1
|
Xia J, Yang S, Li J, Meng Y, Niu J, Chen H, Zhang Z, Liao W. Normative structural connectome constrains spreading transient brain activity in generalized epilepsy. BMC Med 2025; 23:258. [PMID: 40317018 DOI: 10.1186/s12916-025-04099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/24/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Genetic generalized epilepsy is characterized by transient episodes of spontaneous abnormal neural activity in anatomically distributed brain regions that ultimately propagate to wider areas. However, the connectome-based mechanisms shaping these abnormalities remain largely unknown. We aimed to investigate how the normative structural connectome constrains abnormal brain activity spread in genetic generalized epilepsy with generalized tonic-clonic seizure (GGE-GTCS). METHODS Abnormal transient activity patterns between individuals with GGE-GTCS (n = 97) and healthy controls (n = 141) were estimated from the amplitude of low-frequency fluctuations measured by resting-state functional MRI. The normative structural connectome was derived from diffusion-weighted images acquired in an independent cohort of healthy adults (n = 326). Structural neighborhood analysis was applied to assess the degree of constraints between activity vulnerability and structural connectome. Dominance analysis was used to determine the potential molecular underpinnings of these constraints. Furthermore, a network-based diffusion model was utilized to simulate the spread of pathology and identify potential disease epicenters. RESULTS Brain activity abnormalities among patients with GGE-GTCS were primarily located in the temporal, cingulate, prefrontal, and parietal cortices. The collective abnormality of structurally connected neighbors significantly predicted regional activity abnormality, indicating that white matter network architecture constrains aberrant activity patterns. Molecular fingerprints, particularly laminar differentiation and neurotransmitter receptor profiles, constituted key predictors of these connectome-constrained activity abnormalities. Network-based diffusion modeling effectively replicated transient pathological activity spreading patterns, identifying the limbic-temporal, dorsolateral prefrontal, and occipital cortices as putative disease epicenters. These results were robust across different clinical factors and individual patients. CONCLUSIONS Our findings suggest that the structural connectome shapes the spatial patterning of brain activity abnormalities, advancing our understanding of the network-level mechanisms underlying vulnerability to abnormal brain activity onset and propagation in GGE-GTCS.
Collapse
Affiliation(s)
- Jie Xia
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Siqi Yang
- School of Cybersecurity, Chengdu University of Information Technology, Chengdu, 610225, People's Republic of China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Jinpeng Niu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, People's Republic of China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| |
Collapse
|
2
|
Zendrikov D, Paraskevov A. The vitals for steady nucleation maps of spontaneous spiking coherence in autonomous two-dimensional neuronal networks. Neural Netw 2024; 180:106589. [PMID: 39217864 DOI: 10.1016/j.neunet.2024.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/06/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
Thin pancake-like neuronal networks cultured on top of a planar microelectrode array have been extensively tried out in neuroengineering, as a substrate for the mobile robot's control unit, i.e., as a cyborg's brain. Most of these attempts failed due to intricate self-organizing dynamics in the neuronal systems. In particular, the networks may exhibit an emergent spatial map of steady nucleation sites ("n-sites") of spontaneous population spikes. Being unpredictable and independent of the surface electrode locations, the n-sites drastically change local ability of the network to generate spikes. Here, using a spiking neuronal network model with generative spatially-embedded connectome, we systematically show in simulations that the number, location, and relative activity of spontaneously formed n-sites ("the vitals") crucially depend on the samplings of three distributions: (1) the network distribution of neuronal excitability, (2) the distribution of connections between neurons of the network, and (3) the distribution of maximal amplitudes of a single synaptic current pulse. Moreover, blocking the dynamics of a small fraction (about 4%) of non-pacemaker neurons having the highest excitability was enough to completely suppress the occurrence of population spikes and their n-sites. This key result is explained theoretically. Remarkably, the n-sites occur taking into account only short-term synaptic plasticity, i.e., without a Hebbian-type plasticity. As the spiking network model used in this study is strictly deterministic, all simulation results can be accurately reproduced. The model, which has already demonstrated a very high richness-to-complexity ratio, can also be directly extended into the three-dimensional case, e.g., for targeting peculiarities of spiking dynamics in cerebral (or brain) organoids. We recommend the model as an excellent illustrative tool for teaching network-level computational neuroscience, complementing a few benchmark models.
Collapse
Affiliation(s)
- Dmitrii Zendrikov
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland.
| | | |
Collapse
|
3
|
Liu Z, De Schutter E, Li Y. GABA-Induced Seizure-Like Events Caused by Multi-ionic Interactive Dynamics. eNeuro 2024; 11:ENEURO.0308-24.2024. [PMID: 39443111 PMCID: PMC11524612 DOI: 10.1523/eneuro.0308-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Experimental evidence showed that an increase in intracellular chloride concentration [Formula: see text] caused by gamma-aminobutyric acid (GABA) input can promote epileptic firing activity, but the actual mechanisms remain elusive. Here in this theoretical work, we show that influx of chloride and concomitant bicarbonate ion [Formula: see text] efflux upon GABA receptor activation can induce epileptic firing activity by transition of GABA from inhibition to excitation. We analyzed the intrinsic property of neuron firing states as a function of [Formula: see text] We found that as [Formula: see text] increases, the system exhibits a saddle-node bifurcation, above which the neuron exhibits a spectrum of intensive firing, periodic bursting interrupted by depolarization block (DB) state, and eventually a stable DB through a Hopf bifurcation. We demonstrate that only GABA stimuli together with [Formula: see text] efflux can switch GABA's effect to excitation which leads to a series of seizure-like events (SLEs). Exposure to a low [Formula: see text] can drive neurons with high concentrations of [Formula: see text] downward to lower levels of [Formula: see text], during which it could also trigger SLEs depending on the exchange rate with the bath. Our analysis and simulation results show how the competition between GABA stimuli-induced accumulation of [Formula: see text] and [Formula: see text] application-induced decrease of [Formula: see text] regulates the neuron firing activity, which helps to understand the fundamental ionic dynamics of SLE.
Collapse
Affiliation(s)
- Zichao Liu
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Yinyun Li
- School of Systems Science, Beijing Normal University, Beijing 100875, China
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
4
|
Yoo S, Kim M, Choi C, Kim DH, Cha GD. Soft Bioelectronics for Neuroengineering: New Horizons in the Treatment of Brain Tumor and Epilepsy. Adv Healthc Mater 2024; 13:e2303563. [PMID: 38117136 DOI: 10.1002/adhm.202303563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Soft bioelectronic technologies for neuroengineering have shown remarkable progress, which include novel soft material technologies and device design strategies. Such technological advances that are initiated from fundamental brain science are applied to clinical neuroscience and provided meaningful promises for significant improvement in the diagnosis efficiency and therapeutic efficacy of various brain diseases recently. System-level integration strategies in consideration of specific disease circumstances can enhance treatment effects further. Here, recent advances in soft implantable bioelectronics for neuroengineering, focusing on materials and device designs optimized for the treatment of intracranial disease environments, are reviewed. Various types of soft bioelectronics for neuroengineering are categorized and exemplified first, and then details for the sensing and stimulating device components are explained. Next, application examples of soft implantable bioelectronics to clinical neuroscience, particularly focusing on the treatment of brain tumor and epilepsy are reviewed. Finally, an ideal system of soft intracranial bioelectronics such as closed-loop-type fully-integrated systems is presented, and the remaining challenges for their clinical translation are discussed.
Collapse
Affiliation(s)
- Seungwon Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changsoon Choi
- Center for Opto-Electronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| |
Collapse
|
5
|
Hong R, Zheng T, Marra V, Yang D, Liu JK. Multi-scale modelling of the epileptic brain: advantages of computational therapy exploration. J Neural Eng 2024; 21:021002. [PMID: 38621378 DOI: 10.1088/1741-2552/ad3eb4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Objective: Epilepsy is a complex disease spanning across multiple scales, from ion channels in neurons to neuronal circuits across the entire brain. Over the past decades, computational models have been used to describe the pathophysiological activity of the epileptic brain from different aspects. Traditionally, each computational model can aid in optimizing therapeutic interventions, therefore, providing a particular view to design strategies for treating epilepsy. As a result, most studies are concerned with generating specific models of the epileptic brain that can help us understand the certain machinery of the pathological state. Those specific models vary in complexity and biological accuracy, with system-level models often lacking biological details.Approach: Here, we review various types of computational model of epilepsy and discuss their potential for different therapeutic approaches and scenarios, including drug discovery, surgical strategies, brain stimulation, and seizure prediction. We propose that we need to consider an integrated approach with a unified modelling framework across multiple scales to understand the epileptic brain. Our proposal is based on the recent increase in computational power, which has opened up the possibility of unifying those specific epileptic models into simulations with an unprecedented level of detail.Main results: A multi-scale epilepsy model can bridge the gap between biologically detailed models, used to address molecular and cellular questions, and brain-wide models based on abstract models which can account for complex neurological and behavioural observations.Significance: With these efforts, we move toward the next generation of epileptic brain models capable of connecting cellular features, such as ion channel properties, with standard clinical measures such as seizure severity.
Collapse
Affiliation(s)
- Rongqi Hong
- School of Computer Science, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Tingting Zheng
- School of Computer Science, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | | | - Dongping Yang
- Research Centre for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou, People's Republic of China
| | - Jian K Liu
- School of Computer Science, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Zhang L, Ma Z, Yu Y, Li B, Wu S, Liu Y, Baier G. Examining the low-voltage fast seizure-onset and its response to optogenetic stimulation in a biophysical network model of the hippocampus. Cogn Neurodyn 2024; 18:265-282. [PMID: 38406204 PMCID: PMC10881931 DOI: 10.1007/s11571-023-09935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/07/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Low-voltage fast (LVF) seizure-onset is one of the two frequently observed temporal lobe seizure-onset patterns. Depth electroencephalogram profile analysis illustrated that the peak amplitude of LVF onset was deep temporal areas, e.g., hippocampus. However, the specific dynamic transition mechanisms between normal hippocampal rhythmic activity and LVF seizure-onset remain unclear. Recently, the optogenetic approach to gain control over epileptic hyper-excitability both in vitro and in vivo has become a novel noninvasive modulation strategy. Here, we combined biophysical modeling to study LVF dynamics following changes in crucial physiological parameters, and investigated the potential optogenetic intervention mechanism for both excitatory and inhibitory control. In an Ammon's horn 3 (CA3) biophysical model with light-sensitive protein channelrhodopsin 2 (ChR2), we found that the cooperative effects of excessive extracellular potassium concentration of parvalbumin-positive (PV+) inhibitory interneurons and synaptic links could induce abundant types of discharges of the hippocampus, and lead to transitions from gamma oscillations to LVF seizure-onset. Simulations of optogenetic stimulation revealed that the LVF seizure-onset and morbid fast spiking could not be eliminated by targeting PV+ neurons, whereas the epileptic network was more sensitive to the excitatory control of principal neurons with strong optogenetic currents. We illustrate that in the epileptic hippocampal network, the trajectories of the normal and the seizure state are in close vicinity and optogenetic perturbations therefore may result in transitions. The network model system developed in this study represents a scientific instrument to disclose the underlying principles of LVF, to characterize the effects of optogenetic neuromodulation, and to guide future treatment for specific types of seizures.
Collapse
Affiliation(s)
- Liyuan Zhang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
| | - Zhiyuan Ma
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
| | - Ying Yu
- School of Engineering Medicine, Beihang University, Beijing, 100191 China
| | - Bao Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
| | - Shuicai Wu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
| | - Youjun Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
| | - Gerold Baier
- Cell and Developmental Biology, University College London, London, WC1E 6BT UK
| |
Collapse
|
7
|
Bröhl T, Rings T, Pukropski J, von Wrede R, Lehnertz K. The time-evolving epileptic brain network: concepts, definitions, accomplishments, perspectives. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 3:1338864. [PMID: 38293249 PMCID: PMC10825060 DOI: 10.3389/fnetp.2023.1338864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
Epilepsy is now considered a network disease that affects the brain across multiple levels of spatial and temporal scales. The paradigm shift from an epileptic focus-a discrete cortical area from which seizures originate-to a widespread epileptic network-spanning lobes and hemispheres-considerably advanced our understanding of epilepsy and continues to influence both research and clinical treatment of this multi-faceted high-impact neurological disorder. The epileptic network, however, is not static but evolves in time which requires novel approaches for an in-depth characterization. In this review, we discuss conceptual basics of network theory and critically examine state-of-the-art recording techniques and analysis tools used to assess and characterize a time-evolving human epileptic brain network. We give an account on current shortcomings and highlight potential developments towards an improved clinical management of epilepsy.
Collapse
Affiliation(s)
- Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Jan Pukropski
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Naghdabadi Z, Jahed M. Heterogeneous correlate and potential diagnostic biomarker of tinnitus based on nonlinear dynamics of resting-state EEG recordings. PLoS One 2024; 19:e0290563. [PMID: 38166014 PMCID: PMC10760901 DOI: 10.1371/journal.pone.0290563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/09/2023] [Indexed: 01/04/2024] Open
Abstract
Tinnitus is a heterogeneous condition of hearing a rattling sound when there is no auditory stimulus. This rattling sound is associated with abnormal synchronous oscillations in auditory and non-auditory cortical areas. Since tinnitus is a highly heterogeneous condition with no objective detection criteria, it is necessary to search for indicators that can be compared between and within participants for diagnostic purposes. This study introduces heterogeneous though comparable indicators of tinnitus through investigation of spontaneous fluctuations in resting-state brain dynamics. The proposed approach uses nonlinear measures of chaos theory, to detect tinnitus and cross correlation patterns to reflect many of the previously reported neural correlates of tinnitus. These indicators may serve as effective measures of tinnitus risk even at early ages before any symptom is reported. The approach quantifies differences in oscillatory brain dynamics of tinnitus and normal subjects. It demonstrates that the left temporal areas of subjects with tinnitus exhibit larger lyapunov exponent indicating irregularity of brain dynamics in these regions. More complex dynamics is further recognized in tinnitus cases through entropy. We use this evidence to distinguish tinnitus patients from normal participants. Besides, we illustrate that certain anticorrelation patterns appear in these nonlinear measures across temporal and frontal areas in the brain perhaps corresponding to increased/decreased connectivity in certain brain networks and a shift in the balance of excitation and inhibition in tinnitus. Additionally, the main correlations are lost in tinnitus participants compared to control group suggesting involvement of distinct neural mechanisms in generation and persistence of tinnitus.
Collapse
Affiliation(s)
- Zahra Naghdabadi
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mehran Jahed
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
9
|
Szuromi MP, Jirsa VK, Stacey WC. Optimization of ictal aborting stimulation using the dynamotype taxonomy. J Comput Neurosci 2023; 51:445-462. [PMID: 37667137 PMCID: PMC10754472 DOI: 10.1007/s10827-023-00859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Electrical stimulation is an increasingly popular method to terminate epileptic seizures, yet it is not always successful. A potential reason for inconsistent efficacy is that stimuli are applied empirically without considering the underlying dynamical properties of a given seizure. We use a computational model of seizure dynamics to show that different bursting classes have disparate responses to aborting stimulation. This model was previously validated in a large set of human seizures and led to a description of the Taxonomy of Seizure Dynamics and the dynamotype, which is the clinical analog of the bursting class. In the model, the stimulation is realized as an applied input, which successfully aborts the burst when it forces the system from a bursting state to a quiescent state. This transition requires bistability, which is not present in all bursters. We examine how topological and geometric differences in the bistable state affect the probability of termination as the burster progresses from onset to offset. We find that the most significant determining factors are the burster class (dynamotype) and whether the burster has a DC (baseline) shift. Bursters with a baseline shift are far more likely to be terminated due to the necessary structure of their state space. Furthermore, we observe that the probability of termination varies throughout the burster's duration, is often dependent on the phase when it was applied, and is highly correlated to dynamotype. Our model provides a method to predict the optimal method of termination for each dynamotype. These results lead to the prediction that optimization of ictal aborting stimulation should account for seizure dynamotype, the presence of a DC shift, and the timing of the stimulation.
Collapse
Affiliation(s)
- Matthew P. Szuromi
- Department of Biomedical Engineering and Biointerfaces Institute, University of Michigan, Ann Arbor, USA
- Department of Neurology, University of Michigan, Ann Arbor, USA
| | - Viktor K. Jirsa
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systémes, Marseille, France
| | - William C. Stacey
- Department of Biomedical Engineering and Biointerfaces Institute, University of Michigan, Ann Arbor, USA
- Department of Neurology, University of Michigan, Ann Arbor, USA
- Division of Neurology, Ann Arbor VA Hospital System, Ann Arbor, USA
| |
Collapse
|
10
|
Dallmer-Zerbe I, Jiruska P, Hlinka J. Personalized dynamic network models of the human brain as a future tool for planning and optimizing epilepsy therapy. Epilepsia 2023; 64:2221-2238. [PMID: 37340565 DOI: 10.1111/epi.17690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
Epilepsy is a common neurological disorder, with one third of patients not responding to currently available antiepileptic drugs. The proportion of pharmacoresistant epilepsies has remained unchanged for many decades. To cure epilepsy and control seizures requires a paradigm shift in the development of new approaches to epilepsy diagnosis and treatment. Contemporary medicine has benefited from the exponential growth of computational modeling, and the application of network dynamics theory to understanding and treating human brain disorders. In epilepsy, the introduction of these approaches has led to personalized epileptic network modeling that can explore the patient's seizure genesis and predict the functional impact of resection on its individual network's propensity to seize. The application of the dynamic systems approach to neurostimulation therapy of epilepsy allows designing stimulation strategies that consider the patient's seizure dynamics and long-term fluctuations in the stability of their epileptic networks. In this article, we review, in a nontechnical fashion suitable for a broad neuroscientific audience, recent progress in personalized dynamic brain network modeling that is shaping the future approach to the diagnosis and treatment of epilepsy.
Collapse
Affiliation(s)
- Isa Dallmer-Zerbe
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Hlinka
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
11
|
Stöber TM, Batulin D, Triesch J, Narayanan R, Jedlicka P. Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair. Commun Biol 2023; 6:479. [PMID: 37137938 PMCID: PMC10156698 DOI: 10.1038/s42003-023-04823-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Due to its complex and multifaceted nature, developing effective treatments for epilepsy is still a major challenge. To deal with this complexity we introduce the concept of degeneracy to the field of epilepsy research: the ability of disparate elements to cause an analogous function or malfunction. Here, we review examples of epilepsy-related degeneracy at multiple levels of brain organisation, ranging from the cellular to the network and systems level. Based on these insights, we outline new multiscale and population modelling approaches to disentangle the complex web of interactions underlying epilepsy and to design personalised multitarget therapies.
Collapse
Affiliation(s)
- Tristan Manfred Stöber
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, 44801, Bochum, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University, 60590, Frankfurt, Germany
| | - Danylo Batulin
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- CePTER - Center for Personalized Translational Epilepsy Research, Goethe University, 60590, Frankfurt, Germany
- Faculty of Computer Science and Mathematics, Goethe University, 60486, Frankfurt, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus Liebig University Giessen, 35390, Giessen, Germany.
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Depannemaecker D, Ezzati A, Wang H, Jirsa V, Bernard C. From phenomenological to biophysical models of seizures. Neurobiol Dis 2023; 182:106131. [PMID: 37086755 DOI: 10.1016/j.nbd.2023.106131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023] Open
Abstract
Epilepsy is a complex disease that requires various approaches for its study. In this short review, we discuss the contribution of theoretical and computational models. The review presents theoretical frameworks that underlie the understanding of certain seizure properties and their classification based on their dynamical properties at the onset and offset of seizures. Dynamical system tools are valuable resources in the study of seizures. By analyzing the complex, dynamic behavior of seizures, these tools can provide insights into seizure mechanisms and offer a framework for their classification. Additionally, computational models have high potential for clinical applications, as they can be used to develop more accurate diagnostic and personalized medicine tools. We discuss various modeling approaches that span different scales and levels, while also questioning the neurocentric view, and emphasize the importance of considering glial cells. Finally, we explore the epistemic value provided by this type of approach.
Collapse
Affiliation(s)
- Damien Depannemaecker
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France.
| | - Aitakin Ezzati
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France
| | - Huifang Wang
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France
| | - Viktor Jirsa
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France
| | - Christophe Bernard
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France.
| |
Collapse
|
13
|
Chang S, Wang J, Zhu Y, Wei X, Deng B, Li H, Liu C. Nonlinear dynamical modeling of neural activity using volterra series with GA-enhanced particle swarm optimization algorithm. Cogn Neurodyn 2023; 17:467-476. [PMID: 37007203 PMCID: PMC10050660 DOI: 10.1007/s11571-022-09822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022] Open
Abstract
In order to improve the modeling performance of Volterra sequence for nonlinear neural activity, in this paper, a new optimization algorithm is proposed to identify Volterra sequence parameters. Algorithm combines the advantages of particle swarm optimization (PSO) and genetic algorithm (GA) improve the performance of the identification of nonlinear model parameters from rapidity and accuracy. In the modeling experiments of neural signal data generated by the neural computing model and clinical neural data set in this paper, the proposed algorithm shows its excellent potential in nonlinear neural activity modeling. Compared with PSO and GA, the algorithm can achieve less identification error, and better balance the convergence speed and identification error. Further, we explore the influence of algorithm parameters on identification efficiency, which provides possible guiding significance for parameter setting in practical application of the algorithm.
Collapse
Affiliation(s)
- Siyuan Chang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 30072 China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 30072 China
| | - Yulin Zhu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 30072 China
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 30072 China
| | - Bin Deng
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 30072 China
| | - Huiyan Li
- School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Chen Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 30072 China
| |
Collapse
|
14
|
Nambi Narayanan S, Subbian S. HH model based smart deep brain stimulator to detect, predict and control epilepsy using machine learning algorithm. J Neurosci Methods 2023; 389:109825. [PMID: 36822276 DOI: 10.1016/j.jneumeth.2023.109825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Epilepsy is the most common neurological disorder in the world. To control epilepsy, deep brain stimulation is one of the widely accepted treatment techniques. However, conventional deep brain stimulation technique provides continuous stimulation without optimizing the stimulation parameters, resulting in adverse side effects and unexpected death. Hence, understanding the dynamic behavior of brain neural networks at a cellular level is required for patient-specific epilepsy treatment. Considering the underlying mechanism of a single neuronal shift in the brain neural network, computational model-based techniques have a new face for healthcare, which aims to develop effective medical devices for preclinical investigations. NEW METHOD This paper discusses the design of a Smart Deep Brain Stimulator (SDBS) using the Hodgkin-Huxley (HH) conductance-based cellular model of brain neurons to automatically detect, predict and regulate epilepsy against patient-specific conditions. Epileptic activity is simulated as a spike train of action potential due to sodium and potassium channel conductance variations in the single-neuron HH model. The proposed SDBS consists of three components:- i) seizure detection using bagging and boosting-based ensemble machine learning classifiers, ii) channel conductance prediction using Long Short Term Memory-Recurrent Neural Network (LSTM-RNN) based Deep Neural Network (DNN) for updating model parameters of brain neuron, and iii) model-based intelligent control of epileptic seizure with Nonlinear Autoregressive Moving Average-L2 (NARMA-L2) Controller and Nonlinear Model Predictive Controller (NMPC). RESULTS For effective treatment, improving the overall accuracy and efficiency of SDBS is essential. For epilepsy detection, the ensemble bagging machine learning algorithm provides better accuracy of 92.7% compared to the ensemble boosting algorithm. LSTM-RNN deep neural network model with four layers predicts the variations in channel conductance with Root Mean Square Error (RMSE) of 0.00568 and 0.009081 for sodium and potassium channel conductance, respectively. From the closed-loop performances of SDBS with an intelligent control scheme, it is observed that SDBS with NMPC provides efficient and accurate stimulation with minimum energy consumption. From a stability point of view, SDBS with NMPC provides better stability than SDBS with NARMA-L2 Controller. COMPARISON WITH EXISTING METHOD The proposed SDBS is designed to generate accurate stimulation pulses for epilepsy patients with specific conditions depending on the neuronal activity of a single neuron. Moreover, it will also adapt to the dynamic condition of epilepsy patients. The existing deep brain stimulator continuously provides stimulation pulses without adapting to the patient's conditions. CONCLUSION The proposed SDBS could provide patient-specific treatment based on sodium/potassium channel conductance variations of brain neurons. It will help increase the use of deep brain stimulation techniques and reduce sudden death. Furthermore, the proposed technique will be extended to neural network models with larger neuronal populations to improve the practical feasibility.
Collapse
Affiliation(s)
- S Nambi Narayanan
- Department of Instrumentation Engg, MIT Campus, Anna University, Chennai 44, Tamilnadu, India.
| | - Sutha Subbian
- Department of Instrumentation Engg, MIT Campus, Anna University, Chennai 44, Tamilnadu, India
| |
Collapse
|
15
|
Hu B, Wang Z, Xu M, Zhang D, Wang D. The adjustment mechanism of the spike and wave discharges in thalamic neurons: a simulation analysis. Cogn Neurodyn 2022; 16:1449-1460. [PMID: 36408065 PMCID: PMC9666587 DOI: 10.1007/s11571-022-09788-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
Different from many previous theoretical studies, this paper explores the regulatory mechanism of the spike and wave discharges (SWDs) in the reticular thalamic nucleus (TRN) by a dynamic computational model. We observe that the SWDs appears in the TRN by changing the coupling weights and delays in the thalamocortical circuit. The abundant poly-spikes wave discharges is also induced when the delay increases to large enough. These discharges can be inhibited by tuning the inhibitory output from the basal ganglia to the thalamus. The mechanisms of these waves can be explained in this model together with simulation results, which are different from the mechanisms in the cortex. The TRN is an important target in treating epilepsy, and the results may be a theoretical evidence for experimental study in the future.
Collapse
Affiliation(s)
- Bing Hu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Zhizhi Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Minbo Xu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Dongmei Zhang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Dingjiang Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| |
Collapse
|
16
|
Khatun T, Bandyopadhyay B, Banerjee T. Diverse coherence-resonance chimeras in coupled type-I excitable systems. Phys Rev E 2022; 106:054208. [PMID: 36559485 DOI: 10.1103/physreve.106.054208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Coherence-resonance chimera was discovered in [Phys. Rev. Lett. 117, 014102 (2016)10.1103/PhysRevLett.117.014102], which combines the effect of coherence-resonance and classical chimeras in the presence of noise in a network of type-II excitable systems. However, the same in a network of type-I excitable units has not been observed yet. In this paper we report the occurrence of coherence-resonance chimera in coupled type-I excitable systems. We consider a paradigmatic model of type-I excitability, namely, the saddle-node infinite period model, and show that the coherence-resonance chimera appears over an optimum range of noise intensity. Moreover, we discover a unique chimera pattern that is a mixture of classical chimera and the coherence-resonance chimera. We support our results using quantitative measures and map them in parameter space. This study reveals that the coherence-resonance chimera is a general chimera pattern and thus it deepens our understanding of role of noise in coupled excitable systems.
Collapse
Affiliation(s)
- Taniya Khatun
- Chaos and Complex Systems Research Laboratory, Department of Physics, University of Burdwan, Burdwan 713 104, West Bengal, India
| | - Biswabibek Bandyopadhyay
- Chaos and Complex Systems Research Laboratory, Department of Physics, University of Burdwan, Burdwan 713 104, West Bengal, India
| | - Tanmoy Banerjee
- Chaos and Complex Systems Research Laboratory, Department of Physics, University of Burdwan, Burdwan 713 104, West Bengal, India
| |
Collapse
|
17
|
Hou S, Fan D, Wang Q. Regulating absence seizures by tri-phase delay stimulation applied to globus pallidus internal. APPLIED MATHEMATICS AND MECHANICS 2022; 43:1399-1414. [PMID: 36092985 PMCID: PMC9438882 DOI: 10.1007/s10483-022-2896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
In this paper, a reduced globus pallidus internal (GPI)-corticothalamic (GCT) model is developed, and a tri-phase delay stimulation (TPDS) with sequentially applying three pulses on the GPI representing the inputs from the striatal D 1 neurons, subthalamic nucleus (STN), and globus pallidus external (GPE), respectively, is proposed. The GPI is evidenced to control absence seizures characterized by 2 Hz-4 Hz spike and wave discharge (SWD). Hence, based on the basal ganglia-thalamocortical (BGCT) model, we firstly explore the triple effects of D l-GPI, GPE-GPI, and STN-GPI pathways on seizure patterns. Then, using the GCT model, we apply the TPDS on the GPI to potentially investigate the alternative and improved approach if these pathways to the GPI are blocked. The results show that the striatum D 1, GPE, and STN can indeed jointly and significantly affect seizure patterns. In particular, the TPDS can effectively reproduce the seizure pattern if the D 1-GPI, GPE-GPI, and STN-GPI pathways are cut off. In addition, the seizure abatement can be obtained by well tuning the TPDS stimulation parameters. This implies that the TPDS can play the surrogate role similar to the modulation of basal ganglia, which hopefully can be helpful for the development of the brain-computer interface in the clinical application of epilepsy.
Collapse
Affiliation(s)
- Songan Hou
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| | - Denggui Fan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083 China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069 China
| |
Collapse
|
18
|
Leszczyński M, Perlikowski P, Burzyński T, Kowalski TM, Brzeski P. Review of sample-based methods used in an analysis of multistable dynamical systems. CHAOS (WOODBURY, N.Y.) 2022; 32:082101. [PMID: 36049929 DOI: 10.1063/5.0088379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Sample-based methods are a useful tool in analyzing the global behavior of multi-stable systems originating from various branches of science. Classical methods, such as bifurcation diagrams, Lyapunov exponents, and basins of attraction, often fail to analyze complex systems with many coexisting attractors. Thus, we have to apply a different strategy to understand the dynamics of such systems. We can distinguish basin stability, extended basin stability, constrained basin stability, basin entropy, time dependent stability margin, and survivability among sample-based methods. Each method has specific properties and gives us important data about the behavior of the analyzed system. However, none of the methods provides complete information. Hence, to have a full overview of the dynamics, one has to collect data from two or more approaches. This study describes the sample-based methods and presents their advantages and disadvantages for the archetypal nonlinear oscillator with multiple coexisting attractors. Hence, we give helpful information in selecting the best method or methods for analyzing the dynamical system.
Collapse
Affiliation(s)
- Maciej Leszczyński
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Przemysław Perlikowski
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Tomasz Burzyński
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Tomasz M Kowalski
- Institute of Applied Computer Science, Lodz University of Technology, Lodz 90-924, Poland
| | - Piotr Brzeski
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| |
Collapse
|
19
|
Goodfellow M, Andrzejak RG, Masoller C, Lehnertz K. What Models and Tools can Contribute to a Better Understanding of Brain Activity? FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:907995. [PMID: 36926061 PMCID: PMC10013030 DOI: 10.3389/fnetp.2022.907995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/06/2022] [Indexed: 12/18/2022]
Abstract
Despite impressive scientific advances in understanding the structure and function of the human brain, big challenges remain. A deep understanding of healthy and aberrant brain activity at a wide range of temporal and spatial scales is needed. Here we discuss, from an interdisciplinary network perspective, the advancements in physical and mathematical modeling as well as in data analysis techniques that, in our opinion, have potential to further advance our understanding of brain structure and function.
Collapse
Affiliation(s)
- Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Ralph G. Andrzejak
- Department of Information and Communication Technologies, University Pompeu Fabra, Barcelona, Spain
| | - Cristina Masoller
- Department of Physics, Universitat Politecnica de Catalunya, Barcelona, Spain
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Li R, Deng C, Wang X, Zou T, Biswal B, Guo D, Xiao B, Zhang X, Cheng JL, Liu D, Yang M, Chen H, Wu Q, Feng L. Interictal dynamic network transitions in mesial temporal lobe epilepsy. Epilepsia 2022; 63:2242-2255. [PMID: 35699346 DOI: 10.1111/epi.17325] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To reveal the possible routine of brain network dynamic alterations in patients with mesial temporal lobe epilepsy (mTLE) and to establish a predicted model of seizure recurrence during interictal periods. METHODS Seventy-nine unilateral mTLE patients with hippocampal sclerosis and 97 healthy controls from two centers were retrospectively enrolled. Dynamic brain configuration analyses were performed with resting-state functional magnetic resonance imaging (MRI) data to quantify the functional stability over time and the dynamic interactions between brain regions. Relationships between seizure frequency and ipsilateral hippocampal module allegiance were evaluated using a machine learning predictive model. RESULTS Compared to the healthy controls, patients with mTLE displayed an overall higher dynamic network, switching mainly in the epileptogenic regions (false discovery rate [FDR] corrected p-FDR < .05). Moreover, the dynamic network configuration in mTLE was characterized by decreased recruitment (intra-network communication), and increased integration (inter-network communication) among hippocampal systems and large-scale higher-order brain networks (p-FDR < .05). We further found that the dynamic interactions between the hippocampal system and the default-mode network (DMN) or control networks exhibited an opposite distribution pattern (p-FDR < .05). Strikingly, we showed that there was a robust association between predicted seizure frequency based on the ipsilateral hippocampal-DMN dynamics model and actual seizure frequency (p-perm < .001). SIGNIFICANCE These findings suggest that the interictal brain of mTLE is characterized by dynamical shifts toward unstable state. Our study provides novel insights into the brain dynamic network alterations and supports the potential use of DMN dynamic parameters as candidate neuroimaging markers in monitoring the seizure frequency clinically during interictal periods.
Collapse
Affiliation(s)
- Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chijun Deng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuyang Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Zou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Danni Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaonan Zhang
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Liang Cheng
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Batulin D, Lagzi F, Vezzani A, Jedlicka P, Triesch J. A mathematical model of neuroimmune interactions in epileptogenesis for discovering treatment strategies. iScience 2022; 25:104343. [PMID: 35601918 PMCID: PMC9121278 DOI: 10.1016/j.isci.2022.104343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
The development of epilepsy (epileptogenesis) involves a complex interplay of neuronal and immune processes. Here, we present a first-of-its-kind mathematical model to better understand the relationships among these processes. Our model describes the interaction between neuroinflammation, blood-brain barrier disruption, neuronal loss, circuit remodeling, and seizures. Formulated as a system of nonlinear differential equations, the model reproduces the available data from three animal models. The model successfully describes characteristic features of epileptogenesis such as its paradoxically long timescales (up to decades) despite short and transient injuries or the existence of qualitatively different outcomes for varying injury intensity. In line with the concept of degeneracy, our simulations reveal multiple routes toward epilepsy with neuronal loss as a sufficient but non-necessary component. Finally, we show that our model allows for in silico predictions of therapeutic strategies, revealing injury-specific therapeutic targets and optimal time windows for intervention. A dynamical systems model describes the development of epilepsy after different injuries Simulation results are in agreement with data from three animal models Model shows degeneracy: multiple distinct but linked mechanisms cause epileptogenesis Framework permits studying the effects of therapeutic interventions in silico
Collapse
Affiliation(s)
- Danylo Batulin
- Frankfurt Institute for Advanced Studies, Frankfurt 60438, Germany
- Faculty of Computer Science and Mathematics, Goethe University, Frankfurt 60486, Germany
- CePTER – Center for Personalized Translational Epilepsy Research, Frankfurt, Germany
- Corresponding author
| | - Fereshteh Lagzi
- Frankfurt Institute for Advanced Studies, Frankfurt 60438, Germany
- CePTER – Center for Personalized Translational Epilepsy Research, Frankfurt, Germany
- Center for Computational Neuroscience and Swartz Center for Theoretical Neuroscience, University of Washington, Seattle 98195, USA
- Department of Physiology and Biophysics, University of Washington, Seattle 98195, USA
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Peter Jedlicka
- Frankfurt Institute for Advanced Studies, Frankfurt 60438, Germany
- CePTER – Center for Personalized Translational Epilepsy Research, Frankfurt, Germany
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Giessen 35390, Germany
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt 60528, Germany
- Corresponding author
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, Frankfurt 60438, Germany
- Faculty of Computer Science and Mathematics, Goethe University, Frankfurt 60486, Germany
- CePTER – Center for Personalized Translational Epilepsy Research, Frankfurt, Germany
- Faculty of Physics, Goethe University, Frankfurt 60438, Germany
- Corresponding author
| |
Collapse
|
22
|
Zhang H, Chen Y, Xie Y, Chai Y. Closed-loop controller based on reference signal tracking for absence seizures. Sci Rep 2022; 12:6730. [PMID: 35468988 PMCID: PMC9038751 DOI: 10.1038/s41598-022-10803-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Absent epilepsy is a kind of refractory epilepsy, which is characterized by 2–4 Hz spike and wave discharges (SWDs) in electroencephalogram. Open-loop deep brain stimulation (DBS) targeting the thalamic reticular nucleus (TRN) is an effective method to treat absent epilepsy by eliminating SWDs in the brain. Compared with open-loop DBS, closed-loop DBS has been recognized by researchers for its advantages of significantly inhibiting seizures and having fewer side effects. Since traditional trial-and-error methods for adjusting closed-loop controller parameters are too dependent on the experience of doctors, in this paper we designed two proportional integral (PI) controllers based on the basal ganglia-cortical-thalamic model, whose PI parameters are calculated from the stability of the system. The two PI controllers can automatically adjust the frequency and amplitude of DBS respectively according to the change of the firing rate detected by substantia nigra pars reticulata (SNr). The parameters of the PI controller are calculated based on the Routh-Hurwitz stability criterion of a linear system which transformed by the original system using controlled auto-regressive (CAR) model and recursive least squares (RLS) method. Numerical simulation results show that both PI controllers significantly destroy the SWDs of the cerebral cortex and restore it to the other two normal discharge modes according to the different target firing rate, which supplies a promising brain stimulation strategy.
Collapse
Affiliation(s)
- Hudong Zhang
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yuting Chen
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yan Xie
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yuan Chai
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China.
| |
Collapse
|
23
|
Cao M, Vogrin SJ, Peterson ADH, Woods W, Cook MJ, Plummer C. Dynamical Network Models From EEG and MEG for Epilepsy Surgery—A Quantitative Approach. Front Neurol 2022; 13:837893. [PMID: 35422755 PMCID: PMC9001937 DOI: 10.3389/fneur.2022.837893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
There is an urgent need for more informative quantitative techniques that non-invasively and objectively assess strategies for epilepsy surgery. Invasive intracranial electroencephalography (iEEG) remains the clinical gold standard to investigate the nature of the epileptogenic zone (EZ) before surgical resection. However, there are major limitations of iEEG, such as the limited spatial sampling and the degree of subjectivity inherent in the analysis and clinical interpretation of iEEG data. Recent advances in network analysis and dynamical network modeling provide a novel aspect toward a more objective assessment of the EZ. The advantage of such approaches is that they are data-driven and require less or no human input. Multiple studies have demonstrated success using these approaches when applied to iEEG data in characterizing the EZ and predicting surgical outcomes. However, the limitations of iEEG recordings equally apply to these studies—limited spatial sampling and the implicit assumption that iEEG electrodes, whether strip, grid, depth or stereo EEG (sEEG) arrays, are placed in the correct location. Therefore, it is of interest to clinicians and scientists to see whether the same analysis and modeling techniques can be applied to whole-brain, non-invasive neuroimaging data (from MRI-based techniques) and neurophysiological data (from MEG and scalp EEG recordings), thus removing the limitation of spatial sampling, while safely and objectively characterizing the EZ. This review aims to summarize current state of the art non-invasive methods that inform epilepsy surgery using network analysis and dynamical network models. We also present perspectives on future directions and clinical applications of these promising approaches.
Collapse
Affiliation(s)
- Miao Cao
- Center for MRI Research, Peking University, Beijing, China
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Simon J. Vogrin
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andre D. H. Peterson
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - William Woods
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Mark J. Cook
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Chris Plummer
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
- *Correspondence: Chris Plummer
| |
Collapse
|
24
|
Cellular, molecular, and therapeutic characterization of pilocarpine-induced temporal lobe epilepsy. Sci Rep 2021; 11:19102. [PMID: 34580351 PMCID: PMC8476594 DOI: 10.1038/s41598-021-98534-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
Animal models have expanded our understanding of temporal lobe epilepsy (TLE). However, translating these to cell-specific druggable hypotheses is not explored. Herein, we conducted an integrative insilico-analysis of an available transcriptomics dataset obtained from animals with pilocarpine-induced-TLE. A set of 119 genes with subtle-to-moderate impact predicted most forms of epilepsy with ~ 97% accuracy and characteristically mapped to upregulated homeostatic and downregulated synaptic pathways. The deconvolution of cellular proportions revealed opposing changes in diverse cell types. The proportion of nonneuronal cells increased whereas that of interneurons, except for those expressing vasoactive intestinal peptide (Vip), decreased, and pyramidal neurons of the cornu-ammonis (CA) subfields showed the highest variation in proportion. A probabilistic Bayesian-network demonstrated an aberrant and oscillating physiological interaction between nonneuronal cells involved in the blood–brain-barrier and Vip interneurons in driving seizures, and their role was evaluated insilico using transcriptomic changes induced by valproic-acid, which showed opposing effects in the two cell-types. Additionally, we revealed novel epileptic and antiepileptic mechanisms and predicted drugs using causal inference, outperforming the present drug repurposing approaches. These well-powered findings not only expand the understanding of TLE and seizure oscillation, but also provide predictive biomarkers of epilepsy, cellular and causal micro-circuitry changes associated with it, and a drug-discovery method focusing on these events.
Collapse
|
25
|
Sinha M, Narayanan R. Active Dendrites and Local Field Potentials: Biophysical Mechanisms and Computational Explorations. Neuroscience 2021; 489:111-142. [PMID: 34506834 PMCID: PMC7612676 DOI: 10.1016/j.neuroscience.2021.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/27/2022]
Abstract
Neurons and glial cells are endowed with membranes that express a rich repertoire of ion channels, transporters, and receptors. The constant flux of ions across the neuronal and glial membranes results in voltage fluctuations that can be recorded from the extracellular matrix. The high frequency components of this voltage signal contain information about the spiking activity, reflecting the output from the neurons surrounding the recording location. The low frequency components of the signal, referred to as the local field potential (LFP), have been traditionally thought to provide information about the synaptic inputs that impinge on the large dendritic trees of various neurons. In this review, we discuss recent computational and experimental studies pointing to a critical role of several active dendritic mechanisms that can influence the genesis and the location-dependent spectro-temporal dynamics of LFPs, spanning different brain regions. We strongly emphasize the need to account for the several fast and slow dendritic events and associated active mechanisms - including gradients in their expression profiles, inter- and intra-cellular spatio-temporal interactions spanning neurons and glia, heterogeneities and degeneracy across scales, neuromodulatory influences, and activitydependent plasticity - towards gaining important insights about the origins of LFP under different behavioral states in health and disease. We provide simple but essential guidelines on how to model LFPs taking into account these dendritic mechanisms, with detailed methodology on how to account for various heterogeneities and electrophysiological properties of neurons and synapses while studying LFPs.
Collapse
Affiliation(s)
- Manisha Sinha
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
26
|
Chang S, Wang J, Liu C, Yi G, Lu M, Che Y, Wei X. A Data Driven Experimental System for Individualized Brain Stimulation Design and Validation. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1848-1857. [PMID: 34478377 DOI: 10.1109/tnsre.2021.3110275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Deep brain stimulation (DBS) is an effective clinical treatment for epilepsy. However, the individualized setting and adaptive adjustment of DBS parameters are still facing great challenges. This paper investigates a data-driven hardware-in-the-loop (HIL) experimental system for closed-loop brain stimulation system individualized design and validation. The unscented Kalman filter (UKF) is utilized to estimate critical parameters of neural mass model (NMM) from the electroencephalogram recordings to reconstruct individual neural activity. Based on the reconstructed NMM, we build a digital signal processor (DSP) based virtual brain platform with real time scale and biological signal level scale. Then, the corresponding hardware parts of signal amplification detection and closed-loop controller are designed to form the HIL experimental system. Based on the designed experimental system, the proportional-integral controller for different individual NMM is designed and validated, which proves the effectiveness of the experimental system. This experimental system provides a platform to explore neural activity under brain stimulation and the effects of various closed-loop stimulation paradigms.
Collapse
|
27
|
Tejada J, Roque AC. Conductance-based models and the fragmentation problem: A case study based on hippocampal CA1 pyramidal cell models and epilepsy. Epilepsy Behav 2021; 121:106841. [PMID: 31864945 DOI: 10.1016/j.yebeh.2019.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Epilepsy has been a central topic in computational neuroscience, and in silico models have shown to be excellent tools to integrate and evaluate findings from animal and clinical settings. Among the different languages and tools for computational modeling development, NEURON stands out as one of the most used and mature neurosimulators. However, despite the vast quantity of models developed with NEURON, a fragmentation problem is evident in the great majority of models related to the same type of cell or cell properties. This fragmentation causes a lack of interoperability between the models because of differences in parameters. The problem is not related to the neurosimulator, which is prepared to reuse elements of other models, but related to decisions made during the model development, when it is not uncommon to adjust parameter values according to the necessities of the study. Here, this problem is presented by studying computational models related to temporal lobe epilepsy and the definitions of hippocampal CA1 pyramidal cells. The current assessment aims to highlight the implications of fragmentation for reliable modeling and the need to adopt a framework that allows a better interoperability between different models. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Julian Tejada
- Departamento de Psicologia, DPS, Universidade Federal de Sergipe, SE 49100-000, Brazil; Facultad de Psicología, Fundación Universitaria Konrad Lorenz, Bogotá, Colombia.
| | - Antonio C Roque
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
28
|
Rigney G, Lennon M, Holderrieth P. The use of computational models in the management and prognosis of refractory epilepsy: A critical evaluation. Seizure 2021; 91:132-140. [PMID: 34153898 DOI: 10.1016/j.seizure.2021.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/05/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Drug resistant epilepsy (DRE) affects approximately 30 percent of individuals with epilepsy worldwide. Surgery remains the most effective treatment for individuals with DRE, but referral to surgery is low and only about 60 percent of individuals who undergo surgery experience seizure control postoperatively. The present paper evaluates the evidence for using computational models in the prediction of surgical resection sites and surgical outcomes for patients with DRE. METHODS We conducted a search in the Medline data base using the terms "refractory epilepsy", "drug-resistant epilepsy", "surgery", "computational model", and "artificial intelligence". Inclusion: original articles in English and case reports from 2000 to 2020. Reviews were excluded. RESULTS Clinical applications of computational models may lead to increased utilisation of surgical services through improving our ability to predict outcomes and by improving surgical outcomes outright. The identification and optimisation of nodes that are crucial for the genesis and propagation of epileptiform activity offers the most promising clinical applications of computational models discussed herein. CONCLUSION Advances in computational models may in the future significantly increase the application and efficacy of surgery for patients with DRE by optimising the site and amount of cortex to resect, but more research is needed before it achieves therapeutic utility.
Collapse
Affiliation(s)
- Grant Rigney
- The University of Oxford Department of Psychiatry, Warneford Hospital, Warneford Ln, Headington, Oxford OX3 7JX, United Kingdom.
| | - Matthew Lennon
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, United Kingdom; Faculty of Medicine, University of New South Wales, NSW, Australia.
| | - Peter Holderrieth
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, United Kingdom.
| |
Collapse
|
29
|
Gandolfi D, Boiani GM, Bigiani A, Mapelli J. Modeling Neurotransmission: Computational Tools to Investigate Neurological Disorders. Int J Mol Sci 2021; 22:4565. [PMID: 33925434 PMCID: PMC8123833 DOI: 10.3390/ijms22094565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
The investigation of synaptic functions remains one of the most fascinating challenges in the field of neuroscience and a large number of experimental methods have been tuned to dissect the mechanisms taking part in the neurotransmission process. Furthermore, the understanding of the insights of neurological disorders originating from alterations in neurotransmission often requires the development of (i) animal models of pathologies, (ii) invasive tools and (iii) targeted pharmacological approaches. In the last decades, additional tools to explore neurological diseases have been provided to the scientific community. A wide range of computational models in fact have been developed to explore the alterations of the mechanisms involved in neurotransmission following the emergence of neurological pathologies. Here, we review some of the advancements in the development of computational methods employed to investigate neuronal circuits with a particular focus on the application to the most diffuse neurological disorders.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (G.M.B.); (A.B.)
| | - Giulia Maria Boiani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (G.M.B.); (A.B.)
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (G.M.B.); (A.B.)
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (G.M.B.); (A.B.)
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
30
|
Rezvani-Ardakani S, Mohammad-Ali-Nezhad S, Ghasemi R. Utilization of fixed-time integral super twisting sliding mode controller for suppression of epileptic activity via stimulus current with DBS method. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Glomb K, Cabral J, Cattani A, Mazzoni A, Raj A, Franceschiello B. Computational Models in Electroencephalography. Brain Topogr 2021; 35:142-161. [PMID: 33779888 PMCID: PMC8813814 DOI: 10.1007/s10548-021-00828-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
Computational models lie at the intersection of basic neuroscience and healthcare applications because they allow researchers to test hypotheses in silico and predict the outcome of experiments and interactions that are very hard to test in reality. Yet, what is meant by “computational model” is understood in many different ways by researchers in different fields of neuroscience and psychology, hindering communication and collaboration. In this review, we point out the state of the art of computational modeling in Electroencephalography (EEG) and outline how these models can be used to integrate findings from electrophysiology, network-level models, and behavior. On the one hand, computational models serve to investigate the mechanisms that generate brain activity, for example measured with EEG, such as the transient emergence of oscillations at different frequency bands and/or with different spatial topographies. On the other hand, computational models serve to design experiments and test hypotheses in silico. The final purpose of computational models of EEG is to obtain a comprehensive understanding of the mechanisms that underlie the EEG signal. This is crucial for an accurate interpretation of EEG measurements that may ultimately serve in the development of novel clinical applications.
Collapse
Affiliation(s)
- Katharina Glomb
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
| | - Anna Cattani
- Department of Psychiatry, University of Wisconsin-Madison, Madison, USA.,Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ashish Raj
- School of Medicine, UCSF, San Francisco, USA
| | - Benedetta Franceschiello
- Department of Ophthalmology, Hopital Ophthalmic Jules Gonin, FAA, Lausanne, Switzerland.,CIBM Centre for Biomedical Imaging, EEG Section CHUV-UNIL, Lausanne, Switzerland.,Laboratory for Investigative Neurophysiology, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| |
Collapse
|
32
|
Rasheed K, Qayyum A, Qadir J, Sivathamboo S, Kwan P, Kuhlmann L, O'Brien T, Razi A. Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review. IEEE Rev Biomed Eng 2021; 14:139-155. [PMID: 32746369 DOI: 10.1109/rbme.2020.3008792] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for advancing clinical practice. One of the key objectives in healthcare is the early detection and prediction of disease to timely provide preventive interventions. This is especially the case for epilepsy, which is characterized by recurrent and unpredictable seizures. Patients can be relieved from the adverse consequences of epileptic seizures if it could somehow be predicted in advance. Despite decades of research, seizure prediction remains an unsolved problem. This is likely to remain at least partly because of the inadequate amount of data to resolve the problem. There have been exciting new developments in ML-based algorithms that have the potential to deliver a paradigm shift in the early and accurate prediction of epileptic seizures. Here we provide a comprehensive review of state-of-the-art ML techniques in early prediction of seizures using EEG signals. We will identify the gaps, challenges, and pitfalls in the current research and recommend future directions.
Collapse
|
33
|
Carvalho VR, Moraes MFD, Cash SS, Mendes EMAM. Active probing to highlight approaching transitions to ictal states in coupled neural mass models. PLoS Comput Biol 2021; 17:e1008377. [PMID: 33493165 PMCID: PMC7861539 DOI: 10.1371/journal.pcbi.1008377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/04/2021] [Accepted: 12/02/2020] [Indexed: 01/07/2023] Open
Abstract
The extraction of electrophysiological features that reliably forecast the occurrence of seizures is one of the most challenging goals in epilepsy research. Among possible approaches to tackle this problem is the use of active probing paradigms in which responses to stimuli are used to detect underlying system changes leading up to seizures. This work evaluates the theoretical and mechanistic underpinnings of this strategy using two coupled populations of the well-studied Wendling neural mass model. Different model settings are evaluated, shifting parameters (excitability, slow inhibition, or inter-population coupling gains) from normal towards ictal states while probing stimuli are applied every 2 seconds to the input of either one or both populations. The correlation between the extracted features and the ictogenic parameter shifting indicates if the impending transition to the ictal state may be identified in advance. Results show that not only can the response to the probing stimuli forecast seizures but this is true regardless of the altered ictogenic parameter. That is, similar feature changes are highlighted by probing stimuli responses in advance of the seizure including: increased response variance and lag-1 autocorrelation, decreased skewness, and increased mutual information between the outputs of both model subsets. These changes were mostly restricted to the stimulated population, showing a local effect of this perturbational approach. The transition latencies from normal activity to sustained discharges of spikes were not affected, suggesting that stimuli had no pro-ictal effects. However, stimuli were found to elicit interictal-like spikes just before the transition to the ictal state. Furthermore, the observed feature changes highlighted by probing the neuronal populations may reflect the phenomenon of critical slowing down, where increased recovery times from perturbations may signal the loss of a systems' resilience and are common hallmarks of an impending critical transition. These results provide more evidence that active probing approaches highlight information about underlying system changes involved in ictogenesis and may be able to play a role in assisting seizure forecasting methods which can be incorporated into early-warning systems that ultimately enable closing the loop for targeted seizure-controlling interventions.
Collapse
Affiliation(s)
- Vinícius Rezende Carvalho
- Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Tecnologia e Pesquisa em Magneto-Ressonância, Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eduardo Mazoni Andrade Marçal Mendes
- Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Tecnologia e Pesquisa em Magneto-Ressonância, Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
34
|
Chen M, Zhu Y, Yu R, Hu Y, Wan H, Zhang R, Yao D, Guo D. Insights on the role of external globus pallidus in controlling absence seizures. Neural Netw 2020; 135:78-90. [PMID: 33360930 DOI: 10.1016/j.neunet.2020.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/26/2020] [Accepted: 12/06/2020] [Indexed: 11/26/2022]
Abstract
Absence epilepsy, characterized by transient loss of awareness and bilaterally synchronous 2-4 Hz spike and wave discharges (SWDs) on electroencephalography (EEG) during absence seizures, is generally believed to arise from abnormal interactions between the cerebral cortex (Ctx) and thalamus. Recent animal electrophysiological studies suggested that changing the neural activation level of the external globus pallidus (GPe) neurons can remarkably modify firing rates of the thalamic reticular nucleus (TRN) neurons through the GABAergic GPe-TRN pathway. However, the existing experimental evidence does not provide a clear answer as to whether the GPe-TRN pathway contributes to regulating absence seizures. Here, using a biophysically based mean-field model of the GPe-corticothalamic (GCT) network, we found that both directly decreasing the strength of the GPe-TRN pathway and inactivating GPe neurons can effectively suppress absence seizures. Also, the pallido-cortical pathway and the recurrent connection of GPe neurons facilitate the regulation of absence seizures through the GPe-TRN pathway. Specifically, in the controllable situation, enhancing the coupling strength of either of the two pathways can successfully terminate absence seizures. Moreover, the competition between the GPe-TRN and pallido-cortical pathways may lead to the GPe bidirectionally controlling absence seizures, and this bidirectional control manner can be significantly modulated by the Ctx-TRN pathway. Importantly, when the strength of the Ctx-TRN pathway is relatively strong, the bidirectional control of absence seizures by changing GPe neural activities can be observed at both weak and strong strengths of the pallido-cortical pathway.These findings suggest that the GPe-TRN pathway may have crucial functional roles in regulating absence seizures, which may provide a testable hypothesis for further experimental studies and new perspectives on the treatment of absence epilepsy.
Collapse
Affiliation(s)
- Mingming Chen
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yajie Zhu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Renping Yu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yuxia Hu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Hong Wan
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Rui Zhang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Dezhong Yao
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Daqing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.
| |
Collapse
|
35
|
Reh R, Williams LJ, Todd RM, Ward LM. Warped rhythms: Epileptic activity during critical periods disrupts the development of neural networks for human communication. Behav Brain Res 2020; 399:113016. [PMID: 33212087 DOI: 10.1016/j.bbr.2020.113016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022]
Abstract
It is well established that temporal lobe epilepsy-the most common and well-studied form of epilepsy-can impair communication by disrupting social-emotional and language functions. In pediatric epilepsy, where seizures co-occur with the development of critical brain networks, age of onset matters: The earlier in life seizures begin, the worse the disruption in network establishment, resulting in academic hardship and social isolation. Yet, little is known about the processes by which epileptic activity disrupts developing human brain networks. Here we take a synthetic perspective-reviewing a range of research spanning studies on molecular and oscillatory processes to those on the development of large-scale functional networks-in support of a novel model of how such networks can be disrupted by epilepsy. We seek to bridge the gap between research on molecular processes, on the development of human brain circuitry, and on clinical outcomes to propose a model of how epileptic activity disrupts brain development.
Collapse
Affiliation(s)
- Rebecca Reh
- University of British Columbia, Department of Psychology, 2136 West Mall, Vancouver BC V6T 1Z4, Canada
| | - Lynne J Williams
- BC Children's Hospital MRI Research Facility, 4480 Oak Street, Vancouver, BC V6H 0B3, Canada
| | - Rebecca M Todd
- University of British Columbia, Department of Psychology, 2136 West Mall, Vancouver BC V6T 1Z4, Canada; University of British Columbia, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Lawrence M Ward
- University of British Columbia, Department of Psychology, 2136 West Mall, Vancouver BC V6T 1Z4, Canada; University of British Columbia, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
36
|
Sadeh S, Clopath C. Inhibitory stabilization and cortical computation. Nat Rev Neurosci 2020; 22:21-37. [PMID: 33177630 DOI: 10.1038/s41583-020-00390-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Neuronal networks with strong recurrent connectivity provide the brain with a powerful means to perform complex computational tasks. However, high-gain excitatory networks are susceptible to instability, which can lead to runaway activity, as manifested in pathological regimes such as epilepsy. Inhibitory stabilization offers a dynamic, fast and flexible compensatory mechanism to balance otherwise unstable networks, thus enabling the brain to operate in its most efficient regimes. Here we review recent experimental evidence for the presence of such inhibition-stabilized dynamics in the brain and discuss their consequences for cortical computation. We show how the study of inhibition-stabilized networks in the brain has been facilitated by recent advances in the technological toolbox and perturbative techniques, as well as a concomitant development of biologically realistic computational models. By outlining future avenues, we suggest that inhibitory stabilization can offer an exemplary case of how experimental neuroscience can progress in tandem with technology and theory to advance our understanding of the brain.
Collapse
Affiliation(s)
- Sadra Sadeh
- Bioengineering Department, Imperial College London, London, UK
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, UK.
| |
Collapse
|
37
|
Chang S, Wei X, Su F, Liu C, Yi G, Wang J, Han C, Che Y. Model Predictive Control for Seizure Suppression Based on Nonlinear Auto-Regressive Moving-Average Volterra Model. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2173-2183. [PMID: 32763855 DOI: 10.1109/tnsre.2020.3014927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This article investigates a closed-loop brain stimulation method based on model predictive control strategy to suppress epileptic seizures. A neural mass model (NMM), exhibiting the normal and various epileptic seizures by changing physiologically meaningful parameters, is used as a black-box model of the brain. Based on system identification, an auto-regressive moving-average Volterra model is established to reveal the relationship between stimulation and neuronal responses. Then, the model predictive control strategy is implemented based the Volterra model, which can generate an optimal stimulation waveform to eliminate epileptiform waves. The computational simulation results indicate the proposed closed-loop control strategy can optimize the stimulation waveform without particular knowledge of the physiological properties of the system. The robustness of the proposed control strategy to system disturbances makes it more appropriate for future clinical application.
Collapse
|
38
|
An S, Kang C, Lee HW. Artificial Intelligence and Computational Approaches for Epilepsy. J Epilepsy Res 2020; 10:8-17. [PMID: 32983950 PMCID: PMC7494883 DOI: 10.14581/jer.20003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022] Open
Abstract
Studies on treatment of epilepsy have been actively conducted in multiple avenues, but there are limitations in improving its efficacy due to between-subject variability in which treatment outcomes vary from patient to patient. Accordingly, there is a growing interest in precision medicine that provides accurate diagnosis for seizure types and optimal treatment for an individual epilepsy patient. Among these approaches, computational studies making this feasible are rapidly progressing in particular and have been widely applied in epilepsy. These computational studies are being conducted in two main streams: 1) artificial intelligence-based studies implementing computational machines with specific functions, such as automatic diagnosis and prognosis prediction for an individual patient, using machine learning techniques based on large amounts of data obtained from multiple patients and 2) patient-specific modeling-based studies implementing biophysical in-silico platforms to understand pathological mechanisms and derive the optimal treatment for each patient by reproducing the brain network dynamics of the particular patient per se based on individual patient's data. These computational approaches are important as it can integrate multiple types of data acquired from patients and analysis results into a single platform. If these kinds of methods are efficiently operated, it would suggest a novel paradigm for precision medicine.
Collapse
Affiliation(s)
- Sora An
- Department of Neurology, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea.,Department of Medical Science, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea
| | - Chaewon Kang
- Department of Neurology, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea.,Department of Computational Medicine, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea
| | - Hyang Woon Lee
- Department of Neurology, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea.,Department of Medical Science, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea.,Department of Computational Medicine, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Korea
| |
Collapse
|
39
|
Liu Y, Grigorovsky V, Bardakjian B. Excitation and Inhibition Balance Underlying Epileptiform Activity. IEEE Trans Biomed Eng 2020; 67:2473-2481. [PMID: 31902751 DOI: 10.1109/tbme.2019.2963430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The phenomenon of postictal generalized EEG suppression state (PGES) - a period with suppressed activity following seizure termination and has been found to be associated with sudden unexpected death in epilepsy - remains poorly understood. This article aims to examine the how the balance of excitation and inhibition (E/I balance) affect the dynamics of seizure and PGES. METHODS A network of 1000 Izhikevich model neurons was developed and only the strengths of synaptic connections were adjusted to recreate the dynamics observed in recordings of seizure and PGES from human patients. RESULTS A rapid rise followed by a slow decay of dominant frequency was observed in iEEG recordings of ictal periods and reproduced in the simulated local field potential by changing the E/I balance of the model network. The rate of this dominant frequency evolution was quantified by a single measure, β, which was found to have a significant rank correlation with the duration of PGES in iEEG data and the rate of E/I balance shift in the model. Significance and Conclusion: (i) highlighting the importance of E/I balance in the dynamics of seizure and PGES; (ii) suggesting the measure, β, as a marker for PGES and the shift in E/I balance as a neural correlate for this marker.
Collapse
|
40
|
Burrows DRW, Samarut É, Liu J, Baraban SC, Richardson MP, Meyer MP, Rosch RE. Imaging epilepsy in larval zebrafish. Eur J Paediatr Neurol 2020; 24:70-80. [PMID: 31982307 PMCID: PMC7035958 DOI: 10.1016/j.ejpn.2020.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/19/2022]
Abstract
Our understanding of the genetic aetiology of paediatric epilepsies has grown substantially over the last decade. However, in order to translate improved diagnostics to personalised treatments, there is an urgent need to link molecular pathophysiology in epilepsy to whole-brain dynamics in seizures. Zebrafish have emerged as a promising new animal model for epileptic seizure disorders, with particular relevance for genetic and developmental epilepsies. As a novel model organism for epilepsy research they combine key advantages: the small size of larval zebrafish allows high throughput in vivo experiments; the availability of advanced genetic tools allows targeted modification to model specific human genetic disorders (including genetic epilepsies) in a vertebrate system; and optical access to the entire central nervous system has provided the basis for advanced microscopy technologies to image structure and function in the intact larval zebrafish brain. There is a growing body of literature describing and characterising features of epileptic seizures and epilepsy in larval zebrafish. Recently genetically encoded calcium indicators have been used to investigate the neurobiological basis of these seizures with light microscopy. This approach offers a unique window into the multiscale dynamics of epileptic seizures, capturing both whole-brain dynamics and single-cell behaviour concurrently. At the same time, linking observations made using calcium imaging in the larval zebrafish brain back to an understanding of epileptic seizures largely derived from cortical electrophysiological recordings in human patients and mammalian animal models is non-trivial. In this review we briefly illustrate the state of the art of epilepsy research in zebrafish with particular focus on calcium imaging of epileptic seizures in the larval zebrafish. We illustrate the utility of a dynamic systems perspective on the epileptic brain for providing a principled approach to linking observations across species and identifying those features of brain dynamics that are most relevant to epilepsy. In the following section we survey the literature for imaging features associated with epilepsy and epileptic seizures and link these to observations made from humans and other more traditional animal models. We conclude by identifying the key challenges still facing epilepsy research in the larval zebrafish and indicate strategies for future research to address these and integrate more directly with the themes and questions that emerge from investigating epilepsy in other model systems and human patients.
Collapse
Affiliation(s)
- D R W Burrows
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - É Samarut
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - J Liu
- Department of Neurological Surgery and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - S C Baraban
- Department of Neurological Surgery and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - M P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M P Meyer
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - R E Rosch
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
41
|
Depannemaecker D, Canton Santos LE, Rodrigues AM, Scorza CA, Scorza FA, Almeida ACGD. Realistic spiking neural network: Non-synaptic mechanisms improve convergence in cell assembly. Neural Netw 2019; 122:420-433. [PMID: 31841876 DOI: 10.1016/j.neunet.2019.09.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/26/2023]
Abstract
Learning in neural networks inspired by brain tissue has been studied for machine learning applications. However, existing works primarily focused on the concept of synaptic weight modulation, and other aspects of neuronal interactions, such as non-synaptic mechanisms, have been neglected. Non-synaptic interaction mechanisms have been shown to play significant roles in the brain, and four classes of these mechanisms can be highlighted: (i) electrotonic coupling; (ii) ephaptic interactions; (iii) electric field effects; and iv) extracellular ionic fluctuations. In this work, we proposed simple rules for learning inspired by recent findings in machine learning adapted to a realistic spiking neural network. We show that the inclusion of non-synaptic interaction mechanisms improves cell assembly convergence. By including extracellular ionic fluctuation represented by the extracellular electrodiffusion in the network, we showed the importance of these mechanisms to improve cell assembly convergence. Additionally, we observed a variety of electrophysiological patterns of neuronal activity, particularly bursting and synchronism when the convergence is improved.
Collapse
Affiliation(s)
- Damien Depannemaecker
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil; Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luiz Eduardo Canton Santos
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil; Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Antônio Márcio Rodrigues
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil
| | - Carla Alessandra Scorza
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil
| | - Fulvio Alexandre Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Antônio-Carlos Guimarães de Almeida
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil.
| |
Collapse
|
42
|
Regulation and control roles of the basal ganglia in the development of absence epileptiform activities. Cogn Neurodyn 2019; 14:137-154. [PMID: 32015772 DOI: 10.1007/s11571-019-09559-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/02/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022] Open
Abstract
Absence epileptiform activities are traditionally considered to be primarily induced by abnormal interactions between the cortical and thalamic neurons, which form the thalamocortical circuit in the brain. The basal ganglia, as an organizational unit in the brain, has close input and output relationships with the thalamocortical circuit. Although several studies report that the basal ganglia may participate in controlling and regulating absence epileptiform activities, to date, there have been no studies regarding whether the basal ganglia directly cause absence epileptiform activities. In this paper, we built a basal ganglia-corticothalamic network model to determine the role of basal ganglia in this disease. We determined that absence epileptiform activities might be directly induced by abnormal coupling strengths on certain pivotal pathways in the basal ganglia. These epileptiform activities can be well controlled by the coupling strengths of three major pathways that project from the thalamocortical network to the basal ganglia. The results implied that the substantia nigra pars compacta (SNc) can be considered to be the effective treatment target area for inhibiting epileptiform activities, which supports the observations of previous studies. Particularly, as a major contribution of this paper, we determined that the final presentation position of the epileptic slow spike waves is not limited to the cerebral cortex; these waves may additionally appear in the thalamus, striatal medium spiny neurons, striatal fast spiking interneuron, the SNc, subthalamic nucleus, substantia nigra pars reticulata and globus pallidus pars externa. In addition, consistent with several previous studies, the delay in the network was observed to be a critical factor for inducing transitions between different types of absence epileptiform activities. Our new model not only explains the onset and control mechanism but also provides a unified framework to study similar problems in neuron systems.
Collapse
|
43
|
Deeba F, Sanz-Leon P, Robinson PA. Unified dynamics of interictal events and absence seizures. Phys Rev E 2019; 100:022407. [PMID: 31574631 DOI: 10.1103/physreve.100.022407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 01/09/2023]
Abstract
The dynamics of interictal events between absence seizures and their relationship to seizures themselves are investigated by employing a neural field model of the corticothalamic system. Interictal events are modeled as being due to transient parameter excursions beyond the seizure threshold, in the present case by sufficiently temporally varying the connection strength between the cerebral cortex and the thalamus. Increasing connection strength drives the system into ∼3-Hz seizure oscillations via a supercritical Hopf bifurcation once the linear instability threshold is passed. Depending on the time course of the excursion above threshold, different interictal activity event dynamics are seen in the time series of corticothalamic fields. These resemble experimental interictal time series observed via electroencephalography. It is found that the morphology of these events depends on the magnitude and duration of the excursion above threshold. For a large-amplitude excursion of short duration, events resemble interictal spikes, where one large spike is seen, followed by small damped oscillations. For a short excursion with long duration, events like observed interictal periodic sharp waves are seen. When both amplitude and duration above threshold are large, seizure oscillations are seen. Using these outcomes, proximity to seizure can be estimated and tracked.
Collapse
Affiliation(s)
- F Deeba
- Department of Physics, Dhaka University of Engineering and Technology, Gazipur 1700, Bangladesh; School of Physics, University of Sydney, New South Wales 2006, Australia; and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P Sanz-Leon
- School of Physics, University of Sydney, New South Wales 2006, Australia, and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia, and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
44
|
Kalitzin S, Petkov G, Suffczynski P, Grigorovsky V, Bardakjian BL, Lopes da Silva F, Carlen PL. Epilepsy as a manifestation of a multistate network of oscillatory systems. Neurobiol Dis 2019; 130:104488. [DOI: 10.1016/j.nbd.2019.104488] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
|
45
|
Kuhlmann L, Lehnertz K, Richardson MP, Schelter B, Zaveri HP. Seizure prediction - ready for a new era. Nat Rev Neurol 2019; 14:618-630. [PMID: 30131521 DOI: 10.1038/s41582-018-0055-2] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epilepsy is a common disorder characterized by recurrent seizures. An overwhelming majority of people with epilepsy regard the unpredictability of seizures as a major issue. More than 30 years of international effort have been devoted to the prediction of seizures, aiming to remove the burden of unpredictability and to couple novel, time-specific treatment to seizure prediction technology. A highly influential review published in 2007 concluded that insufficient evidence indicated that seizures could be predicted. Since then, several advances have been made, including successful prospective seizure prediction using intracranial EEG in a small number of people in a trial of a real-time seizure prediction device. In this Review, we examine advances in the field, including EEG databases, seizure prediction competitions, the prospective trial mentioned and advances in our understanding of the mechanisms of seizures. We argue that these advances, together with statistical evaluations, set the stage for a resurgence in efforts towards the development of seizure prediction methodologies. We propose new avenues of investigation involving a synergy between mechanisms, models, data, devices and algorithms and refine the existing guidelines for the development of seizure prediction technology to instigate development of a solution that removes the burden of the unpredictability of seizures.
Collapse
Affiliation(s)
- Levin Kuhlmann
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Victoria, Australia.,Department of Medicine - St. Vincent's, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn, Bonn, Germany. .,Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany.
| | - Mark P Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Björn Schelter
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, UK
| | - Hitten P Zaveri
- Department of Neurology, Yale University, New Haven, CT, USA
| |
Collapse
|
46
|
Kaestner E, Reyes A, Macari AC, Chang YH, Paul B, Hermann B, McDonald CR. Identifying the neural basis of a language-impaired phenotype of temporal lobe epilepsy. Epilepsia 2019; 60:1627-1638. [PMID: 31297795 PMCID: PMC6687533 DOI: 10.1111/epi.16283] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To identify neuroimaging and clinical biomarkers associated with a language-impaired phenotype in refractory temporal lobe epilepsy (TLE). METHODS Eighty-five patients with TLE were characterized as language-impaired (TLE-LI) or non-language-impaired (TLE-NLI) based on comprehensive neuropsychological testing. Structural magnetic resonance imaging (MRI), diffusion tensor imaging, and functional MRI (fMRI) were obtained in patients and 47 healthy controls (HC). fMRI activations and cortical thickness were calculated within language regions of interest, and fractional anisotropy (FA) was calculated within deep white matter tracts associated with language. Analyses of variance were performed to test for differences among the groups in imaging measures. Receiver operator characteristic curves were used to determine how well different clinical versus imaging measures discriminated TLE-LI from TLE-NLI. RESULTS TLE-LI patients showed significantly less activation within left superior temporal cortex compared to HC and TLE-NLI, regardless of side of seizure onset. TLE-LI also showed decreased FA in the inferior longitudinal fasciculus and arcuate fasciculus compared to HC. Cortical thickness did not differ between groups in any region. A model that included language-related fMRI activations within the superior temporal gyrus, age at onset, and demographic variables was the most predictive of language impairment (area under the curve = 0.80). SIGNIFICANCE These findings demonstrate a unique imaging signature associated with a language-impaired phenotype in TLE, characterized by functional and microstructural alterations within the language network. Reduced left superior temporal activation combined with compromise to language association tracts underlies this phenotype, extending our previous work on cognitive phenotypes that could have implications for treatment-planning or cognitive progression in TLE.
Collapse
Affiliation(s)
- Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California, San Diego
| | - Anny Reyes
- Center for Multimodal Imaging and Genetics, University of California, San Diego
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego
| | | | - Yu-Hsuan Chang
- Center for Multimodal Imaging and Genetics, University of California, San Diego
| | - Brianna Paul
- Department of Neurology, University of California – San Francisco, San Francisco
- UCSF Comprehensive Epilepsy Center, San Francisco
| | - Bruce Hermann
- Matthews Neuropsychology Section, University of Wisconsin
| | - Carrie R. McDonald
- Center for Multimodal Imaging and Genetics, University of California, San Diego
- UCSD Comprehensive Epilepsy Center, San Diego
- Department of Psychiatry, University of California, San Diego
| |
Collapse
|
47
|
Wang R, Lin P, Liu M, Wu Y, Zhou T, Zhou C. Hierarchical Connectome Modes and Critical State Jointly Maximize Human Brain Functional Diversity. PHYSICAL REVIEW LETTERS 2019; 123:038301. [PMID: 31386449 DOI: 10.1103/physrevlett.123.038301] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 06/05/2019] [Indexed: 06/10/2023]
Abstract
The brain requires diverse segregated and integrated processing to perform normal functions in terms of anatomical structure and self-organized dynamics with critical features, but the fundamental relationships between the complex structural connectome, critical state, and functional diversity remain unknown. Herein, we extend the eigenmode analysis to investigate the joint contribution of hierarchical modular structural organization and critical state to brain functional diversity. We show that the structural modes inherent to the hierarchical modular structural connectome allow a nested functional segregation and integration across multiple spatiotemporal scales. The real brain hierarchical modular organization provides large structural capacity for diverse functional interactions, which are generated by sequentially activating and recruiting the hierarchical connectome modes, and the critical state can best explore the capacity to maximize the functional diversity. Our results reveal structural and dynamical mechanisms that jointly support a balanced segregated and integrated brain processing with diverse functional interactions, and they also shed light on dysfunctional segregation and integration in neurodegenerative diseases and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Pan Lin
- Key Laboratory of Cognitive Science, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan 430074, China
| | - Mianxin Liu
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ying Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tao Zhou
- Complex Lab, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Research Centre, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China
- Beijing Computational Science Research Center, Beijing 100084, China
- Department of Physics, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
48
|
Ge Y, Cao Y, Yi G, Han C, Qin Y, Wang J, Che Y. Robust closed-loop control of spike-and-wave discharges in a thalamocortical computational model of absence epilepsy. Sci Rep 2019; 9:9093. [PMID: 31235838 PMCID: PMC6591255 DOI: 10.1038/s41598-019-45639-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 06/07/2019] [Indexed: 01/24/2023] Open
Abstract
In this paper, we investigate the abatement of spike-and-wave discharges in a thalamocortical model using a closed-loop brain stimulation method. We first explore the complex states and various transitions in the thalamocortical computational model of absence epilepsy by using bifurcation analysis. We demonstrate that the Hopf and double cycle bifurcations are the key dynamical mechanisms of the experimental observed bidirectional communications during absence seizures through top-down cortical excitation and thalamic feedforward inhibition. Then, we formulate the abatement of epileptic seizures to a closed-loop tracking control problem. Finally, we propose a neural network based sliding mode feedback control system to drive the dynamics of pathological cortical area to track the desired normal background activities. The control system is robust to uncertainties and disturbances, and its stability is guaranteed by Lyapunov stability theorem. Our results suggest that the seizure abatement can be modeled as a tracking control problem and solved by a robust closed-loop control method, which provides a promising brain stimulation strategy.
Collapse
Affiliation(s)
- Yafang Ge
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuzhen Cao
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Chunxiao Han
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, 300222, P. R. China.
| | - Yingmei Qin
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, 300222, P. R. China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, P. R. China.
| | - Yanqiu Che
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, 17033, USA. .,Center for Neural Engineering, Penn State, University Park, PA, 16802, USA.
| |
Collapse
|
49
|
The role that choice of model plays in predictions for epilepsy surgery. Sci Rep 2019; 9:7351. [PMID: 31089190 PMCID: PMC6517411 DOI: 10.1038/s41598-019-43871-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/02/2019] [Indexed: 12/26/2022] Open
Abstract
Mathematical modelling has been widely used to predict the effects of perturbations to brain networks. An important example is epilepsy surgery, where the perturbation in question is the removal of brain tissue in order to render the patient free of seizures. Different dynamical models have been proposed to represent transitions to ictal states in this context. However, our choice of which mathematical model to use to address this question relies on making assumptions regarding the mechanism that defines the transition from background to the seizure state. Since these mechanisms are unknown, it is important to understand how predictions from alternative dynamical descriptions compare. Herein we evaluate to what extent three different dynamical models provide consistent predictions for the effect of removing nodes from networks. We show that for small, directed, connected networks the three considered models provide consistent predictions. For larger networks, predictions are shown to be less consistent. However consistency is higher in networks that have sufficiently large differences in ictogenicity between nodes. We further demonstrate that heterogeneity in ictogenicity across nodes correlates with variability in the number of connections for each node.
Collapse
|
50
|
Dura-Bernal S, Suter BA, Gleeson P, Cantarelli M, Quintana A, Rodriguez F, Kedziora DJ, Chadderdon GL, Kerr CC, Neymotin SA, McDougal RA, Hines M, Shepherd GMG, Lytton WW. NetPyNE, a tool for data-driven multiscale modeling of brain circuits. eLife 2019; 8:e44494. [PMID: 31025934 PMCID: PMC6534378 DOI: 10.7554/elife.44494] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, for example connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis - connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena.
Collapse
Affiliation(s)
- Salvador Dura-Bernal
- Department of Physiology & PharmacologyState University of New York Downstate Medical CenterBrooklynUnited States
| | - Benjamin A Suter
- Department of PhysiologyNorthwestern UniversityChicagoUnited States
| | - Padraig Gleeson
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUnited Kingdom
| | | | | | - Facundo Rodriguez
- Department of Physiology & PharmacologyState University of New York Downstate Medical CenterBrooklynUnited States
- MetaCell LLCBostonUnited States
| | - David J Kedziora
- Complex Systems Group, School of PhysicsUniversity of SydneySydneyAustralia
| | - George L Chadderdon
- Department of Physiology & PharmacologyState University of New York Downstate Medical CenterBrooklynUnited States
| | - Cliff C Kerr
- Complex Systems Group, School of PhysicsUniversity of SydneySydneyAustralia
| | - Samuel A Neymotin
- Department of Physiology & PharmacologyState University of New York Downstate Medical CenterBrooklynUnited States
- Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Robert A McDougal
- Department of Neuroscience and School of MedicineYale UniversityNew HavenUnited States
- Center for Medical InformaticsYale UniversityNew HavenUnited States
| | - Michael Hines
- Department of Neuroscience and School of MedicineYale UniversityNew HavenUnited States
| | | | - William W Lytton
- Department of Physiology & PharmacologyState University of New York Downstate Medical CenterBrooklynUnited States
- Department of NeurologyKings County HospitalBrooklynUnited States
| |
Collapse
|