)
| | - Nicolas Tuli
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Massimo Mazza
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Armaan Jaffer
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 2V5, Canada
- Research Excellence Cluster in Vision, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Sarinee Juntipwong
- Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48105, USA
| | - Emily Marcotte
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Stuti Misty Tanya
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3J1, Canada; (M.K.)
| | - Anne Xuan-Lan Nguyen
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Miguel N. Burnier
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3J1, Canada; (M.K.)
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Hakan Demirci
- Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
19
|
Jeon SY, Shin HS, Lee H, Lee JO, Kim YS. The anti-tumor effect of the IFNγ/Fas chimera expressed on CT26 tumor cells. Anim Cells Syst (Seoul) 2025; 29:46-56. [PMID: 39777022 PMCID: PMC11703469 DOI: 10.1080/19768354.2024.2442393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025] Open
Abstract
Interferon gamma (IFNγ) is well-known for its ability to stimulate immune cells in response to pathogen infections and cancer. To develop an effective cancer therapeutic vaccine, CT26 colon carcinoma cells were genetically modified to express IFNγ either as a secreted form (sIFNγ) or as a membrane-bound form. For the membrane-bound expression, IFNγ was fused with Fas (mbIFNγ/Fas), incorporating the extracellular cysteine-rich domains, transmembrane, and cytoplasmic domains of Fas. The tumor cells expressing sIFNγ and mbIFNγ/Fas showed slower growth rates compared to the mock-transfected cells. Furthermore, the tumorigenicity of the CT26 cells expressing mbIFNγ/Fas was significantly lower than that of cells expressing sIFNγ or the mock control. Remarkably, about 85% of the mice injected with the mbIFNγ/Fas-expressing tumors remained tumor-free for over two months. Mice that rejected mbIFNγ/Fas-expressing tumors developed systemic anti-tumor immunity against CT26 cells, which was characterized by enhanced levels of CD4+ and CD8+ T cells, as well as natural killer (NK) cells. Interestingly, splenocytes activated with the mbIFNγ/Fas-expressing tumors exhibited higher cytotoxicity than those activated with tumor cells expressing sIFNγ. These findings suggest that expressing the mbIFNγ/Fas chimera in tumor cells could be a promising strategy for developing whole tumor cell vaccines or gene therapies for cancer immunotherapy.
Collapse
Affiliation(s)
- Seo Yeon Jeon
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea
| | - Hee-Su Shin
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea
| | - Hayyoung Lee
- Department of Life Sciences and Postech Biotech Center, POSTECH, Pohang, Korea
| | - Jie-Oh Lee
- Department of Life Sciences and Institute of Membrane Proteins, POSTECH, Pohang, Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea
| |
Collapse
|
20
|
Santoso A, Levink I, Pihlak R, Chau I. The Immune Landscape and Its Potential for Immunotherapy in Advanced Biliary Tract Cancer. Curr Oncol 2024; 32:24. [PMID: 39851940 PMCID: PMC11763487 DOI: 10.3390/curroncol32010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Biliary tract cancers (BTC) are a highly heterogeneous group of cancers at the genomic, epigenetic and molecular levels. The vast majority of patients initially present at an advanced (unresectable) disease stage due to a lack of symptoms and an aggressive tumour biology. Chemotherapy has been the mainstay of treatment in patients with advanced BTC but the survival outcomes and prognosis remain poor. The addition of immune checkpoint inhibitors (ICI) to chemotherapy have shown only a marginal benefit over chemotherapy alone due to the complex tumour immune microenvironment of these cancers. This review appraises our current understanding of the immune landscape of advanced BTC, including emerging transcriptome-based classifications, highlighting the mechanisms of immune evasion and resistance to ICI and their therapeutic implications. It describes the shifting treatment paradigm from traditional chemotherapy to immunotherapy combinations as well as the potential biomarkers for predicting response to ICI.
Collapse
Affiliation(s)
- Andry Santoso
- Gastrointestinal Unit, The Royal Marsden Hospital, London SW3 6JJ, UK; (A.S.); (I.L.)
| | - Iris Levink
- Gastrointestinal Unit, The Royal Marsden Hospital, London SW3 6JJ, UK; (A.S.); (I.L.)
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Rille Pihlak
- University Hospitals Sussex NHS Foundation Trust, Brighton BN1 9RW, UK;
| | - Ian Chau
- Gastrointestinal Unit, The Royal Marsden Hospital, London SW3 6JJ, UK; (A.S.); (I.L.)
| |
Collapse
|
21
|
He W, Lv W, Liu L, Gong Y, Song K, Xu J, Zhao W, Li S, Min Z, Chen Q, Yin J, Chen Y, Fang H, Xin H, Fang X. Enhanced Antiglioma Effect by a Vitamin D3-Inserted Lipid Hybrid Neutrophil Membrane Biomimetic Multimodal Nanoplatform. ACS NANO 2024; 18:35559-35574. [PMID: 39696957 DOI: 10.1021/acsnano.4c13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Glioblastoma, the most prevalent malignant brain tumor, is a lethal threat to human health, with aggressive and infiltrative growth characteristics that compromise the clinical treatment. Herein, we developed a vitamin D3-inserted lipid hybrid neutrophil membrane biomimetic multimodal nanoplatform (designated as NED@MnO2-DOX) through doxorubicin (DOX)-loaded manganese dioxide nanoparticles (MnO2) which were coated with a vitamin D3-inserted lipid hybrid neutrophil membrane. It was demonstrated that in addition to chemotherapy and chemo-dynamic therapy efficacy, NED@MnO2-DOX exhibited great power to activate and amplify immune responses related to the cGAS STING pathway, bolstering the secretion of type I interferon-β and proinflammatory cytokines, promoting the maturation of DC cells and infiltration of CD8+T cells into the glioma tissue, thereby reversing the immunosuppressive microenvironment of glioma from a "cold" tumor to a "hot" tumor. The biomimetic multimodal nanoplatform has potential as a multimodal strategy for glioma-targeted treatment, especially holding considerable promise for the development of innate immune therapy for glioma.
Collapse
Affiliation(s)
- Weichong He
- Department of Pharmacy, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou 213100, China
- Department of Pharmaceutics, Pharmacy of School, Nanjing Medical University, Nanjing 211166, China
| | - Wei Lv
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, Wuxi 214499, China
| | - Linfeng Liu
- Department of Pharmaceutics, Pharmacy of School, Nanjing Medical University, Nanjing 211166, China
| | - Yue Gong
- Department of Pharmaceutics, Pharmacy of School, Nanjing Medical University, Nanjing 211166, China
| | - Kefan Song
- Department of Pharmaceutics, Pharmacy of School, Nanjing Medical University, Nanjing 211166, China
| | - Jiangna Xu
- Department of Pharmaceutics, Pharmacy of School, Nanjing Medical University, Nanjing 211166, China
| | - Wei Zhao
- Department of Pharmaceutics, Pharmacy of School, Nanjing Medical University, Nanjing 211166, China
| | - Shengnan Li
- Department of Pharmaceutics, Pharmacy of School, Nanjing Medical University, Nanjing 211166, China
| | - Zhiyi Min
- Department of Pharmaceutics, Pharmacy of School, Nanjing Medical University, Nanjing 211166, China
| | - Qinhua Chen
- Department of Pharmaceutics, Pharmacy of School, Nanjing Medical University, Nanjing 211166, China
| | - Jiaqing Yin
- Department of Pharmaceutics, Pharmacy of School, Nanjing Medical University, Nanjing 211166, China
| | - Yuqin Chen
- Department of Pharmaceutics, Pharmacy of School, Nanjing Medical University, Nanjing 211166, China
| | - Hufeng Fang
- Department of Pharmacy, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Hongliang Xin
- Department of Pharmaceutics, Pharmacy of School, Nanjing Medical University, Nanjing 211166, China
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi 214400, China
| | - Xiangming Fang
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi 214400, China
| |
Collapse
|
22
|
Elguindy MM, Young JS, Ho WS, Lu RO. Co-evolution of glioma and immune microenvironment. J Immunother Cancer 2024; 12:e009175. [PMID: 39631850 PMCID: PMC11624716 DOI: 10.1136/jitc-2024-009175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/03/2024] [Indexed: 12/07/2024] Open
Abstract
Glioma evolution is governed by a multitude of dynamic interactions between tumor cells and heterogenous neighboring, non-cancerous cells. This complex ecosystem, termed the tumor microenvironment (TME), includes diverse immune cell types that have gained increasing attention for their critical and paradoxical roles in tumor control and tumorigenesis. Recent work has revealed that the cellular composition and functional state of immune cells in the TME can evolve extensively depending on the tumor stage and intrinsic features of surrounding glioma cells. Concurrently, adaptations to the glioma cellular phenotype, including activation of various cellular states, occur in the context of these immune cell alterations. In this review, we summarize important features of the immune TME that play key roles during each stage of glioma progression, from initiation to immune escape, invasion and recurrence. Understanding the complex interplay between tumor and immune cells is critical for the development of effective immunotherapies for glioma treatment.
Collapse
Affiliation(s)
- Mahmoud M Elguindy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Winson S Ho
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Rongze O Lu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
23
|
Guanizo AC, Luong Q, Jayasekara WSN, de Geus ED, Inampudi C, Xue VS, Chen J, de Weerd NA, Matthews AY, Gantier MP, Balic JJ, Arulananda S, Garama DJ, Hertzog PJ, Ganju V, Watkins DN, Cain JE, Gough DJ. A STAT3-STING-IFN axis controls the metastatic spread of small cell lung cancer. Nat Immunol 2024; 25:2259-2269. [PMID: 39572642 DOI: 10.1038/s41590-024-02014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/10/2024] [Indexed: 11/27/2024]
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor characterized by a high metastatic potential with an overall survival rate of ~5%. The transcription factor signal transducer and activator of transcription 3 (STAT3) is overexpressed by >50% of tumors, including SCLC, but its role in SCLC development and metastasis is unclear. Here, we show that, while STAT3 deletion restricts primary tumor growth, it paradoxically enhances metastatic spread by promoting immune evasion. This occurs because STAT3 is crucial for maintaining the immune sensor stimulator of interferon (IFN) genes (STING). Without STAT3, the cyclic adenosine monophosphate-guanosine monophosphate synthase-STING pathway is inactive, resulting in decreased type I IFN secretion and an IFN gene signature. Importantly, restoration of IFN signaling through re-expression of endogenous STING, enforced expression of IFN response factor 7 or administration of recombinant type I IFN re-established antitumor immunity, inhibiting metastatic SCLC in vivo. These data show the potential of augmenting the innate immune response to block metastatic SCLC.
Collapse
Affiliation(s)
- Aleks C Guanizo
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Quinton Luong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - W Samantha N Jayasekara
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Eveline D de Geus
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Chaitanya Inampudi
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Vincent Senyang Xue
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Jasmine Chen
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Nicole A de Weerd
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Antony Y Matthews
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Michael P Gantier
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Jesse J Balic
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Surein Arulananda
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Medical Oncology, Monash Health, Clayton, Victoria, Australia
- School of Clinical Sciences, Faculty of Medicine, Monash University, Clayton, Victoria, Australia
| | - Daniel J Garama
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Paul J Hertzog
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Vinod Ganju
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - D Neil Watkins
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, Manitoba, Canada
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Daniel J Gough
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
24
|
Zoler E, Meyer T, Bellón JS, Mönnig M, Sun B, Piehler J, Schreiber G. Promiscuous Janus kinase binding to cytokine receptors modulates signaling efficiencies and contributes to cytokine pleiotropy. Sci Signal 2024; 17:eadl1892. [PMID: 39561221 DOI: 10.1126/scisignal.adl1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/09/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Janus kinases (JAKs) bind to class I and II cytokine receptors, activating signaling and regulating gene transcription through signal transducer and activator of transcription (STAT) proteins. Type I interferons (IFNs) require the JAK members TYK2 and JAK1, which bind to the receptor subunits IFNAR1 and IFNAR2, respectively. We investigated the role of JAKs in regulating IFNAR signaling activity. Synthetic IFNARs in which the extracellular domains of IFNAR1 and IFNAR2 are replaced with nanobodies had near-native type I IFN signaling, whereas the homomeric variant of IFNAR2 initiated much weaker signaling, despite harboring docking sites for JAKs and STATs. Cells with JAK1 and TYK2 knockout (KO) showed residual signaling, suggesting partial complementation by the remaining JAKs, particularly when they were overexpressed. Live-cell micropatterning experiments confirmed the promiscuous binding of JAK1, JAK2, and TYK2 to IFNAR1 and IFNAR2, and their recruitment correlated with their relative cellular abundances. However, each JAK had a different efficacy in inducing cross-phosphorylation and downstream signaling. JAK binding was also promiscuous for other cytokine receptors, including IFN-L1, IL-10Rβ, TPOR, and GHR, but not for EPOR, which activated different downstream signaling pathways. These findings suggest that competitive binding of JAKs to cytokine receptors together with the varying absolute and relative abundances of the JAKs in different cell types can account for the cell type-dependent signaling pleiotropy of cytokine receptors.
Collapse
Affiliation(s)
- Eyal Zoler
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Thomas Meyer
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Junel Sotolongo Bellón
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Mia Mönnig
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Boyue Sun
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
Luo Z, Lin Y, Meng Y, Li M, Ren H, Shi H, Cheng Q, Wei T. Spleen-Targeted mRNA Vaccine Doped with Manganese Adjuvant for Robust Anticancer Immunity In Vivo. ACS NANO 2024; 18:30701-30715. [PMID: 39463304 DOI: 10.1021/acsnano.4c09902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The successful application of mRNA vaccines in preventing and treating infectious diseases highlights their potential as therapeutic vaccines for cancer treatment. However, unlike infectious diseases, effective antitumor therapy, particularly for solid tumors, necessitates the activation of more powerful cellular and humoral immunity to achieve clinical efficacy. Here, we report a spleen-targeted mRNA vaccine (Mn@mRNA-LNP) designed to deliver tumor antigen-encoding mRNA and manganese adjuvant (Mn2+) simultaneously to dendritic cells (DCs) in the spleen. This delivery system promotes DC maturation and surface antigen presentation and stimulates the production of cytotoxic T cells. Additionally, Mn2+ codelivered in the system serves as a safe and effective immune adjuvant, activating the stimulator of interferon genes (STING) signaling pathway and promoting the secretion of type I interferon, further enhancing the antigen-specific T cell responses. Mn@mRNA-LNP effectively inhibits tumor progression in established melanoma and colon tumor models as well as in a model of tumor recurrence after resection. Notably, the combination of Mn@mRNA-LNP with immune checkpoint inhibitors further enhances complete tumor suppression and prolonged the overall survival in mice. Overall, this "All-in-One" mRNA vaccine significantly boosts antitumor immunity responses by improving spleen targeting and immune activation, providing an attractive strategy for the future clinical translation of therapeutic mRNA vaccines.
Collapse
Affiliation(s)
- Zijin Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Lin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yanan Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyao Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoping Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Heinemann FS, Gershon PD. Differential Abundance of DNA Damage Sensors and Innate Immune Signaling Proteins in Inositol Polyphosphate 4-Phosphatase Type II-Negative Triple-Negative Breast Cancer Classified by Immunotype. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2212-2232. [PMID: 39147237 DOI: 10.1016/j.ajpath.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
The influence of neoplastic cells on the tumor microenvironment is poorly understood. In this study, eight patient samples representing two immunotypes of triple-negative breast cancer (TNBC), defined by quantitative histologic criteria as T-cell desert and T-cell infiltrated (TCI), were compared via label-free quantitative protein mass spectrometry of material extracted directly from targeted regions of formalin-fixed, paraffin-embedded tissue sections. Of 2934 proteins quantitated, 439 were significantly differentially abundant, among which 361 were overabundant in TCI-TNBC. The 361-protein group included proteins involved in major histocompatibility complex-I antigen processing and presentation, viral defense, DNA damage response, and innate immune signaling. Immunohistochemical validation of selected proteins showed good positive correlation between neoplastic cell histoscores and label-free quantitation. Extension of immunohistochemical analysis to a total of 58 inositol polyphosphate 4-phosphatase type II-negative TNBC confirmed elevated levels of the DNA damage sensor interferon-γ-inducible protein 16, inflammasome adaptor apoptosis-associated speck-like protein containing a CARD (ASC), and pore-forming protein gasdermin D in TCI-TNBC neoplastic cells. By contrast, cGMP-AMP synthase inhibitor barrier to autointegration factor (BAF) was elevated in the neoplastic cells of T-cell desert TNBC. These findings demonstrate a previously unknown correlation between the degree of T-cell infiltration in inositol polyphosphate 4-phosphatase type II-negative TNBC and the levels, in cognate neoplastic cells, of proteins that modulate innate immune signaling in response to DNA damage.
Collapse
Affiliation(s)
- F Scott Heinemann
- Department of Pathology, Hoag Memorial Hospital Presbyterian, Newport Beach, California.
| | - Paul D Gershon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California.
| |
Collapse
|
27
|
Chhipa AS, Boscaro V, Gallicchio M, Patel S. The curious case of type I interferon signaling in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189204. [PMID: 39477031 DOI: 10.1016/j.bbcan.2024.189204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Cytokines are the crucial signaling proteins that mediate the crosstalks between the cells of tumor microenvironment (TME). Interferon-1 (IFN-1) are the important cytokines that are widely known for their tumor suppressive roles comprising of cancer cell intrinsic and extrinsic mechanisms. Despite having known antitumor effects, IFN-1 are also reported to have tumor promoting functions under varying circumstances. This dichotomy in the functions of IFN-1 is largely attributed to the acute and chronic activation of IFN-1 signaling in TME. The chronic activation of IFN-1 signaling in tumor cells results in altered stimulation of downstream pathways that result in the expression of tumor promoting proteins, while the acute IFN-1 signaling activation maintains its tumor inhibiting functions. In the present review, we have discussed the anti- and pro-tumor actions of IFN-1 signaling under acute and chronic IFN-1 signaling activation. We have also discussed the downstream changes in signaling components that result in tumor supportive functions of a constitutive IFN-1 signaling. We have further discussed the possible strategies to overcome the detrimental effects of chronic IFN-1 pathway activation and to successfully employ IFN-1 for their beneficial anti-tumor effects.
Collapse
Affiliation(s)
- Abu Sufiyan Chhipa
- Department of Pharmacology, Institute of Pharmacy, Nirma University, 382481 Ahmedabad, India; Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | - Valentina Boscaro
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | | | - Snehal Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, 382481 Ahmedabad, India.
| |
Collapse
|
28
|
Palollathil A, Babu S, Abhinand CS, Mathew RT, Vijayakumar M, Prasad TSK. Proteomic profiling of oral squamous cell carcinoma tissues reveals altered immune-related proteins: implications for personalized therapy. Expert Rev Proteomics 2024; 21:483-495. [PMID: 39523852 DOI: 10.1080/14789450.2024.2428332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Oral squamous cell carcinoma poses a substantial global health challenge marked by rising mortality rate. Recently, immunotherapy has shown promising results in cancer management by enhancing immune response. Thus, identifying additional immune-related markers is critical for advancing immunotherapy treatments. METHODS Data-independent acquisition (DIA) mass spectrometry approach was used to explore differentially expressed immune-related proteins in oral cancer tissues compared to adjacent non-cancerous tissues. Functional significance was identified through Gene Ontology, pathway, and network analysis. Gene expression of identified proteins was validated using transcriptomic data. RESULTS DIA analysis identified 29,459 precursors corresponding to 3429 proteins. Among these, 1060 proteins were differentially expressed, with 166 being immune-related. Differentially regulated proteins were involved in innate immune response, mitochondrial ATP synthesis, and neutrophil degranulation. Pathway analysis of immune-related proteins showed perturbation in anti-tumor immunity-related pathways such as interferon signaling, TCR signaling, PD-1 signaling, and antigen processing and presentation. Significance of these pathways was further reinforced by the strong interactions identified in the protein-protein interaction network analysis. Additionally, gene expression analysis showed similar mRNA expression patterns for key proteins involved in altered pathways, including ISG15, IFIT1/3, HLA-A/C and OAS2/3. CONCLUSIONS Further validation of these proteins could establish them as potential targets for personalized therapy.
Collapse
Affiliation(s)
- Akhina Palollathil
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sreeranjini Babu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Rohan Thomas Mathew
- Department of Surgical Oncology, Yenepoya Medical College Hospital, Yenepoya (Deemed to be University), Mangalore, India
| | - Manavalan Vijayakumar
- Department of Surgical Oncology, Yenepoya Medical College Hospital, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
29
|
Saunders HI, Holloran SM, Trinca GM, Artigues A, Villar M, Tinoco JC, Dias WB, Werner LR, Chowanec EI, Heard A, Chalise P, Slawson C, Hagan CR. Site-specific O-GlcNAcylation of progesterone receptor (PR) supports PR attenuation of interferon stimulated genes (ISGs) and tumor growth in breast cancer. J Biol Chem 2024; 300:107886. [PMID: 39395796 PMCID: PMC11609360 DOI: 10.1016/j.jbc.2024.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
Hormone receptor positive (HR+) breast cancer, defined by expression of estrogen receptor (ER) and/or progesterone receptor (PR), is the most commonly diagnosed type of breast cancer. PR alters the transcriptional landscape to support tumor growth in concert with, or independent of, ER. Understanding the mechanisms regulating PR function is critical to developing new strategies to treat HR+ breast cancer. O-linked β-N-acetylglucosamine (O-GlcNAc) is a posttranslational modification responsible for nutrient sensing that modulates protein function. Although PR is heavily posttranslationally modified, through both phosphorylation and O-GlcNAcylation, specific sites of O-GlcNAcylation on PR and how they regulate PR action have not been investigated. Using established PR-expressing breast cancer cell lines, we mapped several sites of O-GlcNAcylation on PR. RNA-sequencing after PR O-GlcNAc site mutagenesis revealed site-specific O-GlcNAcylation of PR is critical for ligand-independent suppression of interferon signaling, a regulatory function of PR in breast cancer. Furthermore, O-GlcNAcylation of PR enhances PR-driven tumor growth in vivo. Herein, we have delineated one contributing mechanism to PR function in breast cancer that impacts tumor growth and provided additional insight into the mechanism through which PR attenuates interferon signaling.
Collapse
Affiliation(s)
- Harmony I Saunders
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sean M Holloran
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gloria M Trinca
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maite Villar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Julio C Tinoco
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wagner Barbosa Dias
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lauryn R Werner
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Eilidh I Chowanec
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Amanda Heard
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Christy R Hagan
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
30
|
Liu X, Yang P, Liu L, Si S, Zhou R, Liu T, Tan H. Long-term prognosis and treatment modalities of hepatic epithelioid hemangioendothelioma: a retrospective study of 228 patients. BMC Cancer 2024; 24:1285. [PMID: 39415114 PMCID: PMC11481724 DOI: 10.1186/s12885-024-13053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Hepatic epithelioid hemangioendothelioma (EHE) is an extremely rare tumour. The aim of this study was to investigate the long-term prognosis and its relationship with treatment modalities. METHODS From March 2014 to June 2024, a total of 234 patients with histologically confirmed hepatic EHE were treated or followed up regularly by our team. The patients' clinical data at the time of diagnosis and initial treatment modalities were retrospectively collected. Kaplan-Meier curves were constructed to determine overall survival (OS). To explore prognostic factors and treatment outcomes, univariable and multivariable Cox proportional hazard models were developed. RESULTS A total of 228 patients were ultimately included. The median age of the cohort was 41 years. For all patients, the OS of 1-, 3- and 5-year were 96.2%, 87.9% and 84.9%, respectively. For patients who underwent liver transplantation (LT), the OS of 1- and 3-year were 62.5% and 25%, respectively. No difference was found in the OS between patients who received surgical therapy and those who did not (1-year: 100% vs. 96.9%; 3-year: 90.1% vs. 91.5%; 5-year: 87.2% vs. 88.2%; P = 0.891). In the multivariable analysis, age ≥ 60 years [HR (95% CI): 4.207 (1.266-13.973), P = 0.019], the size of the largest lesion > 10 cm [HR (95% CI): 12.140 (1.419-103.872), P = 0.023] and LT [HR (95% CI): 5.502 (1.343-22.536), P = 0.018] were poor prognostic factors. CONCLUSIONS Compared with nonsurgical therapy, surgical therapy has no advantage in terms of long-term survival. The role of LT in the management of hepatic EHE should be reevaluated. Age ≥ 60 years and the size of the largest lesion > 10 cm are poor prognostic factors.
Collapse
Affiliation(s)
- Xiaolei Liu
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Beijing, 100029, China.
| | - Peijun Yang
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Beijing, 100029, China
| | - Liguo Liu
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Beijing, 100029, China
| | - Shuang Si
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Beijing, 100029, China
| | - Ruiquan Zhou
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Beijing, 100029, China
| | - Tiantong Liu
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Beijing, 100029, China
| | - Haidong Tan
- Second Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Beijing, 100029, China.
| |
Collapse
|
31
|
Su H, Chen Y, Wang W. Novel prognostic model of complement and coagulation cascade-related genes correlates with immune environment and drug sensitivity in hepatocellular carcinoma. Heliyon 2024; 10:e38230. [PMID: 39391504 PMCID: PMC11466567 DOI: 10.1016/j.heliyon.2024.e38230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is an immunogenic cancer characterized by high morbidity and mortality rates. The complement and coagulation systems are traditionally associated with the incidence of thrombotic complications and complement activation in cancer. However, the prognostic value of complement and coagulation-related factors (CCCR) in HCC remains undetermined. This study aims to construct a prognostic model based on the complement and coagulation cascades to evaluate its potential for immunotherapy and its relationship with drug sensitivity. Materials and methods We comprehensively investigated the expression profiles of CCCR genes using the TCGA, ICGC, and GTEx databases. Cox proportional hazards regression models were employed to assess prognostic value. Results This study presents a novel prognostic model derived from the comprehensive analysis of nine CCCR genes (C1S, C6, C7, F11, F13B, F7, SERPINE1, SERPINF2, and SERPING1) to elucidate their correlation with the tumor immune environment and drug sensitivity in patients with HCC. Our model stratified patients into high- and low-risk groups based on distinct survival outcomes. The area under the curve (AUC) values of the risk score for one-, two-, and three-year survival rates were all greater than 0.660. Additionally, we analyzed immune cell infiltration patterns, revealing a strong correlation between CCCR gene expression and the immune microenvironment, including T cell and macrophage activity. Our findings also identified potential therapeutic targets, demonstrating differential drug sensitivity profiles between the risk groups. JAK1_8709_1718 was found to be more suitable for patients with low-risk HCC. Conclusion Our findings provide promising insights into the clinical relevance of CCCR genes as prognostic markers and therapeutic targets. This study underscores the significance of CCCR in HCC and paves the way for improved therapeutic strategies.
Collapse
Affiliation(s)
- Hui Su
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Yunjie Chen
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Wuke Wang
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
32
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
33
|
Orcutt-Jahns B, Lima Junior JR, Lin E, Rockne RC, Matache A, Branciamore S, Hung E, Rodin AS, Lee PP, Meyer AS. Systems profiling reveals recurrently dysregulated cytokine signaling responses in ER+ breast cancer patients' blood. NPJ Syst Biol Appl 2024; 10:118. [PMID: 39389979 PMCID: PMC11467214 DOI: 10.1038/s41540-024-00447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Cytokines operate in concert to maintain immune homeostasis and coordinate immune responses. In cases of ER+ breast cancer, peripheral immune cells exhibit altered responses to several cytokines, and these alterations are correlated strongly with patient outcomes. To develop a systems-level understanding of this dysregulation, we measured a panel of cytokine responses and receptor abundances in the peripheral blood of healthy controls and ER+ breast cancer patients across immune cell types. Using tensor factorization to model this multidimensional data, we found that breast cancer patients exhibited widespread alterations in response, including drastically reduced response to IL-10 and heightened basal levels of pSmad2/3 and pSTAT4. ER+ patients also featured upregulation of PD-L1, IL6Rα, and IL2Rα, among other receptors. Despite this, alterations in response to cytokines were not explained by changes in receptor abundances. Thus, tensor factorization helped to reveal a coordinated reprogramming of the immune system that was consistent across our cohort.
Collapse
Affiliation(s)
- Brian Orcutt-Jahns
- Department of Bioengineering, University of California, Los Angeles (UCLA), CA, USA
| | | | - Emily Lin
- Department of Bioengineering, University of California, Los Angeles (UCLA), CA, USA
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Adina Matache
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Ethan Hung
- Department of Bioengineering, University of California, Los Angeles (UCLA), CA, USA
| | - Andrei S Rodin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Aaron S Meyer
- Department of Bioengineering, University of California, Los Angeles (UCLA), CA, USA.
- Jonsson Comprehensive Cancer Center, Los Angeles (UCLA), CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles (UCLA), CA, USA.
| |
Collapse
|
34
|
De S, Ehrlich M. Arrest and Attack: Microtubule-Targeting Agents and Oncolytic Viruses Employ Complementary Mechanisms to Enhance Anti-Tumor Therapy Efficacy. Genes (Basel) 2024; 15:1193. [PMID: 39336785 PMCID: PMC11431212 DOI: 10.3390/genes15091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Oncolytic viruses (OVs) are promising cancer immunotherapy agents that stimulate anti-tumor immunity through the preferential infection and killing of tumor cells. OVs are currently under limited clinical usage, due in part to their restricted efficacy as monotherapies. Current efforts for enhancement of the therapeutic potency of OVs involve their combination with other therapy modalities, aiming at the concomitant exploitation of complementary tumor weaknesses. In this context, microtubule-targeting agents (MTAs) pose as an enticing option, as they perturb microtubule dynamics and function, induce cell-cycle arrest, and cause mitotic cell death. MTAs induce therapeutic benefit through cancer-cell-autonomous and non-cell-autonomous mechanisms and are a main component of the standard of care for different malignancies. However, off-target effects and acquired resistance involving distinct cellular and molecular mechanisms may limit the overall efficacy of MTA-based therapy. When combined, OVs and MTAs may enhance therapeutic efficacy through increases in OV infection and immunogenic cell death and a decreased probability of acquired resistance. In this review, we introduce OVs and MTAs, describe molecular features of their activity in cancer cells, and discuss studies and clinical trials in which the combination has been tested.
Collapse
Affiliation(s)
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
35
|
Rus Bakarurraini NAA, Kamarudin AA, Jamal R, Abu N. Engineered T cells for Colorectal Cancer. Immunotherapy 2024; 16:987-998. [PMID: 39229803 PMCID: PMC11485792 DOI: 10.1080/1750743x.2024.2391733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Colorectal cancer (CRC) is a major contributor to global cancer incidence and mortality. Conventional treatments have limitations; hence, innovative approaches are imperative. Recent advancements in cancer research have led to the development of personalized targeted therapies and immunotherapies. Immunotherapy, in particular, T cell-based therapies, exhibited to be promising in enhancing cancer treatment outcomes. This review focuses on the landscape of engineered T cells as a potential option for the treatment of CRC. It highlights the approaches, challenges and current advancements in this field. As the understanding of molecular mechanisms increases, engineered T cells hold great potential in revolutionizing cancer treatment. To fully explore their safety efficacy in improving patient outcomes, further research and clinical trials are necessary.
Collapse
Affiliation(s)
| | - Ammar Akram Kamarudin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Gülçek E, Aydoğdu YF, Emreol Uİ, Bağrıaçık EÜ, Akyürek N. Investigation of pre and postoperative Th1/Th2 cytokine balance and novel cytokines in colorectal cancer patients. Clin Exp Med 2024; 24:211. [PMID: 39230623 PMCID: PMC11374814 DOI: 10.1007/s10238-024-01480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Colorectal cancer (CRC) is a major health problem worldwide and is usually detected in advanced stages, although it is highly treatable with early detection. The aim of this study was to examine the serum levels of various cytokines involved in the pathogenesis of CRC. The study included 29 patients and 30 healthy volunteers. Blood samples were collected twice from the patient group, before and after surgery, and these samples were evaluated for interleukin (IL) 4, 10, 23r, 37, 38, 40 and interferon (IFN) gamma levels. The results showed that IL-4 and IL-38 levels were significantly lower in the preoperative serum samples of the patient group compared to the control group (p < 0.001 and p = 0.01, respectively), while IL-4, IL-10, IL-38 and IL-40 levels increased significantly in the postoperative period (p = 0.004, p = 0.02, p = 0.03 and p = 0.004, respectively). These findings may contribute to the development of immunotherapy agents in the treatment of CRC. However, comprehensive studies on larger patient groups are needed to fully understand the role of cytokines in CRC pathogenesis.
Collapse
Affiliation(s)
- Emre Gülçek
- Department of General Surgery, Polatlı Duatepe State Hospital, Polatlı, Ankara, Turkey.
| | - Yunushan Furkan Aydoğdu
- Department of General Surgery, Gölbaşı Şehit Ahmet Özsoy State Hospital, Gölbaş, Ankara, Turkey
| | - Umut İhsan Emreol
- Department of General Surgery, Yenimahalle Training and Research Hospital, Yenimahalle, Ankara, Turkey
| | - Emin Ümit Bağrıaçık
- Department of Immunology, Faculty of Medicine, Gazi University, Yenimahalle, Ankara, Turkey
| | - Nusret Akyürek
- Department of General Surgery, Faculty of Medicine, Gazi University, Yenimahalle, Ankara, Turkey
| |
Collapse
|
37
|
Prodi E, Neri D, De Luca R. Tumor-Homing Antibody-Cytokine Fusions for Cancer Therapy. Onco Targets Ther 2024; 17:697-715. [PMID: 39224695 PMCID: PMC11368152 DOI: 10.2147/ott.s480787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Recombinant cytokine products have emerged as a promising avenue in cancer therapy due to their capacity to modulate and enhance the immune response against tumors. However, their clinical application is significantly hindered by systemic toxicities already at low doses, thus preventing escalation to therapeutically active regimens. One promising approach to overcoming these limitations is using antibody-cytokine fusion proteins (also called immunocytokines). These biopharmaceuticals leverage the targeting specificity of antibodies to deliver cytokines directly to the tumor microenvironment, thereby reducing systemic exposure and enhancing the therapeutic index. This review comprehensively examines the development and potential of antibody-cytokine fusion proteins in cancer therapy. It explores the molecular characteristics that influence the performance of these fusion proteins, and it highlights key findings from preclinical and clinical studies, illustrating the potential of immunocytokines to improve treatment outcomes in cancer patients. Recent advancements in the field, such as novel engineering strategies and combination strategies to enhance the efficacy and safety of immunocytokines, are also discussed. These innovations offer new opportunities to optimize this class of biotherapeutics, making them a more viable and effective option for cancer treatment. As the field continues to evolve, understanding the critical factors that influence the performance of immunocytokines will be essential for successfully translating these therapies into clinical practice.
Collapse
Affiliation(s)
- Eleonora Prodi
- Philochem AG, Otelfingen, 8112, Switzerland
- University of Trento, Italy, CiBIO (Department of Cellular, Computational and Integrative Biology), Povo, 38123, Trento
| | - Dario Neri
- Philogen Spa, Siena, 53100, Italy
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | |
Collapse
|
38
|
Xu Z, Ma W, Wang J, Chen H, Li H, Yin Z, Hao J, Chen K. Nuclear HMGB1 is critical for CD8 T cell IFN-γ production and anti-tumor immunity. Cell Rep 2024; 43:114591. [PMID: 39116204 DOI: 10.1016/j.celrep.2024.114591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
HMGB1 (high-mobility group box-1) has been extensively studied as a damage-associated molecular pattern, with secreted cytokine function. However, its regulation on T cells, especially the function in the nucleus, has not been elucidated. Here, we use conditional knockout (HMGB1-f/f; CD2-cre) mice and find that HMGB1 potentiates the proliferation and interferon gamma (IFN-γ) expression of CD8 T cells rather than CD4 T cells. Notably, nuclear, but not secreted, HMGB1 supports the expression of IFN-γ in CD8 T cells via directly regulating the activity of Eomes, the transcription factor for IFN-γ. Functional study shows that HMGB1 promotes the anti-tumor ability of CD8 T cells in vitro and in vivo. Finally, tumor environmental interleukin-7 promotes HMGB1 and IFN-γ production via fatty acid oxidation in CD8 T cells. Overall, we identify the role of nuclear HMGB1 in CD8 T cell differentiation and demonstrate that it plays an important role in the anti-tumor programs of CD8 T cells.
Collapse
Affiliation(s)
- Zhiguang Xu
- Department of Spine Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Weiying Ma
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Ji Wang
- Department of Spine Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Haofan Chen
- Department of Spine Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Zhinan Yin
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, P.R. China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China.
| | - Jianlei Hao
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, P.R. China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China.
| | - Kebing Chen
- Department of Spine Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
39
|
Constantinides M, Robert N, Multrier C, Coënon L, Campos-Mora M, Jacquard C, Gao F, Zemiti S, Presumey J, Cartron G, Moreaux J, Villalba M. FCGR3A F158V alleles frequency differs in multiple myeloma patients from healthy population. Oncoimmunology 2024; 13:2388306. [PMID: 39175948 PMCID: PMC11340758 DOI: 10.1080/2162402x.2024.2388306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/28/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
FCGR3A presents a single nucleotide polymorphism at location 158 (V/F), which affects its binding to the fragment crystallizable (Fc) of antibodies (Abs). FcγRIIIa-158 V allotype has the highest affinity and is associated with a better clinical response to IgG1 monoclonal Abs (mAb) treatment. We compared the allele frequency of FCGR3A-F158V polymorphism in cohorts of patients with B-cell lymphoproliferative disorders, including multiple myeloma (MM), monoclonal gammopathy of undetermined significance (MGUS), non-Hodgkin lymphoma (NHL), and B-cell chronic leukemia (B-CLL). FCGR3A-158F homozygous were enriched and tended to be in MM and MGUS patients, respectively; but neither in B-CLL nor in NHL patients. We identified a significantly lower concentration of CD8 T-cells and resting memory CD4 T-cells in MM patients bone marrow with the F/F genotype, associated with an increase in the macrophage percentage. In contrast, natural killer cells increased in V/V homozygous patients. This suggests a deregulation of the immune microenvironment in FCGR3A-F/F homozygous patients. However, we did not observe difference in response following treatment combining chemotherapy associated or not with daratumumab, an IgG1 mAb direct against CD38. Our findings suggest that FCGR3A F158V polymorphism can regulate the immune environment and affect the development of tumor plasma cells.
Collapse
Affiliation(s)
- Michaël Constantinides
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Caroline Multrier
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Loïs Coënon
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | | | - Carine Jacquard
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Fei Gao
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Sara Zemiti
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Jessy Presumey
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Guillaume Cartron
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Jérome Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
- IRMB, Univ Montpellier, INSERM, CNRS, CHRU de Montpellier, Montpellier, France
| |
Collapse
|
40
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
41
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
42
|
Bhanpattanakul S, Tharasanit T, Buranapraditkun S, Sailasuta A, Nakagawa T, Kaewamatawong T. Modulation of MHC expression by interferon-gamma and its influence on PBMC-mediated cytotoxicity in canine mast cell tumour cells. Sci Rep 2024; 14:17837. [PMID: 39090190 PMCID: PMC11294481 DOI: 10.1038/s41598-024-68789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Immunotherapy is a promising alternative treatment for canine mast cell tumour (MCT). However, evasion of immune recognition by downregulating major histocompatibility complex (MHC) molecules might decline treatment efficiency. Enhancing MHC expression through interferon-gamma (IFN-γ) is crucial for effective immunotherapy. In-house and reference canine MCT cell lines derived from different tissue origins were used. The impacts of IFN-γ treatment on cell viability, expression levels of MHC molecules, as well as cell apoptosis were evaluated through the MTT assay, RT-qPCR and flow cytometry. The results revealed that IFN-γ treatment significantly influenced the viability of canine MCT cell lines, with varying responses observed among different cell lines. Notably, IFN-γ treatment increased the expression of MHC I and MHC II, potentially enhancing immune recognition and MCT cell clearance. Flow cytometry analysis in PBMCs-mediated cytotoxicity assays showed no significant differences in overall apoptosis between IFN-γ treated and untreated canine MCT cell lines across various target-to-effector ratios. However, a trend towards higher percentages of late and total apoptotic cells was observed in the IFN-γ treated C18 and CMMC cell lines, but not in the VIMC and CoMS cell lines. These results indicate a variable response to IFN-γ treatment among different canine MCT cell lines. In summary, our study suggests IFN-γ's potential therapeutic role in enhancing immune recognition and clearance of MCT cells by upregulating MHC expression and possibly promoting apoptosis, despite variable responses across different cell lines. Further investigations are necessary to elucidate the underlying mechanisms and evaluate IFN-γ's efficacy in in vivo models.
Collapse
Affiliation(s)
- Sudchaya Bhanpattanakul
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Clinical Stem Cells and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Supranee Buranapraditkun
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Thai Red Cross Society, Bangkok, 10330, Thailand
- Center of Excellence in Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Achariya Sailasuta
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Theerayuth Kaewamatawong
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence for Companion Animal Cancer (CE-CAC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
43
|
Shen Y, Lian Y, Xiao L, Miu Y, Niu J, Cui Q. GPR124 promotes trophoblast proliferation, migration, and invasion and inhibits trophoblast cell apoptosis and inflammation via JNK and P38 MAPK pathways. J Cell Physiol 2024; 239:e31298. [PMID: 38764331 DOI: 10.1002/jcp.31298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
Early-onset preeclampsia, which occurrs before 34 weeks of gestation, is the most dangerous classification of preeclampsia, which is a pregnancy-specific disease that causes 1% of maternal deaths. G protein-coupled receptor 124 (GPR124) is significantly expressed at various stages of the human reproductive process, particularly during embryogenesis and angiogenesis. Our prior investigation demonstrated a notable decrease in GPR124 expression in the placentas of patients with early-onset preeclampsia compared to that in normal pregnancy placentas. However, there is a lack of extensive investigation into the molecular processes that contribute to the role of GPR124 in placenta development. This study aimed to examine the mechanisms by which GPR124 affects the occurrence of early-onset preeclampsia and its function in trophoblast. Proliferative, invasive, migratory, apoptotic, and inflammatory processes were identified in GPR124 knockdown, GPR124 overexpression, and normal HTR8/SVneo cells. The mechanism of GPR124-mediated cell function in GPR124 knockdown HTR8/SVneo cells was examined using inhibitors of the JNK or P38 MAPK pathway. Downregulation of GPR124 was found to significantly inhibit proliferation, invasion and migration, and promote apoptosis of HTR8/SVneo cells when compared to the control and GPR124 overexpression groups. This observation is consistent with the pathological characteristics of preeclampsia. In addition, GPR124 overexpression inhibits the secretion of pro-inflammatory cytokines interleukin (IL)-8 and interferon-γ (IFN-γ) while enhancing the secretion of the anti-inflammatory cytokine interleukin (IL)-4. Furthermore, GPR124 suppresses the activation of P-JNK and P-P38 within the JNK/P38 MAPK pathway. The invasion, apoptosis, and inflammation mediated by GPR124 were partially restored by suppressing the JNK and P38 MAPK pathways in HTR8/SVneo cells. GPR124 plays a crucial role in regulating trophoblast proliferation, invasion, migration, apoptosis, and inflammation via the JNK and P38 MAPK pathways. Furthermore, the effect of GPR124 on trophoblast suggests its involvement in the pathogenesis of early-onset preeclampsia.
Collapse
Affiliation(s)
- Yan Shen
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Cheeloo College of Medicine, Shandong University, shenzhen, Guangdong, China
- Department of Obstetrics, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Yan Lian
- Department of Obstetrics, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Li Xiao
- Department of Obstetrics, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Yaya Miu
- Department of Obstetrics, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Jianmin Niu
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Cheeloo College of Medicine, Shandong University, shenzhen, Guangdong, China
- Department of Obstetrics, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Qingyu Cui
- The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
44
|
Zou H, Liu C, Ruan Y, Fang L, Wu T, Han S, Dang T, Meng H, Zhang Y. Colorectal medullary carcinoma: a pathological subtype with intense immune response and potential to benefit from immune checkpoint inhibitors. Expert Rev Clin Immunol 2024; 20:997-1008. [PMID: 38459764 DOI: 10.1080/1744666x.2024.2328746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
INTRODUCTION Different pathological types of colorectal cancer have distinguished immune landscape, and the efficacy of immunotherapy will be completely different. Colorectal medullary carcinoma, accounting for 2.2-3.2%, is characterized by massive lymphocyte infiltration. However, the attention to the immune characteristics of colorectal medullary carcinoma is insufficient. AREA COVERED We searched the literature about colorectal medullary carcinoma on PubMed through November 2023to investigate the hallmarks of colorectal medullary carcinoma's immune landscape, compare medullary carcinoma originating from different organs and provide theoretical evidence for precise treatment, including applying immunotherapy and BRAF inhibitors. EXPERT OPINION Colorectal medullary carcinoma is a pathological subtype with intense immune response, with six immune characteristics and has the potential to benefit from immunotherapy. Mismatch repair deficiency, ARID1A missing and BRAF V600E mutation often occurs. IFN-γ pathway is activated and PD-L1 expression is increased. Abundant lymphocyte infiltration performs tumor killing function. In addition, BRAF mutation plays an important role in the occurrence and development, and we can consider the combination of BRAF inhibitors and immunotherapy in patients with BRAF mutant. The exploration of colorectal medullary carcinoma will arouse researchers' attention to the correlation between pathological subtypes and immune response, and promote the process of precise immunotherapy.
Collapse
Affiliation(s)
- Haoyi Zou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Fang
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University in Shandong, Qingdao, China
| | - Tong Wu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuling Han
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianjiao Dang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
45
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
46
|
Monti M, Ferrari G, Gazzurelli L, Bugatti M, Facchetti F, Vermi W. Plasmacytoid dendritic cells at the forefront of anti-cancer immunity: rewiring strategies for tumor microenvironment remodeling. J Exp Clin Cancer Res 2024; 43:196. [PMID: 39020402 PMCID: PMC11253500 DOI: 10.1186/s13046-024-03121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are multifaceted immune cells executing various innate immunological functions. Their first line of defence consists in type I interferons (I-IFN) production upon nucleic acids sensing through endosomal Toll-like receptor (TLR) 7- and 9-dependent signalling pathways. Type I IFNs are a class of proinflammatory cytokines that have context-dependent functions on cancer immunosurveillance and immunoediting. In the last few years, different studies have reported that pDCs are also able to sense cytosolic DNA through cGAS-STING (stimulator of interferon genes) pathway eliciting a potent I-IFN production independently of TLR7/9. Human pDCs are also endowed with direct effector functions via the upregulation of TRAIL and production of granzyme B, the latter modulated by cytokines abundant in cancer tissues. pDCs have been detected in a wide variety of human malignant neoplasms, including virus-associated cancers, recruited by chemotactic stimuli. Although the role of pDCs in cancer immune surveillance is still uncompletely understood, their spontaneous activation has been rarely documented; moreover, their presence in the tumor microenvironment (TME) has been associated with a tolerogenic phenotype induced by immunosuppressive cytokines or oncometabolites. Currently tested treatment options can lead to pDCs activation and disruption of the immunosuppressive TME, providing a relevant clinical benefit. On the contrary, the antibody-drug conjugates targeting BDCA-2 on immunosuppressive tumor-associated pDCs (TA-pDCs) could be proposed as novel immunomodulatory therapies to achieve disease control in patients with advance stage hematologic malignancies or solid tumors. This Review integrate recent evidence on the biology of pDCs and their pharmacological modulation, suggesting their relevant role at the forefront of cancer immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Luisa Gazzurelli
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
47
|
Zhang J, Du B, Wang Y, Cui Y, Wang S, Zhao Y, Li Y, Li X. The role of CD8 PET imaging in guiding cancer immunotherapy. Front Immunol 2024; 15:1428541. [PMID: 39072335 PMCID: PMC11272484 DOI: 10.3389/fimmu.2024.1428541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Currently, immunotherapy is being widely used for treating cancers. However, the significant heterogeneity in patient responses is a major challenge for its successful application. CD8-positive T cells (CD8+ T cells) play a critical role in immunotherapy. Both their infiltration and functional status in tumors contribute to treatment outcomes. Therefore, accurate monitoring of CD8+ T cells, a potential biomarker, may improve therapeutic strategy. Positron emission tomography (PET) is an optimal option which can provide molecular imaging with enhanced specificity. This review summarizes the mechanism of action of CD8+ T cells in immunotherapy, and highlights the recent advancements in PET-based tracers that can visualize CD8+ T cells and discusses their clinical applications to elucidate their potential role in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yaming Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuena Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
48
|
Teng HW, Wang TY, Lin CC, Tong ZJ, Cheng HW, Wang HT. Interferon Gamma Induces Higher Neutrophil Extracellular Traps Leading to Tumor-Killing Activity in Microsatellite Stable Colorectal Cancer. Mol Cancer Ther 2024; 23:1043-1056. [PMID: 38346939 DOI: 10.1158/1535-7163.mct-23-0744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 07/03/2024]
Abstract
Many patients with colorectal cancer do not respond to immune checkpoint blockade (ICB) therapy, highlighting the urgent need to understand tumor resistance mechanisms. Recently, the link between the IFNγ signaling pathway integrity and ICB resistance in the colorectal cancer tumor microenvironment has been revealed. The immunosuppressive microenvironment poses a significant challenge to antitumor immunity in colorectal cancer development. Tumor-associated neutrophils found in tumor tissues exhibit an immunosuppressive phenotype and are associated with colorectal cancer patient prognosis. Neutrophil extracellular traps (NET), DNA meshes containing cytotoxic enzymes released into the extracellular space, may be promising therapeutic targets in cancer. This study showed increased NETs in tumor tissues and peripheral neutrophils of high levels of microsatellite instability (MSI-H) patients with colorectal cancer compared with microsatellite stable (MSS) patients with colorectal cancer. IFNγ response genes were enriched in MSI-H patients with colorectal cancer compared with patients with MSS colorectal cancer. Co-culturing neutrophils with MSI-H colorectal cancer cell lines induced more NET formation and higher cellular apoptosis than MSS colorectal cancer cell lines. IFNγ treatment induced more NET formation and apoptosis in MSS colorectal cancer cell lines. Using subcutaneous or orthotopic CT-26 (MSS) tumor-bearing mice models, IFNγ reduced tumor size and enhanced PD-1 antibody-induced tumor-killing activity, accompanied by upregulated NETs and cellular apoptosis. These findings suggest that IFNγ could be a therapeutic strategy for MSS colorectal cancer.
Collapse
Affiliation(s)
- Hao-Wei Teng
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tean-Ya Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Chi Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Zhen-Jie Tong
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Wei Cheng
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Doctor degree program in Toxicology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
49
|
Fang T, Chen G. Non-viral vector-based genome editing for cancer immunotherapy. Biomater Sci 2024; 12:3068-3085. [PMID: 38716572 DOI: 10.1039/d4bm00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Despite the exciting promise of cancer immunotherapy in the clinic, immune checkpoint blockade therapy and T cell-based therapies are often associated with low response rates, intrinsic and adaptive immune resistance, and systemic side effects. CRISPR-Cas-based genome editing appears to be an effective strategy to overcome these unmet clinical needs. As a safer delivery platform for the CRISPR-Cas system, non-viral nanoformulations have been recently explored to target tumor cells and immune cells, aiming to improve cancer immunotherapy on a gene level. In this review, we summarized the efforts of non-viral vector-based CRISPR-Cas-mediated genome editing in tumor cells and immune cells for cancer immunotherapy. Their design rationale and specific applications were highlighted.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| |
Collapse
|
50
|
Chiba Y, Doi T, Obayashi K, Sumida K, Nagasaka S, Wang KY, Yamasaki K, Masago K, Matsushita H, Kuroda H, Yatera K, Endo M. Caspase-4 promotes metastasis and interferon-γ-induced pyroptosis in lung adenocarcinoma. Commun Biol 2024; 7:699. [PMID: 38849594 PMCID: PMC11161495 DOI: 10.1038/s42003-024-06402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Caspase-4 (CASP4) is a member of the inflammatory caspase subfamily and promotes inflammation. Here, we report that CASP4 in lung adenocarcinoma cells contributes to both tumor progression via angiogenesis and tumor hyperkinesis and tumor cell killing in response to high interferon (IFN)-γ levels. We observe that elevated CASP4 expression in the primary tumor is associated with cancer progression in patients with lung adenocarcinoma. Further, CASP4 knockout attenuates tumor angiogenesis and metastasis in subcutaneous tumor mouse models. CASP4 enhances the expression of genes associated with angiogenesis and cell migration in lung adenocarcinoma cell lines through nuclear factor kappa-light chain-enhancer of activated B cell signaling without stimulation by lipopolysaccharide or tumor necrosis factor. CASP4 is induced by endoplasmic reticulum stress or IFN-γ via signal transducer and activator of transcription 1. Most notably, lung adenocarcinoma cells with high CASP4 expression are more prone to IFN-γ-induced pyroptosis than those with low CASP4 expression. Our findings indicate that the CASP4 level in primary lung adenocarcinoma can predict metastasis and responsiveness to high-dose IFN-γ therapy due to cancer cell pyroptosis.
Collapse
Affiliation(s)
- Yosuke Chiba
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Tomomitsu Doi
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Kunie Obayashi
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Kazuhiro Sumida
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Shohei Nagasaka
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Kei Yamasaki
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Katsuhiro Masago
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiroaki Kuroda
- Department of Surgery, Teikyo University Mizonokuchi Hospital, Kawasaki, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan.
| |
Collapse
|