1
|
Guo T, Xu W, Wang X. Visible Light-Mediated Anaerobic Oxidation of α-Glucoside: Site-Selective Dehydrogenation Promoted by Aromatic Aldehydes. Org Lett 2025. [PMID: 40400102 DOI: 10.1021/acs.orglett.5c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Herein, we describe a novel photocatalytic strategy for the site-selective oxidation of unprotected α-glucosides using aromatic aldehydes. In this method, Na2HPO4 was used to form hydrogen bonds with the C3 hydroxyl group of α-glucoside, thereby generating C3 free radicals, and p-cyanobenzaldehyde was used to dehydrogenate the free radical intermediates to achieve site-selective oxidation. This approach achieves a high selectivity for both glycosidic bond configurations and glycosylated forms. Mechanistic studies suggest that the reaction proceeds through single-electron transfer and radical coupling with the quinuclidine playing a key role in hydrogen atom transfer. This method provides a powerful tool for site-selective glycan oxidation, offering significant potential for applications in carbohydrate chemistry and glycobiology.
Collapse
Affiliation(s)
- Tianyun Guo
- Department of Chemistry and School of Pharmacy, China State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wanchao Xu
- China Yunnan Jiahui Testing Technology, Kunming 650200, P. R. China
| | - Xiaolei Wang
- Department of Chemistry and School of Pharmacy, China State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Choudoir MJ, Narayanan A, Rodriguez-Ramos D, Simoes R, Efroni A, Sondrini A, DeAngelis KM. Pangenomes suggest ecological-evolutionary responses to experimental soil warming. mSphere 2025; 10:e0005925. [PMID: 40105318 PMCID: PMC12039271 DOI: 10.1128/msphere.00059-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 03/20/2025] Open
Abstract
Below-ground carbon transformations that contribute to healthy soils represent a natural climate change mitigation, but newly acquired traits adaptive to climate stress may alter microbial feedback mechanisms. To better define microbial evolutionary responses to long-term climate warming, we study microorganisms from an ongoing in situ soil warming experiment where, for over three decades, temperate forest soils are continuously heated at 5°C above ambient. We hypothesize that across generations of chronic warming, genomic signatures within diverse bacterial lineages reflect adaptations related to growth and carbon utilization. From our bacterial culture collection isolated from experimental heated and control plots, we sequenced genomes representing dominant taxa sensitive to warming, including lineages of Actinobacteria, Alphaproteobacteria, and Betaproteobacteria. We investigated genomic attributes and functional gene content to identify signatures of adaptation. Comparative pangenomics revealed accessory gene clusters related to central metabolism, competition, and carbon substrate degradation, with few functional annotations explicitly associated with long-term warming. Trends in functional gene patterns suggest genomes from heated plots were relatively enriched in central carbohydrate and nitrogen metabolism pathways, while genomes from control plots were relatively enriched in amino acid and fatty acid metabolism pathways. We observed that genomes from heated plots had less codon bias, suggesting potential adaptive traits related to growth or growth efficiency. Codon usage bias varied for organisms with similar 16S rrn operon copy number, suggesting that these organisms experience different selective pressures on growth efficiency. Our work suggests the emergence of lineage-specific trends as well as common ecological-evolutionary microbial responses to climate change.IMPORTANCEAnthropogenic climate change threatens soil ecosystem health in part by altering below-ground carbon cycling carried out by microbes. Microbial evolutionary responses are often overshadowed by community-level ecological responses, but adaptive responses represent potential changes in traits and functional potential that may alter ecosystem function. We predict that microbes are adapting to climate change stressors like soil warming. To test this, we analyzed the genomes of bacteria from a soil warming experiment where soil plots have been experimentally heated 5°C above ambient for over 30 years. While genomic attributes were unchanged by long-term warming, we observed trends in functional gene content related to carbon and nitrogen usage and genomic indicators of growth efficiency. These responses may represent new parameters in how soil ecosystems feedback to the climate system.
Collapse
Affiliation(s)
- Mallory J. Choudoir
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Achala Narayanan
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Damayanti Rodriguez-Ramos
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Bacteriology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Rachel Simoes
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Alon Efroni
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Abigail Sondrini
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Kristen M. DeAngelis
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
3
|
Tokonami A, Kawanaka M, Ikeda H, Nishii S, Kamegawa T, Yamamoto Y, Sadanaga Y, Shiigi H. Monitoring the Metabolic Activity of a Single Bacterial Cell Based on Scattering Intensity. Anal Chem 2025; 97:8293-8300. [PMID: 40194273 PMCID: PMC12019773 DOI: 10.1021/acs.analchem.4c06314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
Cell activity is evaluated using the number of colonies formed on a medium or the number of live cells in a suspension or by staining nuclei with fluorescent dyes to determine whether cells are dead. However, the culture methods generally require extended culturing times, and damage to the cell membranes observed using fluorescent dyes is not necessarily related to cell survival or activity. Hence, accurately determining the activities of individual cells is impossible. Therefore, we developed a method for quantitatively evaluating the metabolic activities of single cells by focusing on the optical and chemical properties of formazan dye, i.e., 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The oxidized form of MTT is soluble and highly permeable to cell membranes, but it is reduced to insoluble MTT formazan upon reaction with intracellular metabolic products. Single-cell observation using dark-field microscopy revealed that insoluble formazan aggregates within the cells formed particles that emitted characteristic scattered light. The formazan-derived scattered light component extracted via peak fitting was related to metabolic activity, demonstrating its usefulness as a parameter indicating the activity of an individual cell. This method enables the real-time evaluation of the activities of single cells, which should lead to not only the acceleration of bacterial screening and microbial control but also the development of antibiotics and suppression of drug-resistant bacteria.
Collapse
Affiliation(s)
- Akira Tokonami
- Department
of Applied Chemistry, Osaka Metropolitan
University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Miya Kawanaka
- Department
of Applied Chemistry, Osaka Metropolitan
University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Hikaru Ikeda
- Department
of Applied Chemistry, Osaka Metropolitan
University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Shigeki Nishii
- Department
of Applied Chemistry, Osaka Metropolitan
University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Takashi Kamegawa
- Department
of Applied Chemistry, Osaka Metropolitan
University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Yojiro Yamamoto
- Department
of Applied Chemistry, Osaka Metropolitan
University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Yasuhiro Sadanaga
- Department
of Applied Chemistry, Osaka Metropolitan
University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Hiroshi Shiigi
- Department
of Applied Chemistry, Osaka Metropolitan
University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
- Osaka
International Research Center for Infectious Diseases, Osaka Metropolitan University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
4
|
Han H, Wang Z, Zhu S. Benchmarking metagenomic binning tools on real datasets across sequencing platforms and binning modes. Nat Commun 2025; 16:2865. [PMID: 40128535 PMCID: PMC11933696 DOI: 10.1038/s41467-025-57957-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Metagenomic binning is a culture-free approach that facilitates the recovery of metagenome-assembled genomes by grouping genomic fragments. However, there remains a lack of a comprehensive benchmark to evaluate the performance of metagenomic binning tools across various combinations of data types and binning modes. In this study, we benchmark 13 metagenomic binning tools using short-read, long-read, and hybrid data under co-assembly, single-sample, and multi-sample binning, respectively. The benchmark results demonstrate that multi-sample binning exhibits optimal performance across short-read, long-read, and hybrid data. Moreover, multi-sample binning outperforms other binning modes in identifying potential antibiotic resistance gene hosts and near-complete strains containing potential biosynthetic gene clusters across diverse data types. This study also recommends three efficient binners across all data-binning combinations, as well as high-performance binners for each combination.
Collapse
Affiliation(s)
- Haitao Han
- Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ziye Wang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Shanfeng Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Shanghai Key Lab of Intelligent Information Processing and Shanghai Institute of Artificial Intelligence Algorithm, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, China.
| |
Collapse
|
5
|
Quevedo‐Caraballo S, de Vega C, Lievens B, Fukami T, Álvarez‐Pérez S. Tiny but mighty? Overview of a decade of research on nectar bacteria. THE NEW PHYTOLOGIST 2025; 245:1897-1910. [PMID: 39716780 PMCID: PMC11798911 DOI: 10.1111/nph.20369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
An emerging focus of research at the intersection of botany, zoology, and microbiology is the study of floral nectar as a microbial habitat, referred to as the nectar microbiome, which can alter plant-pollinator interactions. Studies on these microbial communities have primarily focused on yeasts, and it was only about a decade ago that bacteria began to be studied as widespread inhabitants of floral nectar. This review aims to give an overview of the current knowledge on nectar bacteria, with emphasis on evolutionary origin, dispersal mode, effects on nectar chemistry and plant-animal interactions, community assembly, agricultural applications, and their use as model systems in ecological research. We further outline gaps in our understanding of the ecological significance of these microorganisms, their response to environmental changes, and the potential cascading effects.
Collapse
Affiliation(s)
| | - Clara de Vega
- Departamento de Biología Vegetal y EcologíaUniversidad de Sevilla41012SevillaSpain
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular SystemsKU LeuvenB‐3001LeuvenBelgium
| | - Tadashi Fukami
- Department of BiologyStanford UniversityStanfordCA94305‐5020USA
- Department of Earth System ScienceStanford UniversityStanfordCA94305‐5020USA
| | - Sergio Álvarez‐Pérez
- Department of Animal HealthComplutense University of Madrid28040MadridSpain
- Department of BiologyStanford UniversityStanfordCA94305‐5020USA
| |
Collapse
|
6
|
Freeman EC, Peller T, Altermatt F. Ecosystem ecology needs an ecology of molecules. Trends Ecol Evol 2025; 40:219-223. [PMID: 39893070 DOI: 10.1016/j.tree.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 02/04/2025]
Abstract
Ecosystem ecology needs a framework that explicitly considers the roles of organic compounds. The ecology of molecules integrates compound identity, diversity, and interactions to understand ecosystem processes, such as nutrient and carbon cycling. This approach leverages advances in analytical chemistry and molecular biology to unravel the complex chemical interplay within ecosystems.
Collapse
Affiliation(s)
- Erika C Freeman
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland; Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.
| | - Tianna Peller
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland; Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland; Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| |
Collapse
|
7
|
Orr JA, Armitage DW, Letten AD. Coexistence Theory for Microbial Ecology, and Vice Versa. Environ Microbiol 2025; 27:e70072. [PMID: 40033656 PMCID: PMC11876725 DOI: 10.1111/1462-2920.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 03/05/2025]
Abstract
Classical models from theoretical ecology are seeing increasing uptake in microbial ecology, but there remains rich potential for closer cross-pollination. Here we explore opportunities for stronger integration of ecological theory into microbial research (and vice versa) through the lens of so-called "modern" coexistence theory. Coexistence theory can be used to disentangle the contributions different mechanisms (e.g., resource partitioning, environmental variability) make to species coexistence. We begin with a short primer on the fundamental concepts of coexistence theory, with an emphasis on the relevance to microbial communities. We next present a systematic review, which highlights the paucity of empirical applications of coexistence theory in microbial systems. In light of this gap, we then identify and discuss ways in which: (i) coexistence theory can help to answer fundamental and applied questions in microbial ecology, particularly in spatio-temporally heterogeneous environments, and (ii) experimental microbial systems can be leveraged to validate and advance coexistence theory. Finally, we address several unique but often surmountable empirical challenges posed by microbial systems, as well as some conceptual limitations. Nevertheless, thoughtful integration of coexistence theory into microbial ecology presents a wealth of opportunities for the advancement of both theoretical and microbial ecology.
Collapse
Affiliation(s)
- James A. Orr
- School of the EnvironmentThe University of QueenslandSt LuciaAustralia
| | - David W. Armitage
- Integrative Community Ecology UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Andrew D. Letten
- School of the EnvironmentThe University of QueenslandSt LuciaAustralia
| |
Collapse
|
8
|
Neviani E, Gatti M, Gardini F, Levante A. Microbiota of Cheese Ecosystems: A Perspective on Cheesemaking. Foods 2025; 14:830. [PMID: 40077532 PMCID: PMC11899173 DOI: 10.3390/foods14050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
This review contributes to the knowledge on the complex and adaptive microbial ecosystems within cheese, emphasizing their critical role in determining cheese quality, flavor, and safety. This review synthesizes the current knowledge on the microbial interactions and the dynamics of lactic acid bacteria (LAB), encompassing both starter (SLAB) and non-starter (NSLAB) strains, which are pivotal to the curd fermentation and ripening processes. The adaptability of these microbial consortia to environmental and technological stressors is explored, highlighting their contributions to acidification, proteolysis, and the development of distinctive organoleptic characteristics. Historical and technological perspectives on cheesemaking are also discussed, detailing the impact of milk treatment, starter culture selection, and post-renneting procedures on microbial activity and biochemical transformations. This review underscores the importance of microbial diversity and cooperative interactions in fostering ecosystem resilience and metabolic functionality, and it addresses the challenges in mimicking the technological performance of natural starters using selected cultures. By understanding the ecological roles and interactions of cheese microbiota, this review aims to guide improvements in cheese production practices. Additionally, these insights could spark the development of innovative strategies for microbial community management.
Collapse
Affiliation(s)
- Erasmo Neviani
- International Dairy Federation—Italian Committee, 20135 Milano, Italy;
| | - Monica Gatti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy;
| | - Alessia Levante
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| |
Collapse
|
9
|
Xu H, Wang D, Li X, Li J, Xu Y, Xu Z. Cultivating crayfish ( Procambarus clarkii) significantly enhances the quantity and diversity of soil microorganisms: evidence from the comparison of rice-wheat and rice-crayfish rotation models. Front Microbiol 2025; 16:1528883. [PMID: 39963490 PMCID: PMC11830727 DOI: 10.3389/fmicb.2025.1528883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/23/2025] [Indexed: 02/20/2025] Open
Abstract
Integrated farming of rice (IFA), as a time-honored agricultural model, can effectively increase agricultural productivity and provide ecological benefits. Rice-wheat rotation and rice-crayfish (Procambarus clarkii) rotation are two most widely applied IFA patterns in China. In this study, we compared the differences in soil microbial communities and predicted their functions in these two IFA models by sequencing the 16s rRNA and analyzing the bioinformation. The results showed that crayfish farming effectively increased the abundance and diversity of soil microorganisms. The main differentially abundant phyla between the two groups were Actinobacteriota, Bacteroidota, and Desulfobacterota, while the main differentially abundant genera were Bacteroidetes_vadinHA17, Sphingomonas, and Thiobacillus. The Similarity Percentages (SIMPER) analysis indicated that these species also had the highest contribution to the differences in microbial composition between the two groups. Random forest prediction analysis was employed to identify potential biomarkers to distinguish the two microbial communities. Actinobacteriota, Desulfobacterota, and Spirochaetota were identified as potential biomarker phyla. Streptomyces, Kribbella, and Paludibacter could serve as potential biomarker genera. Functional Annotation of Prokaryotic Taxa (FAPROTAX) analysis revealed that the dominant bacterial functions in the rice-wheat rotation model were aerobic chemoheterotrophy and chemoheterotrophy. In contrast, the bacterial functions in the rice-crayfish rotation model were more diverse, primarily including methylotrophy, human pathogens all and methanotrophy. The results of co-occurrence network analysis showed that crayfish farming enhanced the modularity of the soil microbial community, and revealed that the microbial network in rice-wheat soil had fewer nodes and more edges, which implying more internal connections. In conclusion, the wheat planting and crayfish farming drove significant differences in the soil microbial communities of paddy fields, with Actinobacteriota and Desulfobacterota identified as potential biomarkers. Compared to wheat cultivation, the rotation system incorporating crayfish farming enhanced the richness and diversity of soil microbial species and functions, increased the modularity of the microbial community, and promoted the presence of keystone species with connecting roles. Our study would not only clarify the effects of different IFA models on soil microbial communities, and should also provide valuable insights for future adjusting cropping patterns and controlling current soil microbial ecological problems.
Collapse
Affiliation(s)
- Hui Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, Jiangsu Freshwater Fisheries Research Institute, Nanjing, China
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Dan Wang
- Freshwater Fisheries Research Institute of Jiangsu Province, Jiangsu Freshwater Fisheries Research Institute, Nanjing, China
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Xuguang Li
- Freshwater Fisheries Research Institute of Jiangsu Province, Jiangsu Freshwater Fisheries Research Institute, Nanjing, China
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Jiajia Li
- Freshwater Fisheries Research Institute of Jiangsu Province, Jiangsu Freshwater Fisheries Research Institute, Nanjing, China
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Yu Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, Jiangsu Freshwater Fisheries Research Institute, Nanjing, China
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Zhiqiang Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, Jiangsu Freshwater Fisheries Research Institute, Nanjing, China
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
10
|
Rivett DW, Hatfield LR, Gavillet H, Hardman M, van der Gast C. Bacterial interactions underpin worsening lung function in cystic fibrosis-associated infections. mBio 2025; 16:e0145624. [PMID: 39576107 PMCID: PMC11708055 DOI: 10.1128/mbio.01456-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic lung infections are the primary cause of morbidity and early mortality in cystic fibrosis (CF) and, as such, have been the subject of a great deal of research. Subsequently, they have become one of the key paradigms for polymicrobial infections. The literature, however, has traditionally focused on the presence of pathogens in isolation or univariate measures like number of species to predict decline of lung function and ignores large swathes of data. Here, we suggest that looking at the interactions between species identified by 16S rRNA gene sequencing, rather than at species singularly, could elucidate hitherto unknown properties of these complicated infections. To confirm this, pooled samples from studies conducted by our laboratory, sequenced using the same pipeline, were used to assess microbiome-wide associations to lung function. We found pathogenic interactions between species were limited to the most abundant species, which were composed of canonical CF pathogens (including Pseudomonas, Staphylococcus, Stenotrophomonas, and Achromobacter) and commensals. This observation is crucial for better understanding of polymicrobial infections and treatment of these conditions while providing a simple framework for expanding this research into other disease states. The adoption of ecological principles into infection science can provide better understanding and options to those suffering from chronic conditions. The statistical ecology approach presented here enables clear hypotheses from observational data that can be ratified through subsequent manipulative experimental studies. Moreover, it can also be used to support the design and construction of clinically relevant in vitro models of polymicrobial infections. IMPORTANCE Research studies have repeatedly demonstrated that chronic lung infection in cystic fibrosis is polymicrobial and consequently does not adhere to the single microbe-based Koch's postulates. Despite the plethora of evidence, the role of the constituent taxa present is largely unknown. Here we demonstrate how an ecological modeling perspective on lung infection microbiota can tease out potential interactions that alter progression of disease. Using techniques akin to genome-wide association studies, we show and validate 22 taxa, present in the chronic respiratory disease associated with cystic fibrosis, which have significant interactions that are negatively associated with patient lung function, the majority of which are "non-pathogenic" organisms. This work highlights the need to understand the interactive landscapes of the microbiomes to fully appreciate the complexity and treat chronic lung infections. Furthermore, this presents testable hypotheses for manipulative experiments in model systems to elucidate key mechanisms to driving disease progression.
Collapse
Affiliation(s)
- Damian W. Rivett
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Lauren R. Hatfield
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Helen Gavillet
- Department of Applied Sciences, Northumbria University, Newcastle, United Kingdom
| | - Michelle Hardman
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Christopher van der Gast
- Department of Applied Sciences, Northumbria University, Newcastle, United Kingdom
- Department of Respiratory Medicine, Northern Care Alliance NHS Foundation Trust, Salford, United Kingdom
| |
Collapse
|
11
|
Teiba II, Mamdouh I, Yousef MI, Hussein A, El-Bilawy EH. Antimicrobial activity of Monascus purpureus-derived red pigments against Salmonella typhimurium, Escherichia coli, and Enterococcus faecalis. AMB Express 2025; 15:6. [PMID: 39755819 PMCID: PMC11700071 DOI: 10.1186/s13568-024-01801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025] Open
Abstract
The rise of antimicrobial-resistant microorganisms (AMR) poses a significant global challenge to human health and economic stability. In response, various scientific communities are seeking safe alternatives to antibiotics. This study comprehensively investigates the antibacterial effects of red dye derived from Monascus purpureus against three bacterial pathogens: Salmonella typhimurium ATCC14028, Escherichia coli ATCC8739, and Enterococcus faecalis ATCC25923. The dye was extracted from the Monascus purpureus ATCC16436 strain, using 1 mg of red dye in 1 ml of DMSO to achieve a concentration of 1000 µg/ml. The chemical profile of the red dye extract was analyzed using GC-MS analysis, confirming the presence of several bioactive antimicrobial compounds, including aspidospermidin-17-ol, 1-acetyl-16-methoxy, octanoic acid, and hexadecanoic acid methyl ester. The extract was tested against the bacterial strains at varying concentrations to determine the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC). The results demonstrated significant antibacterial activity, with the highest MIC and MBC values of 6.25/12.5 µg/ml against S. typhimurium. The antibacterial activity of the red dye was compared to five conventional antibiotics using the disc diffusion method, revealing superior effectiveness, particularly against S. typhimurium, with an inhibition zone measuring 20 ± 0.22 mm. Scanning electron microscopy was employed to explore the mechanism of action of the red dye extract, highlighting its impact on bacterial plasma membrane permeability and its interference with cellular energy production. These findings suggest that the Monascus purpureus-derived red dye extract represents a promising natural alternative to conventional antibiotics, demonstrating potent antibacterial activity and potential as a novel therapeutic agent in combating antimicrobial resistance.
Collapse
Affiliation(s)
- Islam I Teiba
- Microbiology, Botany Department, Faculty of Agriculture, Tanta University, Tanta City, 31527, Egypt.
| | - Islam Mamdouh
- Faculty of Basic Sciences, King Salman International University, South Sinai City, 46612, Egypt
| | - Mokhtar I Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Ahmed Hussein
- Biotechnology Department Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Emad H El-Bilawy
- Faculty of Basic Sciences, King Salman International University, South Sinai City, 46612, Egypt.
| |
Collapse
|
12
|
Wattenburger CJ, Wang E, Buckley DH. Dynamics of bacterial growth, and life-history tradeoffs, explain differences in soil carbon cycling due to land-use. ISME COMMUNICATIONS 2025; 5:ycaf014. [PMID: 39991272 PMCID: PMC11844245 DOI: 10.1093/ismeco/ycaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
Soil contains a considerable fraction of Earth's organic carbon. Bacterial growth and mortality drive the microbial carbon pump, influencing carbon use efficiency and necromass production, key determinants for organic carbon persistence in soils. However, bacterial growth dynamics in soil are poorly characterized. We used an internal standard approach to normalize 16S ribosomal RNA gene sequencing data allowing us to quantify growth dynamics for 30 days following plant litter input to soil. We show that clustering taxa into three groups optimized variation of bacterial growth parameters in situ. These three clusters differed significantly with respect to their lag time, growth rate, growth duration, and change in abundance due to growth (ΔNg) and mortality (ΔNd), matching predictions of Grime's CSR life-history framework. In addition, we show a striking relationship between ΔNg and ΔNd, which reveals that growth in soil is tightly coupled to death. This result suggests a fitness paradox whereby some bacteria can optimize fitness in soil by minimizing mortality rather than maximizing growth. We hypothesized that land-use constrains microbial growth dynamics by favoring different life-history strategies and that these constraints control carbon mineralization. We show that life-history groups vary in prevalence with respect to land-use, and that bacterial growth dynamics correlated with carbon mineralization rate and net growth efficiency. Meadow soil supported more bacterial growth, greater mortality, and higher growth efficiency than agricultural soils, pointing toward more efficient conversion of plant litter into microbial necromass, which should promote long-term C stabilization.
Collapse
Affiliation(s)
- Cassandra J Wattenburger
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY 14853, United States
| | - Evangeline Wang
- Department of Microbiology, Cornell University, Ithaca, NY 14853, United States
| | - Daniel H Buckley
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY 14853, United States
- Department of Microbiology, Cornell University, Ithaca, NY 14853, United States
| |
Collapse
|
13
|
Song C. Assembly Graph as the Rosetta Stone of Ecological Assembly. Environ Microbiol 2025; 27:e70030. [PMID: 39806523 DOI: 10.1111/1462-2920.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Ecological assembly-the process of ecological community formation through species introductions-has recently seen exciting theoretical advancements across dynamical, informational, and probabilistic approaches. However, these theories often remain inaccessible to non-theoreticians, and they lack a unifying lens. Here, I introduce the assembly graph as an integrative tool to connect these emerging theories. The assembly graph visually represents assembly dynamics, where nodes symbolise species combinations and edges represent transitions driven by species introductions. Through the lens of assembly graphs, I review how ecological processes reduce uncertainty in random species arrivals (informational approach), identify graphical properties that guarantee species coexistence and examine how the class of dynamical models constrain the topology of assembly graphs (dynamical approach), and quantify transition probabilities with incomplete information (probabilistic approach). To facilitate empirical testing, I also review methods to decompose complex assembly graphs into smaller, measurable components, as well as computational tools for deriving empirical assembly graphs. In sum, this math-light review of theoretical progress aims to catalyse empirical research towards a predictive understanding of ecological assembly.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
14
|
Teiba II, Mazrou YSA, Makhlouf AH, Nehela Y, Mohamed AE, Abbas AM, Mamdouh I, El-Bilawy EH. Antibacterial Potential of Honeybee Venom and Monascus purpureus Extracellular Metabolites Against Multidrug-Resistant Pathogenic Bacteria. BIOLOGY 2024; 14:21. [PMID: 39857252 PMCID: PMC11759185 DOI: 10.3390/biology14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025]
Abstract
Antimicrobial resistance (AMR) poses a critical global health threat, driving the search for alternative treatments to conventional antibiotics. In this study, the antibacterial properties of honeybee venom (BV) and fungal Monascus purpureus red dye (RD) were evaluated against three multidrug-resistant bacterial pathogens. Extracts of BV and RD exhibited dose-dependent antibacterial activity against the three tested bacteria, with their strongest effectiveness against S. aureus (minimum inhibitory concentrations [MIC] = 3.18 and 6.315 μg·mL-1, respectively). Although the three bacterial strains were resistant to the antibiotic ampicillin-sulbactam (10/10 µg), both extracts exhibited superior antibacterial activity against the three bacterial strains compared to five standard antibiotics, especially RD extract, which produced the largest inhibition zone (20 ± 0.20 mm) against S. aureus. The larger inhibition zones against S. aureus suggest its high sensitivity, whereas E. coli and E. faecalis exhibited smaller inhibition zones, indicating less sensitivity to BV and RD extracts. Differences in the inhibition zones suggest the variations in antimicrobial activity between the two extracts and their strain-specific effectiveness. Scanning electron microscopy (SEM) revealed that BV and RD extracts disrupted the bacterial plasma membrane, suggesting that the bioactive compounds penetrate the bacterial cell wall and alter its integrity. Furthermore, GC-MS-based analysis revealed that the chemical composition of BV and RD extracts exhibited highly diverse structures, including complex polycyclic systems, porphyrins, steroids, and esters. For instance, 42 metabolites were identified in the BV extract, which mainly were organic and metal-organic compounds; however, only 23 molecules were identified in RD extract, which mainly were fatty acids and their derivatives. The diversity in the chemical compositions of both extracts highlights their potential applications in pharmaceuticals, materials, and biochemistry fields. Collectively, these findings indicate that honeybee venom and the red dye from M. purpureus have promising antibacterial properties and warrant further investigation as potential alternatives to conventional antibiotics. Further multi-ligand docking-based virtual screening studies are required to identify the most promising detected metabolite(s) within both BV and RD extracts.
Collapse
Affiliation(s)
- Islam I. Teiba
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Yasser S. A. Mazrou
- Business Administration Department, Community College, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Abeer H. Makhlouf
- Department of Agricultural Botany, Faculty of Agriculture, Minufiya University, Shibin El-Kom 32511, Egypt
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Abdallah E. Mohamed
- Land and Water Technologies Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Alexandria, Egypt
| | - Ahmed M. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St. Abbassia, Abbassia, Cairo 11566, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 46612, South Sinai, Egypt
| | - Islam Mamdouh
- Faculty of Basic Sciences, King Salman International University (KSIU), Ras Sudr 46612, South Sinai, Egypt
| | - Emad H. El-Bilawy
- Faculty of Basic Sciences, King Salman International University (KSIU), Ras Sudr 46612, South Sinai, Egypt
| |
Collapse
|
15
|
Frazier AN, Beck MR, Waldrip H, Koziel JA. Connecting the ruminant microbiome to climate change: insights from current ecological and evolutionary concepts. Front Microbiol 2024; 15:1503315. [PMID: 39687868 PMCID: PMC11646987 DOI: 10.3389/fmicb.2024.1503315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Ruminant livestock provide meat, milk, wool, and other products required for human subsistence. Within the digestive tract of ruminant animals, the rumen houses a complex and diverse microbial ecosystem. These microbes generate many of the nutrients that are needed by the host animal for maintenance and production. However, enteric methane (CH4) is also produced during the final stage of anaerobic digestion. Growing public concern for global climate change has driven the agriculture sector to enhance its investigation into CH4 mitigation. Many CH4 mitigation methods have been explored, with varying outcomes. With the advent of new sequencing technologies, the host-microbe interactions that mediate fermentation processes have been examined to enhance ruminant enteric CH4 mitigation strategies. In this review, we describe current knowledge of the factors driving ruminant microbial assembly, how this relates to functionality, and how CH4 mitigation approaches influence ecological and evolutionary gradients. Through the current literature, we elucidated that many ecological and evolutionary properties are working in tandem in the assembly of ruminant microbes and in the functionality of these microbes in methanogenesis. Additionally, we provide a conceptual framework for future research wherein ecological and evolutionary dynamics account for CH4 mitigation in ruminant microbial composition. Thus, preparation of future research should incorporate this framework to address the roles ecology and evolution have in anthropogenic climate change.
Collapse
Affiliation(s)
- A. Nathan Frazier
- Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Bushland, TX, United States
| | - Matthew R. Beck
- Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Bushland, TX, United States
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Heidi Waldrip
- Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Bushland, TX, United States
| | - Jacek A. Koziel
- Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Bushland, TX, United States
| |
Collapse
|
16
|
Campbell S, Gerasimidis K, Milling S, Dicker AJ, Hansen R, Langley RJ. The lower airway microbiome in paediatric health and chronic disease. Paediatr Respir Rev 2024; 52:31-43. [PMID: 38538377 DOI: 10.1016/j.prrv.2024.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 12/16/2024]
Abstract
The advent of next generation sequencing has rapidly challenged the paediatric respiratory physician's understanding of lung microbiology and the role of the lung microbiome in host health and disease. In particular, the role of "microbial key players" in paediatric respiratory disease is yet to be fully explained. Accurate profiling of the lung microbiome in children is challenging since the ability to obtain lower airway samples coupled with processing "low-biomass specimens" are both technically difficult. Many studies provide conflicting results. Early microbiota-host relationships may be predictive of the development of chronic respiratory disease but attempts to correlate lower airway microbiota in premature infants and risk of developing bronchopulmonary dysplasia (BPD) have produced mixed results. There are differences in lung microbiota in asthma and cystic fibrosis (CF). The increased abundance of oral taxa in the lungs may (or may not) promote disease processes in asthma and CF. In CF, correlation between microbiota diversity and respiratory decline is commonly observed. When one considers other pathogens beyond the bacterial kingdom, the contribution and interplay of fungi and viruses within the lung microbiome further increase complexity. Similarly, the interaction between microbial communities in different body sites, such as the gut-lung axis, and the influence of environmental factors, including diet, make the co-existence of host and microbes ever more complicated. Future, multi-omics approaches may help uncover novel microbiome-based biomarkers and therapeutic targets in respiratory disease and explain how we can live in harmony with our microbial companions.
Collapse
Affiliation(s)
- S Campbell
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - K Gerasimidis
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - S Milling
- School of Infection & Immunity, University of Glasgow
| | - A J Dicker
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee
| | - R Hansen
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee
| | - R J Langley
- Department of Paediatric Respiratory & Sleep Medicine, Royal Hospital for Children, Glasgow; Department of Maternal and Child Health, School of Medicine, Dentistry and Nursing, University of Glasgow.
| |
Collapse
|
17
|
Feng Y, Kong L, Zheng R, Wu X, Zhou J, Xu X, Liu S. Adjusted bacterial cooperation in anammox community to adapt to high ammonium in wastewater treatment plant. WATER RESEARCH X 2024; 25:100258. [PMID: 39381622 PMCID: PMC11460484 DOI: 10.1016/j.wroa.2024.100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
Bacterial cooperation is very important for anammox bacteria which perform low-carbon and energy-efficient nitrogen removal, yet its variation to adapt to high NH4 +-N concentration in actual wastewater treatment plants (WWTPs) remains unclear. Here, we found wide and varied cross-feedings of anammox bacteria and symbiotic bacteria in the two series connected full-scale reactors with different NH4 +-N concentrations (297.95 ± 54.84 and 76.03 ± 34.01 mg/L) treating sludge digester liquor. The uptake of vitamin B6 as highly effective antioxidants secreted by the symbiotic bacteria was beneficial for anammox bacteria to resist the high NH4 +-N concentration and varied dissolved oxygen (DO). When NH4 +-N concentration in influent (1785.46 ± 228.5 mg/L) increased, anammox bacteria tended to reduce the amino acids supply to symbiotic bacteria to save metabolic costs. A total of 26.1% bacterial generalists switched to specialists to increase the stability and functional heterogeneity of the microbial community at high NH4 +-N conditions. V/A-type ATPase for anammox bacteria to adapt to the change of NH4 +-N was highly important to strive against cellular alkalization caused by free ammonia. This study expands the understanding of the adjusted bacterial cooperation within anammox consortia at high NH4 +-N conditions, providing new insights into bacterial adaptation to adverse environments from a sociomicrobiology perspective.
Collapse
Affiliation(s)
- Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Ru Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Sciences and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| |
Collapse
|
18
|
Kastner K, Bitter J, Pfeiffer M, Grininger C, Oberdorfer G, Pavkov-Keller T, Weber H, Nidetzky B. Enzyme Machinery for Bacterial Glucoside Metabolism through a Conserved Non-hydrolytic Pathway. Angew Chem Int Ed Engl 2024; 63:e202410681. [PMID: 39041709 DOI: 10.1002/anie.202410681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The flexible acquisition of substrates from nutrient pools is critical for microbes to prevail in competitive environments. To acquire glucose from diverse glycoside and disaccharide substrates, many free-living and symbiotic bacteria have developed, alongside hydrolysis, a non-hydrolytic pathway comprised of four biochemical steps and conferred from a single glycoside utilization gene locus (GUL). Mechanistically, this pathway integrates within the framework of oxidation and reduction at the glucosyl/glucose C3, the eliminative cleavage of the glycosidic bond and the addition of water in two consecutive lyase-catalyzed reactions. Here, based on study of enzymes from the phytopathogen Agrobacterium tumefaciens, we reveal a conserved Mn2+ metallocenter active site in both lyases and identify the structural requirements for specific catalysis to elimination of 3-keto-glucosides and water addition to the resulting 2-hydroxy-3-keto-glycal product, yielding 3-keto-glucose. Extending our search of GUL-encoded putative lyases to the human gut commensal Bacteroides thetaiotaomicron, we discover a Ca2+ metallocenter active site in a putative glycoside hydrolase-like protein and demonstrate its catalytic function in the eliminative cleavage of 3-keto-glucosides of opposite (α) anomeric configuration as preferred by the A. tumefaciens enzyme (β). Structural and biochemical comparisons reveal the molecular-mechanistic origin of 3-keto-glucoside lyase stereo-complementarity. Our findings identify a basic set of GUL-encoded lyases for glucoside metabolism and assign physiological significance to GUL genetic diversity in the bacterial domain of life.
Collapse
Affiliation(s)
- Klara Kastner
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| | - Johannes Bitter
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| | - Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| | - Christoph Grininger
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010, Graz, Austria
| | - Gustav Oberdorfer
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, A-8010, Graz, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, A-8010, Graz, Austria
- BioHealth Field of Excellence, University of Graz, Humboldtstraße 50, A-8010, Graz, Austria
| | - Hansjörg Weber
- Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, A-8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010, Graz, Austria
| |
Collapse
|
19
|
Camacho-Mateu J, Lampo A, Ares S, Cuesta JA. Nonequilibrium microbial dynamics unveil a new macroecological pattern beyond Taylor's law. Phys Rev E 2024; 110:044402. [PMID: 39562866 DOI: 10.1103/physreve.110.044402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/16/2024] [Indexed: 11/21/2024]
Abstract
We introduce a comprehensive analytical benchmark, relying on Fokker-Planck formalism, to study microbial dynamics in the presence of both biotic and abiotic forces. In equilibrium, we observe a balance between the two kinds of forces, leading to no correlations between species abundances. This implies that real microbiomes, where correlations have been observed, operate out of equilibrium. Therefore, we analyze nonequilibrium dynamics, presenting an ansatz for an approximate solution that embodies the complex interplay of forces in the system. This solution is consistent with Taylor's law as a coarse-grained approximation of the relation between species abundance and variance, but implies subtler effects, predicting unobserved structure beyond Taylor's law. Motivated by this theoretical prediction, we refine the analysis of existing metagenomic data, unveiling a novel universal macroecological pattern. Finally, we speculate on the physical origin of Taylor's law: building upon an analogy with Brownian motion theory, we propose that Taylor's law emerges as a fluctuation-growth relation resulting from equipartition of environmental resources among microbial species.
Collapse
|
20
|
Kratou M, Maitre A, Abuin-Denis L, Piloto-Sardiñas E, Corona-Guerrero I, Cano-Argüelles AL, Wu-Chuang A, Bamgbose T, Almazan C, Mosqueda J, Obregón D, Mateos-Hernández L, Said MB, Cabezas-Cruz A. Disruption of bacterial interactions and community assembly in Babesia-infected Haemaphysalis longicornis following antibiotic treatment. BMC Microbiol 2024; 24:322. [PMID: 39237861 PMCID: PMC11378419 DOI: 10.1186/s12866-024-03468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND A previous study highlighted the role of antibiotic-induced dysbiosis in the tick microbiota, facilitating the transstadial transmission of Babesia microti from nymph to adult in Haemaphysalis longicornis. This study builds on previous findings by analyzing sequence data from an earlier study to investigate bacterial interactions that could be linked to enhanced transstadial transmission of Babesia in ticks. The study employed antibiotic-treated (AT) and control-treated (CT) Haemaphysalis longicornis ticks to investigate shifts in microbial community assembly. Network analysis techniques were utilized to assess bacterial interactions, comparing network centrality measures between AT and CT groups, alongside studying network robustness and connectivity loss. Additionally, functional profiling was conducted to evaluate metabolic diversity in response to antibiotic treatment. RESULTS The analysis revealed notable changes in microbial community assembly in response to antibiotic treatment. Antibiotic-treated (AT) ticks displayed a greater number of connected nodes but fewer correlations compared to control-treated (CT) ticks, indicating a less interactive yet more connected microbial community. Network centrality measures such as degree, betweenness, closeness, and eigenvector centrality, differed significantly between AT and CT groups, suggesting alterations in local network dynamics due to antibiotic intervention. Coxiella and Acinetobacter exhibited disrupted connectivity and roles, with the former showing reduced interactions in AT group and the latter displaying a loss of connected nodes, emphasizing their crucial roles in microbial network stability. Robustness tests against node removal showed decreased stability in AT networks, particularly under directed attacks, confirming a susceptibility of the microbial community to disturbances. Functional profile analysis further indicated a higher diversity and richness in metabolic capabilities in the AT group, reflecting potential shifts in microbial metabolism as a consequence of antimicrobial treatment. CONCLUSIONS Our findings support that bacterial interaction traits boosting the transstadial transmission of Babesia could be associated with reduced colonization resistance. The disrupted microbial interactions and decreased network robustness in AT ticks suggest critical vulnerabilities that could be targeted for managing tick-borne diseases.
Collapse
Affiliation(s)
- Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia.
| | - Apolline Maitre
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET LRDE), Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Lianet Abuin-Denis
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Avenue 31 Between 158 and 190, Havana, 10600, Cuba
| | - Elianne Piloto-Sardiñas
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de Las Lajas, Mayabeque, 32700, Cuba
| | - Ivan Corona-Guerrero
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Ana Laura Cano-Argüelles
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, Salamanca, 37008, Spain
| | - Alejandra Wu-Chuang
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
| | - Timothy Bamgbose
- Department of Biological Sciences, Microbiology Unit, Kings University, Odeomu, Osun State, Nigeria
- National Agency for Food and Drug Control and Administration (NAFDAC), Isolo, Lagos State, Nigeria
| | - Consuelo Almazan
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Juan Mosqueda
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Lourdes Mateos-Hernández
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France.
| |
Collapse
|
21
|
Strotmann U, Durand MJ, Thouand G, Eberlein C, Heipieper HJ, Gartiser S, Pagga U. Microbiological toxicity tests using standardized ISO/OECD methods-current state and outlook. Appl Microbiol Biotechnol 2024; 108:454. [PMID: 39215841 PMCID: PMC11365844 DOI: 10.1007/s00253-024-13286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Microbial toxicity tests play an important role in various scientific and technical fields including the risk assessment of chemical compounds in the environment. There is a large battery of normalized tests available that have been standardized by ISO (International Organization for Standardization) and OECD (Organization for Economic Co-operation and Development) and which are worldwide accepted and applied. The focus of this review is to provide information on microbial toxicity tests, which are used to elucidate effects in other laboratory tests such as biodegradation tests, and for the prediction of effects in natural and technical aqueous compartments in the environment. The various standardized tests as well as not normalized methods are described and their advantages and disadvantages are discussed. In addition, the sensitivity and usefulness of such tests including a short comparison with other ecotoxicological tests is presented. Moreover, the far-reaching influence of microbial toxicity tests on biodegradation tests is also demonstrated. A new concept of the physiological potential of an inoculum (PPI) consisting of microbial toxicity tests whose results are expressed as a chemical resistance potential (CRP) and the biodegradation adaptation potential (BAP) of an inoculum is described that may be helpful to characterize inocula used for biodegradation tests. KEY POINTS: • Microbial toxicity tests standardized by ISO and OECD have large differences in sensitivity and applicability. • Standardized microbial toxicity tests in combination with biodegradability tests open a new way to characterize inocula for biodegradation tests. • Standardized microbial toxicity tests together with ecotoxicity tests can form a very effective toolbox for the characterization of toxic effects of chemicals.
Collapse
Affiliation(s)
- Uwe Strotmann
- Dept. of Chemistry, Westfälische Hochschule, Recklinghausen, Germany
| | - Marie-José Durand
- UMR 6144, Nantes Université, ONIRIS, CNRS, GEPEA, 85000, La Roche Sur Yon, France
| | - Gerald Thouand
- UMR 6144, Nantes Université, ONIRIS, CNRS, GEPEA, 85000, La Roche Sur Yon, France
| | - Christian Eberlein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hermann J Heipieper
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | | | - Udo Pagga
- , Rüdigerstr. 49, 67069, Ludwigshafen, Germany
| |
Collapse
|
22
|
Chen X, Yin X, Shi X, Yan W, Yang Y, Liu L, Zhang T. Melon: metagenomic long-read-based taxonomic identification and quantification using marker genes. Genome Biol 2024; 25:226. [PMID: 39160564 PMCID: PMC11331721 DOI: 10.1186/s13059-024-03363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Long-read sequencing holds great potential for characterizing complex microbial communities, yet taxonomic profiling tools designed specifically for long reads remain lacking. We introduce Melon, a novel marker-based taxonomic profiler that capitalizes on the unique attributes of long reads. Melon employs a two-stage classification scheme to reduce computational time and is equipped with an expectation-maximization-based post-correction module to handle ambiguous reads. Melon achieves superior performance compared to existing tools in both mock and simulated samples. Using wastewater metagenomic samples, we demonstrate the applicability of Melon by showing it provides reliable estimates of overall genome copies, and species-level taxonomic profiles.
Collapse
Affiliation(s)
- Xi Chen
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaole Yin
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xianghui Shi
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Weifu Yan
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Yang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
23
|
Fetsiukh A, Pall T, Timmusk S. Decrease due to pollution in the rhizosphere microbial diversity can be amended by supplementation from adapted plants of another species. Sci Rep 2024; 14:18806. [PMID: 39138231 PMCID: PMC11322436 DOI: 10.1038/s41598-024-68123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Manipulating the rhizosphere microbiome to enhance plant stress tolerance is an environmentally friendly technology and a renewable resource to restore degraded environments. Here we suggest a sustainable bioremediation strategy on the example of Stebnyk mine tailings storage. We consider Salicornia europaea rhizosphere community, and the ability of the phytoremediation plant Salix viminalis to recruit its beneficial microbiome to mediate the pollution stress at the Stebnyk mine tailings storage. The tailings contain large amounts of brine salts and heavy metals that contaminate the ground water and surrounding areas, changing soil biogeochemistry and causing increased erosion. The species richness of the endophytic bacterial community of S. viminalis roots was assessed based on observed OTUs, Shannon-InvSimpson, and evenness index. Our results obtained using the plant-based enrichment strategy show that biodiversity was decreased across the contamination zones and that S. europaea supplementation significantly increased the species richness. Our results also indicate that the number of dominating bacteria was not changed across zones in both S. europaea-treated and untreated bacterial populations, and that the decrease in richness was mainly caused by the low abundant bacterial OTUs. The importance of selecting the bioremediation strains that are likely to harbor a reservoir of genetic traits that aid in bioremediation function from the target environment is discussed.
Collapse
Affiliation(s)
- Anastasiia Fetsiukh
- Department of Forest Mycology and Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Taavi Pall
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Salme Timmusk
- Department of Forest Mycology and Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| |
Collapse
|
24
|
Zheng P, Mao A, Meng S, Yu F, Zhang S, Lun J, Li J, Hu Z. Assembly mechanism of microbial community under different seasons in Shantou sea area. MARINE POLLUTION BULLETIN 2024; 205:116550. [PMID: 38878412 DOI: 10.1016/j.marpolbul.2024.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 07/24/2024]
Abstract
Coastal areas are often affected by a variety of climates, and microbial composition patterns are conducive to adaptation to these environments. In this study, the composition and pattern of microbial communities in the Shantou sea from four seasons were analyzed. The diversity of microbial community was significant differences under different seasons (p < 0.01). Meanwhile, dissolved oxygen levels, temperature were key factors to shift microbial communities. The assembly mechanism of microbial communities was constructed by the iCAMP (Infer community assembly mechanism by the phylogenetic bin-based null). Interestingly, the analyses revealed that drift was the predominant driver of this process (44.5 %), suggesting that microbial community assembly in this setting was dominated by stochastic processes. For example, Vibrio was found to be particularly susceptible to stochastic processes, indicating that the pattern of bacterial community was governed by stochastic processes. Thus, these results offering novel insight into the regulation of microbial ecology in marine environments.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Aihua Mao
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Fei Yu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Shan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Jingsheng Lun
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Jin Li
- College of Life Sciences, China West Normal University, Nanchong 637002, PR China.
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
25
|
Chen J, Zhu Y, Yuan Q. Predicting potential microbe-disease associations based on dual branch graph convolutional network. J Cell Mol Med 2024; 28:e18571. [PMID: 39086148 PMCID: PMC11291560 DOI: 10.1111/jcmm.18571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Studying the association between microbes and diseases not only aids in the prevention and diagnosis of diseases, but also provides crucial theoretical support for new drug development and personalized treatment. Due to the time-consuming and costly nature of laboratory-based biological tests to confirm the relationship between microbes and diseases, there is an urgent need for innovative computational frameworks to anticipate new associations between microbes and diseases. Here, we propose a novel computational approach based on a dual branch graph convolutional network (GCN) module, abbreviated as DBGCNMDA, for identifying microbe-disease associations. First, DBGCNMDA calculates the similarity matrix of diseases and microbes by integrating functional similarity and Gaussian association spectrum kernel (GAPK) similarity. Then, semantic information from different biological networks is extracted by two GCN modules from different perspectives. Finally, the scores of microbe-disease associations are predicted based on the extracted features. The main innovation of this method lies in the use of two types of information for microbe/disease similarity assessment. Additionally, we extend the disease nodes to address the issue of insufficient features due to low data dimensionality. We optimize the connectivity between the homogeneous entities using random walk with restart (RWR), and then use the optimized similarity matrix as the initial feature matrix. In terms of network understanding, we design a dual branch GCN module, namely GlobalGCN and LocalGCN, to fine-tune node representations by introducing side information, including homologous neighbour nodes. We evaluate the accuracy of the DBGCNMDA model using five-fold cross-validation (5-fold-CV) technique. The results show that the area under the receiver operating characteristic curve (AUC) and area under the precision versus recall curve (AUPR) of the DBGCNMDA model in the 5-fold-CV are 0.9559 and 0.9630, respectively. The results from the case studies using published experimental data confirm a significant number of predicted associations, indicating that DBGCNMDA is an effective tool for predicting potential microbe-disease associations.
Collapse
Affiliation(s)
- Jing Chen
- School of Electronic and Information EngineeringSuzhou University of Science and TechnologySuzhouChina
| | - Yongjun Zhu
- School of Electronic and Information EngineeringSuzhou University of Science and TechnologySuzhouChina
| | - Qun Yuan
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of NanjingUniversity Medical SchoolSuzhouChina
| |
Collapse
|
26
|
Aytenov IS, Bozorov TA, Zhang D, Samadiy SA, Muhammadova DA, Isokulov MZ, Murodova SM, Zakirova OR, Chinikulov BK, Sherimbetov AG. Uncovering the Antifungal Potential of Plant-Associated Cultivable Bacteria from the Aral Sea Region against Phytopathogenic Fungi. Pathogens 2024; 13:585. [PMID: 39057812 PMCID: PMC11279601 DOI: 10.3390/pathogens13070585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Two freshwater rivers, the Amu Darya and Syr Darya, flow into the Aral Sea, but they began to diminish in the early 1960s, and by the 1980s, the lake had nearly ceased to exist due to excessive water consumption for agriculture and the unsustainable management of water resources from rivers, which transformed the Aral Sea into a hypersaline lake. Despite this, the flora and fauna of the region began to evolve in the high-salinity seabed soil, which has received little attention in studies. In this study, we isolated approximately 1400 bacterial strains from the rhizosphere and phyllosphere of plant species of distinct families. Bacterial isolates were examined for antifungal activities against a range of pathogenic fungi such as Rhizoctonia gossypii, Trichothecium ovalisporum, Fusarium annulatum, F. oxysporum, F. culmorum, F. brachygibbosum, F. tricinctum, F. verticillioides, Alternaria alternata, A. terreus, Aspergillus niger, and As. flavus. Eighty-eight bacterial isolates exhibited varying antagonistic ability against pathogenic fungi. Furthermore, DNA barcoding of isolates using the 16S rRNA gene indicated that most antagonistic bacteria belonged to the Bacillus and Pseudomonas genera. The study also explored the activity of hydrolytic and cell-wall-degrading enzymes produced by antagonistic bacteria. The findings revealed that antagonistic bacteria can be utilized to widely protect seabed plants and plants growing in saline areas against pathogenic fungi, as well as agricultural crops.
Collapse
Affiliation(s)
- Ilkham S. Aytenov
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (I.S.A.); (D.Z.)
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan; (S.A.S.); (D.A.M.); (S.M.M.)
| | - Tohir A. Bozorov
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (I.S.A.); (D.Z.)
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan; (S.A.S.); (D.A.M.); (S.M.M.)
| | - Daoyuan Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (I.S.A.); (D.Z.)
| | - Sitora A. Samadiy
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan; (S.A.S.); (D.A.M.); (S.M.M.)
- Department of Microbiology and Biotechnology, National University of Uzbekistan, University Street, 4, Tashkent 100174, Uzbekistan
| | - Dono A. Muhammadova
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan; (S.A.S.); (D.A.M.); (S.M.M.)
| | - Marufbek Z. Isokulov
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan; (S.A.S.); (D.A.M.); (S.M.M.)
| | - Sojida M. Murodova
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan; (S.A.S.); (D.A.M.); (S.M.M.)
| | - Ozoda R. Zakirova
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan; (S.A.S.); (D.A.M.); (S.M.M.)
| | - Bakhodir Kh. Chinikulov
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan; (S.A.S.); (D.A.M.); (S.M.M.)
| | - Anvar G. Sherimbetov
- Laboratory of Plant Immunity, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan
| |
Collapse
|
27
|
Kang H, Kim S, Song K, Kwon MJ, Lee J. Intermediate Disturbances Enhance Microbial Enzyme Activities in Soil Ecosystems. Microorganisms 2024; 12:1401. [PMID: 39065169 PMCID: PMC11278743 DOI: 10.3390/microorganisms12071401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The Intermediate Disturbance Hypothesis (IDH) posits that maximal plant biodiversity is attained in environments characterized by moderate ecological disturbances. Although the applicability of the IDH to microbial diversity has been explored in a limited number of studies, there is a notable absence of experimental reports on whether soil microbial 'activity' demonstrates a similar response to the frequency or intensity of environmental disturbances. In this investigation, we conducted five distinct experiments employing soils or wetland sediments exposed to varying intensities or frequencies of disturbances, with a specific emphasis on disturbances associated with human activity, such as chemical contamination, hydrologic changes, and forest thinning. Specifically, we examined the effects of bactericide and heavy metal contamination, long-term drainage, tidal flow, and thinning management on microbial enzyme activities in soils. Our findings revealed that microbial enzyme activities were highest at intermediate disturbance levels. Despite the diversity in experiment conditions, each trial consistently demonstrated analogous patterns, suggesting the robustness of the IDH in elucidating microbial activities alongside diversity in soils. These outcomes bear significant implications for ecological restoration and management, as intermediate disturbance may expedite organic matter decomposition and nutrient cycles, crucial for sustaining ecosystem services in soils.
Collapse
Affiliation(s)
- Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea;
| | - Sunghyun Kim
- Smithsonian Environmental Research Center, Edgewater, MD 21037, USA;
| | - Keunyea Song
- Department of Ecology, State of Washington, Lacey, WA 98504, USA;
| | - Min-Jung Kwon
- Institute of Soil Science, Universität Hamburg, 20146 Hamburg, Germany;
| | - Jaehyun Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea;
| |
Collapse
|
28
|
Barac A, Vujovic A, Peric J, Tulic I, Stojanovic M, Stjepanovic M. Rethinking Aspergillosis in the Era of Microbiota and Mycobiota. Mycopathologia 2024; 189:49. [PMID: 38864956 DOI: 10.1007/s11046-024-00853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/09/2024] [Indexed: 06/13/2024]
Abstract
Aspergillosis encompasses a wide range of clinical conditions based on the interaction between Aspergillus and the host. It ranges from colonization to invasive aspergillosis. The human lung provides an entry door for Aspergillus. Aspergillus has virulence characteristics such as conidia, rapid growth at body temperature, and the production of specific proteins, carbohydrates, and secondary metabolites that allow A. fumigatus to infiltrate the lung's alveoli and cause invasive aspergillosis. Alveolar epithelial cells play an important role in both fungus clearance and immune cell recruitment via cytokine release. Although the innate immune system quickly clears conidia in immunocompetent hosts, A. fumigatus has evolved multiple virulence factors in order to escape immune response such as ROS detoxifying enzymes, the rodlet layer, DHN-melanin and toxins. Bacterial co-infections or interactions can alter the immune response, impact Aspergillus growth and virulence, enhance biofilm formation, confound diagnosis, and reduce treatment efficacy. The gut microbiome's makeup influences pulmonary immune responses generated by A. fumigatus infection and vice versa. The real-time PCR for Aspergillus DNA detection might be a particularly useful tool to diagnose pulmonary aspergillosis. Metagenomics analyses allow quick and easy detection and identification of a great variety of fungi in different clinical samples, although optimization is still required particularly for the use of NGS techniques. This review will analyze the current state of aspergillosis in light of recent discoveries in the microbiota and mycobiota.
Collapse
Affiliation(s)
- Aleksandra Barac
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Ankica Vujovic
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jovan Peric
- Center for Anesthesiology and Resuscitation, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ivan Tulic
- Clinic for Orthopedic Surgery and Traumatology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Maja Stojanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Allergology and Clinical Immunology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Mihailo Stjepanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Pulmonology, University Clinical Center of Serbia, Belgrade, Serbia
| |
Collapse
|
29
|
Huang W, Wang F, Xia X, Fang S, Cheng X, Zhou A, Feng L, Wang D, Luo J. Tannic Acid Modulation of Substrate Utilization, Microbial Community, and Metabolic Traits in Sludge Anaerobic Fermentation for Volatile Fatty Acid Promotion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9792-9803. [PMID: 38780952 DOI: 10.1021/acs.est.3c08678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Anaerobic fermentation is a crucial route to realize effective waste activated sludge (WAS) resource recovery and utilization, while the overall efficiency is commonly restrained by undesirable disruptors (i.e., chemical dewatering agents). This work unveiled the unexpectedly positive effects of biodewatering tannic acid (TA) on the volatile fatty acids (VFAs) biosynthesis during WAS anaerobic fermentation. The total VFAs yield was remarkably increased by 15.6 folds with enriched acetate and butyrate in TA-occurred systems. TA was capable to disintegrate extracellular polymeric substances to promote the overall organics release. However, TA further modulated the soluble proteins structure by hydrogen bonding and hydrophobic interactions, resulting in the decrease of proteins bioavailability and consequential alteration of metabolic substrate feature. These changes reshaped the microbial community and stimulated adaptive regulatory systems in hydrolytic-acidogenic bacteria. The keystone species for carbohydrate metabolism (i.e., Solobacterium and Erysipelotrichaceae) were preferentially enriched. Also, the typical quorum sensing (i.e., enhancing substrate transport) and two-component systems (i.e., sustaining high metabolic activity) were activated to promote the microbial networks connectivity and ecological cooperative behaviors in response to TA stress. Additionally, the metabolic functions responsible for carbohydrate hydrolysis, transmembrane transport, and intracellular metabolism as well as VFA biosynthesis showed increased relative abundance, which maintained high microbial activities for VFAs biosynthesis. This study underscored the advantages of biodewatering TA for WAS treatment in the context of resource recovery and deciphered the interactive mechanisms.
Collapse
Affiliation(s)
- Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xue Xia
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
30
|
Galeana-Cadena D, Ramirez-Martínez G, Alberto Choreño-Parra J, Silva-Herzog E, Margarita Hernández-Cárdenas C, Soberón X, Zúñiga J. Microbiome in the nasopharynx: Insights into the impact of COVID-19 severity. Heliyon 2024; 10:e31562. [PMID: 38826746 PMCID: PMC11141365 DOI: 10.1016/j.heliyon.2024.e31562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
Background The respiratory tract harbors a variety of microbiota, whose composition and abundance depend on specific site factors, interaction with external factors, and disease. The aim of this study was to investigate the relationship between COVID-19 severity and the nasopharyngeal microbiome. Methods We conducted a prospective cohort study in Mexico City, collecting nasopharyngeal swabs from 30 COVID-19 patients and 14 healthy volunteers. Microbiome profiling was performed using 16S rRNA gene analysis. Taxonomic assignment, classification, diversity analysis, core microbiome analysis, and statistical analysis were conducted using R packages. Results The microbiome data analysis revealed taxonomic shifts within the nasopharyngeal microbiome in severe COVID-19. Particularly, we observed a significant reduction in the relative abundance of Lawsonella and Cutibacterium genera in critically ill COVID-19 patients (p < 0.001). In contrast, these patients exhibited a marked enrichment of Streptococcus, Actinomyces, Peptostreptococcus, Atopobium, Granulicatella, Mogibacterium, Veillonella, Prevotella_7, Rothia, Gemella, Alloprevotella, and Solobacterium genera (p < 0.01). Analysis of the core microbiome across all samples consistently identified the presence of Staphylococcus, Corynebacterium, and Streptococcus. Conclusions Our study suggests that the disruption of physicochemical conditions and barriers resulting from inflammatory processes and the intubation procedure in critically ill COVID-19 patients may facilitate the colonization and invasion of the nasopharynx by oral microorganisms.
Collapse
Affiliation(s)
- David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Gustavo Ramirez-Martínez
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Eugenia Silva-Herzog
- Unidad de Vinculación Científica Facultad de Medicina UNAM-INMEGEN, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Carmen Margarita Hernández-Cárdenas
- Unidad de Cuidados Intensivos y Dirección General, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Ciudad de México, Mexico
| | - Xavier Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Joaquín Zúñiga
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| |
Collapse
|
31
|
Eliette AS, Elodie B, Arnaud M, Tiffany R, Aymé S, Pascal P. Idiosyncratic invasion trajectories of human bacterial pathogens facing temperature disturbances in soil microbial communities. Sci Rep 2024; 14:12375. [PMID: 38811807 PMCID: PMC11137084 DOI: 10.1038/s41598-024-63284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
Current knowledge about effects of disturbance on the fate of invaders in complex microbial ecosystems is still in its infancy. In order to investigate this issue, we compared the fate of Klebsiella pneumoniae (Kp) and Listeria monocytogenes (Lm) in soil microcosms. We then used environmental disturbances (freeze-thaw or heat cycles) to compare the fate of both invaders and manipulate soil microbial diversity. Population dynamics of the two pathogens was assessed over 50 days of invasion while microbial diversity was measured at times 0, 20 and 40 days. The outcome of invasion was strain-dependent and the response of the two invaders to disturbance differed. Resistance to Kp invasion was higher under the conditions where resident microbial diversity was the highest while a significant drop of diversity was linked to a higher persistence. In contrast, Lm faced stronger resistance to invasion in heat-treated microcosms where diversity was the lowest. Our results show that diversity is not a universal proxy of resistance to microbial invasion, indicating the need to properly assess other intrinsic properties of the invader, such as its metabolic repertoire, or the array of interactions between the invader and resident communities.
Collapse
Affiliation(s)
- Ascensio-Schultz Eliette
- Université de Bourgogne, University Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, 21000, Dijon, France
| | - Barbier Elodie
- Université de Bourgogne, University Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, 21000, Dijon, France
| | - Mounier Arnaud
- Université de Bourgogne, University Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, 21000, Dijon, France
| | - Raynaud Tiffany
- Université de Bourgogne, University Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, 21000, Dijon, France
| | - Spor Aymé
- Université de Bourgogne, University Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, 21000, Dijon, France
| | | |
Collapse
|
32
|
Rehman A, Rahman SU, Li P, Shah IH, Manzoor MA, Azam M, Cao J, Malik MS, Jeridi M, Ahmad N, Alabbosh KF, Liu Q, Khalid M, Niu Q. Modulating plant-soil microcosm with green synthesized ZnONPs in arsenic contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134130. [PMID: 38555668 DOI: 10.1016/j.jhazmat.2024.134130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Biogenic nanoparticle (NP), derived from plant sources, is gaining prominence as a viable, cost-effective, sustainable, and biocompatible alternative for mitigating the extensive environmental impact of arsenic on the interplay between plant-soil system. Herein, the impact of green synthesized zinc oxide nanoparticles (ZnONPs) was assessed on Catharanthus roseus root system-associated enzymes and their possible impact on microbiome niches (rhizocompartments) and overall plant performance under arsenic (As) gradients. The application of ZnONPs at different concentrations successfully modified the arsenic uptake in various plant parts, with the root arsenic levels increasing 1.5 and 1.4-fold after 25 and 50 days, respectively, at medium concentration compared to the control. Moreover, ZnONPs gradients regulated the various soil enzyme activities. Notably, urease and catalase activities showed an increase when exposed to low concentrations of ZnONPs, whereas saccharase and acid phosphatase displayed the opposite pattern, showing increased activities under medium concentration which possibly in turn influence the plant root system associated microflora. The use of nonmetric multidimensional scaling ordination revealed a significant differentiation (with a significance level of p < 0.05) in the structure of both bacterial and fungal communities under different treatment conditions across root associated niches. Bacterial and fungal phyla level analysis showed that Proteobacteria and Basidiomycota displayed a significant increase in relative abundance under medium ZnONPs concentration, as opposed to low and high concentrations, respectively. Similarly, in depth genera level analysis revealed that Burkholderia, Halomonas, Thelephora and Sebacina exhibited a notably high relative abundance in both the rhizosphere and rhizoplane (the former refers to the soil region influenced by root exudates, while the latter is the root surface itself) under medium concentrations of ZnONPs, respectively. These adjustments to the plant root-associated microcosm likely play a role in protecting the plant from oxidative stress by regulating the plant's antioxidant system and overall biomass.
Collapse
Affiliation(s)
- Asad Rehman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Saeed Ur Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengli Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Azam
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junfeng Cao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Mouna Jeridi
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Qunlu Liu
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Khalid
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China.
| | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
33
|
Yadav RS, Sharma S, Metzler R, Chakrabarti R. A passive star polymer in a dense active bath: insights from computer simulations. SOFT MATTER 2024; 20:3910-3922. [PMID: 38700098 DOI: 10.1039/d4sm00144c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Using computer simulations in two dimensions (2D), we explore the structure and dynamics of a star polymer with three arms made of passive monomers immersed in a bath of active Brownian particles (ABPs). We analyze the conformational and dynamical changes of the polymer as a function of activity and packing fraction. We also study the process of motility induced phase separation (MIPS) in the presence of a star polymer, which acts as a mobile nucleation center. The presence of the polymer increases the growth rate of the clusters in comparison to a bath without the polymer. In particular, for low packing fraction, both nucleation and cluster growth are affected by the inclusion of the star polymer. Clusters grow in the vicinity of the star polymer, resulting in the star polymer experiencing a caged motion similar to a tagged ABP in the dense phase. Due to the topological constraints of the star polymers and clustering nearby, the conformational changes of the star polymer lead to interesting observations. Inter alia, we observe the shrinking of the arm with increasing activity along with a short-lived hairpin structure of one arm formed. We also see the transient pairing of two arms of the star polymer, while the third is largely separated at high activity. We hope our findings will help in understanding the behavior of active-passive mixtures, including biopolymers of complex topology in dense active suspensions.
Collapse
Affiliation(s)
- Ramanand Singh Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Sanaa Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Germany.
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
34
|
Smith SK, Weaver JE, Ducoste JJ, de Los Reyes FL. Microbial community assembly in engineered bioreactors. WATER RESEARCH 2024; 255:121495. [PMID: 38554629 DOI: 10.1016/j.watres.2024.121495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/10/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Microbial community assembly (MCA) processes that shape microbial communities in environments are being used to analyze engineered bioreactors such as activated sludge systems and anaerobic digesters. The goal of studying MCA is to be able to understand and predict the effect of design and operation procedures on bioreactor microbial composition and function. Ultimately, this can lead to bioreactors that are more efficient, resilient, or resistant to perturbations. This review summarizes the ecological theories underpinning MCA, evaluates MCA analysis methods, analyzes how these MCA-based methods are applied to engineered bioreactors, and extracts lessons from case studies. Furthermore, we suggest future directions in MCA research in engineered bioreactor systems. The review aims to provide insights and guidance to the growing number of environmental engineers who wish to design and understand bioreactors through the lens of MCA.
Collapse
Affiliation(s)
- Savanna K Smith
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
| | - Joseph E Weaver
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Joel J Ducoste
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
| | - Francis L de Los Reyes
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
35
|
Purahong W, Ji L, Wu YT. Community Assembly Processes of Deadwood Mycobiome in a Tropical Forest Revealed by Long-Read Third-Generation Sequencing. MICROBIAL ECOLOGY 2024; 87:66. [PMID: 38700528 PMCID: PMC11068674 DOI: 10.1007/s00248-024-02372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/31/2024] [Indexed: 05/06/2024]
Abstract
Despite the importance of wood-inhabiting fungi on nutrient cycling and ecosystem functions, their ecology, especially related to their community assembly, is still highly unexplored. In this study, we analyzed the wood-inhabiting fungal richness, community composition, and phylogenetics using PacBio sequencing. Opposite to what has been expected that deterministic processes especially environmental filtering through wood-physicochemical properties controls the community assembly of wood-inhabiting fungal communities, here we showed that both deterministic and stochastic processes can highly contribute to the community assembly processes of wood-inhabiting fungi in this tropical forest. We demonstrated that the dynamics of stochastic and deterministic processes varied with wood decomposition stages. The initial stage was mainly governed by a deterministic process (homogenous selection), whereas the early and later decomposition stages were governed by the stochastic processes (ecological drift). Deterministic processes were highly contributed by wood physicochemical properties (especially macronutrients and hemicellulose) rather than soil physicochemical factors. We elucidated that fine-scale fungal-fungal interactions, especially the network topology, modularity, and keystone taxa of wood-inhabiting fungal communities, strongly differed in an initial and decomposing deadwood. This current study contributes to a better understanding of the ecological processes of wood-inhabiting fungi in tropical regions where the knowledge of wood-inhabiting fungi is highly limited.
Collapse
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
| | - Li Ji
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yu-Ting Wu
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
36
|
Feng G, Hao F, He W, Ran Q, Nie G, Huang L, Wang X, Yuan S, Xu W, Zhang X. Effect of Biogas Slurry on the Soil Properties and Microbial Composition in an Annual Ryegrass-Silage Maize Rotation System over a Five-Year Period. Microorganisms 2024; 12:716. [PMID: 38674660 PMCID: PMC11051864 DOI: 10.3390/microorganisms12040716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Soil health is seriously threatened by the overuse of chemical fertilizers in agricultural management. Biogas slurry is often seen as an organic fertilizer resource that is rich in nutrients, and its use has the goal of lowering the amount of chemical fertilizers used while preserving crop yields and soil health. However, the application of continuous biogas slurry has not yet been studied for its long-term impact on soil nutrients and microbial communities in a rotation system of annual ryegrass-silage maize (Zea mays). This study aimed to investigate the impacts on the chemical properties and microbial community of farmland soils to which chemical fertilizer (NPK) (225 kg ha-1), biogas slurry (150 t ha-1), and a combination (49.5 t ha-1 biogas slurry + 150 kg ha-1 chemical fertilizer) were applied for five years. The results indicated that compared to the control group, the long-term application of biogas slurry significantly increased the SOC, TN, AP, and AK values by 45.93%, 39.52%, 174.73%, and 161.54%, respectively; it neutralized acidic soil and increased the soil pH. TN, SOC, pH, and AP are all important environmental factors that influence the structural composition of the soil's bacterial and fungal communities. Chemical fertilizer application significantly increased the diversity of the bacterial community. Variation was observed in the composition of soil bacterial and fungal communities among the different treatments. The structure and diversity of soil microbes are affected by different methods of fertilization; the application of biogas slurry not only increases the contents of soil nutrients but also regulates the soil's bacterial and fungal community structures. Therefore, biogas slurry can serve as a sustainable management measure and offers an alternative to the application of chemical fertilizers for sustainable intensification.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| | - Feixiang Hao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Wei He
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (W.H.); (Q.R.)
| | - Qifan Ran
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (W.H.); (Q.R.)
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| | - Xia Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| | - Suhong Yuan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| | - Wenzhi Xu
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| |
Collapse
|
37
|
Herzog J, Franke L, Lai Y, Gomez Rossi P, Sachtleben J, Weuster-Botz D. 3D bioprinting of microorganisms: principles and applications. Bioprocess Biosyst Eng 2024; 47:443-461. [PMID: 38296889 PMCID: PMC11003907 DOI: 10.1007/s00449-023-02965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024]
Abstract
In recent years, the ability to create intricate, live tissues and organs has been made possible thanks to three-dimensional (3D) bioprinting. Although tissue engineering has received a lot of attention, there is growing interest in the use of 3D bioprinting for microorganisms. Microorganisms like bacteria, fungi, and algae, are essential to many industrial bioprocesses, such as bioremediation as well as the manufacture of chemicals, biomaterials, and pharmaceuticals. This review covers current developments in 3D bioprinting methods for microorganisms. We go over the bioink compositions designed to promote microbial viability and growth, taking into account factors like nutrient delivery, oxygen supply, and waste elimination. Additionally, we investigate the most important bioprinting techniques, including extrusion-based, inkjet, and laser-assisted approaches, as well as their suitability with various kinds of microorganisms. We also investigate the possible applications of 3D bioprinted microbes. These range from constructing synthetic microbial consortia for improved metabolic pathway combinations to designing spatially patterned microbial communities for enhanced bioremediation and bioprocessing. We also look at the potential for 3D bioprinting to advance microbial research, including the creation of defined microenvironments to observe microbial behavior. In conclusion, the 3D bioprinting of microorganisms marks a paradigm leap in microbial bioprocess engineering and has the potential to transform many application areas. The ability to design the spatial arrangement of various microorganisms in functional structures offers unprecedented possibilities and ultimately will drive innovation.
Collapse
Affiliation(s)
- Josha Herzog
- Department of Energy and Process Engineering, TUM School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Lea Franke
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Yingyao Lai
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Pablo Gomez Rossi
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Janina Sachtleben
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Dirk Weuster-Botz
- Department of Energy and Process Engineering, TUM School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany.
| |
Collapse
|
38
|
Sakai K, Hidayat F, Maeda K, Sakake A, Fujishima K, Ojima M, Jinya K, Tashiro Y. Different traits for cold tolerance of extremely thermophilic Calditerricola strains isolated from mesothermal municipal sewage sludge and its hyperthermal compost. J Biosci Bioeng 2024; 137:290-297. [PMID: 38310038 DOI: 10.1016/j.jbiosc.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 02/05/2024]
Abstract
Extreme thermophiles Calditerricola satsumensis DD2 and D3 were isolated from mesothermal municipal sludge, a material used for hyperthermal composting. To understand the ecologically anomalous findings, their behavior at various temperatures, membrane fatty acid composition, and draft genome sequences were compared with those of C. satsumensis YMO81T and Calditerricola yamamurae YMO722T, already isolated from hyperthermal compost. All four strains grew between 56 and 83 °C. However, strains DD2 and D3 were stable for ≥48 h at a wide range of temperatures (20-75 °C), while strains YMO81T and YMO722T were highly labile at lower temperatures. The former strains maintained their colony-forming ability for >180 days at 20 °C, while the latter strains lost it within 1 d. All four strains showed similar composition of membrane fatty acid, which were not affected by 20 °C treatment. Comparative draft genome analyses showed that 13 candidate genes were present only in strains DD2 and D3, and the specific expression of six gene homologs was confirmed. A DNA chaperone, site-specific recombinase XerD homolog, had tetra adenine sequence at its upper gene region, and was up-regulated by 20 °C treatment in DD2 and D3, suggesting a possible role in the cold tolerance of sludge-derived strains. In addition, the lack of another possible DNA chaperone, a homolog of the ATP-dependent DNA helicase, in the compost-derived strains may accelerate their sensitivity to cold shock. In conclusion, we speculate that the specific phenotypic and genotypic characteristics of sludge-derived strains are responsible for their unusual ecological distribution at ambient temperatures.
Collapse
Affiliation(s)
- Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Fandi Hidayat
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Indonesian Oil Palm Research Institute, Jl. Brigjen Katamso No. 51, Kampung Baru, Medan, North Sumatra 20158, Indonesia
| | - Kazushi Maeda
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Ai Sakake
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Keisuke Fujishima
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Maise Ojima
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kouta Jinya
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
39
|
Gavillet H, Hatfield L, Jones A, Maitra A, Horsley A, Rivett D, van der Gast C. Ecological patterns and processes of temporal turnover within lung infection microbiota. MICROBIOME 2024; 12:63. [PMID: 38523273 PMCID: PMC10962200 DOI: 10.1186/s40168-024-01780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Chronic infection and consequent airway inflammation are the leading causes of morbidity and early mortality for people living with cystic fibrosis (CF). However, lower airway infections across a range of chronic respiratory diseases, including in CF, do not follow classical 'one microbe, one disease' concepts of infection pathogenesis. Instead, they are comprised of diverse and temporally dynamic lung infection microbiota. Consequently, temporal dynamics need to be considered when attempting to associate lung microbiota with changes in disease status. Set within an island biogeography framework, we aimed to determine the ecological patterns and processes of temporal turnover within the lung microbiota of 30 paediatric and adult CF patients prospectively sampled over a 3-year period. Moreover, we aimed to ascertain the contributions of constituent chronic and intermittent colonizers on turnover within the wider microbiota. RESULTS The lung microbiota within individual patients was partitioned into constituent chronic and intermittent colonizing groups using the Leeds criteria and visualised with persistence-abundance relationships. This revealed bacteria chronically infecting a patient were both persistent and common through time, whereas intermittently infecting taxa were infrequent and rare; respectively representing the resident and transient portions of the wider microbiota. It also indicated that the extent of chronic colonization was far greater than could be appreciated with microbiological culture alone. Using species-time relationships to measure temporal turnover and Vellend's rationalized ecological processes demonstrated turnover in the resident chronic infecting groups was conserved and underpinned principally by the deterministic process of homogenizing dispersal. Conversely, intermittent colonizing groups, representing newly arrived immigrants and transient species, drove turnover in the wider microbiota and were predominately underpinned by the stochastic process of drift. For adult patients, homogenizing dispersal and drift were found to be significantly associated with lung function. Where a greater frequency of homogenizing dispersal was observed with worsening lung function and conversely drift increased with better lung function. CONCLUSIONS Our work provides a novel ecological framework for understanding the temporal dynamics of polymicrobial infection in CF that has translational potential to guide and improve therapeutic targeting of lung microbiota in CF and across a range of chronic airway diseases. Video Abstract.
Collapse
Affiliation(s)
- Helen Gavillet
- Department of Applied Sciences, Northumbria University, Newcastle, UK
| | - Lauren Hatfield
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Andrew Jones
- Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Anirban Maitra
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Alexander Horsley
- Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Damian Rivett
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK.
| | - Christopher van der Gast
- Department of Applied Sciences, Northumbria University, Newcastle, UK.
- Department of Respiratory Medicine, Northern Care Alliance NHS Foundation Trust, Salford, UK.
| |
Collapse
|
40
|
Bozorov TA, Toshmatov ZO, Kahar G, Muhammad SM, Liu X, Zhang D, Aytenov IS, Turakulov KS. Uncovering the antifungal activities of wild apple-associated bacteria against two canker-causing fungi, Cytospora mali and C. parasitica. Sci Rep 2024; 14:6307. [PMID: 38491079 PMCID: PMC10943224 DOI: 10.1038/s41598-024-56969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Cytospora canker has become a devastating disease of apple species worldwide, and in severe cases, it may cause dieback of entire trees. The aim of this study was to characterize the diversity of cultivable bacteria from the wild apple microbiota and to determine their antifungal ability against the canker-causing pathogenic fungi Cytospora mali and C. parasitica. Five bacterial strains belonging to the species Bacillus amyloliquefaciens, B. atrophaeus, B. methylotrophicus, B. mojavensis, and Pseudomonas synxantha showed strong antagonistic effects against pathogenic fungi. Therefore, since the abovementioned Bacillus species produce known antifungal compounds, we characterized the antifungal compounds produced by Ps. synxantha. Bacteria grown on nutritional liquid medium were dehydrated, and the active compound from the crude extract was isolated and analysed via a range of chromatographic processes. High-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance analyses revealed a bioactive antifungal compound, phenazine-1-carboxylic acid (PCA). The minimum inhibitory concentration (MIC) demonstrated that PCA inhibited mycelial growth, with a MIC of 10 mg mL-1. The results suggested that PCA could be used as a potential compound to control C. mali and C. malicola, and it is a potential alternative for postharvest control of canker disease.
Collapse
Affiliation(s)
- Tohir A Bozorov
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan.
| | - Zokir O Toshmatov
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Surayya M Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
| | - Ilkham S Aytenov
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Khurshid S Turakulov
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|
41
|
He L, Sun X, Li S, Zhou W, Yu J, Zhao G, Chen Z, Bai X, Zhang J. Depth effects on bacterial community altitudinal patterns and assembly processes in the warm-temperate montane forests of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169905. [PMID: 38190904 DOI: 10.1016/j.scitotenv.2024.169905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/25/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Soil bacterial communities are essential for ecosystem function, yet their response along altitudinal gradients in different soil strata remains unclear. Understanding bacterial community co-occurrence networks and assembly patterns in mountain ecosystems is crucial for comprehending microbial ecosystem functions. We utilized Illumina MiSeq sequencing to study bacterial diversity and assembly patterns of surface and subsurface soils across a range of elevations (700 to 2100 m) on Dongling Mountain. Our results showed significant altitudinal distribution patterns concerning bacterial diversity and structure in the surface soil. The bacterial diversity exhibited a consistent decrease, while specific taxa demonstrated unique patterns along the altitudinal gradient. However, no altitudinal dependence was observed for bacterial diversity and community structure in the subsurface soil. Additionally, a shift in bacterial ecological groups is evident with changing soil depth. Copiotrophic taxa thrive in surface soils characterized by higher carbon and nutrient content, while oligotrophic taxa dominate in subsurface soils with more limited resources. Bacterial community characteristics exhibited strong correlations with soil organic carbon in both soil layers, followed by pH in the surface soil and soil moisture in the subsurface soil. With increasing depth, there is an observable increase in taxa-taxa interaction complexity and network structure within bacterial communities. The surface soil exhibits greater sensitivity to environmental perturbations, leading to increased modularity and an abundance of positive relationships in its community networks compared to the subsurface soil. Furthermore, the bacterial community at different depths was influenced by combining deterministic and stochastic processes, with stochasticity (homogenizing dispersal and undominated) decreasing and determinism (heterogeneous selection) increasing with soil depth.
Collapse
Affiliation(s)
- Libing He
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Sun
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Suyan Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Wenzhi Zhou
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Jiantao Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Guanyu Zhao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Zhe Chen
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xueting Bai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Jinshuo Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
42
|
Niu X, Ren W, Xu C, Wang R, Zhang J, Wang H. Taxonomic and functional β-diversity patterns reveal stochastic assembly rules in microbial communities of seagrass beds. FRONTIERS IN PLANT SCIENCE 2024; 15:1367773. [PMID: 38481397 PMCID: PMC10932972 DOI: 10.3389/fpls.2024.1367773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/14/2024] [Indexed: 08/22/2024]
Abstract
Microorganisms are important members of seagrass bed ecosystems and play a crucial role in maintaining the health of seagrasses and the ecological functions of the ecosystem. In this study, we systematically quantified the assembly processes of microbial communities in fragmented seagrass beds and examined their correlation with environmental factors. Concurrently, we explored the relative contributions of species replacement and richness differences to the taxonomic and functional β-diversity of microbial communities, investigated the potential interrelation between these components, and assessed the explanatory power of environmental factors. The results suggest that stochastic processes dominate community assembly. Taxonomic β-diversity differences are governed by species replacement, while for functional β-diversity, the contribution of richness differences slightly outweighs that of replacement processes. A weak but significant correlation (p < 0.05) exists between the two components of β-diversity in taxonomy and functionality, with almost no observed significant correlation with environmental factors. This implies significant differences in taxonomy, but functional convergence and redundancy within microbial communities. Environmental factors are insufficient to explain the β-diversity differences. In conclusion, the assembly of microbial communities in fragmented seagrass beds is governed by stochastic processes. The patterns of taxonomic and functional β-diversity provide new insights and evidence for a better understanding of these stochastic assembly rules. This has important implications for the conservation and management of fragmented seagrass beds.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wenjing Ren
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
| | - Congjun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ruilong Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jingwei Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Huan Wang
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
43
|
Xu T, Novotny A, Zamora-Terol S, Hambäck PA, Winder M. Dynamics of Gut Bacteria Across Different Zooplankton Genera in the Baltic Sea. MICROBIAL ECOLOGY 2024; 87:48. [PMID: 38409540 PMCID: PMC10896951 DOI: 10.1007/s00248-024-02362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
In aquatic ecosystems, zooplankton-associated bacteria potentially have a great impact on the structure of ecosystems and trophic networks by providing various metabolic pathways and altering the ecological niche of host species. To understand the composition and drivers of zooplankton gut microbiota, we investigated the associated microbial communities of four zooplankton genera from different seasons in the Baltic Sea using the 16S rRNA gene. Among the 143 ASVs (amplified sequence variants) observed belonging to heterotrophic bacteria, 28 ASVs were shared across all zooplankton hosts over the season, and these shared core ASVs represented more than 25% and up to 60% of relative abundance in zooplankton hosts but were present at low relative abundance in the filtered water. Zooplankton host identity had stronger effects on bacterial composition than seasonal variation, with the composition of gut bacterial communities showing host-specific clustering patterns. Although bacterial compositions and dominating core bacteria were different between zooplankton hosts, higher gut bacteria diversity and more bacteria contributing to the temporal variation were found in Temora and Pseudocalanus, compared to Acartia and Synchaeta. Diet diatom and filamentous cyanobacteria negatively correlated with gut bacteria diversity, but the difference in diet composition did not explain the dissimilarity of gut bacteria composition, suggesting a general effect of diet on the inner conditions in the zooplankton gut. Synchaeta maintained high stability of gut bacterial communities with unexpectedly low bacteria-bacteria interactions as compared to the copepods, indicating host-specific regulation traits. Our results suggest that the patterns of gut bacteria dynamics are host-specific and the variability of gut bacteria is not only related to host taxonomy but also related to host behavior and life history traits.
Collapse
Affiliation(s)
- Tianshuo Xu
- Department of Ecology Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
| | - Andreas Novotny
- Department of Ecology Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, Canada
| | - Sara Zamora-Terol
- Department of Ecology Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Institute of Marine Research, Bergen, Norway
| | - Peter A Hambäck
- Department of Ecology Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Monika Winder
- Department of Ecology Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
44
|
Camacho-Mateu J, Lampo A, Sireci M, Muñoz MA, Cuesta JA. Sparse species interactions reproduce abundance correlation patterns in microbial communities. Proc Natl Acad Sci U S A 2024; 121:e2309575121. [PMID: 38266051 PMCID: PMC10853627 DOI: 10.1073/pnas.2309575121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
During the last decades, macroecology has identified broad-scale patterns of abundances and diversity of microbial communities and put forward some potential explanations for them. However, these advances are not paralleled by a full understanding of the dynamical processes behind them. In particular, abundance fluctuations of different species are found to be correlated, both across time and across communities in metagenomic samples. Reproducing such correlations through appropriate population models remains an open challenge. The present paper tackles this problem and points to sparse species interactions as a necessary mechanism to account for them. Specifically, we discuss several possibilities to include interactions in population models and recognize Lotka-Volterra constants as a successful ansatz. For this, we design a Bayesian inference algorithm to extract sets of interaction constants able to reproduce empirical probability distributions of pairwise correlations for diverse biomes. Importantly, the inferred models still reproduce well-known single-species macroecological patterns concerning abundance fluctuations across both species and communities. Endorsed by the agreement with the empirically observed phenomenology, our analyses provide insights into the properties of the networks of microbial interactions, revealing that sparsity is a crucial feature.
Collapse
Affiliation(s)
- José Camacho-Mateu
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés28911, Spain
| | - Aniello Lampo
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés28911, Spain
| | - Matteo Sireci
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada18071, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| | - Miguel A. Muñoz
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada18071, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| | - José A. Cuesta
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés28911, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Zaragoza50001, Spain
| |
Collapse
|
45
|
Lu Z, Qin G, Gan S, Liu H, Macreadie PI, Cheah W, Wang F. Blue carbon sink capacity of mangroves determined by leaves and their associated microbiome. GLOBAL CHANGE BIOLOGY 2024; 30:e17007. [PMID: 37916453 DOI: 10.1111/gcb.17007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Mangroves play a globally significant role in carbon capture and storage, known as blue carbon ecosystems. Yet, there are fundamental biogeochemical processes of mangrove blue carbon formation that are inadequately understood, such as the mechanisms by which mangrove afforestation regulates the microbial-driven transfer of carbon from leaf to below-ground blue carbon pool. In this study, we addressed this knowledge gap by investigating: (1) the mangrove leaf characteristics using state-of-the-art FT-ICR-MS; (2) the microbial biomass and their transformation patterns of assimilated plant-carbon; and (3) the degradation potentials of plant-derived carbon in soils of an introduced (Sonneratia apetala) and a native mangrove (Kandelia obovata). We found that biogeochemical cycling took entirely different pathways for S. apetala and K. obovata. Blue carbon accumulation and the proportion of plant-carbon for native mangroves were high, with microbes (dominated by K-strategists) allocating the assimilated-carbon to starch and sucrose metabolism. Conversely, microbes with S. apetala adopted an r-strategy and increased protein- and nucleotide-biosynthetic potentials. These divergent biogeochemical pathways were related to leaf characteristics, with S. apetala leaves characterized by lower molecular-weight, C:N ratio, and lignin content than K. obovata. Moreover, anaerobic-degradation potentials for lignin were high in old-aged soils, but the overall degradation potentials of plant carbon were age-independent, explaining that S. apetala age had no significant influences on the contribution of plant-carbon to blue carbon. We propose that for introduced mangroves, newly fallen leaves release nutrient-rich organic matter that favors growth of r-strategists, which rapidly consume carbon to fuel growth, increasing the proportion of microbial-carbon to blue carbon. In contrast, lignin-rich native mangrove leaves shape K-strategist-dominated microbial communities, which grow slowly and store assimilated-carbon in cells, ultimately promoting the contribution of plant-carbon to the remarkable accumulation of blue carbon. Our study provides new insights into the molecular mechanisms of microbial community responses during reforestation in mangrove ecosystems.
Collapse
Affiliation(s)
- Zhe Lu
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P.R. China
- South China National Botanical Garden, Guangzhou, P.R. China
| | - Guoming Qin
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Shuchai Gan
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P.R. China
- South China National Botanical Garden, Guangzhou, P.R. China
| | - Hongbin Liu
- Department of Ocean Sciences and Division of Life Sciences, School of Science, Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Peter I Macreadie
- School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, Victoria, Australia
| | - Wee Cheah
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Faming Wang
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P.R. China
- South China National Botanical Garden, Guangzhou, P.R. China
| |
Collapse
|
46
|
Deng W, Bai NE, Qi FL, Yang XY, She R, Xiao W. Temporal dynamics of the microbial heterogeneity-diversity relationship in microcosmic systems. Oecologia 2024; 204:35-46. [PMID: 38070053 DOI: 10.1007/s00442-023-05484-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/14/2023] [Indexed: 02/02/2024]
Abstract
Spatial heterogeneity significantly enhances biodiversity, representing one of the ecology's most enduring paradigms. However, many studies have found decreasing, humped, and neutral correlations between spatial heterogeneity and biodiversity (heterogeneity-diversity relationships, HDR). These findings have pushed this widely accepted theory back into controversy. Microbial HDR research has lagged compared to that of plants and animals. Nevertheless, microbes have features that add a temporal-scale perspective to HDR research that is critical to understanding patterns of HDR. In this study, 157 microcosms with different types spatial heterogeneity were set up to map the HDR of microorganisms and their temporal dynamics using high-throughput sequencing techniques. The results show that the following: 1. Spatial heterogeneity can significantly alter microbial diversity in microcosmic systems. Changes in microbial diversity, in turn, lead to changes in environmental conditions. These changes caused microorganisms to exhibit increasing, decreasing, humped, U-shaped, and neutral HDR patterns. 2. The emergence of HDR patterns is characterized by temporal dynamics. Additionally, the HDR patterns generated by spatial structural and compositional heterogeneity exhibit inconsistent emergence times. These results suggest that the temporal dynamics of HDR may be one of the reasons for the coexistence of multiple patterns in previous studies. The feedback regulation between spatial heterogeneity-biodiversity-environmental conditions is an essential reason for the temporally dynamics of HDR patterns. All future ecological studies should pay attention to the temporal dynamic patterns of ecological factors.
Collapse
Affiliation(s)
- Wei Deng
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, China
| | - Nong-En Bai
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, China
| | - Fu-Liang Qi
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, China
| | - Xiao-Yan Yang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, China
- International Centre of Biodiversity and Primates Conservation, Dali, Yunnan, China
| | - Rong She
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China.
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, China.
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, China.
- International Centre of Biodiversity and Primates Conservation, Dali, Yunnan, China.
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali, 761003, China.
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China.
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, 671003, Yunnan, China.
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali, 671003, Yunnan, China.
- International Centre of Biodiversity and Primates Conservation, Dali, Yunnan, China.
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali, 761003, China.
| |
Collapse
|
47
|
Nilsen T, Snipen LG, Angell IL, Keeley NB, Majaneva S, Pettersen R, Rudi K. Swarm and UNOISE outperform DADA2 and Deblur for denoising high-diversity marine seafloor samples. ISME COMMUNICATIONS 2024; 4:ycae071. [PMID: 38873028 PMCID: PMC11170925 DOI: 10.1093/ismeco/ycae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/09/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
The performance of sequence variant resolution analytic tools for metabarcoding has not yet been adequately benchmarked for high-diversity environmental samples. We therefore evaluated the sequence variant tools DADA2, Deblur, Swarm, and UNOISE, using high-diversity seafloor samples, resulting in comparisons of 1800 sequence variant tables. The evaluation was based on 30 sediment grab samples, for which 3 replica samples were collected. Each replica sample was extracted using 5 common DNA extraction kits, resulting in 450 DNA extracts which were 16S rRNA gene sequenced (V3-V4), using Illumina. Assessments included variation across replica samples, extraction kits, and denoising methods, in addition to applying prior knowledge about alpha diversity correlations toward the cosmopolitan marine archaeon Nitrosopumilus with high diversity and the sulfide oxidizing Sulfurovum with low diversity. DADA2 displayed the highest variance between replicates (Manhattan distance 1.14), while Swarm showed the lowest variance (Manhattan distance 0.93). For the analysis based on prior biological knowledge, UNOISE displayed the highest alpha diversity (Simpson's D) correlation toward Nitrosopumilus (Spearman rho = 0.85), while DADA2 showed the lowest (Spearman rho = 0.10). Deblur completely eliminated Nitrosopumilus from the dataset. For Sulfurovum, on the other hand, all the methods showed comparable results. In conclusion, our evaluations show that Swarm and UNOISE performed better than DADA2 and Deblur for high-diversity seafloor samples.
Collapse
Affiliation(s)
- Tonje Nilsen
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences (NMBU), Chr. M. Falsensvei 18, Biotechnology Building, 1432 Ås, Norway
| | - Lars-Gustav Snipen
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences (NMBU), Chr. M. Falsensvei 18, Biotechnology Building, 1432 Ås, Norway
| | - Inga Leena Angell
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences (NMBU), Chr. M. Falsensvei 18, Biotechnology Building, 1432 Ås, Norway
| | - Nigel Brian Keeley
- Institute of Marine Research, Dept. Tromso, P.O. Box 6606, Stakkevollan, 9296 Tromsø, Norway
| | - Sanna Majaneva
- Akvaplan-niva, Framsenteret, P.O. Box 6606, Stakkevollan, 9296 Tromsø, Norway
| | - Ragnhild Pettersen
- Akvaplan-niva, Framsenteret, P.O. Box 6606, Stakkevollan, 9296 Tromsø, Norway
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences (NMBU), Chr. M. Falsensvei 18, Biotechnology Building, 1432 Ås, Norway
| |
Collapse
|
48
|
Mahmoudi N, Wilhelm RC. Can we manage microbial systems to enhance carbon storage? Environ Microbiol 2023; 25:3011-3018. [PMID: 37431673 DOI: 10.1111/1462-2920.16462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Climate change is an urgent environmental issue with wide-ranging impacts on ecosystems and society. Microbes are instrumental in maintaining the balance between carbon (C) accumulation and loss in the biosphere, actively regulating greenhouse gas fluxes from vast reservoirs of organic C stored in soils, sediments and oceans. Heterotrophic microbes exhibit varying capacities to access, degrade and metabolise organic C-leading to variations in remineralisation and turnover rates. The present challenge lies in effectively translating this accumulated knowledge into strategies that effectively steer the fate of organic C towards prolonged sequestration. In this article, we discuss three ecological scenarios that offer potential avenues for shaping C turnover rates in the environment. Specifically, we explore the promotion of slow-cycling microbial byproducts, the facilitation of higher carbon use efficiency, and the influence of biotic interactions. The ability to harness and control these processes relies on the integration of ecological principles and management practices, combined with advances in economically viable technologies to effectively manage microbial systems in the environment.
Collapse
Affiliation(s)
- Nagissa Mahmoudi
- Department of Earth and Planetary Sciences, McGill University, Montréal, Quebec, Canada
| | - Roland C Wilhelm
- Department of Agronomy, Lilly Hall of Life Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
49
|
Zhao T, Liu Y, Wu Y, Zhao M, Zhao Y. Controllable and biocompatible 3D bioprinting technology for microorganisms: Fundamental, environmental applications and challenges. Biotechnol Adv 2023; 69:108243. [PMID: 37647974 DOI: 10.1016/j.biotechadv.2023.108243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/23/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
3D bioprinting is a new 3D manufacturing technology, that can be used to accurately distribute and load microorganisms to form microbial active materials with multiple complex functions. Based on the 3D printing of human cells in tissue engineering, 3D bioprinting technology has been developed. Although 3D bioprinting technology is still immature, it shows great potential in the environmental field. Due to the precise programming control and multi-printing pathway, 3D bioprinting technology provides a high-throughput method based on micron-level patterning for a wide range of environmental microbiological engineering applications, which makes it an on-demand, multi-functional manufacturing technology. To date, 3D bioprinting technology has been employed in microbial fuel cells, biofilm material preparation, microbial catalysts and 4D bioprinting with time dimension functions. Nevertheless, current 3D bioprinting technology faces technical challenges in improving the mechanical properties of materials, developing specific bioinks to adapt to different strains, and exploring 4D bioprinting for intelligent applications. Hence, this review systematically analyzes the basic technical principles of 3D bioprinting, bioinks materials and their applications in the environmental field, and proposes the challenges and future prospects of 3D bioprinting in the environmental field. Combined with the current development of microbial enhancement technology in the environmental field, 3D bioprinting will be developed into an enabling platform for multifunctional microorganisms and facilitate greater control of in situ directional reactions.
Collapse
Affiliation(s)
- Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
50
|
Wood JL, Malik AA, Greening C, Green PT, McGeoch M, Franks AE. Rethinking CSR theory to incorporate microbial metabolic diversity and foraging traits. THE ISME JOURNAL 2023; 17:1793-1797. [PMID: 37596410 PMCID: PMC10579239 DOI: 10.1038/s41396-023-01486-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Affiliation(s)
- J L Wood
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia.
- Research Centre for Future Landscapes, La Trobe University, Melbourne, VIC, Australia.
| | - A A Malik
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - C Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, 3800, Australia
| | - P T Green
- Research Centre for Future Landscapes, La Trobe University, Melbourne, VIC, Australia
- Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia
| | - M McGeoch
- Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, 3800, Australia
- Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia
| | - A E Franks
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Future Landscapes, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|