1
|
Sigal A, Neher RA, Lessells RJ. The consequences of SARS-CoV-2 within-host persistence. Nat Rev Microbiol 2025; 23:288-302. [PMID: 39587352 DOI: 10.1038/s41579-024-01125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
SARS-CoV-2 causes an acute respiratory tract infection that resolves in most people in less than a month. Yet some people with severely weakened immune systems fail to clear the virus, leading to persistent infections with high viral titres in the respiratory tract. In a subset of cases, persistent SARS-CoV-2 replication results in an accelerated accumulation of adaptive mutations that confer escape from neutralizing antibodies and enhance cellular infection. This may lead to the evolution of extensively mutated SARS-CoV-2 variants and introduce an element of chance into the timing of variant evolution, as variant formation may depend on evolution in a single person. Whether long COVID is also caused by persistence of replicating SARS-CoV-2 is controversial. One line of evidence is detection of SARS-CoV-2 RNA and proteins in different body compartments long after SARS-CoV-2 infection has cleared from the upper respiratory tract. However, thus far, no replication competent virus has been cultured from individuals with long COVID who are immunocompetent. In this Review, we consider mechanisms of viral persistence, intra-host evolution in persistent infections, the connection of persistent infections with SARS-CoV-2 variants and the possible role of SARS-CoV-2 persistence in long COVID. Understanding persistent infections may therefore resolve much of what is still unclear in COVID-19 pathophysiology, with possible implications for other emerging viruses.
Collapse
Affiliation(s)
- Alex Sigal
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- Africa Health Research Institute, Durban, South Africa.
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Richard J Lessells
- KwaZulu-Natal Research Innovation & Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| |
Collapse
|
2
|
Wen Z, Li P, Yuan Y, Wang C, Li M, Wang H, Shi M, He Y, Cui M, Chen L, Sun C. Purging viral latency by a bifunctional HSV-vectored therapeutic vaccine in chronically SIV-infected macaques. eLife 2025; 13:RP95964. [PMID: 40266253 PMCID: PMC12017772 DOI: 10.7554/elife.95964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
The persistence of latent viral reservoirs remains the major obstacle to eradicating human immunodeficiency virus (HIV). We herein found that ICP34.5 can act as an antagonistic factor for the reactivation of HIV latency by herpes simplex virus type I (HSV-1), and thus recombinant HSV-1 with ICP34.5 deletion could more effectively reactivate HIV latency than its wild-type counterpart. Mechanistically, HSV-ΔICP34.5 promoted the phosphorylation of HSF1 by decreasing the recruitment of protein phosphatase 1 (PP1α), thus effectively binding to the HIV LTR to reactivate the latent reservoirs. In addition, HSV-ΔICP34.5 enhanced the phosphorylation of IKKα/β through the degradation of IκBα, leading to p65 accumulation in the nucleus to elicit NF-κB pathway-dependent reactivation of HIV latency. Then, we constructed the recombinant HSV-ΔICP34.5 expressing simian immunodeficiency virus (SIV) env, gag, or the fusion antigen sPD1-SIVgag as a therapeutic vaccine, aiming to achieve a functional cure by simultaneously reactivating viral latency and eliciting antigen-specific immune responses. Results showed that these constructs effectively elicited SIV-specific immune responses, reactivated SIV latency, and delayed viral rebound after the interruption of antiretroviral therapy (ART) in chronically SIV-infected rhesus macaques. Collectively, these findings provide insights into the rational design of HSV-vectored therapeutic strategies for pursuing an HIV functional cure.
Collapse
Affiliation(s)
- Ziyu Wen
- School of Public Health (Shenzhen), Sun Yat-sen UniversityShenzhenChina
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of SciencesGuangzhouChina
| | - Yue Yuan
- School of Public Health (Shenzhen), Sun Yat-sen UniversityShenzhenChina
| | - Congcong Wang
- School of Public Health (Shenzhen), Sun Yat-sen UniversityShenzhenChina
| | - Minchao Li
- School of Public Health (Shenzhen), Sun Yat-sen UniversityShenzhenChina
| | - Haohang Wang
- School of Public Health (Shenzhen), Sun Yat-sen UniversityShenzhenChina
| | - Minjuan Shi
- School of Public Health (Shenzhen), Sun Yat-sen UniversityShenzhenChina
| | - Yizi He
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of SciencesGuangzhouChina
| | - Mingting Cui
- School of Public Health (Shenzhen), Sun Yat-sen UniversityShenzhenChina
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of SciencesGuangzhouChina
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen UniversityShenzhenChina
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of EducationGuangzhouChina
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen UniversityShenzhenChina
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen UniversityGuangzhouChina
| |
Collapse
|
3
|
Said N, Venketaraman V. Neuroinflammation, Blood-Brain Barrier, and HIV Reservoirs in the CNS: An In-Depth Exploration of Latency Mechanisms and Emerging Therapeutic Strategies. Viruses 2025; 17:572. [PMID: 40285014 PMCID: PMC12030944 DOI: 10.3390/v17040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/12/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Despite the success of antiretroviral therapy (ART) in suppressing viral replication in the blood, HIV persists in the central nervous system (CNS) and causes chronic neurocognitive impairment, a hallmark of HIV-associated neurocognitive disorders (HAND). This review looks at the complex interactions among HIV, the blood-brain barrier (BBB), neuroinflammation, and the roles of viral proteins, immune cell trafficking, and pro-inflammatory mediators in establishing and maintaining latent viral reservoirs in the CNS, particularly microglia and astrocytes. Key findings show disruption of the BBB, monocyte infiltration, and activation of CNS-resident cells by HIV proteins like Tat and gp120, contributing to the neuroinflammatory environment and neuronal damage. Advances in epigenetic regulation of latency have identified targets like histone modifications and DNA methylation, and new therapeutic strategies like latency-reversing agents (LRAs), gene editing (CRISPR/Cas9), and nanoparticle-based drug delivery also offer hope. While we have made significant progress in understanding the molecular basis of HIV persistence in the CNS, overcoming the challenges of BBB penetration and neuroinflammation is key to developing effective therapies. Further research into combination therapies and novel drug delivery systems will help improve outcomes for HAND patients and bring us closer to a functional cure for HIV.
Collapse
Affiliation(s)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA;
| |
Collapse
|
4
|
Mahomed S, Pillay K, Hassan-Moosa R, Galvão BPGV, Burgers WA, Moore PL, Rose-Abrahams M, Williamson C, Garrett N. Clinical trials of broadly neutralizing monoclonal antibodies in people living with HIV - a review. AIDS Res Ther 2025; 22:44. [PMID: 40189566 PMCID: PMC11972490 DOI: 10.1186/s12981-025-00734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
INTRODUCTION HIV-1 remains a major global health challenge, impacting approximately 39 million people worldwide. Although antiretroviral therapy has substantially reduced HIV incidence and enhanced the quality of life for those living with HIV, adherence difficulties, limited access, and persistent stigma continue to exacerbate the disease burden. A curative or long-term immunological control strategy without continuous medication would significantly advance pandemic management. In the 2010s, technological progress led to the development of a new generation of broadly neutralizing antibodies (bNAbs) with improved potency and breadth, targeting conserved regions of the HIV-1 envelope and facilitating viral neutralization and clearance. METHODS This review evaluates the clinical outcomes and potential of bNAbs in people living with HIV, summarizing findings from a review of 154 registered trials, of which 62 met the inclusion criteria focusing on adult PLWH. RESULTS Early trials confirmed bNAbs' safety but revealed transient and limited viral suppression, often due to viral escape. Second-generation bNAbs like VRC01 and 3BNC117, as well as combination therapies such as 3BNC117 with 10-1074, extended viral suppression but continued to face resistance challenges. CONCLUSION More recent trials that paired bNAbs with latency-reversing agents or combined multiple bNAbs demonstrated promising results, including delayed viral rebound and enhanced CD8 + T-cell responses. While bNAbs show potential as an adjunct or alternative to ART, obstacles such as viral resistance, high production costs, and scalability must be addressed. Continued research is crucial to developing more potent, durable, and affordable bNAbs for sustainable HIV treatment and potential remission.
Collapse
Affiliation(s)
- Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4001, South Africa.
- Department of Medical Microbiology, University of Kwazulu-Natal, Durban, 4001, South Africa.
- Doris Duke Medical Research Institute, 719 Umbilo Road, CAPRISA, 2nd Floor,, Durban, 4041, South Africa.
| | - Kayla Pillay
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4001, South Africa
| | - Razia Hassan-Moosa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4001, South Africa
| | - Bruna P G V Galvão
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Wendy A Burgers
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Penny L Moore
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4001, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, 2193, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), A Division of the National Health Laboratory Service, Johannesburg, 2192, South Africa
| | - Melissa Rose-Abrahams
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4001, South Africa
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Carolyn Williamson
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4001, South Africa
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- National Health Laboratory Services of South Africa, Johannesburg, 2000, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4001, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, 4001, South Africa
| |
Collapse
|
5
|
Godse S, Zhou L, Sinha N, Mirzahosseini G, Kumar S. PLGA-Encapsulated Elvitegravir and Curcumin Modulates ART Penetration, Oxidative Stress, and Inflammation. Brain Sci 2025; 15:328. [PMID: 40309788 DOI: 10.3390/brainsci15040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: HIV persists in central nervous system (CNS) reservoirs, where infected microglia and macrophages drive neuroinflammation, oxidative stress, and neuronal damage, contributing to HIV-associated neurocognitive disorder (HAND). Nanoparticle-based drug delivery systems, particularly poly(lactic-co-glycolic acid) (PLGA) nanoparticles, offer a promising strategy to improve CNS antiretroviral therapy (ART) delivery. This study aimed to evaluate the efficacy of co-administration of PLGA nanoparticles (NPs) encapsulating elvitegravir (EVG) and curcumin (CUR) in targeting CNS reservoirs, reducing neuroinflammation, and mitigating oxidative stress. Methods: PLGA NPs encapsulating EVG and CUR (PLGA-EVG and PLGA-CUR) were prepared via the nanoprecipitation method. The NPs were characterized for size, zeta potential, and encapsulation efficiency (EE). Their therapeutic efficacy was evaluated in vitro using U1 macrophages and in vivo in Balb/c mice. Key parameters, including cytokine levels, oxidative stress markers, and neuronal marker expression, were analyzed. Results: The PLGA-EVG and PLGA-CUR NPs demonstrated high EE% (~90.63 ± 4.21 for EVG and 87.59 ± 3.42 for CUR) and sizes under 140 nm, ensuring blood-brain barrier (BBB) permeability. In vitro studies showed enhanced intracellular EVG concentrations and reductions in proinflammatory cytokines (IL-1β, TNFα, and IL-18) and improved antioxidant capacity in U1 macrophages. In vivo, the co-administration of NPs improved CNS drug delivery, reduced neuroinflammation and oxidative stress, and preserved neuronal markers (L1CAM, synaptophysin, NeuN, GFAP). Conclusions: PLGA-based co-delivery of EVG and CUR enhances ART CNS drug delivery, mitigating neuroinflammation and reducing oxidative stress. These findings highlight the potential of nanoparticle-based ART strategies to address limitations in current regimens and pave the way for more effective HAND therapies. Future studies should focus on optimizing formulations and evaluating safety in chronic HIV settings.
Collapse
Affiliation(s)
- Sandip Godse
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA
| | - Lina Zhou
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA
| | - Namita Sinha
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA
| | - Golnoush Mirzahosseini
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA
| |
Collapse
|
6
|
LI Y, SOTO-RAMIREZ ZN, ROSCHER J, MEDVEC T, ALAOUI-EL-AZHER M, PIAZZA P, CHEN Y, SLUIS-CREMER N, RINALDO C, MACATANGAY BJC. Senescence-related cytokine levels are associated with HIV-1 serostatus and persistence. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.05.25321757. [PMID: 39974095 PMCID: PMC11838616 DOI: 10.1101/2025.02.05.25321757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background HIV-1 is associated with accelerated aging. The senescence-associated secretory phenotype (SASP) includes biological and cytokine profiles that induce cellular senescence and inflammaging. In this study, we leveraged the Multicenter AIDS Cohort Study (MACS) to evaluate the role of SASP in aging, HIV-1 reservoir, and inflammation in people with HIV-1 (PWH) on long-term suppressive antiretroviral therapy (ART). Methods In this retrospective study we included plasma and serum samples from 27 virally-suppressed PWH and 10 people without HIV-1 (PWoH) collected in 2019 and 2023. SASP markers were quantified in the 2019 and 2023 samples. Plasma residual viremia, intact and defective proviral DNA were quantified in the 2019 samples. Correlations between SASP markers and HIV-1 reservoir were performed using the Spearman test, and the sparse partial least squares discrimination analysis was used to identify variables that distinguish HIV-1 serostatus. Results All study participants were male with a median age of 59 years. SASP markers did not show significant changes longitudinally in either group. We identified a set of markers that had moderate performance in distinguishing PWH and PWoH, including CMV serum antibody titer, matrix metalloproteinase 9 (MMP-9), Growth/differentiation factor-15, Stanniocalcin-1 and SerpinE1. Among all the SASP markers, MMP-9 was significantly associated with intact HIV-1 proviral levels (rho=0.60, P=0.002). Conclusion In this cohort study, we revealed the relationship between SASP markers and HIV-1 persistence. Future interventions targeting the senescence pathways may impact HIV-1 persistence.
Collapse
Affiliation(s)
- Yijia LI
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Zoamy N. SOTO-RAMIREZ
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- University of Puerto Rico at Mayagüez, Mayagüez, PR
| | - Jenny ROSCHER
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tom MEDVEC
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Mounia ALAOUI-EL-AZHER
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Paolo PIAZZA
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Yue CHEN
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nicolas SLUIS-CREMER
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Charles RINALDO
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Bernard JC MACATANGAY
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
7
|
Boomgarden AC, Upadhyay C. Progress and Challenges in HIV-1 Vaccine Research: A Comprehensive Overview. Vaccines (Basel) 2025; 13:148. [PMID: 40006695 PMCID: PMC11860913 DOI: 10.3390/vaccines13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The development of an effective HIV-1 vaccine remains a formidable challenge in biomedical research. Despite significant advancements in our understanding of HIV biology and pathogenesis, progress has been impeded by factors such as the virus's genetic diversity, high mutation rates, and its ability to establish latent reservoirs. Recent innovative approaches, including mosaic vaccines and mRNA technology to induce broadly neutralizing antibodies, have shown promise. However, the efficacy of these vaccines has been modest, with the best results achieving approximately 30% effectiveness. Ongoing research emphasizes the necessity of a multifaceted strategy to overcome these obstacles and achieve a breakthrough in HIV-1 vaccine development. This review summarizes current approaches utilized to further understand HIV-1 biology and to create a global vaccine. We discuss the impact of these approaches on vaccine development for other diseases, including COVID-19, influenza, and Zika virus. Additionally, we highlight the specific limitations faced with each approach and present the methods researchers employ to overcome these challenges. These innovative techniques, which have demonstrated preclinical and clinical success, have advanced the field closer to the ultimate goal of developing a global HIV-1 vaccine. Leveraging these advancements will enable significant strides in combating HIV-1 and other infectious diseases, ultimately improving global health outcomes.
Collapse
Affiliation(s)
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
8
|
Sun Y, Gao Y, Su T, Zhang L, Zhou H, Zhang J, Sun H, Bai J, Jiang P. Nanoparticle Vaccine Triggers Interferon-Gamma Production and Confers Protective Immunity against Porcine Reproductive and Respiratory Syndrome Virus. ACS NANO 2025; 19:852-870. [PMID: 39757928 DOI: 10.1021/acsnano.4c12212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The swine industry annually suffers significant economic losses caused by porcine reproductive and respiratory syndrome virus (PRRSV). Because the available commercial vaccines have limited protective efficacy against epidemic PRRSV, there is an urgent need for innovative solutions. Nanoparticle vaccines induce robust immune responses and have become a promising direction in vaccine development. In this study, we designed and produced a self-assembling nanoparticle vaccine derived from thermophilic archaeal ferritin to combat epidemic PRRSV. First, multiple T cell epitopes targeting viral structural proteins were identified by IFN-γ screening after PRRSV infection. Three different self-assembled nanoparticles with epitopes targeting viral GP3, GP4, and GP5 proteins were constructed and mixed to generate a FeCocktail vaccine. Experiments showed that the FeCocktail vaccine effectively activated CD4+ and CD8+ T cells and effector memory T cells in mice. Piglets immunized with the FeCocktail vaccine generated specific antibodies and exhibited increased levels of PRRSV-specific IFN-γ produced by functional CD4+ and CD8+ cells. The FeCocktail also provided protective efficacy against PRRSV challenge, including mitigation of clinical symptoms, reduction of viral loads in serum and lungs, and the alleviation of lung tissue damage. In conclusion, this study offers a promising candidate vaccine for combating epidemic PRRSV, and affirms the utility of nanoparticle protein as a platform for next-generation PRRSV vaccine development.
Collapse
Affiliation(s)
- Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanni Gao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongjian Su
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lujie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoran Zhou
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Murzin AI, Elfimov KA, Gashnikova NM. The Proviral Reservoirs of Human Immunodeficiency Virus (HIV) Infection. Pathogens 2024; 14:15. [PMID: 39860976 PMCID: PMC11768375 DOI: 10.3390/pathogens14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Human Immunodeficiency Virus (HIV) proviral reservoirs are cells that harbor integrated HIV proviral DNA within their nuclear genomes. These cells form a heterogeneous group, represented by peripheral blood mononuclear cells (PBMCs), tissue-resident lymphoid and monocytic cells, and glial cells of the central nervous system. The importance of studying the properties of proviral reservoirs is connected with the inaccessibility of integrated HIV proviral DNA for modern anti-retroviral therapies (ARTs) that block virus reproduction. If treatment is not effective enough or is interrupted, the proviral reservoir can reactivate. Early initiation of ART improves the prognosis of the course of HIV infection, which is explained by the reduction in the proviral reservoir pool observed in the early stages of the disease. Different HIV subtypes present differences in the number of latent reservoirs, as determined by structural and functional differences. Unique signatures of patients with HIV, such as elite controllers, have control over viral replication and can be said to have achieved a functional cure for HIV infection. Uncovering the causes of this phenomenon will bring humanity closer to curing HIV infection, potential approaches to which include stem cell transplantation, clustered regularly interspaced short palindromic repeats (CRISPR)/cas9, "Shock and kill", "Block and lock", and the application of broad-spectrum neutralizing antibodies (bNAbs).
Collapse
Affiliation(s)
- Andrey I. Murzin
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo 630559, Russia; (K.A.E.); (N.M.G.)
| | | | | |
Collapse
|
10
|
Gáspár Z, Nagavci B, Szabó BG, Lakatos B. Gut Microbiome Alteration in HIV/AIDS and the Role of Antiretroviral Therapy-A Scoping Review. Microorganisms 2024; 12:2221. [PMID: 39597610 PMCID: PMC11596264 DOI: 10.3390/microorganisms12112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
(1) Background: The gut microbiota plays a crucial role in chronic immune activation associated with human immunodeficiency virus (HIV) infection, acquired immune deficiency syndrome (AIDS) pathogenesis, non-AIDS-related comorbidities, and mortality among people living with HIV (PLWH). The effects of antiretroviral therapy on the microbiome remain underexplored. This study aims to map the evidence of the impact of integrase strand transfer inhibitors (INSTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI) on the gut microbiota of PLWH. (2) Methods: A scoping review was conducted using PubMed, Web of Science, and Embase, with reports collected following PRISMA for Scoping Reviews (PRISMA-ScR). (3) Results: Evidence suggests that INSTI-based regimes generally promote the restoration of alpha diversity, bringing it closer to that of seronegative controls, while beta diversity remains largely unchanged. INSTI-based therapies are suggested to be associated with improvements in microbiota composition and a tendency toward reduced inflammatory markers. In contrast, NNRTI-based treatments demonstrate limited recovery of alpha diversity and are linked to an increase in proinflammatory bacteria. (4) Conclusions: Based on the review of the current literature, it is indicated that INSTI-based antiretroviral therapy (ART) therapy facilitates better recovery of the gut microbiome.
Collapse
Affiliation(s)
- Zsófia Gáspár
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
| | - Blin Nagavci
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
| | - Bálint Gergely Szabó
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Hematology, Semmelweis University, H-1097 Budapest, Hungary
| | - Botond Lakatos
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Hematology, Semmelweis University, H-1097 Budapest, Hungary
| |
Collapse
|
11
|
Huvelle S, Pinon A, Coulon C, Bonasera T, Chapon C, Naninck T, Le Grand R, Parry CM, Kuhnast B, Caillé F. Improved Automated Radiosynthesis of [ 18F]Dolutegravir: Toward Clinical Applications. ACS OMEGA 2024; 9:41732-41741. [PMID: 39398184 PMCID: PMC11465247 DOI: 10.1021/acsomega.4c05893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Positron emission tomography imaging using radiolabeled dolutegravir (DTG) is an interesting approach to understand the biodistribution of this antiretroviral drug at HIV-1 sanctuary sites. In the course of clinical translation, we depict herein an improved and pharmaceutically compliant radiosynthesis of [18F]DTG from an original tin precursor. The radiosynthesis was achieved in two steps by copper-mediated radiofluorination, followed by enol ether deprotection using a kit-based AllInOne module. Ready-to-inject [18F]DTG was obtained in 20 ± 5% (n = 12) decay-corrected radiochemical yield within 90 min, representing a 4-fold increase compared to the previously published three-step radiosynthesis. Quality control was carried out with three consecutive [18F]DTG productions according to the current European Pharmacopoeia guidelines, which include pH determination, identity and purity (chemical, radiochemical, and radionuclide) assessments, residual solvent quantification, dosage of lithium, copper, and tin traces, sterility and bacterial endotoxin tests. [18F]DTG (∼2 GBq) was obtained with a molar activity of 59 ± 2 GBq/μmol at the time of injection and was suitable for human applications.
Collapse
Affiliation(s)
- Steve Huvelle
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
- Université
Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses 92260, France
| | - Antoine Pinon
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
| | - Christine Coulon
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
| | - Thomas Bonasera
- GSK,
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Catherine Chapon
- Université
Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses 92260, France
| | - Thibaut Naninck
- Université
Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses 92260, France
| | - Roger Le Grand
- Université
Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses 92260, France
| | - Chris M. Parry
- ViiV
Healthcare, 980 Great West Road, London TW8 9GS, U.K.
| | - Bertrand Kuhnast
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
| | - Fabien Caillé
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
| |
Collapse
|
12
|
Gutierrez H, Eugenin EA. The challenges to detect, quantify, and characterize viral reservoirs in the current antiretroviral era. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:211-219. [PMID: 39845128 PMCID: PMC11751450 DOI: 10.1515/nipt-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/10/2024] [Indexed: 01/24/2025]
Abstract
A major barrier to cure HIV is the early generation of viral reservoirs in tissues. These viral reservoirs can contain intact or defective proviruses, but both generates low levels of viral proteins contribute to chronic bystander damage even in the ART era. Most viral reservoir detection techniques are limited to blood-based, reactivation, and sequencing assays that lack spatial properties to examine the contribution of the host's microenvironment to latency and cure efforts. Currently, little is known about the contribution of the microenvironment to viral reservoir survival, residual viral expression, and associated inflammation. Only a few spatiotemporal techniques are available, and fewer integrate spatial genomics, transcriptomics, and proteomics into the analysis of the viral reservoir microenvironment-all essential components to cure HIV. During the development of these spatial techniques, many considerations need to be included in the analysis to avoid misinterpretation. This manuscript tries to clarify some critical concepts in viral reservoir detection by spatial techniques and the upcoming opportunities for cure efforts.
Collapse
Affiliation(s)
- Hector Gutierrez
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
13
|
Vasukutty A, Pillarisetti S, Choi J, Kang SH, Park IK. CXCR4 Targeting Nanoplatform for Transcriptional Activation of Latent HIV-1 Infected T Cells. ACS APPLIED BIO MATERIALS 2024; 7:4831-4842. [PMID: 37586084 DOI: 10.1021/acsabm.3c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Antiretroviral drugs are limited in their ability to target latent retroviral reservoirs in CD4+ T cells, highlighting the need for a T cell-targeted drug delivery system that activates the transcription of inactivated viral DNA in infected cells. Histone deacetylase inhibitors (HDACi) disrupt chromatin-mediated silencing of the viral genome and are explored in HIV latency reversal. But single drug formulations of HDACi are insufficient to elicit therapeutic efficacy, warranting combination therapy. Furthermore, protein kinase C activators (PKC) have shown latency reversal activity in HIV by activating the NF-κB signaling pathway. Combining HDACi (SAHA) with PKC (PMA) activators enhances HIV reservoir activation by promoting chromatin decondensation and subsequent transcriptional activation. In this study, we developed a mixed nanomicelle (PD-CR4) drug delivery system for simultaneous targeting of HIV-infected CD4+ T cells with two drugs, suberoylanilide hydroxamic acid (SAHA) and phorbol 12-myristate 13-acetate (PMA). SAHA is a HDACi that promotes chromatin decondensation, while PMA is a PKC agonist that enhances transcriptional activation. The physicochemical properties of the formulated PD-CR4 nanoparticles were characterized by NMR, CMC, DLS, and TEM analyses. Further, we investigated in vitro safety profiles, targeting efficacy, and transcriptional activation of inactivated HIV reservoir cells. Our results suggest that we successfully prepared a targeted PD system with dual drug loading. We have compared latency reversal efficacy of a single drug nanoformulation and combination drug nanoformulation. Final PD-SP-CR4 successfully activated infected CD4+ T cell reservoirs and showed enhanced antigen release from HIV reservoir T cells, compared with the single drug treatment group as expected. To summarize, our data shows PD-SP-CR4 has potential T cell targeting efficiency and efficiently activated dormant CD4+ T cells. Our data indicate that a dual drug-loaded particle has better therapeutic efficacy than a single loaded particle as expected. Hence, PD-CR4 can be further explored for HIV therapeutic drug delivery studies.
Collapse
Affiliation(s)
- Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Shameer Pillarisetti
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Shin Hyuk Kang
- Departments of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| |
Collapse
|
14
|
Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z, Liu T, Wang D. CRISPR technology in human diseases. MedComm (Beijing) 2024; 5:e672. [PMID: 39081515 PMCID: PMC11286548 DOI: 10.1002/mco2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Qirong Li
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Zhan Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Ziping Jiang
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Tianjia Liu
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
15
|
De Nicolò A, Palermiti A, Dispinseri S, Marchetti G, Trunfio M, De Vivo E, D'Avolio A, Muscatello A, Gori A, Rusconi S, Bruzzesi E, Gabrieli A, Bernasconi DP, Bandera A, Nozza S, Calcagno A. Plasma, intracellular and lymph node antiretroviral concentrations and HIV DNA change during primary HIV infection: Results from the INACTION P25 study. Int J Antimicrob Agents 2024; 64:107200. [PMID: 38768738 DOI: 10.1016/j.ijantimicag.2024.107200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Despite its effectiveness, combination antiretroviral treatment (cART) has a limited effect on HIV DNA reservoir, which establishes early during primary HIV infection (PHI) and is maintained by latency, homeostatic T-cells proliferation, and residual replication. This limited effect can be associated with low drug exposure in lymphoid tissues and/or suboptimal adherence to antiretroviral drugs (ARVs). The aim of this study was to assess ARV concentrations in plasma, peripheral blood mononuclear cells (PBMCs) and lymph nodes (LNs), and their association to HIV RNA and HIV DNA decay during PHI. Participants were randomised to receive standard doses of darunavir/cobicistat (Arm I), dolutegravir (Arm II) or both (Arm III), with a backbone of tenofovir alafenamide and emtricitabine. Total HIV DNA was measured using digital-droplet PCR in PBMCs at baseline, 12 and 48 weeks. Drug concentrations in plasma and PBMCs were determined at 2, 12 and 48 weeks (LNs at 12 weeks) by UHPLC-MS/MS. Seventy-two participants were enrolled, mostly male (n=68), with a median age of 34 years and variable Fiebig stages (V-VI 57.7%, I-II 23.9%, and III-IV 18.3%). Twenty-six patients were assigned to Arm I, 27 to Arm II and 19 to Arm III. After 48 weeks, most patients had undetectable viremia, with minor differences in HIV RNA decay between arms. Patients with Fiebig I-II showed faster HIV RNA and HIV DNA decay. Intracellular tissue penetration was high for nucleoside analogues and low-moderate for darunavir and dolutegravir. Only tenofovir diphosphate concentrations in PBMCs showed correlation with HIV DNA decay. Overall, these results indicate that the timing of treatment initiation and intracellular tenofovir penetration are primary and secondary factors, respectively, affecting HIV reservoir.
Collapse
Affiliation(s)
- Amedeo De Nicolò
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin.
| | - Alice Palermiti
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin
| | | | - Giulia Marchetti
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan
| | - Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin
| | - Elisa De Vivo
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin
| | - Antonio D'Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin
| | - Antonio Muscatello
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan
| | - Andrea Gori
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan
| | - Stefano Rusconi
- UOC Malattie Infettive, Ospedale Civile di Legnano, ASST Ovest Milanese, Legnano; University of Milan, Milan
| | | | - Arianna Gabrieli
- Dipartimento di Scienze Biomediche e Cliniche, Ospedale L Sacco, Milan
| | - Davide Paolo Bernasconi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre - B4 School of Medicine and Surgery, University of Milano-Bicocca, Monza
| | | | - Silvia Nozza
- Department of Infectious Diseases, IRCCS Ospedale san Raffaele, Milan, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin
| |
Collapse
|
16
|
Chan P, Spudich S. Central Nervous System Effects of Early HIV Infection and Consequences of Antiretroviral Therapy Initiation during Acute HIV. Viruses 2024; 16:1082. [PMID: 39066244 PMCID: PMC11281648 DOI: 10.3390/v16071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
HIV infection is a multi-organ disease that involves the central nervous system (CNS). While devastating CNS complications such as HIV-associated dementia and CNS opportunistic infection typically manifest years after HIV acquisition, HIV RNA is readily detected in the cerebrospinal fluid in untreated neuroasymptomatic people with HIV, highlighting that HIV neuroinvasion predates overt clinical manifestations. Over the past two decades, increased awareness of HIV infection within the at-risk population, coupled with the accessibility of nucleic acid testing and modern HIV immunoassays, has made the detection of acute and early HIV infection readily achievable. This review aims to summarize research findings on CNS involvement during acute and early HIV infection, as well as the outcomes following the immediate initiation of antiretroviral therapy during this early stage of infection. The knowledge gap in long-term neuroprotection through early ART within the first year of infection will be discussed.
Collapse
Affiliation(s)
- Phillip Chan
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
- Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT 06510, USA
| | - Serena Spudich
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
- Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
17
|
Matsuda K, Maeda K. HIV Reservoirs and Treatment Strategies toward Curing HIV Infection. Int J Mol Sci 2024; 25:2621. [PMID: 38473868 DOI: 10.3390/ijms25052621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Combination antiretroviral therapy (cART) has significantly improved the prognosis of individuals living with human immunodeficiency virus (HIV). Acquired immunodeficiency syndrome has transformed from a fatal disease to a treatable chronic infection. Currently, effective and safe anti-HIV drugs are available. Although cART can reduce viral production in the body of the patient to below the detection limit, it cannot eliminate the HIV provirus integrated into the host cell genome; hence, the virus will be produced again after cART discontinuation. Therefore, research into a cure (or remission) for HIV has been widely conducted. In this review, we focus on drug development targeting cells latently infected with HIV and assess the progress including our current studies, particularly in terms of the "Shock and Kill", and "Block and Lock" strategies.
Collapse
Affiliation(s)
- Kouki Matsuda
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kenji Maeda
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
18
|
McLaurin KA, Li H, Khalili K, Mactutus CF, Booze RM. HIV-1 mRNA knockdown with CRISPR/CAS9 enhances neurocognitive function. J Neurovirol 2024; 30:71-85. [PMID: 38355914 PMCID: PMC11035469 DOI: 10.1007/s13365-024-01193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HIV-1 viral reservoirs; whether these techniques are capable of removing HIV-1 viral proteins from mixed glia, however, has not been systematically evaluated. Herein, the efficacy of adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing for eliminating HIV-1 messenger RNA (mRNA) from cortical mixed glia was evaluated in vitro and in vivo. In vitro, a within-subjects experimental design was utilized to treat mixed glia isolated from neonatal HIV-1 transgenic (Tg) rats with varying doses (0, 0.9, 1.8, 2.7, 3.6, 4.5, or 5.4 µL corresponding to a physical titer of 0, 4.23 × 109, 8.46 × 109, 1.269 × 1010, 1.692 × 1010, 2.115 × 1010, and 2.538 × 1010 gc/µL) of CRISPR/Cas9 for 72 h. Dose-dependent decreases in the number of HIV-1 mRNA, quantified using an innovative in situ hybridization technique, were observed in a subset (i.e., n = 5 out of 8) of primary mixed glia. In vivo, HIV-1 Tg rats were retro-orbitally inoculated with CRISPR/Cas9 for two weeks, whereby treatment resulted in profound excision (i.e., approximately 53.2%) of HIV-1 mRNA from the medial prefrontal cortex. Given incomplete excision of the HIV-1 viral genome, the clinical relevance of HIV-1 mRNA knockdown for eliminating neurocognitive impairments was evaluated via examination of temporal processing, a putative neurobehavioral mechanism underlying HIV-1-associated neurocognitive disorders (HAND). Indeed, treatment with CRISPR/Cas9 protractedly, albeit not permanently, restored the developmental trajectory of temporal processing. Proof-of-concept studies, therefore, support the susceptibility of mixed glia to gene editing and the potential of CRISPR/Cas9 to serve as a novel therapeutic strategy for HAND, even in the absence of full viral eradication.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S Limestone Street, Lexington, KY, 40508, USA
| | - Hailong Li
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Kamel Khalili
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA.
- Department of Psychology, Carolina Trustees Professor and Bicentennial Endowed Chair of Behavioral Neuroscience, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA.
| |
Collapse
|
19
|
Li H, Terrando N, Gelbard HA. Infectious Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:423-444. [PMID: 39207706 PMCID: PMC11556852 DOI: 10.1007/978-3-031-55529-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia, brain-resident innate immune cells, have been extensively studied in neurodegenerative contexts like Alzheimer's disease. The Coronavirus disease 2019 (COVID-19) pandemic highlighted how peripheral infection and inflammation can be detrimental to the neuroimmune milieu and initiate microgliosis driven by peripheral inflammation. Microglia can remain deleterious to brain health by sustaining inflammation in the central nervous system even after the clearance of the original immunogenic agents. In this chapter, we discuss how pulmonary infection with Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) can lead to neurovascular and neuroimmune inflammation causing the neurological syndrome of post-acute sequelae of COVID-19 (PASC). Further, we incorporate lessons from the Human Immunodeficiency Virus' (HIV's) effects on microglial functioning in the era of combined antiretroviral therapies (cART) that contribute to HIV-1 associated neurocognitive disorders (HAND). Finally, we describe roles for mixed lineage kinase 3 (MLK3) and leucine-rich repeat kinase (LRRK2) as key regulators of multiple inflammatory and apoptotic pathways important to the pathogenesis of PASC and HAND. Inhibition of these pathways provides a therapeutically synergistic method of treating both PASC and HAND.
Collapse
Affiliation(s)
- Herman Li
- Center for Neurotherapeutics Discovery, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Niccolò Terrando
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
20
|
Rovatti PE, Muccini C, Punta M, Galli L, Mainardi I, Ponta G, Vago LAE, Castagna A. Impact of predicted HLA class I immunopeptidome on viral reservoir in a cohort of people living with HIV in Italy. HLA 2024; 103:e15298. [PMID: 37962099 DOI: 10.1111/tan.15298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
The class I HLA genotype has been widely recognized as a factor influencing HIV disease progression in treatment-naïve subjects. However, little is known regarding its role in HIV disease course and how it influences the size of the viral reservoir once anti-retroviral therapy (ART) is started. Here, leveraging on cutting-edge bioinformatic tools, we explored the relationship between HLA class I and the HIV reservoir in a cohort of 90 people living with HIV (PLWH) undergoing ART and who achieved viral suppression. Analysis of HLA allele distribution among patients with high and low HIV reservoir allowed us to document a predominant role of HLA-B and -C genes in regulating the size of HIV reservoir. We then focused on the analysis of HIV antigen (Ag) repertoire, by investigating immunogenetic parameters such as the degree of homozygosity, HLA evolutionary distance and Ag load. In particular, we used two different bioinformatic algorithms, NetMHCpan and MixMHCpred, to predict HLA presentation of immunogenic HIV-derived peptides and identified HLA-B*57:01 and HLA-B*58:01 among the highest ranking HLAs in terms of total load, suggesting that their previously reported protective role against HIV disease progression might be linked to a more effective viral recognition and presentation to Cytotoxic T lymphocytes (CTLs). Further, we speculated that some peptide-HLA complexes, including those produced by the interaction between HLA-B*27 and the HIV Gag protein, might be particularly relevant for the efficient regulation of HIV replication and containment of the HIV reservoir. Last, we provide evidence of a possible synergistic effect between the CCR5 ∆32 mutation and Ag load in controlling HIV reservoir.
Collapse
Affiliation(s)
- Pier Edoardo Rovatti
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Camilla Muccini
- Vita-Salute San Raffaele University, Milan, Italy
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Punta
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Galli
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Luca Aldo Edoardo Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Castagna
- Vita-Salute San Raffaele University, Milan, Italy
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
21
|
Evangelous TD, Berry M, Venkatayogi S, LeMaster C, Geanes ES, De Naeyer N, DeMarco T, Shen X, Li H, Hora B, Solomonis N, Misamore J, Lewis MG, Denny TN, Montefiori D, Shaw GM, Wiehe K, Bradley T, Williams WB. Host immunity associated with spontaneous suppression of viremia in therapy-naïve young rhesus macaques following neonatal SHIV infection. J Virol 2023; 97:e0109423. [PMID: 37874153 PMCID: PMC10688376 DOI: 10.1128/jvi.01094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/06/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Despite the advent of highly active anti-retroviral therapy, people are still dying from HIV-related causes, many of whom are children, and a protective vaccine or cure is needed to end the HIV pandemic. Understanding the nature and activation states of immune cell subsets during infection will provide insights into the immunologic milieu associated with viremia suppression that can be harnessed via therapeutic strategies to achieve a functional cure, but these are understudied in pediatric subjects. We evaluated humoral and adaptive host immunity associated with suppression of viremia in rhesus macaques infected soon after birth with a pathogenic SHIV. The results from our study provide insights into the immune cell subsets and functions associated with viremia control in young macaques that may translate to pediatric subjects for the design of future anti-viral strategies in HIV-1-infected infants and children and contribute to an understudied area of HIV-1 pathogenesis in pediatric subjects.
Collapse
Affiliation(s)
- Tyler D. Evangelous
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Madison Berry
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sravani Venkatayogi
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cas LeMaster
- Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Eric S. Geanes
- Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Nicole De Naeyer
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | | | - Thomas N. Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Todd Bradley
- Children’s Mercy Kansas City, Kansas City, Missouri, USA
- Department of Pediatrics, UMKC School of Medicine, Kansas City, Missouri, USA
- Departments of Pediatrics and Pathology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wilton B. Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
22
|
Zhao JH, Wang YW, Yang J, Tong ZJ, Wu JZ, Wang YB, Wang QX, Li QQ, Yu YC, Leng XJ, Chang L, Xue X, Sun SL, Li HM, Ding N, Duan JA, Li NG, Shi ZH. Natural products as potential lead compounds to develop new antiviral drugs over the past decade. Eur J Med Chem 2023; 260:115726. [PMID: 37597436 DOI: 10.1016/j.ejmech.2023.115726] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Virus infection has been one of the main causes of human death since the ancient times. Even though more and more antiviral drugs have been approved in clinic, long-term use can easily lead to the emergence of drug resistance and side effects. Fortunately, there are many kinds of metabolites which were produced by plants, marine organisms and microorganisms in nature with rich structural skeletons, and they are natural treasure house for people to find antiviral active substances. Aiming at many types of viruses that had caused serious harm to human health in recent years, this review summarizes the natural products with antiviral activity that had been reported for the first time in the past ten years, we also sort out the source, chemical structure and safety indicators in order to provide potential lead compounds for the research and development of new antiviral drugs.
Collapse
Affiliation(s)
- Jing-Han Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yue-Wei Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - He-Min Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
23
|
Godse S, Zhou L, Sinha N, Kodidela S, Kumar A, Singh UP, Kumar S. Curcumin enhances elvitegravir concentration and alleviates oxidative stress and inflammatory response. Sci Rep 2023; 13:19864. [PMID: 37964023 PMCID: PMC10645974 DOI: 10.1038/s41598-023-47226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023] Open
Abstract
In this study, we investigated the potential of using curcumin (CUR) as an adjuvant to enhance the delivery of antiretroviral drug elvitegravir (EVG) across the BBB, and alleviate oxidative stress and inflammatory response, which are the major hallmark of HIV neuropathogenesis. In a mouse model, we compared the biodistribution of EVG alone and in combination with CUR using intraperitoneal (IP) and intranasal (IN) routes. IN administration showed a significantly higher accumulation of EVG in the brain, while both IP and IN routes led to increased EVG levels in the lungs and liver. The addition of CUR further enhanced EVG brain delivery, especially when administered via the IN route. The expression of neural marker proteins, synaptophysin, L1CAM, NeuN, and GFAP was not significantly altered by EVG or CUR alone or their combination, indicating preserved neural homeostasis. After establishing improved brain concentration and safety of CUR-adjuvanted EVG in mice in acute treatment, we studied the effect of this treatment in HIV-infected U1 macrophages. In U1 macrophages, we also observed that the addition of CUR enhanced the intracellular concentration of EVG. The total area under the curve (AUCtot) for EVG was significantly higher in the presence of CUR. We also evaluated the effects of CUR on oxidative stress and antioxidant capacity in EVG-treated U1 macrophages. CUR reduced oxidative stress, as evidenced by decreased reactive oxygen species (ROS) levels and elevated antioxidant enzyme expression. Furthermore, the combination of CUR and EVG exhibited a significant reduction in proinflammatory cytokines (TNFα, IL-1β, IL-18) and chemokines (RANTES, MCP-1) in U1 macrophages. Additionally, western blot analysis confirmed the decreased expression of IL-1β and TNF-α in EVG + CUR-treated cells. These findings suggest the potential of CUR to enhance EVG permeability to the brain and subsequent efficacy of EVG, including HIV neuropathogenesis.
Collapse
Affiliation(s)
- Sandip Godse
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Lina Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Asit Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
24
|
McLaurin KA, Li H, Khalili K, Mactutus CF, Booze RM. HIV-1 mRNA Knockdown with CRISPR/Cas9 Enhances Neurocognitive Function. RESEARCH SQUARE 2023:rs.3.rs-3266933. [PMID: 37886577 PMCID: PMC10602171 DOI: 10.21203/rs.3.rs-3266933/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HIV-1 viral reservoirs; whether these techniques are capable of removing HIV-1 viral proteins from mixed glia, however, has not been systematically evaluated. Herein, the efficacy of adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing for eliminating HIV-1 mRNA from cortical mixed glia was evaluated in vitro and in vivo. In vitro, a within-subjects experimental design was utilized to treat mixed glia isolated from neonatal HIV-1 transgenic (Tg) rats with varying doses (0, 0.9, 1.8, 2.7, 3.6, 4.5, or 5.4 μL) of CRISPR/Cas9 for 72 hours. Dose-dependent decreases in the number of HIV-1 mRNA, quantified using an innovative in situ hybridization technique, were observed in a subset (i.e., n=5 out of 8) of primary mixed glia. In vivo, HIV-1 Tg rats were retro-orbitally inoculated with CRISPR/Cas9 for two weeks, whereby treatment resulted in profound excision (i.e., approximately 53.2%) of HIV-1 mRNA from the mPFC. Given incomplete excision of the HIV-1 viral genome, the clinical relevance of HIV-1 mRNA knockdown for eliminating neurocognitive impairments was evaluated via examination of temporal processing, a putative neurobehavioral mechanism underlying HIV-1 associated neurocognitive disorders (HAND). Indeed, treatment with CRISPR/Cas9 partially restored the developmental trajectory of temporal processing. Proof-of-concept studies, therefore, support the susceptibility of mixed glia to gene editing and the potential of CRISPR/Cas9 to serve as a novel therapeutic strategy for HAND, even in the absence of full viral eradication.
Collapse
|
25
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
26
|
Godse S, Zhou L, Sinha N, Kodidela S, Kumar A, Singh UP, Kumar S. Curcumin enhances elvitegravir concentration and alleviates oxidative stress and inflammatory response. RESEARCH SQUARE 2023:rs.3.rs-3225072. [PMID: 37609211 PMCID: PMC10441462 DOI: 10.21203/rs.3.rs-3225072/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In this study, we investigated the potential of using curcumin (CUR) as an adjuvant to enhance the delivery of antiretroviral drug elvitegravir (EVG) across the BBB, and alleviate oxidative stress and inflammatory response, which are the major hallmark of HIV neuropathogenesis. In a mouse model, we compared the biodistribution of EVG alone and in combination with CUR using intraperitoneal (IP) and intranasal (IN) routes. IN administration showed a significantly higher accumulation of EVG in the brain, while both IP and IN routes led to increased EVG levels in the lungs and liver. The addition of CUR further enhanced EVG brain delivery, especially when administered via the IN route. The expression of neural marker proteins, synaptophysin, L1CAM, NeuN, and GFAP was not significantly altered by EVG or CUR alone or their combination, indicating preserved neural homeostasis. After establishing improved brain concentration and safety of CUR-adjuvanted EVG in mice in acute treatment, we studied the effect of this treatment in HIV-infected U1 macrophages. In U1 macrophages, we also observed that the addition of CUR enhanced the intracellular concentration of EVG. The total area under the curve (AUCtot) for EVG was significantly higher in the presence of CUR. We also evaluated the effects of CUR on oxidative stress and antioxidant capacity in EVG-treated U1 macrophages. CUR reduced oxidative stress, as evidenced by decreased reactive oxygen species (ROS) levels and elevated antioxidant enzyme expression. Furthermore, the combination of CUR and EVG exhibited a significant reduction in proinflammatory cytokines (TNFα, IL-1β, IL-18) and chemokines (RANTES, MCP-1) in U1 macrophages. Additionally, western blot analysis confirmed the decreased expression of IL-1β and TNF-α in EVG + CUR-treated cells. These findings suggest the potential of CUR to enhance EVG permeability to the brain and subsequent efficacy of EVG, including HIV neuropathogenesis.
Collapse
Affiliation(s)
- Sandip Godse
- The University of Tennessee Health Science Center
| | - Lina Zhou
- The University of Tennessee Health Science Center
| | - Namita Sinha
- The University of Tennessee Health Science Center
| | | | - Asit Kumar
- The University of Tennessee Health Science Center
| | - Udai P Singh
- The University of Tennessee Health Science Center
| | | |
Collapse
|
27
|
Jones BR, Joy JB. Inferring Human Immunodeficiency Virus 1 Proviral Integration Dates With Bayesian Inference. Mol Biol Evol 2023; 40:msad156. [PMID: 37421655 PMCID: PMC10411489 DOI: 10.1093/molbev/msad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV) proviruses archived in the persistent reservoir currently pose the greatest obstacle to HIV cure due to their evasion of combined antiretroviral therapy and ability to reseed HIV infection. Understanding the dynamics of the HIV persistent reservoir is imperative for discovering a durable HIV cure. Here, we explore Bayesian methods using the software BEAST2 to estimate HIV proviral integration dates. We started with within-host longitudinal HIV sequences collected prior to therapy, along with sequences collected from the persistent reservoir during suppressive therapy. We built a BEAST2 model to estimate integration dates of proviral sequences collected during suppressive therapy, implementing a tip date random walker to adjust the sequence tip dates and a latency-specific prior to inform the dates. To validate our method, we implemented it on both simulated and empirical data sets. Consistent with previous studies, we found that proviral integration dates were spread throughout active infection. Path sampling to select an alternative prior for date estimation in place of the latency-specific prior produced unrealistic results in one empirical data set, whereas on another data set, the latency-specific prior was selected as best fitting. Our Bayesian method outperforms current date estimation techniques with a root mean squared error of 0.89 years on simulated data relative to 1.23-1.89 years with previously developed methods. Bayesian methods offer an adaptable framework for inferring proviral integration dates.
Collapse
Affiliation(s)
- Bradley R Jones
- Molecular Epidemiology and Evolutionary Genetics, B.C. Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, Canada
| | - Jeffrey B Joy
- Molecular Epidemiology and Evolutionary Genetics, B.C. Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, Canada
- Deparment of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
28
|
Zhang Y, Andreu-Sánchez S, Vadaq N, Wang D, Matzaraki V, van der Heijden WA, Gacesa R, Weersma RK, Zhernakova A, Vandekerckhove L, de Mast Q, Joosten LAB, Netea MG, van der Ven AJAM, Fu J. Gut dysbiosis associates with cytokine production capacity in viral-suppressed people living with HIV. Front Cell Infect Microbiol 2023; 13:1202035. [PMID: 37583444 PMCID: PMC10425223 DOI: 10.3389/fcimb.2023.1202035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023] Open
Abstract
Background People living with human immunodeficiency virus (PLHIV) are exposed to chronic immune dysregulation, even when virus replication is suppressed by antiretroviral therapy (ART). Given the emerging role of the gut microbiome in immunity, we hypothesized that the gut microbiome may be related to the cytokine production capacity of PLHIV. Methods To test this hypothesis, we collected metagenomic data from 143 ART-treated PLHIV and assessed the ex vivo production capacity of eight different cytokines [interleukin-1β (IL-1β), IL-6, IL-1Ra, IL-10, IL-17, IL-22, tumor necrosis factor, and interferon-γ] in response to different stimuli. We also characterized CD4+ T-cell counts, HIV reservoir, and other clinical parameters. Results Compared with 190 age- and sex-matched controls and a second independent control cohort, PLHIV showed microbial dysbiosis that was correlated with viral reservoir levels (CD4+ T-cell-associated HIV-1 DNA), cytokine production capacity, and sexual behavior. Notably, we identified two genetically different P. copri strains that were enriched in either PLHIV or healthy controls. The control-related strain showed a stronger negative association with cytokine production capacity than the PLHIV-related strain, particularly for Pam3Cys-incuded IL-6 and IL-10 production. The control-related strain is also positively associated with CD4+ T-cell level. Conclusions Our findings suggest that modulating the gut microbiome may be a strategy to modulate immune response in PLHIV.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daoming Wang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wouter A. van der Heijden
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - André J. A. M. van der Ven
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
29
|
Lewis CA, Margolis DM, Browne EP. New Concepts in Therapeutic Manipulation of HIV-1 Transcription and Latency: Latency Reversal versus Latency Prevention. Viruses 2023; 15:1677. [PMID: 37632019 PMCID: PMC10459382 DOI: 10.3390/v15081677] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Antiretroviral therapy (ART) has dramatically improved the prognosis for people living with HIV-1, but a cure remains elusive. The largest barrier to a cure is the presence of a long-lived latent reservoir that persists within a heterogenous mix of cell types and anatomical compartments. Efforts to eradicate the latent reservoir have primarily focused on latency reversal strategies. However, new work has demonstrated that the majority of the long-lived latent reservoir is established near the time of ART initiation, suggesting that it may be possible to pair an intervention with ART initiation to prevent the formation of a sizable fraction of the latent reservoir. Subsequent treatment with latency reversal agents, in combination with immune clearance agents, may then be a more tractable strategy for fully clearing the latent reservoir in people newly initiating ART. Here, we summarize molecular mechanisms of latency establishment and maintenance, ongoing efforts to develop effective latency reversal agents, and newer efforts to design latency prevention agents. An improved understanding of the molecular mechanisms involved in both the establishment and maintenance of latency will aid in the development of new latency prevention and reversal approaches to ultimately eradicate the latent reservoir.
Collapse
Affiliation(s)
- Catherine A. Lewis
- University of North Carolina HIV Cure Center, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Microbiology and Immunology, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M. Margolis
- University of North Carolina HIV Cure Center, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Microbiology and Immunology, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Infectious Diseases, Department of Medicine, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Edward P. Browne
- University of North Carolina HIV Cure Center, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Microbiology and Immunology, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Infectious Diseases, Department of Medicine, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
30
|
Wu HL, Busman-Sahay K, Weber WC, Waytashek CM, Boyle CD, Bateman KB, Reed JS, Hwang JM, Shriver-Munsch C, Swanson T, Northrup M, Armantrout K, Price H, Robertson-LeVay M, Uttke S, Kumar MR, Fray EJ, Taylor-Brill S, Bondoc S, Agnor R, Junell SL, Legasse AW, Moats C, Bochart RM, Sciurba J, Bimber BN, Sullivan MN, Dozier B, MacAllister RP, Hobbs TR, Martin LD, Panoskaltsis-Mortari A, Colgin LMA, Siliciano RF, Siliciano JD, Estes JD, Smedley JV, Axthelm MK, Meyers G, Maziarz RT, Burwitz BJ, Stanton JJ, Sacha JB. Allogeneic immunity clears latent virus following allogeneic stem cell transplantation in SIV-infected ART-suppressed macaques. Immunity 2023; 56:1649-1663.e5. [PMID: 37236188 PMCID: PMC10524637 DOI: 10.1016/j.immuni.2023.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/30/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5Δ32/Δ32) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV+, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.5 years after stopping ART, in other cases, it was insufficient without protection of engrafting cells afforded by CCR5-deficiency, as CCR5-tropic virus spread to donor CD4+ T cells despite full ART suppression. These data demonstrate the individual contributions of allogeneic immunity and CCR5 deficiency to HIV cure and support defining targets of alloimmunity for curative strategies independent of HSCT.
Collapse
Affiliation(s)
- Helen L Wu
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Kathleen Busman-Sahay
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Whitney C Weber
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Courtney M Waytashek
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Carla D Boyle
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Katherine B Bateman
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Jason S Reed
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Joseph M Hwang
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Christine Shriver-Munsch
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Tonya Swanson
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Mina Northrup
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Kimberly Armantrout
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Heidi Price
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Mitch Robertson-LeVay
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Samantha Uttke
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Mithra R Kumar
- Department of Medicine and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Emily J Fray
- Department of Medicine and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Sol Taylor-Brill
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Stephen Bondoc
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Rebecca Agnor
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stephanie L Junell
- Division of Medical Physics, Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alfred W Legasse
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Cassandra Moats
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Rachele M Bochart
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Joseph Sciurba
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Benjamin N Bimber
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Michelle N Sullivan
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Brandy Dozier
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Rhonda P MacAllister
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Theodore R Hobbs
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Lauren D Martin
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Lois M A Colgin
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Robert F Siliciano
- Department of Medicine and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Janet D Siliciano
- Department of Medicine and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Jacob D Estes
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Jeremy V Smedley
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Michael K Axthelm
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Gabrielle Meyers
- Division of Blood and Marrow Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Richard T Maziarz
- Division of Blood and Marrow Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin J Burwitz
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Jeffrey J Stanton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Jonah B Sacha
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA.
| |
Collapse
|
31
|
Ghahari N, Telittchenko R, Loucif H, Isnard S, Routy JP, Olagnier D, van Grevenynghe J. Harnessing Autophagy to Overcome Antigen-Specific T-Cell Dysfunction: Implication for People Living with HIV-1. Int J Mol Sci 2023; 24:11018. [PMID: 37446195 DOI: 10.3390/ijms241311018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Like other chronic viral infections, HIV-1 persistence inhibits the development of antigen-specific memory T-cells, resulting in the exhaustion of the immune response and chronic inflammation. Autophagy is a major lysosome-dependent mechanism of intracellular large-target degradation such as lipid and protein aggregates, damaged organelles, and intracellular pathogens. Although it is known that autophagy may target HIV-1 for elimination, knowledge of its function as a metabolic contributor in such viral infection is only in its infancy. Recent data show that elite controllers (EC), who are HIV-1-infected subjects with natural and long-term antigen (Ag)-specific T-cell protection against the virus, are characterized by distinct metabolic autophagy-dependent features in their T-cells compared to other people living with HIV-1 (PLWH). Despite durable viral control with antiretroviral therapy (ART), HIV-1-specific immune dysfunction does not normalize in non-controller PLWH. Therefore, the hypothesis of inducing autophagy to strengthen their Ag-specific T-cell immunity against HIV-1 starts to be an enticing concept. The aim of this review is to critically analyze promises and potential limitations of pharmacological and dietary interventions to activate autophagy in an attempt to rescue Ag-specific T-cell protection among PLWH.
Collapse
Affiliation(s)
- Nazanin Ghahari
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1M7, Canada
| | - Roman Telittchenko
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1M7, Canada
| | - Hamza Loucif
- EVAH Corp., 500 Boulevard Cartier Ouest, Laval, QC H7V 5B7, Canada
| | - Stephane Isnard
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen Site, Montreal, QC H4A 3J1, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen Site, Montreal, QC H4A 3J1, Canada
| | - David Olagnier
- Department of Biomedicine, Research Center for Innate Immunology, Aarhus University, 8000 Aarhus, Denmark
| | - Julien van Grevenynghe
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1M7, Canada
| |
Collapse
|
32
|
Eltalkhawy YM, Takahashi N, Ariumi Y, Shimizu J, Miyazaki K, Senju S, Suzu S. iPS cell-derived model to study the interaction between tissue macrophage and HIV-1. J Leukoc Biol 2023; 114:53-67. [PMID: 36976024 DOI: 10.1093/jleuko/qiad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Despite effective antiretroviral therapy, HIV-1 persists in cells, including macrophages, which is an obstacle to cure. However, the precise role of macrophages in HIV-1 infection remains unclear because they reside in tissues that are not easily accessible. Monocyte-derived macrophages are widely used as a model in which peripheral blood monocytes are cultured and differentiated into macrophages. However, another model is needed because recent studies revealed that most macrophages in adult tissues originate from the yolk sac and fetal liver precursors rather than monocytes, and the embryonic macrophages possess a self-renewal (proliferating) capacity that monocyte-derived macrophages lack. Here, we show that human induced pluripotent stem cell-derived immortalized macrophage-like cells are a useful self-renewing macrophage model. They proliferate in a cytokine-dependent manner, retain macrophage functions, support HIV-1 replication, and exhibit infected monocyte-derived macrophage-like phenotypes, such as enhanced tunneling nanotube formation and cell motility, as well as resistance to a viral cytopathic effect. However, several differences are also observed between monocyte-derived macrophages and induced pluripotent stem cell-derived immortalized macrophage-like cells, most of which can be explained by the proliferation of induced pluripotent stem cell-derived immortalized macrophage-like cells. For instance, proviruses with large internal deletions, which increased over time in individuals receiving antiretroviral therapy, are enriched more rapidly in induced pluripotent stem cell-derived immortalized macrophage-like cells. Interestingly, inhibition of viral transcription by HIV-1-suppressing agents is more obvious in induced pluripotent stem cell-derived immortalized macrophage-like cells. Collectively, our present study proposes that the model of induced pluripotent stem cell-derived immortalized macrophage-like cells is suitable for mimicking the interplay between HIV-1 and self-renewing tissue macrophages, the newly recognized major population in most tissues that cannot be fully modeled by monocyte-derived macrophages alone.
Collapse
Affiliation(s)
- Youssef M Eltalkhawy
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| | - Naofumi Takahashi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| | - Yasuo Ariumi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| | - Jun Shimizu
- MiCAN Technologies Inc., Goryo-ohara 1-36, Kyoto 615-8245, Japan
| | - Kazuo Miyazaki
- MiCAN Technologies Inc., Goryo-ohara 1-36, Kyoto 615-8245, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| |
Collapse
|
33
|
Saeb S, Wallet C, Rohr O, Schwartz C, Loustau T. Targeting and eradicating latent CNS reservoirs of HIV-1: original strategies and new models. Biochem Pharmacol 2023:115679. [PMID: 37399950 DOI: 10.1016/j.bcp.2023.115679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Nowadays, combination antiretroviral therapy (cART) is the standard treatment for all people with human immunodeficiency virus (HIV-1). Although cART is effective in treating productive infection, it does not eliminate latent reservoirs of the virus. This leads to lifelong treatment associated with the occurrence of side effects and the development of drug-resistant HIV-1. Suppression of viral latency is therefore the major hurdle to HIV-1 eradication. Multiple mechanisms exist to regulate viral gene expression and drive the transcriptional and post-transcriptional establishment of latency. Epigenetic processes are amongst the most studied mechanisms influencing both productive and latent infection states. The central nervous system (CNS) represents a key anatomical sanctuary for HIV and is the focal point of considerable research efforts. However, limited and difficult access to CNS compartments makes understanding the HIV-1 infection state in latent brain cells such as microglial cells, astrocytes, and perivascular macrophages challenging. This review examines the latest advances on epigenetic transformations involved in CNS viral latency and targeting of brain reservoirs. Evidence from clinical studies as well as in vivo and in vitro models of HIV-1 persistence in the CNS will be discussed, with a special focus on recent 3D in vitro models such as human brain organoids. Finally, the review will address therapeutic considerations for targeting latent CNS reservoirs.
Collapse
Affiliation(s)
- Sepideh Saeb
- Department of Allied Medicine, Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran; Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Clémentine Wallet
- Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
34
|
Cong Z, Sun Y, Dang C, Yang C, Zhang J, Lu J, Chen T, Wei Q, Wang W, Xue J. TLR7 Agonist GS-9620 Combined with Nicotinamide Generate Viral Reactivation in Seronegative SHIV SF162P3-Infected Rhesus Monkeys. Biomedicines 2023; 11:1707. [PMID: 37371802 DOI: 10.3390/biomedicines11061707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Antiretroviral therapy is capable of inhibiting HIV replication, but it fails to completely achieve a cure due to HIV persistence. The commonly used HIV cure approach is the "shock and kill" strategy, which employs latency-reversing agents to trigger viral reactivation and boost cellular immunity. Finding the appropriate drug combination for the "shock and kill" strategy would greatly facilitate clinical trials. The toll-like receptor (TLR) 7 agonist GS-9620 and nicotinamide (NAM) are reported as potential latency-reversing agents. Herein, we found the absence of viral reactivation when SHIVSF162P3-aviremic rhesus macaques were treated with GS-9620 monotherapy. However, our findings demonstrate that viral blips emerged in half of the macaques treated with the combination therapy of GS-9620 and NAM. Notably, an increase in the reactivation of the replication-competent latent virus was measured in monkeys treated with the combination therapy. These findings suggest that the GS-9620 and NAM combination could be used as a multipronged HIV latency stimulation approach, with potential for optimizing antiviral therapy design.
Collapse
Affiliation(s)
- Zhe Cong
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuting Sun
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Cui Dang
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chenbo Yang
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jingjing Zhang
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiahan Lu
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ting Chen
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qiang Wei
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei Wang
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jing Xue
- MOH Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Comparative Medicine Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
35
|
Valdebenito S, Ono A, Rong L, Eugenin EA. The role of tunneling nanotubes during early stages of HIV infection and reactivation: implications in HIV cure. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:169-186. [PMID: 37476291 PMCID: PMC10355284 DOI: 10.1515/nipt-2022-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 07/22/2023]
Abstract
Tunneling nanotubes (TNTs), also called cytonemes or tumor microtubes, correspond to cellular processes that enable long-range communication. TNTs are plasma membrane extensions that form tubular processes that connect the cytoplasm of two or more cells. TNTs are mostly expressed during the early stages of development and poorly expressed in adulthood. However, in disease conditions such as stroke, cancer, and viral infections such as HIV, TNTs proliferate, but their role is poorly understood. TNTs function has been associated with signaling coordination, organelle sharing, and the transfer of infectious agents such as HIV. Here, we describe the critical role and function of TNTs during HIV infection and reactivation, as well as the use of TNTs for cure strategies.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Akira Ono
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
36
|
Trunfio M, Mighetto L, Napoli L, Atzori C, Nigra M, Guastamacchia G, Bonora S, Di Perri G, Calcagno A. Cerebrospinal Fluid CXCL13 as Candidate Biomarker of Intrathecal Immune Activation, IgG Synthesis and Neurocognitive Impairment in People with HIV. J Neuroimmune Pharmacol 2023; 18:169-182. [PMID: 37166552 DOI: 10.1007/s11481-023-10066-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Plasma C-X-C-motif chemokine ligand-13 (CXCL13) has been linked to disease progression and mortality in people living with HIV (PLWH) and is a candidate target for immune-based strategies for HIV cure. Its role in central nervous system (CNS) of PLWH has not been detailed. We described CSF CXCL13 levels and its potential associations with neurological outcomes. Cross-sectional study enrolling PLWH without confounding for CXCL13 production. Subjects were divided according to CSF HIV-RNA in undetectable (< 20 cp/mL) and viremics. CSF CXCL13, and biomarkers of blood-brain barrier (BBB) impairment, intrathecal synthesis, and immune activation were measured by commercial immunoturbidimetric and ELISA assays. All subjects underwent neurocognitive assessment. Sensitivity analyses were conducted in subjects with intact BBB only. 175 participants were included. Detectable CSF CXCL13 was more common in the viremic (31.4%) compared to the undetectable group (13.5%; OR 2.9 [1.4-6.3], p = 0.006), but median levels did not change (15.8 [8.2-91.0] vs 10.0 [8.1-14.2] pg/mL). In viremics (n = 86), CXCL13 associated with higher CSF HIV-RNA, proteins, neopterin, intrathecal synthesis and BBB permeability. In undetectable participants (n = 89), CXCL13 associated with higher CD4+T-cells count, CD4/CD8 ratio, CSF proteins, neopterin, and intrathecal synthesis. The presence of CXCL13 in the CSF of undetectable participants was associated with increased odds of HIV-associated neurocognitive disorders (58.3% vs 28.6%, p = 0.041). Sensitivity analyses confirmed all these findings. CXCL13 is detectable in the CSF of PLWH that show increased intrathecal IgG synthesis and immune activation. In PLWH with CSF viral suppression, CXCL13 was also associated with neurocognitive impairment.
Collapse
Affiliation(s)
- Mattia Trunfio
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy.
- HIV Neurobehavioral Research Center (HNRC), Department of Psychiatry, University of California San Diego, San Diego, CA, 92093, USA.
| | - Lorenzo Mighetto
- Diagnostic Laboratory Unit, Maria Vittoria Hospital, ASL Città di Torino, Torino, 10144, Italy
| | - Laura Napoli
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy
| | - Cristiana Atzori
- Unit of Neurology, Maria Vittoria Hospital, ASL Città di Torino, Torino, 10144, Italy
| | - Marco Nigra
- Diagnostic Laboratory Unit, Maria Vittoria Hospital, ASL Città di Torino, Torino, 10144, Italy
| | - Giulia Guastamacchia
- Unit of Neurology, Maria Vittoria Hospital, ASL Città di Torino, Torino, 10144, Italy
| | - Stefano Bonora
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy
| | - Giovanni Di Perri
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy
| | - Andrea Calcagno
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy
| |
Collapse
|
37
|
Nzimande B, Makhwitine JP, Mkhwanazi NP, Ndlovu SI. Developments in Exploring Fungal Secondary Metabolites as Antiviral Compounds and Advances in HIV-1 Inhibitor Screening Assays. Viruses 2023; 15:v15051039. [PMID: 37243125 DOI: 10.3390/v15051039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of drug-resistant Human Immunodeficiency Virus-1 strains against anti-HIV therapies in the clinical pipeline, and the persistence of HIV in cellular reservoirs remains a significant concern. Therefore, there is a continuous need to discover and develop new, safer, and effective drugs targeting novel sites to combat HIV-1. The fungal species are gaining increasing attention as alternative sources of anti-HIV compounds or immunomodulators that can escape the current barriers to cure. Despite the potential of the fungal kingdom as a source for diverse chemistries that can yield novel HIV therapies, there are few comprehensive reports on the progress made thus far in the search for fungal species with the capacity to produce anti-HIV compounds. This review provides insights into the recent research developments on natural products produced by fungal species, particularly fungal endophytes exhibiting immunomodulatory or anti-HIV activities. In this study, we first explore currently existing therapies for various HIV-1 target sites. Then we assess the various activity assays developed for gauging antiviral activity production from microbial sources since they are crucial in the early screening phases for discovering novel anti-HIV compounds. Finally, we explore fungal secondary metabolites compounds that have been characterized at the structural level and demonstrate their potential as inhibitors of various HIV-1 target sites.
Collapse
Affiliation(s)
- Bruce Nzimande
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, Medical School, University of KwaZulu-Natal, Durban 4000, South Africa
| | - John P Makhwitine
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, Medical School, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Nompumelelo P Mkhwanazi
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Sizwe I Ndlovu
- Department of Biotechnology and Food Technology, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
38
|
D'Amico D, Barone R, Di Felice V, Ances B, Prideaux B, Eugenin EA. Chronic brain damage in HIV-infected individuals under antiretroviral therapy is associated with viral reservoirs, sulfatide release, and compromised cell-to-cell communication. Cell Mol Life Sci 2023; 80:116. [PMID: 37016051 PMCID: PMC11071786 DOI: 10.1007/s00018-023-04757-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023]
Abstract
HIV infection has become a chronic and manageable disease due to the effective use of antiretroviral therapies (ART); however, several chronic aging-related comorbidities, including cognitive impairment, remain a major public health issue. However, these mechanisms are unknown. Here, we identified that glial and myeloid viral reservoirs are associated with local myelin damage and the release of several myelin components, including the lipid sulfatide. Soluble sulfatide compromised gap junctional communication and calcium wave coordination, essential for proper cognition. We propose that soluble sulfatide could be a potential biomarker and contributor to white matter compromise observed in HIV-infected individuals even in the current ART era.
Collapse
Affiliation(s)
- Daniela D'Amico
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 11Th Street, Galveston, TX, 77555, USA
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Rosario Barone
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Valentina Di Felice
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Beau Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brendan Prideaux
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 11Th Street, Galveston, TX, 77555, USA.
| | - Eliseo A Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 11Th Street, Galveston, TX, 77555, USA.
| |
Collapse
|
39
|
Zhou C, Wu Y, Zhang Y, Wang Y, Wu H, Zhang T, Chen G, Huang X. Factors associated with post-treatment control of viral load in HIV-infected patients: a systematic review and meta-analysis. Int J Infect Dis 2023; 129:216-227. [PMID: 36707043 DOI: 10.1016/j.ijid.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the factors associated with maintenance of viral suppression after antiretroviral therapy (ART) discontinuation. METHODS Databases were searched for studies published between January 01, 2011, and July 01, 2022, that correlated the time of virus rebound with treatment interruption (TI). The corresponding data were extracted from these studies. A fixed-effects model was used to calculate pooled estimates. RESULTS Thirty-one studies were included in this analysis. Results showed that patients who started ART during acute or early infection had longer viral control than those who started ART during chronic infection. It has been reported that some broadly neutralizing HIV-1-specific antibodies can significantly prolong viral inhibition. The study also found that approximately 7.2% of patients achieved post-treatment control (PTC) approximately a year after TI. CONCLUSION ART initiation in the acute or early phases can delay viral rebound after TI. Cell-associated HIV RNA and HIV DNA have been difficult to prove as able to predict viral rebound time. Many vaccines and antibodies have also been shown to be effective in prolonging viral control in people without PTC, and more research is needed to develop alternative ART therapies that can effectively inhibit or even eliminate HIV.
Collapse
Affiliation(s)
- Chi Zhou
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China; Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yaxin Wu
- Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingying Wang
- Department of Internal Medicine, Shenzhen Hospital of the University of Hong Kong, Shenzhen, China
| | - Hao Wu
- Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaojie Huang
- Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
40
|
Wu K, Fang Q, Zhao Z, Li Z. CoID-LAMP: Color-Encoded, Intelligent Digital LAMP for Multiplex Nucleic Acid Quantification. Anal Chem 2023; 95:5069-5078. [PMID: 36892003 DOI: 10.1021/acs.analchem.2c05665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Multiplex, digital nucleic acid tests have important biomedical applications, but existing methods mostly use fluorescent probes that are target-specific and difficult to optimize, limiting their widespread applications. Here, we report color-encoded, intelligent digital loop-mediated isothermal amplification (CoID-LAMP) for the coidentification of multiple nucleic acid targets. CoID-LAMP supplements different primer solutions with different dyes, generates primer droplets and sample droplets, and collectively pairs these two types of droplets in a microwell array device to perform LAMP. After imaging, the droplet colors were analyzed to decode the primer information, and the precipitate byproducts within droplets were detected to determine the target occupancy and calculate the concentrations. We first established an image analysis pipeline based on a deep learning algorithm for reliable droplet detection and validated the analytical performance in nucleic acid quantification. We then implemented CoID-LAMP using fluorescent dyes as the coding materials and established an 8-plex digital nucleic acid assay, confirming the reliable coding performance and the capability of multiplex nucleic acid quantification. We further implemented CoID-LAMP using brightfield dyes for a 4-plex assay, suggesting that the assay could be realized solely by brightfield imaging with minimal demand on the optics. Leveraging the advantages of droplet microfluidics in multiplexing and deep learning in intelligent image analysis, CoID-LAMP offers a useful tool for multiplex nucleic acid quantification.
Collapse
Affiliation(s)
- Kai Wu
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Qi Fang
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhantao Zhao
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zida Li
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
41
|
Rheinberger M, Costa AL, Kampmann M, Glavas D, Shytaj IL, Sreeram S, Penzo C, Tibroni N, Garcia-Mesa Y, Leskov K, Fackler OT, Vlahovicek K, Karn J, Lucic B, Herrmann C, Lusic M. Genomic profiling of HIV-1 integration in microglia cells links viral integration to the topologically associated domains. Cell Rep 2023; 42:112110. [PMID: 36790927 DOI: 10.1016/j.celrep.2023.112110] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
HIV-1 encounters the hierarchically organized host chromatin to stably integrate and persist in anatomically distinct latent reservoirs. The contribution of genome organization in HIV-1 infection has been largely understudied across different HIV-1 targets. Here, we determine HIV-1 integration sites (ISs), associate them with chromatin and expression signatures at different genomic scales in a microglia cell model, and profile them together with the primary T cell reservoir. HIV-1 insertions into introns of actively transcribed genes with IS hotspots in genic and super-enhancers, characteristic of blood cells, are maintained in the microglia cell model. Genome organization analysis reveals dynamic CCCTC-binding factor (CTCF) clusters in cells with active and repressed HIV-1 transcription, whereas CTCF removal impairs viral integration. We identify CTCF-enriched topologically associated domain (TAD) boundaries with signatures of transcriptionally active chromatin as HIV-1 integration determinants in microglia and CD4+ T cells, highlighting the importance of host genome organization in HIV-1 infection.
Collapse
Affiliation(s)
- Mona Rheinberger
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Ana Luisa Costa
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, 69120 Heidelberg, Germany
| | - Martin Kampmann
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Dunja Glavas
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Iart Luca Shytaj
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Sheetal Sreeram
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Carlotta Penzo
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Nadine Tibroni
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Konstantin Leskov
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Kristian Vlahovicek
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany.
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, 69120 Heidelberg, Germany.
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany.
| |
Collapse
|
42
|
Czuba-Wojnilowicz E, Klemm V, Cortez-Jugo C, Turville S, Aggarwal A, Caruso F, Kelleher AD, Ahlenstiel CL. Layer-by-Layer Particles Deliver Epigenetic Silencing siRNA to HIV-1 Latent Reservoir Cell Types. Mol Pharm 2023; 20:2039-2052. [PMID: 36848493 DOI: 10.1021/acs.molpharmaceut.2c01030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
For over two decades, nanomaterials have been employed to facilitate intracellular delivery of small interfering RNA (siRNA), both in vitro and in vivo, to induce post-transcriptional gene silencing (PTGS) via RNA interference. Besides PTGS, siRNAs are also capable of transcriptional gene silencing (TGS) or epigenetic silencing, which targets the gene promoter in the nucleus and prevents transcription via repressive epigenetic modifications. However, silencing efficiency is hampered by poor intracellular and nuclear delivery. Here, polyarginine-terminated multilayered particles are reported as a versatile system for the delivery of TGS-inducing siRNA to potently suppress virus transcription in HIV-infected cells. siRNA is complexed with multilayered particles formed by layer-by-layer assembly of poly(styrenesulfonate) and poly(arginine) and incubated with HIV-infected cell types, including primary cells. Using deconvolution microscopy, uptake of fluorescently labeled siRNA is observed in the nuclei of HIV-1 infected cells. Viral RNA and protein are measured to confirm functional virus silencing from siRNA delivered using particles 16 days post-treatment. This work extends conventional particle-enabled PTGS siRNA delivery to the TGS pathway and paves the way for future studies on particle-delivered siRNA for efficient TGS of various diseases and infections, including HIV.
Collapse
Affiliation(s)
- Ewa Czuba-Wojnilowicz
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vera Klemm
- Kirby Institute, UNSW Medicine, Sydney, New South Wales 2052, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stuart Turville
- Kirby Institute, UNSW Medicine, Sydney, New South Wales 2052, Australia
| | - Anupriya Aggarwal
- Kirby Institute, UNSW Medicine, Sydney, New South Wales 2052, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anthony D Kelleher
- Kirby Institute, UNSW Medicine, Sydney, New South Wales 2052, Australia.,UNSW RNA Institute, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Chantelle L Ahlenstiel
- Kirby Institute, UNSW Medicine, Sydney, New South Wales 2052, Australia.,UNSW RNA Institute, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
43
|
Anderko RR, Mailliard RB. Mapping the interplay between NK cells and HIV: therapeutic implications. J Leukoc Biol 2023; 113:109-138. [PMID: 36822173 PMCID: PMC10043732 DOI: 10.1093/jleuko/qiac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 01/18/2023] Open
Abstract
Although highly effective at durably suppressing plasma HIV-1 viremia, combination antiretroviral therapy (ART) treatment regimens do not eradicate the virus, which persists in long-lived CD4+ T cells. This latent viral reservoir serves as a source of plasma viral rebound following treatment interruption, thus requiring lifelong adherence to ART. Additionally, challenges remain related not only to access to therapy but also to a higher prevalence of comorbidities with an inflammatory etiology in treated HIV-1+ individuals, underscoring the need to explore therapeutic alternatives that achieve sustained virologic remission in the absence of ART. Natural killer (NK) cells are uniquely positioned to positively impact antiviral immunity, in part due to the pleiotropic nature of their effector functions, including the acquisition of memory-like features, and, therefore, hold great promise for transforming HIV-1 therapeutic modalities. In addition to defining the ability of NK cells to contribute to HIV-1 control, this review provides a basic immunologic understanding of the impact of HIV-1 infection and ART on the phenotypic and functional character of NK cells. We further delineate the qualities of "memory" NK cell populations, as well as the impact of HCMV on their induction and subsequent expansion in HIV-1 infection. We conclude by highlighting promising avenues for optimizing NK cell responses to improve HIV-1 control and effect a functional cure, including blockade of inhibitory NK receptors, TLR agonists to promote latency reversal and NK cell activation, CAR NK cells, BiKEs/TriKEs, and the role of HIV-1-specific bNAbs in NK cell-mediated ADCC activity against HIV-1-infected cells.
Collapse
Affiliation(s)
- Renee R. Anderko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
44
|
Fotooh Abadi L, Kumar P, Paknikar K, Gajbhiye V, Kulkarni S. Tenofovir-tethered gold nanoparticles as a novel multifunctional long-acting anti-HIV therapy to overcome deficient drug delivery-: an in vivo proof of concept. J Nanobiotechnology 2023; 21:19. [PMID: 36658575 PMCID: PMC9850711 DOI: 10.1186/s12951-022-01750-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The adoption of Antiretroviral Therapy (ART) substantially extends the life expectancy and quality of HIV-infected patients. Yet, eliminating the latent reservoirs of HIV to achieve a cure remains an unmet need. The advent of nanomedicine has revolutionized the treatment of HIV/AIDS. The present study explores a unique combination of Tenofovir (TNF) with gold nanoparticles (AuNPs) as a potential therapeutic approach to overcome several limitations of the current ART. RESULTS TNF-tethered AuNPs were successfully synthesized. Cell viability, genotoxicity, haemolysis, and histopathological studies confirmed the complete safety of the preparation. Most importantly, its anti-HIV1 reverse transcriptase activity was ~ 15 folds higher than the native TNF. In addition, it exhibited potent anti-HIV1 protease activity, a much sought-after target in anti-HIV1 therapeutics. Finally, the in vivo biodistribution studies validated that the AuNPs could reach many tissues/organs, serving as a secure nest for HIV and overcoming the problem of deficient drug delivery to HIV reservoirs. CONCLUSIONS We show that the combination of TNF and AuNPs exhibits multifunctional activity, viz. anti-HIV1 and anti-HIV1 protease. These findings are being reported for the first time and highlight the prospects of developing AuNP-TNF as a novel next-generation platform to treat HIV/AIDS.
Collapse
Affiliation(s)
- Leila Fotooh Abadi
- grid.419119.50000 0004 1803 003XDivision of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, 411 026 India
| | - Pramod Kumar
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India
| | - Kishore Paknikar
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India ,grid.417971.d0000 0001 2198 7527Department of Chemistry, Indian Institute of Technology, Mumbai, 400 076 India
| | - Virendra Gajbhiye
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India
| | - Smita Kulkarni
- grid.419119.50000 0004 1803 003XDivision of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, 411 026 India
| |
Collapse
|
45
|
Pirkl M, Büch J, Devaux C, Böhm M, Sönnerborg A, Incardona F, Abecasis A, Vandamme AM, Zazzi M, Kaiser R, Lengauer T, The EuResist Network Study Group. Analysis of mutational history of multidrug-resistant genotypes with a mutagenetic tree model. J Med Virol 2023; 95:e28389. [PMID: 36484375 DOI: 10.1002/jmv.28389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV) can develop resistance to all antiretroviral drugs. Multidrug resistance, however, is a rare event in modern HIV treatment, but can be life-threatening, particular in patients with very long therapy histories and in areas with limited access to novel drugs. To understand the evolution of multidrug resistance, we analyzed the EuResist database to uncover the accumulation of mutations over time. We hypothesize that the accumulation of resistance mutations is not acquired simultaneously and randomly across viral genotypes but rather tends to follow a predetermined order. The knowledge of this order might help to elucidate potential mechanisms of multidrug resistance. Our evolutionary model shows an almost monotonic increase of resistance with each acquired mutation, including less well-known nucleoside reverse transcriptase (RT) inhibitor-related mutations like K223Q, L228H, and Q242H. Mutations within the integrase (IN) (T97A, E138A/K G140S, Q148H, N155H) indicate high probability of multidrug resistance. Hence, these IN mutations also tend to be observed together with mutations in the protease (PR) and RT. We followed up with an analysis of the mutation-specific error rates of our model given the data. We identified several mutations with unusual rates (PR: M41L, L33F, IN: G140S). This could imply the existence of previously unknown virus variants in the viral quasispecies. In conclusion, our bioinformatics model supports the analysis and understanding of multidrug resistance.
Collapse
Affiliation(s)
- Martin Pirkl
- Institute of Virology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Joachim Büch
- Institute of Virology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carole Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Michael Böhm
- Institute of Virology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anders Sönnerborg
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Solna, Sweden
| | | | - Ana Abecasis
- Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Anne-Mieke Vandamme
- Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Department of Microbiology, Immunology and Transplantation, Clinical and Epidemiological Virology, Institute for the Future, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Rolf Kaiser
- Institute of Virology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Lengauer
- Institute of Virology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | | |
Collapse
|
46
|
Riggs PK, Chaillon A, Jiang G, Letendre SL, Tang Y, Taylor J, Kaytes A, Smith DM, Dubé K, Gianella S. Lessons for Understanding Central Nervous System HIV Reservoirs from the Last Gift Program. Curr HIV/AIDS Rep 2022; 19:566-579. [PMID: 36260191 PMCID: PMC9580451 DOI: 10.1007/s11904-022-00628-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Deep tissue HIV reservoirs, especially within the central nervous system (CNS), are understudied due to the challenges of sampling brain, spinal cord, and other tissues. Understanding the cellular characteristics and viral dynamics in CNS reservoirs is critical so that HIV cure trials can address them and monitor the direct and indirect effects of interventions. The Last Gift program was developed to address these needs by enrolling altruistic people with HIV (PWH) at the end of life who agree to rapid research autopsy. RECENT FINDINGS Recent findings from the Last Gift emphasize significant heterogeneity across CNS reservoirs, CNS compartmentalization including differential sensitivity to broadly neutralizing antibodies, and bidirectional migration of HIV across the blood-brain barrier. Our findings add support for the potential of CNS reservoirs to be a source of rebounding viruses and reseeding of systemic sites if they are not targeted by cure strategies. This review highlights important scientific, practical, and ethical lessons learned from the Last Gift program in the context of recent advances in understanding the CNS reservoirs and key knowledge gaps in current research.
Collapse
Affiliation(s)
| | | | - Guochun Jiang
- Department of Biochemistry and Biophysics, Institute of Global Health and Infectious Diseases, UNC HIV Cure Center, Chapel Hill, NC, USA
| | | | - Yuyang Tang
- Department of Biochemistry and Biophysics, Institute of Global Health and Infectious Diseases, UNC HIV Cure Center, Chapel Hill, NC, USA
| | - Jeff Taylor
- AntiViral Research Center (AVRC) Community Advisory Board, University of California San Diego, San Diego, CA, USA
- HIV + Aging Research Project - Palm Springs (HARP-PS), Palm Springs, CA, USA
| | - Andrew Kaytes
- AntiViral Research Center (AVRC) Community Advisory Board, University of California San Diego, San Diego, CA, USA
| | | | - Karine Dubé
- Department of Medicine, UCSD, San Diego, CA, USA
| | | |
Collapse
|
47
|
Associations between NK Cells in Different Immune Organs and Cellular SIV DNA and RNA in Regional HLADR - CD4 + T Cells in Chronically SIV mac239-Infected, Treatment-Naïve Rhesus Macaques. Viruses 2022; 14:v14112513. [PMID: 36423122 PMCID: PMC9697022 DOI: 10.3390/v14112513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
With the development of NK cell-directed therapeutic strategies, the actual effect of NK cells on the cellular SIV DNA levels of the virus in SIV-infected macaques in vivo remains unclear. In this study, five chronically SIVmac239-infected, treatment-naïve rhesus macaques were euthanized, and the blood, spleen, pararectal/paracolonic lymph nodes (PaLNs), and axillary lymph nodes (ALNs) were collected. The distributional, phenotypic, and functional profiles of NK cells were detected by flow cytometry. The highest frequency of NK cells was found in PBMC, followed by the spleen, while only 0~0.5% were found in LNs. Peripheral NK cells also exhibited higher cytotoxic potential (CD56- CD16+ NK subsets) and IFN-γ-producing capacity but low PD-1 and Tim-3 levels than those in the spleen and LNs. Our results demonstrated a significant positive correlation between the frequency of NK cells and the ratios of cellular SIV DNA/RNA in HLADR- CD4+ T cells (r = 0.6806, p < 0.001) in SIV-infected macaques, despite no discrepancies in the cellular SIV DNA or RNA levels that were found among the blood, spleen, and LNs. These findings showed a profile of NK cell frequencies and NK cytotoxicity levels in different immune organs from chronically SIVmac239-infected, treatment-naïve rhesus macaques. It was suggested that NK cell frequencies could be closely related to SIV DNA/RNA levels, which could affect the transcriptional activity of SIV proviruses. However, the cytotoxicity effect of NK cells on the latent SIV viral load in LNs could be limited due to the sparse abundance of NK cells in LNs. The development of NK cell-directed treatment approaches aiming for HIV clearance remains challenging.
Collapse
|
48
|
Cevallos C, Ojeda DS, Sánchez L, Urquiza J, Delpino MV, Quarleri J. HIV-induced bystander cell death in astrocytes requires cell-to-cell viral transmission. J Neurochem 2022; 163:338-356. [PMID: 36205031 DOI: 10.1111/jnc.15703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 01/18/2023]
Abstract
Human immunodeficiency virus (HIV) neuroinvasion occurs early after infection through the trafficking of virus-infected immune cells into the central nervous system (CNS) and viral dissemination into the brain. There, it can infect resident brain cells including astrocytes, the most abundant cell type that is crucial to brain homeostasis. In this report, we examined the HIV-related mechanism able to induce bystander cell death in astrocytes mediated by cell-to-cell contact with productively infected (PI) ones. We first demonstrate that HIV-induced bystander cell death involves mitochondrial dysfunction that promotes exacerbated reactive oxygen species production. Such a phenomenon is a contagious cell death that requires contact with HIV-PI astrocytes that trigger caspase-dependent (apoptosis and pyroptosis) and caspase-independent cell death pathways. The HIV accessory proteins Nef, Vpu, and Vpr counteract astrocyte death among PI cells but, in contrast, participate to promote contagious bystander cell death by inducing mitochondrial reactive oxygen species production. Our findings indicate that astrocytes PI by HIV became capable to counteract infection-derived death signals, surviving, and spreading the bystander cell death into neighboring uninfected cells by a cell-to-cell contact-dependent mechanism. Considering that astrocytes have been proposed as a long-term HIV reservoir in the CNS, ascertaining the mechanism of survival and contagious bystander death will afford clear targets in the current goal to achieve a functional cure.
Collapse
Affiliation(s)
- Cintia Cevallos
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Diego S Ojeda
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Lautaro Sánchez
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Javier Urquiza
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Victoria Delpino
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Jorge Quarleri
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
49
|
Qualitative plasma viral load determination as a tool for screening of viral reservoir size in PWH. AIDS 2022; 36:1761-1768. [PMID: 36172869 DOI: 10.1097/qad.0000000000003352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Suppression of viral replication in patients on antiretroviral therapy (ART) is determined by plasma viral load (pVL) measurement. Whenever pVL reaches values below the limit of quantification, the qualitative parameter 'target detected' or 'target not detected' is available but often not reported to the clinician. We investigated whether qualitative pVL measurements can be used to estimate the viral reservoir size. DESIGN The study recruited 114 people with HIV (PWH) who are stable on ART between 2016 and 2018. The percentage of pVL measurements qualitatively reported as 'target detected' (PTD) within a 2-year period was calculated. METHODS t-DNA and US-RNA were used to estimate viral reservoir size and were quantified on peripheral blood mononuclear cells (PBMCs) using droplet digital PCR. RESULTS A median of 6.5 pVL measurements over a 2-year period was evaluated for each participant to calculate PTD. A positive correlation was found between t-DNA and PTD (r = 0.24; P = 0.011) but not between US-RNA and PTD (r = 0.1; P = 0.3). A significantly lower PTD was observed in PWH with a small viral reservoir, as estimated by t-DNA less than 66 copies/106 PBMCs and US-RNA less than 10 copies/106 PBMCs, compared with PWH with a larger viral reservoir (P = 0.001). We also show that t-DNA is detectable whenever PTD is higher than 56% and that ART regimen does not affect PTD. CONCLUSION Our study shows that PTD provides an efficient parameter to preselect participants with a small viral reservoir based on already available pVL data for future HIV cure trials.
Collapse
|
50
|
Real F, Zhu A, Huang B, Belmellat A, Sennepin A, Vogl T, Ransy C, Revol M, Arrigucci R, Lombès A, Roth J, Gennaro ML, Bouillaud F, Cristofari S, Bomsel M. S100A8-mediated metabolic adaptation controls HIV-1 persistence in macrophages in vivo. Nat Commun 2022; 13:5956. [PMID: 36220814 PMCID: PMC9553955 DOI: 10.1038/s41467-022-33401-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
HIV-1 eradication is hindered by viral persistence in cell reservoirs, established not only in circulatory CD4+T-cells but also in tissue-resident macrophages. The nature of macrophage reservoirs and mechanisms of persistence despite combined anti-retroviral therapy (cART) remain unclear. Using genital mucosa from cART-suppressed HIV-1-infected individuals, we evaluated the implication of macrophage immunometabolic pathways in HIV-1 persistence. We demonstrate that ex vivo, macrophage tissue reservoirs contain transcriptionally active HIV-1 and viral particles accumulated in virus-containing compartments, and harbor an inflammatory IL-1R+S100A8+MMP7+M4-phenotype prone to glycolysis. Reactivation of infectious virus production and release from these reservoirs in vitro are induced by the alarmin S100A8, an endogenous factor produced by M4-macrophages and implicated in “sterile” inflammation. This process metabolically depends on glycolysis. Altogether, inflammatory M4-macrophages form a major tissue reservoir of replication-competent HIV-1, which reactivate viral production upon autocrine/paracrine S100A8-mediated glycolytic stimulation. This HIV-1 persistence pathway needs to be targeted in future HIV eradication strategies. HIV-1 eradication is hindered by viral persistence in different cell reservoirs, including circulatory CD4+ T-cells and tissue-resident macrophages. Here, by analyzing male genital mucosa from cART-suppressed HIV1-infected individuals, Real et al. show that M4 macrophages represent the major macrophage HIV-1 reservoir in this tissue. These macrophages have an inflammatory IL1R+S100A8+MMP7+M4-phenotype, and contain transcriptionally active HIV-1, which reactivate infectious virus production from viral latency in response to autocrine/paracrine S100A8-mediated glycolysis.
Collapse
Affiliation(s)
- Fernando Real
- Laboratory of Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université Paris Cité, 75014, Paris, France.,CNRS, UMR8104, 75014, Paris, France.,Inserm, U1016, Institut Cochin, 75014, Paris, France
| | - Aiwei Zhu
- Laboratory of Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université Paris Cité, 75014, Paris, France.,CNRS, UMR8104, 75014, Paris, France.,Inserm, U1016, Institut Cochin, 75014, Paris, France
| | - Boxin Huang
- Laboratory of Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université Paris Cité, 75014, Paris, France.,CNRS, UMR8104, 75014, Paris, France.,Inserm, U1016, Institut Cochin, 75014, Paris, France
| | - Ania Belmellat
- Laboratory of Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université Paris Cité, 75014, Paris, France.,CNRS, UMR8104, 75014, Paris, France.,Inserm, U1016, Institut Cochin, 75014, Paris, France
| | - Alexis Sennepin
- Laboratory of Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université Paris Cité, 75014, Paris, France.,CNRS, UMR8104, 75014, Paris, France.,Inserm, U1016, Institut Cochin, 75014, Paris, France
| | - Thomas Vogl
- Institute of Immunology and Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - Céline Ransy
- CNRS, UMR8104, 75014, Paris, France.,Inserm, U1016, Institut Cochin, 75014, Paris, France
| | - Marc Revol
- Plastic, Reconstructive and Aesthetic Surgery Department, Saint Louis Hospital, Paris, France
| | - Riccardo Arrigucci
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Anne Lombès
- CNRS, UMR8104, 75014, Paris, France.,Inserm, U1016, Institut Cochin, 75014, Paris, France
| | - Johannes Roth
- Institute of Immunology and Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Frédéric Bouillaud
- CNRS, UMR8104, 75014, Paris, France.,Inserm, U1016, Institut Cochin, 75014, Paris, France
| | - Sarra Cristofari
- Plastic, Reconstructive and Aesthetic Surgery Department, Saint Louis Hospital, Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université Paris Cité, 75014, Paris, France. .,CNRS, UMR8104, 75014, Paris, France. .,Inserm, U1016, Institut Cochin, 75014, Paris, France.
| |
Collapse
|