1
|
Xavier S, Nguyen V, Khairnar V, Phan A, Yang L, Nelson MS, Shukla RP, Wang J, Li A, Geng H, Lee J, Sadras T, Pham LV, Weisenburger DD, Chan WC, Lang KS, Shouse GP, Danilov AV, Song JY, Parekh S, Müschen M, Ngo VN. CEACAM1 as a mediator of B-cell receptor signaling in mantle cell lymphoma. Nat Commun 2025; 16:4967. [PMID: 40436855 PMCID: PMC12120064 DOI: 10.1038/s41467-025-60208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 05/19/2025] [Indexed: 06/01/2025] Open
Abstract
B-cell receptor (BCR) signaling plays an important role in the pathogenesis of mantle cell lymphoma (MCL), but the detailed mechanisms are not fully understood. In this study, through a genome-wide loss-of-function screen, we identify carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) as an essential factor in a subset of MCL tumors. Our signal transduction studies reveal that CEACAM1 plays a critical role in BCR activation through involvement in two dynamic processes. First, following BCR engagement, CEACAM1 co-localizes to the membrane microdomains (lipid rafts) by anchoring to the F-actin cytoskeleton through the adaptor protein filamin A. Second, CEACAM1 recruits and increases the abundance of SYK in the BCR complex leading to BCR activation. These activities of CEACAM1 require its cytoplasmic tail and the N-terminal ectodomain. Considering that previous studies have extensively characterized CEACAM1 as an ITIM-bearing inhibitory receptor, our findings regarding its activating role are both surprising and context-dependent, which may have implications for BCR-targeting therapies.
Collapse
MESH Headings
- Lymphoma, Mantle-Cell/metabolism
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/pathology
- Humans
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Signal Transduction
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/genetics
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Syk Kinase/metabolism
- Membrane Microdomains/metabolism
- Cell Line, Tumor
- Animals
- Filamins/metabolism
- Mice
- Actin Cytoskeleton/metabolism
Collapse
Affiliation(s)
- Serene Xavier
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Vivian Nguyen
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Vishal Khairnar
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - An Phan
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Lu Yang
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Michael S Nelson
- Light Microscopy and Digital Imaging Core, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ravi P Shukla
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Aimin Li
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jaewoong Lee
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale University, New Haven, CT, USA
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Korea
| | - Teresa Sadras
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, VIC, Australia
| | - Lan V Pham
- Oncology Discovery, Abbvie Inc., South San Francisco, CA, USA
| | - Dennis D Weisenburger
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA
| | - Karl S Lang
- Institute of Immunology, University Hospital Essen, Essen, Germany
| | - Geoffrey P Shouse
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, USA
| | - Alexey V Danilov
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, USA
| | - Joo Y Song
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA
| | - Samir Parekh
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Vu N Ngo
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA.
| |
Collapse
|
2
|
Arnold DP, Takatori SC. Lipid Membrane Domains Control Actin Network Viscoelasticity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26570-26578. [PMID: 39630960 DOI: 10.1021/acs.langmuir.4c03463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The mammalian cell membrane is embedded with biomolecular condensates of protein and lipid clusters, which interact with an underlying viscoelastic cytoskeleton network to organize the cell surface and mechanically interact with the extracellular environment. However, the mechanical and thermodynamic interplay between the viscoelastic network and liquid-liquid phase separation of 2-dimensional (2D) lipid condensates remains poorly understood. Here, we engineer materials composed of 2D lipid membrane condensates embedded within a thin viscoelastic actin network. The network generates localized anisotropic stresses that deform lipid condensates into triangular morphologies with sharp edges and corners, shapes unseen in many 3D composite gels. Kinetic coarsening of phase-separating lipid condensates accelerates the viscoelastic relaxation of the network, leading to an effectively softer composite material over intermediate time scales. We dynamically manipulate the membrane composition to control the elastic-to-viscous crossover of the network. Such viscoelastic composite membranes may enable the development of coatings, catalytic surfaces, separation membranes, and other interfaces with tunable spatial organization and plasticity mechanisms.
Collapse
Affiliation(s)
- Daniel P Arnold
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Sho C Takatori
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
3
|
Ghosh S, Wagenknecht-Wiesner A, Desai S, Vyphuis J, Ramos MS, Grazul JL, Baird BA. The Synergy between Topography and Lipid Domains in the Plasma Membrane of Mast Cells Controls the Localization of Signaling Proteins and Facilitates their Coordinated Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624791. [PMID: 39605335 PMCID: PMC11601610 DOI: 10.1101/2024.11.22.624791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Similar to T cells and B cells, mast cell surfaces are dominated by microvilli, and like these other immune cells we showed with microvillar cartography (MC) that key signaling proteins for RBL mast cells localize to these topographical features. Although stabilization of ordered lipid nanodomains around antigen-crosslinked IgE-FcεRI is known to facilitate necessary coupling with Lyn tyrosine kinase to initiate transmembrane signaling in these mast cells, the relationship of ordered-lipid nanodomains to membrane topography had not been determined. With nanoscale resolution provided by MC, SEM and co-localization probability (CP) analysis, we found that FcεRI and Lyn kinase are positioned exclusively on the microvilli of resting mast cells in separate nano-assemblies, and upon antigen-activation they merge into overlapping populations together with the LAT scaffold protein, accompanied by elongation and merger of microvilli into ridge-like ruffles. With selective lipid probes, we further found that ordered-lipid nanodomains preferentially occupy microvillar membranes, contrasting with localization of disordered lipids to flatter regions. With this proximity of signaling proteins and ordered lipid nanodomains in microvilli, the mast cells are poised to respond sensitively and efficiently to antigen but only in the presence of this stimulus. Use of a short chain ceramide to disrupt ordered-lipid regions of the plasma membrane and evaluation with MC, CP, and flow cytometry provided strong evidence that the microvillar selective localization of signaling proteins and lipid environments is facilitated by the interplay between ordered-lipid nanodomains and actin attachment proteins, ERM (ezrin, radixin, moesin) and cofilin.
Collapse
Affiliation(s)
- Shirsendu Ghosh
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Chemistry, Gandhi Institute of Technology and Management, Hyderabad Campus, Rudraram, Telangana 502329, India
| | | | - Shriya Desai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Jada Vyphuis
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | | | - John L. Grazul
- Cornell Center for Materials Research, Cornell University, Ithaca, NY 14853
| | - Barbara A. Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
4
|
Gubbala A, Arnold DP, Jena A, Anujarerat S, Takatori SC. Dynamic swarms regulate the morphology and distribution of soft membrane domains. Phys Rev E 2024; 110:014410. [PMID: 39160984 DOI: 10.1103/physreve.110.014410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024]
Abstract
We study the dynamic structure of lipid domain inclusions embedded within a phase-separated reconstituted lipid bilayer in contact with a swarming flow of gliding filamentous actin. Passive circular domains transition into highly deformed morphologies that continuously elongate, rotate, and pinch off into smaller fragments, leading to a dynamic steady state with ≈23× speedup in the relaxation of the intermediate scattering function compared with passive membrane domains driven by purely thermal forces. To corroborate experimental results, we develop a phase-field model of the lipid domains with two-way coupling to the Toner-Tu equations. We report phase domains that become entrained in the chaotic eddy patterns, with oscillating waves of domains that correlate with the dominant wavelengths of the Toner-Tu flow fields.
Collapse
|
5
|
Arnold D, Takatori SC. Bio-enabled Engineering of Multifunctional "Living" Surfaces. ACS NANO 2023; 17:11077-11086. [PMID: 37294942 PMCID: PMC10311588 DOI: 10.1021/acsnano.3c03138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
Through the magic of "active matter"─matter that converts chemical energy into mechanical work to drive emergent properties─biology solves a myriad of seemingly enormous physical challenges. Using active matter surfaces, for example, our lungs clear an astronomically large number of particulate contaminants that accompany each of the 10,000 L of air we respire per day, thus ensuring that the lungs' gas exchange surfaces remain functional. In this Perspective, we describe our efforts to engineer artificial active surfaces that mimic active matter surfaces in biology. Specifically, we seek to assemble the basic active matter components─mechanical motor, driven constituent, and energy source─to design surfaces that support the continuous operation of molecular sensing, recognition, and exchange. The successful realization of this technology would generate multifunctional, "living" surfaces that combine the dynamic programmability of active matter and the molecular specificity of biological surfaces and apply them to applications in biosensors, chemical diagnostics, and other surface transport and catalytic processes. We describe our recent efforts in bio-enabled engineering of living surfaces through the design of molecular probes to understand and integrate native biological membranes into synthetic materials.
Collapse
Affiliation(s)
- Daniel
P. Arnold
- Department of Chemical Engineering, University of California, Santa
Barbara, California 93106, United States
| | - Sho C. Takatori
- Department of Chemical Engineering, University of California, Santa
Barbara, California 93106, United States
| |
Collapse
|
6
|
Li L, Ji J, Song F, Hu J. Intercellular Receptor-ligand Binding: Effect of Protein-membrane Interaction. J Mol Biol 2023; 435:167787. [PMID: 35952805 DOI: 10.1016/j.jmb.2022.167787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 02/04/2023]
Abstract
Gaining insights into the intercellular receptor-ligand binding is of great importance for understanding numerous physiological and pathological processes, and stimulating new strategies in drug design and discovery. In contrast to the in vitro protein interaction in solution, the anchored receptor and ligand molecules interact with membrane in situ, which affects the intercellular receptor-ligand binding. Here, we review theoretical, simulation and experimental works regarding the regulatory effects of protein-membrane interactions on intercellular receptor-ligand binding mainly from the following aspects: membrane fluctuations, membrane curvature, glycocalyx, and lipid raft. In addition, we discuss biomedical significances and possible research directions to advance the field and highlight the importance of understanding of coupling effects of these factors in pharmaceutical development.
Collapse
Affiliation(s)
- Long Li
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, 210023 Nanjing, China; State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, 210023 Nanjing, China.
| |
Collapse
|
7
|
Li L, Hu J, Różycki B, Ji J, Song F. Interplay of receptor-ligand binding and lipid domain formation during cell adhesion. Front Mol Biosci 2022; 9:1019477. [PMID: 36203878 PMCID: PMC9531914 DOI: 10.3389/fmolb.2022.1019477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Cell adhesion involved in biological processes such as cell migration, immune responses, and cancer metastasis, is mediated by the specific binding of receptor and ligand proteins. Some of these proteins exhibit affinity for nanoscale lipid clusters in cell membranes. A key question is how these nanoscale lipid clusters influence and react to the receptor-ligand binding during cell adhesion. In this article, we review recent computational studies that shed new light on the interplay of the receptor-ligand binding and the formation of lipid domains in adhering membranes. These studies indicate that the receptor-ligand binding promotes coalescence of lipid clusters into mesoscale domains, which, in turn, enhances both the affinity and cooperativity of the receptor-ligand binding in cell-cell adhesion with mobile ligands. In contrast, in the case of cell-extracellular matrix adhesion with immobile ligands, the receptor-ligand binding and the lipid cluster coalescence can be correlated or anti-correlated, depending strongly on the ligand distribution. These findings deepen our understanding of correlations between cell adhesion and membrane heterogeneities.
Collapse
Affiliation(s)
- Long Li
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China
- *Correspondence: Jinglei Hu, ; Bartosz Różycki, ; Jing Ji,
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
- *Correspondence: Jinglei Hu, ; Bartosz Różycki, ; Jing Ji,
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: Jinglei Hu, ; Bartosz Różycki, ; Jing Ji,
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Myconoside Affects the Viability of Polarized Epithelial MDCKII Cell Line by Interacting with the Plasma Membrane and the Apical Junctional Complexes. SEPARATIONS 2022. [DOI: 10.3390/separations9090239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The phenyl glycoside myconoside, extracted from Balkan endemic Haberlea rhodopensis, has a positive effect on human health, but the exact molecular mechanism of its action is still unknown. The cell membrane and its associated junctional complex are the first targets of exogenous compound action. We aimed to study the effect of myconoside on membrane organization and cytoskeleton components involved in the maintenance of cell polarity in the MDCKII cell line. By fluorescent spectroscopy and microscopy, we found that at low concentrations, myconoside increases the cell viability by enhancing membrane lipid order and adherent junctions. The opposite effect is observed in high myconoside doses. We hypothesized that the cell morphological and physicochemical changes of the analyzed cell compartments are directly related to cell viability and cell apical-basal polarity. Our finding contributes to a better understanding of the beneficial application of phytochemical myconoside in pharmacology and medicine.
Collapse
|
9
|
Molon B, Liboni C, Viola A. CD28 and chemokine receptors: Signalling amplifiers at the immunological synapse. Front Immunol 2022; 13:938004. [PMID: 35983040 PMCID: PMC9379342 DOI: 10.3389/fimmu.2022.938004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023] Open
Abstract
T cells are master regulators of the immune response tuning, among others, B cells, macrophages and NK cells. To exert their functions requiring high sensibility and specificity, T cells need to integrate different stimuli from the surrounding microenvironment. A finely tuned signalling compartmentalization orchestrated in dynamic platforms is an essential requirement for the proper and efficient response of these cells to distinct triggers. During years, several studies have depicted the pivotal role of the cytoskeleton and lipid microdomains in controlling signalling compartmentalization during T cell activation and functions. Here, we discuss mechanisms responsible for signalling amplification and compartmentalization in T cell activation, focusing on the role of CD28, chemokine receptors and the actin cytoskeleton. We also take into account the detrimental effect of mutations carried by distinct signalling proteins giving rise to syndromes characterized by defects in T cell functionality.
Collapse
Affiliation(s)
- Barbara Molon
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- *Correspondence: Barbara Molon,
| | - Cristina Liboni
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonella Viola
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Myconoside interacts with the plasma membranes and the actin cytoskeleton and provokes cytotoxicity in human lung adenocarcinoma A549 cells. J Bioenerg Biomembr 2022; 54:31-43. [PMID: 34988784 DOI: 10.1007/s10863-021-09928-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
Studies have been carried out on the effects of the phenyl glycoside myconoside, extracted from the relict, Balkan endemic resurrection plant Haberlea rhodopensis on the plasma membrane structural organization and the actin cytoskeleton. Because the plasma membrane is the first target of exogenous bioactive compounds, we focused our attention on the influence of myconoside on the membrane lipid order and actin cytoskeleton in human lung adenocarcinoma A549 cells, using fluorescent spectroscopy and microscopy techniques. We found that low myconoside concentration (5 μg/ml) did not change cell viability but was able to increase plasma membrane lipid order of the treated cells. Higher myconoside concentration (20 μg/ml) inhibited cell viability by decreasing plasma membrane lipid order and impairing actin cytoskeleton. We hypothesize that the observed changes in the plasma membrane structural organization and the actin cytoskeleton are functionally connected to cell viability. Biomimetic membranes were used to demonstrate that myconoside is able to reorganize the membrane lipids by changing the fraction of sphingomyelin-cholesterol enriched domains. Thus, we propose a putative mechanism of action of myconoside on A549 cells plasma membrane lipids as well as on actin filaments in order to explain its cytotoxic effect at high myconoside concentration.
Collapse
|
11
|
Sarmento MJ, Borges-Araújo L, Pinto SN, Bernardes N, Ricardo JC, Coutinho A, Prieto M, Fernandes F. Quantitative FRET Microscopy Reveals a Crucial Role of Cytoskeleton in Promoting PI(4,5)P 2 Confinement. Int J Mol Sci 2021; 22:11727. [PMID: 34769158 PMCID: PMC8583820 DOI: 10.3390/ijms222111727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/30/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is an essential plasma membrane component involved in several cellular functions, including membrane trafficking and cytoskeleton organization. This function multiplicity is partially achieved through a dynamic spatiotemporal organization of PI(4,5)P2 within the membrane. Here, we use a Förster resonance energy transfer (FRET) approach to quantitatively assess the extent of PI(4,5)P2 confinement within the plasma membrane. This methodology relies on the rigorous evaluation of the dependence of absolute FRET efficiencies between pleckstrin homology domains (PHPLCδ) fused with fluorescent proteins and their average fluorescence intensity at the membrane. PI(4,5)P2 is found to be significantly compartmentalized at the plasma membrane of HeLa cells, and these clusters are not cholesterol-dependent, suggesting that membrane rafts are not involved in the formation of these nanodomains. On the other hand, upon inhibition of actin polymerization, compartmentalization of PI(4,5)P2 is almost entirely eliminated, showing that the cytoskeleton network is the critical component responsible for the formation of nanoscale PI(4,5)P2 domains in HeLa cells.
Collapse
Affiliation(s)
- Maria J. Sarmento
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Luís Borges-Araújo
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (S.N.P.); (N.B.); (J.C.R.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Sandra N. Pinto
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (S.N.P.); (N.B.); (J.C.R.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Nuno Bernardes
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (S.N.P.); (N.B.); (J.C.R.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Joana C. Ricardo
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (S.N.P.); (N.B.); (J.C.R.); (A.C.); (M.P.)
| | - Ana Coutinho
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (S.N.P.); (N.B.); (J.C.R.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Manuel Prieto
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (S.N.P.); (N.B.); (J.C.R.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Fábio Fernandes
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (L.B.-A.); (S.N.P.); (N.B.); (J.C.R.); (A.C.); (M.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| |
Collapse
|
12
|
Szafranska K, Kruse LD, Holte CF, McCourt P, Zapotoczny B. The wHole Story About Fenestrations in LSEC. Front Physiol 2021; 12:735573. [PMID: 34588998 PMCID: PMC8473804 DOI: 10.3389/fphys.2021.735573] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
The porosity of liver sinusoidal endothelial cells (LSEC) ensures bidirectional passive transport of lipoproteins, drugs and solutes between the liver capillaries and the liver parenchyma. This porosity is realized via fenestrations - transcellular pores with diameters in the range of 50-300 nm - typically grouped together in sieve plates. Aging and several liver disorders severely reduce LSEC porosity, decreasing their filtration properties. Over the years, a variety of drugs, stimulants, and toxins have been investigated in the context of altered diameter or frequency of fenestrations. In fact, any change in the porosity, connected with the change in number and/or size of fenestrations is reflected in the overall liver-vascular system crosstalk. Recently, several commonly used medicines have been proposed to have a beneficial effect on LSEC re-fenestration in aging. These findings may be important for the aging populations of the world. In this review we collate the literature on medicines, recreational drugs, hormones and laboratory tools (including toxins) where the effect LSEC morphology was quantitatively analyzed. Moreover, different experimental models of liver pathology are discussed in the context of fenestrations. The second part of this review covers the cellular mechanisms of action to enable physicians and researchers to predict the effect of newly developed drugs on LSEC porosity. To achieve this, we discuss four existing hypotheses of regulation of fenestrations. Finally, we provide a summary of the cellular mechanisms which are demonstrated to tune the porosity of LSEC.
Collapse
Affiliation(s)
- Karolina Szafranska
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Larissa D Kruse
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Christopher Florian Holte
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Peter McCourt
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Bartlomiej Zapotoczny
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.,Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
13
|
Cholesterol-dependent plasma membrane order (L o) is critical for antigen-specific clonal expansion of CD4 + T cells. Sci Rep 2021; 11:13970. [PMID: 34234214 PMCID: PMC8263698 DOI: 10.1038/s41598-021-93403-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 06/23/2021] [Indexed: 12/04/2022] Open
Abstract
Early “T cell activation” events are initiated within the lipid microenvironment of the plasma membrane. Role of lipid membrane order (Lo) in spatiotemporal signaling through the antigen receptor in T cells is posited but remains unclear. We have examined the role of membrane order (Lo)/disorder (Ld) in antigen specific CD4+ T cell activation and clonal expansion by first creating membrane disorder, and then reconstituting membrane order by inserting cholesterol into the disordered plasma membrane. Significant revival of antigen specific CD4+ T cell proliferative response was observed after reconstituting the disrupted membrane order with cholesterol. These reconstitution experiments illustrate Koch’s postulate by demonstrating that cholesterol-dependent membrane order (Lo) is critical for responses generated by CD4+ T cells and point to the importance of membrane order and lipid microenvironment in signaling through T cell membrane antigen receptors.
Collapse
|
14
|
Sun H, Zhu X, Li C, Ma Z, Han X, Luo Y, Yang L, Yu J, Miao Y. Xanthomonas effector XopR hijacks host actin cytoskeleton via complex coacervation. Nat Commun 2021; 12:4064. [PMID: 34210966 PMCID: PMC8249405 DOI: 10.1038/s41467-021-24375-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/11/2021] [Indexed: 01/09/2023] Open
Abstract
The intrinsically disordered region (IDR) is a preserved signature of phytobacterial type III effectors (T3Es). The T3E IDR is thought to mediate unfolding during translocation into the host cell and to avoid host defense by sequence diversification. Here, we demonstrate a mechanism of host subversion via the T3E IDR. We report that the Xanthomonas campestris T3E XopR undergoes liquid-liquid phase separation (LLPS) via multivalent IDR-mediated interactions that hijack the Arabidopsis actin cytoskeleton. XopR is gradually translocated into host cells during infection and forms a macromolecular complex with actin-binding proteins at the cell cortex. By tuning the physical-chemical properties of XopR-complex coacervates, XopR progressively manipulates multiple steps of actin assembly, including formin-mediated nucleation, crosslinking of F-actin, and actin depolymerization, which occurs through competition for actin-depolymerizing factor and depends on constituent stoichiometry. Our findings unravel a sophisticated strategy in which bacterial T3E subverts the host actin cytoskeleton via protein complex coacervation.
Collapse
Affiliation(s)
- He Sun
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xinlu Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chuanxi Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuanyuan Luo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
15
|
Kusumi A, Fujiwara TK, Tsunoyama TA, Kasai RS, Liu AA, Hirosawa KM, Kinoshita M, Matsumori N, Komura N, Ando H, Suzuki KGN. Defining raft domains in the plasma membrane. Traffic 2021; 21:106-137. [PMID: 31760668 DOI: 10.1111/tra.12718] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/03/2023]
Abstract
Many plasma membrane (PM) functions depend on the cholesterol concentration in the PM in strikingly nonlinear, cooperative ways: fully functional in the presence of physiological cholesterol levels (35~45 mol%), and nonfunctional below 25 mol% cholesterol; namely, still in the presence of high concentrations of cholesterol. This suggests the involvement of cholesterol-based complexes/domains formed cooperatively. In this review, by examining the results obtained by using fluorescent lipid analogs and avoiding the trap of circular logic, often found in the raft literature, we point out the fundamental similarities of liquid-ordered (Lo)-phase domains in giant unilamellar vesicles, Lo-phase-like domains formed at lower temperatures in giant PM vesicles, and detergent-resistant membranes: these domains are formed by cooperative interactions of cholesterol, saturated acyl chains, and unsaturated acyl chains, in the presence of >25 mol% cholesterol. The literature contains evidence, indicating that the domains formed by the same basic cooperative molecular interactions exist and play essential roles in signal transduction in the PM. Therefore, as a working definition, we propose that raft domains in the PM are liquid-like molecular complexes/domains formed by cooperative interactions of cholesterol with saturated acyl chains as well as unsaturated acyl chains, due to saturated acyl chains' weak multiple accommodating interactions with cholesterol and cholesterol's low miscibility with unsaturated acyl chains and TM proteins. Molecules move within raft domains and exchange with those in the bulk PM. We provide a logically established collection of fluorescent lipid probes that preferentially partition into raft and non-raft domains, as defined here, in the PM.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Rinshi S Kasai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - An-An Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Koichiro M Hirosawa
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Kenichi G N Suzuki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| |
Collapse
|
16
|
Li M, Yu Y. Innate immune receptor clustering and its role in immune regulation. J Cell Sci 2021; 134:134/4/jcs249318. [PMID: 33597156 DOI: 10.1242/jcs.249318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The discovery of receptor clustering in the activation of adaptive immune cells has revolutionized our understanding of the physical basis of immune signal transduction. In contrast to the extensive studies of adaptive immune cells, particularly T cells, there is a lesser, but emerging, recognition that the formation of receptor clusters is also a key regulatory mechanism in host-pathogen interactions. Many kinds of innate immune receptors have been found to assemble into nano- or micro-sized domains on the surfaces of cells. The clusters formed between diverse categories of innate immune receptors function as a multi-component apparatus for pathogen detection and immune response regulation. Here, we highlight these pioneering efforts and the outstanding questions that remain to be answered regarding this largely under-explored research topic. We provide a critical analysis of the current literature on the clustering of innate immune receptors. Our emphasis is on studies that draw connections between the phenomenon of receptor clustering and its functional role in innate immune regulation.
Collapse
Affiliation(s)
- Miao Li
- Department of Chemistry, Indiana University, Bloomington, IN 47401, USA
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
17
|
Mastrogiovanni M, Juzans M, Alcover A, Di Bartolo V. Coordinating Cytoskeleton and Molecular Traffic in T Cell Migration, Activation, and Effector Functions. Front Cell Dev Biol 2020; 8:591348. [PMID: 33195256 PMCID: PMC7609836 DOI: 10.3389/fcell.2020.591348] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
Dynamic localization of receptors and signaling molecules at the plasma membrane and within intracellular vesicular compartments is crucial for T lymphocyte sensing environmental cues, triggering membrane receptors, recruiting signaling molecules, and fine-tuning of intracellular signals. The orchestrated action of actin and microtubule cytoskeleton and intracellular vesicle traffic plays a key role in all these events that together ensure important steps in T cell physiology. These include extravasation and migration through lymphoid and peripheral tissues, T cell interactions with antigen-presenting cells, T cell receptor (TCR) triggering by cognate antigen-major histocompatibility complex (MHC) complexes, immunological synapse formation, cell activation, and effector functions. Cytoskeletal and vesicle traffic dynamics and their interplay are coordinated by a variety of regulatory molecules. Among them, polarity regulators and membrane-cytoskeleton linkers are master controllers of this interplay. Here, we review the various ways the T cell plasma membrane, receptors, and their signaling machinery interplay with the actin and microtubule cytoskeleton and with intracellular vesicular compartments. We highlight the importance of this fine-tuned crosstalk in three key stages of T cell biology involving cell polarization: T cell migration in response to chemokines, immunological synapse formation in response to antigen cues, and effector functions. Finally, we discuss two examples of perturbation of this interplay in pathological settings, such as HIV-1 infection and mutation of the polarity regulator and tumor suppressor adenomatous polyposis coli (Apc) that leads to familial polyposis and colorectal cancer.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Juzans
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Andrés Alcover
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Vincenzo Di Bartolo
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
18
|
Lietha D, Izard T. Roles of Membrane Domains in Integrin-Mediated Cell Adhesion. Int J Mol Sci 2020; 21:ijms21155531. [PMID: 32752284 PMCID: PMC7432473 DOI: 10.3390/ijms21155531] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
The composition and organization of the plasma membrane play important functional and regulatory roles in integrin signaling, which direct many physiological and pathological processes, such as development, wound healing, immunity, thrombosis, and cancer metastasis. Membranes are comprised of regions that are thick or thin owing to spontaneous partitioning of long-chain saturated lipids from short-chain polyunsaturated lipids into domains defined as ordered and liquid-disorder domains, respectively. Liquid-ordered domains are typically 100 nm in diameter and sometimes referred to as lipid rafts. We posit that integrin β senses membrane thickness and that mechanical force on the membrane regulates integrin activation through membrane thinning. This review examines what we know about the nature and mechanism of the interaction of integrins with the plasma membrane and its effects on regulating integrins and its binding partners.
Collapse
Affiliation(s)
- Daniel Lietha
- Cell Signaling and Adhesion Group, Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB-CSIC), E-28040 Madrid, Spain;
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
- Correspondence:
| |
Collapse
|
19
|
Kiyoshi C, Tedeschi A. Axon growth and synaptic function: A balancing act for axonal regeneration and neuronal circuit formation in CNS trauma and disease. Dev Neurobiol 2020; 80:277-301. [PMID: 32902152 PMCID: PMC7754183 DOI: 10.1002/dneu.22780] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Axons in the adult mammalian central nervous system (CNS) fail to regenerate inside out due to intrinsic and extrinsic neuronal determinants. During CNS development, axon growth, synapse formation, and function are tightly regulated processes allowing immature neurons to effectively grow an axon, navigate toward target areas, form synaptic contacts and become part of information processing networks that control behavior in adulthood. Not only immature neurons are able to precisely control the expression of a plethora of genes necessary for axon extension and pathfinding, synapse formation and function, but also non-neuronal cells such as astrocytes and microglia actively participate in sculpting the nervous system through refinement, consolidation, and elimination of synaptic contacts. Recent evidence indicates that a balancing act between axon regeneration and synaptic function may be crucial for rebuilding functional neuronal circuits after CNS trauma and disease in adulthood. Here, we review the role of classical and new intrinsic and extrinsic neuronal determinants in the context of CNS development, injury, and disease. Moreover, we discuss strategies targeting neuronal and non-neuronal cell behaviors, either alone or in combination, to promote axon regeneration and neuronal circuit formation in adulthood.
Collapse
Affiliation(s)
- Conrad Kiyoshi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Andrea Tedeschi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
20
|
Bag N, Holowka DA, Baird BA. Imaging FCS delineates subtle heterogeneity in plasma membranes of resting mast cells. Mol Biol Cell 2020; 31:709-723. [PMID: 31895009 PMCID: PMC7202073 DOI: 10.1091/mbc.e19-10-0559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A myriad of transient, nanoscopic lipid- and protein-based interactions confer a steady-state organization of the plasma membrane in resting cells that is poised to orchestrate assembly of key signaling components upon reception of an extracellular stimulus. Although difficult to observe directly in live cells, these subtle interactions can be discerned by their impact on the diffusion of membrane constituents. Here, we quantified the diffusion properties of a panel of structurally distinct lipid, lipid-anchored, and transmembrane (TM) probes in RBL mast cells by imaging fluorescence correlation spectroscopy (ImFCS). We developed a statistical analysis of data combined from many pixels over multiple cells to characterize differences in diffusion coefficients as small as 10%, which reflect differences in underlying interactions. We found that the distinctive diffusion properties of lipid probes can be explained by their dynamic partitioning into Lo-like proteolipid nanodomains, which encompass a major fraction of the membrane and whose physical properties are influenced by actin polymerization. Effects on diffusion of functional protein modules in both lipid-anchored and TM probes reflect additional complexity in steady state membrane organization. The contrast we observe between different probes diffusing through the same membrane milieu represents the dynamic resting steady state, which serves as a baseline for monitoring plasma membrane remodeling that occurs upon stimulation.
Collapse
Affiliation(s)
- Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
21
|
Yu M, Cui Y, Zhang X, Li R, Lin J. Organization and dynamics of functional plant membrane microdomains. Cell Mol Life Sci 2020; 77:275-287. [PMID: 31422442 PMCID: PMC11104912 DOI: 10.1007/s00018-019-03270-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
Plasma membranes are heterogeneous and laterally compartmentalized into distinct microdomains. These membrane microdomains consist of special lipids and proteins and are thought to act as signaling platforms. In plants, membrane microdomains have been detected by super-resolution microscopy, and there is evidence that they play roles in several biological processes. Here, we review current knowledge about the lipid and protein components of membrane microdomains. Furthermore, we summarize the dynamics of membrane microdomains in response to different stimuli. We also explore the biological functions associated with membrane microdomains as signal integration hubs. Finally, we outline challenges and questions for further studies.
Collapse
Affiliation(s)
- Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Cui
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xi Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
22
|
Clay CM, Cherrington BD, Navratil AM. Plasticity of Anterior Pituitary Gonadotrope Cells Facilitates the Pre-Ovulatory LH Surge. Front Endocrinol (Lausanne) 2020; 11:616053. [PMID: 33613451 PMCID: PMC7890248 DOI: 10.3389/fendo.2020.616053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/15/2020] [Indexed: 01/04/2023] Open
Abstract
Gonadotropes cells located in the anterior pituitary gland are critical for reproductive fitness. A rapid surge in the serum concentration of luteinizing hormone (LH) secreted by anterior pituitary gonadotropes is essential for stimulating ovulation and is thus required for a successful pregnancy. To meet the requirements to mount the LH surge, gonadotrope cells display plasticity at the cellular, molecular and morphological level. First, gonadotrope cells heighten their sensitivity to an increasing frequency of hypothalamic GnRH pulses by dynamically elevating the expression of the GnRH receptor (GnRHR). Following ligand binding, GnRH initiates highly organized intracellular signaling cascades that ultimately promote the synthesis of LH and the trafficking of LH vesicles to the cell periphery. Lastly, gonadotrope cells display morphological plasticity, where there is directed mobilization of cytoskeletal processes towards vascular elements to facilitate rapid LH secretion into peripheral circulation. This mini review discusses the functional and organizational plasticity in gonadotrope cells including changes in sensitivity to GnRH, composition of the GnRHR signaling platform within the plasma membrane, and changes in cellular morphology. Ultimately, multimodal plasticity changes elicited by gonadotropes are critical for the generation of the LH surge, which is required for ovulation.
Collapse
Affiliation(s)
- Colin M. Clay
- Department of Biomedical Science, Colorado State University, Fort Collins, CO, United States
| | - Brian D. Cherrington
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Amy M. Navratil
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
- *Correspondence: Amy M. Navratil,
| |
Collapse
|
23
|
Oniszczuk J, Sendeyo K, Chhuon C, Savas B, Cogné E, Vachin P, Henique C, Guerrera IC, Astarita G, Frontera V, Pawlak A, Audard V, Sahali D, Ollero M. CMIP is a negative regulator of T cell signaling. Cell Mol Immunol 2019; 17:1026-1041. [PMID: 31395948 PMCID: PMC7609264 DOI: 10.1038/s41423-019-0266-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 07/10/2019] [Indexed: 11/24/2022] Open
Abstract
Upon their interaction with cognate antigen, T cells integrate different extracellular and intracellular signals involving basal and induced protein–protein interactions, as well as the binding of proteins to lipids, which can lead to either cell activation or inhibition. Here, we show that the selective T cell expression of CMIP, a new adapter protein, by targeted transgenesis drives T cells toward a naïve phenotype. We found that CMIP inhibits activation of the Src kinases Fyn and Lck after CD3/CD28 costimulation and the subsequent localization of Fyn and Lck to LRs. Video microscopy analysis showed that CMIP blocks the recruitment of LAT and the lipid raft marker cholera toxin B at the site of TCR engagement. Proteomic analysis identified several protein clusters differentially modulated by CMIP and, notably, Cofilin-1, which is inactivated in CMIP-expressing T cells. Moreover, transgenic T cells exhibited the downregulation of GM3 synthase, a key enzyme involved in the biosynthesis of gangliosides. These results suggest that CMIP negatively impacts proximal signaling and cytoskeletal rearrangement and defines a new mechanism for the negative regulation of T cells that could be a therapeutic target.
Collapse
Affiliation(s)
- Julie Oniszczuk
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| | - Kelhia Sendeyo
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| | - Cerina Chhuon
- Proteomic Platform Necker, PPN-3P5, Structure Fédérative de Recherche SFR Necker US24, 75015, Paris, France
| | - Berkan Savas
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| | - Etienne Cogné
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| | - Pauline Vachin
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| | - Carole Henique
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, PPN-3P5, Structure Fédérative de Recherche SFR Necker US24, 75015, Paris, France
| | - Giuseppe Astarita
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Vincent Frontera
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| | - Andre Pawlak
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| | - Vincent Audard
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France.,AP-HP, Groupe Henri-Mondor Albert-Chenevier, Service de Néphrologie, F-94010, Créteil, France.,Institut Francilien De Recherche En Néphrologie Et Transplantation, F-94010, Créteil, France
| | - Dil Sahali
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France. .,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France. .,AP-HP, Groupe Henri-Mondor Albert-Chenevier, Service de Néphrologie, F-94010, Créteil, France. .,Institut Francilien De Recherche En Néphrologie Et Transplantation, F-94010, Créteil, France.
| | - Mario Ollero
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| |
Collapse
|
24
|
Wang C, Ming B, Wu X, Wu T, Cai S, Hu P, Tang J, Tan Z, Liu C, Zhong J, Zheng F, Dong L. Sphingomyelin synthase 1 enhances BCR signaling to promote lupus-like autoimmune response. EBioMedicine 2019; 45:578-587. [PMID: 31262710 PMCID: PMC6642282 DOI: 10.1016/j.ebiom.2019.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Sphingomyelin synthase 1 (SMS1) has been reported to participate in hepatitis and atherosclerosis. However, its role in autoimmune response is not clear. This study investigates the possible involvement of SMS1 in B-cell activation and lupus-like autoimmunity. METHODS SMS1 knockout lupus-like animal model and SLE patient samples were utilized. B-cell activation and associated signal transduction were detected by flow cytometry, confocal analysis and western blotting. The SMS1 expression in B cells was measured by real-time qPCR. FINDINGS SMS1 deficiency suppressed B-cell activation in culture, which was restored by exogenous SM supplementation. The BCR-mediated early signal transduction including the colocalization of BCR with F-actin or pY/pBtk, and the phosphorylation of intracellular Fyn and Syk were impaired in SMS1 knockout B cells. Furthermore, SMS1 knockout mice showed reduced production and deposition of autoantibodies, accompanied by less severe kidney pathological changes after pristane induction. SMS1 deficiency also displayed lower autoantibody titers and 24 h urine protein excretion in bm12-induced lupus, which were associated with reduced B-cell activation. Adoptively transferred wide-type B cells partially recovered B-cell activation and autoantibody production in SMS1 deficient bm12-induced lupus mice. Moreover, the SMS1 mRNA level in B cells of SLE patients was increased and positively correlated with the serum anti-dsDNA level, IgG and globulin titers. INTERPRETATION These data suggest that SMS1 is involved in lupus-like autoimmunity via regulating BCR signal transduction and B cell activation. (Word count for the abstract: 230).
Collapse
Affiliation(s)
- Chenqiong Wang
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HuBei, China
| | - Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HuBei, China
| | - Xuefen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HuBei, China
| | - Tong Wu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HuBei, China
| | - Shaozhe Cai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HuBei, China
| | - Peng Hu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HuBei, China
| | - Jungen Tang
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HuBei, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HuBei, China
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HuBei, China.
| |
Collapse
|
25
|
Curthoys NM, Mlodzianoski MJ, Parent M, Butler MB, Raut P, Wallace J, Lilieholm J, Mehmood K, Maginnis MS, Waters H, Busse B, Zimmerberg J, Hess ST. Influenza Hemagglutinin Modulates Phosphatidylinositol 4,5-Bisphosphate Membrane Clustering. Biophys J 2019; 116:893-909. [PMID: 30773293 DOI: 10.1016/j.bpj.2019.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
The lipid phosphatidylinositol 4,5-bisphosphate (PIP2) forms nanoscopic clusters in cell plasma membranes; however, the processes determining PIP2 mobility and thus its spatial patterns are not fully understood. Using super-resolution imaging of living cells, we find that PIP2 is tightly colocalized with and modulated by overexpression of the influenza viral protein hemagglutinin (HA). Within and near clusters, HA and PIP2 follow a similar spatial dependence, which can be described by an HA-dependent potential gradient; PIP2 molecules move as if they are attracted to the center of clusters by a radial force of 0.079 ± 0.002 pN in HAb2 cells. The measured clustering and dynamics of PIP2 are inconsistent with the unmodified forms of the raft, tether, and fence models. Rather, we found that the spatial PIP2 distributions and how they change in time are explained via a novel, to our knowledge, dynamic mechanism: a radial gradient of PIP2 binding sites that are themselves mobile. This model may be useful for understanding other biological membrane domains whose distributions display gradients in density while maintaining their mobility.
Collapse
Affiliation(s)
- Nikki M Curthoys
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | | | - Matthew Parent
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | - Michael B Butler
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | - Prakash Raut
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | - Jaqulin Wallace
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | | | - Kashif Mehmood
- Department of Physics and Astronomy, University of Maine, Orono, Maine; Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Hang Waters
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Brad Busse
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Samuel T Hess
- Department of Physics and Astronomy, University of Maine, Orono, Maine.
| |
Collapse
|
26
|
Izquierdo I, Barrachina MN, Hermida-Nogueira L, Casas V, Eble JA, Carrascal M, Abián J, García Á. Platelet membrane lipid rafts protein composition varies following GPVI and CLEC-2 receptors activation. J Proteomics 2019; 195:88-97. [PMID: 30677554 DOI: 10.1016/j.jprot.2019.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 12/11/2022]
Abstract
Lipid rafts are membrane microdomains that have been proposed to play an important role in several platelet-signalling cascades, including those mediated by the receptors Glycoprotein VI (GPVI), and C-type lectin domain family 1 member B (CLEC-2), both involved in thrombus formation. We have performed a LC-MS/MS proteomic analysis of lipid rafts isolated from platelets activated through GPVI and CLEC-2 as well as from resting platelets. Our aim was to determine the magnitude of changes in lipid rafts protein composition and to elucidate the relevance of these alterations in platelet function. A number of relevant signalling proteins were found enriched in lipid rafts following platelet activation (such as the tyrosine protein kinases Fyn, Lyn and Yes; the G proteins G(i) and G(z); and cAMP protein kinase). Interestingly, our results indicate that the relative enrichment of lipid rafts in these signalling proteins may not be a consequence of protein translocation to these domains upon platelet stimulation, but the result of a massive loss in cytoskeletal proteins after platelet activation. Thus, this study may help to better understand the effects of platelet activation in the reorganization of lipid rafts and set the basis for further proteomic studies of these membrane microdomains in platelets. SIGNIFICANCE: We performed the first proteomic comparative analysis of lipid rafts- protein composition in platelets activated through GPVI and CLEC-2 receptors and in resting state. We identified a number of signalling proteins essential for platelet activation relatively enriched in platelets activated through both receptors, and we show that lipid rafts reorganization upon platelet activation leads to a loss in cytoskeletal proteins, highly associated to these domains in resting platelets.
Collapse
Affiliation(s)
- Irene Izquierdo
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - María N Barrachina
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Lidia Hermida-Nogueira
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Vanessa Casas
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC-IDIBAPS, Barcelona, Spain
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | | | - Joaquín Abián
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC-IDIBAPS, Barcelona, Spain
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
27
|
Li W, Yu X, Xie F, Zhang B, Shao S, Geng C, Aziz AUR, Liao X, Liu B. A Membrane-Bound Biosensor Visualizes Shear Stress-Induced Inhomogeneous Alteration of Cell Membrane Tension. iScience 2018; 7:180-190. [PMID: 30267679 PMCID: PMC6153118 DOI: 10.1016/j.isci.2018.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/10/2018] [Accepted: 09/03/2018] [Indexed: 01/10/2023] Open
Abstract
Cell membrane is the first medium from where a cell senses and responds to external stress stimuli. Exploring the tension changes in cell membrane will help us to understand intracellular force transmission. Here, a biosensor (named MSS) based on fluorescence resonance energy transfer is developed to visualize cell membrane tension. Validity of the biosensor is first verified for the detection of cell membrane tension. Results show a shear stress-induced heterogeneous distribution of membrane tension with the biosensor, which is strengthened by the disruption of microfilaments or enhancement of membrane fluidity, but weakened by the reduction of membrane fluidity or disruption of microtubules. These findings suggest that the MSS biosensor is a beneficial tool to visualize the changes and distribution of cell membrane tension. Besides, cell membrane tension does not display obvious polar distribution, indicating that cellular polarity changes do not first occur on the cell membrane during mechanical transmission. A FRET-based biosensor (named MSS) is developed to study cell membrane tension MSS is a beneficial tool to visualize the distribution of membrane tension Membrane tension is inhomogeneous in response to shear stress Membrane tension does not display polar distribution during mechanotransduction
Collapse
Affiliation(s)
- Wang Li
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Xinlei Yu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Fei Xie
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Baohong Zhang
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Shuai Shao
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Chunyang Geng
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Xiaoling Liao
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and Technology, Chongqing 400030, China
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| |
Collapse
|
28
|
Bennett WFD, Shea JE, Tieleman DP. Phospholipid Chain Interactions with Cholesterol Drive Domain Formation in Lipid Membranes. Biophys J 2018; 114:2595-2605. [PMID: 29874610 PMCID: PMC6129184 DOI: 10.1016/j.bpj.2018.04.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/16/2018] [Accepted: 04/12/2018] [Indexed: 01/13/2023] Open
Abstract
Cholesterol is a key component of eukaryotic membranes, but its role in cellular biology in general and in lipid rafts in particular remains controversial. Model membranes are used extensively to determine the phase behavior of ternary mixtures of cholesterol, a saturated lipid, and an unsaturated lipid with liquid-ordered and liquid-disordered phase coexistence. Despite many different experiments that determine lipid-phase diagrams, we lack an understanding of the molecular-level driving forces for liquid phase coexistence in bilayers with cholesterol. Here, we use atomistic molecular dynamics computer simulations to address the driving forces for phase coexistence in ternary lipid mixtures. Domain formation is directly observed in a long-timescale simulation of a mixture of 1,2-distearoyl-sn-glycero-3-phosphocholine, unsaturated 1,2-dilinoleoyl-sn-glycero-3-phosphocholine, and cholesterol. Free-energy calculations for the exchange of the saturated and unsaturated lipids between the ordered and disordered phases give insight into the mixing behavior. We show that a large energetic contribution to domain formation is favorable enthalpic interactions of the saturated lipid in the ordered phase. This favorable energy for forming an ordered, cholesterol-rich phase is opposed by a large unfavorable entropy. Martini coarse-grained simulations capture the unfavorable free energy of mixing but do not reproduce the entropic contribution because of the reduced representation of the phospholipid tails. Phospholipid tails and their degree of unsaturation are key energetic contributors to lipid phase separation.
Collapse
Affiliation(s)
- W F Drew Bennett
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California.
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
29
|
Tsuchida A, Senda M, Ito A, Saito S, Kiso M, Ando T, Harduin-Lepers A, Matsuda A, Furukawa K, Furukawa K. Roles of GalNAc-disialyl Lactotetraosyl Antigens in Renal Cancer Cells. Sci Rep 2018; 8:7017. [PMID: 29728594 PMCID: PMC5935701 DOI: 10.1038/s41598-018-25521-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/19/2018] [Indexed: 11/24/2022] Open
Abstract
GalNAc-disialyl Lc4 (GalNAc-DSLc4) was reported as a novel antigen that associated with malignant features of renal cell cancers (RCCs). To clarify roles of GalNAc-DSLc4 in malignant properties of RCCs, we identified B4GalNAc-T2 as a responsible gene for the synthesis of GalNAc-DSLc4, and prepared stable transfectants of GalNAc-T2 cDNA using VMRC-RCW cells, resulting in the establishment of high expressants of GalNAc-DSLc4. They showed increased proliferation and invasion, and specific adhesion to laminin. In the transfectants, PI3K/Akt signals were highly activated by serum stimulation or adhesion to laminin. GalNAc-DSLc4 was co-localized in lipid rafts with integrin β1 and caveolin-1 in both immunoblotting of fractionated detergent extracts and immunocytostaining, particularly when stimulated with serum. Masking of GalNAc-DSLc4 with antibodies as well as PI3K inhibitor suppressed malignant properties of the transfectants. These results suggested that GalNAc-DSLc4 is involved in malignant properties of RCCs by forming a molecular complex with integrins in lipid rafts.
Collapse
Affiliation(s)
- Akiko Tsuchida
- Laboratory of Glyco-Bioengineering, The Noguchi Institute, Itabashi, 173-0003, Japan
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Motohiro Senda
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Department of Urology, Nagoya University School of Medicine, Nagoya, 466-8550, Japan
| | - Akihiro Ito
- Department of Urology, Tohoku University School of Medicine, Sendai, 980-8574, Japan
| | - Seiichi Saito
- Department of Urology, University of Ryukyus School of Medicine, Nishihara-cho, 903-0215, Okinawa, Japan
| | - Makoto Kiso
- Facalty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Takayuki Ando
- Department of Drug and Food Science, Shizuoka Institute of Environment and Hygiene, Shizuoka, 420-8637, Japan
| | - Anne Harduin-Lepers
- Unité de Glycobiologie Structurale et Fonctionnelle, Université Lille Nord de France, Villeneuve d'Ascq, 59655, France
| | - Akio Matsuda
- Laboratory of Glyco-Bioengineering, The Noguchi Institute, Itabashi, 173-0003, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, 487-8501, Japan
| | - Koichi Furukawa
- Department of Lifelong Sports and Health Sciences, Chubu University College of Life and Health Sciences, Kasugai, 487-8501, Japan.
| |
Collapse
|
30
|
Shindell O, Mica N, Cheng KH, Wang E, Gordon VD. Dynamic Fingering in Adhered Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4673-4680. [PMID: 29363972 DOI: 10.1021/acs.langmuir.7b03708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Artificial lipid membranes incorporating proteins have frequently been used as models for the dynamic organization of biological structures in living cells as well as in the development of biology-inspired technologies. We report here on the experimental demonstration and characterization of a pattern-forming process that occurs in a lipid bilayer membrane adhered via biotin-avidin binding to a second lipid membrane that is supported by a solid substrate. Adhesion regions are roughly circular with a diameter of about 25 μm. Using confocal fluorescence microscopy, we record time series of dynamic fingering patterns that grow in the upper lipid membrane and intermembrane biotin-avidin bonds. The fingers are micrometer-scale elongated pores that grow from the edge of an already-stabilized hole. Finger growth is saltatory on the scale of tens of seconds. We find that as the fingers grow and the density of adhesion proteins increases, the rate of finger growth decreases exponentially and the width of newly formed fingers decreases linearly. We show that these findings are consistent with a thermodynamic description of dynamic pore formation and stabilization.
Collapse
Affiliation(s)
- Orrin Shindell
- Center for Nonlinear Dynamics and Department of Physics , University of Texas at Austin , Austin 78712 , United States
- Department of Physics and Astronomy , Trinity University , San Antonio , Texas 78212 , United States
| | - Natalie Mica
- Center for Nonlinear Dynamics and Department of Physics , University of Texas at Austin , Austin 78712 , United States
- School of Physics and Astronomy , University of St. Andrews , Saint Andrews , Scotland KY16 9AJ , U.K
| | - Kwan H Cheng
- Department of Physics and Astronomy , Trinity University , San Antonio , Texas 78212 , United States
| | - Exing Wang
- Department of Cell Systems & Anatomy , University of Texas Health Science Center San Antonio , San Antonio , Texas 78229 , United States
| | - Vernita D Gordon
- Center for Nonlinear Dynamics and Department of Physics , University of Texas at Austin , Austin 78712 , United States
| |
Collapse
|
31
|
Zumerle S, Molon B, Viola A. Membrane Rafts in T Cell Activation: A Spotlight on CD28 Costimulation. Front Immunol 2017; 8:1467. [PMID: 29163534 PMCID: PMC5675840 DOI: 10.3389/fimmu.2017.01467] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/19/2017] [Indexed: 12/28/2022] Open
Abstract
Spatiotemporal compartmentalization of signaling pathways and second messengers is pivotal for cell biology and membrane rafts are, therefore, required for several lymphocyte functions. On the other hand, T cells have the specific necessity of tuning signaling amplification depending on the context in which the antigen is presented. In this review, we discuss of membrane rafts in the context of T cell signaling, focusing on CD28-mediated costimulation.
Collapse
Affiliation(s)
- Sara Zumerle
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Barbara Molon
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Pediatric Research Institute "Citta della Speranza", Padova, Italy
| |
Collapse
|
32
|
Live-Cell Super-resolution Reveals F-Actin and Plasma Membrane Dynamics at the T Cell Synapse. Biophys J 2017; 112:1703-1713. [PMID: 28445761 DOI: 10.1016/j.bpj.2017.01.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 01/29/2023] Open
Abstract
The cortical actin cytoskeleton has been shown to be critical for the reorganization and heterogeneity of plasma membrane components of many cells, including T cells. Building on previous studies at the T cell immunological synapse, we quantitatively assess the structure and dynamics of this meshwork using live-cell superresolution fluorescence microscopy and spatio-temporal image correlation spectroscopy. We show for the first time, to our knowledge, that not only does the dense actin cortex flow in a retrograde fashion toward the synapse center, but the plasma membrane itself shows similar behavior. Furthermore, using two-color, live-cell superresolution cross-correlation spectroscopy, we demonstrate that the two flows are correlated and, in addition, we show that coupling may extend to the outer leaflet of the plasma membrane by examining the flow of GPI-anchored proteins. Finally, we demonstrate that the actin flow is correlated with a third component, α-actinin, which upon CRISPR knockout led to reduced plasma membrane flow directionality despite increased actin flow velocity. We hypothesize that this apparent cytoskeletal-membrane coupling could provide a mechanism for driving the observed retrograde flow of signaling molecules such as the TCR, Lck, ZAP70, LAT, and SLP76.
Collapse
|
33
|
Simón L, Funes AK, Yapur MA, Cabrillana ME, Monclus MA, Boarelli PV, Vincenti AE, Saez Lancellotti TE, Fornés MW. Manchette-acrosome disorders during spermiogenesis and low efficiency of seminiferous tubules in hypercholesterolemic rabbit model. PLoS One 2017; 12:e0172994. [PMID: 28241054 PMCID: PMC5328279 DOI: 10.1371/journal.pone.0172994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/13/2017] [Indexed: 12/31/2022] Open
Abstract
Hypercholesterolemia is a marker for several adult chronic diseases. Recently we demonstrated that sub/infertility is also associated to Hypercholesterolemia in rabbits. Seminal alterations included: abnormal sperm morphology, decreased sperm number and declined percentage of motile sperm, among others. In this work, our objective was to evaluate the effects of hypercholesterolemia on testicular efficiency and spermiogenesis, as the latter are directly related to sperm number and morphology respectively. Tubular efficiency was determined by comparing total number of spermatogenic cells with each cell type within the proliferation/differentiation compartments. We found lower testicular efficiency related to both a decrease in spermatogonial cells and an increase in germ cell apoptosis in hypercholesterolemic rabbits. On the other hand, spermiogenesis-the last step of spermatogenesis involved in sperm shaping-was detaily analyzed, particularly the acrosome-nucleus-manchette complex. The manchette is a microtubular-based temporary structure responsible in sperm cell elongation. We analyzed the contribution of actin filaments and raft microdomains in the arrangement of the manchette. Under fluorescence microscopy, spermatocyte to sperm cell development was followed in cells isolated from V to VIII tubular stages. In cells from hypercholesterolemic rabbits, abnormal development of acrosome, nucleus and inaccurate tail implantation were associated with actin-alpha-tubulin-GM1 sphingolipid altered distribution. Morphological alterations were also observed at electron microscopy. We demonstrated for the first time that GM1-enriched microdomains together with actin filaments and microtubules are involved in allowing the correct anchoring of the manchette complex. In conclusion, cholesterol enriched diets promote male fertility alterations by affecting critical steps in sperm development: spermatogenesis and spermiogenesis. It was also demonstrated that hypercholesterolemic rabbit model is a useful tool to study serum cholesterol increment linked to sub/infertility.
Collapse
Affiliation(s)
- Layla Simón
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
| | - Abi K. Funes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Martín A. Yapur
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - María E. Cabrillana
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
| | - María A. Monclus
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
| | - Paola V. Boarelli
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
| | - Amanda E. Vincenti
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Tania E. Saez Lancellotti
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
| | - Miguel W. Fornés
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
- * E-mail:
| |
Collapse
|
34
|
Acute Hypoxic Stress Affects Migration Machinery of Tissue O 2-Adapted Adipose Stromal Cells. Stem Cells Int 2016; 2016:7260562. [PMID: 28115943 PMCID: PMC5225392 DOI: 10.1155/2016/7260562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/01/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
The ability of mesenchymal stromal (stem) cells (MSCs) to be mobilised from their local depot towards sites of injury and to participate in tissue repair makes these cells promising candidates for cell therapy. Physiological O2 tension in an MSC niche in vivo is about 4-7%. However, most in vitro studies of MSC functional activity are performed at 20% O2. Therefore, this study focused on the effects of short-term hypoxic stress (0.1% O2, 24 h) on adipose tissue-derived MSC motility at tissue-related O2 level. No significant changes in integrin expression were detected after short-term hypoxic stress. However, O2 deprivation provoked vimentin disassembly and actin polymerisation and increased cell stiffness. In addition, hypoxic stress induced the downregulation of ACTR3, DSTN, MACF1, MID1, MYPT1, NCK1, ROCK1, TIAM1, and WASF1 expression, the products of which are known to be involved in leading edge formation and cell translocation. These changes were accompanied by the attenuation of targeted and nontargeted migration of MSCs after short-term hypoxic exposure, as demonstrated in scratch and transwell migration assays. These results indicate that acute hypoxic stress can modulate MSC function in their native milieu, preventing their mobilisation from sites of injury.
Collapse
|
35
|
Oswald F, Varadarajan A, Lill H, Peterman EJG, Bollen YJM. MreB-Dependent Organization of the E. coli Cytoplasmic Membrane Controls Membrane Protein Diffusion. Biophys J 2016; 110:1139-49. [PMID: 26958890 PMCID: PMC4788719 DOI: 10.1016/j.bpj.2016.01.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 01/13/2023] Open
Abstract
The functional organization of prokaryotic cell membranes, which is essential for many cellular processes, has been challenging to analyze due to the small size and nonflat geometry of bacterial cells. Here, we use single-molecule fluorescence microscopy and three-dimensional quantitative analyses in live Escherichia coli to demonstrate that its cytoplasmic membrane contains microdomains with distinct physical properties. We show that the stability of these microdomains depends on the integrity of the MreB cytoskeletal network underneath the membrane. We explore how the interplay between cytoskeleton and membrane affects trans-membrane protein (TMP) diffusion and reveal that the mobility of the TMPs tested is subdiffusive, most likely caused by confinement of TMP mobility by the submembranous MreB network. Our findings demonstrate that the dynamic architecture of prokaryotic cell membranes is controlled by the MreB cytoskeleton and regulates the mobility of TMPs.
Collapse
Affiliation(s)
- Felix Oswald
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, the Netherlands; Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, the Netherlands; LaserLaB Amsterdam, the Netherlands
| | - Aravindan Varadarajan
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, the Netherlands; LaserLaB Amsterdam, the Netherlands
| | - Holger Lill
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, the Netherlands; LaserLaB Amsterdam, the Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, the Netherlands; LaserLaB Amsterdam, the Netherlands
| | - Yves J M Bollen
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, the Netherlands; LaserLaB Amsterdam, the Netherlands.
| |
Collapse
|
36
|
Kim H, Chun Y, Che L, Kim J, Lee S, Lee S. The new obesity-associated protein, neuronal growth regulator 1 (NEGR1), is implicated in Niemann-Pick disease Type C (NPC2)-mediated cholesterol trafficking. Biochem Biophys Res Commun 2016; 482:1367-1374. [PMID: 27940359 DOI: 10.1016/j.bbrc.2016.12.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023]
Abstract
Neuronal growth regulator 1 (NEGR1) is a newly identified raft-associated protein, which has recently been spotlighted as a new locus related to human obesity. Niemann-Pick disease Type C2 (NPC2) protein functions as a key player in the intracellular cholesterol trafficking, and its defect is linked to a fatal human neurodegenerative disease, NPC. In this study, we identified that NEGR1 interacts with NPC2 and increases its protein stability. Ectopically expressed NEGR1 proteins relieved an abnormal cholesterol accumulation in endosomal compartments. Importantly, NEGR1-defective mouse embryonic fibroblast cells exhibit increased cholesterol levels and triglyceride contents. These findings provide the first insight into the role of NEGR1 in intracellular cholesterol homeostasis, possibly explaining the missing link between NEGR1 with human obesity.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Younghwa Chun
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Lihua Che
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jeongbeom Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sungjoong Lee
- Department of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
37
|
Richardson DD, Fernandez-Borja M. Leukocyte adhesion and polarization: Role of glycosylphosphatidylinositol-anchored proteins. BIOARCHITECTURE 2016; 5:61-9. [PMID: 26744925 PMCID: PMC4832445 DOI: 10.1080/19490992.2015.1127466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Leukocyte traffic out of the blood stream is crucial for an adequate immune response. Leukocyte extravasation is critically dependent on the binding of leukocyte integrins to their endothelial counterreceptors. This interaction enables the firm adhesion of leukocytes to the luminal side of the vascular wall and allows for leukocyte polarization, crawling and diapedesis. Leukocyte adhesion, polarization and migration requires the orchestrated regulation of integrin adhesion/de-adhesion dynamics and actin cytoskeleton rearrangements. Adhesion strength depends on conformational changes of integrin molecules (affinity) as well as the number of integrin molecules engaged at adhesion sites (valency). These two processes can be independently regulated and several molecules modulate either one or both processes. Cholesterol-rich membrane domains (lipid rafts) participate in integrin regulation and play an important role in leukocyte adhesion, polarization and motility. In particular, lipid raft-resident glycosyl-phosphatidyl-inositol-anchored proteins (GPI-APs) have been reported to regulate leukocyte adhesion, polarization and motility in both integrin-dependent and independent manners. Here, we present our recent discovery concerning the novel role of the GPI-AP prion protein (PrP) in the regulation of β1 integrin-mediated monocyte adhesion, migration and shape polarization in the context of existing literature on GPI-AP-dependent regulation of integrins.
Collapse
Affiliation(s)
- Dion D Richardson
- a Deptartment of Molecular Cell Biology ; Sanquin Research and Landsteiner Laboratory; University of Amsterdam ; Amsterdam , Netherlands
| | - Mar Fernandez-Borja
- a Deptartment of Molecular Cell Biology ; Sanquin Research and Landsteiner Laboratory; University of Amsterdam ; Amsterdam , Netherlands
| |
Collapse
|
38
|
Shentu TP, He M, Sun X, Zhang J, Zhang F, Gongol B, Marin TL, Zhang J, Wen L, Wang Y, Geary GG, Zhu Y, Johnson DA, Shyy JYJ. AMP-Activated Protein Kinase and Sirtuin 1 Coregulation of Cortactin Contributes to Endothelial Function. Arterioscler Thromb Vasc Biol 2016; 36:2358-2368. [PMID: 27758765 DOI: 10.1161/atvbaha.116.307871] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/12/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Cortactin translocates to the cell periphery in vascular endothelial cells (ECs) on cortical-actin assembly in response to pulsatile shear stress. Because cortactin has putative sites for AMP-activated protein kinase (AMPK) phosphorylation and sirtuin 1 (SIRT1) deacetylation, we examined the hypothesis that AMPK and SIRT1 coregulate cortactin dynamics in response to shear stress. APPROACH AND RESULTS Analysis of the ability of AMPK to phosphorylate recombinant cortactin and oligopeptides whose sequences matched AMPK consensus sequences in cortactin pointed to Thr-401 as the site of AMPK phosphorylation. Mass spectrometry confirmed Thr-401 as the site of AMPK phosphorylation. Immunoblot analysis with AMPK siRNA and SIRT1 siRNA in human umbilical vein ECs and EC-specific AMPKα2 knockout mice showed that AMPK phosphorylation of cortactin primes SIRT1 deacetylation in response to shear stress. Immunoblot analyses with cortactin siRNA in human umbilical vein ECs, phospho-deficient T401A and phospho-mimetic T401D mutant, or aceto-deficient (9K/R) and aceto-mimetic (9K/Q) showed that cortactin regulates endothelial nitric oxide synthase activity. Confocal imaging and sucrose-density gradient analyses revealed that the phosphorylated/deacetylated cortactin translocates to the EC periphery facilitating endothelial nitric oxide synthase translocation from lipid to nonlipid raft domains. Knockdown of cortactin in vitro or genetic reduction of cortactin expression in vivo in mice substantially decreased the endothelial nitric oxide synthase-derived NO bioavailability. In vivo, atherosclerotic lesions increase in ApoE-/-/cortactin+/- mice, when compared with ApoE-/-/cortactin+/+ littermates. CONCLUSIONS AMPK phosphorylation of cortactin followed by SIRT1 deacetylation modulates the interaction of cortactin and cortical-actin in response to shear stress. Functionally, this AMPK/SIRT1 coregulated cortactin-F-actin dynamics is required for endothelial nitric oxide synthase subcellular translocation/activation and is atheroprotective.
Collapse
Affiliation(s)
- Tzu-Pin Shentu
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Ming He
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Xiaoli Sun
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Jianlin Zhang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Fan Zhang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Brendan Gongol
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Traci L Marin
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Jiao Zhang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Liang Wen
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Yinsheng Wang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Gregory G Geary
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Yi Zhu
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - David A Johnson
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - John Y-J Shyy
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.).
| |
Collapse
|
39
|
Shelby SA, Veatch SL, Holowka DA, Baird BA. Functional nanoscale coupling of Lyn kinase with IgE-FcεRI is restricted by the actin cytoskeleton in early antigen-stimulated signaling. Mol Biol Cell 2016; 27:3645-3658. [PMID: 27682583 PMCID: PMC5221596 DOI: 10.1091/mbc.e16-06-0425] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Spatial targeting of signaling components to activated receptors on the plasma membrane is key for initiating signal transduction. The actin cytoskeleton restricts antigen-stimulated colocalization of IgE-FcεRI with membrane-anchored signaling partner Lyn kinase, and this regulation is mediated by organization of plasma membrane lipids. The allergic response is initiated on the plasma membrane of mast cells by phosphorylation of the receptor for immunoglobulin E (IgE), FcεRI, by Lyn kinase after IgE-FcεRI complexes are cross-linked by multivalent antigen. Signal transduction requires reorganization of receptors and membrane signaling proteins, but this spatial regulation is not well defined. We used fluorescence localization microscopy (FLM) and pair-correlation analysis to measure the codistribution of IgE-FcεRI and Lyn on the plasma membrane of fixed cells with 20- to 25-nm resolution. We directly visualized Lyn recruitment to IgE-FcεRI within 1 min of antigen stimulation. Parallel FLM experiments captured stimulation-induced FcεRI phosphorylation and colocalization of a saturated lipid-anchor probe derived from Lyn’s membrane anchorage. We used cytochalasin and latrunculin to investigate participation of the actin cytoskeleton in regulating functional interactions of FcεRI. Inhibition of actin polymerization by these agents enhanced colocalization of IgE-FcεRI with Lyn and its saturated lipid anchor at early stimulation times, accompanied by augmented phosphorylation within FcεRI clusters. Ising model simulations provide a simplified model consistent with our results. These findings extend previous evidence that IgE-FcεRI signaling is initiated by colocalization with Lyn in ordered lipid regions and that the actin cytoskeleton regulates this functional interaction by influencing the organization of membrane lipids.
Collapse
Affiliation(s)
- Sarah A Shelby
- Department of Chemistry and Chemical Biology and Field of Biophysics, Cornell University, Ithaca, NY 14853
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - David A Holowka
- Department of Chemistry and Chemical Biology and Field of Biophysics, Cornell University, Ithaca, NY 14853
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology and Field of Biophysics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
40
|
Shah AD, Inder KL, Shah AK, Cristino AS, McKie AB, Gabra H, Davis MJ, Hill MM. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer. J Proteome Res 2016; 15:3451-3462. [PMID: 27384440 DOI: 10.1021/acs.jproteome.5b01035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.
Collapse
Affiliation(s)
- Anup D Shah
- The University of Queensland Diamantina Institute, The University of Queensland , Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Kerry L Inder
- The University of Queensland Diamantina Institute, The University of Queensland , Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Alok K Shah
- The University of Queensland Diamantina Institute, The University of Queensland , Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Alexandre S Cristino
- The University of Queensland Diamantina Institute, The University of Queensland , Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Arthur B McKie
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London Hammersmith Campus , London W12 0NN, United Kingdom
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London Hammersmith Campus , London W12 0NN, United Kingdom
| | - Melissa J Davis
- Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research , 1G Royal Parade, Parkville Victoria 3052, Australia
| | - Michelle M Hill
- The University of Queensland Diamantina Institute, The University of Queensland , Translational Research Institute, Brisbane, Queensland 4102, Australia
| |
Collapse
|
41
|
Sharonov GV, Balatskaya MN, Tkachuk VA. Glycosylphosphatidylinositol-anchored proteins as regulators of cortical cytoskeleton. BIOCHEMISTRY (MOSCOW) 2016; 81:636-50. [DOI: 10.1134/s0006297916060110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Viola HM, Johnstone VPA, Cserne Szappanos H, Richman TR, Tsoutsman T, Filipovska A, Semsarian C, Seidman JG, Seidman CE, Hool LC. The Role of the L-Type Ca 2+ Channel in Altered Metabolic Activity in a Murine Model of Hypertrophic Cardiomyopathy. JACC Basic Transl Sci 2016; 1:61-72. [PMID: 30167506 PMCID: PMC6113168 DOI: 10.1016/j.jacbts.2015.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/31/2015] [Indexed: 01/08/2023]
Abstract
Heterozygous mice (αMHC403/+) expressing the human disease-causing mutation Arg403Gln exhibit cardinal features of hypertrophic cardiomyopathy (HCM) including hypertrophy, myocyte disarray, and increased myocardial fibrosis. Treatment of αMHC403/+mice with the L-type calcium channel (ICa-L) antagonist diltiazem has been shown to decrease left ventricular anterior wall thickness, cardiac myocyte hypertrophy, disarray, and fibrosis. However, the role of the ICa-L in the development of HCM is not known. In addition to maintaining cardiac excitation and contraction in myocytes, the ICa-L also regulates mitochondrial function through transmission of movement of ICa-L via cytoskeletal proteins to mitochondrial voltage-dependent anion channel. Here, the authors investigated the role of ICa-L in regulating mitochondrial function in αMHC403/+mice. Whole-cell patch clamp studies showed that ICa-L current inactivation kinetics were significantly increased in αMHC403/+cardiac myocytes, but that current density and channel expression were similar to wild-type cardiac myocytes. Activation of ICa-L caused a significantly greater increase in mitochondrial membrane potential and metabolic activity in αMHC403/+. These increases were attenuated with ICa-L antagonists and following F-actin or β-tubulin depolymerization. The authors observed increased levels of fibroblast growth factor-21 in αMHC403/+mice, and altered mitochondrial DNA copy number consistent with altered mitochondrial activity and the development of cardiomyopathy. These studies suggest that the Arg403Gln mutation leads to altered functional communication between ICa-L and mitochondria that is associated with increased metabolic activity, which may contribute to the development of cardiomyopathy. ICa-L antagonists may be effective in reducing the cardiomyopathy in HCM by altering metabolic activity. Heterozygous mice (αMHC403/+) expressing the human hypertrophic cardiomyopathy (HCM) disease causing mutation Arg403Gln exhibit cardinal features of HCM. This study investigated the role of L-type Ca2+ channel (ICa-L) in regulating mitochondrial function in Arg403Gln (αMHC403/+) mice. Activation of ICa-L in αMHC403/+mice caused a significantly greater increase in mitochondrial membrane potential and metabolic activity when compared to wild-type mice. Increases in mitochondrial membrane potential and metabolic activity were attenuated with ICa-L antagonists and when F-actin or β-tubulin were depolymerized. ICa-L antagonists may be effective in reducing the cardiomyopathy in HCM by altering metabolic activity.
Collapse
Affiliation(s)
- Helena M Viola
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Victoria P A Johnstone
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Henrietta Cserne Szappanos
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Tara R Richman
- The Harry Perkins Institute for Medical Research, The University of Western Australia, Crawley, Australia
| | - Tatiana Tsoutsman
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Australia
| | - Aleksandra Filipovska
- The Harry Perkins Institute for Medical Research, The University of Western Australia, Crawley, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | | | | | - Livia C Hool
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia.,Victor Chang Cardiac Research Institute, Sydney, Australia
| |
Collapse
|
43
|
Sterling SM, Dawes R, Allgeyer ES, Ashworth SL, Neivandt DJ. Comparison of [corrected] actin- and glass-supported phospholipid bilayer diffusion coefficients. Biophys J 2016; 108:1946-53. [PMID: 25902434 DOI: 10.1016/j.bpj.2015.02.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 02/22/2015] [Accepted: 02/25/2015] [Indexed: 01/15/2023] Open
Abstract
The formation of biomimetic lipid membranes has the potential to provide insights into cellular lipid membrane dynamics. The construction of such membranes necessitates not only the utilization of appropriate lipids, but also physiologically relevant substrate/support materials. The substrate materials employed have been shown to have demonstrable effects on the behavior of the overlying lipid membrane, and thus must be studied before use as a model cushion support. To our knowledge, we report the formation and investigation of a novel actin protein-supported lipid membrane. Specifically, inner leaflet lateral mobility of globular actin-supported DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayers, deposited via the Langmuir-Blodgett/Langmuir Schaefer methodology, was investigated by z-scan fluorescence correlation spectroscopy across a temperature range of 20-44°C. The actin substrate was found to decrease the diffusion coefficient when compared to an identical membrane supported on glass. The depression of the diffusion coefficient occurred across all measured temperatures. These results indicated that the actin substrate exerted a direct effect on the fluidity of the lipid membrane and highlighted the fact that the choice of substrate/support is critical in studies of model lipid membranes.
Collapse
Affiliation(s)
- Sarah M Sterling
- Department of Chemical and Biological Engineering, University of Maine, Orono, Maine; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| | - Ryan Dawes
- School of Biology and Ecology, University of Maine, Orono, Maine
| | - Edward S Allgeyer
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | - Sharon L Ashworth
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine; School of Biology and Ecology, University of Maine, Orono, Maine
| | - David J Neivandt
- Department of Chemical and Biological Engineering, University of Maine, Orono, Maine; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine.
| |
Collapse
|
44
|
Kallikourdis M, Trovato AE, Roselli G, Muscolini M, Porciello N, Tuosto L, Viola A. Phosphatidylinositol 4-Phosphate 5-Kinase β Controls Recruitment of Lipid Rafts into the Immunological Synapse. THE JOURNAL OF IMMUNOLOGY 2016; 196:1955-63. [PMID: 26773155 DOI: 10.4049/jimmunol.1501788] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/17/2015] [Indexed: 11/19/2022]
Abstract
Phosphatidylinositol 4,5-biphosphate (PIP2) is critical for T lymphocyte activation serving as a substrate for the generation of second messengers and the remodeling of actin cytoskeleton necessary for the clustering of lipid rafts, TCR, and costimulatory receptors toward the T:APC interface. Spatiotemporal analysis of PIP2 synthesis in T lymphocytes suggested that distinct isoforms of the main PIP2-generating enzyme, phosphatidylinositol 4-phosphate 5-kinase (PIP5K), play a differential role on the basis of their distinct localization. In this study, we analyze the contribution of PIP5Kβ to T cell activation and show that CD28 induces the recruitment of PIP5Kβ to the immunological synapse, where it regulates filamin A and lipid raft accumulation, as well as T cell activation, in a nonredundant manner. Finally, we found that Vav1 and the C-terminal 83 aa of PIP5Kβ are pivotal for the PIP5Kβ regulatory functions in response to CD28 stimulation.
Collapse
Affiliation(s)
- Marinos Kallikourdis
- Humanitas University, Rozzano, Milan 20089, Italy; Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Anna Elisa Trovato
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Giuliana Roselli
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Michela Muscolini
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy; and
| | - Nicla Porciello
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy; and
| | - Loretta Tuosto
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy; and
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua and Venetian Institute of Molecular Medicine, 35131 Padua, Italy
| |
Collapse
|
45
|
Moerke C, Mueller P, Nebe B. Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts. Biomaterials 2015; 76:102-14. [PMID: 26519652 DOI: 10.1016/j.biomaterials.2015.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 01/26/2023]
Abstract
Cells are sensitive to their underlying micro- and nano-topography, but the complex interplay is not completely understood especially if sharp edges and ridges of stochastically modified surfaces interfere with an attached cell body. Micro-topography offers cues that evoke a large range of cell responses e.g. altered adhesion behavior and integrin expression resulting in disturbed cell functions. In this study, we analyzed why osteoblastic cells mimic the underlying geometrical micro-pillar structure (5 × 5 × 5 μm, spacing of 5 μm) with their actin cytoskeleton. Interestingly, we discovered an attempted caveolae-mediated phagocytosis of each micro-pillar beneath the cells, which was accompanied by increased intracellular reactive oxygen species (ROS) production and reduced intracellular ATP levels. This energy consuming process hampered the cells in their function as osteoblasts at the interface. The raft-dependent/caveolae-mediated phagocytic pathway is regulated by diverse cellular components including caveolin-1 (Cav-1), cholesterol, actin cytoskeleton as well as actin-binding proteins like annexin A2 (AnxA2). Our results show a new aspect of osteoblast-material interaction and give insight into how cells behave on extraordinary micro-structures. We conclude that stochastically structured implants used in orthopedic surgery should avoid any topographical heights which induce phagocytosis to prevent their successful ingrowth.
Collapse
Affiliation(s)
- Caroline Moerke
- University Medical Center Rostock, Dept. of Cell Biology, Rostock, Germany
| | - Petra Mueller
- University Medical Center Rostock, Dept. of Cell Biology, Rostock, Germany
| | - Barbara Nebe
- University Medical Center Rostock, Dept. of Cell Biology, Rostock, Germany.
| |
Collapse
|
46
|
Izumi D, Ishimoto T, Miyake K, Sugihara H, Eto K, Sawayama H, Yasuda T, Kiyozumi Y, Kaida T, Kurashige J, Imamura Y, Hiyoshi Y, Iwatsuki M, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, Yoshida N, Watanabe M, Takamori H, Araki N, Tan P, Baba H. CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin β1 clustering and invasiveness in gastric cancer. Int J Cancer 2015; 138:1207-19. [PMID: 26414794 DOI: 10.1002/ijc.29864] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are reportedly involved in invasion and metastasis in several types of cancer, including gastric cancer (GC), through the stimulation of CXCL12/CXCR4 signaling. However, the mechanisms underlying these tumor-promoting effects are not well understood, which limits the potential to develop therapeutic targets against CAF-mediated CXCL12/CXCR4 signaling. CXCL12 expression was analyzed in resected GC tissues from 110 patients by immunohistochemistry (IHC). We established primary cultures of normal fibroblasts (NFs) and CAFs from the GC tissues and examined the functional differences between these primary fibroblasts using co-culture assays with GC cell lines. We evaluated the efficacy of a CXCR4 antagonist (AMD3100) and a FAK inhibitor (PF-573,228) on the invasive ability of GC cells. High CXCL12 expression levels were significantly associated with larger tumor size, increased tumor depth, lymphatic invasion and poor prognosis in GC. CXCL12/CXCR4 activation by CAFs mediated integrin β1 clustering at the cell surface and promoted the invasive ability of GC cells. Notably, AMD3100 was more efficient than PF-573,228 at inhibiting GC cell invasion through the suppression of integrin β1/FAK signaling. These results suggest that CXCL12 derived from CAFs promotes GC cell invasion by enhancing the clustering of integrin β1 in GC cells, resulting in GC progression. Taken together, the inhibition of CXCL12/CXCR4 signaling in GC cells may be a promising therapeutic strategy against GC cell invasion.
Collapse
Affiliation(s)
- Daisuke Izumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Keisuke Miyake
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetaka Sugihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kojiro Eto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadahito Yasuda
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kiyozumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takayoshi Kaida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yu Imamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukiharu Hiyoshi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Surgery, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Takamori
- Department of Surgery, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
47
|
Phua SC, Lin YC, Inoue T. An intelligent nano-antenna: Primary cilium harnesses TRP channels to decode polymodal stimuli. Cell Calcium 2015; 58:415-22. [PMID: 25828566 PMCID: PMC4564334 DOI: 10.1016/j.ceca.2015.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/30/2022]
Abstract
The primary cilium is a solitary hair-like organelle on the cell surface that serves as an antenna sensing ever-changing environmental conditions. In this review, we will first recapitulate the molecular basis of the polymodal sensory function of the primary cilia, specifically focusing on transient receptor potential (TRP) channels that accumulate inside the organelle and conduct calcium ions (Ca(2+)). Each subfamily member, namely TRPP2 TRPP3, TRPC1 and TRPV4, is gated by multiple environmental factors, including chemical (receptor ligands, intracellular second messengers such as Ca(2+)), mechanical (fluid shear stress, hypo-osmotic swelling), or physical (temperature, voltage) stimuli. Both activity and heterodimer compositions of the TRP channels may be dynamically regulated for precise tuning to the varying dynamic ranges of the individual input stimuli. We will thus discuss the potential regulation of TRP channels by local second messengers. Despite its reported importance in embryonic patterning and tissue morphogenesis, the precise functional significance of the downstream Ca(2+) signals of the TRP channels remains unknown. We will close our review by featuring recent technological advances in visualizing and analyzing signal transduction inside the primary cilia, together with current perspectives illuminating the functional significance of intraciliary Ca(2+) signals.
Collapse
Affiliation(s)
- Siew Cheng Phua
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Institute for Basic Biomedical Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Yu-Chun Lin
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Institute for Basic Biomedical Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Takanari Inoue
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Institute for Basic Biomedical Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Precursory Research for Embryonic Science and Technology (PRESTO) Investigator, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.
| |
Collapse
|
48
|
Cerecedo D, Martínez‐Vieyra I, Maldonado‐García D, Hernández‐González E, Winder SJ. Association of Membrane/Lipid Rafts With the Platelet Cytoskeleton and the Caveolin PY14: Participation in the Adhesion Process. J Cell Biochem 2015; 116:2528-40. [DOI: 10.1002/jcb.25197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/14/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Doris Cerecedo
- Laboratorio de HematobiologíaEscuela Nacional de Medicina y Homeopatía (ENMH)Instituto Politécnico Nacional (IPN)Mexico CityMexico
| | - Ivette Martínez‐Vieyra
- Laboratorio de HematobiologíaEscuela Nacional de Medicina y Homeopatía (ENMH)Instituto Politécnico Nacional (IPN)Mexico CityMexico
| | - Deneb Maldonado‐García
- Departamento de Biología CelularCentro de Investigación y de Estudios Avanzados del IPN (Cinvestav‐IPN)Mexico CityMexico
| | - Enrique Hernández‐González
- Departamento de Biología CelularCentro de Investigación y de Estudios Avanzados del IPN (Cinvestav‐IPN)Mexico CityMexico
| | - Steve J. Winder
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| |
Collapse
|
49
|
Nyholm TK. Lipid-protein interplay and lateral organization in biomembranes. Chem Phys Lipids 2015; 189:48-55. [DOI: 10.1016/j.chemphyslip.2015.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 01/07/2023]
|
50
|
Gordon VD, O'Halloran TJ, Shindell O. Membrane adhesion and the formation of heterogeneities: biology, biophysics, and biotechnology. Phys Chem Chem Phys 2015; 17:15522-33. [PMID: 25866854 PMCID: PMC4465551 DOI: 10.1039/c4cp05876c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Membrane adhesion is essential to many vital biological processes. Sites of membrane adhesion are often associated with heterogeneities in the lipid and protein composition of the membrane. These heterogeneities are thought to play functional roles by facilitating interactions between proteins. However, the causal links between membrane adhesion and membrane heterogeneities are not known. Here we survey the state of the field and indicate what we think are understudied areas ripe for development.
Collapse
Affiliation(s)
- V D Gordon
- The University of Texas at Austin, Department of Physics and Center for Nonlinear Dynamics, 2515 Speedway, Stop C1610, Austin, Texas 78712-1199, USA.
| | | | | |
Collapse
|