1
|
Hu W, Zhang X, Shao J, Wang Y. Altruistic behavior in Chinese children with hearing impairment: Associations with power cognition and word comprehension. Acta Psychol (Amst) 2025; 255:104981. [PMID: 40187177 DOI: 10.1016/j.actpsy.2025.104981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025] Open
Abstract
Altruistic behavior is a crucial manifestation in the socialization process of preschool children with hearing impairment, yet research on this topic among Chinese children remains limited. This study investigated the effects of power cognition and word comprehension on altruistic behavior in preschool-aged children with hearing impairment. A sample of 64 children, including both hearing-impaired and typically developing children, completed altruistic behavior tasks, power cognition tasks, word comprehension tasks, and the Raven's Combined Test. The results revealed that: (1) Children with hearing impairment exhibited significantly lower levels of altruistic behavior compared to typically developing children; (2) Both power cognition and word comprehension were positively correlated with altruistic behavior in children with hearing impairment; (3) Word comprehension mediated the relationship between power cognition and altruistic behavior in children with hearing impairment.
Collapse
Affiliation(s)
- Weibin Hu
- College of Education, Lanzhou City University, Lanzhou 730070, China; Faculty of Education, East China Normal University, Shanghai 200062, China
| | - Xueru Zhang
- Faculty of Education, East China Normal University, Shanghai 200062, China.
| | - Jiancheng Shao
- Gansu Hearing-speech Rehabilitation Center, Lanzhou 730300, China
| | - Yuanfen Wang
- Gansu Hearing-speech Rehabilitation Center, Lanzhou 730300, China
| |
Collapse
|
2
|
Kopalli SR, Behl T, Baldaniya L, Ballal S, Joshi KK, Arya R, Chaturvedi B, Chauhan AS, Verma R, Patel M, Jain SK, Wal A, Gulati M, Koppula S. Neuroadaptation in neurodegenerative diseases: compensatory mechanisms and therapeutic approaches. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111375. [PMID: 40280271 DOI: 10.1016/j.pnpbp.2025.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Progressive neuronal loss is a hallmark of neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis (ALS), which cause cognitive and motor impairment. Delaying the onset and course of symptoms is largely dependent on neuroadaptation, the brain's ability to restructure in response to damage. The molecular, cellular, and systemic processes that underlie neuroadaptation are examined in this study. These mechanisms include gliosis, neurogenesis, synaptic plasticity, and changes in neurotrophic factors. Axonal sprouting, dendritic remodelling, and compensatory alterations in neurotransmitter systems are important adaptations observed in NDDs; nevertheless, these processes may shift to maladaptive plasticity, which would aid in the advancement of the illness. Amyloid and tau pathology-induced synaptic alterations in Alzheimer's disease emphasize compensatory network reconfiguration. Dopamine depletion causes a major remodelling of the basal ganglia in Parkinson's disease, and non-dopaminergic systems compensate. Both ALS and Huntington's disease rely on motor circuit rearrangement and transcriptional dysregulation to slow down functional deterioration. Neuroadaptation is, however, constrained by oxidative stress, compromised autophagy, and neuroinflammation, particularly in elderly populations. The goal of emerging therapy strategies is to improve neuroadaptation by pharmacologically modifying neurotrophic factors, neuroinflammation, and synaptic plasticity. Neurostimulation, cognitive training, and physical rehabilitation are instances of non-pharmacological therapies that support neuroplasticity. Restoring compensating systems may be possible with the use of stem cell techniques and new gene treatments. The goal of future research is to combine biomarkers and individualized medicines to maximize neuroadaptive responses and decrease the course of illness. In order to reduce neurodegeneration and enhance patient outcomes, this review highlights the dual function of neuroadaptation in NDDs and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab-140306, India
| | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Bhumi Chaturvedi
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rakesh Verma
- Department of Pharmacology, Institute of Medical Science, BHU, Varanasi, India
| | - Minesh Patel
- Department of Pharmacology & Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Dhanap, Gandhinagar, Gujarat, India
| | - Sanmati Kumar Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, India, 495009
| | - Ankita Wal
- Pranveer Singh Institute of Technology, Pharmacy, NH-19, Bhauti Road, Kanpur, UP, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
3
|
Li J, Xiong B, Chen S, Li J, Luo Y, Chen YC, Song JJ, Zhao F, Yang J, Li C, Zheng Y, Gui L, Feng H, Chen W, Cai Y, Chen W. Cross brain reshaping in congenital visual or hearing impairment: triple-network dysfunction. Brain Commun 2025; 7:fcaf150. [PMID: 40303602 PMCID: PMC12038346 DOI: 10.1093/braincomms/fcaf150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
This research examines how congenital visual or hearing impairment reshapes brain function using EEG. The study involved 40 children with congenital visual impairment, 40 with hearing impairment and 42 age and gender-matched normal children as controls. The investigation included assessments of visual and auditory abilities, along with comprehensive EEG evaluations. Techniques such as source localization, functional connectivity and cross-frequency coupling were used to analyse variations in brain activity. Machine learning methods, specifically support vector machines, were utilized to identify key reshaping characteristics associated with congenital impairments. Results showed reduced activation in the visual cortex for visually impaired children and decreased activation in the auditory cortex for hearing-impaired children compared with the control group. Both impairment groups demonstrated significant reductions in functional connectivity across various brain regions, including the visual and auditory cortices, insula, parahippocampal gyrus, posterior cingulate gyrus and frontal cortex. The machine learning model highlighted aberrant connectivity between the visual/auditory cortex and the right insula, the medial prefrontal cortex and dorsolateral prefrontal cortex and the visual and auditory cortex in children with these impairments in the alpha frequency band. Spatially similar patterns of cross-frequency coupling of rhythmic activity were also observed. The study concludes that congenital visual and hearing impairments significantly impact brain development, identifying distinct functional characteristics and shared reshaping patterns. The consistent presence of dysrhythmic activity and reduced functional connectivity suggest the existence of a triple network anomaly.
Collapse
Affiliation(s)
- Jiahong Li
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou City, Guangdong Province 510120, China
| | - Binbin Xiong
- Center for Hearing and Balance, Zhuhai Hospital of Integrated of Traditional Chinese Medicine and Western Medicine, Zhuhai, Guangdong 519000, China
| | - Suijun Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou City, Guangdong Province 510120, China
| | - Jing Li
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou City, Guangdong Province 510120, China
| | - Yingting Luo
- Zhongshan school of medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210012, China
| | - Jae-jin Song
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam-si 03080, South Korea
| | - Fei Zhao
- Department of Speech and Language Therapy and Hearing Science, Cardiff Metropolitan University, Cardiff CF5 2YB, United Kingdom
| | - Jing Yang
- Center for Hearing and Balance, Zhuhai Hospital of Integrated of Traditional Chinese Medicine and Western Medicine, Zhuhai, Guangdong 519000, China
| | - Chenlong Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou City, Guangdong Province 510120, China
- Department of Otolaryngology, Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 516621, China
| | - Lan Gui
- Department of Otolaryngology, Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 516621, China
| | - Huanling Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Yuexin Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou City, Guangdong Province 510120, China
| | - Wan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, Hainan 570311, China
| |
Collapse
|
4
|
Wojciechowski J, Beck J, Cygan H, Pankowska A, Wolak T. Neural mechanisms of lipreading in the Polish-speaking population: effects of linguistic complexity and sex differences. Sci Rep 2025; 15:13253. [PMID: 40247080 PMCID: PMC12006354 DOI: 10.1038/s41598-025-98026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Lipreading, the ability to understand speech by observing lips and facial movements, is a vital communication skill that enhances speech comprehension in diverse contexts, such as noisy environments. This study examines the neural mechanisms underlying lipreading in the Polish-speaking population, focusing on the complexity of linguistic material and potential sex differences in lipreading ability. Cohort of 51 participants (26 females) underwent a behavioral lipreading test and an fMRI-based speech comprehension task, utilizing visual-only and audiovisual stimuli, manipulating the lexicality and grammar of linguistic materials. Results indicated that males and females did not differ significantly in objective lipreading skills, though females rated their subjective abilities higher. Neuroimaging revealed increased activation in regions associated with speech processing, such as the superior temporal cortex, when participants engaged in visual-only lipreading compared to audiovisual condition. Lexicality of visual-only material engaged distinct neural pathways, highlighting the role of motor areas in visual speech comprehension. These findings contribute to understanding the neurocognitive processes in lipreading, suggesting that visual speech perception is a multimodal process involving extensive brain regions typically associated with auditory processing. The study underscores the potential of lipreading training in rehabilitating individuals with hearing loss and informs the development of assistive technologies.
Collapse
Affiliation(s)
- Jakub Wojciechowski
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, 10 Mochnackiego St, Warsaw, 02-042, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, Warsaw, 02-093, Poland
| | - Joanna Beck
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, 10 Mochnackiego St, Warsaw, 02-042, Poland.
- Medical Faculty, Lazarski University, Warsaw, 02-662, Poland.
| | - Hanna Cygan
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, 10 Mochnackiego St, Warsaw, 02-042, Poland
| | - Agnieszka Pankowska
- Rehabilitation Clinic, Institute of Physiology and Pathology of Hearing, 10 Mochnackiego St, Warsaw, 02-042, Poland
| | - Tomasz Wolak
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, 10 Mochnackiego St, Warsaw, 02-042, Poland
| |
Collapse
|
5
|
Pawlak WA, Howard N. Neuromorphic algorithms for brain implants: a review. Front Neurosci 2025; 19:1570104. [PMID: 40292025 PMCID: PMC12021827 DOI: 10.3389/fnins.2025.1570104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Neuromorphic computing technologies are about to change modern computing, yet most work thus far has emphasized hardware development. This review focuses on the latest progress in algorithmic advances specifically for potential use in brain implants. We discuss current algorithms and emerging neurocomputational models that, when implemented on neuromorphic hardware, could match or surpass traditional methods in efficiency. Our aim is to inspire the creation and deployment of models that not only enhance computational performance for implants but also serve broader fields like medical diagnostics and robotics inspiring next generations of neural implants.
Collapse
|
6
|
Valentin O, Foster NEV, Intartaglia B, Prud’homme MA, Schönwiesner M, Nozaradan S, Lehmann A. Intact sensorimotor rhythm abilities but altered audiovisual integration in cochlear implant users. PLoS One 2025; 20:e0320815. [PMID: 40173130 PMCID: PMC11964205 DOI: 10.1371/journal.pone.0320815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/24/2025] [Indexed: 04/04/2025] Open
Abstract
Perception of rhythm significantly impacts various aspects of daily life, including engaging with music, discerning speech prosody nuances, and coordinating physical activities like walking and sports. Numerous studies in cognitive sciences have highlighted that human rhythmic synchronization is more precise when responding to auditory rhythmic stimuli than to visual ones when the timing cues are identical. However, deaf individuals were shown to display a heightened proficiency in synchronizing their movements with visual timing cues, outperforming hearing controls (HC). Furthermore, it was demonstrated that cochlear implant (CI) users can synchronize their movements with the rhythm of unpitched drum tones. These findings raise an important question: do CI users possess a visual synchronization advantage from their pre-implant deafness, while maintaining auditory synchronization skills comparable to those of HC? Alternatively, does the neural reorganization post-implantation negate the visual synchronization advantage acquired before the implant? This study aims to answer these questions by using a sensorimotor synchronization task to probe multisensory processing abilities in CI users. Specifically, we assessed unimodal and multimodal auditory and visual abilities in CI users compared to HC using a finger tapping synchrony task with four isochronous stimulus conditions: an auditory metronome, a visual metronome, a synchronous presentation of both the auditory and visual metronomes at the same tempo, and an asynchronous presentation of the auditory and visual stimuli at differing tempos. Synchronization to auditory stimuli surpassed synchronization to visual stimuli in both groups. CI users and HC demonstrated similar unisensory synchronization consistency within the visual and auditory conditions. While HC enhanced their consistency in the audio-visual synchronous condition compared to the unisensory visual condition, CI users did not display the same improvement. Furthermore, the interference from incongruent auditory information in the asynchronous condition was comparable in HC and CI users. This study highlights that, although pitch processing is known to be impaired in CI users, our findings suggest that rhythm processing remains relatively spared. As anticipated, CI users demonstrate similar auditory rhythmic synchronization skills to those of HC, in line with existing research. Moreover, we find that, unlike deaf individuals, CI users do not exhibit an advantage in visual rhythmic synchronization, which may be due to the relatively few CI users in the study who had early prolonged pre-implantation deafness. The observed shift in audio-visual integration among CI users suggests that post-deafness or post-implantation reorganization of their auditory cortex may impede the effective integration of temporal auditory stimulation from the implant and visual information.
Collapse
Affiliation(s)
- Olivier Valentin
- School of Communication Sciences and Disorders, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
- Laboratory for Brain, Music and Sound Research & Centre for Research on Brain, Language or Music, Montreal, Quebec, Canada
- Centre for Interdisciplinary Research in Music Media and Technology, Montreal, Quebec, Canada
| | - Nicholas Elgin Vernam Foster
- Laboratory for Brain, Music and Sound Research & Centre for Research on Brain, Language or Music, Montreal, Quebec, Canada
| | - Bastien Intartaglia
- Laboratory for Brain, Music and Sound Research & Centre for Research on Brain, Language or Music, Montreal, Quebec, Canada
- Centre for Interdisciplinary Research in Music Media and Technology, Montreal, Quebec, Canada
- Department of Otolaryngology–Head and Neck Surgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Marie-Anne Prud’homme
- Laboratory for Brain, Music and Sound Research & Centre for Research on Brain, Language or Music, Montreal, Quebec, Canada
| | - Marc Schönwiesner
- Laboratory for Brain, Music and Sound Research & Centre for Research on Brain, Language or Music, Montreal, Quebec, Canada
- International Max Planck Research School on Neuroscience of Communication, Leipzig University, Leipzig, Germany
| | - Sylvie Nozaradan
- Laboratory for Brain, Music and Sound Research & Centre for Research on Brain, Language or Music, Montreal, Quebec, Canada
- Institute of Neuroscience (IONS), Université catholique de Louvain, Louvain-la-Neuve, Belgique
| | - Alexandre Lehmann
- Laboratory for Brain, Music and Sound Research & Centre for Research on Brain, Language or Music, Montreal, Quebec, Canada
- Centre for Interdisciplinary Research in Music Media and Technology, Montreal, Quebec, Canada
- Department of Otolaryngology–Head and Neck Surgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Hauptman M, Elli G, Pant R, Bedny M. Neural specialization for 'visual' concepts emerges in the absence of vision. Cognition 2025; 257:106058. [PMID: 39827755 DOI: 10.1016/j.cognition.2024.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
The 'different-body/different-concepts hypothesis' central to some embodiment theories proposes that the sensory capacities of our bodies shape the cognitive and neural basis of our concepts. We tested this hypothesis by comparing behavioral semantic similarity judgments and neural signatures (fMRI) of 'visual' categories ('living things,' or animals, e.g., tiger, and light events, e.g., sparkle) across congenitally blind (n = 21) and sighted (n = 22) adults. Words referring to 'visual' entities/nouns and events/verbs (animals and light events) were compared to less vision-dependent categories from the same grammatical class (animal vs. place nouns, light vs. sound, mouth, and hand verbs). Within-category semantic similarity judgments about animals (e.g., sparrow vs. finch) were partially different across groups, consistent with the idea that sighted people rely on visually learned information to make such judgments about animals. However, robust neural specialization for living things in temporoparietal semantic networks, including in the precuneus, was observed in blind and sighted people alike. For light events, which are directly accessible only through vision, behavioral judgments were indistinguishable across groups. Neural responses to light events were also similar across groups: in both blind and sighted people, the left middle temporal gyrus (LMTG+) responded more to event concepts, including light events, compared to entity concepts. Multivariate patterns of neural activity in LMTG+ distinguished among different event types, including light events vs. other event types. In sum, we find that neural signatures of concepts previously attributed to visual experience do not require vision. Across a wide range of semantic types, conceptual representations develop independent of sensory experience.
Collapse
Affiliation(s)
- Miriam Hauptman
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Giulia Elli
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Rashi Pant
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Psychology & Neuropsychology, Universität Hamburg, Germany.
| | - Marina Bedny
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
Farfán FD, Soo L, Grani F, Grima-Murcia MD, Fernández E. Brain connectivity changes in response to cortical electrical stimulation in blind neuroprosthesis users. Cereb Cortex 2025; 35:bhaf075. [PMID: 40173310 DOI: 10.1093/cercor/bhaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
The success of visual neuroprostheses in long-term blind individuals depends not only on the prosthetic technology but also on the brain's ability to readjust its multimodal sensory processing circuits. This study investigates longitudinal changes in resting-state cortical connectivity in two blind subjects implanted with an intracortical microelectrode array (10 × 10 Utah Electrode Array) in the visual cortex for 6 months. During this period, daily microstimulation sessions elicited phosphene perception, and periodic electroencephalographic recordings in the resting state were conducted. Cortical connectivity was quantified using spectral coherence across 64 electroencephalographic channels. Results revealed significant changes in connectivity patterns pre- and post-implantation, with linear trends observed during the implantation period. These trends varied between subjects: User 1 exhibited changes in the 7 to 13 Hz band, while user 2 showed changes in the 15 to 30 Hz band. This study highlights the brain's adaptive capacity in response to sensory restoration and provides insights into optimizing neuroplasticity for improved outcomes in neuroprosthetic interventions.
Collapse
Affiliation(s)
- Fernando Daniel Farfán
- Institute of Bioengineering, Universidad Miguel Hernández of Elche, Avinguda de la Universitat d'Elx s/n, 03202 Elche, Alicante, Spain
- Laboratorio de Investigación en Neurociencias y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Avenida Independencia 1800, 4000 San Miguel de Tucumán, Tucumán, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Batalla de Chacabuco 461, T4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Leili Soo
- Institute of Bioengineering, Universidad Miguel Hernández of Elche, Avinguda de la Universitat d'Elx s/n, 03202 Elche, Alicante, Spain
| | - Fabrizio Grani
- Institute of Bioengineering, Universidad Miguel Hernández of Elche, Avinguda de la Universitat d'Elx s/n, 03202 Elche, Alicante, Spain
| | - María Dolores Grima-Murcia
- Institute of Bioengineering, Universidad Miguel Hernández of Elche, Avinguda de la Universitat d'Elx s/n, 03202 Elche, Alicante, Spain
| | - Eduardo Fernández
- Institute of Bioengineering, Universidad Miguel Hernández of Elche, Avinguda de la Universitat d'Elx s/n, 03202 Elche, Alicante, Spain
- Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5. Pabellón 11, planta 0, 28029 Madrid, Spain
| |
Collapse
|
9
|
Esmaelpoor J, Peng T, Jelfs B, Mao D, Shader MJ, McKay CM. Cross-modal functional plasticity after cochlear implantation. Cereb Cortex 2025; 35:bhaf084. [PMID: 40267308 DOI: 10.1093/cercor/bhaf084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/20/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
Despite evidence that cross-modal effects after hearing loss and cochlear implantation are primarily driven by synaptic gain and efficacy, few studies have evaluated cross-modal functional connectivity (CMFC) to assess plasticity. This study, inspired by the psychophysiological interaction (PPI) method, addresses its limitations and provides a robust approach for assessing task-induced CMFC. Twenty-three postlingually deafened cochlear implant (CI) recipients and 17 normal-hearing (NH) participants took part in the study. Functional near-infrared spectroscopy was used to measure brain activity during audio-only and visual-only speech tasks, with resting-state FC as a baseline, at 1 month and 1 year postimplantation. CI users' speech understanding was assessed 1 year postimplantation. Significant negative correlations were observed between contralateral task-induced CMFC and speech outcomes, particularly in links from the angular gyrus (AG) to the visual cortex. One year after CI activation, higher task-induced CMFC was found in AG compared to the superior temporal gyrus, reflecting neural efficiency principles. Task-induced CMFC remained elevated in CI users compared to NH even after 1 year. These findings suggest task-induced CMFC as a significant marker of cross-modal plasticity and speech performance in CI recipients.
Collapse
Affiliation(s)
- Jamal Esmaelpoor
- Department of Medical Bionics, University of Melbourne, 29 Royal Parade, Parkville, VIC 3052, Australia
- Bionics Institute, 41 Victoria Parade, Fitzroy, VIC 3065, Australia
| | - Tommy Peng
- Department of Medical Bionics, University of Melbourne, 29 Royal Parade, Parkville, VIC 3052, Australia
- Bionics Institute, 41 Victoria Parade, Fitzroy, VIC 3065, Australia
| | - Beth Jelfs
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Darren Mao
- Department of Medical Bionics, University of Melbourne, 29 Royal Parade, Parkville, VIC 3052, Australia
- Bionics Institute, 41 Victoria Parade, Fitzroy, VIC 3065, Australia
| | - Maureen J Shader
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, West Lafayette, IN 47907, United States
| | - Colette M McKay
- Department of Medical Bionics, University of Melbourne, 29 Royal Parade, Parkville, VIC 3052, Australia
- Bionics Institute, 41 Victoria Parade, Fitzroy, VIC 3065, Australia
| |
Collapse
|
10
|
Turgeon C, Hadid V, Trudeau-Fisette P, Knoth I, Lepore F, Lippé S, Ménard L. Impact of visual and auditory deprivation on speech perception: an EEG study. Cereb Cortex 2025; 35:bhaf086. [PMID: 40298446 PMCID: PMC12038810 DOI: 10.1093/cercor/bhaf086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/19/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
This study investigated the impact of auditory and visual deprivation on speech processing by analyzing auditory evoked potentials (MMN, P3a, P2, N2b) in congenitally blind individuals, cochlear implant (CI) users, and normal-hearing controls. Using a passive oddball paradigm with /u/ as the standard stimulus and /i/ and /y/ as deviants, we recorded and analyzed auditory evoked potentials in fronto-central and centro-parietal regions. Blind participants exhibited significantly faster MMN and N2b latencies than controls and CI users, reflecting enhanced auditory temporal resolution due to cross-modal plasticity. CI users showed reduced P2 and N2b amplitudes, indicating challenges in early sensory processing and conflict monitoring, particularly for the /i/-/u/ contrast. Notably, blind participants had larger P3a amplitudes, emphasizing superior attentional engagement in response to deviant stimuli. Postlingually deafened CI users exhibited greater P3a amplitudes than prelingually deafened users, underscoring the impact of early auditory experiences on cortical responses. These findings demonstrate distinct effects of sensory deprivation on speech processing, with blind individuals showing compensatory neural mechanisms and CI users experiencing sensory and cognitive challenges. The results underscore the need for personalized rehabilitation strategies to enhance outcomes for populations with sensory deprivation and highlight the potential of cross-modal plasticity in auditory rehabilitation.
Collapse
Affiliation(s)
- Christine Turgeon
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris), Département de réadaptation, Université Laval, 525 boulevard Wilfrid-Hamel, Québec, QC G1M 2S8, Canada
- École de la Réadaptation, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
- Laboratoire de phonétique de l’UQAM, Université du Québec à Montréal (UQAM), 405 rue Sainte-Catherine Est, Montréal, QC H2L 2C4, Canada
- Centre for Research on Brain, Language and Music (CRBLM), 3640 rue de la Montagne, Montréal, QC H3G 2A8, Canada
| | - Vanessa Hadid
- CerebrUM, Département de psychologie, Université de Montréal, Pavillon Marie-Victorin, 90 avenue Vincent-d’Indy, Montréal, QC H2V 2S9, Canada
- Department of Otolaryngology—Head and Neck Surgery, McGill University, McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC H4A 3J1, Canada
| | - Paméla Trudeau-Fisette
- Laboratoire de phonétique de l’UQAM, Université du Québec à Montréal (UQAM), 405 rue Sainte-Catherine Est, Montréal, QC H2L 2C4, Canada
- Centre for Research on Brain, Language and Music (CRBLM), 3640 rue de la Montagne, Montréal, QC H3G 2A8, Canada
| | - Inga Knoth
- CerebrUM, Département de psychologie, Université de Montréal, Pavillon Marie-Victorin, 90 avenue Vincent-d’Indy, Montréal, QC H2V 2S9, Canada
| | - Franco Lepore
- CerebrUM, Département de psychologie, Université de Montréal, Pavillon Marie-Victorin, 90 avenue Vincent-d’Indy, Montréal, QC H2V 2S9, Canada
| | - Sarah Lippé
- CerebrUM, Département de psychologie, Université de Montréal, Pavillon Marie-Victorin, 90 avenue Vincent-d’Indy, Montréal, QC H2V 2S9, Canada
| | - Lucie Ménard
- Laboratoire de phonétique de l’UQAM, Université du Québec à Montréal (UQAM), 405 rue Sainte-Catherine Est, Montréal, QC H2L 2C4, Canada
- Centre for Research on Brain, Language and Music (CRBLM), 3640 rue de la Montagne, Montréal, QC H3G 2A8, Canada
| |
Collapse
|
11
|
Prosper A, Blanchard T, Lunghi C. The interplay between Hebbian and homeostatic plasticity in the adult visual cortex. J Physiol 2025; 603:1521-1540. [PMID: 40019812 PMCID: PMC11908499 DOI: 10.1113/jp287665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/17/2025] [Indexed: 03/15/2025] Open
Abstract
Homeostatic and Hebbian plasticity co-operate during the critical period, refining neuronal circuits; however, the interaction between these two forms of plasticity is still unclear, especially in adulthood. Here, we directly investigate this issue in adult humans using two consolidated paradigms to elicit each form of plasticity in the visual cortex: the long-term potentiation-like change of the visual evoked potential (VEP) induced by high-frequency stimulation (HFS) and the shift of ocular dominance induced by short-term monocular deprivation (MD). We tested homeostatic and Hebbian plasticity independently, then explored how they interacted by inducing them simultaneously in a group of adult healthy volunteers. We successfully induced both forms of plasticity: 60 min of MD induced a reliable change in ocular dominance and HFS reliably modulated the amplitude of the P1 component of the VEP. Importantly, we found that, across participants, homeostatic and Hebbian plasticity were negatively correlated, indicating related neural mechanisms, potentially linked to intracortical excitation/inhibition balance. On the other hand, we did not find an interaction when the two forms of plasticity were induced simultaneously. Our results indicate a largely preserved plastic potential in the visual cortex of the adult brain, for both short-term homeostatic and Hebbian plasticity. Crucially, we show for the first time a direct relationship between these two forms of plasticity in the adult human visual cortex, which could inform future research and treatment protocols for neurological diseases. KEY POINTS: Homeostatic and Hebbian plasticity co-operate during the critical period to refine neuronal circuits in the visual cortex. The interaction between these two forms of plasticity is still unknown, especially after the closure of the critical periods and in humans. We directly investigate the interplay between Hebbian and homeostatic visual plasticity in adult humans using non-invasive paradigms. We found a negative correlation between these forms of plasticity showing for the first time a direct relationship between Hebbian and homeostatic plasticity. Our results could inform future research and treatment protocols for neurological diseases.
Collapse
Affiliation(s)
- Antoine Prosper
- Laboratoire des Systèmes Perceptifs, Département d'études Cognitives, École Normale Supérieure, PSL University, CNRS, Paris, France
| | - Thomas Blanchard
- Laboratoire des Systèmes Perceptifs, Département d'études Cognitives, École Normale Supérieure, PSL University, CNRS, Paris, France
| | - Claudia Lunghi
- Laboratoire des Systèmes Perceptifs, Département d'études Cognitives, École Normale Supérieure, PSL University, CNRS, Paris, France
| |
Collapse
|
12
|
Fauvet C, Cantini L, Chaudoreille AE, Cancian E, Bonnel B, Sérignac C, Derreumaux A, Robert P, Guevara N, Gros A, Manera V. Assessing the Recognition of Social Interactions Through Body Motion in the Routine Care of Patients with Post-Lingual Sensorineural Hearing Loss. J Clin Med 2025; 14:1604. [PMID: 40095562 PMCID: PMC11900234 DOI: 10.3390/jcm14051604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Body motion significantly contributes to understanding communicative and social interactions, especially when auditory information is impaired. The visual skills of people with hearing loss are often enhanced and compensate for some of the missing auditory information. In the present study, we investigated the recognition of social interactions by observing body motion in people with post-lingual sensorineural hearing loss (SNHL). Methods: In total, 38 participants with post-lingual SNHL and 38 matched normally hearing individuals (NHIs) were presented with point-light stimuli of two agents who were either engaged in a communicative interaction or acting independently. They were asked to classify the actions as communicative vs. independent and to select the correct action description. Results: No significant differences were found between the participants with SNHL and the NHIs when classifying the actions. However, the participants with SNHL showed significantly lower performance compared with the NHIs in the description task due to a higher tendency to misinterpret communicative stimuli. In addition, acquired SNHL was associated with a significantly higher number of errors, with a tendency to over-interpret independent stimuli as communicative and to misinterpret communicative actions. Conclusions: The findings of this study suggest a misinterpretation of visual understanding of social interactions in individuals with SNHL and over-interpretation of communicative intentions in SNHL acquired later in life.
Collapse
Affiliation(s)
| | - Léa Cantini
- CoBTeK Lab, Université Côte d’Azur, 06001 Nice, France
- UFR Medicine of Nice, Department of Speech Therapy, Université Côte d’Azur, 06001 Nice, France
| | - Aude-Eva Chaudoreille
- CoBTeK Lab, Université Côte d’Azur, 06001 Nice, France
- UFR Medicine of Nice, Department of Speech Therapy, Université Côte d’Azur, 06001 Nice, France
| | - Elisa Cancian
- Institut Universitaire de la Face et du Cou (IUFC), Nice University Hospitals (CHU), 06100 Nice, France
| | - Barbara Bonnel
- Institut Médico-Éducatif Cour de Venise 75, Association Autisme en IDF, 75003 Paris, France
| | - Chloé Sérignac
- Institut Universitaire de la Face et du Cou (IUFC), Nice University Hospitals (CHU), 06100 Nice, France
| | | | | | - Nicolas Guevara
- Institut Universitaire de la Face et du Cou (IUFC), Nice University Hospitals (CHU), 06100 Nice, France
| | - Auriane Gros
- CoBTeK Lab, Université Côte d’Azur, 06001 Nice, France
- UFR Medicine of Nice, Department of Speech Therapy, Université Côte d’Azur, 06001 Nice, France
| | - Valeria Manera
- CoBTeK Lab, Université Côte d’Azur, 06001 Nice, France
- UFR Medicine of Nice, Department of Speech Therapy, Université Côte d’Azur, 06001 Nice, France
| |
Collapse
|
13
|
Zhou S, Liang Z, Li Q, Song S, Wang Z, Xu M, Jin Y, Zheng ZJ. Association of cumulative average sensory impairments with cognitive function and depressive symptoms: Two prospective cohort studies. J Affect Disord 2025; 369:16-24. [PMID: 39321973 DOI: 10.1016/j.jad.2024.09.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Globally, over 2.2 billion people have a vision impairment and over 1.5 billion live with hearing impairment, which are significant public health concerns given the meaningful impacts on individual and society. We aimed to investigate whether long-term average visual, hearing, and dual sensory impairment was independently associated with cognitive impairment, incident dementia, and incident depressive symptoms. METHODS We used data from the Health and Retirement Study (HRS) and the China Health and Retirement Longitudinal Study (CHARLS), two nationally representative and prospective cohorts of community middle aged and older adults. Average sensory impairment was calculated using the area under the curve divided by follow-up time from wave 3 (1996) to wave 15 (2020) in HRS and wave 1 (2011) to wave 4 (2018) in CHARLS. Cox regression models adjusted for multiple covariates were used to estimate adjusted hazard ratios (HRs) and 95 % confidence intervals (95 % CIs). RESULTS For each one standard deviation (SD) increment in average visual impairment, the risk of developing cognitive impairment, incident dementia, and incident depressive symptoms increased by 12 %, 34 %, and 39 % in CHARLS and 11 %, 14 % and 10 % in HRS. Similar results were found for each SD increment in average hearing impairment and dual sensory impairment. Nonlinear dose-response relationships were identified between visual impairment and dementia, as well as dual sensory impairment and dementia in both cohorts. LIMITATIONS The diagnosis of cognitive impairment, dementia, and depression were based on subjective assessment. CONCLUSION Multi-level approaches aimed at improving access to sensory care are needed to improve middle-aged and older adults' visual and auditory functions.
Collapse
Affiliation(s)
- Shuduo Zhou
- Department of Biostatistics, Peking University First Hospital, No.8 Xi Shi Ku Road, Xicheng District, Beijing, China
| | - Zhisheng Liang
- Department of Global Health, Peking University School of Public Health, 38 Xue Yuan Road, Haidian District, Beijing, China; Institute for Global Health and Development, Peking University, Beijing, China
| | - Qi Li
- Institute of Social Development, Chinese Academy of Macroeconomic Research, Beijing, China
| | - Suhang Song
- Department of Health Policy & Management, College of Public Health, University of Georgia, Athens, GA, USA
| | - Ziyue Wang
- Department of Family Medicine, McGill University, Montreal, QC, Canada
| | - Ming Xu
- Department of Biostatistics, Peking University First Hospital, No.8 Xi Shi Ku Road, Xicheng District, Beijing, China; Department of Global Health, Peking University School of Public Health, 38 Xue Yuan Road, Haidian District, Beijing, China.
| | - Yinzi Jin
- Department of Global Health, Peking University School of Public Health, 38 Xue Yuan Road, Haidian District, Beijing, China; Institute for Global Health and Development, Peking University, Beijing, China.
| | - Zhi-Jie Zheng
- Department of Global Health, Peking University School of Public Health, 38 Xue Yuan Road, Haidian District, Beijing, China; Institute for Global Health and Development, Peking University, Beijing, China
| |
Collapse
|
14
|
Zheng Y, Zhang J, Yang Y, Xu M. Neural representation of sensorimotor features in language-motor areas during auditory and visual perception. Commun Biol 2025; 8:41. [PMID: 39799186 PMCID: PMC11724955 DOI: 10.1038/s42003-025-07466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
Speech processing involves a complex interplay between sensory and motor systems in the brain, essential for early language development. Recent studies have extended this sensory-motor interaction to visual word processing, emphasizing the connection between reading and handwriting during literacy acquisition. Here we show how language-motor areas encode motoric and sensory features of language stimuli during auditory and visual perception, using functional magnetic resonance imaging (fMRI) combined with representational similarity analysis. Chinese-speaking adults completed tasks involving the perception of spoken syllables and written characters, alongside syllable articulation and finger writing tasks to localize speech-motor and writing-motor areas. We found that both language-motor and sensory areas generally encode production-related motoric features across modalities, indicating cooperative interactions between motor and sensory systems. Notably, sensory encoding within sensorimotor areas was observed during auditory speech perception, but not in visual character perception. These findings underscore the dual encoding capacities of language-motor areas, revealing both shared and distinct neural representation patterns across modalities, which may be linked to innate sensory-motor mechanisms and modality-specific processing demands. Our results shed light on the sensorimotor integration mechanisms underlying language perception, highlighting the importance of a cross-modality perspective.
Collapse
Affiliation(s)
- Yuanyi Zheng
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Jianfeng Zhang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yang Yang
- Center for Brain Science and Learning Difficulties, Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Min Xu
- School of Psychology, Shenzhen University, Shenzhen, China.
| |
Collapse
|
15
|
Krijger F. Edges of perception: balancing sensory loss and potential in assistive technology. MEDICAL HUMANITIES 2025; 50:601-609. [PMID: 39681407 DOI: 10.1136/medhum-2024-013023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 12/18/2024]
Abstract
Being deafblind means my perception differs profoundly from those who are conventionally sighted and have non-impaired hearing. A lot of hidden knowledge is to be found in the disparity between these differing experiences that could be of great value in developing assistive technologies that have a broad scope to engage with both disabled and non-disabled users. This article explores the balancing act between sensory loss and the potential inherent in all of us and how this should be part of the design process of haptic assistive technology.Facing the true impact of my sensory loss, I realised it held the unexpected gift of a-literally-different perspective. I am losing sights and sounds, but the world still reveals itself to me in many ways. Exploring my sensory potential, I combine daily life experiences and theoretical knowledge to better understand how to get the most out of my sensory processing systems. The goal is not to compensate what is lost, but stay connected in a way that enables me to live my life to the fullest.I undertake sensory life hacks based on the brain's unmatched capacity to adjust to circumstances and work with any kind of input. Both predicting processing and neuroplasticity offer an operating system of highly evolved flexibility that allows and even encourages creative solutions. I adjust my coping strategies to align them with these processes shaping my perceptual experience, balancing sensory loss and sensory gain.I believe there is great potential to enrich daily life experiences with haptic assistive technology, building on the natural sensory abilities we have as human beings, co-creating life. However, this comes with challenges: researchers who are not sensorily impaired should consider through experience that we all have limited perception in a way. At the edges of the familiar, you have to face your perceptual limits, pushing you out of your comfort zone and in doing so space is being created for growth; researchers used to the dominance of sight and hearing are less used to consciously experiencing the power of sensory proximity, such as touch and proprioception. These bodily tactile senses, however, are grounding senses in all of us and display a broad scope of sensations to be experienced.The hereditary disease that causes deafblindness forced me to explore the edges of my perception, and instead of devastating loss I discovered a richness of sensory abilities. This article is a plea to dive into this, using my lived experience and critical knowledge. Realising this potential can mean that inclusive research on assistive technologies might really do what it promises, co-creating technologies to enhance life experiences.
Collapse
|
16
|
Esmaelpoor J, Peng T, Jelfs B, Mao D, Shader MJ, McKay CM. Resting-State Functional Connectivity Predicts Cochlear-Implant Speech Outcomes. Ear Hear 2025; 46:128-138. [PMID: 39680488 PMCID: PMC11637576 DOI: 10.1097/aud.0000000000001564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES Cochlear implants (CIs) have revolutionized hearing restoration for individuals with severe or profound hearing loss. However, a substantial and unexplained variability persists in CI outcomes, even when considering subject-specific factors such as age and the duration of deafness. In a pioneering study, we use resting-state functional near-infrared spectroscopy to predict speech-understanding outcomes before and after CI implantation. Our hypothesis centers on resting-state functional connectivity (FC) reflecting brain plasticity post-hearing loss and implantation, specifically targeting the average clustering coefficient in resting FC networks to capture variation among CI users. DESIGN Twenty-three CI candidates participated in this study. Resting-state functional near-infrared spectroscopy data were collected preimplantation and at 1 month, 3 months, and 1 year postimplantation. Speech understanding performance was assessed using consonant-nucleus-consonant words in quiet and Bamford-Kowal-Bench sentences in noise 1-year postimplantation. Resting-state FC networks were constructed using regularized partial correlation, and the average clustering coefficient was measured in the signed weighted networks as a predictive measure for implantation outcomes. RESULTS Our findings demonstrate a significant correlation between the average clustering coefficient in resting-state functional networks and speech understanding outcomes, both pre- and postimplantation. CONCLUSIONS This approach uses an easily deployable resting-state functional brain imaging metric to predict speech-understanding outcomes in implant recipients. The results indicate that the average clustering coefficient, both pre- and postimplantation, correlates with speech understanding outcomes.
Collapse
Affiliation(s)
- Jamal Esmaelpoor
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- The Bionics Institute of Australia, Melbourne, Australia
| | - Tommy Peng
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- The Bionics Institute of Australia, Melbourne, Australia
| | - Beth Jelfs
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Darren Mao
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- The Bionics Institute of Australia, Melbourne, Australia
| | - Maureen J. Shader
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Colette M. McKay
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- The Bionics Institute of Australia, Melbourne, Australia
| |
Collapse
|
17
|
Ojha A, Dimitrijevic A, Alain C. Orienting attention to auditory and visual working memory in older adults with cochlear implants. PLoS One 2024; 19:e0310082. [PMID: 39724174 DOI: 10.1371/journal.pone.0310082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/23/2024] [Indexed: 12/28/2024] Open
Abstract
Cochlear implantation is a well-established method for restoring hearing sensation in individuals with severe to profound hearing loss. It significantly improves verbal communication for many users, despite substantial variability in patients' reports and performance on speech perception tests and quality-of-life outcome measures. Such variability in outcome measures remains several years after implantation and could reflect difficulties in attentional regulation. The current study assessed the ability to use a cue to guide attention internally toward visual or auditory working memory (i.e., reflective attention) in cochlear implant (CI) users. Participants completed a cognitive task called the delayed match-to-sample task in which a visual gradient was presented on a computer screen and a piano tone was presented through speakers simultaneously. A visual cue (i.e., letter A or V) instructed participants to focus attention on the item held in auditory or visual working memory. After a delay following the cue presentation, participants were presented with a probe item and indicated by pressing a button whether it matched the cued item in working memory. CI users and age-matched normal hearing adults showed comparable benefit from having an informative cue relative to an uninformative cue (i.e., letter X). Although CI users have had a history of severe deafness and experience coarse sound information, they were able to retrospectively orient their attention to an item in auditory or visual working memory. These findings suggest that CI users with at least one year of CI experience can successfully regulate attention to a level that is comparable to that of normal hearing individuals.
Collapse
Affiliation(s)
- Amisha Ojha
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
- Sunnybrook Health Science Centre, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Dimitrijevic
- Sunnybrook Health Science Centre, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Claude Alain
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Music and Health Science Research Collaboratory, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Haupt M, Graumann M, Teng S, Kaltenbach C, Cichy R. The transformation of sensory to perceptual braille letter representations in the visually deprived brain. eLife 2024; 13:RP98148. [PMID: 39630852 PMCID: PMC11616995 DOI: 10.7554/elife.98148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Experience-based plasticity of the human cortex mediates the influence of individual experience on cognition and behavior. The complete loss of a sensory modality is among the most extreme such experiences. Investigating such a selective, yet extreme change in experience allows for the characterization of experience-based plasticity at its boundaries. Here, we investigated information processing in individuals who lost vision at birth or early in life by probing the processing of braille letter information. We characterized the transformation of braille letter information from sensory representations depending on the reading hand to perceptual representations that are independent of the reading hand. Using a multivariate analysis framework in combination with functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and behavioral assessment, we tracked cortical braille representations in space and time, and probed their behavioral relevance. We located sensory representations in tactile processing areas and perceptual representations in sighted reading areas, with the lateral occipital complex as a connecting 'hinge' region. This elucidates the plasticity of the visually deprived brain in terms of information processing. Regarding information processing in time, we found that sensory representations emerge before perceptual representations. This indicates that even extreme cases of brain plasticity adhere to a common temporal scheme in the progression from sensory to perceptual transformations. Ascertaining behavioral relevance through perceived similarity ratings, we found that perceptual representations in sighted reading areas, but not sensory representations in tactile processing areas are suitably formatted to guide behavior. Together, our results reveal a nuanced picture of both the potentials and limits of experience-dependent plasticity in the visually deprived brain.
Collapse
Affiliation(s)
- Marleen Haupt
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
| | - Monika Graumann
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
- Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu BerlinBerlinGermany
| | - Santani Teng
- Smith-Kettlewell Eye Research InstituteSan FranciscoUnited States
| | - Carina Kaltenbach
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
| | - Radoslaw Cichy
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
- Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu BerlinBerlinGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
| |
Collapse
|
19
|
Ben-David BM, Chebat DR, Icht M. "Love looks not with the eyes": supranormal processing of emotional speech in individuals with late-blindness versus preserved processing in individuals with congenital-blindness. Cogn Emot 2024; 38:1354-1367. [PMID: 38785380 DOI: 10.1080/02699931.2024.2357656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Processing of emotional speech in the absence of visual information relies on two auditory channels: semantics and prosody. No study to date has investigated how blindness impacts this process. Two theories, Perceptual Deficit, and Sensory Compensation, yiled different expectations about the role of visual experience (or its lack thereof) in processing emotional speech. To test the effect of vision and early visual experience on processing of emotional speech, we compared individuals with congenital blindness (CB, n = 17), individuals with late blindness (LB, n = 15), and sighted controls (SC, n = 21) on identification and selective-attention of semantic and prosodic spoken-emotions. Results showed that individuals with blindness performed at least as well as SC, supporting Sensory Compensation and the role of cortical reorganisation. Individuals with LB outperformed individuals with CB, in accordance with Perceptual Deficit, supporting the role of early visual experience. The LB advantage was moderated by executive functions (working-memory). Namely, the advantage was erased for individuals with CB who showed higher levels of executive functions. Results suggest that vision is not necessary for processing of emotional speech, but early visual experience could improve it. The findings support a combination of the two aforementioned theories and reject a dichotomous view of deficiencies/enhancements of blindness.
Collapse
Affiliation(s)
- Boaz M Ben-David
- Communication, Aging, and Neuropsychology Lab (CANlab), Baruch Ivcher School of Psychology, Reichman University (IDC), Herzliya, Israel
- Department of Speech-Language Pathology, University of Toronto, Toronto, Canada
- KITE, Toronto Rehabilitation Institute, University Health Networks (UHN), Toronto, Canada
| | - Daniel-Robert Chebat
- Visual and Cognitive Neuroscience Laboratory (VCN Lab), The Department of Psychology, Ariel University, Ariel, Israel
- Navigation and Accessibility Research Center (NARCA), Ariel University, Ariel, Israel
| | - Michal Icht
- Department of Communication Disorders, Ariel University, Ariel, Israel
| |
Collapse
|
20
|
He Y, Liu J, Xiao H, Xiao L. Early postnatal whisker deprivation cross-modally modulates prefrontal cortex myelination and leads to social novelty deficit. Brain Res 2024; 1843:149136. [PMID: 39098577 DOI: 10.1016/j.brainres.2024.149136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Sensory experience affects not only the corresponding primary sensory cortex, but also synaptic and neural circuit functions in other brain regions in a cross-modal manner. However, it remains unclear whether oligodendrocyte (OL) generation and myelination can also undergo cross-modal modulation. Here, we report that while early life short-term whisker deprivation from birth significantly reduces in the number of mature of OLs and the degree of myelination in the primary somatosensory cortex(S1) at postnatal day 14 (P14), it also simultaneously affects the primary visual cortex (V1), but not the medial prefrontal cortex (mPFC) with a similar reduction. Interestingly, when mice were subjected to long-term early whisker deprivation from birth (P0) to P35, they exhibited dramatically impaired myelination and a deduced number of differentiated OLs in regions including the S1, V1, and mPFC, as detected at P60. Meanwhile, the process complexity of OL precursor cells (OPCs) was also rduced, as detected in the mPFC. However, when whisker deprivation occurred during the mid-late postnatal period (P35 to P50), myelination was unaffected in both V1 and mPFC brain regions at P60. In addition to impaired OL and myelin development in the mPFC, long-term early whisker-deprived mice also showed deficits in social novelty, accompanied by abnormal activation of c-Fos in the mPFC. Thus, our results reveal a novel form of cross-modal modulation of myelination by sensory experience that can lead to abnormalities in social behavioral, suggesting a possible similar mechanism underlying brain pathological conditions that suffer from both sensory and social behavioral deficits, such as autism spectrum disorders.
Collapse
Affiliation(s)
- Yongxiang He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, PR China
| | - Junhong Liu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, PR China
| | - Hanyu Xiao
- Shanghai Pinghe School, Shanghai 200120, PR China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
21
|
Shah NP, Phillips AJ, Madugula S, Lotlikar A, Gogliettino AR, Hays MR, Grosberg L, Brown J, Dusi A, Tandon P, Hottowy P, Dabrowski W, Sher A, Litke AM, Mitra S, Chichilnisky EJ. Precise control of neural activity using dynamically optimized electrical stimulation. eLife 2024; 13:e83424. [PMID: 39508555 PMCID: PMC11542921 DOI: 10.7554/elife.83424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 07/15/2024] [Indexed: 11/15/2024] Open
Abstract
Neural implants have the potential to restore lost sensory function by electrically evoking the complex naturalistic activity patterns of neural populations. However, it can be difficult to predict and control evoked neural responses to simultaneous multi-electrode stimulation due to nonlinearity of the responses. We present a solution to this problem and demonstrate its utility in the context of a bidirectional retinal implant for restoring vision. A dynamically optimized stimulation approach encodes incoming visual stimuli into a rapid, greedily chosen, temporally dithered and spatially multiplexed sequence of simple stimulation patterns. Stimuli are selected to optimize the reconstruction of the visual stimulus from the evoked responses. Temporal dithering exploits the slow time scales of downstream neural processing, and spatial multiplexing exploits the independence of responses generated by distant electrodes. The approach was evaluated using an experimental laboratory prototype of a retinal implant: large-scale, high-resolution multi-electrode stimulation and recording of macaque and rat retinal ganglion cells ex vivo. The dynamically optimized stimulation approach substantially enhanced performance compared to existing approaches based on static mapping between visual stimulus intensity and current amplitude. The modular framework enabled parallel extensions to naturalistic viewing conditions, incorporation of perceptual similarity measures, and efficient implementation for an implantable device. A direct closed-loop test of the approach supported its potential use in vision restoration.
Collapse
Affiliation(s)
- Nishal Pradeepbhai Shah
- Department of Electrical EngineeringStanfordUnited States
- Department of NeurosurgeryStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | - AJ Phillips
- Department of Electrical EngineeringStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | - Sasidhar Madugula
- Department of NeurosurgeryStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | | | - Alex R Gogliettino
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
- Neurosciences PhD ProgramStanfordUnited States
| | - Madeline Rose Hays
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
- Department of BioengineeringStanfordUnited States
| | - Lauren Grosberg
- Department of NeurosurgeryStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | - Jeff Brown
- Department of Electrical EngineeringStanfordUnited States
| | - Aditya Dusi
- Department of Electrical EngineeringStanfordUnited States
| | - Pulkit Tandon
- Department of Electrical EngineeringStanfordUnited States
| | - Pawel Hottowy
- AGH University of Science and Technology, Faculty of Physics and Applied Computer ScienceKrakowPoland
| | - Wladyslaw Dabrowski
- AGH University of Science and Technology, Faculty of Physics and Applied Computer ScienceKrakowPoland
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CASanta CruzUnited States
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CASanta CruzUnited States
| | | | - EJ Chichilnisky
- Department of NeurosurgeryStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
- Department of OphthalmologyStanfordUnited States
| |
Collapse
|
22
|
Dhanik K, Pandey HR, Mishra M, Keshri A, Kumar U. Neural adaptations to congenital deafness: enhanced tactile discrimination through cross-modal neural plasticity - an fMRI study. Neurol Sci 2024; 45:5489-5499. [PMID: 38797764 DOI: 10.1007/s10072-024-07615-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND This study explores the compensatory neural mechanisms associated with congenital deafness through an examination of tactile discrimination abilities using high-resolution functional magnetic resonance imaging (fMRI). OBJECTIVE To analyze the neural substrates underlying tactile processing in congenitally deaf individuals and compare them with hearing controls. METHODS Our participant pool included thirty-five congenitally deaf individuals and thirty-five hearing controls. All participants engaged in tactile discrimination tasks involving the identification of common objects by touch. We utilized an analytical suite comprising voxel-based statistics, functional connectivity multivariate/voxel pattern analysis (fc-MVPA), and seed-based connectivity analysis to examine neural activity. RESULTS Our findings revealed pronounced neural activity in congenitally deaf participants within regions typically associated with auditory processing, including the bilateral superior temporal gyrus, right middle temporal gyrus, and right rolandic operculum. Additionally, unique activation and connectivity patterns were observed in the right insula and bilateral supramarginal gyrus, indicating a strategic reorganization of neural pathways for tactile information processing. Behaviorally, both groups demonstrated high accuracy in the tactile tasks, exceeding 90%. However, the deaf participants outperformed their hearing counterparts in reaction times, showcasing significantly enhanced efficiency in tactile information processing. CONCLUSION These insights into the brain's adaptability to sensory loss through compensatory neural reorganization highlight the intricate mechanisms by which tactile discrimination is enhanced in the absence of auditory input. Understanding these adaptations can help develop strategies to harness the brain's plasticity to improve sensory processing in individuals with sensory impairments, ultimately enhancing their quality of life through improved tactile perception and sensory integration.
Collapse
Affiliation(s)
- Kalpana Dhanik
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, 226014, India
| | - Himanshu R Pandey
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, 226014, India
| | - Mrutyunjaya Mishra
- Department of Special Education (Hearing Impairments), Dr. Shakuntala Misra National Rehabilitation University, Lucknow, India
| | - Amit Keshri
- Department of Neuro-otology, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, India
| | - Uttam Kumar
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, 226014, India.
| |
Collapse
|
23
|
Teng S, Cichy R, Pantazis D, Oliva A. Touch to text: Spatiotemporal evolution of braille letter representations in blind readers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620429. [PMID: 39553970 PMCID: PMC11565808 DOI: 10.1101/2024.10.30.620429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Visual deprivation does not silence the visual cortex, which is responsive to auditory, tactile, and other nonvisual tasks in blind persons. However, the underlying functional dynamics of the neural networks mediating such crossmodal responses remain unclear. Here, using braille reading as a model framework to investigate these networks, we presented sighted (N=13) and blind (N=12) readers with individual visual print and tactile braille alphabetic letters, respectively, during MEG recording. Using time-resolved multivariate pattern analysis and representational similarity analysis, we traced the alphabetic letter processing cascade in both groups of participants. We found that letter representations unfolded more slowly in blind than in sighted brains, with decoding peak latencies ~200 ms later in braille readers. Focusing on the blind group, we found that the format of neural letter representations transformed within the first 500 ms after stimulus onset from a low-level structure consistent with peripheral nerve afferent coding to high-level format reflecting pairwise letter embeddings in a text corpus. The spatiotemporal dynamics of the transformation suggest that the processing cascade proceeds from a starting point in somatosensory cortex to early visual cortex and then to inferotemporal cortex. Together our results give insight into the neural mechanisms underlying braille reading in blind persons and the dynamics of functional reorganization in sensory deprivation.
Collapse
Affiliation(s)
- Santani Teng
- The Smith-Kettlewell Eye Research Institute
- Computer Science and Artificial Intelligence Laboratory, MIT
| | - Radoslaw Cichy
- Department of Education and Psychology, Freie Universität Berlin
| | | | - Aude Oliva
- Computer Science and Artificial Intelligence Laboratory, MIT
| |
Collapse
|
24
|
Diez I, Troyas C, Bauer CM, Sepulcre J, Merabet LB. Reorganization of integration and segregation networks in brain-based visual impairment. Neuroimage Clin 2024; 44:103688. [PMID: 39432973 PMCID: PMC11535411 DOI: 10.1016/j.nicl.2024.103688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/23/2024]
Abstract
Growing evidence suggests that cerebral connectivity changes its network organization by altering modular topology in response to developmental and environmental experience. However, changes in cerebral connectivity associated with visual impairment due to early neurological injury are still not fully understood. Cerebral visual impairment (CVI) is a brain-based visual disorder associated with damage and maldevelopment of retrochiasmal pathways and areas implicated in visual processing. In this study, we used a multimodal imaging approach and connectomic analyses based on structural (voxel-based morphometry; VBM) and resting state functional connectivity (rsfc) to investigate differences in weighted degree and link-level connectivity in individuals with CVI compared to controls with neurotypical development. We found that participants with CVI showed significantly reduced grey matter volume within the primary visual cortex and intraparietal sulcus (IPS) compared to controls. Participants with CVI also exhibited marked reorganization characterized by increased integration of visual connectivity to somatosensory and multimodal integration areas (dorsal and ventral attention regions) and lower connectivity from visual to limbic and default mode networks. Link-level functional changes in CVI were also associated with key clinical outcomes related to visual function and development. These findings provide early insight into how visual impairment related to early brain injury distinctly reorganizes the functional network architecture of the human brain.
Collapse
Affiliation(s)
- Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Computational Neuroimaging Lab, Biobizkaia Health Research Institute, Barakaldo, Spain; IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Carla Troyas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Corinna M Bauer
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Yale PET Center, Yale Medical School, Yale University, New Haven, CT, USA.
| | - Lotfi B Merabet
- Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA; Laboratory for Visual Neuroplasticity, Massachusetts Eye and Ear, Boston, MA, USA.
| |
Collapse
|
25
|
Sepúlveda-Palomo M, Del Río D, Villalobos D, Fernández González S. Verbal and Spatial Working Memory Capacity in Blind Adults and the Possible Influence of Age at Blindness Onset: A Systematic Review and Meta-analysis. Neuropsychol Rev 2024:10.1007/s11065-024-09651-5. [PMID: 39397144 DOI: 10.1007/s11065-024-09651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
The loss of a sense, such as vision, forces individuals to adapt to their environment and its demands in a variety of ways. In the case of blindness, significant neurofunctional and cognitive changes have been documented. However, there is no clear consensus on the differences in performance between adult blind participants and sighted controls in cognitive processes such as working memory (WM). Two variables are important, including the cognitive task used to measure working memory and the age at which vision loss occurs. This review is aimed at exploring potential disparities in verbal and spatial WM performance between blind and sighted adults, as well as understanding how these differences may be influenced by the age of vision loss. A systematic search across PsycArticles, PsycInfo, Medline, and Web of Science databases identified 21 pertinent studies. The studies were categorized, and effect sizes were calculated through meta-analysis, distinguishing between verbal (auditory simple forward and backward span, complex span, and n-back) and visuospatial WM tasks (adapted Corsi-block and simple storage tasks, imagery tasks, and complex storage tasks). Visual sensory loss induces adaptations affecting WM function in blind participants. In the verbal domain, improved phonological processing and/or serial item position encoding might facilitate WM retrieval. In contrast, in spatial WM, an over-reliance on serial processing may hinder strategic grouping in blind individuals. This review highlights the need to further explore the role of age at the time of vision loss. Although evidence suggests that adaptations to serial processing may be more pronounced in early development, particularly in comparison to those who become blind in adulthood, the available data are limited. The study calls for further research to deepen our understanding of cognitive adaptations and their temporal dynamics in response to vision loss.
Collapse
Affiliation(s)
- Marta Sepúlveda-Palomo
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain.
- Department of Experimental Psychology, Cognitive Processes and Speech and Language Therapy, Complutense University, Madrid, Spain.
| | - David Del Río
- Department of Experimental Psychology, Cognitive Processes and Speech and Language Therapy, Complutense University, Madrid, Spain
- Centre for Cognitive and Computational Neuroscience, Complutense University, Madrid, Spain
| | - Dolores Villalobos
- Department of Experimental Psychology, Cognitive Processes and Speech and Language Therapy, Complutense University, Madrid, Spain
- Centre for Cognitive and Computational Neuroscience, Complutense University, Madrid, Spain
- Institute of Knowledge Technology, Complutense University of Madrid, Madrid, Spain
| | - Santiago Fernández González
- Department of Experimental Psychology, Cognitive Processes and Speech and Language Therapy, Complutense University, Madrid, Spain
| |
Collapse
|
26
|
Yang T, Fan X, Hou B, Wang J, Chen X. Linguistic network in early deaf individuals: A neuroimaging meta-analysis. Neuroimage 2024; 299:120720. [PMID: 38971484 DOI: 10.1016/j.neuroimage.2024.120720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024] Open
Abstract
This meta-analysis summarizes evidence from 44 neuroimaging experiments and characterizes the general linguistic network in early deaf individuals. Meta-analytic comparisons with hearing individuals found that a specific set of regions (in particular the left inferior frontal gyrus and posterior middle temporal gyrus) participates in supramodal language processing. In addition to previously described modality-specific differences, the present study showed that the left calcarine gyrus and the right caudate were additionally recruited in deaf compared with hearing individuals. In addition, this study showed that the bilateral posterior superior temporal gyrus is shaped by cross-modal plasticity, whereas the left frontotemporal areas are shaped by early language experience. Although an overall left-lateralized pattern for language processing was observed in the early deaf individuals, regional lateralization was altered in the inferior frontal gyrus and anterior temporal lobe. These findings indicate that the core language network functions in a modality-independent manner, and provide a foundation for determining the contributions of sensory and linguistic experiences in shaping the neural bases of language processing.
Collapse
Affiliation(s)
- Tengyu Yang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Xinmiao Fan
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Jian Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China.
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
27
|
Xin B, He Y, Wu Y, Zhang D, Liu J, Yang S, Shi P, Su H, Jiang W. Associations between sensory impairment and functional limitations among older Chinese adults: mediating roles of social isolation and cognition. BMC Geriatr 2024; 24:797. [PMID: 39350094 PMCID: PMC11443656 DOI: 10.1186/s12877-024-05383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The high prevalence of sensory impairment and functional limitations in older adults is a significant concern, yet there is limited understanding of the relationship between these two conditions. Therefore, the objective of this study was to investigate the pathways connecting sensory impairment and functional limitations by examining serial multiple mediating effects of social isolation and cognition in older adults. METHODS Using the China Health and Retirement Longitudinal Study dataset, a sample of 4871 older adults was selected. The study variables included sensory impairment, functional limitations, social isolation and cognition, and other covariates. A hierarchical multiple linear regression model was used to assess the association between sensory impairment and functional limitations. Mediation analysis was conducted to explore the sequential multiple mediating effects of social isolation and cognitive function in the relationship between sensory impairment and functional limitations. RESULTS Our findings revealed a significant and positive association between sensory impairment and functional limitations (B = 0.615, 95% CI: 0.397, 0.834). After adjusting for social isolation and cognitive function, the impact of sensory impairment on functional limitations accounted for 87.19% of the total effect. Additionally, approximately 12.81% of the significant relationship between dual sensory impairment and functional limitations was mediated by social isolation and cognitive function. A serial multiple mediating pathway (sensory impairment → social isolation → cognition → functional limitations) was identified, with a coefficient of 0.013 (95% CI: 0.006, 0.020). CONCLUSIONS Our study provides evidence for the mediating effects of social isolation and cognition in the relationship between sensory impairment and functional limitations. Given the prevalence of functional limitations among older adults with sensory impairment, it is crucial to consider social isolation and cognitive function in efforts to reduce the burden of disability care. Future validation of these findings through longitudinal studies is necessary.
Collapse
Affiliation(s)
- Bo Xin
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi province, China
| | - Yuxin He
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi province, China
| | - Yixin Wu
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi province, China
| | - Di Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi province, China
| | - Jiaxin Liu
- Department of Rehabilitation, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, 710004, Shaanxi province, China
| | - Shan Yang
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi province, China
| | - Panpan Shi
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi province, China
| | - Han Su
- Department of Nursing, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang province, China
| | - Wenhui Jiang
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi province, China.
| |
Collapse
|
28
|
Tinelli F, Purpura G, Cioni G, Morrone MC, Turi M. Impairment in understanding grasping movements in egocentric and allocentric perspectives in children with cerebral palsy due to periventricular leukomalacia. Hum Mov Sci 2024; 98:103292. [PMID: 39303630 DOI: 10.1016/j.humov.2024.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/04/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Recognizing and understanding the actions of others through motion information are vital functions for social adaptation. Conditions like neurological disorders and motor impairments can impact sensitivity to biological motion, highlighting the intricate relationship between perceiving and executing movements. Our study centred on assessing the ability of children, encompassing both those with typical development and those diagnosed with cerebral palsy due to periventricular leukomalacia (PVL), to discriminate between depicted grasping of a small cylinder and a large cube. This discrimination task involved observing a point-light animation depicting an actor grasping the object, presented from either an allocentric perspective (observing others) or an egocentric viewpoint (observing oneself). Notably, children with PVL exhibited a pronounced and specific impairment in this task, irrespective of the viewpoint, as evidenced by thresholds increasing by nearly a factor of two. When comparing this impairment to difficulties in form or motion perception, we identified a robust correlation between egocentric biological motion and form sensitivity. However, there was no similar correlation between motion and biological motion sensitivity, suggesting a deficit in the visual system rather than the visuo-motor control system. These findings contribute to our understanding of the intricate interplay between motor and visual processing in individuals with congenital brain lesions, shedding light on the significant involvement of the visual system in cases of PVL.
Collapse
Affiliation(s)
- Francesca Tinelli
- Department of Developmental Neuroscience, IRCCS Stella Maris Scientific Institute, Pisa, Italy
| | - Giulia Purpura
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy.
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris Scientific Institute, Pisa, Italy
| | - Maria Concetta Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Marco Turi
- Department of Human and Social Studies, University of Salento, Lecce, Italy
| |
Collapse
|
29
|
Riyahi P, Phillips MA, Boley N, Colonnese MT. Experience Dependence of Alpha Rhythms and Neural Dynamics in the Mouse Visual Cortex. J Neurosci 2024; 44:e2011222024. [PMID: 39151954 PMCID: PMC11411595 DOI: 10.1523/jneurosci.2011-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
The role of experience in the development and maintenance of emergent network properties such as cortical oscillations and states is poorly understood. To define how early-life experience affects cortical dynamics in the visual cortex of adult, head-fixed mice, we examined the effects of two forms of blindness initiated before eye opening and continuing through recording: (1) bilateral loss of retinal input (enucleation) and (2) degradation of visual input (eyelid suture). Neither form of deprivation fundamentally altered the state-dependent regulation of firing rates or local field potentials. However, each deprivation caused unique changes in network behavior. Laminar analysis revealed two different generative mechanisms for low-frequency synchronization: one prevalent during movement and the other during quiet wakefulness. The former was absent in enucleated mice, suggesting a mouse homolog of human alpha oscillations. In addition, neurons in enucleated animals were less correlated and fired more regularly, but no change in mean firing rate. Eyelid suture decreased firing rates during quiet wakefulness, but not during movement, with no effect on neural correlations or regularity. Sutured animals showed a broadband increase in depth EEG power and an increased occurrence, but reduced central frequency, of narrowband gamma oscillations. The complementary-rather than additive-effects of lid suture and enucleation suggest that the development of emergent network properties does not require vision but is plastic to modified input. Our results suggest a complex interaction of internal set points and experience determines mature cortical activity, with low-frequency synchronization being particularly susceptible to early deprivation.
Collapse
Affiliation(s)
- Pouria Riyahi
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
- Department of Biomedical Engineering, The George Washington University School of Medicine, Washington, District of Columbia 20052
| | - Marnie A Phillips
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
| | - Nathaniel Boley
- Institute for Biomedical Sciences, The George Washington University School of Medicine, Washington, District of Columbia 20052
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
| |
Collapse
|
30
|
Strelnikov K, Karoui C, Payoux P, Salabert AS, James C, Deguine O, Barone P, Marx M. Adaptive Strategies of Single-Sided Deaf Cochlear-Implant Users Revealed Through Resting State Activity: an Auditory PET Brain Imaging Study. Hear Res 2024; 451:109079. [PMID: 39053297 DOI: 10.1016/j.heares.2024.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Brain plasticity refers to the brain's ability to reorganize its structure or function in response to experiences, learning, and environmental influences. This phenomenon is particularly significant in individuals with deafness, as the brain adapts to compensate for the lack of auditory stimulation. The aim of this study is to investigate whether cochlear implantation can restore a normal pattern of brain activation following auditory stimulation in cases of asymmetric hearing loss. We used a PET-scan technique to assess brain activity after cochlear implantation, specifically during an auditory voice/non-voice discrimination task. The results indicated a nearly normal pattern of brain activity during the auditory discrimination task, except for increased activation in areas related to attentional processes compared to controls. Additionally, brain activity at rest showed significant changes in implanted participants, including cross modal visuo-auditory processing. Therefore, cochlear implants can restore the brain's activation pattern through long-term adaptive adjustments in intrinsic brain activity.
Collapse
Affiliation(s)
- K Strelnikov
- UMR 5549, Faculté de Médecine Purpan, Centre National de la Recherche Scientifique, Toulouse, France; Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, Toulouse, France; Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau Special Administrative Regions of China.
| | - C Karoui
- UMR 5549, Faculté de Médecine Purpan, Centre National de la Recherche Scientifique, Toulouse, France; Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - P Payoux
- Nuclear Medicine Department, Purpan University Hospital, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - A S Salabert
- Nuclear Medicine Department, Purpan University Hospital, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - C James
- Cochlear France SAS, Toulouse, France; Service d'Oto-Rhino-Laryngologie et Oto-Neurologie, CHU Toulouse France, Université Toulouse 3, France
| | - O Deguine
- UMR 5549, Faculté de Médecine Purpan, Centre National de la Recherche Scientifique, Toulouse, France; Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, Toulouse, France; Service d'Oto-Rhino-Laryngologie et Oto-Neurologie, CHU Toulouse France, Université Toulouse 3, France
| | - P Barone
- UMR 5549, Faculté de Médecine Purpan, Centre National de la Recherche Scientifique, Toulouse, France; Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - M Marx
- UMR 5549, Faculté de Médecine Purpan, Centre National de la Recherche Scientifique, Toulouse, France; Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier, Toulouse, France; Service d'Oto-Rhino-Laryngologie et Oto-Neurologie, CHU Toulouse France, Université Toulouse 3, France
| |
Collapse
|
31
|
Zhang Y, Iino Y, Schafer WR. Behavioral plasticity. Genetics 2024; 228:iyae105. [PMID: 39158469 DOI: 10.1093/genetics/iyae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024] Open
Abstract
Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals. The C. elegans nervous system is considerably tractable for experimental studies-its function can be characterized and manipulated with molecular genetic methods, its activity can be visualized and analyzed with imaging approaches, and the connectivity of its relatively small number of neurons are well described. Therefore, C. elegans provides an opportunity to study molecular, neuronal, and circuit mechanisms underlying behavioral plasticity that are either conserved in other animals or unique to this species. These findings reveal insights into how the nervous system interacts with the environmental cues to generate behavioral changes with adaptive values.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yuichi Iino
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
32
|
Navakkode S, Kennedy BK. Neural ageing and synaptic plasticity: prioritizing brain health in healthy longevity. Front Aging Neurosci 2024; 16:1428244. [PMID: 39161341 PMCID: PMC11330810 DOI: 10.3389/fnagi.2024.1428244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Ageing is characterized by a gradual decline in the efficiency of physiological functions and increased vulnerability to diseases. Ageing affects the entire body, including physical, mental, and social well-being, but its impact on the brain and cognition can have a particularly significant effect on an individual's overall quality of life. Therefore, enhancing lifespan and physical health in longevity studies will be incomplete if cognitive ageing is over looked. Promoting successful cognitive ageing encompasses the objectives of mitigating cognitive decline, as well as simultaneously enhancing brain function and cognitive reserve. Studies in both humans and animal models indicate that cognitive decline related to normal ageing and age-associated brain disorders are more likely linked to changes in synaptic connections that form the basis of learning and memory. This activity-dependent synaptic plasticity reorganises the structure and function of neurons not only to adapt to new environments, but also to remain robust and stable over time. Therefore, understanding the neural mechanisms that are responsible for age-related cognitive decline becomes increasingly important. In this review, we explore the multifaceted aspects of healthy brain ageing with emphasis on synaptic plasticity, its adaptive mechanisms and the various factors affecting the decline in cognitive functions during ageing. We will also explore the dynamic brain and neuroplasticity, and the role of lifestyle in shaping neuronal plasticity.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Brian K. Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Buck Institute for Research on Ageing, Novato, CA, United States
| |
Collapse
|
33
|
Iachini T. Spatial memory and frames of reference: How deeply do we rely on the body and the environment? Cogn Process 2024; 25:79-83. [PMID: 39123059 PMCID: PMC11364679 DOI: 10.1007/s10339-024-01211-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
How do we mentally represent the world out there? Psychology, philosophy and neuroscience have given two classical answers: as a living space where we act and perceive, dependent on our bodies; as an enduring physical space with its feature, independent of our bodily interactions. The first would be based on egocentric frames of reference anchored to the body, while the second on allocentric frames of reference centred on the environment itself or on objects. This raises some questions concerning how deep the reliance on the body and the environment is when using these reference frames, and whether they are affected differently by the duration of time and the scale (small or large) of space. To answer these questions, I have brought empirical evidence of the effect of motor interference, blindness, environmental characteristics and temporal factors on egocentric and allocentric spatial representational capacity. The results suggest that egocentric representations are deeply rooted in the body, with its sensory and motor properties, and are closely linked to acting now in small-scale or peripersonal space. Allocentric representations are more influenced by environmental than by bodily characteristics, by visual than by motor properties, and seem particularly related to large-scale or extrapersonal space. In line with neurophysiological evidence and a Kantian perspective, it appears that we are endowed with an internal spatial representation system ready to structure environmental information for our purposes. To what extent this system is innate and pervasive in cognition and what is its relationship to the neural 'positioning' substrate discovered by O'Keefe and colleagues requires further scientific investigation.
Collapse
Affiliation(s)
- Tina Iachini
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy.
| |
Collapse
|
34
|
Stroh AL, Radziun D, Korczyk M, Crucianelli L, Ehrsson HH, Szwed M. Blind individuals' enhanced ability to sense their own heartbeat is related to the thickness of their occipital cortex. Cereb Cortex 2024; 34:bhae324. [PMID: 39152673 PMCID: PMC11329624 DOI: 10.1093/cercor/bhae324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/19/2024] Open
Abstract
Blindness is associated with heightened sensory abilities, such as improved hearing and tactile acuity. Moreover, recent evidence suggests that blind individuals are better than sighted individuals at perceiving their own heartbeat, suggesting enhanced interoceptive accuracy. Structural changes in the occipital cortex have been hypothesized as the basis of these behavioral enhancements. Indeed, several studies have shown that congenitally blind individuals have increased cortical thickness within occipital areas compared to sighted individuals, but how these structural differences relate to behavioral enhancements is unclear. This study investigated the relationship between cardiac interoceptive accuracy and cortical thickness in 23 congenitally blind individuals and 23 matched sighted controls. Our results show a significant positive correlation between performance in a heartbeat counting task and cortical thickness only in the blind group, indicating a connection between structural changes in occipital areas and blind individuals' enhanced ability to perceive heartbeats.
Collapse
Affiliation(s)
- Anna-Lena Stroh
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| | - Dominika Radziun
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands
| | - Maksymilian Korczyk
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| | - Laura Crucianelli
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
- Department of Biological and Experimental Psychology, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| |
Collapse
|
35
|
Moppert S, Mercado E. Contributions of dysfunctional plasticity mechanisms to the development of atypical perceptual processing. Dev Psychobiol 2024; 66:e22504. [PMID: 38837411 DOI: 10.1002/dev.22504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 03/04/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024]
Abstract
Experimental studies of sensory plasticity during development in birds and mammals have highlighted the importance of sensory experiences for the construction and refinement of functional neural circuits. We discuss how dysregulation of experience-dependent brain plasticity can lead to abnormal perceptual representations that may contribute to heterogeneous deficits symptomatic of several neurodevelopmental disorders. We focus on alterations of somatosensory processing and the dynamic reorganization of cortical synaptic networks that occurs during early perceptual development. We also discuss the idea that the heterogeneity of strengths and weaknesses observed in children with neurodevelopmental disorders may be a direct consequence of altered plasticity mechanisms during early development. Treating the heterogeneity of perceptual developmental trajectories as a phenomenon worthy of study rather than as an experimental confound that should be overcome may be key to developing interventions that better account for the complex developmental trajectories experienced by modern humans.
Collapse
Affiliation(s)
- Stacy Moppert
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Eduardo Mercado
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
36
|
Yin Y, Lyu X, Zhou J, Yu K, Huang M, Shen G, Hao C, Wang Z, Yu H, Gao B. Cerebral cortex functional reorganization in preschool children with congenital sensorineural hearing loss: a resting-state fMRI study. Front Neurol 2024; 15:1423956. [PMID: 38988601 PMCID: PMC11234816 DOI: 10.3389/fneur.2024.1423956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Purpose How cortical functional reorganization occurs after hearing loss in preschool children with congenital sensorineural hearing loss (CSNHL) is poorly understood. Therefore, we used resting-state functional MRI (rs-fMRI) to explore the characteristics of cortical reorganization in these patents. Methods Sixty-three preschool children with CSNHL and 32 healthy controls (HCs) were recruited, and the Categories of Auditory Performance (CAP) scores were determined at the 6-month follow-up after cochlear implantation (CI). First, rs-fMRI data were preprocessed, and amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) were calculated. Second, whole-brain functional connectivity (FC) analysis was performed using bilateral primary auditory cortex as seed points. Finally, Spearman correlation analysis was performed between the differential ALFF, ReHo and FC values and the CAP score. Results ALFF analysis showed that preschool children with CSNHL had lower ALFF values in the bilateral prefrontal cortex and superior temporal gyrus than HCs, but higher ALFF values in the bilateral thalamus and calcarine gyrus. And correlation analysis showed that some abnormal brain regions were weak negatively correlated with CAP score (p < 0.05). The ReHo values in the bilateral superior temporal gyrus, part of the prefrontal cortex and left insular gyrus were lower, whereas ReHo values in the bilateral thalamus, right caudate nucleus and right precentral gyrus were higher, in children with CSNHL than HCs. However, there was no correlation between ReHo values and the CAP scores (p < 0.05). Using primary auditory cortex (PAC) as seed-based FC further analysis revealed enhanced FC in the visual cortex, proprioceptive cortex and motor cortex. And there were weak negative correlations between the FC values in the bilateral superior temporal gyrus, occipital lobe, left postcentral gyrus and right thalamus were weakly negatively correlated and the CAP score (p < 0.05). Conclusion After auditory deprivation in preschool children with CSNHL, the local functions of auditory cortex, visual cortex, prefrontal cortex and somatic motor cortex are changed, and the prefrontal cortex plays a regulatory role in this process. There is functional reorganization or compensation between children's hearing and these areas, which may not be conducive to auditory language recovery after CI in deaf children.
Collapse
Affiliation(s)
- Yi Yin
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xinyue Lyu
- Guizhou Medical University, Guiyang, China
| | - Jian Zhou
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kunlin Yu
- The Key Laboratory for Chemistry of Natural Product of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Mingming Huang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guiquan Shen
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Cheng Hao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhengfu Wang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hui Yu
- Department of Radiology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Bo Gao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang, China
| |
Collapse
|
37
|
Jafari Z, Fitzpatrick EM, Schramm DR, Rouillon I, Koravand A. Predictors of cochlear implant outcomes in pediatric auditory neuropathy: A matched case-control study. PLoS One 2024; 19:e0304316. [PMID: 38809896 PMCID: PMC11135674 DOI: 10.1371/journal.pone.0304316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVES Current evidence supports the benefits of cochlear implants (CIs) in children with hearing loss, including those with auditory neuropathy spectrum disorder (ANSD). However, there is limited evidence regarding factors that hold predictive value for intervention outcomes. DESIGN This retrospective case-control study consisted of 66 children with CIs, including 22 with ANSD and 44 with sensorineural hearing loss (SNHL) matched on sex, age, age at CI activation, and the length of follow-up with CIs (1:2 ratio). The case and control groups were compared in the results of five open-set speech perception tests, and a Forward Linear Regression Model was used to identify factors that can predict the post-CI outcomes. RESULTS There was no significant difference in average scores between the two groups across five outcome measures, ranging from 88.40% to 95.65%. The correlation matrix revealed that younger ages at hearing aid fitting and CI activation positively influenced improvements in speech perception test scores. Furthermore, among the variables incorporated in the regression model, the duration of follow-up with CIs, age at CI activation, and the utilization of two CIs demonstrated prognostic significance for improved post-CI speech perception outcomes. CONCLUSIONS Children with ANSD can achieve similar open-set speech perception outcomes as children with SNHL. A longer CI follow-up, a lower age at CI activation, and the use of two CIs are predictive for optimal CI outcome.
Collapse
Affiliation(s)
- Zahra Jafari
- Audiology and Speech-Language Pathology Program, University of Ottawa, Ottawa, Ontario, Canada
- School of Communication Sciences and Disorders (SCSD), Dalhousie University, Halifax, NS, Canada
| | - Elizabeth M. Fitzpatrick
- Audiology and Speech-Language Pathology Program, University of Ottawa, Ottawa, Ontario, Canada
- Child Hearing Lab, CHEO Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - David R. Schramm
- Department of Otolaryngology-Head and Neck Surgery, University of Ottawa, Ottawa, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Isabelle Rouillon
- Speech and Language Pathology, and Otolaryngology Department, Necker Hospital, Paris, France
| | - Amineh Koravand
- Audiology and Speech-Language Pathology Program, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
38
|
Jafari Z, Kolb BE, Mohajerani MH. A systematic review of altered resting-state networks in early deafness and implications for cochlear implantation outcomes. Eur J Neurosci 2024; 59:2596-2615. [PMID: 38441248 DOI: 10.1111/ejn.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 05/22/2024]
Abstract
Auditory deprivation following congenital/pre-lingual deafness (C/PD) can drastically affect brain development and its functional organisation. This systematic review intends to extend current knowledge of the impact of C/PD and deafness duration on brain resting-state networks (RSNs), review changes in RSNs and spoken language outcomes post-cochlear implant (CI) and draw conclusions for future research. The systematic literature search followed the PRISMA guideline. Two independent reviewers searched four electronic databases using combined keywords: 'auditory deprivation', 'congenital/prelingual deafness', 'resting-state functional connectivity' (RSFC), 'resting-state fMRI' and 'cochlear implant'. Seventeen studies (16 cross-sectional and one longitudinal) met the inclusion criteria. Using the Crowe Critical Appraisal Tool, the publications' quality was rated between 65.0% and 92.5% (mean: 84.10%), ≥80% in 13 out of 17 studies. A few studies were deficient in sampling and/or ethical considerations. According to the findings, early auditory deprivation results in enhanced RSFC between the auditory network and brain networks involved in non-verbal communication, and high levels of spontaneous neural activity in the auditory cortex before CI are evidence of occupied auditory cortical areas with other sensory modalities (cross-modal plasticity) and sub-optimal CI outcomes. Overall, current evidence supports the idea that moreover intramodal and cross-modal plasticity, the entire brain adaptation following auditory deprivation contributes to spoken language development and compensatory behaviours.
Collapse
Affiliation(s)
- Zahra Jafari
- School of Communication Sciences and Disorders (SCSD), Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Québec, Canada
| |
Collapse
|
39
|
Lee S, Song Y, Hong H, Joo Y, Ha E, Shim Y, Hong SN, Kim J, Lyoo IK, Yoon S, Kim DW. Changes in Structural Covariance among Olfactory-related Brain Regions in Anosmia Patients. Exp Neurobiol 2024; 33:99-106. [PMID: 38724479 PMCID: PMC11089402 DOI: 10.5607/en24007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 05/15/2024] Open
Abstract
Anosmia, characterized by the loss of smell, is associated not only with dysfunction in the peripheral olfactory system but also with changes in several brain regions involved in olfactory processing. Specifically, the orbitofrontal cortex is recognized for its pivotal role in integrating olfactory information, engaging in bidirectional communication with the primary olfactory regions, including the olfactory cortex, amygdala, and entorhinal cortex. However, little is known about alterations in structural connections among these brain regions in patients with anosmia. In this study, high-resolution T1-weighted images were obtained from participants. Utilizing the volumes of key brain regions implicated in olfactory function, we employed a structural covariance approach to investigate brain reorganization patterns in patients with anosmia (n=22) compared to healthy individuals (n=30). Our structural covariance analysis demonstrated diminished connectivity between the amygdala and entorhinal cortex, components of the primary olfactory network, in patients with anosmia compared to healthy individuals (z=-2.22, FDR-corrected p=0.039). Conversely, connectivity between the orbitofrontal cortex-a major region in the extended olfactory network-and amygdala was found to be enhanced in the anosmia group compared to healthy individuals (z=2.32, FDR-corrected p=0.039). However, the structural connections between the orbitofrontal cortex and entorhinal cortex did not differ significantly between the groups (z=0.04, FDR-corrected p=0.968). These findings suggest a potential structural reorganization, particularly of higher-order cortical regions, possibly as a compensatory effort to interpret the limited olfactory information available in individuals with olfactory loss.
Collapse
Affiliation(s)
- Suji Lee
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| | - Yumi Song
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Haejin Hong
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Eunji Ha
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Youngeun Shim
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Seung-No Hong
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Korea
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Korea
| |
Collapse
|
40
|
Kruper J, Richie-Halford A, Benson NC, Caffarra S, Owen J, Wu Y, Egan C, Lee AY, Lee CS, Yeatman JD, Rokem A. Convolutional neural network-based classification of glaucoma using optic radiation tissue properties. COMMUNICATIONS MEDICINE 2024; 4:72. [PMID: 38605245 PMCID: PMC11009254 DOI: 10.1038/s43856-024-00496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Sensory changes due to aging or disease can impact brain tissue. This study aims to investigate the link between glaucoma, a leading cause of blindness, and alterations in brain connections. METHODS We analyzed diffusion MRI measurements of white matter tissue in a large group, consisting of 905 glaucoma patients (aged 49-80) and 5292 healthy individuals (aged 45-80) from the UK Biobank. Confounds due to group differences were mitigated by matching a sub-sample of controls to glaucoma subjects. We compared classification of glaucoma using convolutional neural networks (CNNs) focusing on the optic radiations, which are the primary visual connection to the cortex, against those analyzing non-visual brain connections. As a control, we evaluated the performance of regularized linear regression models. RESULTS We showed that CNNs using information from the optic radiations exhibited higher accuracy in classifying subjects with glaucoma when contrasted with CNNs relying on information from non-visual brain connections. Regularized linear regression models were also tested, and showed significantly weaker classification performance. Additionally, the CNN was unable to generalize to the classification of age-group or of age-related macular degeneration. CONCLUSIONS Our findings indicate a distinct and potentially non-linear signature of glaucoma in the tissue properties of optic radiations. This study enhances our understanding of how glaucoma affects brain tissue and opens avenues for further research into how diseases that affect sensory input may also affect brain aging.
Collapse
Affiliation(s)
- John Kruper
- Department of Psychology, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA, USA
| | - Adam Richie-Halford
- Graduate School of Education and Division of Developmental Behavioral Pediatrics, Stanford University, Stanford, CA, USA
| | - Noah C Benson
- eScience Institute, University of Washington, Seattle, WA, USA
| | - Sendy Caffarra
- Graduate School of Education and Division of Developmental Behavioral Pediatrics, Stanford University, Stanford, CA, USA
- University of Modena and Reggio Emilia, Modena, Italy
| | - Julia Owen
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Yue Wu
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | | | - Aaron Y Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Cecilia S Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Jason D Yeatman
- Graduate School of Education and Division of Developmental Behavioral Pediatrics, Stanford University, Stanford, CA, USA
| | - Ariel Rokem
- Department of Psychology, University of Washington, Seattle, WA, USA.
- eScience Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
41
|
Somer E. When Imagination Feels Like Reality: A Case Study of False Memories and Maladaptive Daydreaming in Visual Impairment. Case Rep Psychiatry 2024; 2024:9391645. [PMID: 38633732 PMCID: PMC11022530 DOI: 10.1155/2024/9391645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Background When a person experiences maladaptive daydreaming (MD), they spend a prolonged period daydreaming with a strong sense of presence. The symptoms of MD are often excessive, interfere with functioning, and are linked to distress and comorbid mental disorders. In this paper, apparent false memory is described in the context of a woman with MD and visual impairment due to a progressive eye condition. Her vivid daydreams seemed indistinguishable from actual memories. Case Report. A 35-year-old woman with a lifelong MD reported three incidents of fabricating detailed false memories of events that her family confirmed never occurred: obtaining a new job, miscarrying twins, and hospitalization for COVID-19. She experienced anxiety and shame when the stories were disproven. The assessment confirmed MD, PTSD, OCD, and other disorders. Her verbal memory was below average, especially for longer narratives. Her misattributions of daydreams as real-life memories may relate to reliance on vivid mental images over deteriorating vision and source monitoring deficits. Conclusion This first reported case of confabulations in an individual with MD and visual disability suggests daydreams could potentially be mistaken for actual events in some MD cases. While sensitive, more research is needed on the prevalence of false memories among individuals with MD. The default mode network, prefrontal cortex, and their connectivity may be implicated in generating vivid daydreams and misattributing them to actual episodic events. Understanding the relationship between sensory impairments, dissociation, and susceptibility to memory distortions could inform interventions to improve reality testing for some MD patients.
Collapse
Affiliation(s)
- Eli Somer
- School of Social Work, University of Haifa, Haifa, Israel
| |
Collapse
|
42
|
Yang CD, Wang J, Verniani L, Ghalehei M, Chen LE, Lin KY. Clinical Validation of a Handheld Deep Learning Tool for Identification of Glaucoma Medications. J Ophthalmic Vis Res 2024; 19:172-182. [PMID: 39055502 PMCID: PMC11267140 DOI: 10.18502/jovr.v19i2.13983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/02/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose To validate a convolutional neural network (CNN)-based smartphone application for the identification of glaucoma eye drop medications in patients with normal and impaired vision. Methods Sixty-eight patients with visual acuity (VA) of 20/70 or worse in at least one eye who presented to an academic glaucoma clinic from January 2021 through August 2022 were included. Non-English-speaking patients were excluded. Enrolled subjects participated in an activity in which they identified a predetermined and preordered set of six topical glaucoma medications, first without the CNN and then with the CNN for a total of six sequential measurements per subject. Responses to a standardized survey were collected during and after the activity. Primary quantitative outcomes were medication identification accuracy and time. Primary qualitative outcomes were subjective ratings of ease of smartphone application use. Results Topical glaucoma medication identification accuracy (OR = 12.005, P < 0.001) and time (OR = 0.007, P < 0.001) both independently improved with CNN use. CNN use significantly improved medication accuracy in patients with glaucoma (OR = 4.771, P = 0.036) or VA ≤ 20/70 in at least one eye (OR = 4.463, P = 0.013) and medication identification time in patients with glaucoma (OR = 0.065, P = 0.017). CNN use had a significant positive association with subject-reported ease of medication identification (X2(1) = 66.117, P < 0.001). Conclusion Our CNN-based smartphone application is efficacious at improving glaucoma eye drop identification accuracy and time. This tool can be used in the outpatient setting to avert preventable vision loss by improving medication adherence in patients with glaucoma.
Collapse
Affiliation(s)
- Christopher D. Yang
- University of California, Irvine School of Medicine, Irvine, CA, USA
- Gavin Herbert Eye Institute, Department of Ophthalmology, UC Irvine, CA, USA
| | - Jasmine Wang
- University of California, Irvine School of Medicine, Irvine, CA, USA
- Gavin Herbert Eye Institute, Department of Ophthalmology, UC Irvine, CA, USA
| | | | - Melika Ghalehei
- Gavin Herbert Eye Institute, Department of Ophthalmology, UC Irvine, CA, USA
| | - Lauren E. Chen
- Gavin Herbert Eye Institute, Department of Ophthalmology, UC Irvine, CA, USA
| | - Ken Y. Lin
- University of California, Irvine School of Medicine, Irvine, CA, USA
- Gavin Herbert Eye Institute, Department of Ophthalmology, UC Irvine, CA, USA
- Department of Biomedical Engineering, UC Irvine, CA, USA
| |
Collapse
|
43
|
Kumar U, Dhanik K, Pandey HR, Mishra M, Keshri A. Neurotopographical Transformations: Dissecting Cortical Reconfigurations in Auditory Deprivation. J Neurosci 2024; 44:e1649232024. [PMID: 38383498 PMCID: PMC10977024 DOI: 10.1523/jneurosci.1649-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Within the intricate matrices of cognitive neuroscience, auditory deprivation acts as a catalyst, propelling a cascade of neuroanatomical adjustments that have, until now, been suboptimally articulated in extant literature. Addressing this gap, our study harnesses high-resolution 3 T MRI modalities to unveil the multifaceted cortical transformations that emerge in tandem with congenital auditory deficits. We conducted a rigorous cortical surface analysis on a cohort of 90 congenitally deaf individuals, systematically compared with 90 normoacoustic controls. Our sample encompassed both male and female participants, ensuring a gender-inclusive perspective in our analysis. Expected alterations within prototypical auditory domains were evident, but our findings transcended these regions, spotlighting modifications dispersed across a gamut of cortical and subcortical structures, thereby epitomizing the cerebral adaptive dynamics to sensory voids. Crucially, the study's innovative methodology integrated two pivotal variables: the duration of auditory deprivation and the extent of sign language immersion. By intersecting these metrics with structural changes, our analysis unveiled nuanced layers of cortical reconfigurations, elucidating a more granulated understanding of neural plasticity. This intersectional approach bestows a unique advantage, allowing for a discerning exploration into how varying durations of sensory experience and alternative communication modalities modulate the brain's morphological terrain. In encapsulating the synergy of neuroimaging finesse and incisive scientific rigor, this research not only broadens the current understanding of adaptive neural mechanisms but also paves the way for tailored therapeutic strategies, finely attuned to individual auditory histories and communicative repertoires.
Collapse
Affiliation(s)
- Uttam Kumar
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow 226014, India
| | - Kalpana Dhanik
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow 226014, India
| | - Himanshu R Pandey
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow 226014, India
| | - Mrutyunjaya Mishra
- Department of Special Education (Hearing Impairments), Dr. Shakuntala Misra National Rehabilitation University, Lucknow 226017, India
| | - Amit Keshri
- Department of Neuro-otology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
44
|
Lettieri G, Handjaras G, Cappello EM, Setti F, Bottari D, Bruno V, Diano M, Leo A, Tinti C, Garbarini F, Pietrini P, Ricciardi E, Cecchetti L. Dissecting abstract, modality-specific and experience-dependent coding of affect in the human brain. SCIENCE ADVANCES 2024; 10:eadk6840. [PMID: 38457501 PMCID: PMC10923499 DOI: 10.1126/sciadv.adk6840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
Emotion and perception are tightly intertwined, as affective experiences often arise from the appraisal of sensory information. Nonetheless, whether the brain encodes emotional instances using a sensory-specific code or in a more abstract manner is unclear. Here, we answer this question by measuring the association between emotion ratings collected during a unisensory or multisensory presentation of a full-length movie and brain activity recorded in typically developed, congenitally blind and congenitally deaf participants. Emotional instances are encoded in a vast network encompassing sensory, prefrontal, and temporal cortices. Within this network, the ventromedial prefrontal cortex stores a categorical representation of emotion independent of modality and previous sensory experience, and the posterior superior temporal cortex maps the valence dimension using an abstract code. Sensory experience more than modality affects how the brain organizes emotional information outside supramodal regions, suggesting the existence of a scaffold for the representation of emotional states where sensory inputs during development shape its functioning.
Collapse
Affiliation(s)
- Giada Lettieri
- Crossmodal Perception and Plasticity Laboratory, Institute of Research in Psychology & Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giacomo Handjaras
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Elisa M. Cappello
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Francesca Setti
- Sensorimotor Experiences and Mental Representations Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Davide Bottari
- Sensorimotor Experiences and Mental Representations Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
- Sensory Experience Dependent Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | | | - Matteo Diano
- Department of Psychology, University of Turin, Turin, Italy
| | - Andrea Leo
- Department of of Translational Research and Advanced Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Carla Tinti
- Department of Psychology, University of Turin, Turin, Italy
| | | | - Pietro Pietrini
- Forensic Neuroscience and Psychiatry Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Emiliano Ricciardi
- Sensorimotor Experiences and Mental Representations Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
- Sensory Experience Dependent Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Luca Cecchetti
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| |
Collapse
|
45
|
Kumar U, Dhanik K. Decoding auditory deprivation: resting-state fMRI insights into deafness and brain plasticity. Brain Struct Funct 2024:10.1007/s00429-023-02757-1. [PMID: 38329542 DOI: 10.1007/s00429-023-02757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024]
Abstract
Deafness, as a profound manifestation of sensory deprivation, prompts a cascade of intricate cerebral adaptations. In this study, involving 35 deaf individuals and 35 hearing controls, we utilized resting-state functional magnetic resonance imaging (rs-fMRI) to delve into the depths of functional connectivity nuances distinguishing deaf individuals from their hearing counterparts. Leading our analytical approach was the application of multi-voxel pattern analysis (fc-MVPA). This advanced method provided a refined perspective, revealing amplified neural connectivity within the deaf population. Notably, regions such as the left postcentral somatosensory association cortex, the anterior and posterior corridors of the left superior temporal gyrus (STG), and the left mid-temporal lobe were identified as hotspots of heightened connectivity. Further, fc-MVPA shed light on intricate interaction effects, which became more pronounced when examining variables such as the duration of auditory deprivation and the extent of sign language exposure. These interactions were particularly evident in the premotor and left frontal mid-orbital regions. Complementing this, seed-based connectivity assessments illuminated pronounced coupling dynamics within the left STG spectrum. Concurrently, local correlation (LCOR) value analysis in the deaf group revealed significant shifts in the right superior STG and bilateral precuneus. In addition, amplitude of low-frequency fluctuation (ALFF) evaluations indicated modulations in the bilateral mid cingulum and left superior mid frontal gyrus. This comprehensive, fc-MVPA-driven exploration uncovers the multifaceted functional adaptations resulting from deafness, highlighting the profound plasticity of the human brain and its potential implications for targeted rehabilitative strategies.
Collapse
Affiliation(s)
- Uttam Kumar
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, 226014, India.
| | - Kalpana Dhanik
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, 226014, India
| |
Collapse
|
46
|
Hauptman M, Elli G, Pant R, Bedny M. Neural specialization for 'visual' concepts emerges in the absence of vision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.552701. [PMID: 37662234 PMCID: PMC10473738 DOI: 10.1101/2023.08.23.552701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Vision provides a key source of information about many concepts, including 'living things' (e.g., tiger) and visual events (e.g., sparkle). According to a prominent theoretical framework, neural specialization for different conceptual categories is shaped by sensory features, e.g., living things are neurally dissociable from navigable places because living things concepts depend more on visual features. We tested this framework by comparing the neural basis of 'visual' concepts across sighted (n=22) and congenitally blind (n=21) adults. Participants judged the similarity of words varying in their reliance on vision while undergoing fMRI. We compared neural responses to living things nouns (birds, mammals) and place nouns (natural, manmade). In addition, we compared visual event verbs (e.g., 'sparkle') to non-visual events (sound emission, hand motion, mouth motion). People born blind exhibited distinctive univariate and multivariate responses to living things in a temporo-parietal semantic network activated by nouns, including the precuneus (PC). To our knowledge, this is the first demonstration that neural selectivity for living things does not require vision. We additionally observed preserved neural signatures of 'visual' light events in the left middle temporal gyrus (LMTG+). Across a wide range of semantic types, neural representations of sensory concepts develop independent of sensory experience.
Collapse
Affiliation(s)
- Miriam Hauptman
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Giulia Elli
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Rashi Pant
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Psychology & Neuropsychology, Universität Hamburg, Germany
| | - Marina Bedny
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
47
|
Landry C, Nazar R, Simon M, Genest F, Giguère FL, Lepore F, Frasnelli J. Behavioural evidence for enhanced olfactory and trigeminal perception in congenital hearing loss. Eur J Neurosci 2024; 59:434-445. [PMID: 38185810 DOI: 10.1111/ejn.16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024]
Abstract
Sensory deprivation, especially hearing loss (HL), offers a valuable model for studying neuroplasticity in the human brain and adaptive behaviours that support the daily lives of those with limited or absent sensory input. The study of olfactory function is particularly important as it is an understudied aspect of sensory deprivation. This study aimed to compare the effects of congenital HL on olfactory capacity by using psychophysical tasks. Methodological concerns from previous studies regarding the onset of HL and cognitive assessments were addressed. We recruited 11 individuals with severe-to-profound sensorineural HL (SNHL) since birth and 11 age- and sex-matched typical hearing non-signers. We used standardized neuropsychological tests to assess typical cognition among participants with SNHL. We evaluated olfactory functions by assessing olfactory detection threshold, odour discrimination and odour identification. Hearing-impaired participants outperformed their typical hearing counterparts in olfactory tasks. We further evaluated the accuracy and response time in identifying and localizing odours to disentangle olfactory sensitivity from trigeminal system sensitivity. Participants with SNHL demonstrated higher sensitivity to both the identification and localization tasks. These findings suggest that congenital SNHL is associated with enhanced higher-level olfactory processing and increased trigeminal sensitivity.
Collapse
Affiliation(s)
- Catherine Landry
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Rim Nazar
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
- Research Institute of the MUHC, Montréal, QC, Canada
| | - Marie Simon
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - François Genest
- Département de Psychologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Fanny Lécuyer Giguère
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
- Centre de recherche de l'hôpital Sacré-Coeur de Montréal, Montréal, QC, Canada
| | - Franco Lepore
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Johannes Frasnelli
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
- Centre de recherche de l'hôpital Sacré-Coeur de Montréal, Montréal, QC, Canada
- Département d'anatomie, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
48
|
Sourav S, Kekunnaya R, Bottari D, Shareef I, Pitchaimuthu K, Röder B. Sound suppresses earliest visual cortical processing after sight recovery in congenitally blind humans. Commun Biol 2024; 7:118. [PMID: 38253781 PMCID: PMC10803735 DOI: 10.1038/s42003-023-05749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Neuroscientific research has consistently shown more extensive non-visual activity in the visual cortex of congenitally blind humans compared to sighted controls; a phenomenon known as crossmodal plasticity. Whether or not crossmodal activation of the visual cortex retracts if sight can be restored is still unknown. The present study, involving a rare group of sight-recovery individuals who were born pattern vision blind, employed visual event-related potentials to investigate persisting crossmodal modulation of the initial visual cortical processing stages. Here we report that the earliest, stimulus-driven retinotopic visual cortical activity (<100 ms) was suppressed in a spatially specific manner in sight-recovery individuals when concomitant sounds accompanied visual stimulation. In contrast, sounds did not modulate the earliest visual cortical response in two groups of typically sighted controls, nor in a third control group of sight-recovery individuals who had suffered a transient phase of later (rather than congenital) visual impairment. These results provide strong evidence for persisting crossmodal activity in the visual cortex after sight recovery following a period of congenital visual deprivation. Based on the time course of this modulation, we speculate on a role of exuberant crossmodal thalamic input which may arise during a sensitive phase of brain development.
Collapse
Affiliation(s)
- Suddha Sourav
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany.
| | - Ramesh Kekunnaya
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Davide Bottari
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
- IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Idris Shareef
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Kabilan Pitchaimuthu
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, L V Prasad Eye Institute, Hyderabad, India
- Department of Medicine and Optometry, Linnaeus University, Kalmar, Sweden
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
49
|
Peter MG, Darki F, Thunell E, Mårtensson G, Postma EM, Boesveldt S, Westman E, Lundström JN. Lifelong olfactory deprivation-dependent cortical reorganization restricted to orbitofrontal cortex. Hum Brain Mapp 2023; 44:6459-6470. [PMID: 37915233 PMCID: PMC10681638 DOI: 10.1002/hbm.26522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
Prolonged sensory deprivation has repeatedly been linked to cortical reorganization. We recently demonstrated that individuals with congenital anosmia (CA, complete olfactory deprivation since birth) have seemingly normal morphology in piriform (olfactory) cortex despite profound morphological deviations in the orbitofrontal cortex (OFC), a finding contradictory to both the known effects of blindness on visual cortex and to the sparse literature on brain morphology in anosmia. To establish whether these unexpected findings reflect the true brain morphology in CA, we first performed a direct replication of our previous study to determine if lack of results was due to a deviant control group, a confound in cross sectional studies. Individuals with CA (n = 30) were compared to age and sex matched controls (n = 30) using voxel- and surface-based morphometry. The replication results were near identical to the original study: bilateral clusters of group differences in the OFC, including CA atrophy around the olfactory sulci and volume increases in the medial orbital gyri. Importantly, no group differences in piriform cortex were detected. Subsequently, to assess any subtle patterns of group differences not detectable by our mass-univariate analysis, we explored the data from a multivariate perspective. Combining the newly collected data with data from the replicated study (CA = 49, control = 49), we performed support vector machine classification based on gray matter volume. In line with the mass-univariate analyses, the multivariate analysis could accurately differentiate between the groups in bilateral OFC, whereas the classification accuracy in piriform cortex was at chance level. Our results suggest that despite lifelong olfactory deprivation, piriform (olfactory) cortex is morphologically unaltered and the morphological deviations in CA are confined to the OFC.
Collapse
Affiliation(s)
- Moa G. Peter
- Department of Clinical Neuroscience, Karolinska InstitutetStockholmSweden
| | - Fahimeh Darki
- Department of Clinical Neuroscience, Karolinska InstitutetStockholmSweden
| | - Evelina Thunell
- Department of Clinical Neuroscience, Karolinska InstitutetStockholmSweden
| | - Gustav Mårtensson
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Elbrich M. Postma
- Smell and Taste Centre, Hospital Gelderse ValleiEdethe Netherlands
- Division of Human Nutrition and HealthWageningen UniversityWageningenthe Netherlands
| | - Sanne Boesveldt
- Division of Human Nutrition and HealthWageningen UniversityWageningenthe Netherlands
| | - Eric Westman
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Johan N. Lundström
- Department of Clinical Neuroscience, Karolinska InstitutetStockholmSweden
- Monell Chemical Senses CenterPhiladelphiaPennsylvaniaUSA
- Stockholm University Brain Imaging CenterStockholm UniversityStockholmSweden
| |
Collapse
|
50
|
Ness T, Barclay L. Disability, Transition Costs, and the Things That Really Matter. THE JOURNAL OF MEDICINE AND PHILOSOPHY 2023; 48:591-602. [PMID: 37421413 PMCID: PMC10629941 DOI: 10.1093/jmp/jhad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023] Open
Abstract
This article develops a detailed, empirically driven analysis of the nature of the transition costs incurred in becoming disabled. Our analysis of the complex nature of these costs supports the claim that it can be wrong to cause disability, even if disability is just one way of being different. We also argue that close attention to the nature of transition costs gives us reason to doubt that well-being, including transitory impacts on well-being, is the only thing that should determine the wrongness of causing or removing disability. Non-welfare considerations also defeat the claim that it is always wrong to cause disability. The upshot of these conclusions is that closer attention to the nature of transition costs supports disabled people who strenuously contest the assumption that their well-being is lower than nondisabled people. It also suggests that, in addition, disabled people should contest their opponents' narrow account of how we should make ethical decisions regarding causing or failing to prevent disability.
Collapse
|