1
|
Liu M, Wen Y. Point-of-care testing for early-stage liver cancer diagnosis and personalized medicine: Biomarkers, current technologies and perspectives. Heliyon 2024; 10:e38444. [PMID: 39397977 PMCID: PMC11470528 DOI: 10.1016/j.heliyon.2024.e38444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Liver cancer is a highly prevalent and lethal form of cancer worldwide. In the absence of early diagnosis, treatment options for this disease are severely restricted. Recent advancements in genomics and bioinformatics have facilitated the discovery of a multitude of novel biomarkers that accurately depict an individual's disease diagnosis, progression, and treatment response. Leveraging these breakthroughs, personalized medicine employs an individual's biomarker profile to enable early detection of liver cancer and inform decisions regarding treatment selection, dosage determination, and prognosis assessment. The current lack of readily applicable, timely, and economically viable tools for biomarker analysis has hindered the incorporation of personalized medicine into regular clinical procedures. Over the past decade, significant advancements have been achieved in the field of molecular point-of-care testing (POCT) and amplification techniques, leading to substantial improvements in the diagnosis of liver cancer and the implementation of precision medicine. Instrument-free PCR technology or plasma PCR technology can shorten the complex procedure of in vitro detection of nucleic acid-based biomarkers. Also, compared to traditional ELISA, various nanomaterials modified with monoclonal antibodies to target proteins for recognition, capture, and detection have improved the efficiency of protein-based biomarker detection. These advances have reduced the time and cost of clinical detection of early-stage hepatocellular carcinoma and improved the efficiency of timely diagnosis and survival of suspected patients while reducing unnecessary testing costs and procedures. This review aims to provide a comprehensive overview of the current and emerging biomarkers employed in the early detection of liver cancer, as well as the advancements in point-of-care molecular testing technology and platforms. The primary objective is to assess their potential in facilitating the implementation of personalized medicine. This review ultimately revealed that the diagnosis of early-stage hepatocellular carcinoma not only requires sensitive biomarkers, but its various modifications and changes during the progression of cirrhosis to early-stage hepatocellular carcinoma will be a greater focus of our attention in the future. The rapid development of POCT has facilitated the opportunity to readily detect liver cancer in the general population in the future, and the integration of multi-pathway multiplexing and intelligent algorithms has improved the sensitivity and accuracy of early liver cancer biomarker detection. It is expected that the integration of point-of-care technology will be instrumental in the widespread adoption of personalized medicine in the foreseeable future.
Collapse
Affiliation(s)
- Mengxiang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Yanrong Wen
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
2
|
Gong X, He S, Cai P. Roles of TRIM21/Ro52 in connective tissue disease-associated interstitial lung diseases. Front Immunol 2024; 15:1435525. [PMID: 39165359 PMCID: PMC11333224 DOI: 10.3389/fimmu.2024.1435525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Multiple factors contribute to the development of connective tissue diseases (CTD), often alongside a range of interstitial lung diseases (ILD), including Sjögren's syndrome-associated ILD, systemic sclerosis-associated ILD, systemic lupus erythematosus-associated ILD, idiopathic inflammatory myositis-associated ILD. TRIM21(or Ro52), an E3 ubiquitin ligase, plays a vital role in managing innate and adaptive immunity, and maintaining cellular homeostasis, and is a focal target for autoantibodies in various rheumatic autoimmune diseases. However, the effectiveness of anti-TRIM21 antibodies in diagnosing CTD remains a matter of debate because of their non-specific nature. Recent studies indicate that TRIM21 and its autoantibody are involved in the pathogenesis of CTD-ILD and play an important role in diagnosis and prognosis. In this review, we focus on the contribution of TRIM21 in the pathogenesis of CTD-ILD, as well as the potential diagnostic value of its autoantibodies in different types of CTD-ILD for disease progression and potential as a novel therapeutic target.
Collapse
Affiliation(s)
| | | | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Martins YC, Jurberg AD, Daniel-Ribeiro CT. Visiting Molecular Mimicry Once More: Pathogenicity, Virulence, and Autoimmunity. Microorganisms 2023; 11:1472. [PMID: 37374974 DOI: 10.3390/microorganisms11061472] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
The concept of molecular mimicry describes situations in which antigen sharing between parasites and hosts could benefit pathogen evasion from host immune responses. However, antigen sharing can generate host responses to parasite-derived self-like peptides, triggering autoimmunity. Since its conception, molecular mimicry and the consequent potential cross-reactivity following infections have been repeatedly described in humans, raising increasing interest among immunologists. Here, we reviewed this concept focusing on the challenge of maintaining host immune tolerance to self-components in parasitic diseases. We focused on the studies that used genomics and bioinformatics to estimate the extent of antigen sharing between proteomes of different organisms. In addition, we comparatively analyzed human and murine proteomes for peptide sharing with proteomes of pathogenic and non-pathogenic organisms. We conclude that, although the amount of antigenic sharing between hosts and both pathogenic and non-pathogenic parasites and bacteria is massive, the degree of this antigen sharing is not related to pathogenicity or virulence. In addition, because the development of autoimmunity in response to infections by microorganisms endowed with cross-reacting antigens is rare, we conclude that molecular mimicry by itself is not a sufficient factor to disrupt intact self-tolerance mechanisms.
Collapse
Affiliation(s)
- Yuri Chaves Martins
- Department of Anesthesiology, Saint Louis University School of Medicine, St. Louis, MO 63110, USA
| | - Arnon Dias Jurberg
- Instituto de Educação Médica, Campus Vista Carioca, Universidade Estácio de Sá, Rio de Janeiro 20071-004, RJ, Brazil
- Laboratório de Animais Transgênicos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, RJ, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária and Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, RJ, Brazil
| |
Collapse
|
4
|
Wang D, Yang D, Yang L, Diao L, Zhang Y, Li Y, Wang H, Ren J, Cheng L, Tan Q, Zhang R, Han X, Zhang X, Wang B, Li D, Chen M, Hermjakob H, Li Y, LaBaer J, Zhou Z, Yu X. Human Autoantigen Atlas: Searching for the Hallmarks of Autoantigens. J Proteome Res 2023. [PMID: 37183442 DOI: 10.1021/acs.jproteome.2c00799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Understanding autoimmunity to endogenous proteins is crucial in diagnosing and treating autoimmune diseases. In this work, we developed a user-friendly AAgAtlas portal (http://biokb.ncpsb.org.cn/aagatlas_portal/index.php#), which can be used to search for 8045 non-redundant autoantigens (AAgs) and 47 post-translationally modified AAgs against 1073 human diseases that are prioritized by a credential score developed by multisource evidence. Using AAgAtlas, the immunogenic properties of human AAgs was systematically elucidated according to their genetic, biophysical, cytological, expression profile, and evolutionary characteristics. The results indicated that human AAgs are evolutionally conserved in protein sequence and enriched in three hydrophilic and polar amino acid residues (K, D, and E) that are located at the protein surface. AAgs are enriched in proteins that are involved in nucleic acid binding, transferase, and the cytoskeleton. Genome, transcriptome, and proteome analyses further indicated that AAb production is associated with gene variance and abnormal protein expression related to the pathological activities of different tumors. Collectively, our data outlines the hallmarks of human AAgs that facilitate the understanding of humoral autoimmunity and the identification of biomarkers of human diseases.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Liuhui Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lihong Diao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yuqi Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Hongye Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jing Ren
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Linlin Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qiaoyun Tan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ran Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaohan Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
- College of Medicine and Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bingwei Wang
- College of Medicine and Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Meng Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Joshua LaBaer
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Zhou Zhou
- Department of Laboratory Medicine, National Center for Cardiovascular Diseases and Fuwai Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
5
|
Harakal J, Qiao H, Wheeler K, Rival C, Paul AGA, Hardy DM, Cheng CY, Goldberg E, Tung KSK. Exposed and Sequestered Antigens in Testes and Their Protection by Regulatory T Cell-Dependent Systemic Tolerance. Front Immunol 2022; 13:809247. [PMID: 35693780 PMCID: PMC9179417 DOI: 10.3389/fimmu.2022.809247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/07/2022] [Indexed: 12/03/2022] Open
Abstract
Continuous exposure of tissue antigen (Ag) to the autoantigen-specific regulatory T cells (Treg) is required to maintain Treg-dependent systemic tolerance. Thus, testis autoantigens, previously considered as sequestered, may not be protected by systemic tolerance. We now document that the complete testis antigen sequestration is not valid. The haploid sperm Ag lactate dehydrogenase 3 (LDH3) is continuously exposed and not sequestered. It enters the residual body (RB) to egress from the seminiferous tubules and interact with circulating antibody (Ab). Some LDH3 also remains inside the sperm cytoplasmic droplets (CD). Treg-depletion in the DEREG mice that express diphtheria toxin receptor on the Foxp3 promoter results in spontaneous experimental autoimmune orchitis (EAO) and Ab to LDH3. Unlike the wild-type male mice, mice deficient in LDH3 (wild-type female or LDH3 NULL males) respond vigorously to LDH3 immunization. However, partial Treg depletion elevated the wild-type male LDH3 responses to the level of normal females. In contrast to LDH3, zonadhesin (ZAN) in the sperm acrosome displays properties of a sequestered Ag. However, when ZAN and other sperm Ag are exposed by vasectomy, they rapidly induce testis Ag-specific tolerance, which is terminated by partial Treg-depletion, leading to bilateral EAO and ZAN Ab response. We conclude that some testis/sperm Ag are normally exposed because of the unique testicular anatomy and physiology. The exposed Ag: 1) maintain normal Treg-dependent systemic tolerance, and 2) are pathogenic and serve as target Ag to initiate EAO. Unexpectedly, the sequestered Ags, normally non-tolerogenic, can orchestrate de novo Treg-dependent, systemic tolerance when exposed in vasectomy.
Collapse
Affiliation(s)
- Jessica Harakal
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, University of Virginia, Charlottesville, VA, United States
- Bierne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Hui Qiao
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
- Bierne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Karen Wheeler
- Department of Microbiology, University of Virginia, Charlottesville, VA, United States
- Bierne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Claudia Rival
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
- Bierne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Alberta G. A. Paul
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
- Bierne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Daniel M. Hardy
- Cell Biology and Biochemistry Department, Texas Tech University Health Science Center (HSC), Lubbock, TX, United States
| | - C. Yan Cheng
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Erwin Goldberg
- Molecular Biochemistry Department, Northwestern University, Evanstan, IL, United States
| | - Kenneth S. K. Tung
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, University of Virginia, Charlottesville, VA, United States
- Bierne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- *Correspondence: Kenneth S. K. Tung,
| |
Collapse
|
6
|
Adamus G. Importance of Autoimmune Responses in Progression of Retinal Degeneration Initiated by Gene Mutations. Front Med (Lausanne) 2021; 8:672444. [PMID: 34926479 PMCID: PMC8674421 DOI: 10.3389/fmed.2021.672444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous rare disorders associated with retinal dysfunction and death of retinal photoreceptor cells, leading to blindness. Among the most frequent and severe forms of those retinopathies is retinitis pigmentosa (RP) that affects 1:4,000 individuals worldwide. The genes that have been implicated in RP are associated with the proteins present in photoreceptor cells or retinal pigment epithelium (RPE). Asymmetric presentation or sudden progression in retinal disease suggests that a gene mutation alone might not be responsible for retinal degeneration. Immune responses could directly target the retina or be site effect of immunity as a bystander deterioration. Autoantibodies against retinal autoantigens have been found in RP, which led to a hypothesis that autoimmunity could be responsible for the progression of photoreceptor cell death initiated by a genetic mutation. The other contributory factor to retinal degeneration is inflammation that activates the innate immune mechanisms, such as complement. If autoimmune responses contribute to the progression of retinopathy, this could have an implication on treatment, such as gene replacement therapy. In this review, we provide a perspective on the current role of autoimmunity/immunity in RP pathophysiology.
Collapse
Affiliation(s)
- Grazyna Adamus
- Ocular Immunology Laboratory, Casey Eye Institute, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
7
|
Vakilian M. A review on the effect of prolyl isomerization on immune response aberration and hypersensitivity reactions: A unifying hypothesis. Clin Immunol 2021; 234:108896. [PMID: 34848356 DOI: 10.1016/j.clim.2021.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/01/2022]
Abstract
Little is known about the causes and mechanisms of ectopic immune responses, including different types of hypersensitivity, superantigens, and cytokine storms. Two of the most questionable phenomena observed in immunology are why the intensity and extent of immune responses to different antigens are different, and why some self-antigens are attacked as foreign. The secondary structure of the peptides involved in the immune system, such as the epitope-paratope interfaces plays a pivotal role in the resulting immune responses. Prolyl cis/trans isomerization plays a fundamental role in the form of the secondary structure and the folding of proteins. This review covers some of the emerging evidence indicating the impact of prolyl isomerization on protein conformation, aberration of immune responses, and the development of hypersensitivity reactions.
Collapse
Affiliation(s)
- Mehrdad Vakilian
- Department of Cell Biology, Genetics and Physiology, University of Malaga (UMA), The Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain.
| |
Collapse
|
8
|
Specific Autoantibodies in Neovascular Age-Related Macular Degeneration: Evaluation of Morphological and Functional Progression over Five Years. J Pers Med 2021; 11:jpm11111207. [PMID: 34834560 PMCID: PMC8624782 DOI: 10.3390/jpm11111207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Altered levels of autoantibodies (aab) and their networks have been identified as biomarkers for various diseases. Neovascular age-related macular degeneration (nAMD) is a leading cause for central vision loss worldwide with highly variable inter- and intraindividual disease courses. Certain aab networks could help in daily routine to identify patients with a high disease activity who need to be visited and treated more regularly. (2) Methods: We analyzed levels of aab against Angiotensin II receptor type 1 (AT1-receptor), Protease-activated receptors (PAR1), vascular endothelial growth factor (VEGF) -A, VEGF-B, and VEGF-receptor 2 in sera of 164 nAMD patients. In a follow-up period of five years, we evaluated changes in functional and morphological characteristics. Using correlation analyses, multiple regression models, and receiver operator characteristics, we assessed whether the five aab have a clinical significance as biomarkers that correspond to the clinical properties. (3) Results: Neither the analyzed aab individually nor taken together as a network showed statistically significant results that would allow us to draw conclusions on the clinical five-year course in nAMD patients. (4) Conclusions: The five aab that we analyzed do not correspond to the clinical five-year course of nAMD patients. However, larger, prospective studies should reevaluate different and more aab to gain deeper insights.
Collapse
|
9
|
Wang D, Zhang Y, Meng Q, Yu X. AAgAtlas 1.0: A Database of Human Autoantigens Extracted from Biomedical Literature. Methods Mol Biol 2021; 2131:365-374. [PMID: 32162267 DOI: 10.1007/978-1-0716-0389-5_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Autoantibodies are antibodies against host self-proteins (autoantigens), which play significant roles in homeostasis maintenance and diseases with autoimmune disorders. Numerous papers were published in the past decade on the identification of human autoantigens in different human diseases. However, there is no consensus collection with all the reported autoantigens yet. To address this need, previously we developed a human autoantigen database, AAgAtlas 1.0, by text-mining and manual curation, which collects 1126 autoantigens associated with 1071 human diseases. AAgAtlas 1.0 provides a user-friendly interface to conveniently browse, retrieve, and download human autoantigen genes, their functional annotation, related diseases, and the evidence from the literature. AAgAtlas is freely available online http://biokb.ncpsb.org/aagatlas/ . In this chapter, we make an introduction and provide a guide to the users of AAgAtlas 1.0 database.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Yupeng Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Qing Meng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China.
| |
Collapse
|
10
|
Pashnina IA, Krivolapova IM, Fedotkina TV, Ryabkova VA, Chereshneva MV, Churilov LP, Chereshnev VA. Antinuclear Autoantibodies in Health: Autoimmunity Is Not a Synonym of Autoimmune Disease. Antibodies (Basel) 2021; 10:9. [PMID: 33668697 PMCID: PMC8006153 DOI: 10.3390/antib10010009] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/26/2020] [Accepted: 02/07/2021] [Indexed: 12/11/2022] Open
Abstract
The incidence of autoimmune diseases is increasing. Antinuclear antibody (ANA) testing is a critical tool for their diagnosis. However, ANA prevalence in healthy persons has increased over the last decades, especially among young people. ANA in health occurs in low concentrations, with a prevalence up to 50% in some populations, which demands a cutoff revision. This review deals with the origin and probable physiological or compensatory function of ANA in health, according to the concept of immunological clearance, theory of autoimmune regulation of cell functions, and the concept of functional autoantibodies. Considering ANA titers ≤1:320 as a serological marker of autoimmune diseases seems inappropriate. The role of anti-DFS70/LEDGFp75 autoantibodies is highlighted as a possible anti-risk biomarker for autoimmune rheumatic disorders. ANA prevalence in health is different in various regions due to several underlying causes discussed in the review, all influencing additive combinations according to the concept of the mosaic of autoimmunity. Not only are titers, but also HEp-2 IFA) staining patterns, such as AC-2, important. Accepting autoantibodies as a kind of bioregulator, not only the upper, but also the lower borders of their normal range should be determined; not only their excess, but also a lack of them or "autoimmunodeficiency" could be the reason for disorders.
Collapse
Affiliation(s)
- Irina A. Pashnina
- Regional Children’s Clinical Hospital, 620149 Yekaterinburg, Russia;
| | - Irina M. Krivolapova
- Regional Children’s Clinical Hospital, 620149 Yekaterinburg, Russia;
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (M.V.C.); (V.A.C.)
| | - Tamara V. Fedotkina
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (T.V.F.); (V.A.R.); (L.P.C.)
| | - Varvara A. Ryabkova
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (T.V.F.); (V.A.R.); (L.P.C.)
| | - Margarita V. Chereshneva
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (M.V.C.); (V.A.C.)
| | - Leonid P. Churilov
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (T.V.F.); (V.A.R.); (L.P.C.)
- Saint Petersburg Research Institute of Phthisiopulmonology, 191036 Saint Petersburg, Russia
| | - Valeriy A. Chereshnev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (M.V.C.); (V.A.C.)
| |
Collapse
|
11
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2021; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
12
|
Carl PL, Fried HM, Cohen PL. Proteins in assemblages formed by phase separation possess properties that promote their transformation to autoantigens: Implications for autoimmunity. J Autoimmun 2020; 111:102471. [DOI: 10.1016/j.jaut.2020.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
|
13
|
Senécal JL, Hoa S, Yang R, Koenig M. Pathogenic roles of autoantibodies in systemic sclerosis: Current understandings in pathogenesis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:103-129. [PMID: 35382028 PMCID: PMC8922609 DOI: 10.1177/2397198319870667] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/29/2019] [Indexed: 09/12/2023]
Abstract
The potential pathogenic role for autoantibodies in systemic sclerosis has captivated researchers for the past 40 years. This review answers the question whether there is yet sufficient knowledge to conclude that certain serum autoantibodies associated with systemic sclerosis contribute to its pathogenesis. Definitions for pathogenic, pathogenetic and functional autoantibodies are formulated, and the need to differentiate these autoantibodies from natural autoantibodies is emphasized. In addition, seven criteria for the identification of pathogenic autoantibodies are proposed. Experimental evidence is reviewed relevant to the classic systemic sclerosis antinuclear autoantibodies, anti-topoisomerase I and anticentromere, and to functional autoantibodies to endothelin 1 type A receptor, angiotensin II type 1 receptor, muscarinic receptor 3, platelet-derived growth factor receptor, chemokine receptors CXCR3 and CXCR4, estrogen receptor α, and CD22. Pathogenic evidence is also reviewed for anti-matrix metalloproteinases 1 and 3, anti-fibrillin 1, anti-IFI16, anti-eIF2B, anti-ICAM-1, and anti-RuvBL1/RuvBL2 autoantibodies. For each autoantibody, objective evidence for a pathogenic role is scored qualitatively according to the seven pathogenicity criteria. It is concluded that anti-topoisomerase I is the single autoantibody specificity with the most evidence in favor of a pathogenic role in systemic sclerosis, followed by anticentromere. However, these autoantibodies have not been demonstrated yet to fulfill completely the seven proposed criteria for pathogenicity. Their contributory roles to the pathogenesis of systemic sclerosis remain possible but not yet conclusively demonstrated. With respect to functional autoantibodies and other autoantibodies, only a few criteria for pathogenicity are fulfilled. Their common presence in healthy and disease controls suggests that major subsets of these immunoglobulins are natural autoantibodies. While some of these autoantibodies may be pathogenetic in systemic sclerosis, establishing that they are truly pathogenic is a work in progress. Experimental data are difficult to interpret because high serum autoantibody levels may be due to polyclonal B-cell activation. Other limitations in experimental design are the use of total serum immunoglobulin G rather than affinity-purified autoantibodies, the confounding effect of other systemic sclerosis autoantibodies present in total immunoglobulin G and the lack of longitudinal studies to determine if autoantibody titers fluctuate with systemic sclerosis activity and severity. These intriguing new specificities expand the spectrum of autoantibodies observed in systemic sclerosis. Continuing elucidation of their potential mechanistic roles raises hope of a better understanding of systemic sclerosis pathogenesis leading to improved therapies.
Collapse
Affiliation(s)
- Jean-Luc Senécal
- Scleroderma Research Chair, Université de Montréal, Montreal, QC, Canada
- Division of Rheumatology, Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Autoimmunity Research Laboratory, Research Centre of the Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Sabrina Hoa
- Division of Rheumatology, Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Autoimmunity Research Laboratory, Research Centre of the Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Roger Yang
- Division of Rheumatology, Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Martial Koenig
- Autoimmunity Research Laboratory, Research Centre of the Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Division of Internal Medicine, Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
14
|
Tan Q, Wang D, Yang J, Xing P, Yang S, Li Y, Qin Y, He X, Liu Y, Zhou S, Duan H, Liang T, Wang H, Wang Y, Jiang S, Zhao F, Zhong Q, Zhou Y, Wang S, Dai J, Yao J, Wu D, Zhang Z, Sun Y, Han X, Yu X, Shi Y. Autoantibody profiling identifies predictive biomarkers of response to anti-PD1 therapy in cancer patients. Am J Cancer Res 2020; 10:6399-6410. [PMID: 32483460 PMCID: PMC7255026 DOI: 10.7150/thno.45816] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Programmed cell death protein 1 (PD1) inhibitors have revolutionized cancer therapy, yet many patients fail to respond. Thus, the identification of accurate predictive biomarkers of therapy response will improve the clinical benefit of anti-PD1 therapy. Method: We assessed the baseline serological autoantibody (AAb) profile against ~2300 proteins in 10 samples and ~4600 proteins in 35 samples with alveolar soft part sarcoma (ASPS), non-small-cell lung cancer (NSCLC) and lymphoma using Nucleic Acid Programmable Protein Arrays (NAPPA). 23 selected potential AAb biomarkers were verified using simple, affordable and rapid enzyme linked immune sorbent assay (ELISA) technology with baseline plasma samples from 12 ASPS, 16 NSCLC and 46 lymphoma patients. SIX2 and EIF4E2 AAbs were further validated in independent cohorts of 17 NSCLC and 43 lymphoma patients, respectively, using ELISA. The IgG subtypes in response to therapy were also investigated. Results: Distinct AAb profiles between ASPS, NSCLC and lymphoma were observed. In ASPS, the production of P53 and PD1 AAbs were significantly increased in non-responders (p=0.037). In NSCLC, the SIX2 AAb was predictive of response with area under the curve (AUC) of 0.87, 0.85 and 0.90 at 3 months, 4.5 months, 6 months evaluation time points, respectively. In the validation cohort, the SIX2 AAb was consistently up-regulated in non-responders (p=0.024). For lymphoma, the EIF4E2 AAb correlated with a favorable response with AUCs of 0.68, 0.70, and 0.70 at 3 months, 4.5 months, and 6 months, respectively. In the validation cohort, the AUCs were 0.74, 0.75 and 0.66 at 3 months, 4.5 months, and 6 months, respectively. The PD1 and PD-L1 IgG2 AAbs were highly produced in ~20% of lymphoma responders. Furthermore, bioinformatics analysis revealed antigen functions of these AAb biomarkers. Conclusion: This study provides the first evidence that AAb biomarkers selected using high-throughput protein microarrays can predict anti-PD1 therapeutic response and guide anti-PD1 therapy.
Collapse
|
15
|
Longitudinal serum autoantibody repertoire profiling identifies surgery-associated biomarkers in lung adenocarcinoma. EBioMedicine 2020; 53:102674. [PMID: 32113159 PMCID: PMC7047177 DOI: 10.1016/j.ebiom.2020.102674] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Longitudinal sera were globally analyzed for identification of surgery-associated serum biomarker for the first time. Autoantibody repertories are stable for a single individual at different time points but highly variable among individuals. Surgery-associated serum biomarkers are prevalent in lung adenocarcinoma patients.
Background Autoantibodies against tumor associated antigens are highly related to cancer progression. Autoantibodies could serve as indicators of tumor burden, and have the potential to monitor the response of treatment and tumor recurrence. However, how the autoantibody repertoire changes in response to cancer treatment are largely unknown. Methods Sera of five lung adenocarcinoma patients before and after surgery, were collected longitudinally. These sera were analyzed on a human proteome microarray of 20,240 recombinant proteins to acquire dynamic autoantibody repertoire in response to surgery, as well as to identify the antigens with decreased antibody response after tumor excision or surgery, named as surgery-associated antigens. The identified candidate antigens were then used to construct focused microarray and validated by longitudinal sera collected from a variety of time points of the same patient and a larger cohort of 45 sera from lung adenocarcinoma patients. Findings The autoantibody profiles are highly variable among patients. Meanwhile, the autoantibody profiles of the sera from the same patient were surprisingly stable for at least 3 months after surgery. Six surgery-associated antigens were identified and validated. All the five patients have at least one surgery-associated antigen, demonstrating this type of biomarkers is prevalent, while specific antigens are poorly shared among individuals. The prevalence of each antigen is 2%–14% according to the test with a larger cohort. Interpretation To our knowledge, this is the first study of dynamically profiling of autoantibody repertoires before/after surgery of cancer patients. The high prevalence of surgery-associated antigens implies the possible broad application for monitoring of tumor recurrence in population, while the low prevalence of specific antigens allows personalized medicine. After the accumulation and analysis of more longitudinal samples, the surgery-associated serum biomarkers, combined as a panel, may be applied to alarm the recurrence of tumor in a personalized manner. Funding Research supported by grants from National Key Research and Development Program of China Grant (No. 2016YFA0500600), National Natural Science Foundation of China (No. 31970130, 31600672, 31670831, and 31370813), Open Foundation of Key Laboratory of Systems Biomedicine (No. KLSB2017QN-01), Science and Technology Commission of Shanghai Municipality Medical Guidance Science &Technology Support Project (16411966100), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20172005), Shanghai Municipal Commission of Health and Family Planning Outstanding Academic Leaders Training Program (2017BR055) and National Natural Science Foundation of China (81871882).
Collapse
|
16
|
Zheng Z, Mergaert AM, Fahmy LM, Bawadekar M, Holmes CL, Ong IM, Bridges AJ, Newton MA, Shelef MA. Disordered Antigens and Epitope Overlap Between Anti-Citrullinated Protein Antibodies and Rheumatoid Factor in Rheumatoid Arthritis. Arthritis Rheumatol 2019; 72:262-272. [PMID: 31397047 DOI: 10.1002/art.41074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/06/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Anti-citrullinated protein antibodies (ACPAs) and rheumatoid factor (RF) are commonly present in rheumatoid arthritis (RA) without a clear rationale for their coexistence. Moreover, autoantibodies develop against proteins with different posttranslational modifications and native proteins without obvious unifying characteristics of the antigens. We undertook this study to broadly evaluate autoantibody binding in seronegative and seropositive RA to identify novel features of reactivity. METHODS An array was created using a total of 172,828 native peptides, citrulline-containing peptides, and homocitrulline-containing peptides derived primarily from proteins citrullinated in the rheumatoid joint. IgG and IgM binding to peptides were compared between cyclic citrullinated peptide (CCP)-positive RF+, CCP+RF-, CCP-RF+, and CCP-RF- serum from RA patients (n = 48) and controls (n = 12). IgG-bound and endogenously citrullinated peptides were analyzed for amino acid patterns and predictors of intrinsic disorder, i.e., unstable 3-dimensional structure. Binding to IgG-derived peptides was specifically evaluated. Enzyme-linked immunosorbent assay confirmed key results. RESULTS Broadly, CCP+RF+ patients had high citrulline-specific IgG binding to array peptides and CCP+RF- and CCP-RF+ patients had modest citrulline-specific IgG binding (median Z scores 3.02, 1.42, and 0.75, respectively; P < 0.0001). All RA groups had low homocitrulline-specific binding. CCP+RF+ patients had moderate IgG binding to native peptides (median Z score 2.38; P < 0.0001). The highest IgG binding was to citrulline-containing peptides, irrespective of protein identity, especially if citrulline was adjacent to glycine or serine, motifs also seen in endogenous citrullination in the rheumatoid joint. Highly bound peptides had multiple features predictive of disorder. IgG from CCP+RF+ patients targeted citrulline-containing IgG-derived peptides. CONCLUSION Disordered antigens, which are frequently citrullinated, and common epitopes for ACPAs and RF are potentially unifying features for RA autoantibodies.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene M Ong
- University of Wisconsin-Madison and University of Wisconsin Carbone Comprehensive Cancer Center
| | - Alan J Bridges
- University of Wisconsin-Madison and William S. Middleton Memorial Veterans Hospital
| | | | - Miriam A Shelef
- University of Wisconsin-Madison and William S. Middleton Memorial Veterans Hospital
| |
Collapse
|
17
|
Duhalde Vega M, Aparicio JL, Mandour MF, Retegui LA. The autoimmune response elicited by mouse hepatitis virus (MHV-A59) infection is modulated by liver tryptophan-2,3-dioxygenase (TDO). Immunol Lett 2019; 217:25-30. [PMID: 31726186 DOI: 10.1016/j.imlet.2019.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 11/03/2019] [Accepted: 11/10/2019] [Indexed: 01/27/2023]
Abstract
In a previous work we demonstrated that inhibition of mouse indoleamine 2,3-dioxygenase (IDO) by methyltryptophan (MT) exacerbated the pathological actions of mouse hepatitis virus (MHV-A59) infection, suggesting that tryptophan (TRP) catabolism was involved in viral effects. Since there is a second enzyme that dioxygenates TRP, tryptophan-2, 3-dioxygenase (TDO), which is mainly located in liver, we decided to study its role in our model of MHV-infection. Results showed that in vivo TDO inhibition by LM10, a derivative of 3-(2-(pyridyl) ethenyl) indole, resulted in a decrease of anti- MHV Ab titers induced by the virus infection. Besides, a reduction of some alarmin release, i.e, uric acid and high-mobility group box1 protein (HMGB1), was observed. Accordingly, since alarmin liberation was related to the expression of autoantibodies (autoAb) to fumarylacetoacetate hydrolase (FAH), these autoAb also diminished. Moreover, PCR results indicated that TDO inhibition did not abolish viral replication. Furthermore, histological liver examination did not reveal strong pathologies, whereas mouse survival was hundred percent in control as well as in MHV-infected mice treated with LM10. Data presented in this work indicate that in spite of the various TDO actions already described, specific TDO blockage could also restrain some MHV actions, mainly suppressing autoimmune reactions. Such results should prompt further experiments with various viruses to confirm the possible use of a TDO inhibitor such as LM-10 to treat either viral infections or even autoimmune diseases triggered by a viral infection.
Collapse
Affiliation(s)
- Maite Duhalde Vega
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - José L Aparicio
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Mohamed F Mandour
- Unit of Experimental Medicine, Christian de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Lilia A Retegui
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
18
|
Xu YW, Peng YH, Xu LY, Xie JJ, Li EM. Autoantibodies: Potential clinical applications in early detection of esophageal squamous cell carcinoma and esophagogastric junction adenocarcinoma. World J Gastroenterol 2019; 25:5049-5068. [PMID: 31558856 PMCID: PMC6747294 DOI: 10.3748/wjg.v25.i34.5049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/28/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) and esophagogastric junction adenocarcinoma (EGJA) are the two main types of gastrointestinal cancers that pose a huge threat to human health. ESCC remains one of the most common malignant diseases around the world. In contrast to the decreasing prevalence of ESCC, the incidence of EGJA is rising rapidly. Early detection represents one of the most promising ways to improve the prognosis and reduce the mortality of these cancers. Current approaches for early diagnosis mainly depend on invasive and costly endoscopy. Non-invasive biomarkers are in great need to facilitate earlier detection for better clinical management of patients. Tumor-associated autoantibodies can be detected at an early stage before manifestations of clinical signs of tumorigenesis, making them promising biomarkers for early detection and monitoring of ESCC and EGJA. In this review, we summarize recent insights into the iden-tification and validation of tumor-associated autoantibodies for the early detection of ESCC and EGJA and discuss the challenges remaining for clinical validation.
Collapse
Affiliation(s)
- Yi-Wei Xu
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jian-Jun Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
19
|
Celhar T, Yasuga H, Lee HY, Zharkova O, Tripathi S, Thornhill SI, Lu HK, Au B, Lim LHK, Thamboo TP, Akira S, Wakeland EK, Connolly JE, Fairhurst AM. Toll-Like Receptor 9 Deficiency Breaks Tolerance to RNA-Associated Antigens and Up-Regulates Toll-Like Receptor 7 Protein in Sle1 Mice. Arthritis Rheumatol 2019; 70:1597-1609. [PMID: 29687651 PMCID: PMC6175219 DOI: 10.1002/art.40535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/17/2018] [Indexed: 12/15/2022]
Abstract
Objective Toll‐like receptors (TLRs) 7 and 9 are important innate signaling molecules with opposing roles in the development and progression of systemic lupus erythematosus (SLE). While multiple studies support the notion of a dependency on TLR‐7 for disease development, genetic ablation of TLR‐9 results in severe disease with glomerulonephritis (GN) by a largely unknown mechanism. This study was undertaken to examine the suppressive role of TLR‐9 in the development of severe lupus in a mouse model. Methods We crossed Sle1 lupus‐prone mice with TLR‐9–deficient mice to generate Sle1TLR‐9−/− mice. Mice ages 4.5–6.5 months were evaluated for severe autoimmunity by assessing splenomegaly, GN, immune cell populations, autoantibody and total Ig profiles, kidney dendritic cell (DC) function, and TLR‐7 protein expression. Mice ages 8–10 weeks were used for functional B cell studies, Ig profiling, and determination of TLR‐7 expression. Results Sle1TLR‐9−/− mice developed severe disease similar to TLR‐9–deficient MRL and Nba2 models. Sle1TLR‐9−/− mouse B cells produced more class‐switched antibodies, and the autoantibody repertoire was skewed toward RNA‐containing antigens. GN in these mice was associated with DC infiltration, and purified Sle1TLR‐9−/− mouse renal DCs were more efficient at TLR‐7–dependent antigen presentation and expressed higher levels of TLR‐7 protein. Importantly, this increase in TLR‐7 expression occurred prior to disease development, indicating a role in the initiation stages of tissue destruction. Conclusion The increase in TLR‐7–reactive immune complexes, and the concomitant enhanced expression of their receptor, promotes inflammation and disease in Sle1TLR9−/− mice.
Collapse
Affiliation(s)
- Teja Celhar
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Hiroko Yasuga
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Hui Yin Lee
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Olga Zharkova
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Shubhita Tripathi
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Susannah I Thornhill
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Hao K Lu
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Bijin Au
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore
| | | | | | | | | | - John E Connolly
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore
| | - Anna-Marie Fairhurst
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| |
Collapse
|
20
|
|
21
|
Cabral-Marques O, Marques A, Giil LM, De Vito R, Rademacher J, Günther J, Lange T, Humrich JY, Klapa S, Schinke S, Schimke LF, Marschner G, Pitann S, Adler S, Dechend R, Müller DN, Braicu I, Sehouli J, Schulze-Forster K, Trippel T, Scheibenbogen C, Staff A, Mertens PR, Löbel M, Mastroianni J, Plattfaut C, Gieseler F, Dragun D, Engelhardt BE, Fernandez-Cabezudo MJ, Ochs HD, Al-Ramadi BK, Lamprecht P, Mueller A, Heidecke H, Riemekasten G. GPCR-specific autoantibody signatures are associated with physiological and pathological immune homeostasis. Nat Commun 2018; 9:5224. [PMID: 30523250 PMCID: PMC6283882 DOI: 10.1038/s41467-018-07598-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022] Open
Abstract
Autoantibodies have been associated with autoimmune diseases. However, studies have identified autoantibodies in healthy donors (HD) who do not develop autoimmune disorders. Here we provide evidence of a network of immunoglobulin G (IgG) autoantibodies targeting G protein-coupled receptors (GPCR) in HD compared to patients with systemic sclerosis, Alzheimer's disease, and ovarian cancer. Sex, age and pathological conditions affect autoantibody correlation and hierarchical clustering signatures, yet many of the correlations are shared across all groups, indicating alterations to homeostasis. Furthermore, we identify relationships between autoantibodies targeting structurally and functionally related molecules, such as vascular, neuronal or chemokine receptors. Finally, autoantibodies targeting the endothelin receptor type A (EDNRA) exhibit chemotactic activity, as demonstrated by neutrophil migration toward HD-IgG in an EDNRA-dependent manner and in the direction of IgG from EDNRA-immunized mice. Our data characterizing the in vivo signatures of anti-GPCR autoantibodies thus suggest that they are a physiological part of the immune system.
Collapse
Affiliation(s)
- Otavio Cabral-Marques
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, 23538, Germany.
- Department of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany.
| | - Alexandre Marques
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, 23538, Germany
- Department of Statistic, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| | | | - Roberta De Vito
- Department of Computer Science, Princeton University, Princeton, NJ, 08540, USA
| | - Judith Rademacher
- Department of Gastroenterology, Infectiology and Rheumatology, Charité University Hospital, Berlin, 12203, Germany
- Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - Jeannine Günther
- Dept. of Rheumatology and Clinical Immunology, Charité University Hospital, Berlin, 10117, Germany
- Cell Autoimmunity Group, German Rheumatism Research Center (DRFZ), Berlin, 10117, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, 23538, Germany
| | - Jens Y Humrich
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, 23538, Germany
| | - Sebastian Klapa
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, 23538, Germany
| | - Susanne Schinke
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, 23538, Germany
| | - Lena F Schimke
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, 23538, Germany
| | - Gabriele Marschner
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, 23538, Germany
| | - Silke Pitann
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, 23538, Germany
| | - Sabine Adler
- University Hospital and University of Bern, Bern, 3012, Switzerland
| | - Ralf Dechend
- Experimental and Clinical Research Center, a collaboration of Max Delbruck Center for Molecular Medicine and Charité Universitätsmedizin, Berlin, 13125, Germany
- Department of Cardiology and Nephrology, HELIOS-Klinikum Berlin, Berlin, 13125, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, a collaboration of Max Delbruck Center for Molecular Medicine and Charité Universitätsmedizin, Berlin, 13125, Germany
- Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - Ioana Braicu
- Department of Nephrology and Cardiovascular Research, Campus Virchow, Charité University Hospital, Berlin, 13353, Germany
| | - Jalid Sehouli
- Department of Gynecology, Charité University Hospital, Berlin and Tumor Bank Ovarian Cancer Network (TOC), Berlin, 13353, Germany
| | - Kai Schulze-Forster
- Department of Urology, Charité University Hospital, Berlin, 10117, Germany
- CellTrend GmbH, Luckenwalde, 14943, Germany
| | - Tobias Trippel
- Dept. of Internal Medicine & Cardiology, Charité University Hospital, Berlin, 13353, Germany
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité University Hospital Berlin, Campus Virchow, Berlin, 10117, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Hospital Berlin, Berlin, 13353, Germany
| | - Annetine Staff
- University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Peter R Mertens
- University Clinic for Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, 39106, Germany
| | - Madlen Löbel
- Institute for Medical Immunology, Charité University Hospital Berlin, Campus Virchow, Berlin, 10117, Germany
| | - Justin Mastroianni
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert Ludwigs University (ALU) of Freiburg, Freiburg, 79106, Germany
- Faculty of Biology, Albert-Ludwigs-University (ALU), Freiburg, 79104, Germany
| | - Corinna Plattfaut
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Lübeck, Lübeck, 23538, Germany
| | - Frank Gieseler
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Lübeck, Lübeck, 23538, Germany
| | - Duska Dragun
- Department of Nephrology and Cardiovascular Research, Campus Virchow, Charité University Hospital, Berlin, 13353, Germany
| | | | - Maria J Fernandez-Cabezudo
- Department of Biochemistry College of Medicine and Health Sciences, UAE University, Al Ain, 17666, United Arab Emirates
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Research Institute, Seattle, WA, 98191, USA
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, 17666, United Arab Emirates
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, 23538, Germany
| | - Antje Mueller
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, 23538, Germany
| | - Harald Heidecke
- Department of Urology, Charité University Hospital, Berlin, 10117, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, 23538, Germany.
| |
Collapse
|
22
|
Liang W, Zhang J, Saint-Martin M, Xu F, Noraz N, Liu J, Honnorat J, Liu H. Structural mapping of hot spots within human CASPR2 discoidin domain for autoantibody recognition. J Autoimmun 2018; 96:168-177. [PMID: 30337146 DOI: 10.1016/j.jaut.2018.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/23/2018] [Accepted: 09/30/2018] [Indexed: 01/17/2023]
Abstract
Accumulating evidence has showed that anti-CASPR2 autoantibodies occur in a long list of neurological immune disorders including limbic encephalitis (LE). Belonging to the well-known neurexin superfamily, CASPR2 has been suggested to be a central node in the molecular networks controlling neurodevelopment. Distinct from other subfamilies in the neurexin superfamily, the CASPR subfamily features a unique discoidin (Disc) domain. As revealed by our and others' recent studies, CASPR2 Disc domain bears a major epitope for autoantibodies. However, structural information on CASPR2 recognition by autoantibodies has been lacking. Here, we report the crystal structure of human CASPR2 Disc domain at a high resolution of 1.31 Å, which is the first atomic-resolution structure of the CASPR subfamily members. The Disc domain adopts a total β structure and folds into a distorted jellyroll-like barrel with a conserved disulfide-bond interlocking its N- and C-termini. Defined by four loops and located in one end of the barrel, the "loop-tip surface" is totally polar and easily available for protein docking. Based on structure-guided epitope prediction, we generated nine mutants and evaluated their binding to autoantibodies of cerebrospinal fluid from twelve patients with limbic encephalitis. The quadruple mutant G69N/A71S/S77N/D78R impaired CASPR2 binding to autoantibodies from eleven LE patients, which indicates that the loop L1 in the Disc domain bears hot spots for autoantibody interaction. Structural mapping of autoepitopes within human CASPR2 Disc domain sheds light on how autoantibodies could sequester CASPR2 ectodomain and antagonize its functionalities in the pathogenic processes.
Collapse
Affiliation(s)
- Wenjun Liang
- State Key Laboratory of Natural and Biomimetic Drugs & School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Junying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs & School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Margaux Saint-Martin
- French Reference Center on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France; INSERM U1217-CNRS UMR5310, NeuroMyoGene Institute, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Fei Xu
- State Key Laboratory of Natural and Biomimetic Drugs & School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Nelly Noraz
- French Reference Center on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France; INSERM U1217-CNRS UMR5310, NeuroMyoGene Institute, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Jianmei Liu
- State Key Laboratory of Natural and Biomimetic Drugs & School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France; INSERM U1217-CNRS UMR5310, NeuroMyoGene Institute, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France.
| | - Heli Liu
- State Key Laboratory of Natural and Biomimetic Drugs & School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
23
|
Park JS, Park MC, Lee KY, Goughnour PC, Jeong SJ, Kim HS, Kim HJ, Lee BJ, Kim S, Han BW. Unique N-terminal extension domain of human asparaginyl-tRNA synthetase elicits CCR3-mediated chemokine activity. Int J Biol Macromol 2018; 120:835-845. [PMID: 30171954 DOI: 10.1016/j.ijbiomac.2018.08.171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
Abstract
Asparaginyl-tRNA synthetase (NRS) is not only essential in protein translation but also associated with autoimmune diseases. Particularly, patients with antibodies that recognize NRS often develop interstitial lung disease (ILD). However, the underlying mechanism of how NRS is recognized by immune cells and provokes inflammatory responses is not well-understood. Here, we found that the crystal structure of the unique N-terminal extension domain of human NRS (named as UNE-N, where -N denotes NRS) resembles that of the chemotactic N-terminal domain of NRS from a filarial nematode, Brugia malayi, which recruits and activates specific immune cells by interacting with CXC chemokine receptor 1 and 2. UNE-N induced migration of CC chemokine receptor 3 (CCR3)-expressing cells. The chemokine activity of UNE-N was significantly reduced by suppressing CCR3 expression with CCR3-targeting siRNA, and the loop3 region of UNE-N was shown to interact mainly with the extracellular domains of CCR3 in nuclear magnetic resonance perturbation experiments. Based on these results, evolutionarily acquired UNE-N elicits chemokine activities that would promote NRS-CCR3-mediated proinflammatory signaling in ILD.
Collapse
Affiliation(s)
- Joon Sung Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Chul Park
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Young Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Peter C Goughnour
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Jae Jeong
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoun Sook Kim
- Therapeutic Target Discovery Branch, Division of Precision Medicine and Cancer Informatics, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
24
|
Weppner G, Ohlei O, Hammers CM, Holl-Ulrich K, Voswinkel J, Bischof J, Hasselbacher K, Riemekasten G, Lamprecht P, Ibrahim S, Iking-Konert C, Recke A, Müller A. In situ detection of PR3-ANCA + B cells and alterations in the variable region of immunoglobulin genes support a role of inflamed tissue in the emergence of auto-reactivity in granulomatosis with polyangiitis. J Autoimmun 2018; 93:89-103. [PMID: 30054207 DOI: 10.1016/j.jaut.2018.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/01/2018] [Indexed: 10/28/2022]
Abstract
Circulating anti-neutrophilic cytoplasmic autoantibodies targeting proteinase 3 (PR3-ANCA) are a diagnostic and pathogenic hallmark of granulomatosis with polyangiitis (GPA). It is, however, incompletely understood if inflamed tissue supports presence or emergence of PR3-ANCA+ B cells. In search of such cells in inflamed tissue of GPA, immunofluorescence staining for IgG and a common PR3-ANCA idiotype (5/7 Id) was undertaken. Few 5/7 Id+/IgG+ B cells were detected in respiratory and kidney tissue of GPA. To gain more insight into surrogate markers possibly indicative of an anti-PR3-response, a meta-analysis comprising IGVH and IGVL genes derived from respiratory tract tissue of GPA (231 clones) was performed. Next generation sequencing-based IGHV genes derived from peripheral blood of healthy donors (244.353 clones) and previously published IGLV genes (148 clones) served as controls. Additionally, Ig genes of three murine and five known human monoclonal anti-PR3 antibodies were analyzed. Primary and probably secondary rearrangements led to altered VDJ usage and an extended complementarity determining region 3 (CDR3) of IGHV clones from GPA tissue. Selection against amino acid exchanges was prominent in the framework region of IGHV clones from GPA tissue. The comparison of V(D)J rearrangements and deduced amino acid sequences of the CDR3 yielded no identities and few similarities between clones derived from respiratory tissue of GPA and anti-PR3 antibodies, arguing against a presence of B cells that carry PR3-ANCA-prone Ig genes among the clones. In line with the scarcity of 5/7 Id+ B lymphocytes in GPA tissue, the results suggest that with respect to a local anti-PR3 response, methods detecting rare clones are required.
Collapse
Affiliation(s)
- Gesche Weppner
- Dept. of Rheumatology & Clinical Immunology, University Hospital of Schleswig-Holstein, Campus Lübeck & University of Lübeck, Lübeck, Germany
| | - Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics, Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christoph M Hammers
- Dept. of Dermatology, University Hospital of Schleswig-Holstein, Campus Lübeck & University of Lübeck, Lübeck, Germany
| | | | - Jan Voswinkel
- Medical Faculty, University of Saarland, Saarbrücken, Germany
| | - Julia Bischof
- Dept. of Dermatology, University Hospital of Schleswig-Holstein, Campus Lübeck & University of Lübeck, Lübeck, Germany
| | - Katrin Hasselbacher
- Dept. of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Campus Lübeck & University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Dept. of Rheumatology & Clinical Immunology, University Hospital of Schleswig-Holstein, Campus Lübeck & University of Lübeck, Lübeck, Germany
| | - Peter Lamprecht
- Dept. of Rheumatology & Clinical Immunology, University Hospital of Schleswig-Holstein, Campus Lübeck & University of Lübeck, Lübeck, Germany
| | - Saleh Ibrahim
- Dept. of Dermatology, University Hospital of Schleswig-Holstein, Campus Lübeck & University of Lübeck, Lübeck, Germany
| | | | - Andreas Recke
- Dept. of Dermatology, University Hospital of Schleswig-Holstein, Campus Lübeck & University of Lübeck, Lübeck, Germany
| | - Antje Müller
- Dept. of Rheumatology & Clinical Immunology, University Hospital of Schleswig-Holstein, Campus Lübeck & University of Lübeck, Lübeck, Germany.
| |
Collapse
|
25
|
Bassaro L, Russell SJ, Pastwa E, Somiari SA, Somiari RI. Screening for Multiple Autoantibodies in Plasma of Patients with Breast Cancer. Cancer Genomics Proteomics 2018; 14:427-435. [PMID: 29109092 DOI: 10.21873/cgp.20052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Autoantibodies have potential as circulating biomarkers for early cancer detection. This study aimed to screen for known autoantibodies in human plasma using an Autoantibody Profiling System (APS) and quantify the levels in plasma of donors with/without breast cancer. MATERIALS AND METHODS Plasma from nine female donors diagnosed with breast cancer (test group) and nine matched donors with no personal history of cancer (reference group) were screened with an APS containing probes for 30 autoantibodies. Autoantibody levels ≥1.5 times the mean concentration of the group were considered elevated, and test/reference ratios ≥1.3 were considered higher in the test group compared to the reference group. RESULTS Twenty percent of the probes detected elevated levels of autoantibodies against proteins involved in different cancer mechanisms. Amongst these, the levels of autoantibodies against interleukin 29 (IL29), osteoprotegerin (OPG), survivin (SUR), growth hormone (GRH) and resistin (RES) were significantly higher in the cancer group compared to the reference group (p<0.05), whereas the level of autoantibody against cytotoxic T-lymphocyte associated antigen-4 (CTLA4) was not significantly different between the two groups (p=0.38). CONCLUSION Disease-relevant autoantibodies were detected in the plasma of patients with breast cancer and donors without breast cancer. This means that identifying the type and level of autoantibodies in samples will be important in determining their significance in the disease process. A microtiter plate-based array system could be a fast and inexpensive screening method for identifying and quantifying autoantibodies in human plasma.
Collapse
Affiliation(s)
- Lauren Bassaro
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, Johnstown, PA, U.S.A
| | - Stephen J Russell
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, Johnstown, PA, U.S.A
| | - Elzbieta Pastwa
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, Johnstown, PA, U.S.A
| | - Stella A Somiari
- Biobanking & Biospecimen Science Research Unit, Windber Research Institute, Windber, PA, U.S.A
| | - Richard I Somiari
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, Johnstown, PA, U.S.A.
| |
Collapse
|
26
|
Montalvão F, Nascimento DO, Nunes MP, Koeller CM, Morrot A, Lery LMS, Bisch PM, Teixeira SMR, Vasconcellos R, Freire-de-Lima L, Lopes MF, Heise N, DosReis GA, Freire-de-Lima CG. Antibody Repertoires Identify β-Tubulin as a Host Protective Parasite Antigen in Mice Infected With Trypanosoma cruzi. Front Immunol 2018; 9:671. [PMID: 29706955 PMCID: PMC5909033 DOI: 10.3389/fimmu.2018.00671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/19/2018] [Indexed: 12/17/2022] Open
Abstract
Few studies investigate the major protein antigens targeted by the antibody diversity of infected mice with Trypanosoma cruzi. To detect global IgG antibody specificities, sera from infected mice were immunoblotted against whole T. cruzi extracts. By proteomic analysis, we were able to identify the most immunogenic T. cruzi proteins. We identified three major antigens as pyruvate phosphate dikinase, Hsp-85, and β-tubulin. The major protein band recognized by host IgG was T. cruzi β-tubulin. The T. cruzi β-tubulin gene was cloned, expressed in E. coli, and recombinant T. cruzi β-tubulin was obtained. Infection increased IgG reactivity against recombinant T. cruzi β-tubulin. A single immunization of mice with recombinant T. cruzi β-tubulin increased specific IgG reactivity and induced protection against T. cruzi infection. These results indicate that repertoire analysis is a valid approach to identify antigens for vaccines against Chagas disease.
Collapse
Affiliation(s)
- Fabricio Montalvão
- Faculdade de Medicina de Petrópolis (FMP-FASE), Petrópolis, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marise P Nunes
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina M Koeller
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia Miranda S Lery
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paulo M Bisch
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Santuza M R Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rita Vasconcellos
- Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela F Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - George A DosReis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
27
|
Willis WL, Wang L, Wada TT, Gardner M, Abdouni O, Hampton J, Valiente G, Young N, Ardoin S, Agarwal S, Freitas MA, Wu LC, Jarjour WN. The proinflammatory protein HMGB1 is a substrate of transglutaminase-2 and forms high-molecular weight complexes with autoantigens. J Biol Chem 2018; 293:8394-8409. [PMID: 29618516 DOI: 10.1074/jbc.ra117.001078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/27/2018] [Indexed: 12/26/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is a chromatin-associated protein that, in response to stress or injury, translocates from the nucleus to the extracellular milieu, where it functions as an alarmin. HMGB1's function is in part determined by the complexes (HMGB1c) it forms with other molecules. However, structural modifications in the HMGB1 polypeptide that may regulate HMGB1c formation have not been previously described. In this report, we observed high-molecular weight, denaturing-resistant HMGB1c in the plasma and peripheral blood mononuclear cells of individuals with systemic lupus erythematosus (SLE) and, to a much lesser extent, in healthy subjects. Differential HMGB1c levels were also detected in mouse tissues and cultured cells, in which these complexes were induced by endotoxin or the immunological adjuvant alum. Of note, we found that HMGB1c formation is catalyzed by the protein-cross-linking enzyme transglutaminase-2 (TG2). Cross-link site mapping and MS analysis revealed that HMGB1 can be cross-linked to TG2 as well as a number of additional proteins, including human autoantigens. These findings have significant functional implications for studies of cellular stress responses and innate immunity in SLE and other autoimmune disease.
Collapse
Affiliation(s)
- William L Willis
- From the Departments of Internal Medicine, .,The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Linan Wang
- The Ohio State University Wexner Medical Center, Columbus, Ohio 43210.,Cancer Biology and Genetics, and
| | - Takuma Tsuzuki Wada
- From the Departments of Internal Medicine.,The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Mark Gardner
- From the Departments of Internal Medicine.,The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Omar Abdouni
- From the Departments of Internal Medicine.,The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Jeffrey Hampton
- From the Departments of Internal Medicine.,The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Giancarlo Valiente
- From the Departments of Internal Medicine.,The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Nicholas Young
- From the Departments of Internal Medicine.,The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Stacy Ardoin
- From the Departments of Internal Medicine.,The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Sudha Agarwal
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio 43210.,the Department of Orthopedics, The Ohio State University College of Medicine, Columbus, Ohio 43210, and
| | - Michael A Freitas
- The Ohio State University Wexner Medical Center, Columbus, Ohio 43210.,Cancer Biology and Genetics, and
| | - Lai-Chu Wu
- From the Departments of Internal Medicine.,Biological Chemistry and Pharmacology and
| | - Wael N Jarjour
- From the Departments of Internal Medicine, .,The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| |
Collapse
|
28
|
Fishman D, Kisand K, Hertel C, Rothe M, Remm A, Pihlap M, Adler P, Vilo J, Peet A, Meloni A, Podkrajsek KT, Battelino T, Bruserud Ø, Wolff ASB, Husebye ES, Kluger N, Krohn K, Ranki A, Peterson H, Hayday A, Peterson P. Autoantibody Repertoire in APECED Patients Targets Two Distinct Subgroups of Proteins. Front Immunol 2017; 8:976. [PMID: 28861084 PMCID: PMC5561390 DOI: 10.3389/fimmu.2017.00976] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
High titer autoantibodies produced by B lymphocytes are clinically important features of many common autoimmune diseases. APECED patients with deficient autoimmune regulator (AIRE) gene collectively display a broad repertoire of high titer autoantibodies, including some which are pathognomonic for major autoimmune diseases. AIRE deficiency severely reduces thymic expression of gene-products ordinarily restricted to discrete peripheral tissues, and developing T cells reactive to those gene-products are not inactivated during their development. However, the extent of the autoantibody repertoire in APECED and its relation to thymic expression of self-antigens are unclear. We here undertook a broad protein array approach to assess autoantibody repertoire in APECED patients. Our results show that in addition to shared autoantigen reactivities, APECED patients display high inter-individual variation in their autoantigen profiles, which collectively are enriched in evolutionarily conserved, cytosolic and nuclear phosphoproteins. The APECED autoantigens have two major origins; proteins expressed in thymic medullary epithelial cells and proteins expressed in lymphoid cells. These findings support the hypothesis that specific protein properties strongly contribute to the etiology of B cell autoimmunity.
Collapse
Affiliation(s)
- Dmytro Fishman
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | | | - Anu Remm
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maire Pihlap
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Priit Adler
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Aleksandr Peet
- Children's Clinic of Tartu University Hospital, Tartu, Estonia
| | - Antonella Meloni
- Pediatric Clinic II, Ospedale Microcitemico, Cagliari, Italy.,Department of Biomedical and Biotechnological Science, University of Cagliari, Cagliari, Italy
| | - Katarina Trebusak Podkrajsek
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Øyvind Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nicolas Kluger
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Kai Krohn
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Hedi Peterson
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King's College, Guy's Hospital, London, United Kingdom
| | - Pärt Peterson
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
29
|
Rhodes DA, Isenberg DA. TRIM21 and the Function of Antibodies inside Cells. Trends Immunol 2017; 38:916-926. [PMID: 28807517 DOI: 10.1016/j.it.2017.07.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/28/2017] [Accepted: 07/18/2017] [Indexed: 11/26/2022]
Abstract
Therapeutic antibodies targeting disease-associated antigens are key tools in the treatment of cancer and autoimmunity. So far, therapeutic antibodies have targeted antigens that are, or are presumed to be, extracellular. A largely overlooked property of antibodies is their functional activity inside cells. The diverse literature dealing with intracellular antibodies emerged historically from studies of the properties of some autoantibodies. The identification of tripartite motif (TRIM) 21 as an intracellular Fc receptor linking cytosolic antibody recognition to the ubiquitin proteasome system brings this research into sharper focus. We review critically the research related to intracellular antibodies, link this to the TRIM21 effector mechanism, and highlight how this work is exposing the previously restricted intracellular space to the potential of therapeutic antibodies.
Collapse
Affiliation(s)
- David A Rhodes
- Department of Pathology, Immunology Division, University of Cambridge, Cambridge, UK.
| | - David A Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
| |
Collapse
|
30
|
Senécal J, Raynauld J, Troyanov Y. Editorial: A New Classification of Adult Autoimmune Myositis. Arthritis Rheumatol 2017; 69:878-884. [DOI: 10.1002/art.40063] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/31/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Jean‐Luc Senécal
- University of Montreal Faculty of Medicine and Centre hospitalier de l'Université de MontréalMontreal Quebec Canada
| | - Jean‐Pierre Raynauld
- University of Montreal Faculty of Medicine and Centre hospitalier de l'Université de MontréalMontreal Quebec Canada
| | - Yves Troyanov
- University of Montreal Faculty of Medicine, Centre hospitalier de l'Université de Montréal, and Hôpital du Sacré‐CoeurMontreal Quebec Canada
| |
Collapse
|
31
|
Du Y, Wu X, Chen M, Wang W, Xv W, Ye L, Wu D, Xue J, Sun W, Luo J, Wu H. Elevated semaphorin5A in systemic lupus erythematosus is in association with disease activity and lupus nephritis. Clin Exp Immunol 2017; 188:234-242. [PMID: 28063160 DOI: 10.1111/cei.12924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2016] [Indexed: 01/07/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by extensive immune response, including over-activation of T and B cell development of pathogenic autoantibodies, organ damage induced by the formation and deposition of immune complex and the abnormal elevation of type I interferon. Semaphorin5A (Sema5A) is involved essentially in immune cell regulation and is also implicated in the pathogenesis of autoimmune disorders. We aimed to evaluate the role of Sema5A in patients with SLE. Serum levels of Sema5A were tested by enzyme-linked immunosorbent assay (ELISA) in 152 SLE patients and 48 healthy controls. The message ribonucleic acid (mRNA) expression levels of Sema5A and ADAM metallopeptidase domain 17 (ADAM17) in the peripheral blood mononuclear cells (PBMC) from 43 patients with SLE and 19 healthy controls were detected by the real-time-quantitative polymerase chain reaction (qPCR). Serum Sema5A levels were increased significantly in SLE patients compared with healthy controls (P < 0·001). Elevated levels of Sema5A were correlated positively with 24-h proteinuria excretion (r = 0·558, P < 0·0001), SLE disease activity index (SLEDAI) (r = 0·278, P = 0·0006) and C-reactive protein (CRP) (r = 0·266, P = 0·002), but negatively with planet (PLT) (r = -0·294, P = 0·0003) and complement 3 (C3) (r = -0·287, P = 0·0004) in SLE patients. Patients with elevated Sema5A levels showed higher incidence of rash, serositis and nephritis (P < 0·05 or P < 0·001). Patients with decreased PLT, C3 or positive for proteinuria also showed elevated Sema5A (P < 0·001 or P < 0·05). The mRNA ADAM17 was increased in SLE patients and correlated positively with serum Sema5A levels. Our data demonstrated that elevated serum Sema5A in SLE patients correlated with disease activity and are involved in kidney and blood system damage; ADAM17 might be involved in the release of secreted Sema5A.
Collapse
Affiliation(s)
- Y Du
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Clinic Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - X Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - M Chen
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - W Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - W Xv
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - L Ye
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - D Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - J Xue
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - W Sun
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - J Luo
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, China
| | - H Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Wang D, Yang L, Zhang P, LaBaer J, Hermjakob H, Li D, Yu X. AAgAtlas 1.0: a human autoantigen database. Nucleic Acids Res 2016; 45:D769-D776. [PMID: 27924021 PMCID: PMC5210642 DOI: 10.1093/nar/gkw946] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/22/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022] Open
Abstract
Autoantibodies refer to antibodies that target self-antigens, which can play pivotal roles in maintaining homeostasis, distinguishing normal from tumor tissue and trigger autoimmune diseases. In the last three decades, tremendous efforts have been devoted to elucidate the generation, evolution and functions of autoantibodies, as well as their target autoantigens. However, reports of these countless previously identified autoantigens are randomly dispersed in the literature. Here, we constructed an AAgAtlas database 1.0 using text-mining and manual curation. We extracted 45 830 autoantigen-related abstracts and 94 313 sentences from PubMed using the keywords of either ‘autoantigen’ or ‘autoantibody’ or their lexical variants, which were further refined to 25 520 abstracts, 43 253 sentences and 3984 candidates by our bio-entity recognizer based on the Protein Ontology. Finally, we identified 1126 genes as human autoantigens and 1071 related human diseases, with which we constructed a human autoantigen database (AAgAtlas database 1.0). The database provides a user-friendly interface to conveniently browse, retrieve and download human autoantigens as well as their associated diseases. The database is freely accessible at http://biokb.ncpsb.org/aagatlas/. We believe this database will be a valuable resource to track and understand human autoantigens as well as to investigate their functions in basic and translational research.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Liuhui Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Ping Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Joshua LaBaer
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Henning Hermjakob
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Radiation Medicine, Beijing 102206, China .,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Radiation Medicine, Beijing 102206, China
| |
Collapse
|
33
|
Pawaria S, Sharma S, Baum R, Nündel K, Busto P, Gravallese EM, Fitzgerald KA, Marshak-Rothstein A. Taking the STING out of TLR-driven autoimmune diseases: good, bad, or indifferent? J Leukoc Biol 2016; 101:121-126. [PMID: 27531928 DOI: 10.1189/jlb.3mr0316-115r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/01/2016] [Accepted: 07/25/2016] [Indexed: 01/24/2023] Open
Abstract
Both endosomal and cytosolic-nucleic acid-sensing receptors can detect endogenous ligands and promote autoimmunity and autoinflammation. These responses involve a complex interplay among and between the cytosolic and endosomal sensors involving both hematopoietic and radioresistant cells. Cytosolic sensors directly promote inflammatory responses through the production of type I IFNs and proinflammatory cytokines. Inflammation-associated tissue damage can further promote autoimmune responses indirectly, as receptor-mediated internalization of the resulting cell debris can activate endosomal Toll-like receptors (TLR). Both endosomal and cytosolic receptors can also negatively regulate inflammatory responses. A better understanding of the factors and pathways that promote and constrain autoimmune diseases will have important implications for the development of agonists and antagonists that modulate these pathways.
Collapse
Affiliation(s)
- Sudesh Pawaria
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shruti Sharma
- Division of Infectious Disease, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and.,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Rebecca Baum
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kerstin Nündel
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Patricia Busto
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ellen M Gravallese
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Katherine A Fitzgerald
- Division of Infectious Disease, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and.,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ann Marshak-Rothstein
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; .,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
34
|
Zaenker P, Gray E, Ziman M. Autoantibody Production in Cancer—The Humoral Immune Response toward Autologous Antigens in Cancer Patients. Autoimmun Rev 2016; 15:477-83. [DOI: 10.1016/j.autrev.2016.01.017] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/23/2016] [Indexed: 12/21/2022]
|
35
|
Winter O, Musiol S, Schablowsky M, Cheng Q, Khodadadi L, Hiepe F. Analyzing pathogenic (double-stranded (ds) DNA-specific) plasma cells via immunofluorescence microscopy. Arthritis Res Ther 2015; 17:293. [PMID: 26490351 PMCID: PMC4618946 DOI: 10.1186/s13075-015-0811-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022] Open
Abstract
Introduction While protective plasma cells (PCs) are an important part of the individual’s immune defense, autoreactive plasma cells such as dsDNA-specific plasma cells contribute to the pathogenesis of autoimmune diseases like systemic lupus erythematosus (SLE). However, the research on dsDNA-specific plasma cells was restricted to the ELISpot technique, with its limitations, as no other attempt for identification of dsDNA-reactive plasma cells had been successful. Methods With improved fluorochrome labeling of dsDNA, removal of DNA aggregates, and enhanced blocking of unspecific binding, we were able to specifically detect dsDNA-reactive plasma cells by immunofluorescence microscopy. Results Via this novel technique we were able to distinguish short-lived (SLPCs) and long-lived (LLPCs) autoreactive plasma cells, discriminate dsDNA-specific plasma cells according to their immunoglobulin class (IgG, IgM, and IgA) and investigate autoreactive (dsDNA) and vaccine-induced ovalbumin (Ova) plasma cells in parallel. Conclusions The detection of autoreactive dsDNA-specific plasma cells via immunofluorescence microscopy allows specific studies on pathogenic and protective plasma cell subsets and their niches, detailed evaluation of therapeutic treatments and therefore offers new possibilities for basic and clinical research. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0811-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oliver Winter
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Department of Neonatology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Stephanie Musiol
- Department of Autoimmunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117, Berlin, Germany.
| | - Melissa Schablowsky
- Department of Autoimmunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117, Berlin, Germany.
| | - Qingyu Cheng
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Department of Autoimmunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117, Berlin, Germany.
| | - Laleh Khodadadi
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Department of Autoimmunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117, Berlin, Germany.
| | - Falk Hiepe
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
36
|
Hamilton JA, Li J, Wu Q, Yang P, Luo B, Li H, Bradley JE, Taylor JJ, Randall TD, Mountz JD, Hsu HC. General Approach for Tetramer-Based Identification of Autoantigen-Reactive B Cells: Characterization of La- and snRNP-Reactive B Cells in Autoimmune BXD2 Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:5022-34. [PMID: 25888644 PMCID: PMC4417409 DOI: 10.4049/jimmunol.1402335] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/15/2015] [Indexed: 11/19/2022]
Abstract
Autoreactive B cells are associated with the development of several autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. The low frequency of these cells represents a major barrier to their analysis. Ag tetramers prepared from linear epitopes represent a promising strategy for the identification of small subsets of Ag-reactive immune cells. This is challenging given the requirement for identification and validation of linear epitopes and the complexity of autoantibody responses, including the broad spectrum of autoantibody specificities and the contribution of isotype to pathogenicity. Therefore, we tested a two-tiered peptide microarray approach, coupled with epitope mapping of known autoantigens, to identify and characterize autoepitopes using the BXD2 autoimmune mouse model. Microarray results were verified through comparison with established age-associated profiles of autoantigen specificities and autoantibody class switching in BXD2 and control (C57BL/6) mice and high-throughput ELISA and ELISPOT analyses of synthetic peptides. Tetramers were prepared from two linear peptides derived from two RNA-binding proteins (RBPs): lupus La and 70-kDa U1 small nuclear ribonucleoprotein. Flow cytometric analysis of tetramer-reactive B cell subsets revealed a significantly higher frequency and greater numbers of RBP-reactive marginal zone precursor, transitional T3, and PDL-2(+)CD80(+) memory B cells, with significantly elevated CD69 and CD86 observed in RBP(+) marginal zone precursor B cells in the spleens of BXD2 mice compared with C57BL/6 mice, suggesting a regulatory defect. This study establishes a feasible strategy for the characterization of autoantigen-specific B cell subsets in different models of autoimmunity and, potentially, in humans.
Collapse
Affiliation(s)
- Jennie A Hamilton
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jun Li
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Qi Wu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - PingAr Yang
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Bao Luo
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hao Li
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - John E Bradley
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - John D Mountz
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; Department of Medicine, Birmingham, Alabama VA Medical Center, Birmingham, AL 35233
| | - Hui-Chen Hsu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294;
| |
Collapse
|
37
|
Abstract
Rheumatic diseases can be divided in two groups, autoinflammatory and autoimmune disorders. The clinical presentation of both types of diseases overlap, but the pathological pathways underlying rheumatic autoinflammation and autoimmunity are distinct and are the subject of ongoing research. There are a number of ways in which these groups of diseases differ in terms of disease mechanisms and therapeutic responses. First, autoinflammatory diseases are driven by endogenous danger signals, metabolic mediators and cytokines, whereas autoimmunity involves the activation of T and B cells, the latter requiring V-(D)-J recombination of receptor-chain gene segments for maturation. Second, the efficacy of biologic agents directed against proinflammatory cytokines (for example IL-1β and TNF) also highlights differences between autoinflammatory and autoimmune processes. Finally, whereas autoinflammatory diseases are mostly driven by inflammasome-induced IL-1β and IL-18 production, autoimmune diseases are associated with type I interferon (IFN) signatures in blood. In this Review, we provide an overview of the monocyte intracellular pathways that drive autoinflammation and autoimmunity. We convey recent findings on how the type I IFN pathway can modulate IL-1β signalling (and vice versa), and discuss why IL-1β-mediated autoinflammatory diseases do not perpetuate into autoimmunity. The origins of intracellular autoantigens in autoimmune disorders are also discussed. Finally, we suggest how new mechanistic knowledge of autoinflammatory and autoimmune diseases might help improve treatment strategies to benefit patient care.
Collapse
|
38
|
Wu CH, Li KJ, Yu CL, Tsai CY, Hsieh SC. Sjögren's Syndrome Antigen B Acts as an Endogenous Danger Molecule to Induce Interleukin-8 Gene Expression in Polymorphonuclear Neutrophils. PLoS One 2015; 10:e0125501. [PMID: 25915936 PMCID: PMC4411107 DOI: 10.1371/journal.pone.0125501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/18/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sjögren's syndrome antigen B is expressed in the nucleus and surface membrane of human polymorphonuclear neutrophils and is released after cell death. However, its biological role is not clear. This study is aimed to investigate the effect of Sjögren's syndrome antigen B on human polymorphonuclear neutrophils. METHODS Human recombinant Sjögren's syndrome antigen B (rSSB) purified from E. coli was incubated with human polymorphonuclear neutrophils as well as retinoid acid-induced granulocytic differentiated HL-60 cells, HL-60 (RA). Interleukin (IL)-8 protein production and mRNA expressions were measured by enzyme-linked immunosorbent assay and quantitative-polymerase chain reaction, respectively. Uptake of fluorescein isothiocyanate (FITC)-rSSB was assessed by flow cytometry and fluorescence microscopy. Moreover, mitogen-activated protein kinase (MAPK) pathways and nuclear factor-kappaB activation were investigated. RESULTS Human rSSB stimulated IL-8 production from normal human neutrophils and HL-60 (RA) cells in a time- and dose-dependent manner. This IL-8-stimulated activity was blocked by chloroquine and NH4Cl, indicating that endosomal acidification is important for this effect. We found rSSB activated both MAPK pathway and nuclear factor-kappaB signaling to transcribe the IL-8 gene expression of cells. Furthermore, tumor necrosis factor-α exerted an additive effect and rSSB-anti-SSB immune complex exhibited a synergistic effect on rSSB-induced IL-8 production. CONCLUSIONS Sjögren's syndrome antigen B might act as an endogenous danger molecule to enhance IL-8 gene expression in human polymorphonuclear neutrophils.
Collapse
Affiliation(s)
- Cheng-Han Wu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Immunology, Rheumatology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ko-Jen Li
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Immunology, Rheumatology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Li Yu
- Division of Immunology, Rheumatology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chang-Youh Tsai
- Section of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Song-Chou Hsieh
- Division of Immunology, Rheumatology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
39
|
Duhalde Vega M, Aparício JL, Retegui LA. Levo-1-methyl tryptophan aggravates the effects of mouse hepatitis virus (MHV-A59) infection. Int Immunopharmacol 2015; 24:377-382. [DOI: 10.1016/j.intimp.2014.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/04/2014] [Accepted: 12/22/2014] [Indexed: 11/27/2022]
|
40
|
Pawaria S, Moody K, Busto P, Nündel K, Choi CH, Ghayur T, Marshak-Rothstein A. Cutting Edge: DNase II deficiency prevents activation of autoreactive B cells by double-stranded DNA endogenous ligands. THE JOURNAL OF IMMUNOLOGY 2015; 194:1403-7. [PMID: 25601924 DOI: 10.4049/jimmunol.1402893] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In mice that fail to express the phagolysosomal endonuclease DNase II and the type I IFN receptor, excessive accrual of undegraded DNA results in a STING-dependent, TLR-independent inflammatory arthritis. These double-knockout (DKO) mice develop additional indications of systemic autoimmunity, including anti-nuclear autoantibodies and splenomegaly, that are not found in Unc93b1(3d/3d) DKO mice and, therefore, are TLR dependent. The DKO autoantibodies predominantly detect RNA-associated autoantigens, which are commonly targeted in TLR7-dominated systemic erythematosus lupus-prone mice. To determine whether an inability of TLR9 to detect endogenous DNA could explain the absence of dsDNA-reactive autoantibodies in DKO mice, we used a novel class of bifunctional autoantibodies, IgM/DNA dual variable domain Ig molecules, to activate B cells through a BCR/TLR9-dependent mechanism. DKO B cells could not respond to the IgM/DNA dual variable domain Ig molecule, despite a normal response to both anti-IgM and CpG ODN 1826. Thus, DKO B cells only respond to RNA-associated ligands because DNase II-mediated degradation of self-DNA is required for TLR9 activation.
Collapse
Affiliation(s)
- Sudesh Pawaria
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, MA 01605
| | - Krishna Moody
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, MA 01605; Department of Microbiology, Boston University School of Medicine, Boston, MA 02118; and
| | - Patricia Busto
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, MA 01605
| | - Kerstin Nündel
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, MA 01605
| | - Chee-Ho Choi
- Global Biologics, AbbVie BioResearch Center, Worcester, MA 01605
| | - Tariq Ghayur
- Global Biologics, AbbVie BioResearch Center, Worcester, MA 01605
| | - Ann Marshak-Rothstein
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, MA 01605;
| |
Collapse
|
41
|
Anti-sRAGE autoimmunity in obesity: Downturn after bariatric surgery is independent of previous diabetic status. DIABETES & METABOLISM 2014; 40:356-62. [DOI: 10.1016/j.diabet.2014.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 12/15/2022]
|
42
|
Teixeira PC, Ducret A, Ferber P, Gaertner H, Hartley O, Pagano S, Butterfield M, Langen H, Vuilleumier N, Cutler P. Definition of human apolipoprotein A-I epitopes recognized by autoantibodies present in patients with cardiovascular diseases. J Biol Chem 2014; 289:28249-59. [PMID: 25170076 PMCID: PMC4192480 DOI: 10.1074/jbc.m114.589002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Autoantibodies to apolipoprotein A-I (anti-apoA-I IgG) have been shown to be both markers and mediators of cardiovascular disease, promoting atherogenesis and unstable atherosclerotic plaque. Previous studies have shown that high levels of anti-apoA-I IgGs are independently associated with major adverse cardiovascular events in patients with myocardial infarction. Autoantibody responses to apoA-I can be polyclonal and it is likely that more than one epitope may exist. To identify the specific immunoreactive peptides in apoA-I, we have developed a set of methodologies and procedures to isolate, purify, and identify novel apoA-I endogenous epitopes. First, we generated high purity apoA-I from human plasma, using thiophilic interaction chromatography followed by enzymatic digestion specifically at lysine or arginine residues. Immunoreactivity to the different peptides generated was tested by ELISA using serum obtained from patients with acute myocardial infarction and high titers of autoantibodies to native apoA-I. The immunoreactive peptides were further sequenced by mass spectrometry. Our approach successfully identified two novel immunoreactive peptides, recognized by autoantibodies from patients suffering from myocardial infarction, who contain a high titer of anti-apoA-I IgG. The discovery of these epitopes may open innovative prognostic and therapeutic opportunities potentially suitable to improve current cardiovascular risk stratification.
Collapse
Affiliation(s)
- Priscila Camillo Teixeira
- From the Pharma Research and Early Development, Roche Innovation Center, 4070 Basel, the Department of Genetics and Laboratory Medicine, Division of Laboratory Medicine, 1205 Geneva University Hospitals, 1205 Geneva, and
| | - Axel Ducret
- From the Pharma Research and Early Development, Roche Innovation Center, 4070 Basel
| | - Philippe Ferber
- From the Pharma Research and Early Development, Roche Innovation Center, 4070 Basel
| | - Hubert Gaertner
- the Department of Immunopathology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Oliver Hartley
- the Department of Immunopathology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Sabrina Pagano
- the Department of Genetics and Laboratory Medicine, Division of Laboratory Medicine, 1205 Geneva University Hospitals, 1205 Geneva, and
| | - Michelle Butterfield
- From the Pharma Research and Early Development, Roche Innovation Center, 4070 Basel
| | - Hanno Langen
- From the Pharma Research and Early Development, Roche Innovation Center, 4070 Basel
| | - Nicolas Vuilleumier
- the Department of Genetics and Laboratory Medicine, Division of Laboratory Medicine, 1205 Geneva University Hospitals, 1205 Geneva, and
| | - Paul Cutler
- From the Pharma Research and Early Development, Roche Innovation Center, 4070 Basel
| |
Collapse
|
43
|
Harz C, Ludwig N, Lang S, Werner TV, Galata V, Backes C, Schmitt K, Nickels R, Krause E, Jung M, Rettig J, Keller A, Menger M, Zimmermann R, Meese E. Secretion and Immunogenicity of the Meningioma-Associated Antigen TXNDC16. THE JOURNAL OF IMMUNOLOGY 2014; 193:3146-54. [DOI: 10.4049/jimmunol.1303098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Abstract
BACKGROUND Many aspects of autoimmune disease are not well understood, including the specificities of autoimmune targets, and patterns of co-morbidity and cross-heritability across diseases. Prior work has provided evidence that somatic mutation caused by gene conversion and deletion at segmentally duplicated loci is relevant to several diseases. Simple tandem repeat (STR) sequence is highly mutable, both somatically and in the germ-line, and somatic STR mutations are observed under inflammation. RESULTS Protein-coding genes spanning STRs having markers of mutability, including germ-line variability, high total length, repeat count and/or repeat similarity, are evaluated in the context of autoimmunity. For the initiation of autoimmune disease, antigens whose autoantibodies are the first observed in a disease, termed primary autoantigens, are informative. Three primary autoantigens, thyroid peroxidase (TPO), phogrin (PTPRN2) and filaggrin (FLG), include STRs that are among the eleven longest STRs spanned by protein-coding genes. This association of primary autoantigens with long STR sequence is highly significant (p<3.0x10(-7)). Long STRs occur within twenty genes that are associated with sixteen common autoimmune diseases and atherosclerosis. The repeat within the TTC34 gene is an outlier in terms of length and a link with systemic lupus erythematosus is proposed. CONCLUSIONS The results support the hypothesis that many autoimmune diseases are triggered by immune responses to proteins whose DNA sequence mutates somatically in a coherent, consistent fashion. Other autoimmune diseases may be caused by coherent somatic mutations in immune cells. The coherent somatic mutation hypothesis has the potential to be a comprehensive explanation for the initiation of many autoimmune diseases.
Collapse
Affiliation(s)
- Kenneth Andrew Ross
- Department of Computer Science, Columbia University, New York, New York, United States of America
| |
Collapse
|
45
|
Dias SRC, Boroni M, Rocha EA, Dias TL, de Laet Souza D, Oliveira FMS, Bitar M, Macedo AM, Machado CR, Caliari MV, Franco GR. Evaluation of the Schistosoma mansoni Y-box-binding protein (SMYB1) potential as a vaccine candidate against schistosomiasis. Front Genet 2014; 5:174. [PMID: 24966869 PMCID: PMC4052899 DOI: 10.3389/fgene.2014.00174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease, and after malaria, is the second most important tropical disease in public health. A vaccine that reduces parasitemia is desirable to achieve mass treatment with a low cost. Although potential antigens have been identified and tested in clinical trials, no effective vaccine against schistosomiasis is available. Y-box-binding proteins (YBPs) regulate gene expression and participate in a variety of cellular processes, including transcriptional and translational regulation, DNA repair, cellular proliferation, drug resistance, and stress responses. The Schistosoma mansoni ortholog of the human YB-1, SMYB1, is expressed in all stages of the parasite life cycle. Although SMYB1 binds to DNA or RNA oligonucleotides, immunohistochemistry assays demonstrated that it is primarily localized in the cytoplasm of parasite cells. In addition, SMYB1 interacts with a protein involved in mRNA processing, suggesting that SMYB1 functions in the turnover, transport, and/or stabilization of RNA molecules during post-transcriptional gene regulation. Here we report the potential of SMYB1 as a vaccine candidate. We demonstrate that recombinant SMYB1 stimulates the production of high levels of specific IgG1 antibodies in a mouse model. The observed levels of specific IgG1 and IgG2a antibodies indicate an actual protection against cercariae challenge. Animals immunized with rSMYB1 exhibited a 26% reduction in adult worm burden and a 28% reduction in eggs retained in the liver. Although proteins from the worm tegument are considered optimal targets for vaccine development, this study demonstrates that unexposed cytoplasmic proteins can reduce the load of intestinal worms and the number of eggs retained in the liver.
Collapse
Affiliation(s)
- Sílvia R C Dias
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Mariana Boroni
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Elizângela A Rocha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Thomaz L Dias
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Daniela de Laet Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Fabrício M S Oliveira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Mainá Bitar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Andrea M Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Carlos R Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Marcelo V Caliari
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Glória R Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| |
Collapse
|
46
|
Grover A, Troudt J, Foster C, Basaraba R, Izzo A. High mobility group box 1 acts as an adjuvant for tuberculosis subunit vaccines. Immunology 2014; 142:111-23. [PMID: 24350616 DOI: 10.1111/imm.12236] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 12/21/2022] Open
Abstract
In order to ensure an ample supply of quality candidate tuberculosis (TB) subunit vaccines for clinical trials, it is imperative to develop new immunostimulatory adjuvants. High Mobility Box Group 1 (HMGB1), a member of the alarmin group of immunostimulatory proteins, is released by antigen-presenting cells under various conditions and has been shown to induce T helper type 1 cytokines. We report that HMGB1 is effective as an adjuvant to enhance the protective efficacy and cellular immune response of TB subunit vaccines and that it is not dependent on the interaction between HMGB1 and receptor for advanced glycation end products, a major receptor for HMGB1. In the mouse model of TB, HMGB1 protein, when formulated with dioctadecylammonium bromide and 6000 MW early secretory antigenic target (ESAT-6), was protective as a subunit vaccine but did not protect as molecular adjuvant in an ESAT-6-based DNA formulation. We then evaluated the immunoprophylactic and protective potential of a fusion protein of HMGB1 and ESAT-6. The HMGB1-ESAT-6 fusion protein induced strong antigen-specific T helper type 1 cytokines at 30 days post-immunization. The fusion protein vaccine enhanced activated and effector memory CD4 and CD8 T-cell responses in the lungs and spleens of mice at 80 days post vaccination. Vaccination with the HMGB1-ESAT-6 fusion protein also resulted in elevated numbers of poly-functional CD4 T cells co-expressing interleukin-2, interferon-γ and tumour necrosis factor-α. The potent cell-mediated immune response generated by the fusion protein correlated with protection against subsequent challenge with Mycobacterium tuberculosis in the mouse TB model.
Collapse
Affiliation(s)
- Ajay Grover
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | |
Collapse
|
47
|
Järås K, Anderson K. Autoantibodies in cancer: prognostic biomarkers and immune activation. Expert Rev Proteomics 2014; 8:577-89. [DOI: 10.1586/epr.11.48] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Skärstrand H, Dahlin LB, Lernmark A, Vaziri-Sani F. Neuropeptide Y autoantibodies in patients with long-term type 1 and type 2 diabetes and neuropathy. J Diabetes Complications 2013; 27:609-17. [PMID: 23910631 DOI: 10.1016/j.jdiacomp.2013.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 12/16/2022]
Abstract
AIMS The neurotransmitter Neuropeptide Y (NPY) was previously reported as a minor autoantigen in newly diagnosed type 1 diabetes (T1D) patients. The single nucleotide polymorphism at rs16139 (T1128C, L7P) in the NPY gene was associated with an increased risk for the development of type 2 diabetes (T2D). We aimed to develop a radiobinding assay for NPY-L (Leucine) and NPY-P (Proline) autoantibodies (A) to study the levels and the association with other islet autoantibodies and neuropathy. METHODS Autoantibodies against NPY-L, NPY-P, ZnT8, GAD65 and IA-2 were studied in T1D (n=48) and T2D (n=26) patients with duration up to 42 and 31years. A subgroup of T1D (n=32) patients re-examined, 5-8years after first visit, was tested for peripheral (Z-score) and autonomic neuropathy (E/I ratio). RESULTS NPY-LA and NPY-PA were detected in 23% and 19% in T1D (p<0.001), and 12% and 23% in T2D patients (p<0.001) compared to 2.5% controls (n=398). The levels of NPYA declined during follow-up in the T1D patients (p<0.001). The neuropathy was not related to the NPYA or the other islet autoantibodies. CONCLUSIONS Regardless of the absence of an association between NPYA and neuropathy, NPY may contribute to the pathogenesis of T1D and T2D as a minor autoantigen.
Collapse
Affiliation(s)
- Hanna Skärstrand
- Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, Sweden.
| | | | | | | |
Collapse
|
49
|
Ayoglu B, Häggmark A, Khademi M, Olsson T, Uhlén M, Schwenk JM, Nilsson P. Autoantibody profiling in multiple sclerosis using arrays of human protein fragments. Mol Cell Proteomics 2013; 12:2657-72. [PMID: 23732997 PMCID: PMC3769337 DOI: 10.1074/mcp.m112.026757] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Profiling the autoantibody repertoire with large antigen collections is emerging as a powerful tool for the identification of biomarkers for autoimmune diseases. Here, a systematic and undirected approach was taken to screen for profiles of IgG in human plasma from 90 individuals with multiple sclerosis related diagnoses. Reactivity pattern of 11,520 protein fragments (representing ∼38% of all human protein encoding genes) were generated on planar protein microarrays built within the Human Protein Atlas. For more than 2,000 antigens IgG reactivity was observed, among which 64% were found only in single individuals. We used reactivity distributions among multiple sclerosis subgroups to select 384 antigens, which were then re-evaluated on planar microarrays, corroborated with suspension bead arrays in a larger cohort (n = 376) and confirmed for specificity in inhibition assays. Among the heterogeneous pattern within and across multiple sclerosis subtypes, differences in recognition frequencies were found for 51 antigens, which were enriched for proteins of transcriptional regulation. In conclusion, using protein fragments and complementary high-throughput protein array platforms facilitated an alternative route to discovery and verification of potentially disease-associated autoimmunity signatures, that are now proposed as additional antigens for large-scale validation studies across multiple sclerosis biobanks.
Collapse
Affiliation(s)
- Burcu Ayoglu
- SciLifeLab Stockholm, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
50
|
Scherer HU, Burmester GR. Adaptive immunity in rheumatic diseases: bystander or pathogenic player? Best Pract Res Clin Rheumatol 2013; 25:785-800. [PMID: 22265261 DOI: 10.1016/j.berh.2011.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/14/2011] [Indexed: 12/24/2022]
Abstract
Rheumatic diseases comprise a wide spectrum of different conditions. Some are caused by disturbances of the adaptive immune system, while defects in innate immune responses have been identified for others. In between are a variety of multifactorial diseases for which the evidence for a causative involvement of the adaptive immune system is still controversial. In these cases, availability of novel drugs that target key players of the adaptive immune system have improved our understanding of the relevance of adaptive immunity to the disease process, but it has also generated unprecedented findings. Rheumatoid arthritis (RA) is a prototypic example of a disease in which the relative contribution of adaptive immunity to disease pathogenesis is incompletely understood. Although numerous markers have been identified that reflect an activated adaptive immune system, several caveats render interpretation of these findings difficult. For one, the very early immune responses initiating disease are likely to take place before an individual is identified as a patient, and are thus difficult to study in the human. Furthermore, increasing evidence points to pathogenetically distinct subgroups within the clinical diagnosis RA, offering the possibility that adaptive immune responses might be relevant to one subgroup but not the other. In addition, many indications for an adaptive immune system involvement are based on associations for which the underlying mechanism is often unknown. Finally, therapeutic interventions targeting the adaptive immune system have generated heterogeneous results. The present review addresses these issues by placing adaptive immune responses in the context of rheumatic diseases, and by reviewing the evidence for a contribution of adaptive immunity to RA.
Collapse
Affiliation(s)
- Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, RC Leiden, The Netherlands.
| | | |
Collapse
|