1
|
Xiao J, Meng Z, Lu Y, Nie Z, Liu Y, Yao Z, Zhang Y, Li L. Targeting microglia-Th17 feed-forward loop to suppress autoimmune neuroinflammation. J Neuroinflammation 2025; 22:118. [PMID: 40275354 PMCID: PMC12023695 DOI: 10.1186/s12974-025-03427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Microglia and Th17 cells are the major immunopathogenic cells in multiple sclerosis and its animal model of immune aspects, experimental autoimmune encephalomyelitis (EAE). While studies have highlighted the distinct roles of microglia and Th17 cells in EAE, it remains unclear whether microglia, as potential professional antigen-presenting cells, activate and stabilize the effector program of EAE-pathogenic Th17 cells in vivo; and if so, whether the Th17 could in turn reinforce the active state of the microglia. Our data demonstrate in an array of mouse models, including active/passive-EAE and transgenic mice, a microglia-Th17 feed-forward activation loop drives EAE disease progression through a mechanism dependent on both MHC-II, proinflammatory cytokines, inflammatory chemokines as well as STING→NF-κB pathway in the microglia and effector cytokines produced by the pathogenic Th17 cells. We also captured and identified the molecular properties of the feed-forward loop, which are two-cell entities of microglia-Th17, and proved them as the functional units of antigen presentation and bi-directional activation between the two cell types. Moreover, ACT001, an orphan drug to treat glioblastoma, disrupts this feed-forward activation loop by inhibiting the STING→NF-κB pathway in microglia, thereby alleviating EAE. These findings emphasize the importance of interactions and bi-directional activations between microglia and Th17 in the autoimmune neuroinflammation, and provide rationale for further investigation on ACT001 as therapeutic option for autoimmune inflammatory diseases driven by similar mechanisms.
Collapse
MESH Headings
- Animals
- Microglia/drug effects
- Microglia/immunology
- Microglia/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Mice
- Mice, Transgenic
- Mice, Inbred C57BL
- Neuroinflammatory Diseases/immunology
- Female
Collapse
Affiliation(s)
- Jun Xiao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Zihan Meng
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Yao Lu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Zongchang Nie
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Yujie Liu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Long Li
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
2
|
Schmidt C, Woo MS, Alimy AR, Baranowsky A, Krasemann S, Yorgan TA, Beil FT, Schinke T, Keller J, Friese MA, Amling M, Rolvien T. Biphasic bone loss in experimental autoimmune encephalomyelitis. J Bone Miner Res 2025; 40:522-534. [PMID: 39955714 DOI: 10.1093/jbmr/zjaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/30/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS) and a common cause of neurological disabilities in young adults. Although it is known that the peripheral immune landscape is altered in people with MS (pwMS), the impact on other organ systems than the CNS is frequently overlooked. In addition to neurological deficits, pwMS suffer from impaired bone health and increased fracture risk. However, the mechanisms underlying bone loss in pwMS are poorly understood. Here, we investigated the compartment-specific bone microarchitecture as well as cellular and molecular mechanisms of altered bone remodeling in pwMS and the corresponding mouse model of experimental autoimmune encephalomyelitis (EAE). We show that pwMS and EAE mice have reduced bone mineral density characterized by a combined loss of trabecular and cortical bone. Intriguingly, bone loss in EAE followed a biphasic dynamic defined by increased osteocyte apoptosis associated with decreased bone formation in acute EAE and increased bone resorption in the chronic phase, which could be explained by increased CXCL13/CXCR5 signaling. In conclusion, the identified stage-dependent mechanism for bone loss in EAE may help to develop improved strategies for osteoporosis treatment in pwMS.
Collapse
Affiliation(s)
- Constantin Schmidt
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Assil-Ramin Alimy
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur A Yorgan
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Timo Beil
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Lu Y, Man XY. Diversity and function of regulatory T cells in health and autoimmune diseases. J Autoimmun 2025; 151:103357. [PMID: 39805189 DOI: 10.1016/j.jaut.2025.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Regulatory T cell (Treg) play a pivotal role in immune regulation and maintaining host immune homeostasis. Treg heterogeneity, characterized by diverse gene expression profiles and functional states, is complex in both health and disease. Research reveals that Tregs are not a uniform population but exhibit diversity based on their origin, location, and functional status. This heterogeneity is crucial for understanding Treg roles in various pathological conditions. Dysfunctional Tregs are closely linked to the pathogenesis of autoimmune diseases, although the precise mechanisms remain unclear. The phenotypic and functional heterogeneity of Tregs is particularly significant in diseases such as systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, psoriasis and autoimmune liver diseases. This review explores Treg origins, classifications, and heterogeneity in these conditions, aiming to provide new perspectives and strategies for diagnosis and treatment. Understanding Treg heterogeneity and plasticity promises to reveal novel therapeutic targets and advance precision immunotherapy development.
Collapse
Affiliation(s)
- Yi Lu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
4
|
Taghipour-Mirakmahaleh R, Morin F, Zhang Y, Bourhoven L, Béland LC, Zhou Q, Jaworski J, Park A, Dominguez JM, Corbeil J, Flanagan EP, Marignier R, Larochelle C, Kerfoot S, Vallières L. Turncoat antibodies unmasked in a model of autoimmune demyelination: from biology to therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.623846. [PMID: 39677612 PMCID: PMC11642901 DOI: 10.1101/2024.12.03.623846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Autoantibodies contribute to many autoimmune diseases, yet there is no approved therapy to neutralize them selectively. A popular mouse model, experimental autoimmune encephalomyelitis (EAE), could serve to develop such a therapy, provided we can better understand the nature and importance of the autoantibodies involved. Here we report the discovery of autoantibody-secreting extrafollicular plasmablasts in EAE induced with specific myelin oligodendrocyte glycoprotein (MOG) antigens. Single-cell RNA sequencing reveals that these cells produce non-affinity-matured IgG antibodies. These include pathogenic antibodies competing for shared binding space on MOG's extracellular domain. Interestingly, the synthetic anti-MOG antibody 8-18C5 can prevent the binding of pathogenic antibodies from either EAE mice or people with MOG antibody disease (MOGAD). Moreover, an 8-18C5 variant carrying the NNAS mutation, which inactivates its effector functions, can reduce EAE severity and promote functional recovery. In brief, this study provides not only a comprehensive characterization of the humoral response in EAE models, but also a proof of concept for a novel therapy to antagonize pathogenic anti-MOG antibodies.
Collapse
Affiliation(s)
| | - Françoise Morin
- Neuroscience Unit, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Yu Zhang
- Neuroscience Unit, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Louis Bourhoven
- Neuroscience Unit, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Louis-Charles Béland
- Neuroscience Unit, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Qun Zhou
- Large Molecule Research, Sanofi, Cambridge, MA, USA
| | | | - Anna Park
- Large Molecule Research, Sanofi, Cambridge, MA, USA
| | - Juan Manuel Dominguez
- Infection and Immunity Unit, Big Data Research Center, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Jacques Corbeil
- Infection and Immunity Unit, Big Data Research Center, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| | - Eoin P. Flanagan
- Departments of Neurology and Laboratory Medicine and Pathology, and Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Romain Marignier
- Service de Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Catherine Larochelle
- Neuroimmunology Research Laboratory, University of Montreal Hospital Research Center, Montreal, Quebec, Canada
| | - Steven Kerfoot
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Luc Vallières
- Neuroscience Unit, University Hospital Center of Quebec – Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
5
|
Smith Z, Cheli VT, Angeliu CG, Wang C, Denaroso GE, Tumuluri SG, Corral J, Garbarini K, Paez PM. Ferritin loss in astrocytes reduces spinal cord oxidative stress and demyelination in the experimental autoimmune encephalomyelitis (EAE) model. Glia 2024; 72:2327-2343. [PMID: 39228110 PMCID: PMC11930306 DOI: 10.1002/glia.24616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Demyelinating diseases such as multiple sclerosis (MS) cause myelin degradation and oligodendrocyte death, resulting in the release of toxic iron and iron-induced oxidative stress. Astrocytes have a large capacity for iron transport and storage, however the role of astrocytic iron homeostasis in demyelinating disorders is not completely understood. Here we investigate whether astrocytic iron metabolism modulates neuroinflammation, oligodendrocyte survival, and oxidative stress following demyelination. To this aim, we conditionally knock out ferritin in astrocytes and induce experimental autoimmune encephalomyelitis (EAE), an autoimmune-mediated model of demyelination. Ferritin ablation in astrocytes reduced the severity of disease in both the acute and chronic phases. The day of onset, peak disease severity, and cumulative clinical score were all significantly reduced in ferritin KO animals. This corresponded to better performance on the rotarod and increased mobility in ferritin KO mice. Furthermore, the spinal cord of ferritin KO mice display decreased numbers of reactive astrocytes, activated microglia, and infiltrating lymphocytes. Correspondingly, the size of demyelinated lesions, iron accumulation, and oxidative stress were attenuated in the CNS of ferritin KO subjects, particularly in white matter regions of the spinal cord. Thus, deleting ferritin in astrocytes reduced neuroinflammation, oxidative stress, and myelin deterioration in EAE animals. Collectively, these findings suggest that iron storage in astrocytes is a potential therapeutic target to lessen CNS inflammation and myelin loss in autoimmune demyelinating diseases.
Collapse
Affiliation(s)
- Z Smith
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - V T Cheli
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - C G Angeliu
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - C Wang
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - G E Denaroso
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - S G Tumuluri
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - J Corral
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - K Garbarini
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - P M Paez
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, The State University of New York, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
6
|
Liu H, Cui D, Huangfu S, Wang X, Yu X, Yang H, Zheng X, Li Y, Bi J, Zhang L, Wang P. VCAM-1 + Mesenchymal Stem/Stromal Cells Reveal Preferable Efficacy Upon an Experimental Autoimmune Encephalomyelitis Mouse Model of Multiple Sclerosis Over the VCAM-1 - Counterpart. Neurochem Res 2024; 50:40. [PMID: 39613932 PMCID: PMC11607028 DOI: 10.1007/s11064-024-04267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/07/2024] [Accepted: 09/24/2024] [Indexed: 12/01/2024]
Abstract
Despite the considerable progress in mesenchymal stem/stromal cells (MSCs)-based novel intervention of multiple sclerosis (MS), yet the disease-modifying effect of VCAM-1- MSCs and novel VCAM-1+ counterpart is largely obscure. In this study, we took advantage of the EAE mouse model and VCAM-1+ human umbilical cord-derived MSCs (hUC-MSCs) for the evaluation of the therapeutic effect of systematic MSCs infusion. On the one hand, we compared the protective effect of VCAM-1- and VCAM-1+ hUC-MSCs against the clinical symptoms, demyelination, active glia cells and neuroinflammation in EAE mice by conducting multifaceted detections upon spinal cord and brain tissues. On the other hand, we conducted RNA-sequencing (RNA-SEQ) and multidimensional bioinformatics analyses for the evaluation of the transcriptomic features of spinal cord tissue in EAE mice after systematic hUC-MSCs infusion. Compared to those with VCAM-1- hUC-MSCs injection, VCAM-1+ mice showed further remission in clinical manifestations, and in particular, the inflammatory infiltration and active glial cells. Mice in all groups revealed conservations in overall gene expression profiling and somatic mutation spectrum. The differentially expressed genes (DEGs) between EAE mice and those with hUC-MSCs infusion were mainly involved in neuroinflammation and inflammatory response. Our findings indicated the feasibility of VCAM-1+ hUC-MSCs for multiple sclerosis treatment, which would supply new references for the development of novel VCAM-1+ MSCs-based cytotherapy in future.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Neurology, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China
- Department of Neurology, Weihai Municipal Hospital, Weihai, China
| | - Dongqing Cui
- Department of Neurology, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China
| | - Shasha Huangfu
- Department of Neurology, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China
| | - Xiaojun Wang
- Universal Biomedical Research Institute, Zibo, China
| | - Xiao Yu
- Department of Neurology, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China
| | - Hui Yang
- Department of Neurology, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China
| | - Xiaolei Zheng
- Department of Neurology, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China
| | - Yan Li
- Universal Biomedical Research Institute, Zibo, China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China
| | - Leisheng Zhang
- Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Blood Ecology and Biointelligence, Jinan Key Laboratory of Medical Cell Bioengineering, The Fourth People's Hospital of Jinan, The Teaching Hospital of Shandong First Medical University, 50 Shifan Road, Jinan, China.
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, 204 Donggang West Road, Lanzhou, China.
| | - Ping Wang
- Department of Neurology, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China.
| |
Collapse
|
7
|
Sadeghnejad A, Pazoki A, Yazdanpanah E, Esmaeili SA, Yousefi B, Sadighi-Moghaddam B, Baharlou R, Haghmorad D. Exploring the role of mesenchymal stem cells in modulating immune responses via Treg and Th2 cell activation: insights from mouse model of multiple sclerosis. APMIS 2024; 132:888-899. [PMID: 39030955 DOI: 10.1111/apm.13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
Multiple sclerosis is a demyelinating neurodegenerative disease, and its animal model, experimental autoimmune encephalomyelitis (EAE), exhibits immunological and clinical similarities. The study aimed to examine mechanisms underlying therapeutic effects of mesenchymal stem cell administration in EAE. C57BL/6 mice were separated into control and treatment groups (T1, T2, and T3); EAE was induced in all animals. Clinical examinations were conducted daily, and on 25th day, animals were sacrificed, and spinal cord was stained for histological analysis. Additionally, spleen cell proliferation assay, assessments of cytokine, and gene expression in both spinal cord and spleen cells were performed. The results indicated a significant reduction in clinical symptoms among treatment groups compared to control group. Histological analyses revealed decreased infiltration of lymphocytes into the spinal cord and reduced demyelinated areas in treatment groups compared to control group. Cytokine production of IL-10, TGF-β, and IL-4 were significantly enhanced and IFN-γ and TNF-α in treatment groups were decreased relative to control group. Also, gene expression of CTLA-4, PD-1, IL-27, and IL-33 indicated a significant increase in treatment groups. The administration of MSCs significantly improved clinical symptoms, attenuated inflammation, and reduced spinal cord demyelination in EAE, suggesting a potential protective effect on disease progression.
Collapse
Affiliation(s)
- Abdolvahid Sadeghnejad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Pazoki
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Yousefi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bijan Sadighi-Moghaddam
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Rasoul Baharlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
8
|
Bose A, Pahan K. Build muscles and protect myelin. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:175-182. [PMID: 39741558 PMCID: PMC11683878 DOI: 10.1515/nipt-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/02/2024] [Indexed: 01/03/2025]
Abstract
Multiple sclerosis (MS) is a chronic and debilitating autoimmune disease of the central nervous system (CNS) in which a CNS-driven immune response destroys myelin, leading to wide range of symptoms including numbness and tingling, vision problems, mobility impairment, etc. Oligodendrocytes are the myelinating cells in the CNS, which are generated from oligodendroglial progenitor cells (OPCs) via differentiation. However, for multiple reasons, OPCs fail to differentiate to oligodendrocytes in MS and as a result, stimulating the differentiation of OPCs to oligodendrocytes is considered beneficial for MS. The β-hydroxy β-methylbutyrate (HMB) is a widely-used muscle-building supplement in human and recently it has been shown that low-dose HMB is capable of stimulating the differentiation of cultured OPCs to oligodendrocytes for remyelination. Moreover, other causes of autoimmune demyelination are the decrease and/or suppression of Foxp3-expressing anti-autoimmune regulatory T cells (Tregs) and upregulation of autoimmune T-helper 1(Th1) and Th17 cells. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS in which the autoimmune demyelination is nicely visible. It has been reported that in EAE mice, oral HMB upregulates Tregs and decreases Th1 and Th17 responses, leading to remyelination in the CNS. Here, we analyze these newly-described features of HMB, highlighting the putative promyelinating nature of this supplement.
Collapse
Affiliation(s)
- Ahana Bose
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
9
|
Pérez-Carranza GA, Godínez-Rubí JM, Márquez-Rosales MG, Flores-Soto ME, Bitzer-Quintero OK, Ramírez-Anguiano AC, Ramírez-Jirano LJ. The Neuroprotective Effect of Erythropoietin on the Optic Nerve and Spinal Cord in Rats with Experimental Autoimmune Encephalomyelitis through the Activation of the Extracellular Signal-Regulated Kinase 1/2 Signaling Pathway. Int J Mol Sci 2024; 25:9476. [PMID: 39273423 PMCID: PMC11395492 DOI: 10.3390/ijms25179476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Experimental autoimmune encephalomyelitis is a demyelinating disease that causes paralysis in laboratory rats. This condition lacks treatment that reverses damage to the myelin sheaths of neuronal cells. Therefore, in this study, treatment with EPO as a neuroprotective effect was established to evaluate the ERK 1/2 signaling pathway and its participation in the EAE model. EPO was administered in 5000 U/Kg Sprague Dawley rats. U0126 was used as an inhibitor of the ERK 1/2 pathway to demonstrate the possible activation of this pathway in the model. Spinal cord and optic nerve tissues were evaluated using staining techniques such as H&E and the Luxol Fast Blue myelin-specific technique, as well as immunohistochemistry of the ERK 1/2 protein. The EPO-treated groups showed a decrease in cellular sampling in the spinal cord tissues but mainly in the optic nerve, as well as an increase in the expression of the ERK 1/2 protein in both tissues. The findings of this study suggest that EPO treatment reduces cellular death in EAE-induced rats by regulating the ERK pathway.
Collapse
Affiliation(s)
- Gloria Aleida Pérez-Carranza
- Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Guadalajara 44840, Jalisco, Mexico; (G.A.P.-C.); (A.C.R.-A.)
| | - Juliana Marisol Godínez-Rubí
- Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - María Guadalupe Márquez-Rosales
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (M.G.M.-R.); (M.E.F.-S.); (O.K.B.-Q.)
| | - Mario Eduardo Flores-Soto
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (M.G.M.-R.); (M.E.F.-S.); (O.K.B.-Q.)
| | - Oscar Kurt Bitzer-Quintero
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (M.G.M.-R.); (M.E.F.-S.); (O.K.B.-Q.)
| | - Ana Cristina Ramírez-Anguiano
- Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Guadalajara 44840, Jalisco, Mexico; (G.A.P.-C.); (A.C.R.-A.)
| | - Luis Javier Ramírez-Jirano
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (M.G.M.-R.); (M.E.F.-S.); (O.K.B.-Q.)
| |
Collapse
|
10
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
11
|
Stys PK, Tsutsui S, Gafson AR, ‘t Hart BA, Belachew S, Geurts JJG. New views on the complex interplay between degeneration and autoimmunity in multiple sclerosis. Front Cell Neurosci 2024; 18:1426231. [PMID: 39161786 PMCID: PMC11330826 DOI: 10.3389/fncel.2024.1426231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024] Open
Abstract
Multiple sclerosis (MS) is a frequently disabling neurological disorder characterized by symptoms, clinical signs and imaging abnormalities that typically fluctuate over time, affecting any level of the CNS. Prominent lymphocytic inflammation, many genetic susceptibility variants involving immune pathways, as well as potent responses of the neuroinflammatory component to immunomodulating drugs, have led to the natural conclusion that this disease is driven by a primary autoimmune process. In this Hypothesis and Theory article, we discuss emerging data that cast doubt on this assumption. After three decades of therapeutic experience, what has become clear is that potent immune modulators are highly effective at suppressing inflammatory relapses, yet exhibit very limited effects on the later progressive phase of MS. Moreover, neuropathological examination of MS tissue indicates that degeneration, CNS atrophy, and myelin loss are most prominent in the progressive stage, when lymphocytic inflammation paradoxically wanes. Finally, emerging clinical observations such as "progression independent of relapse activity" and "silent progression," now thought to take hold very early in the course, together argue that an underlying "cytodegenerative" process, likely targeting the myelinating unit, may in fact represent the most proximal step in a complex pathophysiological cascade exacerbated by an autoimmune inflammatory overlay. Parallels are drawn with more traditional neurodegenerative disorders, where a progressive proteopathy with prion-like propagation of toxic misfolded species is now known to play a key role. A potentially pivotal contribution of the Epstein-Barr virus and B cells in this process is also discussed.
Collapse
Affiliation(s)
- Peter K. Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shigeki Tsutsui
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Arie R. Gafson
- Biogen Digital Health, Biogen, Cambridge, MA, United States
| | - Bert A. ‘t Hart
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| | - Shibeshih Belachew
- TheraPanacea, Paris, France
- Indivi (DBA of Healios AG), Basel, Switzerland
| | - Jeroen J. G. Geurts
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| |
Collapse
|
12
|
Park H, Song J, Jeong HW, Grönloh MLB, Koh BI, Bovay E, Kim KP, Klotz L, Thistlethwaite PA, van Buul JD, Sorokin L, Adams RH. Apelin modulates inflammation and leukocyte recruitment in experimental autoimmune encephalomyelitis. Nat Commun 2024; 15:6282. [PMID: 39060233 PMCID: PMC11282314 DOI: 10.1038/s41467-024-50540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Demyelination due to autoreactive T cells and inflammation in the central nervous system are principal features of multiple sclerosis (MS), a chronic and highly disabling human disease affecting brain and spinal cord. Here, we show that treatment with apelin, a secreted peptide ligand for the G protein-coupled receptor APJ/Aplnr, is protective in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Apelin reduces immune cell entry into the brain, delays the onset and reduces the severity of EAE. Apelin affects the trafficking of leukocytes through the lung by modulating the expression of cell adhesion molecules that mediate leukocyte recruitment. In addition, apelin induces the internalization and desensitization of its receptor in endothelial cells (ECs). Accordingly, protection against EAE major outcomes of apelin treatment are phenocopied by loss of APJ/Aplnr function, achieved by EC-specific gene inactivation in mice or knockdown experiments in cultured primary endothelial cells. Our findings highlight the importance of the lung-brain axis in neuroinflammation and indicate that apelin targets the transendothelial migration of immune cells into the lung during acute inflammation.
Collapse
Affiliation(s)
- Hongryeol Park
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany.
| | - Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Max L B Grönloh
- Vascular Cell Biology Lab, Department of Medical Biochemistry, Amsterdam UMC, and Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Bong Ihn Koh
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Esther Bovay
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
| | - Kee-Pyo Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Luisa Klotz
- Department of Neurology, University of Münster, Münster, Germany
| | | | - Jaap D van Buul
- Vascular Cell Biology Lab, Department of Medical Biochemistry, Amsterdam UMC, and Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany.
| |
Collapse
|
13
|
Jana M, Prieto S, Gorai S, Dasarathy S, Kundu M, Pahan K. Muscle-building supplement β-hydroxy β-methylbutyrate stimulates the maturation of oligodendroglial progenitor cells to oligodendrocytes. J Neurochem 2024; 168:1340-1358. [PMID: 38419348 PMCID: PMC11260247 DOI: 10.1111/jnc.16084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Oligodendrocytes are the myelinating cells in the CNS and multiple sclerosis (MS) is a demyelinating disorder that is characterized by progressive loss of myelin. Although oligodendroglial progenitor cells (OPCs) should be differentiated into oligodendrocytes, for multiple reasons, OPCs fail to differentiate into oligodendrocytes in MS. Therefore, increasing the maturation of OPCs to oligodendrocytes may be of therapeutic benefit for MS. The β-hydroxy β-methylbutyrate (HMB) is a muscle-building supplement in humans and this study underlines the importance of HMB in stimulating the maturation of OPCs to oligodendrocytes. HMB treatment upregulated the expression of different maturation markers including PLP, MBP, and MOG in cultured OPCs. Double-label immunofluorescence followed by immunoblot analyses confirmed the upregulation of OPC maturation by HMB. While investigating mechanisms, we found that HMB increased the maturation of OPCs isolated from peroxisome proliferator-activated receptor β-/- (PPARβ-/-) mice, but not PPARα-/- mice. Similarly, GW6471 (an antagonist of PPARα), but not GSK0660 (an antagonist of PPARβ), inhibited HMB-induced maturation of OPCs. GW9662, a specific inhibitor of PPARγ, also could not inhibit HMB-mediated stimulation of OPC maturation. Furthermore, PPARα agonist GW7647, but neither PPARβ agonist GW0742 nor PPARγ agonist GW1929, alone increased the maturation of OPCs. Finally, HMB treatment of OPCs led to the recruitment of PPARα, but neither PPARβ nor PPARγ, to the PLP gene promoter. These results suggest that HMB stimulates the maturation of OPCs via PPARα and that HMB may have therapeutic prospects in remyelination.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Shelby Prieto
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sridevi Dasarathy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Madhuchhanda Kundu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
14
|
Muñoz-Jurado A, Escribano BM, Túnez I. Animal model of multiple sclerosis: Experimental autoimmune encephalomyelitis. Methods Cell Biol 2024; 188:35-60. [PMID: 38880527 DOI: 10.1016/bs.mcb.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Multiple sclerosis (MS) is a very complex and heterogeneous disease, with an unknown etiology and which, currently, remains incurable. For this reason, animal models are crucial to investigate this disease, which has increased in prevalence in recent years, affecting 2.8 million people worldwide, and is the leading cause of non-traumatic disability in young adults between the ages of 20-30years. Of all the models developed to replicate MS, experimental autoimmune encephalomyelitis (EAE) best reflects the autoimmune pathogenesis of MS. There are different methods to induce it, which will give rise to different types of EAE, which will vary in clinical presentation and severity. Of the EAE models, the most widespread and used is the one induced in rodents due to its advantages over other species. Likewise, EAE has become a widely used model in the development of therapies for the treatment of MS. Likewise, it is very useful to define the cellular and molecular mechanisms involved in the pathogenesis of MS and to establish therapeutic targets for this disease. For all these reasons, the EAE model plays a key role in improving the understanding of MS.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain.
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.
| |
Collapse
|
15
|
Raineri D, Abreu H, Vilardo B, Kustrimovic N, Venegoni C, Cappellano G, Chiocchetti A. Deep Flow Cytometry Unveils Distinct Immune Cell Subsets in Inducible T Cell Co-Stimulator Ligand (ICOSL)- and ICOS-Knockout Mice during Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2024; 25:2509. [PMID: 38473756 DOI: 10.3390/ijms25052509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The inducible T cell co-stimulator ligand (ICOSL), expressed by antigen presenting cells, binds to the inducible T cell co-stimulator (ICOS) on activated T cells. Improper function of the ICOS/ICOSL pathway has been implicated in several autoimmune diseases, including multiple sclerosis (MS). Previous studies showed that ICOS-knockout (KO) mice exhibit severe experimental autoimmune encephalomyelitis (EAE), the animal model of MS, but data on ICOSL deficiency are not available. In our study, we explored the impact of both ICOS and ICOSL deficiencies on MOG35-55 -induced EAE and its associated immune cell dynamics by employing ICOSL-KO and ICOS-KO mice with a C57BL/6J background. During EAE resolution, MOG-driven cytokine levels and the immunophenotype of splenocytes were evaluated by ELISA and multiparametric flow cytometry, respectively. We found that both KO mice exhibited an overlapping and more severe EAE compared to C57BL/6J mice, corroborated by a reduction in memory/regulatory T cell subsets and interleukin (IL-)17 levels. It is noteworthy that an unsupervised analysis showed that ICOSL deficiency modifies the immune response in an original way, by affecting T central and effector memory (TCM, TEM), long-lived CD4+ TEM cells, and macrophages, compared to ICOS-KO and C57BL/6J mice, suggesting a role for other binding partners to ICOSL in EAE development, which deserves further study.
Collapse
Affiliation(s)
- Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Beatrice Vilardo
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Natasa Kustrimovic
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Chiara Venegoni
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| |
Collapse
|
16
|
Lazarević M, Stanisavljević S, Nikolovski N, Dimitrijević M, Miljković Đ. Complete Freund's adjuvant as a confounding factor in multiple sclerosis research. Front Immunol 2024; 15:1353865. [PMID: 38426111 PMCID: PMC10902151 DOI: 10.3389/fimmu.2024.1353865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Complete Freund's adjuvant (CFA) is used as a standard adjuvant for the induction of experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model in multiple sclerosis studies. Still, CFA induces glial activation and neuroinflammation on its own and provokes pain. In addition, as CFA contains Mycobacteria, an immune response against bacterial antigens is induced in parallel to the response against central nervous system antigens. Thus, CFA can be considered as a confounding factor in multiple sclerosis-related studies performed on EAE. Here, we discuss the effects of CFA in EAE in detail and present EAE variants induced in experimental animals without the use of CFA. We put forward CFA-free EAE variants as valuable tools for studying multiple sclerosis pathogenesis and therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
Al-kuraishy HM, Jabir MS, Al-Gareeb AI, Saad HM, Batiha GES, Klionsky DJ. The beneficial role of autophagy in multiple sclerosis: Yes or No? Autophagy 2024; 20:259-274. [PMID: 37712858 PMCID: PMC10813579 DOI: 10.1080/15548627.2023.2259281] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic progressive demyelinating disease of the central nervous system (CNS) due to an increase of abnormal peripherally auto-reactive T lymphocytes which elicit autoimmunity. The main pathophysiology of MS is myelin sheath damage by immune cells and a defect in the generation of myelin by oligodendrocytes. Macroautophagy/autophagy is a critical degradation process that eliminates dysfunctional or superfluous cellular components. Autophagy has the property of a double-edged sword in MS in that it may have both beneficial and detrimental effects on MS neuropathology. Therefore, this review illustrates the protective and harmful effects of autophagy with regard to this disease. Autophagy prevents the progression of MS by reducing oxidative stress and inflammatory disorders. In contrast, over-activated autophagy is associated with the progression of MS neuropathology and in this case the use of autophagy inhibitors may alleviate the pathogenesis of MS. Furthermore, autophagy provokes the activation of different immune and supporting cells that play an intricate role in the pathogenesis of MS. Autophagy functions in the modulation of MS neuropathology by regulating cell proliferation related to demyelination and remyelination. Autophagy enhances remyelination by increasing the activity of oligodendrocytes, and astrocytes. However, autophagy induces demyelination by activating microglia and T cells. In conclusion, specific autophagic activators of oligodendrocytes, and astrocytes, and specific autophagic inhibitors of dendritic cells (DCs), microglia and T cells induce protective effects against the pathogenesis of MS.Abbreviations: ALS: amyotrophic lateral sclerosis; APCs: antigen-presenting cells; BBB: blood-brain barrier; CSF: cerebrospinal fluid; CNS: central nervous system; DCs: dendritic cells; EAE: experimental autoimmune encephalomyelitis; ER: endoplasmic reticulum; LAP: LC3-associated phagocytosis; MS: multiple sclerosis; NCA: non-canonical autophagy; OCBs: oligoclonal bands; PBMCs: peripheral blood mononuclear cells; PD: Parkinson disease; ROS: reactive oxygen species; UPR: unfolded protein response.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Iraq, Baghdad
| | - Majid S. Jabir
- Department of Applied Science, University of Technology, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Iraq, Baghdad
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El Beheira, Egypt
| | | |
Collapse
|
18
|
Sarkar SK, Willson AML, Jordan MA. The Plasticity of Immune Cell Response Complicates Dissecting the Underlying Pathology of Multiple Sclerosis. J Immunol Res 2024; 2024:5383099. [PMID: 38213874 PMCID: PMC10783990 DOI: 10.1155/2024/5383099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease characterized by the destruction of the myelin sheath of the neuronal axon in the central nervous system. Many risk factors, including environmental, epigenetic, genetic, and lifestyle factors, are responsible for the development of MS. It has long been thought that only adaptive immune cells, especially autoreactive T cells, are responsible for the pathophysiology; however, recent evidence has indicated that innate immune cells are also highly involved in disease initiation and progression. Here, we compile the available data regarding the role immune cells play in MS, drawn from both human and animal research. While T and B lymphocytes, chiefly enhance MS pathology, regulatory T cells (Tregs) may serve a more protective role, as can B cells, depending on context and location. Cells chiefly involved in innate immunity, including macrophages, microglia, astrocytes, dendritic cells, natural killer (NK) cells, eosinophils, and mast cells, play varied roles. In addition, there is evidence regarding the involvement of innate-like immune cells, such as γδ T cells, NKT cells, MAIT cells, and innate-like B cells as crucial contributors to MS pathophysiology. It is unclear which of these cell subsets are involved in the onset or progression of disease or in protective mechanisms due to their plastic nature, which can change their properties and functions depending on microenvironmental exposure and the response of neural networks in damage control. This highlights the need for a multipronged approach, combining stringently designed clinical data with carefully controlled in vitro and in vivo research findings, to identify the underlying mechanisms so that more effective therapeutics can be developed.
Collapse
Affiliation(s)
- Sujan Kumar Sarkar
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Annie M. L. Willson
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| | - Margaret A. Jordan
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
19
|
Liu Z, Sun M, Jin C, Sun X, Feng F, Niu X, Wang B, Zhang Y, Wang J. Naringenin confers protection against experimental autoimmune encephalomyelitis through modulating the gut-brain axis: A multiomics analysis. J Nutr Biochem 2023; 122:109448. [PMID: 37741298 DOI: 10.1016/j.jnutbio.2023.109448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system that involves the immune system attacking the protective covering of nerve fibers. This disease can be influenced by both environmental and genetic factors. Evidence has highlighted the critical role of the intestinal microbiota in MS and its animal model, experimental autoimmune encephalomyelitis (EAE). The composition of gut microflora is mainly determined by dietary components, which, in turn, modulate host homeostasis. A diet rich in naringenin at 0.5% can effectively mitigate the severity of EAE in mice. However, there is little direct data on the impact of naringenin at optimal doses on EAE development, as well as its intestinal microbiota and metabolites. Our study revealed that 2.0% naringenin resulted in the lowest clinical score and pathological changes in EAE mice, and altered the gene expression profiles associated with inflammation and immunity in spinal cord tissue. We then used untargeted metabolomics and 16S rRNA gene sequences to identify metabolites and intestinal microbiota, respectively. Naringenin supplementation enriched gut microbiota in EAE mice, including increasing the abundance of Paraprevotellaceae and Comamonadaceae, while decreasing the abundance of Deltaproteobacteria, RF39, and Desulfovibrionaceae. Furthermore, the changes in gut microbiota affected the production of metabolites in the feces and brain, suggesting a role in regulating the gut-brain axis. Finally, we conducted a fecal transplantation experiment to validate that gut microbiota partly mediates the effect of naringenin on EAE alleviation. In conclusion, naringenin has potential immunomodulatory effects that are influenced to some extent by the gut microbiome.
Collapse
Affiliation(s)
- Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Mengyang Sun
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiaoying Sun
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Fangyu Feng
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xinli Niu
- School of Life Science, Henan University, Kaifeng, China
| | - Bin Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Yijie Zhang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China.
| |
Collapse
|
20
|
Kim A, Xie F, Abed OA, Moon JJ. Vaccines for immune tolerance against autoimmune disease. Adv Drug Deliv Rev 2023; 203:115140. [PMID: 37980949 PMCID: PMC10757742 DOI: 10.1016/j.addr.2023.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The high prevalence and rising incidence of autoimmune diseases have become a prominent public health issue. Autoimmune disorders result from the immune system erroneously attacking the body's own healthy cells and tissues, causing persistent inflammation, tissue injury, and impaired organ function. Existing treatments primarily rely on broad immunosuppression, leaving patients vulnerable to infections and necessitating lifelong treatments. To address these unmet needs, an emerging frontier of vaccine development aims to restore immune equilibrium by inducing immune tolerance to autoantigens, offering a potential avenue for a cure rather than mere symptom management. We discuss this burgeoning field of vaccine development against inflammation and autoimmune diseases, with a focus on common autoimmune disorders, including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, inflammatory bowel disease, and systemic lupus erythematosus. Vaccine-based strategies provide a new pathway for the future of autoimmune disease therapeutics, heralding a new era in the battle against inflammation and autoimmunity.
Collapse
Affiliation(s)
- April Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omar A Abed
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109, USA.
| |
Collapse
|
21
|
Quintana JF, Sinton MC, Chandrasegaran P, Kumar Dubey L, Ogunsola J, Al Samman M, Haley M, McConnell G, Kuispond Swar NR, Ngoyi DM, Bending D, de Lecea L, MacLeod A, Mabbott NA. The murine meninges acquire lymphoid tissue properties and harbour autoreactive B cells during chronic Trypanosoma brucei infection. PLoS Biol 2023; 21:e3002389. [PMID: 37983289 PMCID: PMC10723712 DOI: 10.1371/journal.pbio.3002389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/15/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
The meningeal space is a critical brain structure providing immunosurveillance for the central nervous system (CNS), but the impact of infections on the meningeal immune landscape is far from being fully understood. The extracellular protozoan parasite Trypanosoma brucei, which causes human African trypanosomiasis (HAT) or sleeping sickness, accumulates in the meningeal spaces, ultimately inducing severe meningitis and resulting in death if left untreated. Thus, sleeping sickness represents an attractive model to study immunological dynamics in the meninges during infection. Here, by combining single-cell transcriptomics and mass cytometry by time-of-flight (CyTOF) with in vivo interventions, we found that chronic T. brucei infection triggers the development of ectopic lymphoid aggregates (ELAs) in the murine meninges. These infection-induced ELAs were defined by the presence of ER-TR7+ fibroblastic reticular cells, CD21/35+ follicular dendritic cells (FDCs), CXCR5+ PD1+ T follicular helper-like phenotype, GL7+ CD95+ GC-like B cells, and plasmablasts/plasma cells. Furthermore, the B cells found in the infected meninges produced high-affinity autoantibodies able to recognise mouse brain antigens, in a process dependent on LTβ signalling. A mid-throughput screening identified several host factors recognised by these autoantibodies, including myelin basic protein (MBP), coinciding with cortical demyelination and brain pathology. In humans, we identified the presence of autoreactive IgG antibodies in the cerebrospinal fluid (CSF) of second stage HAT patients that recognised human brain lysates and MBP, consistent with our findings in experimental infections. Lastly, we found that the pathological B cell responses we observed in the meninges required the presence of T. brucei in the CNS, as suramin treatment before the onset of the CNS stage prevented the accumulation of GL7+ CD95+ GC-like B cells and brain-specific autoantibody deposition. Taken together, our data provide evidence that the meningeal immune response during chronic T. brucei infection results in the acquisition of lymphoid tissue-like properties, broadening our understanding of meningeal immunity in the context of chronic infections. These findings have wider implications for understanding the mechanisms underlying the formation ELAs during chronic inflammation resulting in autoimmunity in mice and humans, as observed in other autoimmune neurodegenerative disorders, including neuropsychiatric lupus and multiple sclerosis.
Collapse
Affiliation(s)
- Juan F. Quintana
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
- Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | - Matthew C. Sinton
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Praveena Chandrasegaran
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | | | - John Ogunsola
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | - Moumen Al Samman
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | - Michael Haley
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
- Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Gail McConnell
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - Nono-Raymond Kuispond Swar
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Dieudonné Mumba Ngoyi
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Luis de Lecea
- Stanford University School of Medicine, Stanford, California, United States of America
| | - Annette MacLeod
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | - Neil A. Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Hong S, Weerasinghe-Mudiyanselage PDE, Kang S, Moon C, Shin T. Retinal transcriptome profiling identifies novel candidate genes associated with visual impairment in a mouse model of multiple sclerosis. Anim Cells Syst (Seoul) 2023; 27:219-233. [PMID: 37808551 PMCID: PMC10552570 DOI: 10.1080/19768354.2023.2264354] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Visual impairment is occasionally observed in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Although uveitis and optic neuritis have been reported in MS and EAE, the precise mechanisms underlying the pathogenesis of these visual impairments remain poorly understood. This study aims to identify differentially expressed genes (DEGs) in the retinas of mice with EAE to identify genes that may be implicated in EAE-induced visual impairment. Fourteen adult mice were injected with myelin oligodendrocyte glycoprotein35-55 to induce the EAE model. Transcriptomes of retinas with EAE were analyzed by RNA-sequencing. Gene expression analysis revealed 347 DEGs in the retinas of mice with EAE: 345 were upregulated, and 2 were downregulated (adjusted p-value < 0.05 and absolute log2 fold change > 1). Gene ontology (GO) analysis showed that the upregulated genes in the retinas of mice with EAE were primarily related to immune responses, responses to external biotic stimuli, defense responses, and leukocyte-mediated immunity in the GO biological process. The expression of six upregulated hub genes (c1qb, ctss, itgam, itgb2, syk, and tyrobp) from the STRING analysis and the two significantly downregulated DEGs (hapln1 and ndst4) were validated by reverse transcription-quantitative polymerase chain reaction. In addition, gene set enrichment analysis showed that the negatively enriched gene sets in EAE-affected retinas were associated with the neuronal system and phototransduction cascade. This study provides novel molecular evidence for visual impairments in EAE and indicates directions for further research to elucidate the mechanisms of these visual impairments in MS.
Collapse
Affiliation(s)
- Sungmoo Hong
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
23
|
Packer D, Fresenko EE, Harrington EP. Remyelination in animal models of multiple sclerosis: finding the elusive grail of regeneration. Front Mol Neurosci 2023; 16:1207007. [PMID: 37448959 PMCID: PMC10338073 DOI: 10.3389/fnmol.2023.1207007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Remyelination biology and the therapeutic potential of restoring myelin sheaths to prevent neurodegeneration and disability in multiple sclerosis (MS) has made considerable gains over the past decade with many regeneration strategies undergoing tested in MS clinical trials. Animal models used to investigate oligodendroglial responses and regeneration of myelin vary considerably in the mechanism of demyelination, involvement of inflammatory cells, neurodegeneration and capacity for remyelination. The investigation of remyelination in the context of aging and an inflammatory environment are of considerable interest for the potential translation to progressive multiple sclerosis. Here we review how remyelination is assessed in mouse models of demyelination, differences and advantages of these models, therapeutic strategies that have emerged and current pro-remyelination clinical trials.
Collapse
|
24
|
Sirbu CA, Georgescu R, Pleşa FC, Paunescu A, Marilena Ţânţu M, Nicolae AC, Caloianu I, Mitrica M. Cannabis and Cannabinoids in Multiple Sclerosis: From Experimental Models to Clinical Practice-A Review. Am J Ther 2023; 30:e220-e231. [PMID: 37278703 DOI: 10.1097/mjt.0000000000001568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND As far as 80% of people diagnosed with multiple sclerosis (MS) experience disabling symptoms in the course of the disease, such as spasticity and neuropathic pain. As first-line symptomatic therapy is associated with important adverse reactions, cannabinoids have become increasingly popular among patients with MS. This review intends to provide an overview of the evidence of the role of cannabinoids in treating symptoms related to MS and to encourage further research on this matter. AREAS OF UNCERTAINTY To date, the evidence supporting the role of cannabis and its derivatives in alleviating the MS-related symptoms comes only from studies on experimental models of demyelination. To the best of our knowledge, relatively few clinical trials inquired about the therapeutic effects of cannabinoids on patients with MS, with variable results. DATA SOURCES We conducted a literature search through PubMed and Google Scholar from the beginning until 2022. We included articles in English describing the latest findings regarding the endocannabinoid system, the pharmacology of cannabinoids, and their therapeutic purpose in MS. RESULTS Evidence from preclinical studies showed that cannabinoids can limit the demyelination process, promote remyelination, and have anti-inflammatory properties by reducing immune cell infiltration of the central nervous system in mice with experimental autoimmune encephalomyelitis. Moreover, it has been established that experimental autoimmune encephalomyelitis mice treated with cannabinoids experienced a significant reduction of symptoms and slowing of the disease progression. Given the complexity of human immune and nervous systems, cannabinoids did not have the anticipated effects on human subjects. However, data obtained from clinical trials showed some beneficial results of cannabinoids as a single or as add-on therapy in reducing the spasticity and pain related to MS. CONCLUSION Considering their various mechanisms of action and good tolerability, cannabinoids remain an interesting therapy for spasticity and chronic pain related to MS.
Collapse
Affiliation(s)
- Carmen-Adella Sirbu
- Department of Neurology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Ruxandra Georgescu
- Department of Neurology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Florentina Cristina Pleşa
- Department of Neurology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Alina Paunescu
- Department of Natural Sciences, University of Pitesti, Faculty of Sciences, Physical Education and Informatics, Piteşti, Romania
| | - Monica Marilena Ţânţu
- Department of Health Care and Physical Therapy, University of Pitesti, Faculty of Sciences, Physical Education and Informatics, Piteşti, Romania
| | - Alina Crenguţa Nicolae
- Biochemistry Department, "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Bucharest, Romania; and
| | - Ionut Caloianu
- Department of Neurology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Marian Mitrica
- Clinical Neurosciences Department, University of Medicine and Pharmacy "Carol Davila" Bucharest, Romania
| |
Collapse
|
25
|
Wu GF. The cerebrospinal fluid immune cell landscape in animal models of multiple sclerosis. Front Mol Neurosci 2023; 16:1143498. [PMID: 37122618 PMCID: PMC10130411 DOI: 10.3389/fnmol.2023.1143498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 05/02/2023] Open
Abstract
The fluid compartment surrounding the central nervous system (CNS) is a unique source of immune cells capable of reflecting the pathophysiology of neurologic diseases. While human clinical and experimental studies often employ cerebrospinal fluid (CSF) analysis, assessment of CSF in animal models of disease are wholly uncommon, particularly in examining the cellular component. Barriers to routine assessment of CSF in animal models of multiple sclerosis (MS) include limited sample volume, blood contamination, and lack of feasible longitudinal approaches. The few studies characterizing CSF immune cells in animal models of MS are largely outdated, but recent work employing transcriptomics have been used to explore new concepts in CNS inflammation and MS. Absence of extensive CSF data from rodent and other systems has curbed the overall impact of experimental models of MS. Future approaches, including examination of CSF myeloid subsets, single cell transcriptomics incorporating antigen receptor sequencing, and use of diverse animal models, may serve to overcome current limitations and provide critical insights into the pathogenesis of, and therapeutic developments for, MS.
Collapse
Affiliation(s)
- Gregory F. Wu
- Departments of Neurology and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Neurology Service, VA St. Louis Health Care System, St. Louis, MO, United States
| |
Collapse
|
26
|
Nouh RA, Kamal A, Abdelnaser A. Cannabinoids and Multiple Sclerosis: A Critical Analysis of Therapeutic Potentials and Safety Concerns. Pharmaceutics 2023; 15:1151. [PMID: 37111637 PMCID: PMC10146800 DOI: 10.3390/pharmaceutics15041151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
Multiple sclerosis (MS) is a complicated condition in which the immune system attacks myelinated axons in the central nervous system (CNS), destroying both myelin and axons to varying degrees. Several environmental, genetic, and epigenetic factors influence the risk of developing the disease and how well it responds to treatment. Cannabinoids have recently sparked renewed interest in their therapeutic applications, with growing evidence for their role in symptom control in MS. Cannabinoids exert their roles through the endogenous cannabinoid (ECB) system, with some reports shedding light on the molecular biology of this system and lending credence to some anecdotal medical claims. The double nature of cannabinoids, which cause both positive and negative effects, comes from their actions on the same receptor. Several mechanisms have been adopted to evade this effect. However, there are still numerous limitations to using cannabinoids to treat MS patients. In this review, we will explore and discuss the molecular effect of cannabinoids on the ECB system, the various factors that affect the response to cannabinoids in the body, including the role of gene polymorphism and its relation to dosage, assessing the positive over the adverse effects of cannabinoids in MS, and finally, exploring the possible functional mechanism of cannabinoids in MS and the current and future progress of cannabinoid therapeutics.
Collapse
Affiliation(s)
- Roua A. Nouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Kamal
- Biochemistry Department, Faculty of Science, Suez University, P.O. Box 43518, Suez 43533, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt
| |
Collapse
|
27
|
Parnow A, Hafedh M, Tsunoda I, Patel DI, Baker JS, Saeidi A, Bagchi S, Sengupta P, Dutta S, Łuszczki E, Stolarczyk A, Oleksy Ł, Al Kiyumi MH, Laher I, Zouhal H. Effectiveness of exercise interventions in animal models of multiple sclerosis. Front Med (Lausanne) 2023; 10:1143766. [PMID: 37089595 PMCID: PMC10116993 DOI: 10.3389/fmed.2023.1143766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Multiple sclerosis (MS) is associated with an impaired immune system that severely affects the spinal cord and brain, and which is marked by progressive inflammatory demyelination. Patients with MS may benefit from exercise training as a suggested course of treatment. The most commonly used animal models of studies on MS are experimental autoimmune/allergic encephalomyelitis (EAE) models. The present review intends to concisely discuss the interventions using EAE models to understand the effectiveness of exercise as treatment for MS patients and thereby provide clear perspective for future research and MS management. For the present literature review, relevant published articles on EAE animal models that reported the impacts of exercise on MS, were extracted from various databases. Existing literature support the concept that an exercise regimen can reduce the severity of some of the clinical manifestations of EAE, including neurological signs, motor function, pain, and cognitive deficits. Further results demonstrate the mechanisms of EAE suppression with information relating to the immune system, demyelination, regeneration, and exercise in EAE. The role for neurotrophic factors has also been investigated. Analyzing the existing reports, this literature review infers that EAE is a suitable animal model that can help researchers develop further understanding and treatments for MS. Besides, findings from previous animal studies supports the contention that exercise assists in ameliorating MS progression.
Collapse
Affiliation(s)
- Abdolhossein Parnow
- Department of Sport Biological Sciences, Physical Education and Sports Sciences Faculty, Razi University, Kermanshah, Iran
| | - Muthanna Hafedh
- Department of Exercise Physiology, General Directorate of Education Basrah, Basrah, Iraq
- Department of Sports Activities, College of Adm&Eco/Qurna, University of Basrah, Basrah, Iraq
| | - Ikuo Tsunoda
- Department of Microbiology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Darpan I. Patel
- School of Nursing, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Julien S. Baker
- Department of Sport, Physical Education and Health, Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Iran
| | - Sovan Bagchi
- Department of Biomedical Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Pallav Sengupta
- Department of Biomedical Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Sulagna Dutta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Chennai, India
| | - Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszów University, Rzeszów, Poland
| | - Artur Stolarczyk
- Department of Orthopedics and Rehabilitation, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Oleksy
- Department of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Maisa Hamed Al Kiyumi
- Department of Family Medicine and Public Health, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| | - Hassane Zouhal
- University of Rennes, M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, Rennes, France
- Institute International des Sciences du Sport (2I2S), Irodouër, France
| |
Collapse
|
28
|
Di Mauro G, Amoriello R, Lozano N, Carnasciali A, Guasti D, Becucci M, Cellot G, Kostarelos K, Ballerini C, Ballerini L. Graphene Oxide Nanosheets Reduce Astrocyte Reactivity to Inflammation and Ameliorate Experimental Autoimmune Encephalomyelitis. ACS NANO 2023; 17:1965-1978. [PMID: 36692902 PMCID: PMC9933621 DOI: 10.1021/acsnano.2c06609] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In neuroinflammation, astrocytes play multifaceted roles that regulate the neuronal environment. Astrocytes sense and respond to pro-inflammatory cytokines (CKs) and, by a repertoire of intracellular Ca2+ signaling, contribute to disease progression. Therapeutic approaches wish to reduce the overactivation in Ca2+ signaling in inflammatory-reactive astrocytes to restore dysregulated cellular changes. Cell-targeting therapeutics might take advantage by the use of nanomaterial-multifunctional platforms such as graphene oxide (GO). GO biomedical applications in the nervous system involve therapeutic delivery and sensing, and GO flakes were shown to enable interfacing of neuronal and glial membrane dynamics. We exploit organotypic spinal cord cultures and optical imaging to explore Ca2+ changes in astrocytes, and we report, when spinal tissue is exposed to CKs, neuroinflammatory-associated modulation of resident glia. We show the efficacy of GO to revert these dynamic changes in astrocytic reactivity to CKs, and we translate this potential in an animal model of immune-mediated neuroinflammatory disease.
Collapse
Affiliation(s)
- Giuseppe Di Mauro
- International
School for Advanced Studies (SISSA/ISAS), 34136Trieste, Italy
| | - Roberta Amoriello
- International
School for Advanced Studies (SISSA/ISAS), 34136Trieste, Italy
- Dipartimento
di Medicina Sperimentale e Clinica, University
of Florence, 50139Florence, Italy
| | - Neus Lozano
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), 08193Barcelona, Spain
| | - Alberto Carnasciali
- Dipartimento
di Medicina Sperimentale e Clinica, University
of Florence, 50139Florence, Italy
| | - Daniele Guasti
- Dipartimento
di Medicina Sperimentale e Clinica, University
of Florence, 50139Florence, Italy
| | - Maurizio Becucci
- Dipartimento
di Chimica “Ugo Schiff”, DICUS, University of Florence, 50139Florence, Italy
| | - Giada Cellot
- International
School for Advanced Studies (SISSA/ISAS), 34136Trieste, Italy
| | - Kostas Kostarelos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), 08193Barcelona, Spain
- Nanomedicine
Lab, and Faculty of Biology, Medicine & Health, The National Graphene
Institute, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Clara Ballerini
- Dipartimento
di Medicina Sperimentale e Clinica, University
of Florence, 50139Florence, Italy
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA/ISAS), 34136Trieste, Italy
| |
Collapse
|
29
|
Li H, Zeng Y, Luo S, Li Z, Huang F, Liu Z. GPX4 aggravates experimental autoimmune encephalomyelitis by inhibiting the functions of CD4 + T cells. Biochem Biophys Res Commun 2023; 642:57-65. [PMID: 36565564 DOI: 10.1016/j.bbrc.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a common autoimmunity disease of the central nervous system (CNS) that mostly happens in young adults. The chronic clinical features of MS include inflammatory demyelination, infiltration of immune cells, and secretion of inflammatory cytokines, which have been proved to be associated with CD4+ T cells. Ferroptosis is a newly discovered programmed cell death mediated by the massive lipid peroxidation and more sensitive to CD4+ T cells. However, the effect of ferroptosis of CD4+ T cells on the occurrence and progression of MS retains unclear. Here, the experimental autoimmune encephalomyelitis (EAE) model was used to investigate the role of GPX4, a leading inhibitor of ferroptosis, which plays in the function of CD4+ T cells. Our results showed that GPX4 was highly expressed in CD4+ T cells of MS patients based on existing databases. Strikingly, conditional knockout of GPX4 in CD4cre mice (cKO mice) significantly alleviated the average symptom scores and immunopathology of EAE. The infiltration of immune cells, including CD4+ T and CD8+ T cells, and the generation of GM-CSF, TNF-α, and IL-17A, were remarkably reduced in the CNS from cKO mice compared with WT mice. These findings further revealed the vital role of GPX4 in the expansion and function of CD4+ T cells. Moreover, GPX4-deficient CD4+ T cells were susceptible to ferroptosis in EAE model. Overall, this study provided novel insights into therapeutic strategies targeting GPX4 in CD4+ T cells for inhibiting CNS inflammation and treating MS.
Collapse
Affiliation(s)
- Haishan Li
- Faculty of Medical Science, Jinan University, Guangzhou, 510632, China
| | - Yingying Zeng
- Faculty of Medical Science, Jinan University, Guangzhou, 510632, China
| | - Shunchang Luo
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou, 510655, China
| | - Zhenhua Li
- Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, China
| | - Fang Huang
- Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, China.
| | - Zonghua Liu
- Faculty of Medical Science, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
30
|
Schwarz K, Schmitz F. Synapse Dysfunctions in Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24021639. [PMID: 36675155 PMCID: PMC9862173 DOI: 10.3390/ijms24021639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS.
Collapse
|
31
|
McCombe PA, Greer JM. Effects of biological sex and pregnancy in experimental autoimmune encephalomyelitis: It's complicated. Front Immunol 2022; 13:1059833. [PMID: 36518769 PMCID: PMC9742606 DOI: 10.3389/fimmu.2022.1059833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) can be induced in many animal strains by inoculation with central nervous system antigens and adjuvant or by the passive transfer of lymphocytes reactive with these antigens and is widely used as an animal model for multiple sclerosis (MS). There are reports that female sex and pregnancy affect EAE. Here we review the effects of biological sex and the effects of pregnancy on the clinical features (including disease susceptibility) and pathophysiology of EAE. We also review reports of the possible mechanisms underlying these differences. These include sex-related differences in the immune system and in the central nervous system, the effects of hormones and the sex chromosomes and molecules unique to pregnancy. We also review sex differences in the response to factors that can modify the course of EAE. Our conclusion is that the effects of biological sex in EAE vary amongst animal models and should not be widely extrapolated. In EAE, it is therefore essential that studies looking at the effects of biological sex or pregnancy give full information about the model that is used (i.e. animal strain, sex, the inducing antigen, timing of EAE induction in relation to pregnancy, etc.). In addition, it would be preferable if more than one EAE model were used, to show if any observed effects are generalizable. This is clearly a field that requires further work. However, understanding of the mechanisms of sex differences could lead to greater understanding of EAE, and suggest possible therapies for MS.
Collapse
Affiliation(s)
| | - Judith M. Greer
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
32
|
Yamakawa M, Nakane S, Ihara E, Tawara N, Ikeda H, Igarashi Y, Komohara Y, Takamatsu K, Ikeda T, Tomita Y, Murai S, Ando Y, Mukaino A, Ogawa Y, Ueda M. A novel murine model of autoimmune dysautonomia by α3 nicotinic acetylcholine receptor immunization. Front Neurosci 2022; 16:1006923. [PMID: 36507326 PMCID: PMC9727251 DOI: 10.3389/fnins.2022.1006923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
We aimed to establish a novel murine model of autoimmune autonomic ganglionopathy (AAG), which represents autoimmune dysautonomia, associated with MHC class II to understand its pathomechanism and the pathogenicity of nicotinic acetylcholine receptor (nAChR) antibodies. The amino acid sequence of the mouse nAChRα3 protein was analyzed using an epitope prediction tool to predict the possible MHC class II binding mouse nAChRα3 peptides. We focused on two nAChRα3 peptides in the extracellular region, and experimental AAG (EAAG) was induced by immunization of C57BL/6 mice with these two different peptides. EAAG mice were examined both physiologically and histologically. Mice with EAAG generated nAChRα3 antibodies and exhibited autonomic dysfunction, including reduced heart rate, excessive fluctuations in systolic blood pressure, and intestinal transit slowing. Additionally, we observed skin lesions, such as alopecia and skin ulcers, in immunized mice. Neuronal cell density in the sympathetic cervical ganglia in immunized mice was significantly lower than that in control mice at the light microscopic level. We interpreted that active immunization of mice with nAChRα3 peptides causes autonomic dysfunction similar to human AAG induced by an antibody-mediated mechanism. We suggested a mechanism by which different HLA class II molecules might preferentially affect the nAChR-specific immune response, thus controlling diversification of the autoantibody response. Our novel murine model mimics AAG in humans and provides a useful tool to investigate its pathomechanism.
Collapse
Affiliation(s)
- Makoto Yamakawa
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shunya Nakane
- Department of Molecular Neurology and Therapeutics, Kumamoto University Hospital, Kumamoto, Japan,*Correspondence: Shunya Nakane,
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nozomu Tawara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroko Ikeda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoko Igarashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Koutaro Takamatsu
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tokunori Ikeda
- Department of Medical Information Sciences and Administration Planning (Biostatistics), Kumamoto University Hospital, Kumamoto, Japan,Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Yusuke Tomita
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shoichi Murai
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akihiro Mukaino
- Department of Molecular Neurology and Therapeutics, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
33
|
Haghmorad D, Yousefi B, Eslami M, Rashidy-Pour A, Tarahomi M, Tavaf MJ, Soltanmohammadi A, Zargarani S, Kamyshnyi A, Oksenych V. Oral Administration of Myelin Oligodendrocyte Glycoprotein Attenuates Experimental Autoimmune Encephalomyelitis through Induction of Th2/Treg Cells and Suppression of Th1/Th17 Immune Responses. Curr Issues Mol Biol 2022; 44:5728-5740. [PMID: 36421672 PMCID: PMC9688797 DOI: 10.3390/cimb44110388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 10/28/2024] Open
Abstract
Multiple Sclerosis (MS) is a demyelinating autoimmune disorder of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) has been widely used to determine the pathogenesis of the disease and evaluate new treatment strategies for MS. Therefore, we investigated the efficacy of oral administration of a Myelin Oligodendrocyte Glycoprotein (MOG) in the treatment of EAE. Female C57BL/6 mice were utilized in three groups (Control group, received PBS orally; prevention group, oral administration of MOG35-55 two weeks before EAE induction; treatment group, oral administration of MOG35-55 after EAE induction). MOG administration, both as prevention and treatment, significantly controlled clinical score, weight loss, CNS inflammation, and demyelination, mainly through the modulation of T cell proliferation, and reduction in pro-inflammatory cytokines and transcription factors, including TNF-α, IFN-γ, IL-17, T-bet, and ROR-γt. MOG administration, both as prevention and treatment, also induced anti-inflammatory cytokines and transcription factors, including IL-4, TGF-β, GATA-3, and Foxp3. The results showed that oral administration of MOG, both as prevention and treatment, could efficiently control EAE development. Immunomodulatory mechanisms include the induction of Th2 and Treg cells and the suppression of pro-inflammatory Th1 and Th17 cells.
Collapse
Affiliation(s)
- Dariush Haghmorad
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35131, Iran
- Department of Immunology, Semnan University of Medical Sciences, Semnan 35131, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35131, Iran
- Department of Immunology, Semnan University of Medical Sciences, Semnan 35131, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan 35131, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan 35131, Iran
| | - Mahdieh Tarahomi
- Department of Immunology, Semnan University of Medical Sciences, Semnan 35131, Iran
| | - Maryam Jadid Tavaf
- Department of Immunology, Semnan University of Medical Sciences, Semnan 35131, Iran
| | | | - Simin Zargarani
- Department of Immunology, Semnan University of Medical Sciences, Semnan 35131, Iran
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| |
Collapse
|
34
|
Parham KA, Tan XXS, Morelli DM, Chowdhury L, Craig HC, Kerfoot SM. Pre–Germinal Center Interactions with T Cells Are Natural Checkpoints to Limit Autoimmune B Cell Responses. THE JOURNAL OF IMMUNOLOGY 2022; 209:1703-1712. [DOI: 10.4049/jimmunol.2200534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022]
|
35
|
Yang L, Feng S, Wu C, Yang L. The Lung Microbiome: A Potential Target in Regulating Autoimmune Inflammation of the Brain. Neurosci Bull 2022; 38:1435-1437. [PMID: 35821336 PMCID: PMC9672157 DOI: 10.1007/s12264-022-00912-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/17/2022] [Indexed: 10/17/2022] Open
Affiliation(s)
- Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA.
| |
Collapse
|
36
|
Saez-Calveras N, Brewster AL, Stuve O. The validity of animal models to explore the pathogenic role of the complement system in multiple sclerosis: A review. Front Mol Neurosci 2022; 15:1017484. [PMID: 36311030 PMCID: PMC9606595 DOI: 10.3389/fnmol.2022.1017484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Animal models of multiple sclerosis (MS) have been extensively used to characterize the disease mechanisms in MS, as well as to identify potential pharmacologic targets for this condition. In recent years, the immune complement system has gained increased attention as an important effector in the pathogenesis of MS. Evidence from histological, serum, and CSF studies of patients supports an involvement of complement in both relapsing-remitting and progressive MS. In this review, we discuss the history and advances made on the use of MS animal models to profile the effects of the complement system in this condition. The first studies that explored the complement system in the context of MS used cobra venom factor (CVF) as a complement depleting agent in experimental autoimmune encephalomyelitis (EAE) Lewis rats. Since then, multiple mice and rat models of MS have revealed a role of C3 and the alternative complement cascade in the opsonization and phagocytosis of myelin by microglia and myeloid cells. Studies using viral vectors, genetic knockouts and pharmacologic complement inhibitors have also shown an effect of complement in synaptic loss. Antibody-mediated EAE models have revealed an involvement of the C1 complex and the classical complement as an effector of the humoral response in this disease. C1q itself may also be involved in modulating microglia activation and oligodendrocyte differentiation in these animals. In addition, animal and in vitro models have revealed that multiple complement factors may act as modulators of both the innate and adaptive immune responses. Finally, evidence gathered from mice models suggests that the membrane attack complex (MAC) may even exert protective roles in the chronic stages of EAE. Overall, this review summarizes the importance of MS animal models to better characterize the role of the complement system and guide future therapeutic approaches in this condition.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, Parkland Hospital, Dallas, TX, United States
| | - Amy L. Brewster
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, VA North Texas Health Care System, Dallas, TX, United States
- Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Olaf Stuve,
| |
Collapse
|
37
|
Metabolic regulation and function of T helper cells in neuroinflammation. Semin Immunopathol 2022; 44:581-598. [PMID: 36068310 DOI: 10.1007/s00281-022-00959-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022]
Abstract
Neuroinflammatory conditions such as multiple sclerosis (MS) are initiated by pathogenic immune cells invading the central nervous system (CNS). Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in MS and in other neuroinflammatory autoimmune diseases including animal models that have been developed for MS. T helper cells are classically categorized into different subsets, but heterogeneity exists within these subsets. Untangling the more complex regulation of these subsets will clarify their functional roles in neuroinflammation. Here, we will discuss how differentiation, immune checkpoint pathways, transcriptional regulation and metabolic factors determine the function of CD4+ T cell subsets in CNS autoimmunity. T cells rely on metabolic reprogramming for their activation and proliferation to meet bioenergetic demands. This includes changes in glycolysis, glutamine metabolism and polyamine metabolism. Importantly, these pathways were recently also implicated in the fine tuning of T cell fate decisions during neuroinflammation. A particular focus of this review will be on the Th17/Treg balance and intra-subset functional states that can either promote or dampen autoimmune responses in the CNS and thus affect disease outcome. An increased understanding of factors that could tip CD4+ T cell subsets and populations towards an anti-inflammatory phenotype will be critical to better understand neuroinflammatory diseases and pave the way for novel treatment paradigms.
Collapse
|
38
|
Ciapă MA, Șalaru DL, Stătescu C, Sascău RA, Bogdănici CM. Optic Neuritis in Multiple Sclerosis—A Review of Molecular Mechanisms Involved in the Degenerative Process. Curr Issues Mol Biol 2022; 44:3959-3979. [PMID: 36135184 PMCID: PMC9497878 DOI: 10.3390/cimb44090272] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Multiple sclerosis is a central nervous system inflammatory demyelinating disease with a wide range of clinical symptoms, ocular involvement being frequently marked by the presence of optic neuritis (ON). The emergence and progression of ON in multiple sclerosis is based on various pathophysiological mechanisms, disease progression being secondary to inflammation, demyelination, or axonal degeneration. Early identification of changes associated with axonal degeneration or further investigation of the molecular processes underlying remyelination are current concerns of researchers in the field in view of the associated therapeutic potential. This article aims to review and summarize the scientific literature related to the main molecular mechanisms involved in defining ON as well as to analyze existing data in the literature on remyelination strategies in ON and their impact on long-term prognosis.
Collapse
Affiliation(s)
| | - Delia Lidia Șalaru
- Cardiology Clinic, Institute of Cardiovascular Diseases, 700503 Iași, Romania
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
- Correspondence:
| | - Cristian Stătescu
- Cardiology Clinic, Institute of Cardiovascular Diseases, 700503 Iași, Romania
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
| | - Radu Andy Sascău
- Cardiology Clinic, Institute of Cardiovascular Diseases, 700503 Iași, Romania
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
| | - Camelia Margareta Bogdănici
- Department of Surgical Specialties (II), University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
- Ophthalmology Clinic, Saint Spiridon Hospital, Iași 700111, Romania
| |
Collapse
|
39
|
Bierhansl L, Hartung HP, Aktas O, Ruck T, Roden M, Meuth SG. Thinking outside the box: non-canonical targets in multiple sclerosis. Nat Rev Drug Discov 2022; 21:578-600. [PMID: 35668103 PMCID: PMC9169033 DOI: 10.1038/s41573-022-00477-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system that causes demyelination, axonal degeneration and astrogliosis, resulting in progressive neurological disability. Fuelled by an evolving understanding of MS immunopathogenesis, the range of available immunotherapies for clinical use has expanded over the past two decades. However, MS remains an incurable disease and even targeted immunotherapies often fail to control insidious disease progression, indicating the need for new and exceptional therapeutic options beyond the established immunological landscape. In this Review, we highlight such non-canonical targets in preclinical MS research with a focus on five highly promising areas: oligodendrocytes; the blood-brain barrier; metabolites and cellular metabolism; the coagulation system; and tolerance induction. Recent findings in these areas may guide the field towards novel targets for future therapeutic approaches in MS.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center of Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
40
|
Gorter RP, Baron W. Recent insights into astrocytes as therapeutic targets for demyelinating diseases. Curr Opin Pharmacol 2022; 65:102261. [PMID: 35809402 DOI: 10.1016/j.coph.2022.102261] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes are a group of glial cells that exhibit great morphological, transcriptional and functional diversity both in the resting brain and in response to injury. In recent years, astrocytes have attracted increasing interest as therapeutic targets for demyelinating diseases. Following a demyelinating insult, astrocytes can adopt a wide spectrum of reactive states, which can exacerbate damage, but may also facilitate oligodendrocyte progenitor cell differentiation and myelin regeneration. In this review, we provide an overview of recent literature on astrocyte-oligodendrocyte interactions in the context of demyelinating diseases. We highlight novel key roles for astrocytes both during demyelination and remyelination with a focus on potential therapeutic strategies to favor a pro-regenerative astrocyte response in (progressive) multiple sclerosis.
Collapse
Affiliation(s)
- Rianne Petra Gorter
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
41
|
Fraga-Silva TFDC, Munhoz-Alves N, Mimura LAN, de Oliveira LRC, Figueiredo-Godoi LMA, Garcia MT, Oliveira ES, Ishikawa LLW, Zorzella-Pezavento SFG, Bonato VLD, Junqueira JC, Bagagli E, Sartori A. Systemic Infection by Non-albicans Candida Species Affects the Development of a Murine Model of Multiple Sclerosis. J Fungi (Basel) 2022; 8:jof8040386. [PMID: 35448617 PMCID: PMC9032036 DOI: 10.3390/jof8040386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
Candidiasis may affect the central nervous system (CNS), and although Candida albicans is predominant, non-albicans Candida species can also be associated with CNS infections. Some studies have suggested that Candida infections could increase the odds of multiple sclerosis (MS) development. In this context, we investigated whether systemic infection by non-albicans Candida species would affect, clinically or immunologically, the severity of experimental autoimmune encephalomyelitis (EAE), which is an animal model used to study MS. For this, a strain of C. glabrata, C. krusei, and C. parapsilosis was selected and characterized using different in vitro and in vivo models. In these analysis, all the strains exhibited the ability to form biofilms, produce proteolytic enzymes, and cause systemic infections in Galleria mellonella, with C. glabrata being the most virulent species. Next, C57BL/6 mice were infected with strains of C. glabrata, C. krusei, or C. parapsilosis, and 3 days later were immunized with myelin oligodendrocyte glycoprotein to develop EAE. Mice from EAE groups previously infected with C. glabrata and C. krusei developed more severe and more prevalent paralysis, while mice from the EAE group infected with C. parapsilosis developed a disease comparable to non-infected EAE mice. Disease aggravation by C. glabrata and C. krusei strains was concomitant to increased IL-17 and IFN-γ production by splenic cells stimulated with fungi-derived antigens and with increased percentage of T lymphocytes and myeloid cells in the CNS. Analysis of interaction with BV-2 microglial cell line also revealed differences among these strains, in which C. krusei was the strongest activator of microglia concerning the expression of MHC II and CD40 and pro-inflammatory cytokine production. Altogether, these results indicated that the three non-albicans Candida strains were similarly able to reach the CNS but distinct in terms of their effect over EAE development. Whereas C. glabrata and C. Krusei aggravated the development of EAE, C. parapsilosis did not affect its severity. Disease worsening was partially associated to virulence factors in C. glabrata and to a strong activation of microglia in C. krusei infection. In conclusion, systemic infections by non-albicans Candida strains exerted influence on the experimental autoimmune encephalomyelitis in both immunological and clinical aspects, emphasizing their possible relevance in MS development.
Collapse
Affiliation(s)
- Thais Fernanda de Campos Fraga-Silva
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
- Correspondence:
| | - Natália Munhoz-Alves
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Luiza Ayumi Nishiyama Mimura
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | | | - Lívia Mara Alves Figueiredo-Godoi
- Institute of Science and Technology, São Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil; (L.M.A.F.-G.); (M.T.G.); (J.C.J.)
| | - Maíra Terra Garcia
- Institute of Science and Technology, São Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil; (L.M.A.F.-G.); (M.T.G.); (J.C.J.)
| | - Evelyn Silva Oliveira
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Larissa Lumi Watanabe Ishikawa
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Sofia Fernanda Gonçalves Zorzella-Pezavento
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Vânia Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto 14049-900, Brazil;
| | - Juliana Campos Junqueira
- Institute of Science and Technology, São Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil; (L.M.A.F.-G.); (M.T.G.); (J.C.J.)
| | - Eduardo Bagagli
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Alexandrina Sartori
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
- Postgraduate Program in Tropical Disease, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil;
| |
Collapse
|
42
|
Chyuan IT, Chu CL, Hsu CL, Pan MH, Liao HJ, Wu CS, Hsu PN. T Cell-Specific Deletion of TRAIL Receptor Reveals Its Critical Role for Regulating Pathologic T Cell Activation and Disease Induction in Experimental Autoimmune Encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1534-1544. [PMID: 35264458 DOI: 10.4049/jimmunol.2100788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Recent evidence from several autoimmune animal models has demonstrated that TRAIL suppresses the activation of T cells and inhibits autoimmune inflammation via an apoptosis-independent pathway. However, it remains unclear whether the immunosuppressive effects of TRAIL are dependent on its direct effects on T cells or on other immune cells to regulate T cells for the induction of disease. Therefore, we generated mice with T cell-specific TRAIL receptor (TRAIL-R) conditional knockout to investigate the impact of TRAIL on autoimmune inflammation and disease induction in experimental autoimmune encephalomyelitis (EAE). T cell-specific TRAIL-R knockout mice were found to completely reverse the TRAIL-mediated suppression of inflammation and disease induction, indicating that TRAIL-R on T cells is essential for TRAIL-mediated suppression of inflammation and disease induction in EAE. Moreover, the immune suppression effects were not due to the induction of cell apoptosis, but to the direct inhibition of T cell activation. In addition, RNA sequencing and transcriptome analysis revealed that TRAIL-R signaling significantly downregulated the genes involved in TCR signaling pathways, T cell differentiation, and proinflammatory cytokines. These results indicate that TRAIL-R on T cells is critical for pathologic T cell activation and induction of inflammation in EAE, suggesting that TRAIL-R serves as a novel immune checkpoint receptor in T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- I-Tsu Chyuan
- Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Hsun Pan
- Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei, Taiwan
| | - Hsiu-Jung Liao
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chien-Sheng Wu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan;
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; and
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
43
|
Lu M, Shi H, Taylor BV, Körner H. Alterations of subset and cytokine profile of peripheral T helper cells in PBMCs from Multiple Sclerosis patients or from individuals with MS risk SNPs near genes CYP27B1 and CYP24A1. Cytokine 2022; 153:155866. [PMID: 35339045 DOI: 10.1016/j.cyto.2022.155866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
T helper cells play an important role in the aetiology of Multiple Sclerosis (MS). Vitamin D has an anti-inflammatory effect on T helper cells and can affect onset and pathogenesis of MS. Two genes of the metabolic Vitamin D pathway expressed by activated T helper (Th) cells have been identified as MS risk genes by genome-wide association studies, CYP27B1 (25(OH)D3 1-alpha-hydroxylase) and CYP24A1 (1,25(OH)2D3 24-alpha-hydroxylase). Therefore, we hypothesize that the MS risk alleles around gene CYP27B1 and CYP24A1 are associated with the altered inflammatory profile of peripheral Th cells in PBMCs both ex vivo and in vitro potentially influencing the pathogenesis of MS. PBMCs from MS patients (41 RRMS patients in their remitting stage and 4 SPMS patients) and 12 healthy controls were collected, subpopulation of Th cells in PBMCs and cytokine profile were tested by Flow cytometry and Cytometric Bead Array (CBA), respectively. MS risk SNPs were genotyped by allele-specific PCR analysis. Data were analysed using nonparametric tests and linear regression for adjusting multiple factors. The proportion of Th17.1, Th17 and Th1 cells were all associated with MS while the proportions of Th2 (significant) and Th17 (near significant) cells were correlated with the expanded disability scale score of MS patients. Additionally, we found a MS-specific dysregulation in the IL-6 and TNF production of Th cells in Concanavalin A-stimulated PBMCs. Furthermore, the risk allele rs2248359-C (near gene CYP24A1) showed a consistent inhibitory effect on the proportions of Th1 and Th17.1 cells, and the presence of the homozygous risk allele rs703842-AA (near gene CYP27B1) reduced the production of IL-2. In conclusion, both MS disease and its risk alleles near Vitamin D metabolism genes influence the inflammatory profile of T helper cells in PBMCs.
Collapse
Affiliation(s)
- Ming Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Hui Shi
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Heinrich Körner
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, China.
| |
Collapse
|
44
|
Rahiman N, Mohammadi M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Recent advancements in nanoparticle-mediated approaches for restoration of multiple sclerosis. J Control Release 2022; 343:620-644. [PMID: 35176392 DOI: 10.1016/j.jconrel.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease with complicated immunopathology which necessitates considering multifactorial aspects for its management. Nano-sized pharmaceutical carriers named nanoparticles (NPs) can support impressive management of disease not only in early detection and prognosis level but also in a therapeutic manner. The most prominent initiator of MS is the domination of cellular immunity to humoral immunity and increment of inflammatory cytokines. The administration of several platforms of NPs for MS management holds great promise so far. The efforts for MS management through in vitro and in vivo (experimental animal models) evaluations, pave a new way to a highly efficient therapeutic means and aiding its translation to the clinic in the near future.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
Engelenburg HJ, Lucassen PJ, Sarafian JT, Parker W, Laman JD. Multiple sclerosis and the microbiota. Evol Med Public Health 2022; 10:277-294. [PMID: 35747061 PMCID: PMC9211007 DOI: 10.1093/emph/eoac009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Multiple sclerosis (MS), a neurological autoimmune disorder, has recently been linked to neuro-inflammatory influences from the gut. In this review, we address the idea that evolutionary mismatches could affect the pathogenesis of MS via the gut microbiota. The evolution of symbiosis as well as the recent introduction of evolutionary mismatches is considered, and evidence regarding the impact of diet on the MS-associated microbiota is evaluated. Distinctive microbial community compositions associated with the gut microbiota of MS patients are difficult to identify, and substantial study-to-study variation and even larger variations between individual profiles of MS patients are observed. Furthermore, although some dietary changes impact the progression of MS, MS-associated features of microbiota were found to be not necessarily associated with diet per se. In addition, immune function in MS patients potentially drives changes in microbial composition directly, in at least some individuals. Finally, assessment of evolutionary histories of animals with their gut symbionts suggests that the impact of evolutionary mismatch on the microbiota is less concerning than mismatches affecting helminths and protists. These observations suggest that the benefits of an anti-inflammatory diet for patients with MS may not be mediated by the microbiota per se. Furthermore, any alteration of the microbiota found in association with MS may be an effect rather than a cause. This conclusion is consistent with other studies indicating that a loss of complex eukaryotic symbionts, including helminths and protists, is a pivotal evolutionary mismatch that potentiates the increased prevalence of autoimmunity within a population.
Collapse
Affiliation(s)
- Hendrik J Engelenburg
- Department of Pathology and Medical Biology, University Medical Center Groningen , Groningen, The Netherlands
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
- Center for Urban Mental Health, University of Amsterdam , Amsterdam, The Netherlands
| | | | | | - Jon D Laman
- Department of Pathology and Medical Biology, University Medical Center Groningen , Groningen, The Netherlands
| |
Collapse
|
46
|
Einstein O, Katz A, Ben-Hur T. Physical exercise therapy for autoimmune neuroinflammation: Application of knowledge from animal models to patient care. Clin Exp Rheumatol 2022; 21:103033. [PMID: 34995760 DOI: 10.1016/j.autrev.2022.103033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/02/2022] [Indexed: 12/12/2022]
Abstract
Physical exercise (PE) impacts various autoimmune diseases. Accordingly, clinical trials demonstrated the safety of PE in multiple sclerosis (MS) patients and indicated beneficial outcomes. There is also an increasing body of research on the beneficial effects of exercise on experimental autoimmune encephalomyelitis (EAE), the animal model of MS, and various mechanisms underlying these effects were suggested. However, despite the documented favorable impact of PE on our health, we still lack a thorough understanding of its effects on autoimmune neuroinflammation and specific guidelines of PE therapy for MS patients are lacking. To that end, current findings on the impact of PE on autoimmune neuroinflammation, both in human MS and animal models are reviewed. The concept of personalized PE therapy for autoimmune neuroinflammation is discussed, and future research for providing biological rationale for clinical trials to pave the road for precise PE therapy in MS patients is described.
Collapse
Affiliation(s)
- Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel.
| | - Abram Katz
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
47
|
Bourel J, Planche V, Dubourdieu N, Oliveira A, Séré A, Ducourneau EG, Tible M, Maitre M, Lesté-Lasserre T, Nadjar A, Desmedt A, Ciofi P, Oliet SH, Panatier A, Tourdias T. Complement C3 mediates early hippocampal neurodegeneration and memory impairment in experimental multiple sclerosis. Neurobiol Dis 2021; 160:105533. [PMID: 34673149 DOI: 10.1016/j.nbd.2021.105533] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/09/2021] [Accepted: 10/17/2021] [Indexed: 12/26/2022] Open
Abstract
Memory impairment is one of the disabling manifestations of multiple sclerosis (MS) possibly present from the early stages of the disease and for which there is no specific treatment. Hippocampal synaptic dysfunction and dendritic loss, associated with microglial activation, can underlie memory deficits, yet the molecular mechanisms driving such hippocampal neurodegeneration need to be elucidated. In early-stage experimental autoimmune encephalomyelitis (EAE) female mice, we assessed the expression level of molecules involved in microglia-neuron interactions within the dentate gyrus and found overexpression of genes of the complement pathway. Compared to sham immunized mice, the central element of the complement cascade, C3, showed the strongest and 10-fold upregulation, while there was no increase of downstream factors such as the terminal component C5. The combination of in situ hybridization with immunofluorescence showed that C3 transcripts were essentially produced by activated microglia. Pharmacological inhibition of C3 activity, by daily administration of rosmarinic acid, was sufficient to prevent early dendritic loss, microglia-mediated phagocytosis of synapses in the dentate gyrus, and memory impairment in EAE mice, while morphological markers of microglial activation were still observed. In line, when EAE was induced in C3 deficient mice (C3KO), dendrites and spines of the dentate gyrus as well as memory abilities were preserved. Altogether, these data highlight the central role of microglial C3 in early hippocampal neurodegeneration and memory impairment in EAE and, therefore, pave the way toward new neuroprotective strategies in MS to prevent cognitive deficit using complement inhibitors.
Collapse
Affiliation(s)
- Julien Bourel
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Vincent Planche
- Univ. Bordeaux, CNRS, UMR 5293, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France
| | - Nadège Dubourdieu
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Aymeric Oliveira
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Alexandra Séré
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | | | - Marion Tible
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Marlène Maitre
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | | | - Agnes Nadjar
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France; Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Aline Desmedt
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Philippe Ciofi
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Stéphane H Oliet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Aude Panatier
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Thomas Tourdias
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France; CHU de Bordeaux, Neuroimagerie diagnostique et thérapeutique, F-33000 Bordeaux, France.
| |
Collapse
|
48
|
Crotalphine Attenuates Pain and Neuroinflammation Induced by Experimental Autoimmune Encephalomyelitis in Mice. Toxins (Basel) 2021; 13:toxins13110827. [PMID: 34822611 PMCID: PMC8624587 DOI: 10.3390/toxins13110827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of inflammatory and autoimmune origin, which induces sensory and progressive motor impairments, including pain. Cells of the immune system actively participate in the pathogenesis and progression of MS by inducing neuroinflammation, tissue damage, and demyelination. Crotalphine (CRO), a structural analogue to a peptide firstly identified in Crotalus durissus terrificus snake venom, induces analgesia by endogenous opioid release and type 2 cannabinoid receptor (CB2) activation. Since CB2 activation downregulates neuroinflammation and ameliorates symptoms in mice models of MS, it was presently investigated whether CRO has a beneficial effect in the experimental autoimmune encephalomyelitis (EAE). CRO was administered on the 5th day after immunization, in a single dose, or five doses starting at the peak of disease. CRO partially reverted EAE-induced mechanical hyperalgesia and decreased the severity of the clinical signs. In addition, CRO decreases the inflammatory infiltrate and glial cells activation followed by TNF-α and IL-17 downregulation in the spinal cord. Peripherally, CRO recovers the EAE-induced impairment in myelin thickness in the sciatic nerve. Therefore, CRO interferes with central and peripheral neuroinflammation, opening perspectives to MS control.
Collapse
|
49
|
Rahiman N, Zamani P, Badiee A, Arabi L, Alavizadeh SH, Jaafari MR. An insight into the role of liposomal therapeutics in the reversion of Multiple Sclerosis. Expert Opin Drug Deliv 2021; 18:1795-1813. [PMID: 34747298 DOI: 10.1080/17425247.2021.2003327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Multiple Sclerosis (MS), as an autoimmune disease, has complicated immunopathology, which makes its management relevant to various factors. Novel pharmaceutical vehicles, especially liposomes, can support efficacious handling of this disease both in early detection and prognosis and also in a therapeutic manner. The most well-known trigger of MS onset is the predominance of cellular to humoral immunity and enhancement of inflammatory cytokines level. The installation of liposomes as nanoparticles to control this disease holds great promise up to now. AREAS COVERED Various types of liposomes with different properties and purposes have been formulated and targeted immune cells with their surface manipulations. They may be encapsulated with anti-inflammatory, MS-related therapeutics, or immunodominant myelin-specific peptides for attaining a higher therapeutic efficacy of the drugs or tolerance induction. Cationic liposomes are also highly applicable for gene delivery of the anti-inflammatory cytokines or silencing the inflammatory cytokines. Liposomes have also been used as biotools for comprehending MS pathomechanisms or as diagnostic agents. EXPERT OPINION The efforts to manage MS through nanomedicine, especially liposomal therapeutics, pave a new avenue to a high-throughput medication of this autoimmune disease and their translation to the clinic in the future for overcoming the challenges that MS patients confront.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
50
|
Feizi N, Focaccetti C, Pacella I, Tucci G, Rossi A, Costanza M, Pedotti R, Sidney J, Sette A, La Rocca C, Procaccini C, Matarese G, Barnaba V, Piconese S. CD8 + T cells specific for cryptic apoptosis-associated epitopes exacerbate experimental autoimmune encephalomyelitis. Cell Death Dis 2021; 12:1026. [PMID: 34716313 PMCID: PMC8556378 DOI: 10.1038/s41419-021-04310-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/12/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023]
Abstract
The autoimmune immunopathology occurring in multiple sclerosis (MS) is sustained by myelin-specific and -nonspecific CD8+ T cells. We have previously shown that, in MS, activated T cells undergoing apoptosis induce a CD8+ T cell response directed against antigens that are unveiled during the apoptotic process, namely caspase-cleaved structural proteins such as non-muscle myosin and vimentin. Here, we have explored in vivo the development and the function of the immune responses to cryptic apoptosis-associated epitopes (AEs) in a well-established mouse model of MS, experimental autoimmune encephalomyelitis (EAE), through a combination of immunization approaches, multiparametric flow cytometry, and functional assays. First, we confirmed that this model recapitulated the main findings observed in MS patients, namely that apoptotic T cells and effector/memory AE-specific CD8+ T cells accumulate in the central nervous system of mice with EAE, positively correlating with disease severity. Interestingly, we found that AE-specific CD8+ T cells were present also in the lymphoid organs of unprimed mice, proliferated under peptide stimulation in vitro, but failed to respond to peptide immunization in vivo, suggesting a physiological control of this response. However, when mice were immunized with AEs along with EAE induction, AE-specific CD8+ T cells with an effector/memory phenotype accumulated in the central nervous system, and the disease severity was exacerbated. In conclusion, we demonstrate that AE-specific autoimmunity may contribute to immunopathology in neuroinflammation.
Collapse
Affiliation(s)
- Neda Feizi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Chiara Focaccetti
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy.,Department of Human Science and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166, Rome, Italy
| | - Ilenia Pacella
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Gloria Tucci
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Alessandra Rossi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Massimo Costanza
- Molecular Neuro-Oncology Unit, Department of Clinical Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Rosetta Pedotti
- Molecular Neuro-Oncology Unit, Department of Clinical Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131, Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131, Naples, Italy.,Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Naples, Italy
| | - Vincenzo Barnaba
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy. .,Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy. .,Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy. .,Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| |
Collapse
|