1
|
Taheri Ghahfarokhi S, Peña-Castillo L. BacTermFinder: a comprehensive and general bacterial terminator finder using a CNN ensemble. NAR Genom Bioinform 2025; 7:lqaf016. [PMID: 40060369 PMCID: PMC11890068 DOI: 10.1093/nargab/lqaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 04/16/2025] Open
Abstract
A terminator is a DNA region that ends the transcription process. Currently, multiple computational tools are available for predicting bacterial terminators. However, these methods are specialized for certain bacteria or terminator type (i.e. intrinsic or factor-dependent). In this work, we developed BacTermFinder using an ensemble of convolutional neural networks (CNNs) receiving as input four different representations of terminator sequences. To develop BacTermFinder, we collected roughly 41 000 bacterial terminators (intrinsic and factor-dependent) of 22 species with varying GC-content (from 28% to 71%) from published studies that used RNA-seq technologies. We evaluated BacTermFinder's performance on terminators of five bacterial species (not used for training BacTermFinder) and two archaeal species. BacTermFinder's performance was compared with that of four other bacterial terminator prediction tools. Based on our results, BacTermFinder outperforms all other four approaches in terms of average recall without increasing the number of false positives. Moreover, BacTermFinder identifies both types of terminators (intrinsic and factor-dependent) and generalizes to archaeal terminators. Additionally, we visualized the saliency map of the CNNs to gain insights on terminator motif per species. BacTermFinder is publicly available at https://github.com/BioinformaticsLabAtMUN/BacTermFinder.
Collapse
Affiliation(s)
| | - Lourdes Peña-Castillo
- Department of Computer Science, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X5, Canada
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X9, Canada
| |
Collapse
|
2
|
Gjorgjevikj D, Kumar N, Wang B, Hilal T, Said N, Loll B, Artsimovitch I, Sen R, Wahl MC. The Psu protein of phage satellite P4 inhibits transcription termination factor ρ by forced hyper-oligomerization. Nat Commun 2025; 16:550. [PMID: 39788982 PMCID: PMC11718236 DOI: 10.1038/s41467-025-55897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Many bacteriophages modulate host transcription to favor expression of their own genomes. Phage satellite P4 polarity suppression protein, Psu, a building block of the viral capsid, inhibits hexameric transcription termination factor, ρ, by presently unknown mechanisms. Our cryogenic electron microscopy structures of ρ-Psu complexes show that Psu dimers clamp two inactive, open ρ rings and promote their expansion to higher-oligomeric states. ATPase, nucleotide binding and nucleic acid binding studies revealed that Psu hinders ρ ring closure and traps nucleotides in their binding pockets on ρ. Structure-guided mutagenesis in combination with growth, pull-down, and termination assays further delineated the functional ρ-Psu interfaces in vivo. Bioinformatic analyses revealed that Psu is associated with a wide variety of phage defense systems across Enterobacteriaceae, suggesting that Psu may regulate expression of anti-phage genes. Our findings show that modulation of the ρ oligomeric state via diverse strategies is a pervasive gene regulatory principle in bacteria.
Collapse
Affiliation(s)
- Daniela Gjorgjevikj
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Department of Medicine, Molecular Immunity Unit, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Naveen Kumar
- Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Bing Wang
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Tarek Hilal
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Nelly Said
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Bernhard Loll
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Ranjan Sen
- Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany.
| |
Collapse
|
3
|
Wirachman ES, Grossman AD. Transcription termination and antitermination are critical for the fitness and function of the integrative and conjugative element Tn916. PLoS Genet 2024; 20:e1011417. [PMID: 39652596 DOI: 10.1371/journal.pgen.1011417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
Premature expression of genes in mobile genetic elements can be detrimental to their bacterial hosts. Tn916, the founding member of a large family of integrative and conjugative elements (ICEs; aka conjugative transposons), confers tetracycline-resistance and is found in several Gram-positive bacterial species. We identified a transcription terminator near one end of Tn916 that functions as an insulator that prevents expression of element genes when Tn916 is integrated downstream from an active host promoter. The terminator blocked expression of Tn916 genes needed for unwinding and rolling circle replication of the element DNA, and loss of the terminator caused a fitness defect for the host cells. Further, we identified an element-encoded antiterminator (named canT for conjugation-associated antitermination) that is essential for transcription of Tn916 genes after excision of the element from the host chromosome. We found that the antiterminator is orientation-specific, functions with heterologous promoters and terminators, is processive and is most likely a cis-acting RNA. Insulating gene expression in conjugative elements that are integrated in the chromosome is likely a key feature of the interplay between mobile genetic elements and their hosts and appears to be critical for the function and evolution of the large family of Tn916-like elements.
Collapse
Affiliation(s)
- Erika S Wirachman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
4
|
De Boeck N, Villellas C, Crespo-Yuste E, Gonzalo-Asensio J, Buckley PT, Thys K, Vuong C, Lounis N, Verstraeten N, Michiels J. A single upstream mutation of whiB7 underlies amikacin and clarithromycin resistance in Mycobacterium abscessus. J Appl Microbiol 2024; 135:lxae286. [PMID: 39537195 DOI: 10.1093/jambio/lxae286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/18/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
AIMS We aimed to investigate the molecular mechanisms underlying the survival of Mycobacterium abscessus when faced with antibiotic combination therapy. By conducting evolution experiments and whole-genome sequencing (WGS), we sought to identify genetic variants associated with stress response mechanisms, with a particular focus on drug survival and resistance. METHODS AND RESULTS We conducted evolution experiments on M. abscessus, exposing the bacteria to a combination therapy of amikacin and rifabutin. Genetic mutations associated with increased antibiotic survival and altered susceptibility were subsequently identified by WGS. We focused on mutations that contribute to stress response mechanisms and tolerance. Of particular interest was a novel frameshift mutation in MAB_3509c, a gene of unknown function within the upstream open reading frame of whiB7. A MAB_3509c knockout mutant was constructed, and expression of downstream drug resistance genes was assessed by RT-qPCR. Mutation of MAB_3509c results in increased RNA levels of whiB7 and downstream stress response genes such as eis2, which is responsible for aminoglycoside resistance. CONCLUSION Our findings demonstrate the importance of whiB7 in the adaptive stress response in M. abscessus. Moreover, our results highlight the complexity of M. abscessus adapting to drug stress and underscore the need for further research.
Collapse
Affiliation(s)
- Nathan De Boeck
- Center for Microbiology, VIB-KU Leuven, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- Infectious Diseases Therapeutic Area, LLC, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Cristina Villellas
- Infectious Diseases Therapeutic Area, LLC, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza IIS-Aragón, 50009 Zaragoza, Spain
| | - Estefanía Crespo-Yuste
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza IIS-Aragón, 50009 Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jesús Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza IIS-Aragón, 50009 Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Peter T Buckley
- Infectious Diseases Therapeutic Area, LLC, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Kim Thys
- Infectious Diseases Therapeutic Area, LLC, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Cuong Vuong
- Infectious Diseases Therapeutic Area, LLC, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Nacer Lounis
- Infectious Diseases Therapeutic Area, LLC, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Natalie Verstraeten
- Center for Microbiology, VIB-KU Leuven, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
| | - Jan Michiels
- Center for Microbiology, VIB-KU Leuven, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
5
|
Vollmers L, Zacharias M. Advanced sampling simulations of coupled folding and binding of phage P22 N-peptide to boxB RNA. Biophys J 2024; 123:3463-3477. [PMID: 39210596 PMCID: PMC11480772 DOI: 10.1016/j.bpj.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Protein-RNA interactions are crucially important for numerous cellular processes and often involve coupled folding and binding of peptide segments upon association. The Nut-utilization site (N)-protein of bacteriophages contains an N-terminal arginine-rich motif that undergoes such a folding transition upon binding to the boxB RNA hairpin loop target structure. Molecular dynamics free energy simulations were used to calculate the absolute binding free energy of the N-peptide of bacteriophage P22 in complex with the boxB RNA hairpin motif at different salt concentrations and using two different water force field models. We obtained good agreement with experiment also at different salt concentrations for the TIP4P-D water model that has a stabilizing effect on unfolded protein structures. It allowed us to estimate the free energy contribution resulting from restricting the molecules' spatial and conformational freedom upon binding, which makes a large opposing contribution to binding. In a second set of umbrella sampling simulations to dissociate/associate the complex along a separation coordinate, we analyzed the onset of preorientation of the N-peptide and onset of structure formation relative to the RNA and its dependence on the salt concentration. Peptide orientation and conformational transitions are significantly coupled to the first contact formation between peptide and RNA. The initial contacts are mostly formed between peptide residues and the boxB hairpin loop nucleotides. A complete transition to an α-helical bound peptide conformation occurs only at a late stage of the binding process a few angstroms before the complexed state has been reached. However, the N-peptide orients also at distances beyond the contact distance such that the sizable positive charge points toward the RNA's center-of-mass. Our result may have important implications for understanding protein- and peptide-RNA complex formation frequently involving coupled folding and association processes.
Collapse
Affiliation(s)
- Luis Vollmers
- Physics Department and Center of Protein Assemblies, Technical University Munich, Garching, Germany
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University Munich, Garching, Germany.
| |
Collapse
|
6
|
Morón Á, Ortiz-Miravalles L, Peñalver M, García-del Portillo F, Pucciarelli MG, Ortega AD. Rli51 Attenuates Transcription of the Listeria Pathogenicity Island 1 Gene mpl and Functions as a Trans-Acting sRNA in Intracellular Bacteria. Int J Mol Sci 2024; 25:9380. [PMID: 39273334 PMCID: PMC11394854 DOI: 10.3390/ijms25179380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Listeria pathogenicity island 1 (LIPI-1) is a genetic region containing a cluster of genes essential for virulence of the bacterial pathogen Listeria monocytogenes. Main virulence factors in LIPI-1 include long 5' untranslated regions (5'UTRs), among which is Rli51, a small RNA (sRNA) in the 5'UTR of the Zn-metalloprotease-coding mpl. So far, Rli51 function and molecular mechanisms have remained obscure. Here, we show that Rli51 exhibits a dual mechanism of regulation, functioning as a cis- and as a trans-acting sRNA. Under nutrient-rich conditions, rli51-mpl transcription is prematurely terminated, releasing a short 121-nucleotide-long sRNA. Rli51 is predicted to function as a transcription attenuator that can fold into either a terminator or a thermodynamically more stable antiterminator. We show that the sRNA Rli21/RliI binds to a single-stranded RNA loop in Rli51, which is essential to mediate premature transcription termination, suggesting that sRNA binding could stabilize the terminator fold. During intracellular infection, rli51 transcription is increased, which generates a higher abundance of the short Rli51 sRNA and allows for transcriptional read-through into mpl. Comparative intracellular bacterial transcriptomics in rli51-null mutants and the wild-type reference strain EGD-e suggests that Rli51 upregulates iron-scavenging proteins and downregulates virulence factors from LIPI-1. MS2 affinity purification confirmed that Rli51 binds transcripts of the heme-binding protein Lmo2186 and Lmo0937 in vivo. These results prove that Rli51 functions as a trans-acting sRNA in intracellular bacteria. Our research shows a growth condition-dependent mechanism of regulation for Rli51, preventing unintended mpl transcription in extracellular bacteria and regulating genes important for virulence in intracellular bacteria.
Collapse
Affiliation(s)
- Álvaro Morón
- Department of Cell Biology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
| | - Laura Ortiz-Miravalles
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biologia Molecular Severo Ochoa (CBM) CSIC-UAM, 28049 Madrid, Spain
| | - Marcos Peñalver
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biologia Molecular Severo Ochoa (CBM) CSIC-UAM, 28049 Madrid, Spain
| | - Francisco García-del Portillo
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
| | - M. Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biologia Molecular Severo Ochoa (CBM) CSIC-UAM, 28049 Madrid, Spain
| | - Alvaro Darío Ortega
- Department of Cell Biology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biologia Molecular Severo Ochoa (CBM) CSIC-UAM, 28049 Madrid, Spain
| |
Collapse
|
7
|
He C, He G, Feng Y. Structural basis of phage transcriptional regulation. Structure 2024; 32:1031-1039. [PMID: 39067444 DOI: 10.1016/j.str.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Phages are the most prevalent and diverse entities in the biosphere and represent the simplest systems that are capable of self-replication. Many fundamental concepts of transcriptional regulation were revealed through phage studies. The replication of phages within bacteria entails the hijacking of the host transcription machinery. Typically, this is accomplished through proteins and RNAs encoded by the phage genome that bind to the host RNA polymerase and modify its characteristics. Understanding these processes offers valuable insights into the mechanisms of bacterial transcription itself. Historically, X-ray crystallography has been the major tool for elucidating the structural basis of phage transcriptional regulation. In recent years, the application of cryoelectron microscopy has not only allowed the exploration of protein-protein and protein-nucleic acid interactions at near-atomic resolution but also captured transient intermediate states, further expanding our mechanistic understanding of phage transcriptional regulation.
Collapse
Affiliation(s)
- Chuchu He
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guanchen He
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging Injury Diseases of Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
8
|
Buson F, Gao Y, Wang B. Genetic Parts and Enabling Tools for Biocircuit Design. ACS Synth Biol 2024; 13:697-713. [PMID: 38427821 DOI: 10.1021/acssynbio.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Synthetic biology aims to engineer biological systems for customized tasks through the bottom-up assembly of fundamental building blocks, which requires high-quality libraries of reliable, modular, and standardized genetic parts. To establish sets of parts that work well together, synthetic biologists created standardized part libraries in which every component is analyzed in the same metrics and context. Here we present a state-of-the-art review of the currently available part libraries for designing biocircuits and their gene expression regulation paradigms at transcriptional, translational, and post-translational levels in Escherichia coli. We discuss the necessary facets to integrate these parts into complex devices and systems along with the current efforts to catalogue and standardize measurement data. To better display the range of available parts and to facilitate part selection in synthetic biology workflows, we established biopartsDB, a curated database of well-characterized and useful genetic part and device libraries with detailed quantitative data validated by the published literature.
Collapse
Affiliation(s)
- Felipe Buson
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K
| | - Yuanli Gao
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Chauvier A, Walter NG. Regulation of bacterial gene expression by non-coding RNA: It is all about time! Cell Chem Biol 2024; 31:71-85. [PMID: 38211587 DOI: 10.1016/j.chembiol.2023.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Commensal and pathogenic bacteria continuously evolve to survive in diverse ecological niches by efficiently coordinating gene expression levels in their ever-changing environments. Regulation through the RNA transcript itself offers a faster and more cost-effective way to adapt than protein-based mechanisms and can be leveraged for diagnostic or antimicrobial purposes. However, RNA can fold into numerous intricate, not always functional structures that both expand and obscure the plethora of roles that regulatory RNAs serve within the cell. Here, we review the current knowledge of bacterial non-coding RNAs in relation to their folding pathways and interactions. We posit that co-transcriptional folding of these transcripts ultimately dictates their downstream functions. Elucidating the spatiotemporal folding of non-coding RNAs during transcription therefore provides invaluable insights into bacterial pathogeneses and predictive disease diagnostics. Finally, we discuss the implications of co-transcriptional folding andapplications of RNAs for therapeutics and drug targets.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Miguel-Arribas A, Martín-María A, Alaerds ECW, Val-Calvo J, Yuste L, Rojo F, Abia D, Wu L, Meijer WJJ. Extraordinary long-stem confers resistance of intrinsic terminators to processive antitermination. Nucleic Acids Res 2023; 51:6073-6086. [PMID: 37125647 PMCID: PMC10325885 DOI: 10.1093/nar/gkad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/14/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
Many prokaryotic operons encode a processive antitermination (P-AT) system. Transcription complexes associated with an antitermination factor can bypass multiple transcription termination signals regardless of their sequences. However, to avoid compromising transcriptional regulation of downstream regions, the terminator at the end of the operon needs to be resistant to antitermination. So far, no studies on the mechanism of resistance to antitermination have been reported. The recently discovered conAn P-AT system is composed of two components that are encoded at the start of many conjugation operons on plasmids of Gram-positive bacteria. Here we report the identification of a conAn-resistant terminator, named TerR, in the conjugation operon of the Bacillus subtilis plasmid pLS20, re-defining the end of the conjugation operon. We investigated the various characteristics of TerR and show that its extraordinary long stem is the determining feature for resistance to antitermination. This is the first P-AT resistance mechanism to be reported.
Collapse
Affiliation(s)
- Andrés Miguel-Arribas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana Martín-María
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Eef C W Alaerds
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jorge Val-Calvo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Luis Yuste
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, C. Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, C. Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular “Severo Ochoa”, (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK
| | - Wilfried J J Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
11
|
Wang L, Watters JW, Ju X, Lu G, Liu S. Head-on and co-directional RNA polymerase collisions orchestrate bidirectional transcription termination. Mol Cell 2023; 83:1153-1164.e4. [PMID: 36917983 PMCID: PMC10081963 DOI: 10.1016/j.molcel.2023.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/03/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023]
Abstract
Genomic DNA is a crowded track where motor proteins frequently collide. It remains underexplored whether these collisions carry physiological function. In this work, we develop a single-molecule assay to visualize the trafficking of individual E. coli RNA polymerases (RNAPs) on DNA. Based on transcriptomic data, we hypothesize that RNAP collisions drive bidirectional transcription termination of convergent gene pairs. Single-molecule results show that the head-on collision between two converging RNAPs is necessary to prevent transcriptional readthrough but insufficient to release the RNAPs from the DNA. Remarkably, co-directional collision of a trailing RNAP into the head-on collided complex dramatically increases the termination efficiency. Furthermore, stem-loop structures formed in the nascent RNA are required for collisions to occur at well-defined positions between convergent genes. These findings suggest that physical collisions between RNAPs furnish a mechanism for transcription termination and that programmed genomic conflicts can be exploited to co-regulate the expression of multiple genes.
Collapse
Affiliation(s)
- Ling Wang
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| | - John W Watters
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Xiangwu Ju
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Genzhe Lu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
12
|
Iyengar BR, Bornberg-Bauer E. Neutral Models of De Novo Gene Emergence Suggest that Gene Evolution has a Preferred Trajectory. Mol Biol Evol 2023; 40:msad079. [PMID: 37011142 PMCID: PMC10118301 DOI: 10.1093/molbev/msad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
New protein coding genes can emerge from genomic regions that previously did not contain any genes, via a process called de novo gene emergence. To synthesize a protein, DNA must be transcribed as well as translated. Both processes need certain DNA sequence features. Stable transcription requires promoters and a polyadenylation signal, while translation requires at least an open reading frame. We develop mathematical models based on mutation probabilities, and the assumption of neutral evolution, to find out how quickly genes emerge and are lost. We also investigate the effect of the order by which DNA features evolve, and if sequence composition is biased by mutation rate. We rationalize how genes are lost much more rapidly than they emerge, and how they preferentially arise in regions that are already transcribed. Our study not only answers some fundamental questions on the topic of de novo emergence but also provides a modeling framework for future studies.
Collapse
Affiliation(s)
- Bharat Ravi Iyengar
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Chien PY, Gao L, Liu Y. Quantitative Analysis of Transcription Termination via Position-Selective Labeling of RNA (PLOR) Method. Int J Mol Sci 2023; 24:ijms24054934. [PMID: 36902367 PMCID: PMC10003555 DOI: 10.3390/ijms24054934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
T7 RNA polymerase is the most widely used enzyme in RNA synthesis, and it is also used for RNA labeling in position-selective labeling of RNA (PLOR). PLOR is a liquid-solid hybrid phase method that has been developed to introduce labels to specific positions of RNA. Here, we applied PLOR as a single-round transcription method to quantify the terminated and read-through products in transcription for the first time. Various factors, including pausing strategies, Mg2+, ligand and the NTP concentration at the transcriptional termination of adenine riboswitch RNA have been characterized. This helps to understand transcription termination, which is one of the least understood processes in transcription. Additionally, our strategy can potentially be used to study the co-transcription behavior of general RNA, especially when continuous transcription is not desired.
Collapse
|
14
|
Xiao M, Ma F, Yu J, Xie J, Zhang Q, Liu P, Yu F, Jiang Y, Zhang L. A Computer Simulation of SARS-CoV-2 Mutation Spectra for Empirical Data Characterization and Analysis. Biomolecules 2022; 13:63. [PMID: 36671448 PMCID: PMC9855923 DOI: 10.3390/biom13010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
It is very important to compute the mutation spectra, and simulate the intra-host mutation processes by sequencing data, which is not only for the understanding of SARS-CoV-2 genetic mechanism, but also for epidemic prediction, vaccine, and drug design. However, the current intra-host mutation analysis algorithms are not only inaccurate, but also the simulation methods are unable to quickly and precisely predict new SARS-CoV-2 variants generated from the accumulation of mutations. Therefore, this study proposes a novel accurate strand-specific SARS-CoV-2 intra-host mutation spectra computation method, develops an efficient and fast SARS-CoV-2 intra-host mutation simulation method based on mutation spectra, and establishes an online analysis and visualization platform. Our main results include: (1) There is a significant variability in the SARS-CoV-2 intra-host mutation spectra across different lineages, with the major mutations from G- > A, G- > C, G- > U on the positive-sense strand and C- > U, C- > G, C- > A on the negative-sense strand; (2) our mutation simulation reveals the simulation sequence starts to deviate from the base content percentage of Alpha-CoV/Delta-CoV after approximately 620 mutation steps; (3) 2019-NCSS provides an easy-to-use and visualized online platform for SARS-Cov-2 online analysis and mutation simulation.
Collapse
Affiliation(s)
- Ming Xiao
- College of Computer Science, Sichuan University, Chengdu 610065, China
- Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - Fubo Ma
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghang Xie
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Qiaozhen Zhang
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Peng Liu
- National Wildlife Health Center, Hebei Agricultural University, Baoding 071001, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding 071001, China
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding 071001, China
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Yuming Jiang
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Le Zhang
- College of Computer Science, Sichuan University, Chengdu 610065, China
- Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Zhai W, Duan Y, Zhang X, Xu G, Li H, Shi J, Xu Z, Zhang X. Sequence and thermodynamic characteristics of terminators revealed by FlowSeq and the discrimination of terminators strength. Synth Syst Biotechnol 2022; 7:1046-1055. [PMID: 35845313 PMCID: PMC9257418 DOI: 10.1016/j.synbio.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 11/24/2022] Open
Abstract
The intrinsic terminator in prokaryotic forms secondary RNA structure and terminates the transcription. However, leaking transcription is common due to varied terminator strength. Besides of the representative hairpin and U-tract structure, detailed sequence and thermodynamic features of terminators were not completely clear, and the effect of terminator on the upstream gene expression was unclearly. Thus, it is still challenging to use terminator to control expression with higher precision. Here, in E. Coli, we firstly determined the effect of the 3′-end sequences including spacer sequences and terminator sequences on the expression of upstream and downstream genes. Secondly, terminator mutation library was constructed, and the thermodynamic and sequence features differing in the termination efficiency were analyzed using the FlowSeq technique. The result showed that under the regulation of terminators, a negative correlation was presented between the expression of upstream and downstream genes (r=−0.60), and the terminators with lower free energy corelated with higher upstream gene expression. Meanwhile, the terminator with longer stem length, more compact loop and perfect U-tract structure was benefit to the transcription termination. Finally, a terminator strength classification model was established, and the verification experiment based on 20 synthetic terminators indicated that the model can distinguish strong and weak terminators to certain extent. The results help to elucidate the role of terminators in gene expression, and the key factors identified are crucial for rational design of terminators, and the model provided a method for terminator strength prediction.
Collapse
Affiliation(s)
- Weiji Zhai
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Yanting Duan
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Xiaomei Zhang
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Guoqiang Xu
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Hui Li
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jinsong Shi
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Zhenghong Xu
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Xiaojuan Zhang
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Corresponding author. Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
16
|
Mandell ZF, Vishwakarma RK, Yakhnin H, Murakami KS, Kashlev M, Babitzke P. Comprehensive transcription terminator atlas for Bacillus subtilis. Nat Microbiol 2022; 7:1918-1931. [PMID: 36192538 PMCID: PMC10024249 DOI: 10.1038/s41564-022-01240-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/26/2022] [Indexed: 01/12/2023]
Abstract
The transcriptome-wide contributions of Rho-dependent and intrinsic (Rho-independent) transcription termination mechanisms in bacteria are unclear. By sequencing released transcripts in a wild-type strain and strains containing deficiencies in NusA, NusG and/or Rho (10 strains), we produced an atlas of terminators for the model Gram-positive bacterium Bacillus subtilis. We found that NusA and NusG stimulate 77% and 19% of all intrinsic terminators, respectively, and that both proteins participate in Rho-dependent termination. We also show that Rho stimulates termination at 10% of the intrinsic terminators in vivo. We recapitulated Rho-stimulated intrinsic termination at 5 terminators in vitro and found that Rho requires the KOW domain of NusG to stimulate this process at one of these terminators. Computational analyses of our atlas using RNAstructure, MEME suite and DiffLogo, combined with in vitro transcription experiments, revealed that Rho stimulates intrinsic terminators with weak hairpins and/or U-rich tracts by remodelling the RNA upstream of the intrinsic terminator to prevent the formation of RNA structures that could otherwise compete with the terminator hairpin. We also identified 56 putative examples of 'hybrid Rho-dependent termination', wherein classical Rho-dependent termination occurs after readthrough of a Rho-stimulated intrinsic terminator.
Collapse
Affiliation(s)
- Zachary F Mandell
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Department of Molecular Biology and Genetics and Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Rishi K Vishwakarma
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Mikhail Kashlev
- NCI RNA Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
17
|
Kushwaha SK, Narasimhan LP, Chithananthan C, Marathe SA. Clustered regularly interspaced short palindromic repeats-Cas system: diversity and regulation in Enterobacteriaceae. Future Microbiol 2022; 17:1249-1267. [PMID: 36006039 DOI: 10.2217/fmb-2022-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Insights into the arms race between bacteria and invading mobile genetic elements have revealed the intricacies of the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system and the counter-defenses of bacteriophages. Incredible spacer diversity but significant spacer conservation among species/subspecies dictates the specificity of the CRISPR-Cas system. Researchers have exploited this feature to type/subtype the bacterial strains, devise targeted antimicrobials and regulate gene expression. This review focuses on the nuances of the CRISPR-Cas systems in Enterobacteriaceae that predominantly harbor type I-E and I-F CRISPR systems. We discuss the systems' regulation by the global regulators, H-NS, LeuO, LRP, cAMP receptor protein and other regulators in response to environmental stress. We further discuss the regulation of noncanonical functions like DNA repair pathways, biofilm formation, quorum sensing and virulence by the CRISPR-Cas system. The review comprehends multiple facets of the CRISPR-Cas system in Enterobacteriaceae including its diverse attributes, association with genetic features, regulation and gene regulatory mechanisms.
Collapse
Affiliation(s)
- Simran K Kushwaha
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| | - Lakshmi P Narasimhan
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| | - Chandrananthi Chithananthan
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| | - Sandhya A Marathe
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| |
Collapse
|
18
|
Mandell ZF, Zemba D, Babitzke P. Factor-stimulated intrinsic termination: getting by with a little help from some friends. Transcription 2022; 13:96-108. [PMID: 36154805 PMCID: PMC9715273 DOI: 10.1080/21541264.2022.2127602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/12/2023] Open
Abstract
Transcription termination is known to occur via two mechanisms in bacteria, intrinsic termination (also frequently referred to as Rho-independent or factor-independent termination) and Rho-dependent termination. Based primarily on in vitro studies using Escherichia coli RNA polymerase, it was generally assumed that intrinsic termination and Rho-dependent termination are distinct mechanisms and that the signals required for intrinsic termination are present primarily within the nucleic acids. In this review, we detail recent findings from studies in Bacillus subtilis showing that intrinsic termination in this organism is highly stimulated by NusA, NusG, and even Rho. In NusA-stimulated intrinsic termination, NusA facilitates the formation of weak terminator hairpins and compensates for distal U-rich tract interruptions. In NusG-stimulated intrinsic termination, NusG stabilizes a sequence-dependent pause at the point of termination, which extends the time frame for RNA hairpins with weak terminal base pairs to form in either a NusA-stimulated or a NusA-independent fashion. In Rho-stimulated intrinsic termination, Rho prevents the formation of antiterminator-like RNA structures that could otherwise compete with the terminator hairpin. Combined, NusA, NusG, and Rho stimulate approximately 97% of all intrinsic terminators in B. subtilis. Thus, the general view that intrinsic termination is primarily a factor-independent process needs to be revised to account for recent findings. Moreover, the historical distinction between Rho-dependent and intrinsic termination is overly simplistic and needs to be modernized.
Collapse
Affiliation(s)
- Zachary F. Mandell
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Department of Molecular Biology and Genetics and Department of Biology, Johns Hopkins University, Baltimore, MD, United State
| | - Dani Zemba
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
19
|
Wen A, Zhao M, Jin S, Lu YQ, Feng Y. Structural basis of AlpA-dependent transcription antitermination. Nucleic Acids Res 2022; 50:8321-8330. [PMID: 35871295 PMCID: PMC9371919 DOI: 10.1093/nar/gkac608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
AlpA positively regulates a programmed cell death pathway linked to the virulence of Pseudomonas aeruginosa by recognizing an AlpA binding element within the promoter, then binding RNA polymerase directly and allowing it to bypass an intrinsic terminator positioned downstream. Here, we report the single-particle cryo-electron microscopy structures of both an AlpA-loading complex and an AlpA-loaded complex. These structures indicate that the C-terminal helix-turn-helix motif of AlpA binds to the AlpA binding element and that the N-terminal segment of AlpA forms a narrow ring inside the RNA exit channel. AlpA was also revealed to render RNAP resistant to termination signals by prohibiting RNA hairpin formation in the RNA exit channel. Structural analysis predicted that AlpA, 21Q, λQ and 82Q share the same mechanism of transcription antitermination.
Collapse
Affiliation(s)
- Aijia Wen
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058, China
| | - Minxing Zhao
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou 310003, China
| | - Sha Jin
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou 310003, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Immunity and Inflammatory diseases , Hangzhou 310058, China
| |
Collapse
|
20
|
Xu M, Chang Y, Zhang Y, Wang W, Hong J, Zhao J, Lu X, Tan D. Development and Application of Transcription Terminators for Polyhydroxylkanoates Production in Halophilic Halomonas bluephagenesis TD01. Front Microbiol 2022; 13:941306. [PMID: 35832813 PMCID: PMC9271916 DOI: 10.3389/fmicb.2022.941306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Halomonas bluephagenesis TD01 is one of the ideal chassis for low-cost industrial production based on “Next Generation Industrial Biotechnology,” yet the limited genetically regulatory parts such as transcriptional terminators, which are crucial for tuned regulations on gene expression, have hampered the engineering and applications of the strain. In this study, a series of intrinsic Rho-independent terminators were developed by either genome mining or rational design, and seven of them proved to exhibit higher efficiencies than the canonical strong T7 terminator, among which three terminators displayed high efficiencies over 90%. A preliminary modeling on the sequence-efficiency relationship of the terminators suggested that the poly U sequence regularity, the length and GC content of the stem, and the number and the size of hairpin loops remarkably affected the termination efficiency (TE). The rational and de novo designs of novel synthetic terminators based on the sequence-efficiency relationship and the “main contributor” engineering strategy proved to be effective, and fine-tuned polyhydroxylkanoates production was also achieved by the regulation of these native or synthetic terminators with different efficiencies. Furthermore, a perfectly positive correlation between the promoter activity and the TE was revealed in our study. The study enriches our knowledge of transcriptional termination via its sequence–strength relationship and enables the precise regulation of gene expression and PHA synthesis by intrinsic terminators, contributing to the extensive applications of H. bluephagenesis TD01 in the low-cost production of various chemicals.
Collapse
|
21
|
Takada H, Mandell ZF, Yakhnin H, Glazyrina A, Chiba S, Kurata T, Wu KJY, Tresco BIC, Myers AG, Aktinson GC, Babitzke P, Hauryliuk V. Expression of Bacillus subtilis ABCF antibiotic resistance factor VmlR is regulated by RNA polymerase pausing, transcription attenuation, translation attenuation and (p)ppGpp. Nucleic Acids Res 2022; 50:6174-6189. [PMID: 35699226 PMCID: PMC9226507 DOI: 10.1093/nar/gkac497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Since antibiotic resistance is often associated with a fitness cost, bacteria employ multi-layered regulatory mechanisms to ensure that expression of resistance factors is restricted to times of antibiotic challenge. In Bacillus subtilis, the chromosomally-encoded ABCF ATPase VmlR confers resistance to pleuromutilin, lincosamide and type A streptogramin translation inhibitors. Here we show that vmlR expression is regulated by translation attenuation and transcription attenuation mechanisms. Antibiotic-induced ribosome stalling during translation of an upstream open reading frame in the vmlR leader region prevents formation of an anti-antiterminator structure, leading to the formation of an antiterminator structure that prevents intrinsic termination. Thus, transcription in the presence of antibiotic induces vmlR expression. We also show that NusG-dependent RNA polymerase pausing in the vmlR leader prevents leaky expression in the absence of antibiotic. Furthermore, we demonstrate that induction of VmlR expression by compromised protein synthesis does not require the ability of VmlR to rescue the translational defect, as exemplified by constitutive induction of VmlR by ribosome assembly defects. Rather, the specificity of induction is determined by the antibiotic's ability to stall the ribosome on the regulatory open reading frame located within the vmlR leader. Finally, we demonstrate the involvement of (p)ppGpp-mediated signalling in antibiotic-induced VmlR expression.
Collapse
Affiliation(s)
- Hiraku Takada
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, 90187 Umeå, Sweden
| | - Zachary F Mandell
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Anastasiya Glazyrina
- Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, 90187 Umeå, Sweden
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Tatsuaki Kurata
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Kelvin J Y Wu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Ben I C Tresco
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Andrew G Myers
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Gemma C Aktinson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, 90187 Umeå, Sweden
- University of Tartu, Institute of Technology, 50411, Tartu, Estonia
| |
Collapse
|
22
|
Putzeys L, Boon M, Lammens EM, Kuznedelov K, Severinov K, Lavigne R. Development of ONT-cappable-seq to unravel the transcriptional landscape of Pseudomonas phages. Comput Struct Biotechnol J 2022; 20:2624-2638. [PMID: 35685363 PMCID: PMC9163698 DOI: 10.1016/j.csbj.2022.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
RNA sequencing has become the method of choice to study the transcriptional landscape of phage-infected bacteria. However, short-read RNA sequencing approaches generally fail to capture the primary 5' and 3' boundaries of transcripts, confounding the discovery of key transcription initiation and termination events as well as operon architectures. Yet, the elucidation of these elements is crucial for the understanding of the strategy of transcription regulation during the infection process, which is currently lacking beyond a handful of model phages. We developed ONT-cappable-seq, a specialized long-read RNA sequencing technique that allows end-to-end sequencing of primary prokaryotic transcripts using the Nanopore sequencing platform. We applied ONT-cappable-seq to study transcription of Pseudomonas aeruginosa phage LUZ7, obtaining a comprehensive genome-wide map of viral transcription start sites, terminators, and complex operon structures that fine-regulate gene expression. Our work provides new insights in the RNA biology of a non-model phage, unveiling distinct promoter architectures, putative small non-coding viral RNAs, and the prominent regulatory role of terminators during infection. The robust workflow presented here offers a framework to obtain a global, yet fine-grained view of phage transcription and paves the way for standardized, in-depth transcription studies for microbial viruses or bacteria in general.
Collapse
Affiliation(s)
- Leena Putzeys
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | - Maarten Boon
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | - Eveline-Marie Lammens
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | | | | | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
23
|
Roles of zinc-binding domain of bacterial RNA polymerase in transcription. Trends Biochem Sci 2022; 47:710-724. [DOI: 10.1016/j.tibs.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 01/07/2023]
|
24
|
Walshe JL, Siddiquee R, Patel K, Ataide SF. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2889-2904. [PMID: 35150565 PMCID: PMC8934654 DOI: 10.1093/nar/gkac074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/02/2022] Open
Abstract
Regulated transcription termination provides an efficient and responsive means to control gene expression. In bacteria, rho-independent termination occurs through the formation of an intrinsic RNA terminator loop, which disrupts the RNA polymerase elongation complex, resulting in its dissociation from the DNA template. Bacteria have a number of pathways for overriding termination, one of which is the formation of mutually exclusive RNA motifs. ANTAR domains are a class of antiterminator that bind and stabilize dual hexaloop RNA motifs within the nascent RNA chain to prevent terminator loop formation. We have determined the structures of the dimeric ANTAR domain protein EutV, from Enterococcus faecialis, in the absence of and in complex with the dual hexaloop RNA target. The structures illustrate conformational changes that occur upon RNA binding and reveal that the molecular interactions between the ANTAR domains and RNA are restricted to a single hexaloop of the motif. An ANTAR domain dimer must contact each hexaloop of the dual hexaloop motif individually to prevent termination in eubacteria. Our findings thereby redefine the minimal ANTAR domain binding motif to a single hexaloop and revise the current model for ANTAR-mediated antitermination. These insights will inform and facilitate the discovery of novel ANTAR domain RNA targets.
Collapse
Affiliation(s)
- James L Walshe
- Correspondence may also be addressed to James L. Walshe.
| | - Rezwan Siddiquee
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Karishma Patel
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Sandro F Ataide
- To whom correspondence should be addressed. Tel: +61 2 9351 7817; Fax: +61 2 9351 5858
| |
Collapse
|
25
|
Khan JA, Guss AM, Kao KC. Enhancing transcription in Escherichia coli and Pseudomonas putida using bacteriophage lambda anti-terminator protein Q. Biotechnol Lett 2021; 44:253-258. [PMID: 34792701 DOI: 10.1007/s10529-021-03206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Functional characterization of metagenomic DNA often involves expressing heterologous DNA in genetically tractable microorganisms such as Escherichia coli. Functional expression of heterologous genes can suffer from limitations due to the lack of recognition of foreign promoters or presence of intrinsic terminators on foreign DNA between a vector-based promoter and the transcription start site. Anti-terminator proteins are a possible solution to overcome this limitation. When bacteriophage lambda infects E. coli, it relies on the host transcription machinery to transcribe and express phage DNA. Lambda anti-terminator protein Q (λQ) regulates the expression of late-genes of phage lambda. E. coli RNA polymerase recognizes the PR' promoter on the lambda genome and forms a complex with λQ, to overcome the terminator tR'. Here we show the use of λQ to efficiently transcribe a capsular polysaccharide cluster, cps3, from Lactobacillus plantarum containing intrinsic terminators in Escherichia coli. In addition, we expand the use of anti-terminator λQ in Pseudomonas putida. The results show ~ fivefold higher expression of a fluorescent reporter located ~ 12.5kbp downstream from the promoter, when the transcription is driven by PR' promoter in presence of λQ compared to a lac promoter. These results suggest that λQ could be used in metabolic engineering to enhance expression of heterologous DNA.
Collapse
Affiliation(s)
- Jibran A Khan
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6038, USA
| | - Katy C Kao
- Department of Chemical and Materials Engineering, San Jose State University, San José, CA, USA.
| |
Collapse
|
26
|
Abstract
To exert their functions, RNAs adopt diverse structures, ranging from simple secondary to complex tertiary and quaternary folds. In vivo, RNA folding starts with RNA transcription, and a wide variety of processes are coupled to co-transcriptional RNA folding events, including the regulation of fundamental transcription dynamics, gene regulation by mechanisms like attenuation, RNA processing or ribonucleoprotein particle formation. While co-transcriptional RNA folding and associated co-transcriptional processes are by now well accepted as pervasive regulatory principles in all organisms, investigations into the role of the transcription machinery in co-transcriptional folding processes have so far largely focused on effects of the order in which RNA regions are produced and of transcription kinetics. Recent structural and structure-guided functional analyses of bacterial transcription complexes increasingly point to an additional role of RNA polymerase and associated transcription factors in supporting co-transcriptional RNA folding by fostering or preventing strategic contacts to the nascent transcripts. In general, the results support the view that transcription complexes can act as RNA chaperones, a function that has been suggested over 30 years ago. Here, we discuss transcription complexes as RNA chaperones based on recent examples from bacterial transcription.
Collapse
Affiliation(s)
- Nelly Said
- Freie Universität Berlin, Department Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Department Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Helmholtz-Zentrum Berlin Für Materialien Und Energie, Macromolecular Crystallography, Berlin, Germany
| |
Collapse
|
27
|
Abstract
Rho is a hexameric bacterial RNA helicase, which became a paradigm of factor-dependent transcription termination. The broadly accepted ("textbook") model posits a series of steps, wherein Rho first binds C-rich Rho utilization (rut) sites on nascent RNA, uses its ATP-dependent translocase activity to catch up with RNA polymerase (RNAP), and either pulls the transcript from the elongation complex or pushes RNAP forward, thus terminating transcription. However, this appealingly simple mechano-chemical model lacks a biological realism and is increasingly at odds with genetic and biochemical data. Here, we summarize recent structural and biochemical studies that have advanced our understanding of molecular details of RNA recognition, termination signaling, and RNAP inactivation in Rho-dependent transcription termination, rebalancing the view in favor of an alternative "allosteric" mechanism. In the revised model, Rho binds RNAP early in elongation assisted by the cofactors NusA and NusG, forming a pre-termination complex (PTC). The formation of PTC allows Rho to continuously sample nascent transcripts for a termination signal, which subsequently traps the elongation complex in an inactive state prior to its dissociation.
Collapse
Affiliation(s)
- Zhitai Hao
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, Ny, USA
| |
Collapse
|
28
|
Hou H, Li Y, Wang M, Liu A, Yu Z, Chen K, Zhao D, Xu Y. Structural insights into RNA polymerase III-mediated transcription termination through trapping poly-deoxythymidine. Nat Commun 2021; 12:6135. [PMID: 34675218 PMCID: PMC8531034 DOI: 10.1038/s41467-021-26402-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023] Open
Abstract
Termination of the RNA polymerase III (Pol III)-mediated transcription requires the conversion of an elongation complex (EC) to a pre-termination complex (PTC) on poly-deoxythymidine (dT)-containing non-template strand, a mechanism distinct from Pol I and Pol II. Here, our in vitro transcription elongation assay showed that 5-7 dT-containing DNA template led to transcription termination of Pol III, but not Pol I or Pol II. We assembled human Pol III PTC on a 7 dT-containing DNA template and determined the structure at 3.6 Å resolution. The structure reveals that poly-dT are trapped in a narrow exit tunnel formed by RPC2. A hydrophobic gate of the exit tunnel separates the bases of two connected deoxythymidines and may prevent translocation of the non-template strand. The fork loop 2 stabilizes both template and non-template strands around the transcription fork, and may further prevent strand translocation. Our study shows that the Pol III-specific exit tunnel and FL2 allow for efficient translocation of non-poly-dT sequence during transcription elongation but trap poly-dT to promote DNA retention of Pol III, revealing molecular mechanism of poly-dT-dependent transcription termination of Pol III.
Collapse
Affiliation(s)
- Haifeng Hou
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yan Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Mo Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Aijun Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Ke Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Dan Zhao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P. R. China.
| |
Collapse
|
29
|
Wu H, Wei T, Yu B, Cheng R, Huang F, Lu X, Yan Y, Wang X, Liu C, Zhu B. A single mutation attenuates both the transcription termination and RNA-dependent RNA polymerase activity of T7 RNA polymerase. RNA Biol 2021; 18:451-466. [PMID: 34314299 PMCID: PMC8677023 DOI: 10.1080/15476286.2021.1954808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022] Open
Abstract
Transcription termination is one of the least understood processes of gene expression. As the prototype model for transcription studies, the single-subunit T7 RNA polymerase (RNAP) is known to respond to two types of termination signals, but the mechanism underlying such termination, especially the specific elements of the polymerase involved, is still unclear, due to a lack of knowledge with respect to the structure of the termination complex. Here we applied phage-assisted continuous evolution to obtain variants of T7 RNAP that can bypass the typical class I T7 terminator with stem-loop structure. Through in vivo selection and in vitro characterization, we discovered a single mutation (S43Y) that significantly decreased the termination efficiency of T7 RNAP at all transcription terminators tested. Coincidently, the S43Y mutation almost eliminates the RNA-dependent RNAP (RdRp) activity of T7 RNAP without impeding the major DNA-dependent RNAP (DdRp) activity of the enzyme. S43 is located in a hinge region and regulates the transformation between transcription initiation and elongation of T7 RNAP. Steady-state kinetics analysis and an RNA binding assay indicate that the S43Y mutation increases the transcription efficiency while weakening RNA binding of the enzyme. As an enzymatic reagent for in vitro transcription, the T7 RNAP S43Y mutant reduces the undesired termination in run-off RNA synthesis and produces RNA with higher terminal homogeneity.
Collapse
Affiliation(s)
- Hui Wu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, HubeiChina
| | - Ting Wei
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, ShenzhenChina
| | - Bingbing Yu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, HubeiChina
| | - Rui Cheng
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, HubeiChina
| | - Fengtao Huang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, HubeiChina
| | - Xuelin Lu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, HubeiChina
| | - Yan Yan
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, HubeiChina
| | - Xionglue Wang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, HubeiChina
| | - Chenli Liu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, ShenzhenChina
- University of Chinese Academy of Sciences, BeijingChina
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, HubeiChina
| |
Collapse
|
30
|
Blombach F, Fouqueau T, Matelska D, Smollett K, Werner F. Promoter-proximal elongation regulates transcription in archaea. Nat Commun 2021; 12:5524. [PMID: 34535658 PMCID: PMC8448881 DOI: 10.1038/s41467-021-25669-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/25/2021] [Indexed: 01/17/2023] Open
Abstract
Recruitment of RNA polymerase and initiation factors to the promoter is the only known target for transcription activation and repression in archaea. Whether any of the subsequent steps towards productive transcription elongation are involved in regulation is not known. We characterised how the basal transcription machinery is distributed along genes in the archaeon Saccharolobus solfataricus. We discovered a distinct early elongation phase where RNA polymerases sequentially recruit the elongation factors Spt4/5 and Elf1 to form the transcription elongation complex (TEC) before the TEC escapes into productive transcription. TEC escape is rate-limiting for transcription output during exponential growth. Oxidative stress causes changes in TEC escape that correlate with changes in the transcriptome. Our results thus establish that TEC escape contributes to the basal promoter strength and facilitates transcription regulation. Impaired TEC escape coincides with the accumulation of initiation factors at the promoter and recruitment of termination factor aCPSF1 to the early TEC. This suggests two possible mechanisms for how TEC escape limits transcription, physically blocking upstream RNA polymerases during transcription initiation and premature termination of early TECs.
Collapse
Affiliation(s)
- Fabian Blombach
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK.
| | - Thomas Fouqueau
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Dorota Matelska
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Katherine Smollett
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Finn Werner
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK.
| |
Collapse
|
31
|
Mihailovic MK, Ekdahl AM, Chen A, Leistra AN, Li B, González Martínez J, Law M, Ejindu C, Massé É, Freddolino PL, Contreras LM. Uncovering Transcriptional Regulators and Targets of sRNAs Using an Integrative Data-Mining Approach: H-NS-Regulated RseX as a Case Study. Front Cell Infect Microbiol 2021; 11:696533. [PMID: 34327153 PMCID: PMC8313858 DOI: 10.3389/fcimb.2021.696533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial small RNAs (sRNAs) play a vital role in pathogenesis by enabling rapid, efficient networks of gene attenuation during infection. In recent decades, there has been a surge in the number of proposed and biochemically-confirmed sRNAs in both Gram-positive and Gram-negative pathogens. However, limited homology, network complexity, and condition specificity of sRNA has stunted complete characterization of the activity and regulation of these RNA regulators. To streamline the discovery of the expression of sRNAs, and their post-transcriptional activities, we propose an integrative in vivo data-mining approach that couples DNA protein occupancy, RNA-seq, and RNA accessibility data with motif identification and target prediction algorithms. We benchmark the approach against a subset of well-characterized E. coli sRNAs for which a degree of in vivo transcriptional regulation and post-transcriptional activity has been previously reported, finding support for known regulation in a large proportion of this sRNA set. We showcase the abilities of our method to expand understanding of sRNA RseX, a known envelope stress-linked sRNA for which a cellular role has been elusive due to a lack of native expression detection. Using the presented approach, we identify a small set of putative RseX regulators and targets for experimental investigation. These findings have allowed us to confirm native RseX expression under conditions that eliminate H-NS repression as well as uncover a post-transcriptional role of RseX in fimbrial regulation. Beyond RseX, we uncover 163 putative regulatory DNA-binding protein sites, corresponding to regulation of 62 sRNAs, that could lead to new understanding of sRNA transcription regulation. For 32 sRNAs, we also propose a subset of top targets filtered by engagement of regions that exhibit binding site accessibility behavior in vivo. We broadly anticipate that the proposed approach will be useful for sRNA-reliant network characterization in bacteria. Such investigations under pathogenesis-relevant environmental conditions will enable us to deduce complex rapid-regulation schemes that support infection.
Collapse
Affiliation(s)
- Mia K Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Alyssa M Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Angela Chen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Abigail N Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Bridget Li
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Javier González Martínez
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Matthew Law
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Cindy Ejindu
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Éric Massé
- Department of Biochemistry and Functional Genomics, Universitéde Sherbrooke, RNA Group, Sherbrooke, QC, Canada
| | - Peter L Freddolino
- Department of Biological Chemistry and Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
32
|
Cui W, Lin Q, Hu R, Han L, Cheng Z, Zhang L, Zhou Z. Data-Driven and in Silico-Assisted Design of Broad Host-Range Minimal Intrinsic Terminators Adapted for Bacteria. ACS Synth Biol 2021; 10:1438-1450. [PMID: 34015924 DOI: 10.1021/acssynbio.1c00050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Efficient transcription termination relying on intrinsic terminators is critical to maintain cell fitness by avoiding unwanted read-through in bacteria. Natural intrinsic terminator (NIT) typically appears in mRNA as a hairpin followed by approximately eight conserved uridines (U-tract) at the 3' terminus. Owing to their simple structure, small size, and protein independence, assorted NITs have been redesigned as robust tools to construct gene circuits. However, most NITs exert functions to adapt to their physiological requirements rather than the demand for building synthetic gene circuits, rendering uncertain working performance when they are constructed intact in synthetic gene circuits. Here, rather than modifying NITs, we established a data-driven and in silico-assisted (DISA) design framework to forward engineer minimal intrinsic terminators (MITs). By comprehensively analyzing 75 natural intrinsic terminators from Bacillus subtilis, we revealed that two pivotal features, the length of the U-tract and the thermodynamics of the terminator hairpin, were involved in the sequence-activity relationship (SAR) of termination efficiency (TE). As per the SAR, we leveraged DISA to fabricate an array of MITs composed of in silico-assisted designed minimal hairpins and fixed U-tracts. Most of these MITs exhibited high TE in diverse Gram-positive and Gram-negative bacteria. In contrast, the TEs of the NITs were highly varied in different hosts. Moreover, TEs of MITs were flexibly tuned over a wide range by modulating the length of the U-tract. Overall, these results demonstrate an efficient framework to forward design functional and broad host-range terminators independent of tedious and iterative screening of mutagenesis libraries of natural terminators.
Collapse
Affiliation(s)
- Wenjing Cui
- Key Laboratory of Industrial Biotechnology (MOE), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiao Lin
- Key Laboratory of Industrial Biotechnology (MOE), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruichun Hu
- Key Laboratory of Industrial Biotechnology (MOE), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (MOE), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (MOE), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linpei Zhang
- Key Laboratory of Industrial Biotechnology (MOE), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (MOE), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu 226500, China
| |
Collapse
|
33
|
Elghondakly A, Wu CH, Klupt S, Goodson J, Winkler WC. A NusG Specialized Paralog That Exhibits Specific, High-Affinity RNA-Binding Activity. J Mol Biol 2021; 433:167100. [PMID: 34119489 DOI: 10.1016/j.jmb.2021.167100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Bacterial NusG associates with RNA polymerase (RNAP) through its N-terminal domain, while the C-terminal domain (CTD) forms dynamic interactions with Rho, S10, NusB and NusA to affect transcription elongation. While virtually all bacteria encode for a core NusG, many also synthesize paralogs that transiently bind RNAP to alter expression of targeted genes. Yet, despite the importance of the genes they regulate, most of the subfamilies of NusG paralogs (e.g., UpxY, TaA, ActX and LoaP) have not been investigated in depth. Herein, we discover that LoaP requires a small RNA hairpin located within the 5' leader region of its targeted operons. LoaP binds the RNA element with nanomolar affinity and high specificity, in contrast to other NusG proteins, which have not been shown to exhibit RNA-binding activity. These data reveal a sequence feature that can be used to identify LoaP-regulated operons. This discovery also expands the repertoire of macromolecular interactions exhibited by the NusG CTD during transcription elongation to include an RNA ligand.
Collapse
Affiliation(s)
- Amr Elghondakly
- The University of Maryland, Department of Chemistry and Biochemistry, College Park, MD, United States
| | - Chih Hao Wu
- The University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD, United States
| | - Steven Klupt
- The University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD, United States
| | - Jonathan Goodson
- The University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD, United States
| | - Wade C Winkler
- The University of Maryland, Department of Chemistry and Biochemistry, College Park, MD, United States; The University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD, United States.
| |
Collapse
|
34
|
Miguel-Arribas A, Val-Calvo J, Gago-Córdoba C, Izquierdo JM, Abia D, Wu LJ, Errington J, Meijer WJJ. A novel bipartite antitermination system widespread in conjugative elements of Gram-positive bacteria. Nucleic Acids Res 2021; 49:5553-5567. [PMID: 33999173 PMCID: PMC8191782 DOI: 10.1093/nar/gkab360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022] Open
Abstract
Transcriptional regulation allows adaptive and coordinated gene expression, and is essential for life. Processive antitermination systems alter the transcription elongation complex to allow the RNA polymerase to read through multiple terminators in an operon. Here, we describe the discovery of a novel bipartite antitermination system that is widespread among conjugative elements from Gram-positive bacteria, which we named conAn. This system is composed of a large RNA element that exerts antitermination, and a protein that functions as a processivity factor. Besides allowing coordinated expression of very long operons, we show that these systems allow differential expression of genes within an operon, and probably contribute to strict regulation of the conjugation genes by minimizing the effects of spurious transcription. Mechanistic features of the conAn system are likely to decisively influence its host range, with important implications for the spread of antibiotic resistance and virulence genes.
Collapse
Affiliation(s)
- Andrés Miguel-Arribas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - Jorge Val-Calvo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - César Gago-Córdoba
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - José M Izquierdo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK
| | - Wilfried J J Meijer
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| |
Collapse
|
35
|
O’Connor NJ, Bordoy AE, Chatterjee A. Engineering Transcriptional Interference through RNA Polymerase Processivity Control. ACS Synth Biol 2021; 10:737-748. [PMID: 33710852 DOI: 10.1021/acssynbio.0c00534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Antisense transcription is widespread in all kingdoms of life and has been shown to influence gene expression through transcriptional interference (TI), a phenomenon in which one transcriptional process negatively influences another in cis. The processivity, or uninterrupted transcription, of an RNA polymerase (RNAP) is closely tied to levels of antisense transcription in bacterial genomes, but its influence on TI, while likely important, is not well-characterized. Here, we show that TI can be tuned through processivity control via three distinct antitermination strategies: the antibiotic bicyclomycin, phage protein Psu, and ribosome-RNAP coupling. We apply these methods toward TI and tune ribosome-RNAP coupling to produce 38-fold transcription-level gene repression due to both RNAP collisions and antisense RNA interference. We then couple protein roadblock and TI to design minimal genetic NAND and NOR logic gates. Together, these results show the importance of processivity control for strong TI and demonstrate TI's potential for synthetic biology.
Collapse
Affiliation(s)
- Nolan J. O’Connor
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Antoni E. Bordoy
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Antimicrobial Regeneration Consortium, Boulder, Colorado 80301, United States
- Sachi Bioworks, Inc., Boulder, Colorado 80301, United States
| |
Collapse
|
36
|
Peña JM, Prezioso SM, McFarland KA, Kambara TK, Ramsey KM, Deighan P, Dove SL. Control of a programmed cell death pathway in Pseudomonas aeruginosa by an antiterminator. Nat Commun 2021; 12:1702. [PMID: 33731715 PMCID: PMC7969949 DOI: 10.1038/s41467-021-21941-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/19/2021] [Indexed: 01/29/2023] Open
Abstract
In Pseudomonas aeruginosa the alp system encodes a programmed cell death pathway that is switched on in a subset of cells in response to DNA damage and is linked to the virulence of the organism. Here we show that the central regulator of this pathway, AlpA, exerts its effects by acting as an antiterminator rather than a transcription activator. In particular, we present evidence that AlpA positively regulates the alpBCDE cell lysis genes, as well as genes in a second newly identified target locus, by recognizing specific DNA sites within the promoter, then binding RNA polymerase directly and allowing it to bypass intrinsic terminators positioned downstream. AlpA thus functions in a mechanistically unusual manner to control the expression of virulence genes in this opportunistic pathogen.
Collapse
Affiliation(s)
- Jennifer M Peña
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samantha M Prezioso
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kirsty A McFarland
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracy K Kambara
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn M Ramsey
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Departments of Cell and Molecular Biology and Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | | | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Irastortza-Olaziregi M, Amster-Choder O. Coupled Transcription-Translation in Prokaryotes: An Old Couple With New Surprises. Front Microbiol 2021; 11:624830. [PMID: 33552035 PMCID: PMC7858274 DOI: 10.3389/fmicb.2020.624830] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 01/17/2023] Open
Abstract
Coupled transcription-translation (CTT) is a hallmark of prokaryotic gene expression. CTT occurs when ribosomes associate with and initiate translation of mRNAs whose transcription has not yet concluded, therefore forming "RNAP.mRNA.ribosome" complexes. CTT is a well-documented phenomenon that is involved in important gene regulation processes, such as attenuation and operon polarity. Despite the progress in our understanding of the cellular signals that coordinate CTT, certain aspects of its molecular architecture remain controversial. Additionally, new information on the spatial segregation between the transcriptional and the translational machineries in certain species, and on the capability of certain mRNAs to localize translation-independently, questions the unanimous occurrence of CTT. Furthermore, studies where transcription and translation were artificially uncoupled showed that transcription elongation can proceed in a translation-independent manner. Here, we review studies supporting the occurrence of CTT and findings questioning its extent, as well as discuss mechanisms that may explain both coupling and uncoupling, e.g., chromosome relocation and the involvement of cis- or trans-acting elements, such as small RNAs and RNA-binding proteins. These mechanisms impact RNA localization, stability, and translation. Understanding the two options by which genes can be expressed and their consequences should shed light on a new layer of control of bacterial transcripts fate.
Collapse
Affiliation(s)
- Mikel Irastortza-Olaziregi
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
38
|
Wang B, Artsimovitch I. NusG, an Ancient Yet Rapidly Evolving Transcription Factor. Front Microbiol 2021; 11:619618. [PMID: 33488562 PMCID: PMC7819879 DOI: 10.3389/fmicb.2020.619618] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Timely and accurate RNA synthesis depends on accessory proteins that instruct RNA polymerase (RNAP) where and when to start and stop transcription. Among thousands of transcription factors, NusG/Spt5 stand out as the only universally conserved family of regulators. These proteins interact with RNAP to promote uninterrupted RNA synthesis and with diverse cellular partners to couple transcription to RNA processing, modification or translation, or to trigger premature termination of aberrant transcription. NusG homologs are present in all cells that utilize bacterial-type RNAP, from endosymbionts to plants, underscoring their ancient and essential function. Yet, in stark contrast to other core RNAP components, NusG family is actively evolving: horizontal gene transfer and sub-functionalization drive emergence of NusG paralogs, such as bacterial LoaP, RfaH, and UpxY. These specialized regulators activate a few (or just one) operons required for expression of antibiotics, capsules, secretion systems, toxins, and other niche-specific macromolecules. Despite their common origin and binding site on the RNAP, NusG homologs differ in their target selection, interacting partners and effects on RNA synthesis. Even among housekeeping NusGs from diverse bacteria, some factors promote pause-free transcription while others slow the RNAP down. Here, we discuss structure, function, and evolution of NusG proteins, focusing on unique mechanisms that determine their effects on gene expression and enable bacterial adaptation to diverse ecological niches.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Irina Artsimovitch
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
39
|
Wenck BR, Santangelo TJ. Archaeal transcription. Transcription 2020; 11:199-210. [PMID: 33112729 PMCID: PMC7714419 DOI: 10.1080/21541264.2020.1838865] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Increasingly sophisticated biochemical and genetic techniques are unraveling the regulatory factors and mechanisms that control gene expression in the Archaea. While some similarities in regulatory strategies are universal, archaeal-specific regulatory strategies are emerging to complement a complex patchwork of shared archaeal-bacterial and archaeal-eukaryotic regulatory mechanisms employed in the archaeal domain. The prokaryotic archaea encode core transcription components with homology to the eukaryotic transcription apparatus and also share a simplified eukaryotic-like initiation mechanism, but also deploy tactics common to bacterial systems to regulate promoter usage and influence elongation-termination decisions. We review the recently established complete archaeal transcription cycle, highlight recent findings of the archaeal transcription community and detail the expanding post-initiation regulation imposed on archaeal transcription.
Collapse
Affiliation(s)
- Breanna R. Wenck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
40
|
O'Reilly FJ, Xue L, Graziadei A, Sinn L, Lenz S, Tegunov D, Blötz C, Singh N, Hagen WJH, Cramer P, Stülke J, Mahamid J, Rappsilber J. In-cell architecture of an actively transcribing-translating expressome. Science 2020; 369:554-557. [PMID: 32732422 DOI: 10.1126/science.abb3758] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Abstract
Structural biology studies performed inside cells can capture molecular machines in action within their native context. In this work, we developed an integrative in-cell structural approach using the genome-reduced human pathogen Mycoplasma pneumoniae We combined whole-cell cross-linking mass spectrometry, cellular cryo-electron tomography, and integrative modeling to determine an in-cell architecture of a transcribing and translating expressome at subnanometer resolution. The expressome comprises RNA polymerase (RNAP), the ribosome, and the transcription elongation factors NusG and NusA. We pinpointed NusA at the interface between a NusG-bound elongating RNAP and the ribosome and propose that it can mediate transcription-translation coupling. Translation inhibition dissociated the expressome, whereas transcription inhibition stalled and rearranged it. Thus, the active expressome architecture requires both translation and transcription elongation within the cell.
Collapse
Affiliation(s)
- Francis J O'Reilly
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Liang Xue
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Andrea Graziadei
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Ludwig Sinn
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Swantje Lenz
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Dimitry Tegunov
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Cedric Blötz
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Neil Singh
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany. .,Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
41
|
Control of ribosome synthesis in bacteria: the important role of rRNA chain elongation rate. SCIENCE CHINA-LIFE SCIENCES 2020; 64:795-802. [DOI: 10.1007/s11427-020-1742-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/26/2020] [Indexed: 10/23/2022]
|
42
|
Abstract
Most bacteria respond to surfaces by biogenesis of intracellular c-di-GMP, which inhibits motility and induces secretion of biofilm-promoting adherence factors. Bacterial cellulose is a widespread biofilm component whose secretion in Gram-negative species requires an inner membrane, c-di-GMP-dependent synthase tandem (BcsAB), an outer membrane porin (BcsC), and various accessory subunits that regulate synthase assembly and function as well as the exopolysaccharide's chemical composition and mechanical properties. We recently showed that in Escherichia coli, most Bcs proteins form a megadalton-sized secretory nanomachine, but the role and structure of individual regulatory components remained enigmatic. Here, we demonstrate that essential-for-secretion BcsR and BcsQ regulate each other's folding and stability and are recruited to the inner membrane via c-di-GMP-sensing BcsE and its intraoperon partner BcsF. Crystallographic and solution-based data show that BcsE's predicted GIL domain is a degenerate receiver-GGDEF domain tandem (BcsEREC*-GGDEF*), where the divergent diguanylate cyclase module binds both dimeric c-di-GMP and BcsQ through mutually independent interfaces. In addition, we reveal that a third N-terminal domain (BcsENTD) determines the protein's homooligomerization and targeting of BcsERQ to the membrane as well as previously unreported interactions with transcription antitermination complex components. Together, the data suggest that BcsE acts on multiple levels to fine-tune bacterial cellulose secretion, from the early stages of secretion system assembly to the maintenance of a membrane-proximal pool of dimeric c-di-GMP for processive synthase activation.IMPORTANCE Bacterial cellulose is a widespread biofilm component that can modulate microbial fitness and virulence both in the environment and infected hosts. Whereas its secretion generally involves an inner membrane c-di-GMP-dependent synthase tandem (BcsAB) across the bacterial domain of life, enterobacteria feature sophisticated Escherichia coli-like Bcs secretion systems, where multiple additional subunits are either required for secretion or contribute to the maximal production of the polysaccharide in vivo. Here, we demonstrate that essential-for-secretion BcsR and BcsQ regulate each other's folding and stability and are recruited to the inner membrane via c-di-GMP-sensing BcsE and its intraoperon partner, BcsF. Crystallographic and functional data reveal that BcsE features unexpected domain architecture and likely acts on multiple levels to fine-tune bacterial cellulose production, from the early stages of secretion system assembly to the maintenence of a membrane-proximal pool of dimeric c-di-GMP for processive synthase activation.
Collapse
|
43
|
Gong Z, Yang S, Dong X, Yang QF, Zhu YL, Xiao Y, Tang C. Hierarchical Conformational Dynamics Confers Thermal Adaptability to preQ 1 RNA Riboswitches. J Mol Biol 2020; 432:4523-4543. [PMID: 32522558 DOI: 10.1016/j.jmb.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 11/26/2022]
Abstract
Single-stranded noncoding regulatory RNAs, as exemplified by bacterial riboswitches, are highly dynamic. The conformational dynamics allow the riboswitch to reach maximum switching efficiency under appropriate conditions. Here we characterize the conformational dynamics of preQ1 riboswitches from mesophilic and thermophilic bacterial species at various temperatures. With the integrative use of small-angle X-ray scattering, NMR, and molecular dynamics simulations, we model the ensemble-structures of the preQ1 riboswitch aptamers without or with a ligand bound. We show that the preQ1 riboswitch is sufficiently dynamic and fluctuating among multiple folding intermediates only near the physiological temperature of the microorganism. The hierarchical folding dynamics of the RNA involves the docking of 3'-tail to form a second RNA helix and the helical stacking to form an H-type pseudoknot structure. Further, we show that RNA secondary and tertiary dynamics can be modulated by temperature and by the length of an internal loop. The coupled equilibria between RNA folding intermediates are essential for preQ1 binding, and a four-state exchange model can account for the change of ligand-triggered switching efficiency with temperature. Together, we have established a relationship between the hierarchical dynamics and riboswitch function, and illustrated how the RNA adapts to high temperature.
Collapse
Affiliation(s)
- Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China.
| | - Shuai Yang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Qing-Fen Yang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Yue-Ling Zhu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China.
| |
Collapse
|
44
|
Abstract
Chimeric RNAs are hybrid transcripts containing exons from two separate genes. Chimeric RNAs are traditionally considered to be transcribed from fusion genes caused by chromosomal rearrangement. These canonical chimeric RNAs are well characterized to be expressed in a cancer-unique pattern and/or act as oncogene products. However, benefited by the development of advanced deep sequencing technologies, novel types of non-canonical chimeric RNAs have been discovered to be generated from intergenic splicing without genomic aberrations. They can be formed through trans-splicing or cis-splicing between adjacent genes (cis-SAGe) mechanisms. Non-canonical chimeric RNAs are widely detected in normal physiology, although several have been shown to have a cancer-specific expression pattern. Further studies have indicated that some of them play fundamental roles in controlling cell growth and motility, and may have functions independent of the parental genes. These discoveries are unveiling a new layer of the functional transcriptome and are also raising the possibility of utilizing non-canonical chimeric RNAs as cancer diagnostic markers and therapeutic targets. In this chapter, we will overview different categories of chimeric RNAs and their expression in various types of cancerous and normal samples. Acknowledging that chimeric RNAs are not unique to cancer, we will discuss both bioinformatic and biological methods to identify credible cancer-specific chimeric RNAs. Furthermore, we will describe downstream methods to explore their molecular processing mechanisms and potential functions. A better understanding of the biogenesis mechanisms and functional products of cancer-specific chimeric RNAs will pave ways for the development of novel cancer biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xinrui Shi
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Emily Lin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Hui Li
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, United States; Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
45
|
Antitermination protein P7 of bacteriophage Xp10 distinguishes different types of transcriptional pausing by bacterial RNA polymerase. Biochimie 2020; 170:57-64. [DOI: 10.1016/j.biochi.2019.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 11/21/2022]
|
46
|
Planson AG, Sauveplane V, Dervyn E, Jules M. Bacterial growth physiology and RNA metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194502. [PMID: 32044462 DOI: 10.1016/j.bbagrm.2020.194502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
Bacteria are sophisticated systems with high capacity and flexibility to adapt to various environmental conditions. Each prokaryote however possesses a defined metabolic network, which sets its overall metabolic capacity, and therefore the maximal growth rate that can be reached. To achieve optimal growth, bacteria adopt various molecular strategies to optimally adjust gene expression and optimize resource allocation according to the nutrient availability. The resulting physiological changes are often accompanied by changes in the growth rate, and by global regulation of gene expression. The growth-rate-dependent variation of the abundances in the cellular machineries, together with condition-specific regulatory mechanisms, affect RNA metabolism and fate and pose a challenge for rational gene expression reengineering of synthetic circuits. This article is part of a Special Issue entitled: RNA and gene control in bacteria, edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Anne-Gaëlle Planson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
47
|
Girardin RC, McDonough KA. Small RNA Mcr11 requires the transcription factor AbmR for stable expression and regulates genes involved in the central metabolism of Mycobacterium tuberculosis. Mol Microbiol 2020; 113:504-520. [PMID: 31782837 PMCID: PMC7064933 DOI: 10.1111/mmi.14436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis, must adapt to host-associated environments during infection by modulating gene expression. Small regulatory RNAs (sRNAs) are key regulators of bacterial gene expression, but their roles in Mtb are not well understood. Here, we address the expression and function of the Mtb sRNA Mcr11, which is associated with slow bacterial growth and chronic infections in mice. We found that stable expression of Mcr11 requires multiple factors specific to TB-complex bacteria, including the AbmR transcription factor. Bioinformatic analyses used to predict regulatory targets of Mcr11 identified 7-11 nucleotide regions with potential for direct base-pairing with Mcr11 immediately upstream of Rv3282, fadA3, and lipB. mcr11-dependent regulation of these genes was demonstrated using qRT-PCR and found to be responsive to the presence of fatty acids. Mutation of the putative Mcr11 base-pairing site upstream of lipB in a promoter reporter strain resulted in significant de-repression of lipB expression, similar to that observed in mcr11-deleted Mtb. These studies establish Mcr11's roles in regulating growth and central metabolism in Mtb. Our finding that multiple TB-complex-specific factors are required for production of stable Mcr11 also emphasizes the need to better understand mechanisms of sRNA expression and stability in TB.
Collapse
Affiliation(s)
- Roxie C. Girardin
- Department of Biomedical SciencesSchool of Public HealthUniversity at AlbanyAlbanyNY
| | - Kathleen A. McDonough
- Department of Biomedical SciencesSchool of Public HealthUniversity at AlbanyAlbanyNY
- Wadsworth Center, New York State Department of HealthAlbanyNY
| |
Collapse
|
48
|
Wu ZC, Xia XJ, Li HR, Jiang SJ, Ma ZY, Wang X. Tandem repeat sequence of duck circovirus serves as downstream sequence element to regulate viral gene expression. Vet Microbiol 2019; 239:108496. [PMID: 31767077 DOI: 10.1016/j.vetmic.2019.108496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022]
Abstract
Duck circovirus (DuCV) has a small, single-stranded circular DNA genome of approximately 1.99 kb. Through a genome sequence analysis using the dottup program, we found that a quadruple tandem repeat sequence (QTR) in the intergenic region between the rep and cap genes of the DuCV genome, but not in other circoviruses. The QTR was also substantially different and evolutionarily conserved in the genotype 1 and 2 DuCV strains. Furthermore, a luciferase reporter assay demonstrated that QTR functioned as a downstream sequence element (DSE) of polyadenylation signals to enhance mRNA stability, which was dependent on four copies but not the QTR direction. Cap and Rep expression derived by subgenomic constructs also revealed a critical role of QTR in regulating viral gene expression. Finally, a reverse genetic study of a DuCV-based minicircle DNA technique found that a deletion of QTR induced a significant deficiency in viral genes transcription and replication. Our findings were the first to report that QTR only exists in the DuCV genome and serves as a novel molecular marker of DuCV genotyping, and has revealed its crucial biological function in regulating viral gene expression.
Collapse
Affiliation(s)
- Zhuan-Chang Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Xiao-Jing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, Henan, PR China
| | - Hao-Ran Li
- College of Agriculture and Forestry, Linyi University, Shuangling Road, Linyi City, Shandong, 276005, PR China
| | - Shi-Jin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Zhi-Yong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai, 200241, PR China.
| | - Xin Wang
- College of Agriculture and Forestry, Linyi University, Shuangling Road, Linyi City, Shandong, 276005, PR China.
| |
Collapse
|
49
|
Abstract
Bacteriophages employ small proteins to usurp host molecular machinery, thereby interfering with central metabolic processes in infected bacteria. Generally, phages inhibit or redirect host transcription to favor transcription of their own genomes. Mechanistic and structural studies of phage-modulated host transcription may provide inspirations for the development of novel antibacterial substances.
Collapse
Affiliation(s)
- Markus C Wahl
- Freie Universität Berlin, Laboratory of Structural Biochemistry, Berlin, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Ranjan Sen
- Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
50
|
Persson L, Brandman O. Finding the Right Finish Line in Eukaryotic Transcription. Biochemistry 2019; 58:4335-4336. [DOI: 10.1021/acs.biochem.9b00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laura Persson
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|