1
|
Davidová L, Lanekoff I. Standard Addition as a Method for Quantitative Mass Spectrometry Imaging. Anal Chem 2025. [PMID: 40421780 DOI: 10.1021/acs.analchem.5c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
In mass spectrometry imaging (MSI), analytes are desorbed and ionized directly from a complex and unique chemical microenvironment in each pixel, which makes their quantification challenging. Matrix effects have been addressed by the use of isotopically labeled internal standards (IS), either included in the solvent or sprayed over the tissue section, for pixel-by-pixel relative quantification. However, in addition to requiring preselection, isotopically labeled IS may be costly or unavailable. Here, we introduce a novel approach for quantification in MSI, based on the standard addition method. We report a workflow for both acquiring and processing quantitative data. Furthermore, we compare the detected concentrations obtained by standard addition to the detected concentrations obtained using both IS quantification and external calibration. Finally, we show the applicability of using molecules extracted from tissue as an easily accessible standard mixture for standard addition quantification in MSI. The possibility of using analytical standards and readily available endogenous analytes as a source of calibration standards makes our standard addition-based quantitative approach cost-effective, accessible, and versatile.
Collapse
Affiliation(s)
- Lucie Davidová
- Department of Chemistry─BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Ingela Lanekoff
- Department of Chemistry─BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
- Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
2
|
Dos Santos TG, Melgarejo AS, Ligabue-Braun R, de Oliveira DL. Phylogenetic and Structural Analyses of Vesicular Glutamate Transporters. Mol Neurobiol 2025:10.1007/s12035-025-05012-2. [PMID: 40338457 DOI: 10.1007/s12035-025-05012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Vesicular glutamate transporters are members of the solute carrier 17 (SLC17) family, and mammals express three closely related isoforms: vGluT1-3. While vGluT genes have been identified across various species in the Animalia kingdom, the evolutionary relationships and the natural history of vGluT members remain poorly understood. This study aimed to address these gaps by presenting a phylogenetic analysis of vGluTs across the animal kingdom. The study also included a detailed sequence analysis and structural modeling of vGluT isoforms among species. The phylogenetic tree revealed distinct clusters corresponding to the vGluts isoform 1, 2, and 3, with functional amino acid residues highly conserved among them. Invertebrate vGluTs emerged as the most divergent proteins, serving as the root of the tree. Sequence analysis confirmed the high conservation of vGluTs transmembrane core regions but identified high variations in the N and C-terminal ones. Structural analysis revealed that AlphaFold2-predicted models demonstrated high confidence quality in the transmembrane domains, but exhibited limited local similarity in the N-terminal, C-terminal, and loop regions. On the other hand, the expected topology of these helices was accurately captured and positioned in the Swiss-Model-generated structures, with the functionally relevant residues precisely positioned in three-dimensional space. In conclusion, we expect that our findings will contribute to a deeper understanding of vesicular glutamate transporter structure and function, as well as their roles across distinct species and biological contexts.
Collapse
Affiliation(s)
- Thainá Garbino Dos Santos
- Laboratory of Neural Development, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, Anexo Porto Alegre, RS, 90035003, Brazil.
| | - Alanis Silva Melgarejo
- Laboratory of Neural Development, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, Anexo Porto Alegre, RS, 90035003, Brazil
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences and Graduate Program in Biosciences (PPGBio), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Diogo Losch de Oliveira
- Laboratory of Neural Development, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, Anexo Porto Alegre, RS, 90035003, Brazil.
| |
Collapse
|
3
|
Martami F, Holton KF. Unmasking the relationship between CGRP and glutamate: from peripheral excitation to central sensitization in migraine. J Headache Pain 2025; 26:101. [PMID: 40329208 PMCID: PMC12057113 DOI: 10.1186/s10194-025-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
The exact mechanisms that trigger the activation of the trigeminovascular system in migraine remain unclear. The involvement of calcitonin gene-related peptide (CGRP) in migraine is well-documented, and treatments aimed at blocking CGRP activity have proven successful in reducing migraine attacks for some patients. However, around one third of individuals do not respond to these therapies, which are also limited by factors like cost, side effects, and contraindications. There is growing evidence suggesting that glutamate, an excitatory neurotransmitter, plays a crucial role in the onset and maintenance of migraine pain, partially by enhancing CGRP release. Increased glutamate levels have been linked to both peripheral and central sensitization, potentially contributing to the development and persistence of chronic migraine. The relationship between CGRP and glutamate is complex, with glutamate possibly acting as an upstream trigger for CGRP release. This review examines the interplay between CGRP and glutamate, and their involvement in both peripheral and central sensitization. It also explores the therapeutic potential of targeting either glutamate or CGRP, aiming to address both peripheral and central migraine mechanisms. Finally, the role of triggers in migraine initiation at the peripheral level is discussed, offering insights into potential preventive strategies.
Collapse
Affiliation(s)
- Fahimeh Martami
- Departments of Health Studies, American University, 4400 Massachusetts Ave NW, Washington, DC, 20016, USA
| | - Kathleen F Holton
- Departments of Health Studies, American University, 4400 Massachusetts Ave NW, Washington, DC, 20016, USA.
- Department of Neuroscience, American University, Washington, DC, USA.
- Center for Neuroscience and Behavior, American University, Washington, DC, USA.
| |
Collapse
|
4
|
Kim JY, Kim H, Chung WS, Park H. Selective regulation of corticostriatal synapses by astrocytic phagocytosis. Nat Commun 2025; 16:2504. [PMID: 40082427 PMCID: PMC11906744 DOI: 10.1038/s41467-025-57577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
In the adult brain, neural circuit homeostasis depends on the constant turnover of synapses via astrocytic phagocytosis mechanisms. However, it remains unclear whether this process occurs in a circuit-specific manner. Here, we reveal that astrocytes target and eliminate specific type of excitatory synapses in the striatum. Using model mice lacking astrocytic phagocytosis receptors in the dorsal striatum, we found that astrocytes constantly remove corticostriatal synapses rather than thalamostriatal synapses. This preferential elimination suggests that astrocytes play a selective role in modulating corticostriatal plasticity and functions via phagocytosis mechanisms. Supporting this notion, corticostriatal long-term potentiation and the early phase of motor skill learning are dependent on astrocytic phagocytic receptors. Together, our findings demonstrate that astrocytes contribute to the connectivity and plasticity of the striatal circuit by preferentially engulfing a specific subset of excitatory synapses within brain regions innervated by multiple excitatory sources.
Collapse
Affiliation(s)
- Ji-Young Kim
- Research group for Neurovascular Unit, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyeyeon Kim
- Research group for Neurovascular Unit, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyungju Park
- Research group for Neurovascular Unit, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.
| |
Collapse
|
5
|
Wang Y, Huang L, Cen X, Liang Y, Chen K. Canonical MAPK signaling in auditory neuropathy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167619. [PMID: 39662753 DOI: 10.1016/j.bbadis.2024.167619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Auditory neuropathy (AN) is an under-recognized form of hearing loss characterized by lesions in inner hair cells (IHCs), ribbon synapses and spiral ganglion neurons (SGNs). The lack of a targeted therapy for AN has increased the need for a better understanding of the pathogenic mechanism of AN. As mitogen-activated protein kinase (MAPK) signaling is ubiquitous in many biological processes, its alteration may facilitate the pathogenesis of multiple sites in AN. Here, we summaries the characteristics of AN under different molecular bases and first explore the mechanism of MAPK at different lesion sites. Alterations of extracellular signal-regulated kinase (ERK)/MAPK occur in IHCs and SGNs, whereas modulations of p38 and c-Jun NH2-terminal kinase (JNK) were found in ribbon synapses and SGNs. In conclusion, inductive MAPK alterations in the pathogenesis and development of AN are likely to represent a potential therapeutic target to guide the development of treatments.
Collapse
Affiliation(s)
- Yueying Wang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Lusha Huang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoqing Cen
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Liang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Kaitian Chen
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
6
|
Zhao Y, Zhang Y, Feng J, He Z, Li T. Codon Usage Bias: A Potential Factor Affecting VGLUT Developmental Expression and Protein Evolution. Mol Neurobiol 2025; 62:3508-3522. [PMID: 39305444 DOI: 10.1007/s12035-024-04426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 08/05/2024] [Indexed: 02/04/2025]
Abstract
More and more attention has been paid to the role of synonymous substitution in evolution, in which codon usage preference can affect gene expression distribution and protein structure and function. Vesicular glutamate transporter (VGLUT) consists of three isoforms, among which VGLUT3 is significantly different from other VGLUTs in functional importance, expression level, and distribution range, whose reason is still unclear. This study sought to analyze the role of codon preference in VGLUT differentiation. To conduct an evolutionary analysis of the three VGLUTs, this paper uses bioinformatics research methods to analyze the coding sequences of the three VGLUTs in different species and compare the codon usage patterns. Furthermore, the differences among the three VGLUTs were analyzed by combining functional importance, expression level, distribution range, gene structure, protein relationship network, expression at specific developmental stages, and phylogenetic tree, and the influence of codon usage pattern was explored. The results showed that the VGLUT with greater codon preference had less functional importance, lower expression levels, more peripheral distribution away from the CNS, smaller exon density of gene, less conserved and farther away from the CDS region miRNA regulatory sites, simpler and less tight protein interaction networks, delayed developmental expression, and more distant evolutionary relationships. Codon usage preference is a potential factor affecting VGLUT developmental expression and protein evolution.
Collapse
Affiliation(s)
- Yiran Zhao
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Yu Zhang
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Jiaxing Feng
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Zixian He
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Ting Li
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China.
| |
Collapse
|
7
|
Qi M, Won J, Rodriguez C, Storace DA. Glutamatergic heterogeneity in the neuropeptide projections from the lateral hypothalamus to the mouse olfactory bulb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.16.638511. [PMID: 39990441 PMCID: PMC11844501 DOI: 10.1101/2025.02.16.638511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The direct pathway from the lateral hypothalamus to the mouse olfactory bulb (OB) includes neurons that express the neuropeptide orexin-A, and others that do not. The OB-projecting neurons that do not express orexin-A are present in an area of the lateral hypothalamus known to contain neurons that express the neuropeptide melanin-concentrating hormone (MCH). We used virally mediated anterograde tract tracing and immunohistochemistry for orexin-A and MCH to demonstrate that the OB is broadly innervated by axon projections from both populations of neurons. Orexin-A and MCH were expressed in each OB layer across its anterior to posterior axis. Both orexin-A and MCH neurons are genetically heterogeneous, with subsets that co-express an isoform of vesicular glutamate transporter (VGLUT). We used high-resolution confocal imaging to test whether the projections from orexin-A and MCH neurons to the OB reflect this glutamatergic heterogeneity. The majority (~57%) of putative orexin-A axon terminals overlapped with VGLUT2, with smaller proportions that co-expressed VGLUT1, or that did not overlap with either VGLUT1 or VGLUT2. In contrast, only ~26% of putative MCH axon terminals overlapped with VGLUT2, with the majority not overlapping with either VGLUT. Therefore, the projections from the lateral hypothalamus to the OB are genetically heterogeneous and include neurons that can release two different neuropeptides. The projections from both populations are themselves genetically heterogeneous with distinct ratios of glutamatergic and non-glutamatergic axon terminals.
Collapse
Affiliation(s)
- Meizhu Qi
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
| | - Julia Won
- Department of Biological Science, Florida State University, Tallahassee, FL
| | | | - Douglas A. Storace
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL
| |
Collapse
|
8
|
Chu X, Ge Y, Geng C, Cao P, Wei P, Fu B, Deng Z, Li Y, Zhao G. Lactate Ameliorates Kainic Acid-Induced Neuroinflammation and Cognitive Impairment via the Chemokine Signaling Pathway in Mice. J Inflamm Res 2025; 18:1235-1254. [PMID: 39897526 PMCID: PMC11784417 DOI: 10.2147/jir.s498738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
Purpose Lactate, previously considered a metabolic waste product, has been shown to have neuroprotective potential. This study aims to investigate the impact of lactate intervention and its underlying mechanisms on epilepsy. Methods HT22 cells were stimulated with glutamate to construct an excitotoxicity cell model. An acute epilepsy model was established in mice by kainic acid induction. The neuronal damage, microglial activation, inflammatory responses, and functional changes were determined by TUNEL assays, immunohistochemistry, quantitative real-time polymerase chain reaction and behavioral tests. The differentially gene expression and functional enrichment were analyzed with RNA sequencing. Results The in vitro lactate intervention reduced the number of apoptotic cells, the release of inflammatory factors, and the expression of vesicular glutamate transporter 1. In mice with acute epilepsy, lactate treatment mitigated neuronal damage, microglial activation, and inflammatory responses in the hippocampus and ameliorated anxiety-like behavior and cognitive impairment. Conclusion Lactate exerts therapeutic effects on epilepsy through the chemokine signaling pathway. The neuroinflammation is an important contributor to cognitive impairment. Targeting inflammatory pathways is a promising strategy for improving the prognosis of epilepsy.
Collapse
Affiliation(s)
- Xiaoqi Chu
- Optometry Institute, School of Medicine Nankai University, Tianjin, People’s Republic of China
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, People’s Republic of China
| | - Yusong Ge
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Chao Geng
- Optometry Institute, School of Medicine Nankai University, Tianjin, People’s Republic of China
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, People’s Republic of China
| | - Peipei Cao
- Optometry Institute, School of Medicine Nankai University, Tianjin, People’s Republic of China
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, People’s Republic of China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, People’s Republic of China
| | - Bin Fu
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, People’s Republic of China
| | - Zihao Deng
- Cancer Center, Capital Medical University, Beijing, People’s Republic of China
| | - Yuhao Li
- Central Laboratory, Xuanwu Hospital Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, People’s Republic of China
- Department of Pathology, School of Medicine Nankai University, Tianjin, People’s Republic of China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, People’s Republic of China
- National Medical Center for Neurological Diseases, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Fujise K, Mishra J, Rosenfeld MS, Rafiq NM. Synaptic vesicle characterization of iPSC-derived dopaminergic neurons provides insight into distinct secretory vesicle pools. NPJ Parkinsons Dis 2025; 11:16. [PMID: 39788994 PMCID: PMC11718109 DOI: 10.1038/s41531-024-00862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
The dysfunction of dopaminergic (DA) neurons is central to Parkinson's disease. Distinct synaptic vesicle (SV) populations, differing in neurotransmitter content (dopamine vs. glutamate), may vary due to differences in trafficking and exocytosis. However, the structural organization of these vesicles remains unclear. In this study, we examined axonal varicosities in human iPSC-derived DA and glutamatergic neurons (i3Neurons). i3Neurons primarily contained small, clear SVs (40-50 nm), whereas DA neurons contained larger, pleiomorphic vesicles including dense core and empty vesicles, in addition to the classical SVs. VMAT2-positive vesicles in DA neurons, which load dopamine, were spatially segregated from VGLUT1/2-positive vesicles in an SV-like reconstitution system. These vesicles also colocalized with SV markers (e.g., VAMP2, SV2C), and can be clustered by synapsin. Moreover, DA axonal terminals in mouse striata showed similar vesicle pool diversity. These findings reveal structural differences in DA neurons' vesicles, highlighting iPSC-derived neurons as effective models for studying presynaptic structures.
Collapse
Affiliation(s)
- Kenshiro Fujise
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Jaya Mishra
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Nisha Mohd Rafiq
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Tsuji RK, Hamerschmidt R, Lavinsky J, Felix F, Silva VAR. Brazilian Society of Otology task force - cochlear implant ‒ recommendations based on strength of evidence. Braz J Otorhinolaryngol 2025; 91:101512. [PMID: 39442262 PMCID: PMC11539123 DOI: 10.1016/j.bjorl.2024.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE To make evidence-based recommendations for the indications and complications of Cochlear Implant (CI) surgery in adults and children. METHODS Task force members were educated on knowledge synthesis methods, including electronic database search, review and selection of relevant citations, and critical appraisal of selected studies. Articles written in English or Portuguese on cochlear implantation were eligible for inclusion. The American College of Physicians' guideline grading system and the American Thyroid Association's guideline criteria were used for critical appraisal of evidence and recommendations for therapeutic interventions. RESULTS The topics were divided into 2 parts: (1) Evaluation of candidate patients and indications for CI surgery; (2) CI surgery - techniques and complications. CONCLUSIONS CI is a safe device for auditory rehabilitation of patients with severe-to-profound hearing loss. In recent years, indications for unilateral hearing loss and vestibular schwannoma have been expanded, with encouraging results. However, for a successful surgery, commitment of family members and patients in the hearing rehabilitation process is essential.
Collapse
Affiliation(s)
- Robinson Koji Tsuji
- Universidade de São Paulo (USP), Faculdade de Medicina, Departamento de Otorrinolaringologia, São Paulo, SP, Brazil
| | - Rogério Hamerschmidt
- Universidade Federal do Paraná (UFPR), Departamento de Otorrinolaringologia, Curitiba, PR, Brazil
| | - Joel Lavinsky
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Ciências Morfológicas, Porto Alegre, RS, Brazil
| | - Felippe Felix
- Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho (HUCFF), Rio de Janeiro, RJ, Brazil
| | - Vagner Antonio Rodrigues Silva
- Universidade de Campinas (Unicamp), Faculdade de Ciências Médicas (FCM), Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil.
| |
Collapse
|
11
|
Kitchigina VF. Colocalization of Neurotransmitters in Hippocampus and Afferent Systems: Possible Functional Role. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:61-78. [PMID: 40058974 DOI: 10.1134/s0006297924603915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 05/13/2025]
Abstract
In neurophysiology, the transmitter phenotype is considered as an indicator of neuronal identity. It has become known at the end of last century that a nerve cell can produce and use several different molecules to communicate with other neurons. These could be "classical" transmitters: glutamate or gamma-aminobutyric acid (or acetylcholine, serotonin, norepinephrine), as well as secondary messengers, mainly neuropeptides released from the same neurons. In the case, when classical neurotransmitters are released together from the same nerve cell, this event is called cotransmission or corelease (release from the same vesicles). In this review article, the term "cotransmission" is used in a broad sense, denoting neurons that can release more than one classical mediator. Since transmitters are often intermediate products of metabolism and are found in many cells, the neuron classification is currently based on the carrier proteins (transporters) that "pack" neurotransmitters synthesized in the cytoplasm into vesicles. Here, we limit the issue of colocalization of the main neurotransmitters in mammals to the neurons of hippocampus and those structures that send their pathways to it. The review considers problems concerning the mechanisms of multitransmitter signaling, as well as probable functional role of mediator colocalization in the work of hippocampus, which yet has been poorly understood. It has been suggested that co-expression of different mediator phenotypes is involved in maintaining the balance of excitation and inhibition in different regions of hippocampus, facilitates rapid selection of information processing mode, induction of long-term potentiation, maintenance of spatial coding by place cells, as well as ensuring flexibility of learning and formation of working memory. However, the functional role of mediator colocalization, as well as the mechanisms of release of "dual" transmitters, have not been fully elucidated. The solution of these problems will advance some areas of fundamental neuroscience and help in the treatment of those diseases, where disruption of the balance between excitation and inhibition is detected, such as, for example, in epilepsy, Alzheimer's disease, and many others.
Collapse
Affiliation(s)
- Valentina F Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
12
|
O'Shea MJ, Anversa RG, Ch'ng SS, Campbell EJ, Walker LC, Andrews ZB, Lawrence AJ, Brown RM. An Island of Reil excitation: Mapping glutamatergic (vGlut1+ and vGlut2+) connections in the medial insular cortex. Biochem Pharmacol 2024; 230:116637. [PMID: 39561925 DOI: 10.1016/j.bcp.2024.116637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The insular cortex is a multifunctional and richly connected region of the cerebral cortex, critical in the neural integration of external stimuli and internal signals. Well-served for this role by a large network of afferent and efferent connections, the mouse insula can be simplified into an anterior, medial and posterior portion. Here we focus on the medial subregion, a once over-looked area that has gained recent attention for its involvement in an array of behaviours. Although the connections of medial insular cortex neurons have been previously identified, their precise glutamatergic phenotype remains undefined (typically defined by the presence of the subtype of vesicular glutamate transporters). Hence, we combined Cre knock-in mouse lines and adeno-associated viral tracing to distinguish between the expression of the two major vesicular glutamate transporters, type 1 (vGlut1) and 2 (vGlut2), in the subregion's neuronal inputs and outputs. Our results determined that the medial insula has extensive glutamatergic efferents expressing both vGlut1 and vGlut2 throughout the neuraxis. In contrast, a more conservative number of glutamatergic inputs were observed, with exclusively vGlut2+ projections received from hypothalamic and thalamic regions. Taken together, we demonstrate that vGlut1- and vGlut2-expressing networks of this insular subdivision have distinct connectivity patterns, including a greater abundance of vGlut1+ fibres innervating hypothalamic regions and the extended amygdala. These findings provide insight into the distinct chemo-architecture of this region, which may facilitate further investigation into the role of the medial insula in complex behaviour.
Collapse
Affiliation(s)
- Mia Jessica O'Shea
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Roberta Goncalves Anversa
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Sarah Sulaiman Ch'ng
- Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Erin Jane Campbell
- Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Leigh Clasina Walker
- Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Zane Bruce Andrews
- Monash Biomedicine Discovery Institute, Clayton, VIC, Australia; Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Andrew John Lawrence
- Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Robyn Mary Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
13
|
Ceballos CC, Ma L, Qin M, Zhong H. Widespread co-release of glutamate and GABA throughout the mouse brain. Commun Biol 2024; 7:1502. [PMID: 39537846 PMCID: PMC11560972 DOI: 10.1038/s42003-024-07198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Several brain neuronal populations transmit both the excitatory and inhibitory neurotransmitters, glutamate, and GABA. However, it remains largely unknown whether these opposing neurotransmitters are co-released simultaneously or are independently transmitted at different times and locations. By recording from acute mouse brain slices, we observed biphasic miniature postsynaptic currents, i.e., minis with time-locked excitatory and inhibitory currents, in striatal spiny projection neurons. This observation cannot be explained by accidental coincidence of monophasic excitatory and inhibitory minis. Interestingly, these biphasic minis could either be an excitatory current leading an inhibitory current or vice versa. Deletion of dopaminergic neurons did not eliminate biphasic minis, indicating that they originate from another source. Importantly, we found that both types of biphasic minis were present in multiple striatal neuronal types and in nine out of ten other brain regions. Overall, co-release of glutamate and GABA appears to be a widespread mode of neurotransmission in the brain.
Collapse
Affiliation(s)
- Cesar C Ceballos
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lei Ma
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Maozhen Qin
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
14
|
Boo KJ, Kim DH, Cho E, Kim DH, Jeon SJ, Shin CY. Neonatal dysregulation of 2-arachidonoylglycerol induces impaired brain function in adult mice. Neuropharmacology 2024; 257:110045. [PMID: 38885736 DOI: 10.1016/j.neuropharm.2024.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The endocannabinoid system (ECS) regulates neurotransmission linked to synaptic plasticity, cognition, and emotion. While it has been demonstrated that dysregulation of the ECS in adulthood is relevant not only to central nervous system (CNS) disorders such as autism spectrum disorder, cognitive dysfunction, and depression but also to brain function, there are few studies on how dysregulation of the ECS in the neonatal period affects the manifestation and pathophysiology of CNS disorders later in life. In this study, DO34, a diacylglycerol lipase alpha (DAGLα) inhibitor affecting endocannabinoid 2-AG production, was injected into C57BL/6N male mice from postnatal day (PND) 7 to PND 10, inducing dysregulation of the ECS in the neonatal period. Subsequently, we examined whether it affects neuronal function in adulthood through electrophysiological and behavioral evaluation. DO34-injected mice showed significantly decreased cognitive functions, attributed to impairment of hippocampal synaptic plasticity. The findings suggest that regulation of ECS activity in the neonatal period may induce enduring effects on adult brain function.
Collapse
Affiliation(s)
- Kyung-Jun Boo
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dae Hyun Kim
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eunbi Cho
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea.
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea; Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
15
|
Ricci A, Rubino E, Serra GP, Wallén-Mackenzie Å. Concerning neuromodulation as treatment of neurological and neuropsychiatric disorder: Insights gained from selective targeting of the subthalamic nucleus, para-subthalamic nucleus and zona incerta in rodents. Neuropharmacology 2024; 256:110003. [PMID: 38789078 DOI: 10.1016/j.neuropharm.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.
Collapse
Affiliation(s)
- Alessia Ricci
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Eleonora Rubino
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Gian Pietro Serra
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Åsa Wallén-Mackenzie
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
16
|
Boudries R, Williams H, Paquereau-Gaboreau S, Bashir S, Hojjat Jodaylami M, Chisanga M, Trudeau LÉ, Masson JF. Surface-Enhanced Raman Scattering Nanosensing and Imaging in Neuroscience. ACS NANO 2024; 18:22620-22647. [PMID: 39088751 DOI: 10.1021/acsnano.4c05200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Monitoring neurochemicals and imaging the molecular content of brain tissues in vitro, ex vivo, and in vivo is essential for enhancing our understanding of neurochemistry and the causes of brain disorders. This review explores the potential applications of surface-enhanced Raman scattering (SERS) nanosensors in neurosciences, where their adoption could lead to significant progress in the field. These applications encompass detecting neurotransmitters or brain disorders biomarkers in biofluids with SERS nanosensors, and imaging normal and pathological brain tissues with SERS labeling. Specific studies highlighting in vitro, ex vivo, and in vivo analysis of brain disorders using fit-for-purpose SERS nanosensors will be detailed, with an emphasis on the ability of SERS to detect clinically pertinent levels of neurochemicals. Recent advancements in designing SERS-active nanomaterials, improving experimentation in biofluids, and increasing the usage of machine learning for interpreting SERS spectra will also be discussed. Furthermore, we will address the tagging of tissues presenting pathologies with nanoparticles for SERS imaging, a burgeoning domain of neuroscience that has been demonstrated to be effective in guiding tumor removal during brain surgery. The review also explores future research applications for SERS nanosensors in neuroscience, including monitoring neurochemistry in vivo with greater penetration using surface-enhanced spatially offset Raman scattering (SESORS), near-infrared lasers, and 2-photon techniques. The article concludes by discussing the potential of SERS for investigating the effectiveness of therapies for brain disorders and for integrating conventional neurochemistry techniques with SERS sensing.
Collapse
Affiliation(s)
- Ryma Boudries
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Hannah Williams
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Soraya Paquereau-Gaboreau
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Saba Bashir
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Maryam Hojjat Jodaylami
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Malama Chisanga
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
17
|
Mercado NM, Szarowicz C, Stancati JA, Sortwell CE, Boezwinkle SA, Collier TJ, Caulfield ME, Steece-Collier K. Advancing age and the rs6265 BDNF SNP are permissive to graft-induced dyskinesias in parkinsonian rats. NPJ Parkinsons Dis 2024; 10:163. [PMID: 39179609 PMCID: PMC11344059 DOI: 10.1038/s41531-024-00771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
The rs6265 single nucleotide polymorphism (SNP) in the gene for brain-derived neurotrophic factor is a common variant that alters therapeutic outcomes for individuals with Parkinson's disease (PD). We previously investigated the effects of this SNP on the experimental therapeutic approach of neural grafting, demonstrating that young adult parkinsonian rats carrying the variant Met allele exhibited enhanced graft function compared to wild-type rats and also exclusively developed aberrant graft-induced dyskinesias (GID). Aging is the primary risk factor for PD and reduces graft efficacy. Here we investigated whether aging interacts with this SNP to further alter cell transplantation outcomes. We hypothesized that aging would reduce enhancement of graft function associated with this genetic variant and exacerbate GID in all grafted subjects. Unexpectedly, beneficial graft function was maintained in aged rs6265 subjects. However, aging was permissive to GID induction, regardless of genotype, with the greatest incidence and severity found in rs6265-expressing animals.
Collapse
Affiliation(s)
- Natosha M Mercado
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Carlye Szarowicz
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Jennifer A Stancati
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA
| | - Samuel A Boezwinkle
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Timothy J Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA
| | - Margaret E Caulfield
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
18
|
Favier M, Martin Garcia E, Icick R, de Almeida C, Jehl J, Desplanque M, Zimmermann J, Henrion A, Mansouri-Guilani N, Mounier C, Ribeiro S, Henderson F, Geoffroy A, Mella S, Poirel O, Bernard V, Fabre V, Li Y, Rosenmund C, Jamain S, Vorspan F, Mourot A, Duriez P, Pinhas L, Maldonado R, Pietrancosta N, Daumas S, El Mestikawy S. The human VGLUT3-pT8I mutation elicits uneven striatal DA signaling, food or drug maladaptive consumption in male mice. Nat Commun 2024; 15:5691. [PMID: 38971801 PMCID: PMC11227582 DOI: 10.1038/s41467-024-49371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/07/2024] [Indexed: 07/08/2024] Open
Abstract
Cholinergic striatal interneurons (ChIs) express the vesicular glutamate transporter 3 (VGLUT3) which allows them to regulate the striatal network with glutamate and acetylcholine (ACh). In addition, VGLUT3-dependent glutamate increases ACh vesicular stores through vesicular synergy. A missense polymorphism, VGLUT3-p.T8I, was identified in patients with substance use disorders (SUDs) and eating disorders (EDs). A mouse line was generated to understand the neurochemical and behavioral impact of the p.T8I variant. In VGLUT3T8I/T8I male mice, glutamate signaling was unchanged but vesicular synergy and ACh release were blunted. Mutant male mice exhibited a reduced DA release in the dorsomedial striatum but not in the dorsolateral striatum, facilitating habit formation and exacerbating maladaptive use of drug or food. Increasing ACh tone with donepezil reversed the self-starvation phenotype observed in VGLUT3T8I/T8I male mice. Our study suggests that unbalanced dopaminergic transmission in the dorsal striatum could be a common mechanism between SUDs and EDs.
Collapse
Affiliation(s)
- Mathieu Favier
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada.
| | - Elena Martin Garcia
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Romain Icick
- Département de Psychiatrie et de Médecine Addictologique, DMU Neurosciences, APHP.Nord, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, F-75010, France
- INSERM U1144, "Therapeutic optimization in neuropsychopharmacology", Paris, F-75006, France
- Université Paris Cité, Inserm UMR-S1144, Paris, F-75006, France
- Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neurosciences, Institut Pasteur, Paris, F-75015, France
| | - Camille de Almeida
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Joachim Jehl
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
- Brain Plasticity Unit, CNRS UMR 8249, ESPCI Paris, PSL Research University, 75005, Paris, France
| | - Mazarine Desplanque
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Johannes Zimmermann
- Neurocure NWFZ, Charite Universitaetsmedizin, Institut für Neurophysiologie, Charitéplatz 1, 10117, Berlin, Germany
| | - Annabelle Henrion
- Fondation FondaMental, Créteil, France
- Université Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, F-94010, Créteil, France
| | - Nina Mansouri-Guilani
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Coline Mounier
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada
| | - Svethna Ribeiro
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada
| | - Fiona Henderson
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Andrea Geoffroy
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Sebastien Mella
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Odile Poirel
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Véronique Bernard
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Véronique Fabre
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Christian Rosenmund
- Neurocure NWFZ, Charite Universitaetsmedizin, Institut für Neurophysiologie, Charitéplatz 1, 10117, Berlin, Germany
| | - Stéphane Jamain
- Fondation FondaMental, Créteil, France
- Université Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, F-94010, Créteil, France
| | - Florence Vorspan
- Département de Psychiatrie et de Médecine Addictologique, DMU Neurosciences, APHP.Nord, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, F-75010, France
- INSERM U1144, "Therapeutic optimization in neuropsychopharmacology", Paris, F-75006, France
- Université Paris Cité, Inserm UMR-S1144, Paris, F-75006, France
| | - Alexandre Mourot
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
- Brain Plasticity Unit, CNRS UMR 8249, ESPCI Paris, PSL Research University, 75005, Paris, France
| | - Philibert Duriez
- GHU Paris Psychiatrie et Neurosciences (CMME, Hospital Sainte-Anne), Institute of Psychiatry and Neuroscience of Paris (INSERM UMR1266), Paris, France
| | - Leora Pinhas
- PHLIP Mental Health and Painless Medicine clinic, Toronto, Canada
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Nicolas Pietrancosta
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
- LCBPT, Université Paris Descartes, Sorbonne Paris Cité, UMR 8601, CNRS, Paris, 75006, France
| | - Stéphanie Daumas
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Salah El Mestikawy
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada.
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France.
| |
Collapse
|
19
|
Recinto SJ, Premachandran S, Mukherjee S, Allot A, MacDonald A, Yaqubi M, Gruenheid S, Trudeau LE, Stratton JA. Characterizing enteric neurons in dopamine transporter (DAT)-Cre reporter mice reveals dopaminergic subtypes with dual-transmitter content. Eur J Neurosci 2024; 59:2465-2482. [PMID: 38487941 DOI: 10.1111/ejn.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 05/22/2024]
Abstract
The enteric nervous system (ENS) comprises a complex network of neurons whereby a subset appears to be dopaminergic although the characteristics, roles, and implications in disease are less understood. Most investigations relating to enteric dopamine (DA) neurons rely on immunoreactivity to tyrosine hydroxylase (TH)-the rate-limiting enzyme in the production of DA. However, TH immunoreactivity is likely to provide an incomplete picture. This study herein provides a comprehensive characterization of DA neurons in the gut using a reporter mouse line, expressing a fluorescent protein (tdTomato) under control of the DA transporter (DAT) promoter. Our findings confirm a unique localization of DA neurons in the gut and unveil the discrete subtypes of DA neurons in this organ, which we characterized using both immunofluorescence and single-cell transcriptomics, as well as validated using in situ hybridization. We observed distinct subtypes of DAT-tdTomato neurons expressing co-transmitters and modulators across both plexuses; some of them likely co-releasing acetylcholine, while others were positive for a slew of canonical DAergic markers (TH, VMAT2 and GIRK2). Interestingly, we uncovered a seemingly novel population of DA neurons unique to the ENS which was ChAT/DAT-tdTomato-immunoreactive and expressed Grp, Calcb, and Sst. Given the clear heterogeneity of DAergic gut neurons, further investigation is warranted to define their functional signatures and decipher their implication in disease.
Collapse
Affiliation(s)
- Sherilyn Junelle Recinto
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Shobina Premachandran
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Sriparna Mukherjee
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Pharmacology and Physiology, Department of Neurosciences, Université de Montreal, Faculty of Medicine, SNC and CIRCA Research Groups, Montreal, Quebec, Canada
| | - Alexis Allot
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Adam MacDonald
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Moein Yaqubi
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Samantha Gruenheid
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Louis-Eric Trudeau
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Pharmacology and Physiology, Department of Neurosciences, Université de Montreal, Faculty of Medicine, SNC and CIRCA Research Groups, Montreal, Quebec, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
20
|
Akter M, Cui H, Hosain MA, Liu J, Duan Y, Ding B. RANBP17 Overexpression Restores Nucleocytoplasmic Transport and Ameliorates Neurodevelopment in Induced DYT1 Dystonia Motor Neurons. J Neurosci 2024; 44:e1728232024. [PMID: 38438257 PMCID: PMC11007476 DOI: 10.1523/jneurosci.1728-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
DYT1 dystonia is a debilitating neurological movement disorder, and it represents the most frequent and severe form of hereditary primary dystonia. There is currently no cure for this disease due to its unclear pathogenesis. In our previous study utilizing patient-specific motor neurons (MNs), we identified distinct cellular deficits associated with the disease, including a deformed nucleus, disrupted neurodevelopment, and compromised nucleocytoplasmic transport (NCT) functions. However, the precise molecular mechanisms underlying these cellular impairments have remained elusive. In this study, we revealed the genome-wide changes in gene expression in DYT1 MNs through transcriptomic analysis. We found that those dysregulated genes are intricately involved in neurodevelopment and various biological processes. Interestingly, we identified that the expression level of RANBP17, a RAN-binding protein crucial for NCT regulation, exhibited a significant reduction in DYT1 MNs. By manipulating RANBP17 expression, we further demonstrated that RANBP17 plays an important role in facilitating the nuclear transport of both protein and transcript cargos in induced human neurons. Excitingly, the overexpression of RANBP17 emerged as a substantial mitigating factor, effectively restoring impaired NCT activity and rescuing neurodevelopmental deficits observed in DYT1 MNs. These findings shed light on the intricate molecular underpinnings of impaired NCT in DYT1 neurons and provide novel insights into the pathophysiology of DYT1 dystonia, potentially leading to the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Masuma Akter
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Haochen Cui
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Md Abir Hosain
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Jinmei Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Yuntian Duan
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| |
Collapse
|
21
|
Kim JH, Chen W, Chao ES, Rivera A, Kaku HN, Jiang K, Lee D, Chen H, Vega JM, Chin TV, Jin K, Nguyen KT, Zou SS, Moin Z, Nguyen S, Xue 薛名杉 M. GABAergic/Glycinergic and Glutamatergic Neurons Mediate Distinct Neurodevelopmental Phenotypes of STXBP1 Encephalopathy. J Neurosci 2024; 44:e1806232024. [PMID: 38360746 PMCID: PMC10993039 DOI: 10.1523/jneurosci.1806-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/09/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
An increasing number of pathogenic variants in presynaptic proteins involved in the synaptic vesicle cycle are being discovered in neurodevelopmental disorders. The clinical features of these synaptic vesicle cycle disorders are diverse, but the most prevalent phenotypes include intellectual disability, epilepsy, movement disorders, cerebral visual impairment, and psychiatric symptoms ( Verhage and Sørensen, 2020; Bonnycastle et al., 2021; John et al., 2021; Melland et al., 2021). Among this growing list of synaptic vesicle cycle disorders, the most frequent is STXBP1 encephalopathy caused by de novo heterozygous pathogenic variants in syntaxin-binding protein 1 (STXBP1, also known as MUNC18-1; Verhage and Sørensen, 2020; John et al., 2021). STXBP1 is an essential protein for presynaptic neurotransmitter release. Its haploinsufficiency is the main disease mechanism and impairs both excitatory and inhibitory neurotransmitter release. However, the disease pathogenesis and cellular origins of the broad spectrum of neurological phenotypes are poorly understood. Here we generate cell type-specific Stxbp1 haploinsufficient male and female mice and show that Stxbp1 haploinsufficiency in GABAergic/glycinergic neurons causes developmental delay, epilepsy, and motor, cognitive, and psychiatric deficits, recapitulating majority of the phenotypes observed in the constitutive Stxbp1 haploinsufficient mice and STXBP1 encephalopathy. In contrast, Stxbp1 haploinsufficiency in glutamatergic neurons results in a small subset of cognitive and seizure phenotypes distinct from those caused by Stxbp1 haploinsufficiency in GABAergic/glycinergic neurons. Thus, the contrasting roles of excitatory and inhibitory signaling reveal GABAergic/glycinergic dysfunction as a key disease mechanism of STXBP1 encephalopathy and suggest the possibility to selectively modulate disease phenotypes by targeting specific neurotransmitter systems.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Wu Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Eugene S Chao
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Armando Rivera
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Heet Naresh Kaku
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Kevin Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Dongwon Lee
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Hongmei Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Jaimie M Vega
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Teresa V Chin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Kevin Jin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Kelly T Nguyen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Sheldon S Zou
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Zain Moin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Shawn Nguyen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Mingshan Xue 薛名杉
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
22
|
Wiesman AI, da Silva Castanheira J, Fon EA, Baillet S, PREVENT-AD Research Group, Quebec Parkinson Network. Alterations of Cortical Structure and Neurophysiology in Parkinson's Disease Are Aligned with Neurochemical Systems. Ann Neurol 2024; 95:802-816. [PMID: 38146745 PMCID: PMC11023768 DOI: 10.1002/ana.26871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) affects the structural integrity and neurophysiological signaling of the cortex. These alterations are related to the motor and cognitive symptoms of the disease. How these changes are related to the neurochemical systems of the cortex is unknown. METHODS We used T1-weighted magnetic resonance imaging (MRI) and magnetoencephalography (MEG) to measure cortical thickness and task-free neurophysiological activity in patients with idiopathic PD (nMEG = 79, nMRI = 65) and matched healthy controls (nMEG = 65, nMRI = 37). Using linear mixed-effects models, we examined the topographical alignment of cortical structural and neurophysiological alterations in PD with cortical atlases of 19 neurotransmitter receptor and transporter densities. RESULTS We found that neurophysiological alterations in PD occur primarily in brain regions rich in acetylcholinergic, serotonergic, and glutamatergic systems, with protective implications for cognitive and psychiatric symptoms. In contrast, cortical thinning occurs preferentially in regions rich in noradrenergic systems, and the strength of this alignment relates to motor deficits. INTERPRETATION This study shows that the spatial organization of neurophysiological and structural alterations in PD is relevant for nonmotor and motor impairments. The data also advance the identification of the neurochemical systems implicated. The approach uses novel nested atlas modeling methodology that is transferrable to research in other neurological and neuropsychiatric diseases and syndromes. ANN NEUROL 2024;95:802-816.
Collapse
Affiliation(s)
- Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Edward A. Fon
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | |
Collapse
|
23
|
Gullino LS, Fuller C, Dunn P, Collins HM, El Mestikawy S, Sharp T. Evidence for a Role of 5-HT-glutamate Co-releasing Neurons in Acute Stress Mechanisms. ACS Chem Neurosci 2024; 15:1185-1196. [PMID: 38377469 PMCID: PMC10958520 DOI: 10.1021/acschemneuro.3c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
A major subpopulation of midbrain 5-hydroxytryptamine (5-HT) neurons expresses the vesicular glutamate transporter 3 (VGLUT3) and co-releases 5-HT and glutamate, but the function of this co-release is unclear. Given the strong links between 5-HT and uncontrollable stress, we used a combination of c-Fos immunohistochemistry and conditional gene knockout mice to test the hypothesis that glutamate co-releasing 5-HT neurons are activated by stress and involved in stress coping. Acute, uncontrollable swim stress increased c-Fos immunoreactivity in neurons co-expressing VGLUT3 and the 5-HT marker tryptophan hydroxylase 2 (TPH2) in the dorsal raphe nucleus (DRN). This effect was localized in the ventral DRN subregion and prevented by the antidepressant fluoxetine. In contrast, a more controllable stressor, acute social defeat, had no effect on c-Fos immunoreactivity in VGLUT3-TPH2 co-expressing neurons in the DRN. To test whether activation of glutamate co-releasing 5-HT neurons was causally linked to stress coping, mice with a specific deletion of VGLUT3 in 5-HT neurons were exposed to acute swim stress. Compared to wildtype controls, the mutant mice showed increased climbing behavior, a measure of active coping. Wildtype mice also showed increased climbing when administered fluoxetine, revealing an interesting parallel between the behavioral effects of genetic loss of VGLUT3 in 5-HT neurons and 5-HT reuptake inhibition. We conclude that 5-HT-glutamate co-releasing neurons are recruited by exposure to uncontrollable stress. Furthermore, natural variation in the balance of 5-HT and glutamate co-released at the 5-HT synapse may impact stress susceptibility.
Collapse
Affiliation(s)
- L. Sophie Gullino
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Cara Fuller
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Poppy Dunn
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Helen M. Collins
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Salah El Mestikawy
- Douglas
Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC H4H
1R3, Canada
- Sorbonne
Université, INSERM, CNRS, Neuroscience Paris Seine –
Institut de Biologie Paris Seine (NPS – IBPS), 75005 Paris, France
| | - Trevor Sharp
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| |
Collapse
|
24
|
Hristov M, Nankova A, Andreeva-Gateva P. Alterations of the glutamatergic system in diabetes mellitus. Metab Brain Dis 2024; 39:321-333. [PMID: 37747631 DOI: 10.1007/s11011-023-01299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Diabetes mellitus (DM) is a chronic disease characterized by elevated blood glucose levels caused by a lack of insulin production (type 1 diabetes) or insulin resistance (type 2 diabetes). It is well known that DM is associated with cognitive deficits and metabolic and neurophysiological changes in the brain. Glutamate is the main excitatory neurotransmitter in the central nervous system that plays a key role in synaptic plasticity, learning, and memory processes. An increasing number of studies have suggested that abnormal activity of the glutamatergic system is implicated in the pathophysiology of DM. Dysfunction of glutamatergic neurotransmission in the central nervous system can provide an important neurobiological substrate for many disorders. Magnetic resonance spectroscopy (MRS) is a non-invasive technique that allows a better understanding of the central nervous system factors by measuring in vivo the concentrations of brain metabolites within the area of interest. Here, we briefly review the MRS studies that have examined glutamate levels in the brain of patients with DM. The present article also summarizes the available data on abnormalities in glutamatergic neurotransmission observed in different animal models of DM. In addition, the role of gut microbiota in the development of glutamatergic alterations in DM is addressed. We speculate that therapeutic strategies targeting the glutamatergic system may be beneficial in the treatment of central nervous system-related changes in diabetic patients.
Collapse
Affiliation(s)
- Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 "Zdrave" St, Sofia, 1431, Bulgaria.
| | - Anelia Nankova
- Department of Endocrinology, Faculty of Medicine, Medical University of Sofia, Sofia, 1431, Bulgaria
| | - Pavlina Andreeva-Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 "Zdrave" St, Sofia, 1431, Bulgaria
| |
Collapse
|
25
|
Prasad AA, Wallén-Mackenzie Å. Architecture of the subthalamic nucleus. Commun Biol 2024; 7:78. [PMID: 38200143 PMCID: PMC10782020 DOI: 10.1038/s42003-023-05691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The subthalamic nucleus (STN) is a major neuromodulation target for the alleviation of neurological and neuropsychiatric symptoms using deep brain stimulation (DBS). STN-DBS is today applied as treatment in Parkinson´s disease, dystonia, essential tremor, and obsessive-compulsive disorder (OCD). STN-DBS also shows promise as a treatment for refractory Tourette syndrome. However, the internal organization of the STN has remained elusive and challenges researchers and clinicians: How can this small brain structure engage in the multitude of functions that renders it a key hub for therapeutic intervention of a variety of brain disorders ranging from motor to affective to cognitive? Based on recent gene expression studies of the STN, a comprehensive view of the anatomical and cellular organization, including revelations of spatio-molecular heterogeneity, is now possible to outline. In this review, we focus attention to the neurobiological architecture of the STN with specific emphasis on molecular patterns discovered within this complex brain area. Studies from human, non-human primate, and rodent brains now reveal anatomically defined distribution of specific molecular markers. Together their spatial patterns indicate a heterogeneous molecular architecture within the STN. Considering the translational capacity of targeting the STN in severe brain disorders, the addition of molecular profiling of the STN will allow for advancement in precision of clinical STN-based interventions.
Collapse
Affiliation(s)
- Asheeta A Prasad
- University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia.
| | | |
Collapse
|
26
|
Picard K, Dolhan K, Watters JJ, Tremblay MÈ. Microglia and Sleep Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:357-377. [PMID: 39207702 DOI: 10.1007/978-3-031-55529-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sleep is a physiological state that is essential for maintaining physical and mental health. Sleep disorders and sleep deprivation therefore have many adverse effects, including an increased risk of metabolic diseases and a decline in cognitive function that may be implicated in the long-term development of neurodegenerative diseases. There is increasing evidence that microglia, the resident immune cells of the central nervous system (CNS), are involved in regulating the sleep-wake cycle and the CNS response to sleep alteration and deprivation. In this chapter, we will discuss the involvement of microglia in various sleep disorders, including sleep-disordered breathing, insomnia, narcolepsy, myalgic encephalomyelitis/chronic fatigue syndrome, and idiopathic rapid-eye-movement sleep behavior disorder. We will also explore the impact of acute and chronic sleep deprivation on microglial functions. Moreover, we will look into the potential involvement of microglia in sleep disorders as a comorbidity to Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kira Dolhan
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI, USA
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
27
|
Barcomb K, Ford CP. Alterations in neurotransmitter co-release in Parkinson's disease. Exp Neurol 2023; 370:114562. [PMID: 37802381 PMCID: PMC10842357 DOI: 10.1016/j.expneurol.2023.114562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Parkinson's disease is a neurological disorder characterized by degeneration of midbrain dopamine neurons, which results in numerous adaptations in basal ganglia circuits. Research over the past twenty-five years has identified that midbrain dopamine neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) co-release multiple other transmitters including glutamate and GABA, in addition to their canonical transmitter, dopamine. This review summarizes previous work characterizing neurotransmitter co-release from dopamine neurons, work examining potential changes in co-release dynamics that result in animal models of Parkinson's disease, and future opportunities for determining how dysfunction in co-release may contribute to circuit dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Kelsey Barcomb
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
28
|
Luyo ZNM, Lawrence AB, Stathopoulos TG, Mitrano DA. Localization and neurochemical identity of alpha1-adrenergic receptor-containing elements in the mouse locus coeruleus. J Chem Neuroanat 2023; 133:102343. [PMID: 37777094 PMCID: PMC10842017 DOI: 10.1016/j.jchemneu.2023.102343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
The locus coeruleus (LC) is the major source for norepinephrine (NE) in the brain and projects to areas involved in learning and memory, reward, arousal, attention, and autonomic functions related to stress. There are three types of adrenergic receptors that respond to NE: alpha1-, alpha2-, and beta-adrenergic receptors. Previous behavioral studies have shown the alpha1-adrenergic receptor (α1AR) to be present in the LC, however, with conflicting results. For example, it was shown that α1ARs in the LC are involved in some of the motivational effects of stimulation of the medial forebrain bundle, which was reduced by α1AR antagonist terazosin. Another study showed that during novelty-induced behavioral activation, the α1AR antagonist prazosin reduced c-fos expression in brain regions known to contain motoric α1ARs, except for the LC, where c-fos expression was enhanced. Despite new research delineating more specific connectivity of the neurons in the LC, and some roles of the adrenergic receptors, the α1ARs have not been localized at the subcellular level. Therefore, in order to gain a greater understanding of the aforementioned studies, we used immunohistochemistry at the electron microscopic (EM) level to determine which neuronal or glial elements in the LC express the α1AR. We hypothesized, based on previous work in the ventral periaqueductal gray area, that the α1AR would be found mainly presynaptically in axon terminals, and possibly in glial elements. Single labeling immunohistochemistry at the EM revealed that about 40% of labeled elements that contained the α1AR were glial elements, while approximately 50% of the labeled neuronal elements were axon terminals or small unmyelinated axons in the LC. Double labeling immunohistochemistry found the α1AR expressed in GFAP-labeled astrocytes, in both GABAergic and glutamatergic axon terminals, and in a portion of the α1AR dendrites, colocalized with tyrosine hydroxylase (TH, a marker for noradrenergic neurons). This study sheds light on the neuroanatomical framework underlying the effects of NE and pharmaceuticals acting directly or indirectly on α1ARs in the LC.
Collapse
Affiliation(s)
- Zachary N M Luyo
- Program in Neuroscience, Christopher Newport University, Newport News, VA, USA
| | - Abigail B Lawrence
- Program in Neuroscience, Christopher Newport University, Newport News, VA, USA
| | - Theodore G Stathopoulos
- Department of Molecular Biology & Chemistry, Christopher Newport University, Newport News, VA, USA
| | - Darlene A Mitrano
- Program in Neuroscience, Christopher Newport University, Newport News, VA, USA; Department of Molecular Biology & Chemistry, Christopher Newport University, Newport News, VA, USA.
| |
Collapse
|
29
|
Vrettou M, Thalhammer SB, Svensson AL, Dumas S, Nilsson KW, Wallén-Mackenzie Å, Fredriksson R, Nylander I, Comasco E. Vesicular glutamate transporter 2 expression in the ventral tegmental area of outbred male rats following exposure to nicotine and alcohol. DRUG AND ALCOHOL DEPENDENCE REPORTS 2023; 8:100180. [PMID: 37533815 PMCID: PMC10391930 DOI: 10.1016/j.dadr.2023.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Background Initiation of use/co-use of nicotine and alcohol, commonly occurring in an episodic manner during adolescence, can imprint vulnerability to the developing brain and lead to addiction. The ventral tegmental area (VTA) is a key heterogeneous region of the mesocorticolimbic circuit involved in the binge-drinking and intoxication step of the addiction circuit. Higher human post-mortem VTA expression of vesicular glutamate transporter 2 (VGLUT2), a marker of the glutamatergic phenotype also expressed in dopaminergic [Tyrosine Hydroxylase (Th)-positive] neurons, has been associated with chronic nicotine use and co-use with alcohol. Methods The present study aimed to map and characterize the Vglut2- and Th-expressing neurons in the VTA of adolescent male rats exposed or not to prolonged (six-weeks) episodic (three consecutive days/week) nicotine and/or alcohol administration. Nicotine (0.35 mg/kg free base) was injected subcutaneously, whereas alcohol (2 g/kg 20%) was administrated via gavage. Vglut2 and Th mRNA was assessed in the anterior and posterior VTA by use of in situ hybridization. Results The profile of neurons varied with substance-exposure among VTA subregions. Th-only expressing neurons were more abundant in the posterior VTA of the group exposed to nicotine-only, compared to controls. The same neurons were, on the contrary, less present in the anterior VTA of animals exposed to alcohol-only, who also displayed a higher number of Vglut2-expressing neurons in the lateral anterior VTA. Conclusions VTA Vglut2- and Th-only neurons seem differentially involved in the effects of adolescent episodic nicotine and alcohol exposure in the anterior and posterior VTA.
Collapse
Affiliation(s)
- Maria Vrettou
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Bernhard Thalhammer
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anne-Lie Svensson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Kent W Nilsson
- Centre for Clinical Research Västerås, Uppsala University, Västmanland County Hospital Västerås, Sweden
| | | | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ingrid Nylander
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Immenschuh J, Thalhammer SB, Sundström-Poromaa I, Biegon A, Dumas S, Comasco E. Sex differences in distribution and identity of aromatase gene expressing cells in the young adult rat brain. Biol Sex Differ 2023; 14:54. [PMID: 37658400 PMCID: PMC10474706 DOI: 10.1186/s13293-023-00541-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Aromatase catalyzes the synthesis of estrogens from androgens. Knowledge on its regional expression in the brain is of relevance to the behavioral implications of these hormones that might be linked to sex differences in mental health. The present study investigated the distribution of cells expressing the aromatase coding gene (Cyp19a1) in limbic regions of young adult rats of both sexes, and characterized the cell types expressing this gene. METHODS Cyp19a1 mRNA was mapped using fluorescent in situ hybridization (FISH). Co-expression with specific cell markers was assessed with double FISH; glutamatergic, gamma-aminobutyric acid (GABA)-ergic, glial, monoaminergic, as well as interneuron markers were tested. Automated quantification of the cells expressing the different genes was performed using CellProfiler. Sex differences in the number of cells expressing Cyp19a1 was tested non-parametrically, with the effect size indicated by the rank-biserial correlation. FDR correction for multiple testing was applied. RESULTS In the male brain, the highest percentage of Cyp19a1+ cells was found in the medial amygdaloid nucleus and the bed nucleus of stria terminalis, followed by the medial preoptic area, the CA2/3 fields of the hippocampus, the cortical amygdaloid nucleus and the amygdalo-hippocampal area. A lower percentage was detected in the caudate putamen, the nucleus accumbens, and the ventromedial hypothalamus. In females, the distribution of Cyp19a1+ cells was similar but at a lower percentage. In most regions, the majority of Cyp19a1+ cells were GABAergic, except for in the cortical-like regions of the amygdala where most were glutamatergic. A smaller fraction of cells co-expressed Slc1a3, suggesting expression of Cyp19a1 in astrocytes; monoaminergic markers were not co-expressed. Moreover, sex differences were detected regarding the identity of Cyp19a1+ cells. CONCLUSIONS Females show overall a lower number of cells expressing Cyp19a1 in the limbic brain. In both sexes, aromatase is expressed in a region-specific manner in GABAergic and glutamatergic neurons. These findings call for investigations of the relevance of sex-specific and region-dependent expression of Cyp19a1 in the limbic brain to sex differences in behavior and mental health.
Collapse
Affiliation(s)
- Jana Immenschuh
- Department of Women’s and Children’s Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Bernhard Thalhammer
- Department of Women’s and Children’s Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Anat Biegon
- Department of Radiology and Neurology, Stony Brook University School of Medicine, Stony Brook, NY USA
| | | | - Erika Comasco
- Department of Women’s and Children’s Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Nimgampalle M, Chakravarthy H, Sharma S, Shree S, Bhat AR, Pradeepkiran JA, Devanathan V. Neurotransmitter systems in the etiology of major neurological disorders: Emerging insights and therapeutic implications. Ageing Res Rev 2023; 89:101994. [PMID: 37385351 DOI: 10.1016/j.arr.2023.101994] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Neurotransmitters serve as chemical messengers playing a crucial role in information processing throughout the nervous system, and are essential for healthy physiological and behavioural functions in the body. Neurotransmitter systems are classified as cholinergic, glutamatergic, GABAergic, dopaminergic, serotonergic, histaminergic, or aminergic systems, depending on the type of neurotransmitter secreted by the neuron, allowing effector organs to carry out specific functions by sending nerve impulses. Dysregulation of a neurotransmitter system is typically linked to a specific neurological disorder. However, more recent research points to a distinct pathogenic role for each neurotransmitter system in more than one neurological disorder of the central nervous system. In this context, the review provides recently updated information on each neurotransmitter system, including the pathways involved in their biochemical synthesis and regulation, their physiological functions, pathogenic roles in diseases, current diagnostics, new therapeutic targets, and the currently used drugs for associated neurological disorders. Finally, a brief overview of the recent developments in neurotransmitter-based therapeutics for selected neurological disorders is offered, followed by future perspectives in that area of research.
Collapse
Affiliation(s)
- Mallikarjuna Nimgampalle
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Harshini Chakravarthy
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| | - Sapana Sharma
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Shruti Shree
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Anoop Ramachandra Bhat
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | | | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
32
|
Ducrot C, de Carvalho G, Delignat-Lavaud B, Delmas CVL, Halder P, Giguère N, Pacelli C, Mukherjee S, Bourque MJ, Parent M, Chen LY, Trudeau LE. Conditional deletion of neurexins dysregulates neurotransmission from dopamine neurons. eLife 2023; 12:e87902. [PMID: 37409563 PMCID: PMC10409506 DOI: 10.7554/elife.87902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023] Open
Abstract
Midbrain dopamine (DA) neurons are key regulators of basal ganglia functions. The axonal domain of these neurons is highly complex, with a large subset of non-synaptic release sites and a smaller subset of synaptic terminals from which in addition to DA, glutamate or GABA are also released. The molecular mechanisms regulating the connectivity of DA neurons and their neurochemical identity are unknown. An emerging literature suggests that neuroligins, trans-synaptic cell adhesion molecules, regulate both DA neuron connectivity and neurotransmission. However, the contribution of their major interaction partners, neurexins (Nrxns), is unexplored. Here, we tested the hypothesis that Nrxns regulate DA neuron neurotransmission. Mice with conditional deletion of all Nrxns in DA neurons (DAT::NrxnsKO) exhibited normal basic motor functions. However, they showed an impaired locomotor response to the psychostimulant amphetamine. In line with an alteration in DA neurotransmission, decreased levels of the membrane DA transporter (DAT) and increased levels of the vesicular monoamine transporter (VMAT2) were detected in the striatum of DAT::NrxnsKO mice, along with reduced activity-dependent DA release. Strikingly, electrophysiological recordings revealed an increase of GABA co-release from DA neuron axons in the striatum of these mice. Together, these findings suggest that Nrxns act as regulators of the functional connectivity of DA neurons.
Collapse
Affiliation(s)
- Charles Ducrot
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Gregory de Carvalho
- Department of Anatomy and Neurobiology, School of Medicine, University of California, IrvineIrvineUnited States
| | - Benoît Delignat-Lavaud
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Constantin VL Delmas
- CERVO Brain Research Centre, Department of Psychiatry and Neurosciences, Faculty of Medicine, Université LavalQuebecCanada
| | - Priyabrata Halder
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Nicolas Giguère
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of FoggiaFoggiaItaly
| | - Sriparna Mukherjee
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Marie-Josée Bourque
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Martin Parent
- CERVO Brain Research Centre, Department of Psychiatry and Neurosciences, Faculty of Medicine, Université LavalQuebecCanada
| | - Lulu Y Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, IrvineIrvineUnited States
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| |
Collapse
|
33
|
Zhao C, Wang C, Zhang H, Yan W. A mini-review of the role of vesicular glutamate transporters in Parkinson's disease. Front Mol Neurosci 2023; 16:1118078. [PMID: 37251642 PMCID: PMC10211467 DOI: 10.3389/fnmol.2023.1118078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease implicated in multiple interacting neurotransmitter pathways. Glutamate is the central excitatory neurotransmitter in the brain and plays critical influence in the control of neuronal activity. Impaired Glutamate homeostasis has been shown to be closely associated with PD. Glutamate is synthesized in the cytoplasm and stored in synaptic vesicles by vesicular glutamate transporters (VGLUTs). Following its exocytotic release, Glutamate activates Glutamate receptors (GluRs) and mediates excitatory neurotransmission. While Glutamate is quickly removed by excitatory amino acid transporters (EAATs) to maintain its relatively low extracellular concentration and prevent excitotoxicity. The involvement of GluRs and EAATs in the pathophysiology of PD has been widely studied, but little is known about the role of VGLUTs in the PD. In this review, we highlight the role of VGLUTs in neurotransmitter and synaptic communication, as well as the massive alterations in Glutamate transmission and VGLUTs levels in PD. Among them, adaptive changes in the expression level and function of VGLUTs may exert a crucial role in excitatory damage in PD, and VGLUTs are considered as novel potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiqian Yan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Ben-Tov M, Duarte F, Mooney R. A neural hub for holistic courtship displays. Curr Biol 2023; 33:1640-1653.e5. [PMID: 36944337 PMCID: PMC10249437 DOI: 10.1016/j.cub.2023.02.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Courtship displays often involve the concerted production of several distinct courtship behaviors. The neural circuits that enable the concerted production of the component behaviors of a courtship display are not well understood. Here, we identify a midbrain cell group (A11) that enables male zebra finches to produce their learned songs in concert with various other behaviors, including female-directed orientation, pursuit, and calling. Anatomical mapping reveals that A11 is at the center of a complex network including the song premotor nucleus HVC as well as brainstem regions crucial to calling and locomotion. Notably, lesioning A11 terminals in HVC blocked female-directed singing but did not interfere with female-directed calling, orientation, or pursuit. In contrast, lesioning A11 cell bodies strongly reduced and often abolished all female-directed courtship behaviors. However, males with either type of lesion still produced songs when in social isolation. Lastly, imaging calcium-related activity in A11 terminals in HVC showed that during courtship, A11 signals HVC about female-directed calls and during female-directed singing, about the transition from simpler introductory notes to the acoustically more complex syllables that depend intimately on HVC for their production. These results show how a brain region important to reproduction in both birds and mammals enables holistic courtship displays in male zebra finches, which include learning songs, calls, and other non-vocal behaviors.
Collapse
Affiliation(s)
- Mor Ben-Tov
- Department of Neurobiology, Duke University, 311 Research Drive, Durham, NC 27710, USA.
| | - Fabiola Duarte
- Department of Neurobiology, Duke University, 311 Research Drive, Durham, NC 27710, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University, 311 Research Drive, Durham, NC 27710, USA.
| |
Collapse
|
35
|
Jin S, Campbell EJ, Ip CK, Layfield S, Bathgate RAD, Herzog H, Lawrence AJ. Molecular Profiling of VGluT1 AND VGluT2 Ventral Subiculum to Nucleus Accumbens Shell Projections. Neurochem Res 2023:10.1007/s11064-023-03921-z. [PMID: 37017888 DOI: 10.1007/s11064-023-03921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
The nucleus accumbens shell is a critical node in reward circuitry, encoding environments associated with reward. Long-range inputs from the ventral hippocampus (ventral subiculum) to the nucleus accumbens shell have been identified, yet their precise molecular phenotype remains to be determined. Here we used retrograde tracing to identify the ventral subiculum as the brain region with the densest glutamatergic (VGluT1-Slc17a7) input to the shell. We then used circuit-directed translating ribosome affinity purification to examine the molecular characteristics of distinct glutamatergic (VGluT1, VGluT2-Slc17a6) ventral subiculum to nucleus accumbens shell projections. We immunoprecipitated translating ribosomes from this population of projection neurons and analysed molecular connectomic information using RNA sequencing. We found differential gene enrichment across both glutamatergic projection neuron subtypes. In VGluT1 projections, we found enrichment of Pfkl, a gene involved in glucose metabolism. In VGluT2 projections, we found a depletion of Sparcl1 and Dlg1, genes known to play a role in depression- and addiction-related behaviours. These findings highlight potential glutamatergic neuronal-projection-specific differences in ventral subiculum to nucleus accumbens shell projections. Together these data advance our understanding of the phenotype of a defined brain circuit.
Collapse
Affiliation(s)
- Shubo Jin
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sharon Layfield
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
36
|
Inhibition of Vesicular Glutamate Transporters (VGLUTs) with Chicago Sky Blue 6B Before Focal Cerebral Ischemia Offers Neuroprotection. Mol Neurobiol 2023; 60:3130-3146. [PMID: 36802054 PMCID: PMC10122628 DOI: 10.1007/s12035-023-03259-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/07/2023] [Indexed: 02/21/2023]
Abstract
Brain ischemia is one of the leading causes of death and long-term disability in the world. Interruption of the blood supply to the brain is a direct stimulus for many pathological events. The massive vesicular release of glutamate (Glu) after ischemia onset induces excitotoxicity, which is a potent stress on neurons. Loading of presynaptic vesicles with Glu is the first step of glutamatergic neurotransmission. Vesicular glutamate transporters 1, 2, and 3 (VGLUT1, 2, and 3) are the main players involved in filling presynaptic vesicles with Glu. VGLUT1 and VGLUT2 are expressed mainly in glutamatergic neurons. Therefore, the possibility of pharmacological modulation to prevent ischemia-related brain damage is attractive. In this study, we aimed to determine the effect of focal cerebral ischemia on the spatiotemporal expression of VGLUT1 and VGLUT2 in rats. Next, we investigated the influence of VGLUT inhibition with Chicago Sky Blue 6B (CSB6B) on Glu release and stroke outcome. The effect of CSB6B pretreatment on infarct volume and neurological deficit was compared with a reference model of ischemic preconditioning. The results of this study indicate that ischemia upregulated the expression of VGLUT1 in the cerebral cortex and in the dorsal striatum 3 days after ischemia onset. The expression of VGLUT2 was elevated in the dorsal striatum and in the cerebral cortex 24 h and 3 days after ischemia, respectively. Microdialysis revealed that pretreatment with CSB6B significantly reduced the extracellular Glu concentration. Altogether, this study shows that inhibition of VGLUTs might be a promising therapeutic strategy for the future.
Collapse
|
37
|
Ghatak S, Nakamura T, Lipton SA. Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer's disease: Mechanistic insights and potential therapies. Front Neural Circuits 2023; 17:1099467. [PMID: 36817649 PMCID: PMC9932935 DOI: 10.3389/fncir.2023.1099467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is arguably the most common cause of dementia in the elderly and is marked by progressive synaptic degeneration, which in turn leads to cognitive decline. Studies in patients and in various AD models have shown that one of the early signatures of AD is neuronal hyperactivity. This excessive electrical activity contributes to dysregulated neural network function and synaptic damage. Mechanistically, evidence suggests that hyperexcitability accelerates production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that contribute to neural network impairment and synapse loss. This review focuses on the pathways and molecular changes that cause hyperexcitability and how RNS-dependent posttranslational modifications, represented predominantly by protein S-nitrosylation, mediate, at least in part, the deleterious effects of hyperexcitability on single neurons and the neural network, resulting in synaptic loss in AD.
Collapse
Affiliation(s)
- Swagata Ghatak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,*Correspondence: Tomohiro Nakamura,
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States,Stuart A. Lipton,
| |
Collapse
|
38
|
de Almeida C, Chabbah N, Eyraud C, Fasano C, Bernard V, Pietrancosta N, Fabre V, El Mestikawy S, Daumas S. Absence of VGLUT3 Expression Leads to Impaired Fear Memory in Mice. eNeuro 2023; 10:ENEURO.0304-22.2023. [PMID: 36720646 PMCID: PMC9953049 DOI: 10.1523/eneuro.0304-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
Fear is an emotional mechanism that helps to cope with potential hazards. However, when fear is generalized, it becomes maladaptive and represents a core symptom of posttraumatic stress disorder (PTSD). Converging lines of research show that dysfunction of glutamatergic neurotransmission is a cardinal feature of trauma and stress related disorders such as PTSD. However, the involvement of glutamatergic co-transmission in fear is less well understood. Glutamate is accumulated into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The atypical subtype, VGLUT3, is responsible for the co-transmission of glutamate with acetylcholine, serotonin, or GABA. To understand the involvement of VGLUT3-dependent co-transmission in aversive memories, we used a Pavlovian fear conditioning paradigm in VGLUT3-/- mice. Our results revealed a higher contextual fear memory in these mice, despite a facilitation of extinction. In addition, the absence of VGLUT3 leads to fear generalization, probably because of a pattern separation deficit. Our study suggests that the VGLUT3 network plays a crucial role in regulating emotional memories. Hence, VGLUT3 is a key player in the processing of aversive memories and therefore a potential therapeutic target in stress-related disorders.
Collapse
Affiliation(s)
- Camille de Almeida
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Nida Chabbah
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Camille Eyraud
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Caroline Fasano
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal QC H4H 1R3, Quebec, Canada
| | - Véronique Bernard
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Nicolas Pietrancosta
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Véronique Fabre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Salah El Mestikawy
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal QC H4H 1R3, Quebec, Canada
| | - Stephanie Daumas
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| |
Collapse
|
39
|
Kaneko T, Kuwaki T. The opposite roles of orexin neurons in pain and itch neural processing. Peptides 2023; 160:170928. [PMID: 36566840 DOI: 10.1016/j.peptides.2022.170928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Pain and itch are antagonistically regulated sensations; pain suppresses itch, and inhibition of pain enhances itch. Understanding the central neural circuit of antagonistic regulation between pain and itch is required to develop new therapeutics better to manage these two feelings in a clinical situation. However, evidence of the neural mechanism underlying the pain-itch interaction in the central nervous system (CNS) is still insufficient. To pave the way for this research area, our laboratory has focused on orexin (ORX) producing neurons in the hypothalamus, which is known as a master switch that induces various defense responses when animals face a stressful environment. This review article summarized the previous evidence and our latest findings to argue the neural regulation between pain and itch and the bidirectional roles of ORX neurons in processing these two sensations. i.e., pain relief and itch exacerbation. Further, we discussed the possible neural circuit mechanism for the opposite controlling of pain and itch by ORX neurons. Focusing on the roles of ORX neurons would provide a new perspective to understand the antagonistic regulation of pain and itch in CNS.
Collapse
Affiliation(s)
- Tatsuroh Kaneko
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
40
|
Morais-Silva G, Campbell RR, Nam H, Basu M, Pagliusi M, Fox ME, Chan CS, Iñiguez SD, Ament S, Cramer N, Marin MT, Lobo MK. Molecular, Circuit, and Stress Response Characterization of Ventral Pallidum Npas1-Neurons. J Neurosci 2023; 43:405-418. [PMID: 36443000 PMCID: PMC9864552 DOI: 10.1523/jneurosci.0971-22.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022] Open
Abstract
Altered activity of the ventral pallidum (VP) underlies disrupted motivation in stress and drug exposure. The VP is a very heterogeneous structure composed of many neuron types with distinct physiological properties and projections. Neuronal PAS 1-positive (Npas1+) VP neurons are thought to send projections to brain regions critical for motivational behavior. While Npas1+ neurons have been characterized in the globus pallidus external, there is limited information on these neurons in the VP. To address this limitation, we evaluated the projection targets of the VP Npas1+ neurons and performed RNA-sequencing on ribosome-associated mRNA from VP Npas1+ neurons to determine their molecular identity. Finally, we used a chemogenetic approach to manipulate VP Npas1+ neurons during social defeat stress (SDS) and behavioral tasks related to anxiety and motivation in Npas1-Cre mice. We used a similar approach in females using the chronic witness defeat stress (CWDS). We identified VP Npas1+ projections to the nucleus accumbens, ventral tegmental area, medial and lateral habenula, lateral hypothalamus, thalamus, medial and lateral septum, and periaqueductal gray area. VP Npas1+ neurons displayed distinct translatome representing distinct biological processes. Chemogenetic activation of hM3D(Gq) receptors in VP Npas1+ neurons increased susceptibility to a subthreshold SDS and anxiety-like behavior in the elevated plus maze and open field while the activation of hM4D(Gi) receptors in VP Npas1+ neurons enhanced resilience to chronic SDS and CWDS. Thus, the activity of VP Npas1+ neurons modulates susceptibility to social stressors and anxiety-like behavior. Our studies provide new information on VP Npas1+ neuron circuitry, molecular identity, and their role in stress response.SIGNIFICANCE STATEMENT The ventral pallidum (VP) is a structure connected to both reward-related and aversive brain centers. It is a key brain area that signals the hedonic value of natural rewards. Disruption in the VP underlies altered motivation in stress and substance use disorder. However, VP is a very heterogeneous area with multiple neuron subtypes. This study characterized the projection pattern and molecular signatures of VP Neuronal PAS 1-positive (Npas1+) neurons. We further used tools to alter receptor signaling in VP Npas1+ neurons in stress to demonstrate a role for these neurons in stress behavioral outcomes. Our studies have implications for understanding brain cell type identities and their role in brain disorders, such as depression, a serious disorder that is precipitated by stressful events.
Collapse
Affiliation(s)
- Gessynger Morais-Silva
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, Sao Paulo 14800903, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos/Sao Paulo State University, CEP 13565-905, São Carlos/Araraquara, Brazil
| | - Rianne R Campbell
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Hyungwoo Nam
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mahashweta Basu
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Marco Pagliusi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Structural and Functional Biology, State University of Campinas, SP-13083-872, Campinas, Brazil
| | - Megan E Fox
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Sergio D Iñiguez
- Department of Psychology, University of Texas at El Paso, El Paso, Texas 79902
| | - Seth Ament
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Nathan Cramer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Marcelo Tadeu Marin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, Sao Paulo 14800903, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos/Sao Paulo State University, CEP 13565-905, São Carlos/Araraquara, Brazil
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
41
|
Saidia AR, Ruel J, Bahloul A, Chaix B, Venail F, Wang J. Current Advances in Gene Therapies of Genetic Auditory Neuropathy Spectrum Disorder. J Clin Med 2023; 12:jcm12030738. [PMID: 36769387 PMCID: PMC9918155 DOI: 10.3390/jcm12030738] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Auditory neuropathy spectrum disorder (ANSD) refers to a range of hearing impairments characterized by an impaired transmission of sound from the cochlea to the brain. This defect can be due to a lesion or defect in the inner hair cell (IHC), IHC ribbon synapse (e.g., pre-synaptic release of glutamate), postsynaptic terminals of the spiral ganglion neurons, or demyelination and axonal loss within the auditory nerve. To date, the only clinical treatment options for ANSD are hearing aids and cochlear implantation. However, despite the advances in hearing-aid and cochlear-implant technologies, the quality of perceived sound still cannot match that of the normal ear. Recent advanced genetic diagnostics and clinical audiology made it possible to identify the precise site of a lesion and to characterize the specific disease mechanisms of ANSD, thus bringing renewed hope to the treatment or prevention of auditory neurodegeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes to repair damaged cells for the future restoration of hearing in deaf people are showing promise. In this review, we provide an update on recent discoveries in the molecular pathophysiology of genetic lesions, auditory synaptopathy and neuropathy, and gene-therapy research towards hearing restoration in rodent models and in clinical trials.
Collapse
Affiliation(s)
- Anissa Rym Saidia
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
| | - Jérôme Ruel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Cognitive Neuroscience Laboratory, Aix-Marseille University, CNRS, UMR 7291, 13331 Marseille, France
| | - Amel Bahloul
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
| | - Benjamin Chaix
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
| | - Frédéric Venail
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
| | - Jing Wang
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
- Correspondence: ; Tel.: +33-499-63-60-48
| |
Collapse
|
42
|
Mi Z, Abrahamson EE, Ryu AY, Malek-Ahmadi M, Kofler JK, Fish KN, Sweet RA, Villemagne VL, Schneider JA, Mufson EJ, Ikonomovic MD. Vesicular Glutamate Transporter Changes in the Cortical Default Mode Network During the Clinical and Pathological Progression of Alzheimer's Disease. J Alzheimers Dis 2023; 94:227-246. [PMID: 37212097 PMCID: PMC10994206 DOI: 10.3233/jad-221063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND Altered glutamatergic neurotransmission may contribute to impaired default mode network (DMN) function in Alzheimer's disease (AD). Among the DMN hub regions, frontal cortex (FC) was suggested to undergo a glutamatergic plasticity response in prodromal AD, while the status of glutamatergic synapses in the precuneus (PreC) during clinical-neuropathological AD progression is not known. OBJECTIVE To quantify vesicular glutamate transporter VGluT1- and VGluT2-containing synaptic terminals in PreC and FC across clinical stages of AD. METHODS Unbiased sampling and quantitative confocal immunofluorescence of cortical VGluT1- and VGluT2-immunoreactive profiles and spinophilin-labeled dendritic spines were performed in cases with no cognitive impairment (NCI), mild cognitive impairment (MCI), mild-moderate AD (mAD), or moderate-severe AD (sAD). RESULTS In both regions, loss of VGluT1-positive profile density was seen in sAD compared to NCI, MCI, and mAD. VGluT1-positive profile intensity in PreC did not differ across groups, while in FC it was greater in MCI, mAD, and sAD compared to NCI. VGluT2 measures were stable in PreC while FC had greater VGluT2-positive profile density in MCI compared to sAD, but not NCI or mAD. Spinophilin measures in PreC were lower in mAD and sAD compared to NCI, while in FC they were stable across groups. Lower VGluT1 and spinophilin measures in PreC, but not FC, correlated with greater neuropathology. CONCLUSION Frank loss of VGluT1 in advanced AD relative to NCI occurs in both DMN regions. In FC, an upregulation of VGluT1 protein content in remaining glutamatergic terminals may contribute to this region's plasticity response in AD.
Collapse
Affiliation(s)
- Zhiping Mi
- Department of Neurology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA
Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Eric E. Abrahamson
- Department of Neurology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA
Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Angela Y. Ryu
- Department of Neurology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
| | - Michael Malek-Ahmadi
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
- Department of Biomedical Informatics, University of Arizona
College of Medicine, Phoenix, AZ, USA
| | - Julia K. Kofler
- Department of Pathology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
| | - Kenneth N. Fish
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA, USA
| | - Robert A. Sweet
- Department of Neurology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA, USA
| | - Victor L. Villemagne
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University
Medical Center, Chicago, IL, USA
| | - Elliott J. Mufson
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
- Departments of Translational Neurosciences and Neurology,
Barrow Neurological Institute, Phoenix, AZ, USA
| | - Milos D. Ikonomovic
- Department of Neurology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA
Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School
of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Chemogenetic activation of VGLUT3-expressing neurons decreases movement. Eur J Pharmacol 2022; 935:175298. [PMID: 36198338 DOI: 10.1016/j.ejphar.2022.175298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) are responsible for the storage of glutamate into secretory vesicles. The VGLUT3 isoform is mainly expressed in neurons that secrete other classical neurotransmitters, including the cholinergic interneurons in the striatum, and VGLUT3-expressing neurons often secrete two distinct neurotransmitters. VGLUT3 is discretely distributed throughout the brain and is found in subpopulations of spinal cord interneurons, in subset of neurons in the dorsal root ganglion, and in Merkel cells. Mice with a global loss of VGLUT3 are hyperactive and the modulation of specific VGLUT3-expressing circuits can lead to changes in movement. In this study, we tested the hypothesis that increased activity of VGLUT3-expressing neurons is associated with decreased movement. Using a mouse line expressing excitatory designer receptor exclusively activated by designer drugs (hM3Dq-DREADD) on VGLUT3-expressing neurons, we showed that activation of hM3Dq signalling acutely decreased locomotor activity. This decreased locomotion was likely not due to circuit changes mediated by glutamate nor acetylcholine released from VGLUT3-expressing neurons, as activation of hM3Dq signalling in mice that do not release glutamate or acetylcholine from VGLUT3-expressing neurons also decreased locomotor activity. This suggests that other neurotransmitters are likely driving this hypoactive phenotype. We used these mouse lines to compare the effects of DREADD agonists in vivo. We observed that clozapine-N-oxide (CNO), clozapine, compound 21 and perlapine show small differences in the speed at which they prompt behavioural responses but the four of them are selective DREADD ligands.
Collapse
|
44
|
Ly A, Root DH. Neuromedin U: a neuropeptide modulator of GABA transmission contributes to cocaine seeking. Neuropsychopharmacology 2022; 47:1873-1874. [PMID: 34949771 PMCID: PMC9485250 DOI: 10.1038/s41386-021-01253-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Annie Ly
- Department of Psychology and Neuroscience, University of Colorado, 2860 Wilderness Pl, Boulder, CO, 80301, USA
| | - David H Root
- Department of Psychology and Neuroscience, University of Colorado, 2860 Wilderness Pl, Boulder, CO, 80301, USA.
| |
Collapse
|
45
|
Cristofari P, Desplanque M, Poirel O, Hébert A, Dumas S, Herzog E, Danglot L, Geny D, Gilles JF, Geeverding A, Bolte S, Canette A, Trichet M, Fabre V, Daumas S, Pietrancosta N, El Mestikawy S, Bernard V. Nanoscopic distribution of VAChT and VGLUT3 in striatal cholinergic varicosities suggests colocalization and segregation of the two transporters in synaptic vesicles. Front Mol Neurosci 2022; 15:991732. [PMID: 36176961 PMCID: PMC9513193 DOI: 10.3389/fnmol.2022.991732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Striatal cholinergic interneurons (CINs) use acetylcholine (ACh) and glutamate (Glut) to regulate the striatal network since they express vesicular transporters for ACh (VAChT) and Glut (VGLUT3). However, whether ACh and Glut are released simultaneously and/or independently from cholinergic varicosities is an open question. The answer to that question requires the multichannel detection of vesicular transporters at the level of single synaptic vesicle (SV). Here, we used super-resolution STimulated Emission Depletion microscopy (STED) to characterize and quantify the distribution of VAChT and VGLUT3 in CINs SVs. Nearest-neighbor distances analysis between VAChT and VGLUT3-immunofluorescent spots revealed that 34% of CINs SVs contain both VAChT and VGLUT3. In addition, 40% of SVs expressed only VAChT while 26% of SVs contain only VGLUT3. These results suggest that SVs from CINs have the potential to store simultaneously or independently ACh and/or Glut. Overall, these morphological findings support the notion that CINs varicosities can signal with either ACh or Glut or both with an unexpected level of complexity.
Collapse
Affiliation(s)
- Paola Cristofari
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | - Mazarine Desplanque
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | - Odile Poirel
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | - Alison Hébert
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | | | - Etienne Herzog
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Lydia Danglot
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Facility, Paris, France
- GHU Paris Psychiatrie & Neurosciences, Paris, France
| | - David Geny
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Facility, Paris, France
| | - Jean-François Gilles
- Imaging Facility of the Institut de Biologie Paris-Seine (IBPS)—Sorbonne Université, Paris, France
| | - Audrey Geeverding
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Service de Microscopie Électronique (IBPS-SME), Paris, France
| | - Susanne Bolte
- Imaging Facility of the Institut de Biologie Paris-Seine (IBPS)—Sorbonne Université, Paris, France
| | - Alexis Canette
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Service de Microscopie Électronique (IBPS-SME), Paris, France
| | - Michaël Trichet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Service de Microscopie Électronique (IBPS-SME), Paris, France
| | - Véronique Fabre
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | - Stéphanie Daumas
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
- Sorbonne Université—CNRS UMR 7203—Laboratoire des BioMolécules, Paris, France
| | - Salah El Mestikawy
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Véronique Bernard
- Sorbonne Université—CNRS UMR 8246—INSERM U1130—Neuroscience Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), Paris, France
- *Correspondence: Véronique Bernard,
| |
Collapse
|
46
|
Buck SA, Quincy Erickson-Oberg M, Logan RW, Freyberg Z. Relevance of interactions between dopamine and glutamate neurotransmission in schizophrenia. Mol Psychiatry 2022; 27:3583-3591. [PMID: 35681081 PMCID: PMC9712151 DOI: 10.1038/s41380-022-01649-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 02/08/2023]
Abstract
Dopamine (DA) and glutamate neurotransmission are strongly implicated in schizophrenia pathophysiology. While most studies focus on contributions of neurons that release only DA or glutamate, neither DA nor glutamate models alone recapitulate the full spectrum of schizophrenia pathophysiology. Similarly, therapeutic strategies limited to either system cannot effectively treat all three major symptom domains of schizophrenia: positive, negative, and cognitive symptoms. Increasing evidence suggests extensive interactions between the DA and glutamate systems and more effective treatments may therefore require the targeting of both DA and glutamate signaling. This offers the possibility that disrupting DA-glutamate circuitry between these two systems, particularly in the striatum and forebrain, culminate in schizophrenia pathophysiology. Yet, the mechanisms behind these interactions and their contributions to schizophrenia remain unclear. In addition to circuit- or system-level interactions between neurons that solely release either DA or glutamate, here we posit that functional alterations involving a subpopulation of neurons that co-release both DA and glutamate provide a novel point of integration between DA and glutamate systems, offering a key missing link in our understanding of schizophrenia pathophysiology. Better understanding of mechanisms underlying DA/glutamate co-release from these neurons may therefore shed new light on schizophrenia pathophysiology and lead to more effective therapeutics.
Collapse
Affiliation(s)
- Silas A Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - M Quincy Erickson-Oberg
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
47
|
Weil T, Daly KM, Yarur Castillo H, Thomsen MB, Wang H, Mercau ME, Hattar S, Tejeda H, Fernandez DC. Daily changes in light influence mood via inhibitory networks within the thalamic perihabenular nucleus. SCIENCE ADVANCES 2022; 8:eabn3567. [PMID: 35687680 PMCID: PMC9187232 DOI: 10.1126/sciadv.abn3567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Exposure to irregular lighting schedules leads to deficits in affective behaviors. The retino-recipient perihabenular nucleus (PHb) of the dorsal thalamus has been shown to mediate these effects in mice. However, the mechanisms of how light information is processed within the PHb remains unknown. Here, we show that the PHb contains a distinct cluster of GABAergic neurons that receive direct retinal input. These neurons are part of a larger inhibitory network composed of the thalamic reticular nucleus and zona incerta, known to modulate thalamocortical communication. In addition, PHbGABA neurons locally modulate excitatory-relay neurons, which project to limbic centers. Chronic exposure to irregular light-dark cycles alters photo-responsiveness and synaptic output of PHbGABA neurons, disrupting daily oscillations of genes associated with inhibitory and excitatory PHb signaling. Consequently, selective and chronic PHbGABA manipulation results in mood alterations that mimic those caused by irregular light exposure. Together, light-mediated disruption of PHb inhibitory networks underlies mood deficits.
Collapse
Affiliation(s)
- Tenley Weil
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - K. M. Daly
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Hector Yarur Castillo
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael B. Thomsen
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria E. Mercau
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hugo Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diego C. Fernandez
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
VGLUT3 Ablation Differentially Modulates Glutamate Receptor Densities in Mouse Brain. eNeuro 2022; 9:ENEURO.0041-22.2022. [PMID: 35443989 PMCID: PMC9087739 DOI: 10.1523/eneuro.0041-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022] Open
Abstract
Type 3 vesicular glutamate transporter (VGLUT3) represents a unique modulator of glutamate release from both nonglutamatergic and glutamatergic varicosities within the brain. Despite its limited abundance, VGLUT3 is vital for the regulation of glutamate signaling and, therefore, modulates the activity of various brain microcircuits. However, little is known about how glutamate receptors are regulated by VGLUT3 across different brain regions. Here, we used VGLUT3 constitutive knock-out (VGLUT3-/-) mice and explored how VGLUT3 deletion influences total and cell surface expression of different ionotropic and metabotropic glutamate receptors. VGLUT3 deletion upregulated the overall expression of metabotropic glutamate receptors mGluR5 and mGluR2/3 in the cerebral cortex. In contrast, no change in the total expression of ionotropic NMDAR glutamate receptors were observed in the cerebral cortex of VGLUT3-/- mice. We noted significant reduction in cell surface levels of mGluR5, NMDAR2A, NMDAR2B, as well as reductions in dopaminergic D1 receptors and muscarinic M1 acetylcholine receptors in the hippocampus of VGLUT3-/- mice. Furthermore, mGluR2/3 total expression and mGluR5 cell surface levels were elevated in the striatum of VGLUT3-/- mice. Last, AMPAR subunit GluA1 was significantly upregulated throughout cortical, hippocampal, and striatal brain regions of VGLUT3-/- mice. Together, these findings complement and further support the evidence that VGLUT3 dynamically regulates glutamate receptor densities in several brain regions. These results suggest that VGLUT3 may play an intricate role in shaping glutamatergic signaling and plasticity in several brain areas.
Collapse
|
49
|
Alpaugh M, Masnata M, de Rus Jacquet A, Lepinay E, Denis HL, Saint-Pierre M, Davies P, Planel E, Cicchetti F. Passive immunization against phosphorylated tau improves features of Huntington's disease pathology. Mol Ther 2022; 30:1500-1522. [PMID: 35051614 PMCID: PMC9077324 DOI: 10.1016/j.ymthe.2022.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/05/2021] [Accepted: 01/12/2022] [Indexed: 01/07/2023] Open
Abstract
Huntington's disease is classically described as a neurodegenerative disorder of monogenic aetiology. The disease is characterized by an abnormal polyglutamine expansion in the huntingtin gene, which drives the toxicity of the mutated form of the protein. However, accumulation of the microtubule-associated protein tau, which is involved in a number of neurological disorders, has also been observed in patients with Huntington's disease. In order to unravel the contribution of tau hyperphosphorylation to hallmark features of Huntington's disease, we administered weekly intraperitoneal injections of the anti-tau pS202 CP13 monoclonal antibody to zQ175 mice and characterized the resulting behavioral and biochemical changes. After 12 weeks of treatment, motor impairments, cognitive performance and general health were improved in zQ175 mice along with a significant reduction in hippocampal pS202 tau levels. Despite the lack of effect of CP13 on neuronal markers associated with Huntington's disease pathology, tau-targeting enzymes and gliosis, CP13 was shown to directly impact mutant huntingtin aggregation such that brain levels of amyloid fibrils and huntingtin oligomers were decreased, while larger huntingtin protein aggregates were increased. Investigation of CP13 treatment of Huntington's disease patient-derived induced pluripotent stem cells (iPSCs) revealed a reduction in pS202 levels in differentiated cortical neurons and a rescue of neurite length. Collectively, these findings suggest that attenuating tau pathology could mitigate behavioral and molecular hallmarks associated with Huntington's disease.
Collapse
Affiliation(s)
- Melanie Alpaugh
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Maria Masnata
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Aurelie de Rus Jacquet
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Eva Lepinay
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Hélèna L Denis
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Martine Saint-Pierre
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Peter Davies
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emmanuel Planel
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada.
| |
Collapse
|
50
|
Upmanyu N, Jin J, Emde HVD, Ganzella M, Bösche L, Malviya VN, Zhuleku E, Politi AZ, Ninov M, Silbern I, Leutenegger M, Urlaub H, Riedel D, Preobraschenski J, Milosevic I, Hell SW, Jahn R, Sambandan S. Colocalization of different neurotransmitter transporters on synaptic vesicles is sparse except for VGLUT1 and ZnT3. Neuron 2022; 110:1483-1497.e7. [PMID: 35263617 DOI: 10.1016/j.neuron.2022.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/08/2022] [Accepted: 02/10/2022] [Indexed: 12/26/2022]
Abstract
Vesicular transporters (VTs) define the type of neurotransmitter that synaptic vesicles (SVs) store and release. While certain mammalian neurons release multiple transmitters, it is not clear whether the release occurs from the same or distinct vesicle pools at the synapse. Using quantitative single-vesicle imaging, we show that a vast majority of SVs in the rodent brain contain only one type of VT, indicating specificity for a single neurotransmitter. Interestingly, SVs containing dual transporters are highly diverse (27 types) but small in proportion (2% of all SVs), excluding the largest pool that carries VGLUT1 and ZnT3 (34%). Using VGLUT1-ZnT3 SVs, we demonstrate that the transporter colocalization influences the SV content and synaptic quantal size. Thus, the presence of diverse transporters on the same vesicle is bona fide, and depending on the VT types, this may act to regulate neurotransmitter type, content, and release in space and time.
Collapse
Affiliation(s)
- Neha Upmanyu
- Synaptic Metal Ion Dynamics and Signaling, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Jialin Jin
- European Neurosciences Institute, A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen 37077, Germany
| | - Henrik von der Emde
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Leon Bösche
- Synaptic Metal Ion Dynamics and Signaling, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Viveka Nand Malviya
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Evi Zhuleku
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Antonio Zaccaria Politi
- Live-Cell Imaging Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Ivan Silbern
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Marcel Leutenegger
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Dietmar Riedel
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Julia Preobraschenski
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen 37075, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen 37075, Germany
| | - Ira Milosevic
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, UK; Multidisciplinary Institute of Ageing, MIA-Portugal, University of Coimbra, Coimbra 3000-370, Portugal
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69028, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Sivakumar Sambandan
- Synaptic Metal Ion Dynamics and Signaling, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
| |
Collapse
|