1
|
Dróżdż A, Kubera D, Olender A, Dabrowski W, Szukala M, Wosko S, Chwiej J, Rugiel M, Kawoń K, Gagoś M. ATR-FTIR spectroscopic markers indicating drug resistance in selected Candida strains. Sci Rep 2025; 15:18130. [PMID: 40413239 PMCID: PMC12103571 DOI: 10.1038/s41598-025-01428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 05/06/2025] [Indexed: 05/27/2025] Open
Abstract
The rising incidence of fungal infections and the increasing prevalence of antifungal resistance highlight the need for rapid and reliable diagnostic methods. This study investigates the potential of ATR-FTIR spectroscopy to identify spectroscopic markers of drug resistance in selected Candida strains. In this pilot study, ATR-FTIR spectroscopy was employed to analyse the biochemical composition of Candida albicans, Candida glabrata and Candida dubliniensis isolates. The minimum inhibitory concentrations (MIC) of antifungals were determined using antifungals concentration gradient strips, and the spectral data were processed to identify differences between resistant and sensitive isolates. Based on the results for Candida albicans, Candida glabrata and Candida dubliniensis, specific ATR-FITR spectroscopic markers of drug resistance were identified, which highlighted the necessity for these markers to be antifungal-specific. Despite the limitations of the study, the findings underscore the potential of ATR-FTIR spectroscopy in identifying spectroscopic markers of antifungal resistance. These preliminary results provide a foundation for further research, which could lead to the development of rapid diagnostic tools for detecting drug-resistant Candida strains, thereby improving the management and treatment of fungal infections.
Collapse
Affiliation(s)
- Agnieszka Dróżdż
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, 30-059, Krakow, Poland.
| | - Dominika Kubera
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Alina Olender
- Department of Medical Microbiology, Medical University of Lublin, Chodźki 1 Street, 20-093, Lublin, Poland
| | - Wojciech Dabrowski
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Jaczewskiego street 8, 20-090, Lublin, Poland
| | - Magdalena Szukala
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Jaczewskiego street 8, 20-090, Lublin, Poland
| | - Sylwia Wosko
- Laboratory of Preclinical Testing, Department of Applied and Social Pharmacy, Faculty of Pharmacy, Medical University of Lublin, 20-293, Lublin, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Marzena Rugiel
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Kamil Kawoń
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
2
|
Xiong H, Zhao R, Han S, Liu Z, Zhang X, Jia Z, Cui J, Zhang Y, Wang X. Research progress on the drug resistance mechanisms of Candida tropicalis and future solutions. Front Microbiol 2025; 16:1594226. [PMID: 40421464 PMCID: PMC12104177 DOI: 10.3389/fmicb.2025.1594226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 04/29/2025] [Indexed: 05/28/2025] Open
Abstract
Candida tropicalis is an important member of the non-Candida albicans species. It is closely associated with candidemia, especially common in neutropenic and critically ill patients. Drug-resistant C. tropicalis isolates have been found not only in clinical patients but also in animals, fruits, and the environment. In recent years, the detection rate of azole-resistant C. tropicalis isolates has increased. Drug-resistant C. tropicalis is related to persistent, recurrent, and breakthrough infections. Therefore, understanding its drug resistance is crucial for clinical treatment. The review explores the main mechanisms of C. tropicalis resistance to antifungal drugs and discusses the genetic basis involved in the antifungal resistance of C. tropicalis. In addition, current research on natural extracts, nanomaterials, etc. used for antifungal purposes has also been reviewed. The aim of this review is that in-depth research on the drug resistance mechanisms of C. tropicalis resistant strains can help guide clinical medication. Meanwhile, it can also provide new ideas for opening up new pathways, searching for new targets, and screening out safe and effective "antifungal candidates," with the expectation of improving the current clinical cure rates.
Collapse
Affiliation(s)
- Huisheng Xiong
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Rigetu Zhao
- Chifeng Agricultural and Animal Husbandry Science Research Institute, Chifeng, Inner Mongolia, China
| | - Shizhe Han
- Tongliao Naiman Banner Animal Disease Control and Prevention Center, Tongliao, Inner Mongolia, China
| | - Zhilin Liu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Xin Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Zelin Jia
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Jiayu Cui
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Yuhang Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Xueli Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| |
Collapse
|
3
|
Gupta AK, Susmita, Nguyen HC, Liddy A, Economopoulos V, Wang T. Terbinafine Resistance in Trichophyton rubrum and Trichophyton indotineae: A Literature Review. Antibiotics (Basel) 2025; 14:472. [PMID: 40426539 PMCID: PMC12108360 DOI: 10.3390/antibiotics14050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Terbinafine has been the gold standard for the management of superficial fungal infections. The etiological agent generally is Trichophyton rubrum (T. rubrum); however, there has been increased reporting of a new terbinafine-resistant strain of the T. mentagrophytes complex (T. mentagrophytes ITS genotype VIII otherwise known as T. indotineae). Here, we review the epidemiology, clinical features, diagnosis, and treatment of T. rubrum and T. indotineae infections. METHODS We conducted a systematic literature search using PubMed, Embase (Ovid), and Web of Science, resulting in 83 qualified studies with data summarized for clinical features, antifungal susceptibility, and terbinafine resistance mechanisms and mutations. RESULTS Dermatophytosis is most commonly caused by T. rubrum; however, in certain parts of the world, especially in the Indian subcontinent, T. indotineae infections have been reported more frequently. The majority of T. rubrum isolates remain susceptible to terbinafine (over 60% of isolates show MIC50 and MIC90 < 0.5 µg/mL). In contrast, for T. indotineae, 30% of isolates exhibit MIC50 ≥ 0.5 µg/mL and 80% exhibit MIC90 ≥ 0.5 µg/mL. Frequently detected squalene epoxidase (SQLE) mutations in T. rubrum are Phe397Leu/Ile (41.6%) and Leu393Phe (20.8%); in T. indotineae, these include Phe397Leu (33.0%) and Ala448Thr (24.5%). Other potential terbinafine resistance mechanisms in T. rubrum and T. indotineae are discussed. CONCLUSIONS T. rubrum generally remain susceptible in vitro to terbinafine in contrast to T. indotineae. The essential components of an effective antifungal stewardship emphasize accurate clinical and laboratory diagnosis, susceptibility testing, and appropriate antifungal therapy selection with a multidisciplinary approach.
Collapse
Affiliation(s)
- Aditya K. Gupta
- Division of Dermatology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
- Mediprobe Research Inc., London, ON N5X 2P1, Canada; (S.); (H.C.N.); (A.L.); (V.E.); (T.W.)
| | - Susmita
- Mediprobe Research Inc., London, ON N5X 2P1, Canada; (S.); (H.C.N.); (A.L.); (V.E.); (T.W.)
| | - Hien C. Nguyen
- Mediprobe Research Inc., London, ON N5X 2P1, Canada; (S.); (H.C.N.); (A.L.); (V.E.); (T.W.)
| | - Amanda Liddy
- Mediprobe Research Inc., London, ON N5X 2P1, Canada; (S.); (H.C.N.); (A.L.); (V.E.); (T.W.)
| | - Vasiliki Economopoulos
- Mediprobe Research Inc., London, ON N5X 2P1, Canada; (S.); (H.C.N.); (A.L.); (V.E.); (T.W.)
| | - Tong Wang
- Mediprobe Research Inc., London, ON N5X 2P1, Canada; (S.); (H.C.N.); (A.L.); (V.E.); (T.W.)
| |
Collapse
|
4
|
Cao H, Huang Z, Hu X, Zhang X, Makunga NP, Zhao H, Du L, Guo L, Ren Y. Structural insight into the unexploited allosteric binding site of fructose 1, 6-bisphosphate aldolase from C. albicans with α-lipoic acid. Int J Biol Macromol 2025; 309:143096. [PMID: 40222520 DOI: 10.1016/j.ijbiomac.2025.143096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
The rising incidence of drug-resistant fungal infections underscores the urgent need for innovative therapeutic strategies. However, developing selective treatments remains a formidable challenge due to the similarities between humans and fungal cells. Class II fructose 1,6-bisphosphate aldolase (FBA) represents an attractive pharmacological target for the development of antifungal agents due to its crucial role in microbial survival and its absence in human. In this work, we identified α-lipoic acid (ALA), a naturally occurring compound, as a novel inhibitor of C. albicans FBA (CaFBA). The co-crystallography, enzyme inhibition assays, and site-directed mutagenesis revealed that ALA acts as a non-covalent inhibitor, binding to an unexploited allosteric site on CaFBA, distinct from the previously reported substrate-binding pocket or C292 covalent binding site. Notably, ALA selectively inhibits CaFBA, likely due to the non-conservation of the allosteric binding site, particularly S268, across species. The synergistic inhibition of C. albicans by ALA and amphotericin B highlights its therapeutic potential as part of a combined antifungal strategy. In summary, this study provides a structural basis for the design and optimization of novel CaFBA inhibitors, enhancing our understanding of FBA's role in fungal growth and establishing a foundation for developing effective antifungal therapeutics against C. albicans.
Collapse
Affiliation(s)
- Hongxuan Cao
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zeyue Huang
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiuqi Hu
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiao Zhang
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Nokwanda P Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Hui Zhao
- Anhui Academy of Science and Technology, Wanshui Road, Hefei 230031, China
| | - Liji Du
- Anhui Academy of Science and Technology, Wanshui Road, Hefei 230031, China
| | - Li Guo
- Hubei Ecological Environment Monitoring Center Station, Wuhan 430072, China.
| | - Yanliang Ren
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
5
|
Chen Y, Liu F, Jin Q. Polymer-Mediated Delivery of Amphotericin B for Fungal Infections. Macromol Rapid Commun 2025:e2500013. [PMID: 40107872 DOI: 10.1002/marc.202500013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Invasive fungal infections have been an increasingly global issue with high mortality. Amphotericin B (AmB), as the "gold standard" antifungal drug, has broad-spectrum antifungal activity and low clinical resistance. Therefore, AmB is the most commonly used polyene antibiotic for the treatment of invasive fungal infections. However, the serious side effects as well as the low bioavailability of AmB strongly restrict its clinical applications. Polymer, with its diversified molecular design, is widely used in drug delivery in the form of polymeric prodrugs, nanoparticles, hydrogels, etc. Therefore, polymers hold great promise for the delivery of AmB in treating fungal infections. This review summarizes recent advances in polymer-based delivery systems of AmB for the treatment of fungal infections, including polymer-AmB conjugates, nanotechnology-based polymeric delivery systems, hydrogels, and polymeric microneedles. Taking advantage of polymer-based delivery strategies, special attention is paid to reducing the side effects and improving the bioavailability of AmB for safe and effective antifungal therapy. Finally, the limitations and possible future directions of polymer-based AmB delivery systems are discussed.
Collapse
Affiliation(s)
- Yongnan Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Fang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
6
|
Leocádio VT, Miranda IL, Magalhães MHC, dos Santos Júnior VS, Goncalves JE, Oliveira RB, Maltarollo VG, Bastos RW, Goldman G, Johann S, Teixeira de Aguiar Peres N, Santos DDA. Thiazole Derivatives as Promising Candidates for Cryptococcosis Therapy. ACS Infect Dis 2025; 11:639-652. [PMID: 39918430 PMCID: PMC11915371 DOI: 10.1021/acsinfecdis.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 03/15/2025]
Abstract
Cryptococcosis is a severe fungal infection primarily caused by two encapsulated yeasts: Cryptococcus neoformans and C. gattii. The most significant complication is cryptococcal meningitis, where the fungus crosses the blood-brain barrier, leading to a severe brain infection. Current treatments, which include amphotericin B and flucytosine or fluconazole, are often toxic and not very effective. Therefore, there is a pressing need for new antifungal agents. This study screened 30 thiazole derivatives for their antifungal activity against Cryptococcus and their toxicity to brain cells. Four compounds (RN86, RN88, RJ37, and RVJ42) showed particularly strong effects. These compounds reduced ergosterol levels in the fungal membrane and inhibited its ability to cross the blood-brain barrier. Notably, RN86 and RVJ42 improved survival rates in a mouse model of cryptococcosis by lowering the fungal load in the lungs and brain. These findings suggest that these derivatives could be promising treatments for pulmonary and neurocryptococcosis.
Collapse
Affiliation(s)
| | - Isabela L. Miranda
- Departamento
de Microbiologia, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Martha H. C. Magalhães
- Departamento
de Microbiologia, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | - José Eduardo Goncalves
- Departamento
de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Renata Barbosa Oliveira
- Departamento
de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vinicius Gonçalves Maltarollo
- Departamento
de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Rafael Wesley Bastos
- Centro de
Biociências, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
- National
Institute of Science and Technology in Human Pathogenic Fungi, São Paulo14040-900,Brazil
| | - Gustavo Goldman
- Faculdade
de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903,Brazil
| | - Susana Johann
- Departamento
de Microbiologia, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | - Daniel de Assis Santos
- Departamento
de Microbiologia, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
- National
Institute of Science and Technology in Human Pathogenic Fungi, São Paulo14040-900,Brazil
| |
Collapse
|
7
|
Zhou X, Hilk A, Solis NV, Scott N, Beach A, Soisangwan N, Billings CL, Burrack LS, Filler SG, Selmecki A. Single-cell detection of copy number changes reveals dynamic mechanisms of adaptation to antifungals in Candida albicans. Nat Microbiol 2024; 9:2923-2938. [PMID: 39227665 PMCID: PMC11524788 DOI: 10.1038/s41564-024-01795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/24/2024] [Indexed: 09/05/2024]
Abstract
Genomic copy number changes are associated with antifungal drug resistance and virulence across diverse fungal pathogens, but the rate and dynamics of these genomic changes in the presence of antifungal drugs are unknown. Here we optimized a dual-fluorescent reporter system in the diploid pathogen Candida albicans to quantify haplotype-specific copy number variation (CNV) and loss of heterozygosity (LOH) at the single-cell level with flow cytometry. We followed the frequency and dynamics of CNV and LOH at two distinct genomic locations in the presence and absence of antifungal drugs in vitro and in a murine model of candidiasis. Copy number changes were rapid and dynamic during adaptation to fluconazole and frequently involved competing subpopulations with distinct genotypes. This study provides quantitative evidence for the rapid speed at which diverse genotypes arise and undergo dynamic population-level fluctuations during adaptation to antifungal drugs in vitro and in vivo.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Audrey Hilk
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Norma V Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Nancy Scott
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Annette Beach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Natthapon Soisangwan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Clara L Billings
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Laura S Burrack
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Scott G Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Sun C, Zhu L, Yang L, Tian Z, Jiao Z, Huang M, Peng J, Guo G. Antimicrobial peptide AMP-17 induces protection against systemic candidiasis and interacts synergistically with fluconazole against Candida albicans biofilm. Front Microbiol 2024; 15:1480808. [PMID: 39552641 PMCID: PMC11564183 DOI: 10.3389/fmicb.2024.1480808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Candida albicans, a common commensal and opportunistic fungal pathogen in humans, can occasionally progress to disseminated candidiasis which is a serious condition with a high morbidity and fatality rate. The emergence of drug-resistant fungal strains compels us to look for an efficient treatment solution. Our earlier studies have demonstrated that the unique antimicrobial peptide AMP-17 from Musca domestica has a strong antifungal impact on C. albicans in vitro. Here, we verified the therapeutic effects of AMP-17 on systemic candidiasis in vivo and the peptide interacts with fluconazole, a common antifungal medication, to treat systemic candidiasis. In the disseminated candidiasis model of Galleria mellonella and mice challenged with C. albicans, AMP-17 increased the survival rates of infected larvae and mice to 66.7 and 75%, respectively. Furthermore, the peptide lowered the load of C. albicans in the infected larvae and the kidneys of the mice by nearly 90%. Additional histological examination and measurements of plasma cytokines showed that the injection of AMP-17 markedly reduced the inflammatory response and balanced cytokine expression. Furthermore, checkerboard micro dilution experiments demonstrated that AMP-17 and fluconazole worked in synergy to inhibit C. albicans in the biofilm mode. According to morphological studies, AMP-17 and fluconazole together decreased the production of hyphae throughout the C. albicans biofilm formation process, loosening the mature biofilms' structure and lowering the amount of carbohydrates in the extracellular matrix (ECM) of the biofilms. Taken together, these results showed that AMP-17 would be a viable treatment for systemic candidiasis and might be a different approach to combating Candida biofilm, either by itself or in conjunction with fluconazole.
Collapse
Affiliation(s)
- Chaoqin Sun
- School of Basic Medical Sciences, Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Center of Laboratory Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lijuan Zhu
- School of Basic Medical Sciences, Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guizhou Medical University, Guiyang, China
- Department of Laboratory Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Longbing Yang
- School of Basic Medical Sciences, Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guizhou Medical University, Guiyang, China
| | - Zhuqing Tian
- School of Basic Medical Sciences, Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guizhou Medical University, Guiyang, China
| | - Zhenlong Jiao
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Mingjiao Huang
- School of Basic Medical Sciences, Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guizhou Medical University, Guiyang, China
| | - Jian Peng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Guo Guo
- School of Basic Medical Sciences, Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| |
Collapse
|
9
|
Yang G, Shi W, He W, Wu J, Huang S, Mo L, Zhang J, Wang H, Zhou X. The mitochondrial protein Bcs1A regulates antifungal drug tolerance by affecting efflux pump expression in the filamentous pathogenic fungus Aspergillus fumigatus. Microbiol Spectr 2024; 12:e0117224. [PMID: 39162512 PMCID: PMC11448404 DOI: 10.1128/spectrum.01172-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 08/21/2024] Open
Abstract
Aspergillus fumigatus is the predominant pathogen responsible for aspergillosis infections, with emerging drug-resistant strains complicating treatment strategies. The role of mitochondrial functionality in fungal resistance to antifungal agents is well-documented yet not fully understood. In this study, the mitochondrial protein Bcs1A, a homolog of yeast Bcs1, was found to regulate colony growth, ion homeostasis, and the response to antifungal drugs in A. fumigatus. Microscopic observations revealed substantial colocalization of Bcs1A-GFP fusion protein fluorescence with mitochondria. Bcs1A deletion compromised colony growth and the utilization of non-fermentable carbon sources, alongside causing abnormal mitochondrial membrane potential and reduced reactive oxygen species production. These findings underscore Bcs1A's vital role in maintaining mitochondrial integrity. Phenotypic analysis and determinations of minimum inhibitory concentrations indicated that the Δbcs1A mutant was more resistant to various antifungal agents, such as azoles, terbinafine, and simvastatin, compared to wild-type strain. RNA sequencing and RT-qPCR analysis highlighted an upregulation of multiple efflux pumps in the Δbcs1A mutant. Furthermore, loss of the principal drug efflux pump, mdr1, decreased azole tolerance in the Δbcs1A mutant, suggesting that Bcs1A's modulated of azoles response via efflux pump expression. Collectively, these results establish Bcs1A as essential for growth and antifungal drug responsiveness in A. fumigatus mediated through mitochondrial regulation.IMPORTANCEDrug resistance presents a formidable obstacle in the clinical management of aspergillosis. Mitochondria are integral to various biochemical pathways, including those involved in fungi drug response, making mitochondrial proteins promising therapeutic targets for drug therapy. This study confirms that Bcs1A, a mitochondrial respiratory chain protein, is indispensable for mitochondrial functionality and multidrug tolerance in Aspergillus fumigatus. Mutation of Bcs1A not only leads to a series of drug efflux pumps upregulated but also shows that loss of the primary efflux pump, mdr1, partial reduction in drug tolerance in the Bcs1A mutant, highlighting that Bcs1A's significant influence on mitochondria-mediated drug resistance.
Collapse
Affiliation(s)
- Guorong Yang
- Anhui Key Laboratory of Infection and Immunity, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Weiwei Shi
- Departments of Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Wenlin He
- Anhui Key Laboratory of Infection and Immunity, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Jing Wu
- Anhui Key Laboratory of Infection and Immunity, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Sutao Huang
- School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Li Mo
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Huaxue Wang
- Departments of Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xiaogang Zhou
- Anhui Key Laboratory of Infection and Immunity, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| |
Collapse
|
10
|
Contreras-Martínez OI, Angulo-Ortíz A, Santafé Patiño G, Sierra Martinez J, Berrio Soto R, de Almeida Rodolpho JM, de Godoy KF, de Freitas Aníbal F, de Lima Fragelli BD. Synergistic Antifungal Effect and In Vivo Toxicity of a Monoterpene Isoespintanol Obtained from Oxandra xylopioides Diels. Molecules 2024; 29:4417. [PMID: 39339412 PMCID: PMC11433975 DOI: 10.3390/molecules29184417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Candida sp. infections are a threat to global health, with high morbidity and mortality rates due to drug resistance, especially in immunocompromised people. For this reason, the search for new alternatives is urgent, and in recent years, a combined therapy with natural compounds has been proposed. Considering the biological potential of isoespintanol (ISO) and continuing its study, the objective of this research was to assess the effect of ISO in combination with the antifungals fluconazole (FLZ), amphotericin B (AFB) and caspofungin (CASP) against clinical isolates of C. tropicalis and to evaluate the cytotoxic effect of this compound in the acute phase (days 0 and 14) and chronic phase (days 0, 14, 28, 42, 56, 70 and 84) in female mice (Mus musculus) of the Balb/c lineage. The results show that ISO can potentiate the effect of FLZ, AFB and CASP, showing synergism with these antifungals. An evaluation of the mice via direct observation showed no behavioral changes or variations in weight during treatment; furthermore, an analysis of the cytokines IFN-γ and TNF in plasma, peritoneal cavity lavage (PCL) and bronchoalveolar lavage (BAL) indicated that there was no inflammation process. In addition, histopathological studies of the lungs, liver and kidneys showed no signs of toxicity caused by ISO. This was consistent with an analysis of oxaloacetic transaminases (GOT) and pyruvic transaminases (GPT), which remained in the standard range. These findings indicate that ISO does not have a cytotoxic effect at the doses evaluated, placing it as a monoterpene of interest in the search for compounds with pharmacological potential.
Collapse
Affiliation(s)
| | - Alberto Angulo-Ortíz
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| | - Gilmar Santafé Patiño
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| | - Jesus Sierra Martinez
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Ricardo Berrio Soto
- Biology Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| | - Joice Margareth de Almeida Rodolpho
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Krissia Franco de Godoy
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Fernanda de Freitas Aníbal
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Bruna Dias de Lima Fragelli
- Functional Materials Development Center, Interdisciplinary Laboratory of Electrochemistry and Ceramics, Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
11
|
Li Y, Bi S, Guan W, Iddrisu L, Wei S, Chen Y, Sun L, Deng Q, Jiang Y, Fang Z, Gooneratne R. Antibiotic susceptibility of Vibrio parahaemolyticus isolated from prawns and oysters marketed in Zhanjiang, China. MARINE POLLUTION BULLETIN 2024; 206:116712. [PMID: 39018820 DOI: 10.1016/j.marpolbul.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
To evaluate the antibiotic susceptibility of Vibrio parahaemolyticus from prawns and oysters marketed in Zhanjiang, Guangdong, China. 84 strains of V. parahaemolyticus were isolated from prawns and oysters sampled from 9 major markets. The results showed that 84 V. parahaemolyticus strains had the highest rate of antibiotic resistance to oxytetracycline (69.05 %, 58/84) and the lowest rate of antibiotic resistance to enrofloxacin (1.19 %, 1/84), ciprofloxacin (4.76 %, 4/84) and norfloxacin (7.14 %, 6/84) in quinolone. Meanwhile, 96.42 % of the strains showed multiple antibiotic resistance (MAR). PCR results showed that the resistance phenotype was closely related to the antibiotic resistance genes and efflux pump genes (p < 0.01), and the efflux pump gene was the key causing MAR. The combination of antibiotics significantly eliminated multidrug resistance. In addition, efflux pump inhibitors also reduce MAR. This study may provide information on antibiotic susceptibility, antibiotic resistance and strategies for the control of V. parahaemolyticus.
Collapse
Affiliation(s)
- Yongbin Li
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Siyuan Bi
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China
| | - Wenhao Guan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lukman Iddrisu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yinyan Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongqing Jiang
- Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China; Shenzhen Lvshiyuan Biotechnology Co., Ltd., Shenzhen 510100, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury 7647, New Zealand
| |
Collapse
|
12
|
Sun S, Cao L, Wu J, Sun B, El-Newehy M, Moydeen Abdulhameed M, Mo X, Yang X, Zheng H. A novel antibiotic: the antimicrobial effects of CFBSA and its application on electronspun wound dressing. Biomed Mater 2024; 19:055010. [PMID: 38917818 DOI: 10.1088/1748-605x/ad5ba4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
N-chloro-N-fluorobenzenesulfonylamide (CFBSA), was a novel chlorinating reagent, which exhibits potential antibacterial activities. In this study, CFBSA was confirmed as a wide-broad antimicrobial and bactericidal drug against different gram-negative bacteria, gram-positive bacteria and fungi, while it was found to have low cytotoxicity for eukaryotic cells. In addition, microorganism morphology assay and oxidative stress test was used to determine the antimicrobial mechanisms of CFBSA. According to the results, CFBSA probably had a target on cell membrane and killed microorganism by disrupting its cell membrane. Then, CFBSA was first combined with poly(L-lactide-co-caprolactone) (PLCL)/SF via electrospinning and applied in wound dressings. The characterization of different PLCL/SF of CFBSA-loaded nanofibrous mats was investigated by SEM, water contact angle, Fourier transform infrared spectroscopy, cell compatibility and antimicrobial test. CFBSA-loaded PLCL/SF nanofibrous mats showed excellent antimicrobial activities. In order to balance of the biocompatibility and antibacterial efficiency, SP-2.5 was selected as the ideal loading concentration for further application of CFBSA-loaded PLCL/SF. In conclusion, the electrospun CFBSA-loaded PLCL/SF nanofibrous mat with its broad-spectrum antimicrobial and bactericidal activity and good biocompatibility showed enormous potential for wound dressing.
Collapse
Affiliation(s)
- Shu Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Lei Cao
- Orthopaedic Traumatology, Trauma Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201620, People's Republic of China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, PO Box 2455 Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, PO Box 2455 Riyadh 11451, Saudi Arabia
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Xianjin Yang
- Key Lab for Advanced Material & Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200231, People's Republic of China
| | - Hao Zheng
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
13
|
Zhou X, Hilk A, Solis NV, Pereira De Sa N, Hogan BM, Bierbaum TA, Del Poeta M, Filler SG, Burrack LS, Selmecki A. Erg251 has complex and pleiotropic effects on sterol composition, azole susceptibility, filamentation, and stress response phenotypes. PLoS Pathog 2024; 20:e1012389. [PMID: 39078851 PMCID: PMC11315318 DOI: 10.1371/journal.ppat.1012389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/09/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans. Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Homozygous deletions of ERG251 resulted in accumulation of ergosterol intermediates consistent with the fitness defect in rich medium. Dysfunction of ERG251, together with FLC exposure, resulted in decreased accumulation of the toxic sterol (14-ɑ-methylergosta-8,24(28)-dien-3β,6α-diol) and increased accumulation of non-toxic alternative sterols. The altered sterol composition of the ERG251 mutants had pleiotropic effects on transcription, filamentation, and stress responses including cell membrane, osmotic and oxidative stress. Interestingly, while dysfunction of ERG251 resulted in azole tolerance, it also led to transcriptional upregulation of ZRT2, a membrane-bound Zinc transporter, in the presence of FLC, and overexpression of ZRT2 is sufficient to increase azole tolerance in wild-type C. albicans. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study demonstrates that single allele dysfunction of ERG251 is a recurrent and effective mechanism of acquired azole tolerance. We propose that altered sterol composition resulting from ERG251 dysfunction mediates azole tolerance as well as pleiotropic effects on stress response, filamentation and virulence.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Audrey Hilk
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
| | - Nivea Pereira De Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Bode M. Hogan
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Tessa A. Bierbaum
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Administration Medical Center, Northport, New York, United States of America
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Laura S. Burrack
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
14
|
Wang Y, He Y, Cai T, Lei Z, Lei W, Cao Y, Wu J. A mechanism study on the synergistic effects of rifapentine and fluconazole against fluconazole-resistant Candida albicans in vitro. Heliyon 2024; 10:e27346. [PMID: 38515731 PMCID: PMC10955295 DOI: 10.1016/j.heliyon.2024.e27346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/07/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024] Open
Abstract
Candida albicans (C. albicans) is one of the most common clinical isolates of systemic fungal infection. Long-term and inappropriate use of antifungal drugs can cause fungal resistance, which poses a great challenge to the clinical treatment of fungal infections. The combination of antifungal drugs and non-antifungal drugs to overcome the problem of fungal resistance has become a research hotspot in recent years. Our previous study found that the combination of rifapentine (RFT) and fluconazole (FLC) has a significant synergistic against FLC-resistant C. albicans. The present study aimed to further verify the synergistic effect between FLC and RFT against the FLC-resistant C. albicans 100, and explore the underlying mechanism. The growth curve and spot assay test not only showed the synergistic effect of FLC and RFT on FLC-resistant C. albicans in vitro but exhibited a dose-dependent effect on RFT, indicating that RFT may play a principal role in the synergic effect of the two drugs. Flow cytometry showed that the combined use of RFT and FLC arrested cells in the G2/M phase, inhibiting the normal division and proliferation of FLC-resistant C. albicans. Transmission electron microscopy (TEM) demonstrated that FLC at a low concentration could still cause a certain degree of damage to the cell membrane in the FLC-resistant C. albicans, as represented by irregular morphologic changes and some defects observed in the cell membrane. When FLC was used in combination with RFT, the nuclear membrane was dissolved and the nucleus was condensed into a mass. Detection of the intracellular drug concentration of fungi revealed that the intracellular concentration of RFT was 31-195 fold that of RFT alone when it was concomitantly used with FLC. This indicated that FLC could significantly increase the concentration of RFT in cells, which may be due to the damage caused to the fungal cell membrane by FLC. In short, the present study revealed a synergistic mechanism in the combined use of RFT and FLC, which may provide a novel strategy for the clinical treatment of FLC-resistant C. albicans.
Collapse
Affiliation(s)
- Yulian Wang
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yufei He
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tongkai Cai
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhongwei Lei
- Department of Rehabilitation, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenzhi Lei
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yongbing Cao
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Wu
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
15
|
Zhou X, Hilk A, Solis NV, Hogan BM, Bierbaum TA, Filler SG, Burrack LS, Selmecki A. Erg251 has complex and pleiotropic effects on azole susceptibility, filamentation, and stress response phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583770. [PMID: 38496635 PMCID: PMC10942443 DOI: 10.1101/2024.03.06.583770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans. Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Dysfunction of ERG251 resulted in transcriptional upregulation of the alternate sterol biosynthesis pathway and ZRT2, a Zinc transporter. Notably, we determined that overexpression of ZRT2 is sufficient to increase azole tolerance in C. albicans. Our combined transcriptional and phenotypic analyses revealed the pleiotropic effects of ERG251 on stress responses including cell wall, osmotic and oxidative stress. Interestingly, while loss of either allele of ERG251 resulted in similar antifungal drug responses, we observed functional divergence in filamentation regulation between the two alleles of ERG251 (ERG251-A and ERG251-B) with ERG251-A exhibiting a dominant role in the SC5314 genetic background. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study provides extensive genetic, transcriptional and phenotypic analysis for the effects of ERG251 on drug susceptibility, fitness, filamentation and stress responses.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Audrey Hilk
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Bode M. Hogan
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Tessa A. Bierbaum
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Laura S. Burrack
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
16
|
Kang TA, Lee G, Kim K, Hahn D, Shin JH, Kim WC. Biocontrol of Peach Gummosis by Bacillus velezensis KTA01 and Its Antifungal Mechanism. J Microbiol Biotechnol 2024; 34:296-305. [PMID: 38073404 PMCID: PMC10940740 DOI: 10.4014/jmb.2310.10005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 03/01/2024]
Abstract
Peach tree gummosis is a botanical anomaly distinguished by the secretion of dark-brown gum from the shoots of peach trees, and Botryosphaeria dothidea has been identified as one of the fungal species responsible for its occurrence. In South Korea, approximately 80% of gummosis cases are linked to infections caused by B. dothidea. In this study, we isolated microbes from the soil surrounding peach trees exhibiting antifungal activity against B. dothidea. Subsequently, we identified several bacterial strains as potential candidates for a biocontrol agent. Among them, Bacillus velezensis KTA01 displayed the most robust antifungal activity and was therefore selected for further analysis. To investigate the antifungal mechanism of B. velezensis KTA01, we performed tests to assess cell wall degradation and siderophore production. Additionally, we conducted reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis based on whole-genome sequencing to confirm the presence of genes responsible for the biosynthesis of lipopeptide compounds, a well-known characteristic of Bacillus spp., and to compare gene expression levels. Moreover, we extracted lipopeptide compounds using methanol and subjected them to both antifungal activity testing and high-performance liquid chromatography (HPLC) analysis. The experimental findings presented in this study unequivocally demonstrate the promising potential of B. velezensis KTA01 as a biocontrol agent against B. dothidea KACC45481, the pathogen responsible for causing peach tree gummosis.
Collapse
Affiliation(s)
- Tae-An Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kihwan Kim
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dongyup Hahn
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won-Chan Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
17
|
Yang HY, Cheon JH, Jung DM, Seon JK. Comparison of outcomes between fungal and non-fungal periprosthetic joint infections in total knee arthroplasty. Bone Joint J 2023; 105-B:1286-1293. [PMID: 38035598 DOI: 10.1302/0301-620x.105b12.bjj-2023-0486.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Aims Fungal periprosthetic joint infections (PJIs) are rare, but their diagnosis and treatment are highly challenging. The purpose of this study was to investigate the clinical outcomes of patients with fungal PJIs treated with two-stage exchange knee arthroplasty combined with prolonged antifungal therapy. Methods We reviewed our institutional joint arthroplasty database and identified 41 patients diagnosed with fungal PJIs and treated with two-stage exchange arthroplasty after primary total knee arthroplasty (TKA) between January 2001 and December 2020, and compared them with those who had non-fungal PJIs during the same period. After propensity score matching based on age, sex, BMI, American Society of Anesthesiologists grade, and Charlson Comorbidity Index, 40 patients in each group were successfully matched. The surgical and antimicrobial treatment, patient demographic and clinical characteristics, recurrent infections, survival rates, and relevant risk factors that affected joint survivorship were analyzed. We defined treatment success as a well-functioning arthroplasty without any signs of a PJI, and without antimicrobial suppression, at a minimum follow-up of two years from the time of reimplantation. Results The fungal PJI group demonstrated a significantly worse treatment success rate at the final follow-up than the non-fungal PJI group (65.0% (26/40) vs 85.0% (34/40); p < 0.001). The mean prosthesis-free interval was longer in the fungal PJI group than in the non-fungal PJI group (6.7 weeks (SD 5.8) vs 4.1 weeks (SD 2.5); p = 0.020). The rate of survivorship free from reinfection was worse in the fungal PJI group (83.4% (95% confidence interval (CI) 64.1 to 92.9) at one year and 76.4% (95% CI 52.4 to 89.4) at two years) than in the non-fungal PJI group (97.4% (95% CI 82.7 to 99.6) at one year and 90.3% (95% CI 72.2 to 96.9) at two years), but the differences were not significant (p = 0.270). Cox proportional hazard regression analysis identified the duration of the prosthesis-free interval as a potential risk factor for failure (hazard ratio 1.128 (95% CI 1.003 to 1.268); p = 0.043). Conclusion Fungal PJIs had a lower treatment success rate than non-fungal PJIs despite two-stage revision arthroplasty and appropriate antifungal treatment. Our findings highlight the need for further developments in treating fungal PJIs.
Collapse
Affiliation(s)
- Hong-Yeol Yang
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Jae-Hyeok Cheon
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Dong-Min Jung
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Jong-Keun Seon
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| |
Collapse
|
18
|
Khwaza V, Aderibigbe BA. Antifungal Activities of Natural Products and Their Hybrid Molecules. Pharmaceutics 2023; 15:2673. [PMID: 38140014 PMCID: PMC10747321 DOI: 10.3390/pharmaceutics15122673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The increasing cases of drug resistance and high toxicity associated with the currently used antifungal agents are a worldwide public health concern. There is an urgent need to develop new antifungal drugs with unique target mechanisms. Plant-based compounds, such as carvacrol, eugenol, coumarin, cinnamaldehyde, curcumin, thymol, etc., have been explored for the development of promising antifungal agents due to their diverse biological activities, lack of toxicity, and availability. However, researchers around the world are unable to fully utilize the potential of natural products due to limitations, such as their poor bioavailability and aqueous solubility. The development of hybrid molecules containing natural products is a promising synthetic approach to overcome these limitations and control microbes' capability to develop resistance. Based on the potential advantages of hybrid compounds containing natural products to improve antifungal activity, there have been different reported synthesized hybrid compounds. This paper reviews different literature to report the potential antifungal activities of hybrid compounds containing natural products.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| |
Collapse
|
19
|
Zhou Z, Zhuo L, Fu X, Zou Q. Joint deep autoencoder and subgraph augmentation for inferring microbial responses to drugs. Brief Bioinform 2023; 25:bbad483. [PMID: 38171927 PMCID: PMC10764208 DOI: 10.1093/bib/bbad483] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Exploring microbial stress responses to drugs is crucial for the advancement of new therapeutic methods. While current artificial intelligence methodologies have expedited our understanding of potential microbial responses to drugs, the models are constrained by the imprecise representation of microbes and drugs. To this end, we combine deep autoencoder and subgraph augmentation technology for the first time to propose a model called JDASA-MRD, which can identify the potential indistinguishable responses of microbes to drugs. In the JDASA-MRD model, we begin by feeding the established similarity matrices of microbe and drug into the deep autoencoder, enabling to extract robust initial features of both microbes and drugs. Subsequently, we employ the MinHash and HyperLogLog algorithms to account intersections and cardinality data between microbe and drug subgraphs, thus deeply extracting the multi-hop neighborhood information of nodes. Finally, by integrating the initial node features with subgraph topological information, we leverage graph neural network technology to predict the microbes' responses to drugs, offering a more effective solution to the 'over-smoothing' challenge. Comparative analyses on multiple public datasets confirm that the JDASA-MRD model's performance surpasses that of current state-of-the-art models. This research aims to offer a more profound insight into the adaptability of microbes to drugs and to furnish pivotal guidance for drug treatment strategies. Our data and code are publicly available at: https://github.com/ZZCrazy00/JDASA-MRD.
Collapse
Affiliation(s)
- Zhecheng Zhou
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325000, Wenzhou, China
| | - Linlin Zhuo
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325000, Wenzhou, China
| | - Xiangzheng Fu
- College of Computer Science and Electronic Engineering, Hunan University, 410012, Changsha, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611730, Chengdu, China
| |
Collapse
|
20
|
Stover KR, Hawkins BK, Keck JM, Barber KE, Cretella DA. Antifungal resistance, combinations and pipeline: oh my! Drugs Context 2023; 12:2023-7-1. [PMID: 38021410 PMCID: PMC10653594 DOI: 10.7573/dic.2023-7-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Invasive fungal infections are a strong contributor to healthcare costs, morbidity and mortality, especially amongst hospitalized patients. Historically, Candida was responsible for approximately 15% of all nosocomial bloodstream infections. In the past 10 years, the epidemiology of Candida species has altered, with increasing prevalence of resistant species. With rising fungal resistance, especially in Candida spp., the demand for novel antifungal therapies has exponentially increased over the last decade. Newer antifungal agents have become an attractive option for patients needing long-term therapy for infections or those requiring antifungal prophylaxis. Despite advances in coverage of non-Candida pathogens with newer agents, clinical scenarios involving multidrug-resistant fungal pathogens continue to arise in practice. Combination antifungal therapy can lead to a host of side-effects, some of which can be drug limiting. Additional antifungal therapies with enhanced fungal spectrum of activity and decreased rates of adverse effects are warranted. Fosmanogepix, ibrexafungerp, olorofim and rezafungin may help fill some of these gaps in the antifungal armamentarium. This article is part of the Challenges and strategies in the management of invasive fungal infections Special Issue: https://www.drugsincontext.com/special_issues/challenges-and-strategies-in-the-management-of-invasive-fungal-infections.
Collapse
Affiliation(s)
- Kayla R Stover
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, MS, USA
| | - Brandon K Hawkins
- Department of Clinical Pharmacy and Translational Science, The University of Tennessee Health Science Center, Knoxville, TN, USA
| | - J Myles Keck
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Katie E Barber
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, MS, USA
| | - David A Cretella
- Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
21
|
David H, Solomon AP. Molecular association of Candida albicans and vulvovaginal candidiasis: focusing on a solution. Front Cell Infect Microbiol 2023; 13:1245808. [PMID: 37900321 PMCID: PMC10611527 DOI: 10.3389/fcimb.2023.1245808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Candida albicans-mediated vulvovaginal candidiasis (VVC) is a significant challenge in clinical settings, owing to the inefficacy of current antifungals in modulating virulence, development of resistance, and poor penetration into the biofilm matrix. Various predisposition factors are molecular drivers that lead to the dysbiosis of normal microflora of the vagina, upregulation of central metabolic pathways, morphogenesis, hyphal extension, adhesion, invasion, and biofilm formation leading to chronic infection and recurrence. Hence, it is crucial to understand the molecular mechanism behind the virulence pathways driven by those drivers to decode the drug targets. Finding innovative solutions targeting fungal virulence/biofilm may potentiate the antifungals at low concentrations without affecting the recurrence of resistance. With this background, the present review details the critical molecular drivers and associated network of virulence pathways, possible drug targets, target-specific inhibitors, and probable mode of drug delivery to cross the preclinical phase by appropriate in vivo models.
Collapse
Affiliation(s)
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
22
|
Vande Zande P, Zhou X, Selmecki A. The Dynamic Fungal Genome: Polyploidy, Aneuploidy and Copy Number Variation in Response to Stress. Annu Rev Microbiol 2023; 77:341-361. [PMID: 37307856 PMCID: PMC10599402 DOI: 10.1146/annurev-micro-041320-112443] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal species have dynamic genomes and often exhibit genomic plasticity in response to stress. This genome plasticity often comes with phenotypic consequences that affect fitness and resistance to stress. Fungal pathogens exhibit genome plasticity in both clinical and agricultural settings and often during adaptation to antifungal drugs, posing significant challenges to human health. Therefore, it is important to understand the rates, mechanisms, and impact of large genomic changes. This review addresses the prevalence of polyploidy, aneuploidy, and copy number variation across diverse fungal species, with special attention to prominent fungal pathogens and model species. We also explore the relationship between environmental stress and rates of genomic changes and highlight the mechanisms underlying genotypic and phenotypic changes. A comprehensive understanding of these dynamic fungal genomes is needed to identify novel solutions for the increase in antifungal drug resistance.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| |
Collapse
|
23
|
Cabral FV, dos Santos Souza TH, Sellera FP, Fontes A, Ribeiro MS. Strengthening collaborations at the Biology-Physics interface: trends in antimicrobial photodynamic therapy. Biophys Rev 2023; 15:685-697. [PMID: 37681106 PMCID: PMC10480098 DOI: 10.1007/s12551-023-01066-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/23/2023] [Indexed: 09/09/2023] Open
Abstract
The unbridled use of antimicrobial drugs over the last decades contributed to the global dissemination of drug-resistant pathogens and increasing rates of life-threatening infections for which limited therapeutic options are available. Currently, the search for safe, fast, and effective therapeutic strategies to combat infectious diseases is a worldwide demand. Antimicrobial photodynamic therapy (APDT) rises as a promising therapeutic approach against a wide range of pathogenic microorganisms. APDT combines light, a photosensitizing drug (PS), and oxygen to kill microorganisms by oxidative stress. Since the APDT field involves branches of biology and physics, the strengthening of interdisciplinary collaborations under the aegis of biophysics is welcome. Given this scenario, Brazil is one of the global leaders in the production of APDT science. In this review, we provide detailed reports of APDT studies published by the Laboratory of Optical Therapy (IPEN-CNEN), Group of Biomedical Nanotechnology (UFPE), and collaborators over the last 10 years. We present an integrated perspective of APDT from basic research to clinical practice and highlight its promising use, encouraging its adoption as an effective and safe technology to tackle important pathogens. We cover the use of methylene blue (MB) or Zn(II) porphyrins as PSs to kill bacteria, fungi, parasites, and pathogenic algae in laboratory assays. We describe the impact of MB-APDT in Dentistry and Veterinary Medicine to treat different infectious diseases. We also point out future directions combining APDT and nanotechnology. We hope this review motivates further APDT studies providing intuitive, vivid, and insightful information for the readers.
Collapse
Affiliation(s)
- Fernanda Viana Cabral
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo, Brazil
| | | | - Fábio Parra Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Adriana Fontes
- Department of Biophysics and Radiobiology, Federal University of Pernambuco (UFPE), Recife, PE 50670-901 Brazil
| | - Martha Simões Ribeiro
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo, Brazil
| |
Collapse
|
24
|
Alastruey-Izquierdo A, Martín-Galiano AJ. The challenges of the genome-based identification of antifungal resistance in the clinical routine. Front Microbiol 2023; 14:1134755. [PMID: 37152754 PMCID: PMC10157239 DOI: 10.3389/fmicb.2023.1134755] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
The increasing number of chronic and life-threatening infections caused by antimicrobial resistant fungal isolates is of critical concern. Low DNA sequencing cost may facilitate the identification of the genomic profile leading to resistance, the resistome, to rationally optimize the design of antifungal therapies. However, compared to bacteria, initiatives for resistome detection in eukaryotic pathogens are underdeveloped. Firstly, reported mutations in antifungal targets leading to reduced susceptibility must be extensively collected from the literature to generate comprehensive databases. This information should be complemented with specific laboratory screenings to detect the highest number possible of relevant genetic changes in primary targets and associations between resistance and other genomic markers. Strikingly, some drug resistant strains experience high-level genetic changes such as ploidy variation as much as duplications and reorganizations of specific chromosomes. Such variations involve allelic dominance, gene dosage increments and target expression regime effects that should be explicitly parameterized in antifungal resistome prediction algorithms. Clinical data indicate that predictors need to consider the precise pathogen species and drug levels of detail, instead of just genus and drug class. The concomitant needs for mutation accuracy and assembly quality assurance suggest hybrid sequencing approaches involving third-generation methods will be utilized. Moreover, fatal fast infections, like fungemia and meningitis, will further require both sequencing and analysis facilities are available in-house. Altogether, the complex nature of antifungal resistance demands extensive sequencing, data acquisition and processing, bioinformatic analysis pipelines, and standard protocols to be accomplished prior to genome-based protocols are applied in the clinical setting.
Collapse
Affiliation(s)
- Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
25
|
Rollin-Pinheiro R, Xisto MIDDS, de Castro-Almeida Y, Rochetti VP, Borba-Santos LP, Fontes YDS, Ferreira-Pereira A, Rozental S, Barreto-Bergter E. Pandemic Response Box® library as a source of antifungal drugs against Scedosporium and Lomentospora species. PLoS One 2023; 18:e0280964. [PMID: 36735743 PMCID: PMC9897528 DOI: 10.1371/journal.pone.0280964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Scedosporium and Lomentospora species are opportunistic filamentous fungi that cause localized and disseminated infections in immunocompetent and immunocompromised patients. These species are considered resistant fungi due to their low susceptibility to most current antifungal agents used in healthcare settings. The search for new compounds that could work as promising candidate antifungal drugs is an increasing field of interest. In this context, in the present study we screened the Pandemic Response Box® library (Medicines for Malaria Venture [MMV], Switzerland) to identify compounds with antifungal activity against Scedosporium and Lomentospora species. An initial screening of the drugs from this collection at 5 μM was performed using a clinical Scedosporium aurantiacum isolate according to the EUCAST protocol. Compounds with activity against this fungus were also tested against four other species (S. boydii¸ S. dehoogii, S. apiospermum and L. prolificans) at concentrations ranging from 0.078 to 10 μM. Seven compounds inhibited more than 80% of S. aurantiacum growth, three of them (alexidine, amorolfine and olorofim) were selected due to their differences in mechanism of action, especially when compared to drugs from the azole class. These compounds were more active against biofilm formation than against preformed biofilm in Scedosporium and Lomentospora species, except alexidine, which was able to decrease preformed biofilm about 50%. Analysis of the potential synergism of these compounds with voriconazole and caspofungin was performed by the checkerboard method for S. aurantiacum. The analysis by Bliss methodology revealed synergistic effects among selected drugs with caspofungin. When these drugs were combined with voriconazole, only alexidine and amorolfine showed a synergistic effect, whereas olorofim showed an antagonistic effect. Scanning electron microscopy revealed that alexidine induces morphology alterations in S. aurantiacum biofilm grown on a catheter surface. Reactive oxygen species production, mitochondrial activity and surface components were analyzed by fluorescent probes when S. aurantiacum was treated with selected drugs and revealed that some cell parameters are altered by these compounds. In conclusion, alexidine, amorolfine and olorofim were identified as promising compounds to be studied against scedosporiosis and lomentosporiosis.
Collapse
Affiliation(s)
- Rodrigo Rollin-Pinheiro
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (RRP); (EBB)
| | - Mariana Ingrid Dutra da Silva Xisto
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yuri de Castro-Almeida
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Pereira Rochetti
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luana Pereira Borba-Santos
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yasmin da Silva Fontes
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Ferreira-Pereira
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sonia Rozental
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (RRP); (EBB)
| |
Collapse
|
26
|
Evaluation of the efficacy of heat shock protein inhibitors and antifungal drug combinations against Candida spp. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022. [DOI: 10.1007/s12210-022-01118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Alpizar-Sosa EA, Ithnin NRB, Wei W, Pountain AW, Weidt SK, Donachie AM, Ritchie R, Dickie EA, Burchmore RJS, Denny PW, Barrett MP. Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response. PLoS Negl Trop Dis 2022; 16:e0010779. [PMID: 36170238 PMCID: PMC9581426 DOI: 10.1371/journal.pntd.0010779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/19/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Amphotericin B is increasingly used in treatment of leishmaniasis. Here, fourteen independent lines of Leishmania mexicana and one L. infantum line were selected for resistance to either amphotericin B or the related polyene antimicrobial, nystatin. Sterol profiling revealed that, in each resistant line, the predominant wild-type sterol, ergosta-5,7,24-trienol, was replaced by other sterol intermediates. Broadly, two different profiles emerged among the resistant lines. Whole genome sequencing then showed that these distinct profiles were due either to mutations in the sterol methyl transferase (C24SMT) gene locus or the sterol C5 desaturase (C5DS) gene. In three lines an additional deletion of the miltefosine transporter gene was found. Differences in sensitivity to amphotericin B were apparent, depending on whether cells were grown in HOMEM, supplemented with foetal bovine serum, or a serum free defined medium (DM). Metabolomic analysis after exposure to AmB showed that a large increase in glucose flux via the pentose phosphate pathway preceded cell death in cells sustained in HOMEM but not DM, indicating the oxidative stress was more significantly induced under HOMEM conditions. Several of the lines were tested for their ability to infect macrophages and replicate as amastigote forms, alongside their ability to establish infections in mice. While several AmB resistant lines showed reduced virulence, at least two lines displayed heightened virulence in mice whilst retaining their resistance phenotype, emphasising the risks of resistance emerging to this critical drug.
Collapse
Affiliation(s)
- Edubiel A. Alpizar-Sosa
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Nur Raihana Binti Ithnin
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Medical Microbiology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wenbin Wei
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Andrew W. Pountain
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute for Computational Medicine, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Stefan K. Weidt
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Anne M. Donachie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ryan Ritchie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Richard J. S. Burchmore
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Paul W. Denny
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Liu L, Sun Y, Gao Z, Yin W, Jiang H, Wu T, Sun Y, Qin Q, Zhao D, Cheng M. Design, synthesis, and evaluation of novel 3,4-isoxazolediamide derivatives for the combination treatment of azole-resistant candidiasis. Arch Pharm (Weinheim) 2022; 355:e2200266. [PMID: 36029272 DOI: 10.1002/ardp.202200266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
Invasive fungal infections are emerging as serious infectious diseases worldwide. Due to the frequent emergence of resistance, the cure for invasive fungal infections is often unachievable. The molecular chaperone Hsp90 provides a promising target because it supports survival, virulence, and drug resistance in a variety of pathogens. Herein, we report on the structural optimization and structure-activity relationship studies of 3,4-isoxazolediamide analogs. As a new class of fungal Hsp90 inhibitor, compound B25 was found to have good synergistic effects with fluconazole and to avoid potential mammalian toxicity. It also showed remarkable metabolic stability in vitro. Collectively, B25 could be a promising lead compound for drug discovery targeting fungal Hsp90 and deserves further investigation.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Zixuan Gao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Hong Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
29
|
Millson SH, Truman AW, Piper PW. Hsp90 and phosphorylation of the Slt2(Mpk1) MAP kinase activation loop are essential for catalytic, but not non-catalytic, Slt2-mediated transcription in yeast. Cell Stress Chaperones 2022; 27:295-304. [PMID: 35420390 PMCID: PMC9106771 DOI: 10.1007/s12192-022-01274-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
In yeast, the Slt2(Mpk1) stress-activated protein kinase directs the activation of two transcription factors, Rlm1 and Swi4/Swi6, in response to cell wall stress. Rlm1 is activated through a phosphorylation by Slt2, whereas the Swi4/Swi6 activation is noncatalytic and triggered by the binding of phosphorylated forms of both Slt2 and a catalytically inactive pseudokinase (Mlp1). Previous studies have delineated a role for the molecular chaperone Hsp90 in the activation of Slt2, but the involvement of Hsp90 in these events of catalytic versus non-catalytic cell integrity signaling has remained elusive. In cells lacking Mlp1, the Hsp90 inhibitor radicicol was found to inhibit the Slt2-mediated catalytic activation of Rlm1, but not the noncatalytic activation of Swi4/Swi6. Mutation of residues in the TEY motif of the Slt2 activation loop strongly impacted both Hsp90 binding and Rlm1-mediated transcription. In contrast, many of these same mutations had only modest effects on Swi4/6 (Slt2-mediated, non-catalytic) transcription, although one that blocked both the Slt2:Hsp90 interaction and Rlm1-mediated transcription (E191G) triggered a hyperactivation of Swi4/6. Taken together, our results cement the importance of the Slt2 activation loop for both the binding of Hsp90 by Slt2 and the catalytic activation of cell integrity signaling.
Collapse
Affiliation(s)
- Stefan H Millson
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7DL, UK
| | - Andrew W Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Peter W Piper
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
30
|
Cryptococcus spp. and Cryptococcosis: focusing on the infection in Brazil. Braz J Microbiol 2022; 53:1321-1337. [PMID: 35486354 PMCID: PMC9433474 DOI: 10.1007/s42770-022-00744-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022] Open
Abstract
Cryptococcosis is a global fungal infection caused by the Cryptococcus neoformans/Cryptococcus gattii yeast complex. This infection is acquired by inhalation of propagules such as basidiospores or dry yeast, initially causing lung infections with the possibility of progressing to the meninges. This infection mainly affects immunocompromised HIV and transplant patients; however, immunocompetent patients can also be affected. This review proposes to evaluate cryptococcosis focusing on studies of this mycosis in Brazilian territory; moreover, recent advances in the understanding of its virulence mechanism, animal models in research are also assessed. For this, literature review as realized in PubMed, Scielo, and Brazilian legislation. In Brazil, cryptococcosis has been identified as one of the most lethal fungal infections among HIV patients and C. neoformans VNI and C. gattii VGII are the most prevalent genotypes. Moreover, different clinical settings published in Brazil were described. As in other countries, cryptococcosis is difficult to treat due to a limited therapeutic arsenal, which is highly toxic and costly. The presence of a polysaccharide capsule, thermo-tolerance, production of melanin, biofilm formation, mechanisms for iron use, and morphological alterations is an important virulence mechanism of these yeasts. The introduction of cryptococcosis as a compulsory notification disease could improve data regarding incidence and help in the management of these infections.
Collapse
|
31
|
Wen W, Cao H, Huang Y, Tu J, Wan C, Wan J, Han X, Chen H, Liu J, Rao L, Su C, Peng C, Sheng C, Ren Y. Structure-Guided Discovery of the Novel Covalent Allosteric Site and Covalent Inhibitors of Fructose-1,6-Bisphosphate Aldolase to Overcome the Azole Resistance of Candidiasis. J Med Chem 2022; 65:2656-2674. [PMID: 35099959 DOI: 10.1021/acs.jmedchem.1c02102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fructose-1,6-bisphosphate aldolase (FBA) represents an attractive new antifungal target. Here, we employed a structure-based optimization strategy to discover a novel covalent binding site (C292 site) and the first-in-class covalent allosteric inhibitors of FBA from Candida albicans (CaFBA). Site-directed mutagenesis, liquid chromatography-mass spectrometry, and the crystallographic structures of APO-CaFBA, CaFBA-G3P, and C157S-2a4 revealed that S268 is an essential pharmacophore for the catalytic activity of CaFBA, and L288 is an allosteric regulation switch for CaFBA. Furthermore, most of the CaFBA covalent inhibitors exhibited good inhibitory activity against azole-resistant C. albicans, and compound 2a11 can inhibit the growth of azole-resistant strains 103 with the MIC80 of 1 μg/mL. Collectively, this work identifies a new covalent allosteric site of CaFBA and discovers the first generation of covalent inhibitors for fungal FBA with potent inhibitory activity against resistant fungi, establishing a structural foundation and providing a promising strategy for the design of potent antifungal drugs.
Collapse
Affiliation(s)
- Wuqiang Wen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hongxuan Cao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yunyuan Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chen Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xinya Han
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Han Chen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiaqi Liu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
32
|
Souza TH, Sarmento-Neto JF, Souza SO, Raposo BL, Silva BP, Borges CP, Santos BS, Cabral Filho PE, Rebouças JS, Fontes A. Advances on antimicrobial photodynamic inactivation mediated by Zn(II) porphyrins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021; 49:100454. [DOI: 10.1016/j.jphotochemrev.2021.100454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Thrombin-Derived C-Terminal Peptide Reduces Candida-Induced Inflammation and Infection In Vitro and In Vivo. Antimicrob Agents Chemother 2021; 65:e0103221. [PMID: 34424043 PMCID: PMC8522777 DOI: 10.1128/aac.01032-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Infections due to the opportunistic fungus Candida have been on the rise in the last decades, especially in immunocompromised individuals and hospital settings. Unfortunately, the treatments available today are limited. Thrombin-derived C-terminal peptide (TCP-25) is an antimicrobial peptide (AMP) with antibacterial and immunomodulatory effects. In this work, we, for the first time, demonstrate the ability of TCP-25 ability to counteract Candidain vitro and in vivo. Using a combination of viable count assay (VCA), radial diffusion assay (RDA), and fluorescence and transmission electron microscopy analyses, TCP-25 was found to exert a direct fungicidal activity. An inhibitory activity of TCP-25 on NF-κB activation induced by both zymosan alone and heat-killed C. albicans was demonstrated in vitro using THP-1 cells, and in vivo using NF-κB reporter mice. Moreover, the immunomodulatory property of TCP-25 was further substantiated in vitro by analyzing cytokine responses in human blood stimulated with zymosan, and in vivo employing a zymosan-induced peritonitis model in C57BL/6 mice. The therapeutic potential of TCP-25 was demonstrated in mice infected with luminescent C. albicans. Finally, the binding between TCP-25 and zymosan was investigated using circular dichroism spectroscopy and intrinsic fluorescence analysis. Taken together, our results show that TCP-25 has a dual function by inhibiting Candida as well as the associated zymosan-induced inflammation. The latter function is accompanied by a change in secondary structure upon binding to zymosan. TCP-25, therefore, shows promise as a novel drug candidate against Candida infections.
Collapse
|
34
|
Tong Y, Zhang J, Wang L, Wang Q, Huang H, Chen X, Zhang Q, Li H, Sun N, Liu G, Zhang B, Song F, Alterovitz G, Dai H, Zhang L. Hyper-Synergistic Antifungal Activity of Rapamycin and Peptide-Like Compounds against Candida albicans Orthogonally via Tor1 Kinase. ACS Infect Dis 2021; 7:2826-2835. [PMID: 34514778 DOI: 10.1021/acsinfecdis.1c00448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Candida albicans is a life-threatening, opportunistic fungal pathogen with a high mortality rate, especially within the immunocompromised populations. Multidrug resistance combined with limited antifungal drugs even worsens the situation. Given the facts that the current drug discovery strategies fail to deliver sufficient antifungals for the emerging multidrug resistance, we urgently need to develop novel approaches. By systematically investigating what caused the different antifungal activity of rapamycin in RPMI 1640 and YPD, we discovered that peptide-like compounds can generate a hyper-synergistic antifungal effect with rapamycin on both azole-resistant and sensitive clinical C. albicans isolates. The minimum inhibitory concentration (MIC) of rapamycin reaches as low as 2.14 nM (2-9 μg/mL), distinguishing this drug combination as a hyper-synergism by having a fractional inhibitory concentration (FIC) index ≤ 0.05 from the traditional defined synergism with an FIC index < 0.5. Further studies reveal that this hyper-synergism orthogonally targets the protein Tor1 and affects the TOR signaling pathway in C. albicans, very likely without crosstalk to the stress response, Ras/cAMP/PKA, or calcineurin signaling pathways. These results lead to a novel strategy of controlling drug resistant C. albicans infection in the immunocompromised populations. Instead of prophylactically administering other antifungals with undesirable side-effects for extended durations, we now only need to coadminister some nontoxic peptide additives. The novel antifungal strategy approached in this study not only provides a new therapeutic method to control fungal infections in rapamycin-taking immunocompromised patients but also mitigates the immunosuppressive side-effects of rapamycin, repurposing rapamycin as an antifungal agent with wide applications.
Collapse
Affiliation(s)
- Yaojun Tong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Luoqiang Wang
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Beijing 100101, China
- Anhui University, Hefei 230601, China
| | - Qinqin Wang
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Beijing 100101, China
| | - Huang Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangyin Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hantian Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nuo Sun
- Georgetown University Medical Center, Department of Microbiology and Immunology, Washington, DC 20057, United States
| | - Guang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | - Fuhang Song
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Beijing 100101, China
| | - Gil Alterovitz
- National Artificial Intelligence Institute, U.S. Department of Veterans Affairs, Washington, DC 20420, United States
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
35
|
Tong Y, Zhang J, Sun N, Wang XM, Wei Q, Zhang Y, Huang R, Pu Y, Dai H, Ren B, Pei G, Song F, Zhu G, Wang X, Xia X, Chen X, Jiang L, Wang S, Ouyang L, Xie N, Zhang B, Jiang Y, Liu X, Calderone R, Bai F, Zhang L, Alterovitz G. Berberine reverses multidrug resistance in Candida albicans by hijacking the drug efflux pump Mdr1p. Sci Bull (Beijing) 2021; 66:1895-1905. [PMID: 36654399 DOI: 10.1016/j.scib.2020.12.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 12/24/2020] [Indexed: 02/03/2023]
Abstract
Clinical use of antimicrobials faces great challenges from the emergence of multidrug-resistant pathogens. The overexpression of drug efflux pumps is one of the major contributors to multidrug resistance (MDR). Reversing the function of drug efflux pumps is a promising approach to overcome MDR. In the life-threatening fungal pathogen Candida albicans, the major facilitator superfamily (MFS) transporter Mdr1p can excrete many structurally unrelated antifungals, leading to MDR. Here we report a counterintuitive case of reversing MDR in C. albicans by using a natural product berberine to hijack the overexpressed Mdr1p for its own importation. Moreover, we illustrate that the imported berberine accumulates in mitochondria and compromises the mitochondrial function by impairing mitochondrial membrane potential and mitochondrial Complex I. This results in the selective elimination of Mdr1p overexpressed C. albicans cells. Furthermore, we show that berberine treatment can prolong the mean survival time of mice with blood-borne dissemination of Mdr1p overexpressed multidrug-resistant candidiasis. This study provides a potential direction of novel anti-MDR drug discovery by screening for multidrug efflux pump converters.
Collapse
Affiliation(s)
- Yaojun Tong
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Nuo Sun
- Georgetown University Medical Center, Department of Microbiology & Immunology, Washington DC 20057, USA
| | - Xiang-Ming Wang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Qi Wei
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Ren Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Yingying Pu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Huanqin Dai
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Ren
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
| | - Gang Pei
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
| | - Fuhang Song
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xuekui Xia
- Key Biosensor Laboratory of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Xiangyin Chen
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Lan Jiang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Ning Xie
- Brigham and Women's Hospital, Boston MA 02115, USA
| | - Buchang Zhang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yuanying Jiang
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Richard Calderone
- Georgetown University Medical Center, Department of Microbiology & Immunology, Washington DC 20057, USA
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Gil Alterovitz
- Brigham and Women's Hospital, Boston MA 02115, USA; National Artificial Intelligence Institute, U.S. Department of Veterans Affairs, Washington DC 20420, USA
| |
Collapse
|
36
|
Rollin-Pinheiro R, Borba-Santos LP, da Silva Xisto MID, de Castro-Almeida Y, Rochetti VP, Rozental S, Barreto-Bergter E. Identification of Promising Antifungal Drugs against Scedosporium and Lomentospora Species after Screening of Pathogen Box Library. J Fungi (Basel) 2021; 7:jof7100803. [PMID: 34682224 PMCID: PMC8539698 DOI: 10.3390/jof7100803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
Fungal infections have been increasing during the last decades. Scedosporium and Lomentospora species are filamentous fungi most associated to those infections, especially in immunocompromised patients. Considering the limited options of treatment and the emergence of resistant isolates, an increasing concern motivates the development of new therapeutic alternatives. In this context, the present study screened the Pathogen Box library to identify compounds with antifungal activity against Scedosporium and Lomentospora. Using antifungal susceptibility tests, biofilm analysis, scanning electron microscopy (SEM), and synergism assay, auranofin and iodoquinol were found to present promising repurposing applications. Both compounds were active against different Scedosporium and Lomentospora, including planktonic cells and biofilm. SEM revealed morphological alterations and synergism analysis showed that both drugs present positive interactions with voriconazole, fluconazole, and caspofungin. These data suggest that auranofin and iodoquinol are promising compounds to be studied as repurposing approaches against scedosporiosis and lomentosporiosis.
Collapse
Affiliation(s)
- Rodrigo Rollin-Pinheiro
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (M.I.D.d.S.X.); (Y.d.C.-A.); (V.P.R.)
| | - Luana Pereira Borba-Santos
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.P.B.-S.); (S.R.)
| | - Mariana Ingrid Dutra da Silva Xisto
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (M.I.D.d.S.X.); (Y.d.C.-A.); (V.P.R.)
| | - Yuri de Castro-Almeida
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (M.I.D.d.S.X.); (Y.d.C.-A.); (V.P.R.)
| | - Victor Pereira Rochetti
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (M.I.D.d.S.X.); (Y.d.C.-A.); (V.P.R.)
| | - Sonia Rozental
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.P.B.-S.); (S.R.)
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (M.I.D.d.S.X.); (Y.d.C.-A.); (V.P.R.)
- Correspondence: ; Tel.: +55-(21)-3938-6741
| |
Collapse
|
37
|
Huang Z, Dai H, Zhang X, Wang Q, Sun J, Deng Y, Shi P. BSC2 induces multidrug resistance via contributing to the formation of biofilm in Saccharomyces cerevisiae. Cell Microbiol 2021; 23:e13391. [PMID: 34482605 DOI: 10.1111/cmi.13391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023]
Abstract
Biofilm plays an important role in fungal multidrug resistance (MDR). Our previous studies showed that BSC2 is involved in resistance to amphotericin B (AMB) through antioxidation in Saccharomyces cerevisiae. In this study, the overexpression of BSC2 and IRC23 induced strong MDR in S. cerevisiae. BSC2-overexpression affected cellular flocculation, cell surface hydrophobicity, biofilm formation and invasive growth. However, it failed to induce caspofungin (CAS) resistance and affect the invasive growth in FLO mutant strains (FLO11Δ, FLO1Δ, FLO8Δ and TUP1Δ). Furthermore, the overexpression of BSC2 compensated for chitin synthesis defects to maintain the cell wall integrity and significantly reduced the cell morphology abnormality induced by CAS. However, it could not repair the cell wall damage caused by CAS in the FLO mutant strains. Although BSC2 overexpression increased the level of mannose in the cell wall, DPM1 overexpression in both BY4741 and bsc2∆ could confer resistance to CAS and AMB. In addition, BSC2 overexpression significantly increased the mRNA expression of FLO11, FLO1, FLO8 and TUP1. BSC2 may function as a regulator of FLO genes and be involved in cell wall integrity in yeast. Taken together, our data demonstrate that BSC2 induces MDR in a FLO pathway-dependent manner via contributing to the formation of biofilms in S. cerevisiae. TAKE AWAYS: Overexpression of BSC2 induced strong MDR in S. cerevisiae. BSC2 affected cellular flocculation, CSH, biofilm formation and invasive growth. BSC2 could not repair the cell wall damage caused by CAS in the FLO mutants. BSC2 may function as a regulator of FLO genes to maintain cell wall integrity. BSC2 promotes biofilm formation in a FLO pathway-dependent manner to induce MDR.
Collapse
Affiliation(s)
- Zhiwei Huang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Hongsheng Dai
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xiaoyu Zhang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Qiao Wang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, China
| | - Yunxia Deng
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
38
|
Kaur N, Bains A, Kaushik R, Dhull SB, Melinda F, Chawla P. A Review on Antifungal Efficiency of Plant Extracts Entrenched Polysaccharide-Based Nanohydrogels. Nutrients 2021; 13:2055. [PMID: 34203999 PMCID: PMC8232670 DOI: 10.3390/nu13062055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
Human skin acts as a physical barrier; however, sometimes the skin gets infected by fungi, which becomes more severe if the infection occurs on the third layer of the skin. Azole derivative-based antifungal creams, liquids, or sprays are available to treat fungal infections; however, these formulations show various side effects on the application site. Over the past few years, herbal extracts and various essential oils have shown effective antifungal activity. Additionally, autoxidation and epimerization are significant problems with the direct use of herbal extracts. Hence, to overcome these obstacles, polysaccharide-based nanohydrogels embedded with natural plant extracts and oils have become the primary choice of pharmaceutical scientists. These gels protect plant-based bioactive compounds and are effective delivery agents because they release multiple bioactive compounds in the targeted area. Nanohydrogels can be applied to infected areas, and due to their contagious nature and penetration power, they get directly absorbed through the skin, quickly reaching the skin's third layer and effectively reducing the fungal infection. In this review, we explain various skin fungal infections, possible treatments, and the effective utilization of plant extract and oil-embedded polysaccharide-based nanohydrogels.
Collapse
Affiliation(s)
- Navkiranjeet Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Aarti Bains
- Department of Biotechnology, Chandigarh Group of Colleges Landran, Mohali 140307, Punjab, India;
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, Uttrakhand, India;
| | - Sanju B. Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India;
| | - Fogarasi Melinda
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăstur 3–5, 400372 Cluj-Napoca, Romania
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| |
Collapse
|
39
|
Nishimoto AT, Sharma C, Rogers PD. Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans. J Antimicrob Chemother 2021; 75:257-270. [PMID: 31603213 DOI: 10.1093/jac/dkz400] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is an opportunistic yeast and the major human fungal pathogen in the USA, as well as in many other regions of the world. Infections with C. albicans can range from superficial mucosal and dermatological infections to life-threatening infections of the bloodstream and vital organs. The azole antifungals remain an important mainstay treatment of candidiasis and therefore the investigation and understanding of the evolution, frequency and mechanisms of azole resistance are vital to improving treatment strategies against this organism. Here the organism C. albicans and the genetic changes and molecular bases underlying the currently known resistance mechanisms to the azole antifungal class are reviewed, including up-regulated expression of efflux pumps, changes in the expression and amino acid composition of the azole target Erg11 and alterations to the organism's typical sterol biosynthesis pathways. Additionally, we update what is known about activating mutations in the zinc cluster transcription factor (ZCF) genes regulating many of these resistance mechanisms and review azole import as a potential contributor to azole resistance. Lastly, investigations of azole tolerance in C. albicans and its implicated clinical significance are reviewed.
Collapse
Affiliation(s)
- Andrew T Nishimoto
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cheshta Sharma
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - P David Rogers
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
40
|
Mechanistic Insight into Antimicrobial and Antioxidant Potential of Jasminum Species: A Herbal Approach for Disease Management. PLANTS 2021; 10:plants10061089. [PMID: 34071621 PMCID: PMC8227019 DOI: 10.3390/plants10061089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/28/2022]
Abstract
Drug resistance among microbial pathogens and oxidative stress caused by reactive oxygen species are two of the most challenging global issues. Firstly, drug-resistant pathogens cause several fatalities every year. Secondly aging and a variety of diseases, such as cardiovascular disease and cancer, are associated with free radical generated oxidative stress. The treatments currently available are limited, ineffective, or less efficient, so there is an immediate need to tackle these issues by looking for new therapies to resolve resistance and neutralize the harmful effects of free radicals. In the 21st century, the best way to save humans from them could be by using plants as well as their bioactive constituents. In this specific context, Jasminum is a major plant genus that is used in the Ayurvedic system of medicine to treat a variety of ailments. The information in this review was gathered from a variety of sources, including books, websites, and databases such as Science Direct, PubMed, and Google Scholar. In this review, a total of 14 species of Jasminum have been found to be efficient and effective against a wide variety of microbial pathogens. In addition, 14 species were found to be active free radical scavengers. The review is also focused on the disorders related to oxidative stress, and it was concluded that Jasminum grandiflorum and J. sambac normalized various parameters that were elevated by free radical generation. Alkaloids, flavonoids (rutoside), terpenes, phenols, and iridoid glucosides are among the main phytoconstituents found in various Jasminum species. Furthermore, this review also provides insight into the mechanistic basis of drug resistance, the generation of free radicals, and the role of Jasminum plants in combating resistance and neutralizing free radicals.
Collapse
|
41
|
Shi H, Zhang Y, Zhang M, Chang W, Lou H. Molecular Mechanisms of Azole Resistance in Four Clinical Candida albicans Isolates. Microb Drug Resist 2021; 27:1641-1651. [PMID: 34037478 DOI: 10.1089/mdr.2020.0413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Azole resistance constitutes a serious clinical problem in the management of infections caused by Candida albicans. This study aimed to explore azole-resistant mechanisms in clinical C. albicans isolates collected in Jinan, Shandong, China. In total, 22 samples were collected and analyzed. Among these, four isolates (28A, 28D, 28I, and 28J) exhibited high level of pan-azole-resistance that was Hsp90 dependent. Gene sequencing revealed that the four Hsp90-dependent strains contained different ERG3 mutations that led to four novel amino acid substitutions (S265Y, N322D, N324S, and E355D) in Erg3. The role of these substitutions in azole resistance development was determined by constructing one copy of the mutated ERG3 from the 28A, 28D, and 28I strains into C. albicans CAI4, respectively. The minimum inhibitory concentration value of fluconazole (FLC) against C. albicans CAI4-ERG328I increased fourfold compared with the wild-type C. albicans strain, suggesting that the novel combination of substitutions S265Y, N322D, and N324S played an important role in mediating azole resistance in 28I. Besides, we identified several different mechanisms in other three isolates. Strains 28A and 28D displayed increased efflux ability and overexpression of MDR1. Strain 28J showed high level of ERG11 expression, but no mutation in its regulator Upc2 was observed. Our study revealed that multiple factors confer azole resistance in clinical C. albicans isolates and combination therapy should be conducted clinically.
Collapse
Affiliation(s)
- Hongzhuo Shi
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanli Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pharmacy, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Jinan, China
| | - Ming Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
42
|
Chen YR, Ziv I, Swaminathan K, Elias JE, Jarosz DF. Protein aggregation and the evolution of stress resistance in clinical yeast. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200127. [PMID: 33866806 DOI: 10.1098/rstb.2020.0127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Protein aggregation, particularly in its prion-like form, has long been thought to be detrimental. However, recent studies have identified multiple instances where protein aggregation is important for normal physiological functions. Combining mass spectrometry and cell biological approaches, we developed a strategy for the identification of protein aggregates in cell lysates. We used this approach to characterize prion-based traits in pathogenic strains of the yeast Saccharomyces cerevisiae isolated from immunocompromised human patients. The proteins that we found, including the metabolic enzyme Cdc19, the translation elongation factor Yef3 and the fibrillarin homologue Nop1, are known to assemble under certain physiological conditions. Yet, such assemblies have not been reported to be stable or heritable. Our data suggest that some proteins which aggregate in response to stress have the capacity to acquire diverse assembled states, certain ones of which can be propagated across generations in a form of protein-based epigenetics. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Yiwen R Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Kavya Swaminathan
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
43
|
Lee Y, Puumala E, Robbins N, Cowen LE. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chem Rev 2021; 121:3390-3411. [PMID: 32441527 PMCID: PMC8519031 DOI: 10.1021/acs.chemrev.0c00199] [Citation(s) in RCA: 432] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fungal infections are a major contributor to infectious disease-related deaths across the globe. Candida species are among the most common causes of invasive mycotic disease, with Candida albicans reigning as the leading cause of invasive candidiasis. Given that fungi are eukaryotes like their human host, the number of unique molecular targets that can be exploited for antifungal development remains limited. Currently, there are only three major classes of drugs approved for the treatment of invasive mycoses, and the efficacy of these agents is compromised by the development of drug resistance in pathogen populations. Notably, the emergence of additional drug-resistant species, such as Candida auris and Candida glabrata, further threatens the limited armamentarium of antifungals available to treat these serious infections. Here, we describe our current arsenal of antifungals and elaborate on the resistance mechanisms Candida species possess that render them recalcitrant to therapeutic intervention. Finally, we highlight some of the most promising therapeutic strategies that may help combat antifungal resistance, including combination therapy, targeting fungal-virulence traits, and modulating host immunity. Overall, a thorough understanding of the mechanistic principles governing antifungal drug resistance is fundamental for the development of novel therapeutics to combat current and emerging fungal threats.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
44
|
Abstract
Cryptococcus neoformans is a basidiomycetous yeast responsible for hundreds of thousands of deaths a year and is particularly threatening in immunocompromised patients. There are few families of antifungals that are available to fight fungal infections, and the unique efficient treatment for the most deadly cerebral forms of cryptococcosis is based on a combination of 5-fluorocytosine and amphotericin B. The toxicities of both compounds are elevated, and more therapeutic options are urgently needed for better management of life-threatening cryptococcosis. The newest class of antifungals, i.e., echinocandins, has initially led to great hope. Unfortunately, C. neoformans was rapidly confirmed to be naturally resistant to these molecules, notably caspofungin. In this respect, we discuss here the recent key findings of the Panepinto research group published in mBio (M. C. Kalem et al., mBio 12:e03225-20, 2021, https://doi:10.1128/mBio.03225-20) that provide an unprecedented view of how C. neoformans regulates caspofungin resistance through a complex posttranscriptional regulation of cell wall biosynthesis genes.
Collapse
Affiliation(s)
- Nicolas Papon
- Host-Pathogen Interaction Study Group (GEIHP, EA 3142), Université Angers, Université Brest, Angers, France
- Federative Structure of Research Cellular Interactions and Therapeutic Applications, SFR 4208 ICAT, Université Angers, Angers, France
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
45
|
Miao J, Mu W, Bi Y, Zhang Y, Zhang S, Song J, Liu X. Heterokaryotic state of a point mutation (H249Y) in SDHB protein drives the evolution of thifluzamide resistance in Rhizoctonia solani. PEST MANAGEMENT SCIENCE 2021; 77:1392-1400. [PMID: 33098218 DOI: 10.1002/ps.6155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sheath blight, caused by Rhizoctonia solani, can be effectively controlled by application of the succinate dehydrogenase inhibitor thifluzamide. Although the risk of resistance to thifluzamide in R. solani had been reported, the thifluzamide-resistance mechanism and the evolution of thifluzamide-resistance in R. solani have not been investigated in detail. RESULTS No differences were found between the sequences of proteins SDHA, SDHC, and SDHD in thifluzamide-sensitive isolates and thifluzamide-resistant mutants, but a single point mutation H249Y was found in SDHB. Two different types of thifluzamide-resistant R. solani mutants were characterized: homokaryotic, carrying only the resistance allele; and heterokaryotic, retaining the wild-type allele in addition to the resistance allele. The resistance level differed according to the nuclear composition at codon 249 in the sdhB gene. Molecular docking results suggested that the point mutation (H249Y) might significantly alter the affinity of thifluzamide and SDHB protein. Heterokaryotic mutants were able to evolve into a homokaryon when repeatedly cultured on agar media or rice plants in the presence of thifluzamide, but thifluzamide treatment had no effect on the genotypes of homokaryotic mutants or sensitive isolates. CONCLUSION This study showed that H249Y in SDHB protein could cause thifluzamide resistance in R. solani. Fungicide application could promote heterokaryotic mutants to evolve into a homokaryon. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Wenjun Mu
- Department of Plant Pathology, China Agricultural University, Beijing, China
- Key Laboratory of Eco-Environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Yang Bi
- Department of Plant Pathology, China Agricultural University, Beijing, China
- Beijing Key Laboratory of New Technology in Agricultural Application, Beijing University of Agriculture, Beijing, China
| | - Yanling Zhang
- Key Laboratory of Eco-Environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Shaoliang Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jizhen Song
- Key Laboratory of Eco-Environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Ebrahimi-Shaghaghi F, Noormohammadi Z, Atyabi SM, Razzaghi-Abyaneh M. Inhibitory effects of cold atmospheric plasma on the growth, virulence factors and HSP90 gene expression in Candida albicans. Arch Biochem Biophys 2021; 700:108772. [PMID: 33485850 DOI: 10.1016/j.abb.2021.108772] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
In spite of the abundance of antifungal therapies, 75% of women in the world suffer from the second most common cause of vaginal infection named vulvovaginal candidiasis. This complication is characterized with overgrowth of Candida albicans. The low efficacy and side effects of current antifungal therapies have convinced the researchers to look for a non-antibiotic based treatment such as cold atmospheric plasmas (CAP). The aim of this research was to evaluate the effects of CAP on C. albicans growth, ergosterol and biofilm formation. In addition, antibiotic resistance, phospholipase and proteinase activity, and structural properties were examined with different exposure duration. Putative critical effect of CAP on the expression of HSP90 as a target of anti-fungal therapy was investigated. ROS production in C. albicans exposed to CAP was assessed. For this purpose, C. albicans subjected to 0, 90, 120, 150, 180 and 210 s of He/O2 (2%), and non-treated cells as control were examined in terms of the mentioned virulence factors. The results showed that CAP had a significant effect on inhibition of C. albicans growth, Inhibition of biofilm formation, ergosterol content, and fluconazole and amphotericin B antibiotic sensitivity were significant in 210 s treatment group. This effect was validated based on changes of the cell architecture and morphology given the microscopy imaging results. The expression of HSP90 in both C. albicans ATCC 10231 and C. albicans PFCC 9362 was inhibited in 210 s of exposition. CAP exposition induced intracellular ROS, which may cause membrane damage and cell death in C. albicans. Taken together, the potential of CAP for therapeutic purposes in C. albicans-induced fungal infections is supported.
Collapse
Affiliation(s)
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed-Mohammad Atyabi
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
| | | |
Collapse
|
47
|
Fungal Zn(II) 2Cys 6 Transcription Factor ADS-1 Regulates Drug Efflux and Ergosterol Metabolism under Antifungal Azole Stress. Antimicrob Agents Chemother 2021; 65:AAC.01316-20. [PMID: 33199382 DOI: 10.1128/aac.01316-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
Antifungal azoles are the most widely used antifungal drugs in clinical and agricultural practice. Fungi can mount adaptive responses to azole stress by modifying the transcript levels of many genes, and the responsive mechanisms to azoles are the basis for fungi to develop azole resistance. In this study, we identified a new Zn(II)2Cys6 transcription factor, ADS-1, with a positive regulatory function in transcriptional responses to azole stress in the model filamentous fungal species Neurospora crassa Under ketoconazole (KTC) stress, the ads-1 transcript level was significantly increased in N. crassa Deletion of ads-1 increased susceptibility to different azoles, while its overexpression increased resistance to these azoles. The cdr4 gene, which encodes the key azole efflux pump, was positively regulated by ADS-1. Deletion of ads-1 reduced the transcriptional response by cdr4 to KTC stress and increased cellular KTC accumulation under KTC stress, while ads-1 overexpression had the opposite effect. ADS-1 also positively regulated the transcriptional response by erg11, which encodes the azole target lanosterol 14α-demethylase for ergosterol biosynthesis, to KTC stress. After KTC treatment, the ads-1 deletion mutant had less ergosterol but accumulated more lanosterol than the wild type, while ads-1 overexpression had the opposite effect. Homologs of ADS-1 are widely present in filamentous fungal species of Ascomycota but not in yeasts. Deletion of the gene encoding an ADS-1 homolog in Aspergillus flavus also increased susceptibility to KTC and itraconazole (ITZ). Besides, deletion of A. flavus ads-1 (Afads-1) significantly reduced the transcriptional responses by genes encoding homologs of CDR4 and ERG11 in A. flavus to KTC stress, and the deletion mutant accumulated more KTC but less ergosterol. Taken together, these findings demonstrate that the function and regulatory mechanism of ADS-1 homologs among different fungal species in azole responses and the basal resistance of azoles are highly conserved.
Collapse
|
48
|
Delarze E, Brandt L, Trachsel E, Patxot M, Pralong C, Maranzano F, Chauvel M, Legrand M, Znaidi S, Bougnoux ME, d’Enfert C, Sanglard D. Identification and Characterization of Mediators of Fluconazole Tolerance in Candida albicans. Front Microbiol 2020; 11:591140. [PMID: 33262748 PMCID: PMC7686038 DOI: 10.3389/fmicb.2020.591140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is an important human pathogen and a major concern in intensive care units around the world. C. albicans infections are associated with a high mortality despite the use of antifungal treatments. One of the causes of therapeutic failures is the acquisition of antifungal resistance by mutations in the C. albicans genome. Fluconazole (FLC) is one of the most widely used antifungal and mechanisms of FLC resistance occurring by mutations have been extensively investigated. However, some clinical isolates are known to be able to survive at high FLC concentrations without acquiring resistance mutations, a phenotype known as tolerance. Mechanisms behind FLC tolerance are not well studied, mainly due to the lack of a proper way to identify and quantify tolerance in clinical isolates. We proposed here culture conditions to investigate FLC tolerance as well as an easy and efficient method to identity and quantify tolerance to FLC. The screening of C. albicans strain collections revealed that FLC tolerance is pH- and strain-dependent, suggesting the involvement of multiple mechanisms. Here, we addressed the identification of FLC tolerance mediators in C. albicans by an overexpression strategy focusing on 572 C. albicans genes. This strategy led to the identification of two transcription factors, CRZ1 and GZF3. CRZ1 is a C2H2-type transcription factor that is part of the calcineurin-dependent pathway in C. albicans, while GZF3 is a GATA-type transcription factor of unknown function in C. albicans. Overexpression of each gene resulted in an increase of FLC tolerance, however, only the deletion of CRZ1 in clinical FLC-tolerant strains consistently decreased their FLC tolerance. Transcription profiling of clinical isolates with variable levels of FLC tolerance confirmed a calcineurin-dependent signature in these isolates when exposed to FLC.
Collapse
Affiliation(s)
- Eric Delarze
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Ludivine Brandt
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Emilie Trachsel
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Marion Patxot
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Claire Pralong
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Fabio Maranzano
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Murielle Chauvel
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Sadri Znaidi
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
- Université de Paris, Paris, France
| | - Christophe d’Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Dominique Sanglard
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
49
|
Fernandes CM, Poeta MD. Fungal sphingolipids: role in the regulation of virulence and potential as targets for future antifungal therapies. Expert Rev Anti Infect Ther 2020; 18:1083-1092. [PMID: 32673125 PMCID: PMC7657966 DOI: 10.1080/14787210.2020.1792288] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The antifungal therapy currently available includes three major classes of drugs: polyenes, azoles and echinocandins. However, the clinical use of these compounds faces several challenges: while polyenes are toxic to the host, antifungal resistance to azoles and echinocandins has been reported. AREAS COVERED Fungal sphingolipids (SL) play a pivotal role in growth, morphogenesis and virulence. In addition, fungi possess unique enzymes involved in SL synthesis, leading to the production of lipids which are absent or differ structurally from the mammalian counterparts. In this review, we address the enzymatic reactions involved in the SL synthesis and their relevance to the fungal pathogenesis, highlighting their potential as targets for novel drugs and the inhibitors described so far. EXPERT OPINION The pharmacological inhibition of fungal serine palmitoyltransferase depends on the development of specific drugs, as myriocin also targets the mammalian enzyme. Inhibitors of ceramide synthase might constitute potent antifungals, by depleting the pool of complex SL and leading to the accumulation of the toxic intermediates. Acylhydrazones and aureobasidin A, which inhibit GlcCer and IPC synthesis, are not toxic to the host and effectively treat invasive mycoses, emerging as promising new classes of antifungal drugs.
Collapse
Affiliation(s)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, NY, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, NY, USA
- Veterans Administration Medical Center, Northport, NY, USA
| |
Collapse
|
50
|
Víglaš J, Olejníková P. Signalling mechanisms involved in stress response to antifungal drugs. Res Microbiol 2020; 172:103786. [PMID: 33038529 DOI: 10.1016/j.resmic.2020.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 01/28/2023]
Abstract
The emergence of antifungal resistance is a serious threat in the treatment of mycoses. The primary susceptible fungal cells may evolve a resistance after longer exposure to antifungal agents. The exposure itself causes stress condition, to which the fungus needs to adapt. This review provides detailed description of evolutionary conserved molecular mechanisms contributing to the adaptation response to stress caused by antifungal agents as well as their interconnection. The knowledge may help us to find new ways to delay the emergence of drug resistance as the same mechanisms are used regardless of what antifungal compound causes stress.
Collapse
Affiliation(s)
- Ján Víglaš
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia.
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia.
| |
Collapse
|