1
|
Xiong M, Roshanbin S, Sehlin D, Hansen HD, Knudsen GM, Rokka J, Eriksson J, Syvänen S. Synaptic density in aging mice measured by [ 18F]SynVesT-1 PET. Neuroimage 2023:120230. [PMID: 37355199 DOI: 10.1016/j.neuroimage.2023.120230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
Synaptic alterations in certain brain structures are related to cognitive decline in neurodegeneration and in aging. Synaptic loss in many neurodegenerative diseases can be visualized by positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A). However, the use of SV2A PET for studying synaptic changes during aging is not particularly explored. Thus, in the present study, PET ligand [18F]SynVesT-1, which binds to SV2A, was used to investigate synaptic density at different ages in healthy mice. Wild type C57BL/6 mice divided into three age groups (4-5 months (n = 7), 12-14 months (n = 11), 17-19 months (n = 7)) were PET scanned with [18F]SynVesT-1. Brain retention of [18F]SynVesT-1 expressed as the volume of distribution (VIDIF) was calculated using an image-derived input function. Estimates of VIDIF were derived using either a one-tissue compartment model (1TCM), a two-tissue compartment model (2TCM), or the Logan plot with blood input to find the best-fit model for [18F]SynVesT-1. After the PET scans, tissue sections were immunostained for the detection of SV2A and neuronal markers. We found that [18F]SynVesT-1 data acquired 60 min post intravenously injection and analyzed with 1TCM described the brain pharmacokinetics of the radioligand in mice well. [18F]SynVesT-1 brain retention was lower in the oldest group of mice, indicating a decrease in synaptic density in this age group. However, no gradual age-dependent decrease in synaptic density at a region-specific level was observed. Immunostaining indicated that SV2A expression and neuron numbers were similar across all three age groups. In general, these data obtained in healthy aging mice are consistent with previous findings in humans where synaptic density appeared stable during aging up to a certain age, after which a small decrease is observed.
Collapse
Affiliation(s)
- Mengfei Xiong
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Sahar Roshanbin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Dag Sehlin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Hanne D Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Johanna Rokka
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Jonas Eriksson
- PET Centre, Uppsala University Hospital, SE-751 85 Uppsala, Sweden; Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden.
| |
Collapse
|
2
|
Maisonneuve BGC, Libralesso L, Miny L, Batut A, Rontard J, Gleyzes M, Boudra B, Viera J, Debis D, Larramendy F, Jost V, Honegger T. Deposition chamber technology as building blocks for a standardized brain-on-chip framework. MICROSYSTEMS & NANOENGINEERING 2022; 8:86. [PMID: 35924033 PMCID: PMC9339542 DOI: 10.1038/s41378-022-00406-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 05/06/2023]
Abstract
The in vitro modeling of human brain connectomes is key to exploring the structure-function relationship of the central nervous system. Elucidating this intricate relationship will allow better studying of the pathological mechanisms of neurodegeneration and hence result in improved drug screenings for complex neurological disorders, such as Alzheimer's and Parkinson diseases. However, currently used in vitro modeling technologies lack the potential to mimic physiologically relevant neural structures. Herein, we present an innovative microfluidic design that overcomes one of the current limitations of in vitro brain models: their inability to recapitulate the heterogeneity of brain regions in terms of cellular density and number. This device allows the controlled and uniform deposition of any cellular population within unique plating chambers of variable size and shape. Through the fine tuning of the hydrodynamic resistance and cell deposition rate, the number of neurons seeded in each plating chamber can be tailored from a thousand up to a million. By applying our design to so-called neurofluidic devices, we offer novel neuro-engineered microfluidic platforms that can be strategically used as organ-on-a-chip platforms for neuroscience research. These advances provide essential enhancements to in vitro platforms in the quest to provide structural architectures that support models for investigating human neurodegenerative diseases.
Collapse
Affiliation(s)
| | - L. Libralesso
- University Grenoble Alpes, CNRS, GSCOP, 38000 Grenoble, France
| | | | | | | | | | | | | | | | - F. Larramendy
- University Grenoble Alpes, CNRS, LTM, 38000 Grenoble, France
- NETRI, 69007 Lyon, France
| | - V. Jost
- University Grenoble Alpes, CNRS, GSCOP, 38000 Grenoble, France
| | - T. Honegger
- University Grenoble Alpes, CNRS, LTM, 38000 Grenoble, France
- NETRI, 69007 Lyon, France
| |
Collapse
|
3
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
4
|
Pioneer Axons Utilize a Dcc Signaling-Mediated Invasion Brake to Precisely Complete Their Pathfinding Odyssey. J Neurosci 2021; 41:6617-6636. [PMID: 34131031 DOI: 10.1523/jneurosci.0212-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022] Open
Abstract
Axons navigate through the embryo to construct a functional nervous system. A missing part of the axon navigation puzzle is how a single axon traverses distinct anatomic choice points through its navigation. The dorsal root ganglia (DRG) neurons experience such choice points. First, they navigate to the dorsal root entry zone (DREZ), then halt navigation in the peripheral nervous system to invade the spinal cord, and then reinitiate navigation inside the CNS. Here, we used time-lapse super-resolution imaging in zebrafish DRG pioneer neurons to investigate how embryonic axons control their cytoskeleton to navigate to and invade at the correct anatomic position. We found that invadopodia components form in the growth cone even during filopodia-based navigation, but only stabilize when the axon is at the spinal cord entry location. Further, we show that intermediate levels of DCC and cAMP, as well as Rac1 activation, subsequently engage an axon invasion brake. Our results indicate that actin-based invadopodia components form in the growth cone and disruption of the invasion brake causes axon entry defects and results in failed behavioral responses, thereby demonstrating the importance of regulating distinct actin populations during navigational challenges.SIGNIFICANCE STATEMENT Correct spatiotemporal navigation of neuronal growth cones is dependent on extracellular navigational cues and growth cone dynamics. Here, we link dcc-mediated signaling to actin-based invadopodia and filopodia dynamics during pathfinding and entry into the spinal cord using an in vivo model of dorsal root ganglia (DRG) sensory axons. We reveal a molecularly-controlled brake on invadopodia stabilization until the sensory neuron growth cone is present at the dorsal root entry zone (DREZ), which is ultimately essential for growth cone entry into the spinal cord and behavioral response.
Collapse
|
5
|
Morphological Heterogeneity of the Endoplasmic Reticulum within Neurons and Its Implications in Neurodegeneration. Cells 2021; 10:cells10050970. [PMID: 33919188 PMCID: PMC8143122 DOI: 10.3390/cells10050970] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multipurpose organelle comprising dynamic structural subdomains, such as ER sheets and tubules, serving to maintain protein, calcium, and lipid homeostasis. In neurons, the single ER is compartmentalized with a careful segregation of the structural subdomains in somatic and neurite (axodendritic) regions. The distribution and arrangement of these ER subdomains varies between different neuronal types. Mutations in ER membrane shaping proteins and morphological changes in the ER are associated with various neurodegenerative diseases implying significance of ER morphology in maintaining neuronal integrity. Specific neurons, such as the highly arborized dopaminergic neurons, are prone to stress and neurodegeneration. Differences in morphology and functionality of ER between the neurons may account for their varied sensitivity to stress and neurodegenerative changes. In this review, we explore the neuronal ER and discuss its distinct morphological attributes and specific functions. We hypothesize that morphological heterogeneity of the ER in neurons is an important factor that accounts for their selective susceptibility to neurodegeneration.
Collapse
|
6
|
Ramezani Z, Seo KJ, Fang H. Hybrid Electrical and Optical Neural Interfaces. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2021; 31:044002. [PMID: 34177136 PMCID: PMC8232899 DOI: 10.1088/1361-6439/abeb30] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neural interfaces bridge the nervous system and the outside world by recording and stimulating neurons. Combining electrical and optical modalities in a single, hybrid neural interface system could lead to complementary and powerful new ways to explore the brain. It has gained robust and exciting momentum recently in neuroscience and neural engineering research. Here, we review developments in the past several years aiming to achieve such hybrid electrical and optical microsystem platforms. Specifically, we cover three major categories of technological advances: transparent neuroelectrodes, optical neural fibers with electrodes, and neural probes/grids integrating electrodes and microscale light-emitting diodes. We discuss examples of these probes tailored to combine electrophysiological recording with optical imaging or optical neural stimulation of the brain and possible directions of future innovation.
Collapse
Affiliation(s)
| | | | - Hui Fang
- Department of Electrical and Computer Engineering
- Department of Mechanical and Industrial Engineering
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
7
|
Brembs B. The brain as a dynamically active organ. Biochem Biophys Res Commun 2020; 564:55-69. [PMID: 33317833 DOI: 10.1016/j.bbrc.2020.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Nervous systems are typically described as static networks passively responding to external stimuli (i.e., the 'sensorimotor hypothesis'). However, for more than a century now, evidence has been accumulating that this passive-static perspective is wrong. Instead, evidence suggests that nervous systems dynamically change their connectivity and actively generate behavior so their owners can achieve goals in the world, some of which involve controlling their sensory feedback. This review provides a brief overview of the different historical perspectives on general brain function and details some select modern examples falsifying the sensorimotor hypothesis.
Collapse
Affiliation(s)
- Björn Brembs
- Universität Regensburg, Institut für Zoologie - Neurogenetik, Regensburg, Germany.
| |
Collapse
|
8
|
Liput DJ, Nguyen TA, Augustin SM, Lee JO, Vogel SS. A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e108. [PMID: 33232577 PMCID: PMC8274369 DOI: 10.1002/cpns.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorescence lifetime microscopy (FLIM) and Förster's resonance energy transfer (FRET) are advanced optical tools that neuroscientists can employ to interrogate the structure and function of complex biological systems in vitro and in vivo using light. In neurobiology they are primarily used to study protein-protein interactions, to study conformational changes in protein complexes, and to monitor genetically encoded FRET-based biosensors. These methods are ideally suited to optically monitor changes in neurons that are triggered optogenetically. Utilization of this technique by neuroscientists has been limited, since a broad understanding of FLIM and FRET requires familiarity with the interactions of light and matter on a quantum mechanical level, and because the ultra-fast instrumentation used to measure fluorescent lifetimes and resonance energy transfer are more at home in a physics lab than in a biology lab. In this overview, we aim to help neuroscientists overcome these obstacles and thus feel more comfortable with the FLIM-FRET method. Our goal is to aid researchers in the neuroscience community to achieve a better understanding of the fundamentals of FLIM-FRET and encourage them to fully leverage its powerful ability as a research tool. Published 2020. U.S. Government.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Tuan A. Nguyen
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jeong Oen Lee
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S. Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Corresponding author:
| |
Collapse
|
9
|
Mathuru AS, Libersat F, Vyas A, Teseo S. Why behavioral neuroscience still needs diversity?: A curious case of a persistent need. Neurosci Biobehav Rev 2020; 116:130-141. [PMID: 32565172 DOI: 10.1016/j.neubiorev.2020.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/29/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022]
Abstract
In the past few decades, a substantial portion of neuroscience research has moved from studies conducted across a spectrum of animals to reliance on a few species. While this undoubtedly promotes consistency, in-depth analysis, and a better claim to unraveling molecular mechanisms, investing heavily in a subset of species also restricts the type of questions that can be asked, and impacts the generalizability of findings. A conspicuous body of literature has long advocated the need to expand the diversity of animal systems used in neuroscience research. Part of this need is utilitarian with respect to translation, but the remaining is the knowledge that historically, a diverse set of species were instrumental in obtaining transformative understanding. We argue that diversifying matters also because the current approach limits the scope of what can be discovered. Technological advancements are already bridging several practical gaps separating these two worlds. What remains is a wholehearted embrace by the community that has benefitted from past history. We suggest the time for it is now.
Collapse
Affiliation(s)
- Ajay S Mathuru
- Yale-NUS College, 12 College Avenue West, Singapore; Institute of Molecular and Cell Biology, A⁎STAR, 61 Biopolis Drive, Singapore; Dept. of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Frédéric Libersat
- Dept. of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Ben Gurion University, Beer Sheva 8410501 Israel
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Serafino Teseo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
10
|
Michiels M. Electrophysiology prediction of single neurons based on their morphology.. [DOI: 10.1101/2020.02.04.933697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractElectrophysiology data acquisition of single neurons represents a key factor for the understanding of neuronal dynamics. However, the traditional method to acquire this data is through patch-clamp technology, which presents serious scalability flaws due to its slowness and complexity to record at fine-grained spatial precision (dendrites and axon).In silico biophysical models are therefore created for simulating hundreds of experiments that would be impractical to recreate in vitro. The optimal way to create these models is based on the knowledge of the morphological and electrical features for each neuron. Since large-scale data acquisition is often unfeasible for electrical data, previous expert knowledge can be used but it must have an acceptable degree of similarity with the type of neurons that we are trying to model.Here, we present a data-driven machine learning approach to predict the electrophysiological features of single neurons in case of only having their morphology available. To solve this multi-output regression problem, we use an artificial neural network that has the particularity of providing a probability distribution for every output feature, to incorporate uncertainty. Input data to train the model is obtained from from the Allen Cell Types database. The electrical properties can depend on the morphology, whose acquisition technology is highly automated and scalable so there exist large data sets of them. We also provide integrations with the BluePyOpt library to create a biophysical model using the original morphology and the predicted electrical features. Finally, we connect the resulting biophysical model with the Geppetto UI software to run all the simulations in a sophisticated user interface.
Collapse
|
11
|
Antonakou EI, Triarhou LC. Through neuronal avalanches to consciousness: Conjectures and elaborations. J Chem Neuroanat 2019; 104:101741. [PMID: 31899293 DOI: 10.1016/j.jchemneu.2019.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 11/24/2022]
Abstract
The concept of the "conduction avalanche" as a mechanism of signal propagation in the central nervous system was introduced in 1895 by Santiago Ramón y Cajal. Through such a mechanism, stimuli received by sensory receptor cells would be augmented as they reached the cerebral cortex through the corresponding anatomical pathways, leading to conscious perception. Cajal applied the concept to the visual, auditory, olfactory and somatosensory systems, and in 1896 extended it to the cerebellar cortex. Beginning in 1899 and up to 2003, prominent neuroscientists, including Lewellys F. Barker, C. Judson Herrick, Francis X. Dercum, Rafael Lorente de Nó, Cornelius U. Ariëns Kappers, Hartwig Kuhlenbeck, Gordon M. Shepherd, and Rodolfo Llinás, have referred in their writings to the principle of conduction avalanches, crediting Cajal. In 2003, John Beggs and Dietmar Plenz introduced the concept of the "neuronal avalanche," modelled after the power law of physics, as a property of neocortical networks and a new mode of spontaneous activity, distinct from the oscillatory, synchronized and wave states previously conceived to underpin the integrative function of the cerebral cortex. The topic has become an issue of intensive research over the past 15 years. In this paper, we discuss the basic tenets of the Cajalian principle, followed by an exposition of ideas throughout the 20th century, and an overview, in a modern perspective, of the neuronal avalanche as a mechanism in the current study of the neural bases of consciousness.
Collapse
Affiliation(s)
- Elena I Antonakou
- Graduate Program in Neuroscience and Education, University of Macedonia, Thessalonica 54636, Greece
| | - Lazaros C Triarhou
- Graduate Program in Neuroscience and Education, University of Macedonia, Thessalonica 54636, Greece; Laboratory of Theoretical and Applied Neuroscience, University of Macedonia, Thessalonica 54636, Greece; Center for Lifelong Learning, University of Macedonia, Thessalonica 54636, Greece.
| |
Collapse
|
12
|
Roles for the Endoplasmic Reticulum in Regulation of Neuronal Calcium Homeostasis. Cells 2019; 8:cells8101232. [PMID: 31658749 PMCID: PMC6829861 DOI: 10.3390/cells8101232] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
By influencing Ca2+ homeostasis in spatially and architecturally distinct neuronal compartments, the endoplasmic reticulum (ER) illustrates the notion that form and function are intimately related. The contribution of ER to neuronal Ca2+ homeostasis is attributed to the organelle being the largest reservoir of intracellular Ca2+ and having a high density of Ca2+ channels and transporters. As such, ER Ca2+ has incontrovertible roles in the regulation of axodendritic growth and morphology, synaptic vesicle release, and neural activity dependent gene expression, synaptic plasticity, and mitochondrial bioenergetics. Not surprisingly, many neurological diseases arise from ER Ca2+ dyshomeostasis, either directly due to alterations in ER resident proteins, or indirectly via processes that are coupled to the regulators of ER Ca2+ dynamics. In this review, we describe the mechanisms involved in the establishment of ER Ca2+ homeostasis in neurons. We elaborate upon how changes in the spatiotemporal dynamics of Ca2+ exchange between the ER and other organelles sculpt neuronal function and provide examples that demonstrate the involvement of ER Ca2+ dyshomeostasis in a range of neurological and neurodegenerative diseases.
Collapse
|
13
|
Antonakou EI, Triarhou LC. "Anatomical mechanism of ideation, association and attention" [1895] and "Certain points in neurological histophysiology" [1896]: Cajal's conjectures, then and now. J Chem Neuroanat 2019; 104:101702. [PMID: 31605734 DOI: 10.1016/j.jchemneu.2019.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 11/29/2022]
Abstract
The purpose of this article is two-fold: first, to preserve, in updated English translations, two theoretical papers written by Santiago Ramón y Cajal (1852-1934) in 1895 and 1896 under the titles, "Conjectures on the anatomical mechanism of ideation, association and attention" and "Conjectural interpretations of certain points in neurological histophysiology"; and second, to set some of the ideas proposed by Cajal in a modern perspective. In his "Conjectures," Cajal ventured to explain the mechanisms of perception, association and attention in cellular terms. He introduced the term "impression unit," which would propagate, leading to conscious act via an "avalanche of conduction." Additionally, he attributed mental repose and sleep to morphological variations of neuroglia; at times of relaxation, astrocytes would grow appendices that penetrated among nerve cell connections and blocked the conduction of the "nervous current"; in energetic contraction, such glial "pseudopodia" would shrink, allowing neuronal processes to come into contact again. In the sequel to the "Conjectures," Cajal presented strong arguments defending the neuron theory against the reticular theory. Moreover, he discussed the functional differentiation of spinal motor neurons and cortical pyramidal cells, which respectively subserve movement and consciousness, despite their morphological similarity.
Collapse
Affiliation(s)
- Elena I Antonakou
- Graduate Program in Neuroscience and Education, University of Macedonia, Thessalonica 54636, Greece.
| | - Lazaros C Triarhou
- Graduate Program in Neuroscience and Education, University of Macedonia, Thessalonica 54636, Greece; Laboratory of Theoretical and Applied Neuroscience, University of Macedonia, Thessalonica 54636, Greece; Center for Lifelong Learning, University of Macedonia, Thessalonica 54636, Greece.
| |
Collapse
|
14
|
Zheng T, Feng Z, Wang X, Jiang T, Jin R, Zhao P, Luo T, Gong H, Luo Q, Yuan J. Review of micro-optical sectioning tomography (MOST): technology and applications for whole-brain optical imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2019; 10:4075-4096. [PMID: 31452996 PMCID: PMC6701528 DOI: 10.1364/boe.10.004075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 05/14/2023]
Abstract
Elucidating connectivity and functionality at the whole-brain level is one of the most challenging research goals in neuroscience. Various whole-brain optical imaging technologies with submicron lateral resolution have been developed to reveal the fine structures of brain-wide neural and vascular networks at the mesoscopic level. Among them, micro-optical sectioning tomography (MOST) is attracting increasing attention, as a variety of technological variations and solutions tailored toward different biological applications have been optimized. Here, we summarize the recent development of MOST technology in whole-brain imaging and anticipate future improvements.
Collapse
Affiliation(s)
- Ting Zheng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Equal contribution
| | - Zhao Feng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Equal contribution
| | - Xiaojun Wang
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tao Jiang
- HUST–Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu 215000, China
| | - Rui Jin
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peilin Zhao
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ting Luo
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Gong
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- HUST–Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu 215000, China
| | - Qingming Luo
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- HUST–Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu 215000, China
| | - Jing Yuan
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- HUST–Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu 215000, China
| |
Collapse
|
15
|
Kuramoto E. Method for labeling and reconstruction of single neurons using Sindbis virus vectors. J Chem Neuroanat 2019; 100:101648. [PMID: 31181303 DOI: 10.1016/j.jchemneu.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/11/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Neuronal dendrites and axons are key substrates for the input and output of information, respectively, so establishing the precise and complete morphological description of dendritic and axonal processes of a single neuron is essential for understanding the neuron's functional role in the neuronal circuits. The whole structure of single neurons was originally revealed using Golgi staining, and later the intracellular labeling method was developed, although this is technically too difficult to stain entire neurons in vivo. Since the late 1980s, molecular biology techniques have been applied to neuroscience research, leading to the development of various virus vectors, such as the Sindbis and adeno-associated virus vectors, which have facilitated the reconstruction of neurons at a single cell level. In the present review, we focus on a method for labeling and reconstruction of single neurons using Sindbis virus vectors that express membrane-targeted fluorescent proteins. We describe in detail a protocol for single-neuron labeling using Sindbis virus vectors, and we provide an example of a recent project at our laboratory in which we successfully applied these methods to study thalamocortical projection neurons. Further, we discuss the strengths and limitations of Sindbis virus vectors for single neuron reconstruction, comparing them with adeno-associated virus vectors.
Collapse
Affiliation(s)
- Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
| |
Collapse
|
16
|
Lee TW, Xue SW. Revisiting the Functional and Structural Connectivity of Large-Scale Cortical Networks. Brain Connect 2018; 8:129-138. [PMID: 29291634 DOI: 10.1089/brain.2017.0536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multimodal neuroimaging research has become increasingly popular, and structure-function correspondence is tacitly assumed. Researchers have not yet adequately assessed whether the functional connectivity (FC) and structural connectivity (SC) of large-scale cortical networks are in agreement. Structural magnetic resonance imaging (sMRI), resting-state functional MRI (rfMRI), and diffusion-weighted imaging (DWI) data sets from 36 healthy subjects (age 27.4) were selected from a Rockland sample (Enhanced Nathan Kline Institute). The cerebral cortex was parcellated into 62 regions according to the Desikan-Killiany atlas for FC and SC analyses. Thresholded correlations in rfMRI and tractography derived from DWI were used to construct FC and SC maps, respectively. A community detection algorithm was applied to reveal the underlying organization, and modular consistency was quantified to bridge cross-modal comparisons. The distributions of correlation coefficients in FC and SC maps were significantly different. Approximately one-fourth of the connections in the SC map were located at a correlation level below 0.2 (df 253). The index of modular consistency in the within-modality interindividual condition (either FC or SC) was considerably greater than that in the between-modality intraindividual analog. In addition, the SC-FC differential map (SC connections with lower correlations) revealed reliable modular structures. Based on these results, the hypothesized FC-SC agreement is partially valid. Contingent on extant neuroimaging tools and analytical conventions, the neural informatics of FC and SC should be regarded as complementary rather than concordant. Furthermore, the results verify the physiological significance of moderately (or mildly) correlated brain signals in rfMRI, which are often discarded by stringent thresholding.
Collapse
Affiliation(s)
- Tien-Wen Lee
- 1 Center for Cognition and Brain Disorders, Hangzhou Normal University , Hangzhou, China .,2 Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments , Hangzhou, China .,3 Department of Psychiatry, Dajia Lee's General Hospital , Lee's Medical Corporation, Taichung, Taiwan
| | - Shao-Wei Xue
- 1 Center for Cognition and Brain Disorders, Hangzhou Normal University , Hangzhou, China .,2 Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments , Hangzhou, China
| |
Collapse
|
17
|
Jackman SL, Regehr WG. The Mechanisms and Functions of Synaptic Facilitation. Neuron 2017; 94:447-464. [PMID: 28472650 DOI: 10.1016/j.neuron.2017.02.047] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 12/22/2022]
Abstract
The ability of the brain to store and process information relies on changing the strength of connections between neurons. Synaptic facilitation is a form of short-term plasticity that enhances synaptic transmission for less than a second. Facilitation is a ubiquitous phenomenon thought to play critical roles in information transfer and neural processing. Yet our understanding of the function of facilitation remains largely theoretical. Here we review proposed roles for facilitation and discuss how recent progress in uncovering the underlying molecular mechanisms could enable experiments that elucidate how facilitation, and short-term plasticity in general, contributes to circuit function and animal behavior.
Collapse
Affiliation(s)
- Skyler L Jackman
- Department of Neurobiology, Harvard Medical School, Boston, MA 02118, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02118, USA.
| |
Collapse
|
18
|
Amaral I, Nogueira MI, Ferreira FRM. [Between neurons and synapses: the contributions of Cajal and Athias to Iberian medicine between the nineteenth and twentieth centuries]. ACTA ACUST UNITED AC 2016; 24:187-199. [PMID: 27849218 DOI: 10.1590/s0104-59702016005000029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 08/01/2016] [Indexed: 11/22/2022]
Abstract
The trajectory of histology at the cusp of the twentieth century in Portugal and Spain is investigated to draw a parallel between the contributions of Santiago Ramón y Cajal and Marck Athias, both of whom were instrumental in the development of experimental medicine in the Iberian Peninsula and recognized as pillars of a new European scientific mindset at the dawn of the twentieth century. In this case study we reflect on the vicissitudes of the construction of science in the "periphery" of Europe, in the context of the historiographical category of center-periphery developed by STEP (Science and Technology in the European Periphery), contrasting the reality in Iberia with the model of German science in the period under study.
Collapse
Affiliation(s)
- Isabel Amaral
- Professora, Centro Interuniversitário de História das Ciências e da Tecnologia, Faculdade de Ciências e Tecnologia/Universidade Nova de Lisboa. Monte da Caparica. 2829-516 - Caparica - Portugal.
| | - Maria Inês Nogueira
- Professora, Instituto de Ciências Biomédicas/ Universidade de São Paulo. Av. Professor Lineu Prestes, 2.415 05508-900 - São Paulo - SP - Brasil.
| | - Francisco Rômulo Monte Ferreira
- Professor, Instituto de Psicologia/Universidade de São Paulo. Av. Professor Mello Morais, 1.721. 05508-030 -São Paulo - SP - Brasil.
| |
Collapse
|
19
|
Martirosian V, Chen TC, Lin M, Neman J. Medulloblastoma initiation and spread: Where neurodevelopment, microenvironment and cancer cross pathways. J Neurosci Res 2016; 94:1511-1519. [DOI: 10.1002/jnr.23917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Vahan Martirosian
- Department of Neurosurgery, Keck School of Medicine; University of Southern California; Los Angeles California
| | - Thomas C. Chen
- Department of Neurosurgery, Keck School of Medicine; University of Southern California; Los Angeles California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California; Los Angeles California
| | - Michelle Lin
- Department of Neurosurgery, Keck School of Medicine; University of Southern California; Los Angeles California
| | - Josh Neman
- Department of Neurosurgery, Keck School of Medicine; University of Southern California; Los Angeles California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California; Los Angeles California
| |
Collapse
|
20
|
LSPS/Optogenetics to Improve Synaptic Connectivity Mapping: Unmasking the Role of Basket Cell-Mediated Feedforward Inhibition. eNeuro 2016; 3:eN-MNT-0142-15. [PMID: 27517089 PMCID: PMC4976301 DOI: 10.1523/eneuro.0142-15.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 06/28/2016] [Accepted: 07/15/2016] [Indexed: 12/20/2022] Open
Abstract
Neocortical pyramidal cells (PYRs) receive synaptic inputs from many types of GABAergic interneurons. Connections between parvalbumin (PV)-positive, fast-spiking interneurons (“PV cells”) and PYRs are characterized by perisomatic synapses and high-amplitude, short-latency IPSCs. Here, we present novel methods to study the functional influence of PV cells on layer 5 PYRs using optogenetics combined with laser-scanning photostimulation (LSPS). First, we examined the strength and spatial distribution of PV-to-PYR inputs. To that end, the fast channelrhodopsin variant AAV5-EF1α-DIO-hChR2(E123T)-eYFP (ChETA) was expressed in PV cells in somatosensory cortex of mice using an adeno-associated virus-based viral construct. Focal blue illumination (100–150 µm half-width) was directed through the microscope objective to excite PV cells along a spatial grid covering layers 2–6, while IPSCs were recorded in layer 5 PYRs. The resulting optogenetic input maps showed evoked PV cell inputs originating from an ∼500-μm-diameter area surrounding the recorded PYR. Evoked IPSCs had the short-latency/high-amplitude characteristic of PV cell inputs. Second, we investigated how PV cell activity modulates PYR output in response to synaptic excitation. We expressed halorhodopsin (eNpHR3.0) in PV cells using the same strategy as for ChETA. Yellow illumination hyperpolarized eNpHR3.0-expressing PV cells, effectively preventing action potential generation and thus decreasing the inhibition of downstream targets. Synaptic input maps onto layer 5 PYRs were acquired using standard glutamate-photolysis LSPS either with or without full-field yellow illumination to silence PV cells. The resulting IPSC input maps selectively lacked short-latency perisomatic inputs, while EPSC input maps showed increased connectivity, particularly from upper layers. This indicates that glutamate uncaging LSPS-based excitatory synaptic maps will consistently underestimate connectivity.
Collapse
|
21
|
Tzouma A, Margulies DS, Triarhou LC. Commentary on "The Cerebellar System and What it Signifies from a Biological Perspective: A Communication by Christofredo Jakob (1866-1956) Before the Society of Neurology and Psychiatry of Buenos Aires, December 1938". CEREBELLUM (LONDON, ENGLAND) 2016; 15:417-24. [PMID: 27230900 DOI: 10.1007/s12311-016-0791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This commentary highlights a "cerebellar classic" by a pioneer of neurobiology, Christfried Jakob. Jakob discussed the connectivity between the cerebellum and mesencephalic, diencephalic, and telencephalic structures in an evolutionary, developmental, and histophysiological perspective. He proposed three evolutionary morphofunctional stages, the archicerebellar, paleocerebellar, and neocerebellar; he attributed the reduced cerebellospinal connections in humans, compared to other primates, to the perfection of the rubrolenticular and thalamocortical systems and the intense ascending pathways to the red nucleus in exchange for the more elementary descending efferent pathways. Jakob hypothesized the convergence of cerebellar pathways in associative cortical regions, insisting on the intimate collaboration of the cerebellum with the frontal lobe. The extensive lines of communication between regions throughout the association cortex substantiate Jakob's intuition and begin to outline the mechanisms for substantial cerebellar involvement in functions beyond the purely motor domain. Atop a foundation of anatomical and phylogenetic mastery, Jakob conceived ideas that were noteworthy, timely, and have much relevance to our current thinking on cerebellar structure and function.
Collapse
Affiliation(s)
- Anny Tzouma
- Graduate Program in Neuroscience and Education, University of Macedonia, 156 Egnatia Ave., Thessalonica, 54006, Greece
| | - Daniel S Margulies
- Research Group for Neuroanatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1A, Leipzig, 04103, Germany
| | - Lazaros C Triarhou
- Laboratory of Theoretical and Applied Neuroscience and Graduate Program in Neuroscience and Education, University of Macedonia, 156 Egnatia Ave., Thessalonica, 54006, Greece.
| |
Collapse
|
22
|
Sadigh-Eteghad S, Majdi A, Mahmoudi J, Golzari SEJ, Talebi M. Astrocytic and microglial nicotinic acetylcholine receptors: an overlooked issue in Alzheimer's disease. J Neural Transm (Vienna) 2016; 123:1359-1367. [PMID: 27262818 DOI: 10.1007/s00702-016-1580-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/27/2016] [Indexed: 02/01/2023]
Abstract
It is increasingly recognized that astrocytes and microglia-associated dysfunction contribute to AD pathology. In addition, glial nicotinic acetylcholine receptors (nAChRs) play a role in AD-related phenomena, such as neuron survival, synaptic plasticity, and memory. From mechanistic point of view, the glial regulation of pro-inflammatory cytokines, as common contributors in AD, is modulated by nAChRs. Astrocytic and microglial nAChRs contribute to Aβ metabolism, including Aβ phagocytosis and degradation as well as Aβ-related oxidative stress and neurotoxicity. These receptors are also involved in neurotransmission and gliotransmission through indirect interaction with N-Methyl-D-aspartate (NMDA) and a-amino-3-hydroxy-5-methyl-4 isoxazolepropionic acid (AMPA) receptors as well as gamma-aminobutyric acid (GABA) and intracellular calcium regulation. In addition, glial nAChRs participate in trophic factors-induced neuroprotection. This review gathers the most recent advances along with the previous data on astrocytic and microglial nAChRs role in AD pathogenesis.
Collapse
Affiliation(s)
- Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Majdi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad E J Golzari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Castagnini A. 'Paranoia and its historical development (systematized delusion)', by Eugenio Tanzi (1884). HISTORY OF PSYCHIATRY 2016; 27:229-240. [PMID: 27145948 DOI: 10.1177/0957154x16630501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This was the first paper by the Italian alienist Eugenio Tanzi (1856-1934). It surveyed existing works and provided an analysis of clinical categories such as monomania, sensory madness, moral insanity, Wahnsinn, Verrücktheit and systematized delusions, which had been used in France, Germany, Britain and Italy since the early nineteenth century to deal with paranoia. As pointed out by Tanzi, discrepancies and discontinuities in diagnostic concepts affected both psychiatric nosology and practice. Paranoia (from the Greek παρά and νοια) made for greater clarity in psychiatric terminology, and denoted a broad category, including both acute and chronic delusional states which were considered to be distinct from mania and melancholia, and usually not to lead to mental deterioration.
Collapse
|
24
|
Sarto-Jackson I, Tomaska L. How to bake a brain: yeast as a model neuron. Curr Genet 2016; 62:347-70. [PMID: 26782173 DOI: 10.1007/s00294-015-0554-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022]
Abstract
More than 30 years ago Dan Koshland published an inspirational essay presenting the bacterium as a model neuron (Koshland, Trends Neurosci 6:133-137, 1983). In the article he argued that there are several similarities between neurons and bacterial cells in "how signals are processed within a cell or how this processing machinery can be modified to produce plasticity". He then explored the bacterial chemosensory system to emphasize its attributes that are analogous to information processing in neurons. In this review, we wish to expand Koshland's original idea by adding the yeast cell to the list of useful models of a neuron. The fact that yeasts and neurons are specialized versions of the eukaryotic cell sharing all principal components sets the stage for a grand evolutionary tinkering where these components are employed in qualitatively different tasks, but following analogous molecular logic. By way of example, we argue that evolutionarily conserved key components involved in polarization processes (from budding or mating in Saccharomyces cervisiae to neurite outgrowth or spinogenesis in neurons) are shared between yeast and neurons. This orthologous conservation of modules makes S. cervisiae an excellent model organism to investigate neurobiological questions. We substantiate this claim by providing examples of yeast models used for studying neurological diseases.
Collapse
Affiliation(s)
- Isabella Sarto-Jackson
- Konrad Lorenz Institute for Evolution and Cognition Research, Martinstraße 12, 3400, Klosterneuburg, Austria.
| | - Lubomir Tomaska
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B-1, Ilkovicova 6, 842 15, Bratislava, Slovak Republic.
| |
Collapse
|
25
|
|
26
|
Curtice KJ, Leavitt LS, Chase K, Raghuraman S, Horvath MP, Olivera BM, Teichert RW. Classifying neuronal subclasses of the cerebellum through constellation pharmacology. J Neurophysiol 2015; 115:1031-42. [PMID: 26581874 DOI: 10.1152/jn.00894.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/12/2015] [Indexed: 11/22/2022] Open
Abstract
A pressing need in neurobiology is the comprehensive identification and characterization of neuronal subclasses within the mammalian nervous system. To this end, we used constellation pharmacology as a method to interrogate the neuronal and glial subclasses of the mouse cerebellum individually and simultaneously. We then evaluated the data obtained from constellation-pharmacology experiments by cluster analysis to classify cells into neuronal and glial subclasses, based on their functional expression of glutamate, acetylcholine, and GABA receptors, among other ion channels. Conantokin peptides were used to identify N-methyl-d-aspartate (NMDA) receptor subtypes, which revealed that neurons of the young mouse cerebellum expressed NR2A and NR2B NMDA receptor subunits. Additional pharmacological tools disclosed differential expression of α-amino-3-hydroxy-5-methyl-4-isoxazloepropionic, nicotinic acetylcholine, and muscarinic acetylcholine receptors in different neuronal and glial subclasses. Certain cell subclasses correlated with known attributes of granule cells, and we combined constellation pharmacology with genetically labeled neurons to identify and characterize Purkinje cells. This study illustrates the utility of applying constellation pharmacology to classify neuronal and glial subclasses in specific anatomical regions of the brain.
Collapse
Affiliation(s)
- Kigen J Curtice
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Lee S Leavitt
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Kevin Chase
- Department of Biology, University of Utah, Salt Lake City, Utah
| | | | | | | | | |
Collapse
|
27
|
Delgado-García JM. Cajal and the Conceptual Weakness of Neural Sciences. Front Neuroanat 2015; 9:128. [PMID: 26483644 PMCID: PMC4588005 DOI: 10.3389/fnana.2015.00128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 09/16/2015] [Indexed: 01/21/2023] Open
Abstract
The experimental and conceptual contributions of Santiago Ramón y Cajal remain almost as fresh and valuable as when his original proposals were published more than a century ago-a rare example, contrasting with other related sciences. His basic concepts on the neuron as the main building block of the central nervous system, the dynamic polarization principle as a way to understand how neurons deal with ongoing active processes, and brain local structural arrangements as a result of the functional specialization of selected neural circuits are concepts still surviving in present research papers dealing with brain function during the performance of cognitive and/or behavioral activities. What is more, the central dogma of the Neuroscience of today, i.e., brain plasticity as the morpho-functional substrate of memory and learning processes, was already proposed and documented with notable insights by Ramón y Cajal. From this background, I will try to discuss in this chapter which new functional and structural concepts have been introduced in contemporary Neuroscience and how we will be able to construct a set of basic principles underlying brain functions for the twenty-first century.
Collapse
|
28
|
Yuan J, Gong H, Li A, Li X, Chen S, Zeng S, Luo Q. Visible rodent brain-wide networks at single-neuron resolution. Front Neuroanat 2015; 9:70. [PMID: 26074784 PMCID: PMC4446545 DOI: 10.3389/fnana.2015.00070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/13/2015] [Indexed: 01/05/2023] Open
Abstract
There are some unsolvable fundamental questions, such as cell type classification, neural circuit tracing and neurovascular coupling, though great progresses are being made in neuroscience. Because of the structural features of neurons and neural circuits, the solution of these questions needs us to break through the current technology of neuroanatomy for acquiring the exactly fine morphology of neuron and vessels and tracing long-distant circuit at axonal resolution in the whole brain of mammals. Combined with fast-developing labeling techniques, efficient whole-brain optical imaging technology emerging at the right moment presents a huge potential in the structure and function research of specific-function neuron and neural circuit. In this review, we summarize brain-wide optical tomography techniques, review the progress on visible brain neuronal/vascular networks benefit from these novel techniques, and prospect the future technical development.
Collapse
Affiliation(s)
- Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology Wuhan, China ; Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology Wuhan, China ; Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology Wuhan, China ; Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology Wuhan, China ; Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Shangbin Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology Wuhan, China ; Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology Wuhan, China ; Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology Wuhan, China ; Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
29
|
Abstract
During brain development, billions of neurons organize into highly specific circuits. To form specific circuits, neurons must build the appropriate types of synapses with appropriate types of synaptic partners while avoiding incorrect partners in a dense cellular environment. Defining the cellular and molecular rules that govern specific circuit formation has significant scientific and clinical relevance because fine scale connectivity defects are thought to underlie many cognitive and psychiatric disorders. Organizing specific neural circuits is an enormously complicated developmental process that requires the concerted action of many molecules, neural activity, and temporal events. This review focuses on one class of molecules postulated to play an important role in target selection and specific synapse formation: the classic cadherins. Cadherins have a well-established role in epithelial cell adhesion, and although it has long been appreciated that most cadherins are expressed in the brain, their role in synaptic specificity is just beginning to be unraveled. Here, we review past and present studies implicating cadherins as active participants in the formation, function, and dysfunction of specific neural circuits and pose some of the major remaining questions.
Collapse
Affiliation(s)
- Raunak Basu
- a Department of Neurobiology and Anatomy ; University of Utah ; Salt Lake City , UT USA
| | | | | |
Collapse
|
30
|
Hale ME. Mapping circuits beyond the models: integrating connectomics and comparative neuroscience. Neuron 2015; 83:1256-8. [PMID: 25233308 DOI: 10.1016/j.neuron.2014.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The brain has been shaped by evolution, and its connectome reflects that history. Comparative neuroscience research, framed by evolutionary relationships, is key to interpreting connectome organization and can address fundamental circuit questions that are not accessible through single-species connectomics efforts.
Collapse
Affiliation(s)
- Melina E Hale
- Department of Organismal Biology and Anatomy, Committees on Neurobiology and Computational Neuroscience, The University of Chicago, 1027 East 57(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
31
|
Abstract
Metastasis is the relentless pursuit of cancer to escape its primary site and colonize distant organs. This malignant evolutionary process is biologically heterogeneous, yet one unifying element is the critical role of the microenvironment for arriving metastatic cells. Historically, brain metastases were rarely investigated because patients with advanced cancer were considered terminal. Fortunately, advances in molecular therapies have led to patients living longer with metastatic cancer. However, one site remains recalcitrant to our treatment efforts, the brain. The central nervous system is the most complex biologic system, which poses unique obstacles but also harbors opportunities for discovery. Much of what we know about the brain microenvironment comes from neuroscience. We suggest that the interrelated cellular responses in traumatic brain injury may guide us toward new perspectives in understanding brain metastases. In this view, brain metastases may be conceptualized as progressive oncologic injury to the nervous system. This review discusses our evolving understanding of bidirectional interactions between the brain milieu and metastatic cancer.
Collapse
Affiliation(s)
- John Termini
- Department of Molecular Medicine, City of Hope, Duarte, California
| | - Josh Neman
- Division of Neurosurgery, City of Hope, Duarte, California
| | - Rahul Jandial
- Division of Neurosurgery, City of Hope, Duarte, California. Department of Biology, University of Southern California, Los Angeles, California.
| |
Collapse
|
32
|
Yook C, Druckmann S, Kim J. Mapping mammalian synaptic connectivity. Cell Mol Life Sci 2013; 70:4747-57. [PMID: 23864031 PMCID: PMC3830202 DOI: 10.1007/s00018-013-1417-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/17/2013] [Accepted: 06/24/2013] [Indexed: 02/05/2023]
Abstract
Mapping mammalian synaptic connectivity has long been an important goal of neuroscientists since it is considered crucial for explaining human perception and behavior. Yet, despite enormous efforts, the overwhelming complexity of the neural circuitry and the lack of appropriate techniques to unravel it have limited the success of efforts to map connectivity. However, recent technological advances designed to overcome the limitations of conventional methods for connectivity mapping may bring about a turning point. Here, we address the promises and pitfalls of these new mapping technologies.
Collapse
Affiliation(s)
- Chaehyun Yook
- Center for Functional Connectomics (CFC), L7-7205, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul, 136-791 Korea
- Department of Biological Science, KAIST, Daejeon, Korea
| | - Shaul Druckmann
- Howard Hugh Medical Institute, Janelia Farm Research Campus, Ashburn, USA
| | - Jinhyun Kim
- Center for Functional Connectomics (CFC), L7-7205, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul, 136-791 Korea
| |
Collapse
|
33
|
High-resolution imaging of entire organs by 3-dimensional imaging of solvent cleared organs (3DISCO). Exp Neurol 2013; 242:57-64. [DOI: 10.1016/j.expneurol.2012.10.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 10/02/2012] [Accepted: 10/24/2012] [Indexed: 11/18/2022]
|
34
|
Arber C, Li M. Cortical interneurons from human pluripotent stem cells: prospects for neurological and psychiatric disease. Front Cell Neurosci 2013; 7:10. [PMID: 23493959 PMCID: PMC3595684 DOI: 10.3389/fncel.2013.00010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/28/2013] [Indexed: 01/20/2023] Open
Abstract
Cortical interneurons represent 20% of the cells in the cortex. These cells are local inhibitory neurons whose function is to modulate the firing activities of the excitatory projection neurons. Cortical interneuron dysfunction is believed to lead to runaway excitation underlying (or implicated in) seizure-based diseases, such as epilepsy, autism, and schizophrenia. The complex development of this cell type and the intricacies involved in defining the relative subtypes are being increasingly well defined. This has led to exciting experimental cell therapy in model organisms, whereby fetal-derived interneuron precursors can reverse seizure severity and reduce mortality in adult epileptic rodents. These proof-of-principle studies raise hope for potential interneuron-based transplantation therapies for treating epilepsy. On the other hand, cortical neurons generated from patient iPSCs serve as a valuable tool to explore genetic influences of interneuron development and function. This is a fundamental step in enhancing our understanding of the molecular basis of neuropsychiatric illnesses and the development of targeted treatments. Protocols are currently being developed for inducing cortical interneuron subtypes from mouse and human pluripotent stem cells. This review sets out to summarize the progress made in cortical interneuron development, fetal tissue transplantation and the recent advance in stem cell differentiation toward interneurons.
Collapse
Affiliation(s)
- Charles Arber
- Stem Cell Neurogenesis, MRC Clinical Sciences Centre, Imperial College London London, UK
| | | |
Collapse
|
35
|
Reiner JE, Balijepalli A, Robertson JWF, Campbell J, Suehle J, Kasianowicz JJ. Disease Detection and Management via Single Nanopore-Based Sensors. Chem Rev 2012; 112:6431-51. [DOI: 10.1021/cr300381m] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joseph E. Reiner
- Department of Physics, Virginia
Commonwealth University, 701 W. Grace Street, Richmond, Virginia 23284,
United States
| | - Arvind Balijepalli
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
- Laboratory of Computational Biology,
National Heart Lung and Blood Institute, Rockville, Maryland 20852,
United States
| | - Joseph W. F. Robertson
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
| | - Jason Campbell
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
| | - John Suehle
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
| | - John J. Kasianowicz
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
| |
Collapse
|
36
|
Silvestri L, Bria A, Sacconi L, Iannello G, Pavone FS. Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. OPTICS EXPRESS 2012; 20:20582-98. [PMID: 23037106 DOI: 10.1364/oe.20.020582] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Elucidating the neural pathways that underlie brain function is one of the greatest challenges in neuroscience. Light sheet based microscopy is a cutting edge method to map cerebral circuitry through optical sectioning of cleared mouse brains. However, the image contrast provided by this method is not sufficient to resolve and reconstruct the entire neuronal network. Here we combined the advantages of light sheet illumination and confocal slit detection to increase the image contrast in real time, with a frame rate of 10 Hz. In fact, in confocal light sheet microscopy (CLSM), the out-of-focus and scattered light is filtered out before detection, without multiple acquisitions or any post-processing of the acquired data. The background rejection capabilities of CLSM were validated in cleared mouse brains by comparison with a structured illumination approach. We show that CLSM allows reconstructing macroscopic brain volumes with sub-cellular resolution. We obtained a comprehensive map of Purkinje cells in the cerebellum of L7-GFP transgenic mice. Further, we were able to trace neuronal projections across brain of thy1-GFP-M transgenic mice. The whole-brain high-resolution fluorescence imaging assured by CLSM may represent a powerful tool to navigate the brain through neuronal pathways. Although this work is focused on brain imaging, the macro-scale high-resolution tomographies affordable with CLSM are ideally suited to explore, at micron-scale resolution, the anatomy of different specimens like murine organs, embryos or flies.
Collapse
Affiliation(s)
- L Silvestri
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Italy.
| | | | | | | | | |
Collapse
|
37
|
mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat Methods 2011; 9:96-102. [PMID: 22138823 DOI: 10.1038/nmeth.1784] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/29/2011] [Indexed: 12/19/2022]
Abstract
The GFP reconstitution across synaptic partners (GRASP) technique, based on functional complementation between two nonfluorescent GFP fragments, can be used to detect the location of synapses quickly, accurately and with high spatial resolution. The method has been previously applied in the nematode and the fruit fly but requires substantial modification for use in the mammalian brain. We developed mammalian GRASP (mGRASP) by optimizing transmembrane split-GFP carriers for mammalian synapses. Using in silico protein design, we engineered chimeric synaptic mGRASP fragments that were efficiently delivered to synaptic locations and reconstituted GFP fluorescence in vivo. Furthermore, by integrating molecular and cellular approaches with a computational strategy for the three-dimensional reconstruction of neurons, we applied mGRASP to both long-range circuits and local microcircuits in the mouse hippocampus and thalamocortical regions, analyzing synaptic distribution in single neurons and in dendritic compartments.
Collapse
|
38
|
Fiorentini E. Inducing visibilities: an attempt at Santiago Ramón y Cajal's aesthetic epistemology. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2011; 42:391-394. [PMID: 22035711 DOI: 10.1016/j.shpsc.2011.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this paper, I consider Santiago Ramón y Cajal's strategy of histological observation and imaging in terms of what I call "induction of visibility" (Fiorentini, 2011). Cajal's strategy of visibility induction drew upon both rational and aesthetic visual sensibility, and considered this interplay to be a constitutive element of knowledge production. I propose to describe Cajal's fundamental attitude towards visually inferred knowledge in terms of an "aesthetic epistemology".
Collapse
Affiliation(s)
- Erna Fiorentini
- Institute of Art and Visual Studies/Institut für Kunst- und Bildgeschichte - IKB, Humboldt Universität zu Berlin, Dorotheenstrasse 28, D-10117 Berlin, Germany.
| |
Collapse
|
39
|
Randlett O, Norden C, Harris WA. The vertebrate retina: a model for neuronal polarization in vivo. Dev Neurobiol 2011; 71:567-83. [PMID: 21557506 DOI: 10.1002/dneu.20841] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The vertebrate retina develops rapidly from a proliferative neuroepithelium into a highly ordered laminated structure, with five distinct neuronal cell types. Like all neurons, these cells need to polarize in appropriate orientations order integrate their neuritic connections efficiently into functional networks. Its relative simplicity, amenability to in vivo imaging and experimental manipulation, as well as the opportunity to study varied cell types within a single tissue, make the retina a powerful model to uncover how neurons polarize in vivo. Here we review the progress that has been made thus far in understanding how the different retinal neurons transform from neuroepithelial cells into mature neurons, and how the orientation of polarization may be specified by a combination of pre-established intrinsic cellular polarity set up within neuroepithelial cells, and extrinsic cues acting upon these differentiating neurons.
Collapse
Affiliation(s)
- Owen Randlett
- Department of Physiology, Development and Neuroscience, Cambridge University, Downing Street, Cambridge, United Kingdom
| | | | | |
Collapse
|
40
|
Sotelo C. Camillo Golgi and Santiago Ramon y Cajal: The anatomical organization of the cortex of the cerebellum. Can the neuron doctrine still support our actual knowledge on the cerebellar structural arrangement? ACTA ACUST UNITED AC 2011; 66:16-34. [DOI: 10.1016/j.brainresrev.2010.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
|
41
|
Abstract
A central aim of neuroscience is to map neural circuits, in order to learn how they account for mental activities and behaviours and how alterations in them lead to neurological and psychiatric disorders. However, the methods that are currently available for visualizing circuits have severe limitations that make it extremely difficult to extract precise wiring diagrams from histological images. Here we review recent advances in this area, along with some of the opportunities that these advances present and the obstacles that remain.
Collapse
Affiliation(s)
- Jeff W Lichtman
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
42
|
Triarhou LC, del Cerro M. Cajal on solar eclipse. Eur Neurol 2007; 59:108-11. [PMID: 17934286 DOI: 10.1159/000109582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 03/28/2007] [Indexed: 11/19/2022]
Abstract
An impression that sculpted a lasting memory on the mind of the great neuroanatomist Santiago Ramón y Cajal, an 8-year-old boy at the time, was the total solar eclipse of 18 July 1860. This short article provides a translation of the relevant passage, found in a 1933 Buenos Aires schoolbook, and places the celestial event at the crossroads of neuroscience, astronomy and literature.
Collapse
|
43
|
Stefanidou M, Solà C, Kouvelas E, del Cerro M, Triarhou LC. Cajal's brief experimentation with hypnotic suggestion. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2007; 16:351-361. [PMID: 17966053 DOI: 10.1080/09647040600653915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Spanish histologist Santiago Ramón y Cajal, one of the most notable figures in Neuroscience, and winner, along with Camillo Golgi, of the 1906 Nobel Prize in Physiology or Medicine for his discoveries on the structure of the nervous system, did not escape experimenting with some of the psychiatric techniques available at the time, mainly hypnotic suggestion, albeit briefly. While a physician in his thirties, Cajal published a short article under the title, "Pains of labour considerably attenuated by hypnotic suggestion" in Gaceta Médica Catalana. That study may be Cajal's only documented case in the field of experimental psychology. We here provide an English translation of the original Spanish text, placing it historically within Cajal's involvement with some of the key scientific and philosophical issues at the time.
Collapse
Affiliation(s)
- Maria Stefanidou
- Economo-Koskinas Wing for Integrative and Evolutionary Neuroscience, Department of Educational and Social Policy, University of Macedonia, Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
44
|
Fairén A. Cajal and Lorente de Nó on cortical interneurons: coincidences and progress. ACTA ACUST UNITED AC 2007; 55:430-44. [PMID: 17659782 DOI: 10.1016/j.brainresrev.2007.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 06/26/2007] [Indexed: 11/19/2022]
Abstract
This essay explores the contributions to the organization of neuronal microcircuits in the cerebral cortex by Rafael Lorente de Nó, a renowned disciple of Santiago Ramón y Cajal. Lorente de Nó was impressed by the advances in functional parcellation of the cerebral cortex, and wished to find an anatomical correlate, not in cytoarchitectonic charts but in the fine details of neurons and (soon) of neuronal circuits within a cortical locale. His early analysis culminated in two major papers in 1933 and 1934: he introduced a hypothetical frame in which to integrate circuit anatomical complexity with the ideas on the physiology of the neuron prevalent at the time. In an interlude (1934-1938), Lorente embarked in studies of neuron physiology that inclined him to a reductionist interpretation of the axon as the main functionally relevant entity of neurons. This essay describes my attempts at tracing the links between the master's tradition, the minutiae in the early Golgi studies by Lorente and his concepts of neurophysiology. These are the bases to approach his final synthesis: The cerebral cortex: architecture, intracortical connections and motor projections, published as an invited chapter in J.F. Fulton's "Physiology of the Nervous System" in 1938.
Collapse
Affiliation(s)
- Alfonso Fairén
- Instituto de Neurociencias de Alicante, CSIC-Universidad Miguel Hernández, Campus de San Juan, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
45
|
de Castro F, López-Mascaraque L, De Carlos JA. Cajal: lessons on brain development. ACTA ACUST UNITED AC 2007; 55:481-9. [PMID: 17408567 DOI: 10.1016/j.brainresrev.2007.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/25/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
In 1906, Santiago Ramón y Cajal was awarded the Nobel Prize in Physiology or Medicine in recognition of his work on the structure of the nervous system. At that time, almost all of Cajal's work was carried out using the Golgi method, a technique devised by the Italian scientist Camillo Golgi, with whom he shared this prize. Cajal introduced several modifications to the method developed by Golgi and, to avoid the problems encountered in staining myelinated neurons, part of his studies were carried out on embryos and very young animals (the "ontogenetic method"). In this way, Cajal begin to describe aspects of the development of the nervous system. Here, we review some of his wonderful discoveries (for example, the description of the axonal growth cone) from which he derived some of his main theories on the anatomy and physiology of the nervous system: the chemotactic hypothesis and the neuron doctrine.
Collapse
Affiliation(s)
- Fernando de Castro
- Grupo de Neurobiología del Desarrollo (Unidad de Neurología Experimental), Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, Toledo, Spain.
| | | | | |
Collapse
|
46
|
Uchiyama H, Stell WK. Association amacrine cells of Ramón y Cajal: Rediscovery and
reinterpretation. Vis Neurosci 2006; 22:881-91. [PMID: 16469195 DOI: 10.1017/s0952523805226160] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 08/17/2005] [Indexed: 11/08/2022]
Abstract
In 1895, by means of the Golgi method, Santiago Ramón y Cajal
discovered a cell having a unique morphology in the avian retina. This
cell had its cell body in the amacrine cell level of the inner nuclear
layer, only a few rudimentary dendrites at the outermost level of the
inner plexiform layer (IPL), and a long axon coursing horizontally and
terminating in the IPL. Despite having defined amacrine cells as cells
without axons, Cajal named this cell type “association amacrine
cell” (AAC). This discovery was not confirmed by other investigators
for nearly a century. Very recently, however, isthmo-optic target cells
(IOTCs), which receive the terminals of centrifugal fibers emanating from
the isthmo-optic nucleus, have been identified as one type of AAC. As
summarized and discussed in this review, the morphology of the AACs as
described by Cajal has been completely confirmed. However, since these
cells appear to be classical polarized, monoaxonal neurons and lack the
dendritic interactions that are typical of amacrine cells, they should be
regarded as a distinct type of retinal interneuron and not as amacrine
cells.
Collapse
Affiliation(s)
- H Uchiyama
- Department of Information and Computer Science, Faculty of Engineering, Kagoshima University, Korimoto 1-21-40, Kagoshima 890-0065, Japan.
| | | |
Collapse
|
47
|
Llinás RR. The contribution of Santiago Ramón y Cajal to functional neuroscience. Nat Rev Neurosci 2003; 4:77-80. [PMID: 12511864 DOI: 10.1038/nrn1011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rodolfo R Llinás
- Department of Physiology and Neuroscience, New York University Medical School, New York, New York 10016, USA.
| |
Collapse
|