1
|
Chien YC, Lin SH, Lien CC, Wood JN, Chen CC. Lacking ASIC1a in ASIC4-positive amygdala/bed nucleus of the stria terminalis (BNST) neurons reduces anxiety and innate fear in mice. J Biomed Sci 2025; 32:43. [PMID: 40264173 PMCID: PMC12016152 DOI: 10.1186/s12929-025-01138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Anxiety is an innate response in the face of danger. When anxiety is overwhelming or persistent, it could be considered an anxiety disorder. Recent studies have shown that acid-sensing ion channels (ASICs) represent a novel class of promising targets for developing effective therapies for anxiety. Especially, ASIC1a and ASIC4 of the ASIC family are widely expressed in the central nervous system and their gene knockouts result in reducing or enhancing anxiety-like responses in mice respectively. However, how ASIC1a and ASIC4 modulate anxiety-associated responses remains unknown. METHODS Here we combined chemo-optogenetic, conditional knockout, gene rescue, molecular biology and biochemistry, and electrophysiological approaches to probe the roles of ASIC4 and ASIC4-expressing cells in anxiety-associated responses in mouse models. RESULTS Chemo-optogenetically activating ASIC4-positive cells induced fear and anxiety-like responses in mice. Also, mice lacking ASIC4 (Asic4-/-) in the amygdala or the bed nucleus of the stria terminalis (BNST) exhibited anxiety-associated phenotypes. Conditional knockout of ASIC1a in ASIC4-positive cells reduced anxiety-associated behaviors. In situ hybridization analyses indicated that ASIC4 transcripts were highly co-localized with ASIC1a in the amygdala and BNST. We identified two glycosylation sites of ASIC4, Asn191 and Asn341, that were involved in interacting with ASIC1a and thus could modulate ASIC1a surface protein expression and channel activity. More importantly, viral vector-mediated gene transfer of wild-type ASIC4 but not Asn191 and Asn341 mutants in the amygdala or BNST rescued the anxiogenic phenotypes of Asic4-/- mice. CONCLUSIONS Together, these data suggest that ASIC4 plays an important role in fear and anxiety-related behaviors in mice by modulating ASIC1a activity in the amygdala and BNST.
Collapse
Affiliation(s)
- Ya-Chih Chien
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shing-Hong Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - John N Wood
- The Wolfson Institute for Biomedical Research, University College London, WIBR UCL, Gower Street, London, WC1E 6BT, UK.
| | - Chih-Cheng Chen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Taiwan Mouse Clinic-National Comprehensive Phenotyping and Drug Testing Center, Academia Sinica, 128, Section , Academia Road, Taipei, 115, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Sun Y, Sanders AM, Pashley DH, Alexander A, Bergeron BE, Gu L, Tay FR. Beyond hydrodynamics: The role of ion channels in dentine hypersensitivity. J Dent 2025; 157:105745. [PMID: 40216070 DOI: 10.1016/j.jdent.2025.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVES This review examined the roles of ion channels in dentine hypersensitivity (DH), highlighting their contributions to pain perception and intercellular communication between odontoblasts and afferent sensory neurons. BACKGROUND Dentine hypersensitivity is a prevalent condition resulting from the exposure of dentinal tubules to the oral environment, leading to sharp pain triggered by mechanical, thermal, chemical, and osmotic stimuli. The prevailing hypothesis integrates aspects of the hydrodynamic and odontoblast transducer theories. It suggests that rapid intratubular fluid movement activates specific ion channels in odontoblasts and trigeminal sensory neurons, converting external stimuli into electrical signals interpreted as pain by the central nervous system. DATA & SOURCES A comprehensive literature review was conducted on ion channels involved in DH, with a focus on transient receptor potential (TRP) channels, Piezo channels, acid-sensing ion channels (ASICs), as well as other voltage-gated ion channels. Particular emphasis was placed on their physiological roles, responsiveness to stimuli, and contributions to DH pain. RESULTS PIEZO, TRP, and ASICs respond to pressure, heat, acidic environments, and chemical irritants, all of which contribute to DH pain. Activation of odontoblastic ion channels results in the release of adenosine triphosphate and glutamate, which bind respectively to purinergic and glutamate receptors on sensory neurons. This interaction induces depolarization, generating action potentials that transmit pain signals to the brain. CONCLUSION The diverse ion channels involved in dentine hypersensitivity play a crucial role in intercellular communication that leads to pain perception. However, their widespread physiological functions make direct pharmacological targeting challenging due to potential systemic effects. CLINICAL SIGNIFICANCE The use of antagonists for targeting specific ion channels involved in dentine hypersensitivity is difficult because of their involvement in other important physiological processes. Hence, clinical management strategies focusing on dentinal tubule occlusion or dentine desensitisation remain the safest and most effective approaches.
Collapse
Affiliation(s)
- Yutong Sun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | | | | | | | | | - Lisha Gu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | | |
Collapse
|
3
|
Gong S, Sun W, Wu L, Kang J, Tang M. Enhanced cortical activity of swallowing under acid stimulation in normal individuals: an fNIRS study. Front Neurol 2025; 16:1542202. [PMID: 40260141 PMCID: PMC12009906 DOI: 10.3389/fneur.2025.1542202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction The aims of this study are to investigate the activation patterns of the cerebral cortex in healthy individuals during liquid swallowing, as well as the differences in cerebral cortex activation between swallowing distilled water and swallowing acidic solutions, using functional near-infrared spectroscopy (fNIRS). Methods Eighteen healthy right-handed volunteers participated in this study. Each volunteer randomly completed two swallowing tasks: swallowing distilled water and swallowing an acidic solution, which differed in taste. By analyzing the average concentration of oxyhemoglobin across various channels, we observed the activation patterns and differences in brain regions when volunteers performed different swallowing tasks. Results During the act of swallowing distilled water, the significantly activated brain regions in the prefrontal cortex included the bilateral inferior frontal cortex and the right Broca's area. When swallowing an acidic solution, the significantly activated regions in the prefrontal cortex were the bilateral inferior frontal cortex (IFC), bilateral orbitofrontal cortex (OFC), bilateral dorsolateral prefrontal cortex (DLPFC), right Broca's area, left primary somatosensory cortex (S1), and left premotor/supplementary motor area (PMC/SMA). Paired t-tests revealed that the activation levels during the swallowing of acidic liquid were higher than those during the swallowing of distilled water in the bilateral dorsolateral prefrontal cortex, left primary somatosensory cortex, and left premotor/supplementary motor area. Conclusion Functional near-infrared spectroscopy (fNIRS) can be applied to research on brain functions related to swallowing. It has revealed differences in the activation of brain regions between healthy individuals when swallowing distilled water and sour solutions. Swallowing sour liquids activates more brain areas compared to swallowing water, suggesting that sour stimuli effectively activate the swallowing cortical network.
Collapse
Affiliation(s)
- Shuang Gong
- Neurorehabilitation Department of Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - WeiJun Sun
- Neurorehabilitation Department of Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - LingLing Wu
- Neurorehabilitation Department of Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - JiLiang Kang
- Neurorehabilitation Department of Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Min Tang
- Neurorehabilitation Department of Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Du C, Yuan F, Zhang Z, He Z, Liu G, Hou W, Deng M, Liu C, Rong M. Spider-derived peptide LCTx-F2 suppresses ASIC channels by occupying the acidic pocket. J Biol Chem 2025; 301:108286. [PMID: 39938802 PMCID: PMC11923824 DOI: 10.1016/j.jbc.2025.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-evoked sodium ion channels, highly distributed in the peripheral and central nervous system. ASICs are involved in pain perception, and ASIC3 channel is presumed as the target of promising analgesics. Peptide drugs have attracted the attention of pharmaceutical developers because of their advantages such as low toxic side effects and targeted specificity. Although numbers of chemicals acting on ASICs are emerging, there are limited reports on peptide inhibitor acting on ASIC3 channel. Here, we found that spider-derived peptide LCTx-F2 suppressed the activity of ASIC3 channel in a concentration-dependent manner. By performing peptide mutation and molecular docking, we revealed the molecular mechanism of LCTx-F2 inhibiting ASIC3 channel, in which β-hairpin of LCTx-F2 penetrated the acidic pocket of the channel. Similarly, LCTx-F2 also inhibited ASIC1a channel by occupying the acidic pocket, but N terminus of the peptide sticked into the region. The bond relationship between critical residues of LCTx-F2 and the channels was uncovered by molecular docking and dynamic simulation. Thus, our findings indicated the molecular mechanism by which LCTx-F2 acts on ASIC3 and ASIC1a channels and provided a novel template of analgesic drug targeting the channels.
Collapse
Affiliation(s)
- Canwei Du
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, China.
| | - Fuchu Yuan
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhongzhe Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Ziyan He
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Guohao Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Wenqian Hou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Changjun Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Mingqiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Gupta SC, Taugher-Hebl RJ, Ghobbeh A, Jahnke MT, Fan R, LaLumiere RT, Wemmie JA. Carbonic anhydrase 4 disruption and pharmacological inhibition reduce synaptic and behavioral adaptations following oxycodone withdrawal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634619. [PMID: 39896547 PMCID: PMC11785184 DOI: 10.1101/2025.01.23.634619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The ongoing opioid crisis underscores the need for innovative treatments targeting neurobiological mechanisms underlying opioid-seeking behaviors and relapse. Here we explored the role of carbonic anhydrase 4 (CA4) in modulating synaptic adaptations to oxycodone withdrawal in mice. We disrupted CA4 genetically and inhibited it pharmacologically with acetazolamide (AZD), a carbonic anhydrase inhibitor used clinically. We found that oxycodone withdrawal increased AMPAR/NMDAR ratio and synaptic recruitment of calcium-permeable AMPARs in nucleus accumbens core (NAcC) medium spiny neurons (MSNs). Synaptic changes required an extended period of abstinence, generalized across opioids including morphine and heroin, were specific to D1 dopamine receptor-expressing MSNs, and were prevented by CA4 disruption. AZD administration in vitro and in vivo reversed the synaptic alterations, and effects of AZD depended on CA4 and acid sensing ion channel 1A (ASIC1A). Interestingly, abstinence from oxycodone did not affect dendritic spine density in NAcC MSNs, in contrast to previously observed effects of abstinence from cocaine. Finally, in an oxycodone self-administration paradigm, CA4 disruption and AZD reduced drug-seeking behaviors following 30 days of forced abstinence. Together, these findings identify a critical role for CA4 in synaptic adaptations in opioid withdrawn mice and drug-seeking behavior. Moreover, they suggest pharmacological inhibitors of CA4 may hold therapeutic potential for reducing opioid-seeking and relapse in opioid use disorder.
Collapse
|
6
|
Menegon A. Targeting acid-sensing ion channels in glioblastoma: is there any therapeutic potential? Expert Opin Ther Targets 2025; 29:5-8. [PMID: 39902885 DOI: 10.1080/14728222.2025.2463357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/10/2025] [Accepted: 02/03/2025] [Indexed: 02/06/2025]
Affiliation(s)
- Andrea Menegon
- San Raffaele Scientific Institute, Experimental Imaging Centre, Milan, Italy
| |
Collapse
|
7
|
Zhang X, Zhang X, Cheng S, Fan X, Bao H, Zhou S, Ping J. Spatiotemporal Cell Control via High-Precision Electronic Regulation of Microenvironmental pH. NANO LETTERS 2024; 24:15645-15651. [PMID: 39588840 DOI: 10.1021/acs.nanolett.4c04174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Accurate regulation of extracellular pH is crucial for controlling cell behaviors and functions. However, typical methods, which primarily rely on replacing cell culture media or using ionic diffusion, are slow, nondirectional, and lack spatiotemporal resolution. Here, we develop a microfabricated device that regulates microenvironmental pH within specific localized zones with high precision (uncertainty <0.1 pH units) and temporal resolution. The device uses a synchronization strategy that coordinates two processes: pulsatile modulation of pH through microelectrolysis and ultrasensitive graphene-electronic pH sensing, which operates in antiphase to the modulation. Using this device, we show real-time control of the dynamic behaviors of microscale clusters of bacteria (motility) and cardiomyocytes (calcium signaling and necrotic injury) in response to precisely regulated extracellular pH variations. Our device addresses the limitations of typical pH-altering techniques and holds significant potential to advance cell biology, physiology, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Xin Zhang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sizhe Cheng
- Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Xiao Fan
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Huilu Bao
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Shuang Zhou
- Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jinglei Ping
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
8
|
Duan X, Li L, Peng Z, Wang M, Liu Y, Hsieh DJ, Chang KC. Ultralow Power, Cleft Size-Adjustable and pH-Sensitive Hyaluronic Acid (HA) Biodevices for Acid-Sensing Ion Channels Emulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405207. [PMID: 39180450 DOI: 10.1002/smll.202405207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/28/2024] [Indexed: 08/26/2024]
Abstract
The burgeoning implantable biodevices have unlocked new frontiers in healthcare, promising personalized monitoring strategies tailored to specific needs. Herein, hyaluronic acid (HA) is harnessed to create fully biocompatible, acidity-sensitivity and cleft-adjustable neuromorphic devices. These HA-biodevices exhibit remarkable sensitivity to pH variations, effectively mimicking biological acid-sensing ion channels (ASICs) through protonation reactions between electronegative atoms and hydrogen ions, even at ultralow driving voltage (5 mV). They can monitor joint cartilage acidity by tracking changes in proton concentration and successfully diagnose the onset of arthritis. Furthermore, by adjusting the synaptic device's cleft distance, which determines responsiveness, power efficiency and plasticity, HA-based neuromorphic devices can be tailored to meet the unique demands of various implantation sites, providing both high-sensitivity and low-heat dissipation, thus broadening their application scopes. Moreover, the HA-biodevices maintain stable performance across various bending degrees, up to a curvature radius of 7.5 mm, with flexibility and deformation resilience enabling installation on joints of varying curvatures. The combination of all-biocompatibility, high sensitivity, low heat dissipation, ultralow low power (2 pW), and extraordinary deformation tolerance paves the way for the development of versatile, multipurpose medical monitoring devices with immense potential in the field of healthcare.
Collapse
Affiliation(s)
- Xinqing Duan
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| | - Lei Li
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| | - Zehui Peng
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| | - Mingqiang Wang
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| | - Yanxin Liu
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| | - Dar-Jen Hsieh
- R&D Center, ACRO Biomedical Co., Kaohsiung City, 82151, Taiwan
| | - Kuan-Chang Chang
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| |
Collapse
|
9
|
Fuller MJ, Andrys NRR, Gupta SC, Ghobbeh A, Kreple CJ, Fan R, Taugher-Hebl RJ, Radley JJ, Lalumiere RT, Wemmie JA. The Role of Acid-Sensing Ion Channel 1A (ASIC1A) in the Behavioral and Synaptic Effects of Oxycodone and Other Opioids. Int J Mol Sci 2024; 25:11584. [PMID: 39519136 PMCID: PMC11545886 DOI: 10.3390/ijms252111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Opioid-seeking behaviors depend on glutamatergic plasticity in the nucleus accumbens core (NAcc). Here we investigated whether the behavioral and synaptic effects of opioids are influenced by acid-sensing ion channel 1A (ASIC1A). We tested the effects of ASIC1A on responses to several opioids and found that Asic1a-/- mice had elevated behavioral responses to acute opioid administration as well as opioid seeking behavior in conditioned place preference (CPP). Region-restricted restoration of ASIC1A in NAcc was sufficient to reduce opioid CPP, suggesting NAcc is an important site of action. We next tested the effects of oxycodone withdrawal on dendritic spines in NAcc. We found effects of oxycodone and ASIC1A that contrasted with changes previously described following cocaine withdrawal. Finally, we examined α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated and N-methyl-D-aspartic acid (NMDA) receptor-mediated synaptic currents in NAcc. Oxycodone withdrawal, like morphine withdrawal, increased the AMPAR/NMDAR ratio in Asic1a+/+ mice, whereas oxycodone withdrawal reduced the AMPAR/NMDAR ratio in Asic1a-/- mice. A single dose of oxycodone was sufficient to induce this paradoxical effect in Asic1a-/- mice, suggesting an increased sensitivity to oxycodone. We conclude that ASIC1A plays an important role in the behavioral and synaptic effects of opioids and may constitute a potential future target for developing novel therapies.
Collapse
Affiliation(s)
- Margaret J. Fuller
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
| | - Noah R. R. Andrys
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Subhash C. Gupta
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Ali Ghobbeh
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Collin J. Kreple
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Rong Fan
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Rebecca J. Taugher-Hebl
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Jason J. Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; (J.J.R.); (R.T.L.)
| | - Ryan T. Lalumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; (J.J.R.); (R.T.L.)
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Cappellesso F, Mazzone M, Virga F. Acid affairs in anti-tumour immunity. Cancer Cell Int 2024; 24:354. [PMID: 39465367 PMCID: PMC11514911 DOI: 10.1186/s12935-024-03520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolic rewiring of cancer cells is one of the hallmarks of cancer. As a consequence, the metabolic landscape of the tumour microenvironment (TME) differs compared to correspondent healthy tissues. Indeed, due to the accumulation of acid metabolites, such as lactate, the pH of the TME is generally acidic with a pH drop that can be as low as 5.6. Disruptions in the acid-base balance and elevated lactate levels can drive malignant progression not only through cell-intrinsic mechanisms but also by impacting the immune response. Generally, acidity and lactate dampen the anti-tumour response of both innate and adaptive immune cells favouring tumour progression and reducing the response to immunotherapy. In this review, we summarize the current knowledge on the functional, metabolic and epigenetic effects of acidity and lactate on the cells of the immune system. In particular, we focus on the role of monocarboxylate transporters (MCTs) and other solute carrier transporters (SLCs) that, by mediating the exchange of lactate (among other metabolites) and bicarbonate, participate in pH regulation and lactate transport in the cancer context. Finally, we discuss advanced approaches to target pH or lactate in the TME to enhance the anti-tumour immune response.
Collapse
Affiliation(s)
- Federica Cappellesso
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, Inflammation Research Center, VIB, Brussels, Belgium.
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Federico Virga
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain.
| |
Collapse
|
11
|
Lin B, Jin Z, Park G, Ge Q, Singh K, Ryan V WG, Imami AS, Naghavi F, Miller OA, Khan S, Lu H, McCullumsmith RE, Du J. Mice lacking acid-sensing ion channel 2 in the medial prefrontal cortex exhibit social dominance. SCIENCE ADVANCES 2024; 10:eadn7573. [PMID: 39453995 PMCID: PMC11506137 DOI: 10.1126/sciadv.adn7573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
Social dominance is essential for maintaining a stable society and has both positive and negative impacts on social animals, including humans. However, the regulatory mechanisms governing social dominance, as well as the crucial regulators and biomarkers involved, remain poorly understood. We discover that mice lacking acid-sensing ion channel 2 (ASIC2) exhibit persistently higher social dominance than their wild-type cagemates. Conversely, overexpression of ASIC2 in the medial prefrontal cortex reverses the dominance hierarchy observed in ASIC2 knockout (Asic2-/-) mice. Asic2-/- neurons exhibit increased synaptic transmission and plasticity, potentially mediated by protein kinase A signaling pathway. Furthermore, ASIC2 plays distinct functional roles in excitatory and inhibitory neurons, thereby modulating the balance of neuronal activities underlying social dominance behaviors-a phenomenon suggestive of a cell subtype-specific mechanism. This research lays the groundwork for understanding the mechanisms of social dominance, offering potential insights for managing social disorders, such as depression and anxiety.
Collapse
Affiliation(s)
- Boren Lin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Zhen Jin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gyeongah Park
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Qian Ge
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kritika Singh
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - William G. Ryan V
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Ali Sajid Imami
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Farzaneh Naghavi
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Olivia Ann Miller
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Saira Khan
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Hui Lu
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Robert E. McCullumsmith
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43614, USA
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
12
|
Hiremath K, Dodakallanavar J, Sampat GH, Patil VS, Harish DR, Chavan R, Hegde HV, Roy S. Three finger toxins of elapids: structure, function, clinical applications and its inhibitors. Mol Divers 2024; 28:3409-3426. [PMID: 37749455 DOI: 10.1007/s11030-023-10734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
The WHO lists snakebite as a "neglected tropical disease". In tropical and subtropical areas, envenoming is an important public health issue. This review article describes the structure, function, chemical composition, natural inhibitors, and clinical applications of Elapids' Three Finger Toxins (3FTX) using scientific research data. The primary venomous substance belonging to Elapidae is 3FTX, that targets nAChR. Three parallel β-sheets combine to create 3FTX, which has four or five disulfide bonds. The three primary types of 3FTX are short-chain, long-chain, and nonconventional 3FTX. The functions of 3FTX depend on the specific toxin subtype and the target receptor or ion channel. The well-known effect of 3FTX is probably neurotoxicity because of the severe consequences of muscular paralysis and respiratory failure in snakebite victims. 3FTX have also been studied for their potential clinical applications. α-bungarotoxin has been used as a molecular probe to study the structure and function of nAChRs (Nicotinic Acetylcholine Receptors). Acid-sensing ion channel (ASIC) isoforms 1a and 1b are inhibited by Mambalgins, derived from Black mamba venom, which hinders their function and provide an analgesic effect. α- Cobra toxin is a neurotoxin purified from Chinese cobra (Naja atra) binds to nAChR at the neuronal junction and causes an analgesic effect for moderate to severe pain. Some of the plants and their compounds have been shown to inhibit the activity of 3FTX, and their mechanisms of action are discussed.
Collapse
Affiliation(s)
- Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Rajashekar Chavan
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
13
|
Zhang Y, Dong D, Zhang J, Cheng K, Zhen F, Li M, Chen B. Pathology and physiology of acid-sensitive ion channels in the bladder. Heliyon 2024; 10:e38031. [PMID: 39347393 PMCID: PMC11437851 DOI: 10.1016/j.heliyon.2024.e38031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/08/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Acid-sensitive ion channels (ASICs) are sodium-permeable channels activated by extracellular acidification. They can be activated and trigger the inward flow of Na+ when the extracellular environment is acidic, leading to membrane depolarization and thus inducing action potentials in neurons. There are four ASIC genes in mammals (ASIC1-4). ASIC is widely expressed in humans. It is closely associated with pain, neurological disorders, multiple sclerosis, epilepsy, migraines, and many other disorders. Bladder pain syndrome/interstitial cystitis (BPS/IC) is a specific syndrome characterized by bladder pain. Recent studies have shown that ASICs are closely associated with the development of BPS/IC. A study revealed that ASIC levels are significantly elevated in a BPS/IC model. Additionally, researchers have reported differential changes in ASICs in the bladders of patients with neurogenic lower urinary tract dysfunction (NLUTD) caused by spinal cord injury (SCI). In this review, we summarize the structure and physiological functions of ASICs and focus on the mechanisms by which ASICs mediate bladder disease.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Di Dong
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jialong Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kang Cheng
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fang Zhen
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Translational Medicine, Jiangsu University, China
| |
Collapse
|
14
|
Balboni A, D'Angelo C, Collura N, Brusco S, Di Berardino C, Targa A, Massoti B, Mastrangelo E, Milani M, Seneci P, Broccoli V, Muzio L, Galli R, Menegon A. Acid-sensing ion channel 3 is a new potential therapeutic target for the control of glioblastoma cancer stem cells growth. Sci Rep 2024; 14:20421. [PMID: 39227705 PMCID: PMC11372124 DOI: 10.1038/s41598-024-71623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain cancer that, despite recent advances in the understanding of its pathogenesis, remains incurable. GBM contains a subpopulation of cells with stem cell-like properties called cancer stem cells (CSCs). Several studies have demonstrated that CSCs are resistant to conventional chemotherapy and radiation thus representing important targets for novel anti-cancer therapies. Proton sensing receptors expressed by CSCs could represent important factors involved in the adaptation of tumours to the extracellular environment. Accordingly, the expression of acid-sensing ion channels (ASICs), proton-gated sodium channels mainly expressed in the neurons of peripheral (PNS) and central nervous system (CNS), has been demonstrated in several tumours and linked to an increase in cell migration and proliferation. In this paper we report that the ASIC3 isoform, usually absent in the CNS and present in the PNS, is enriched in human GBM CSCs while poorly expressed in the healthy human brain. We propose here a novel therapeutic strategy based on the pharmacological activation of ASIC3, which induces a significant GBM CSCs damage while being non-toxic for neurons. This approach might offer a promising and appealing new translational pathway for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Andrea Balboni
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Camilla D'Angelo
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Nicoletta Collura
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Simone Brusco
- Division of Neuroscience, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
- Electrophysiology Unit, Axxam S.P.A., Via Meucci 3, Bresso, 20091, Milan, Italy
| | - Claudia Di Berardino
- Division of Neuroscience, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Altea Targa
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Beatrice Massoti
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | | | | | | | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
- CNR-Institute of Neuroscience, Milan, Italy
| | - Luca Muzio
- INsPE, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Menegon
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy.
| |
Collapse
|
15
|
Min YG, Lee SY, Lim E, Park MY, Kim DH, Byun JM, Koh Y, Hong J, Shin DY, Yoon SS, Sung JJ, Oh SB, Kim I. Genetic Risk Factors for Bortezomib-induced Neuropathic Pain in an Asian Population: A Genome-wide Association Study in South Korea. THE JOURNAL OF PAIN 2024; 25:104552. [PMID: 38692398 DOI: 10.1016/j.jpain.2024.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Bortezomib-induced neuropathic pain (BINP) poses a challenge in multiple myeloma (MM) treatment. Genetic factors play a key role in BINP susceptibility, but research has predominantly focused on Caucasian populations. This research explored novel genetic risk loci and pathways associated with BINP development in Korean MM patients while evaluating the reproducibility of variants from Caucasians. Clinical data and buffy coat samples from 185 MM patients on bortezomib were collected. The cohort was split into discovery and validation cohorts through random stratification of clinical risk factors for BINP. Genome-wide association study was performed on the discovery cohort (n = 74) with Infinium Global Screening Array-24 v3.0 BeadChip (654,027 single nucleotide polymorphism [SNPs]). Relevant biological pathways were identified using the pathway scoring algorithm. The top 20 SNPs were validated in the validation cohort (n = 111). Previously reported SNPs were validated in the entire cohort (n = 185). Pathway analysis of the genome-wide association study results identified 31 relevant pathways, including immune systems and endosomal vacuolar pathways. Among the top 20 SNPs from the discovery cohort, 16 were replicated, which included intronic variants in ASIC2 and SMOC2, recently implicated in nociception, as well as intergenic variants or long noncoding RNAs. None of the 17 previously reported SNPs remained significant in our cohort (rs2274578, P = .085). This study represents the first investigation of novel genetic loci and biological pathways associated with BINP occurrence. Our findings, in conjunction with existing Caucasian studies, expand the understanding of personalized risk prediction and disease mechanisms. PERSPECTIVE: This article is the first to explore novel genetic loci and pathways linked to BINP in Korean MM patients, offering novel insights beyond the existing research focused on Caucasian populations into personalized risk assessment and therapeutic strategies of BINP.
Collapse
Affiliation(s)
- Young Gi Min
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | - Ja Min Byun
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Joon Sung
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Seoul National University Hospital, Seoul, South Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon-do, South Korea
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea; ADA Forsyth Institute, 245 First St, Cambridge MA, 02142, USA.
| | - Inho Kim
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Olov N, Nour S, Harris AR, Li D, Cook M, Williams RJ, Cheeseman S, Nisbet DR. Using Nanoscale Passports To Understand and Unlock Ion Channels as Gatekeepers of the Cell. ACS NANO 2024; 18:22709-22733. [PMID: 39136685 DOI: 10.1021/acsnano.4c05654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Natural ion channels are proteins embedded in the cell membrane that control many aspects of cell and human physiology by acting as gatekeepers, regulating the flow of ions in and out of cells. Advances in nanotechnology have influenced the methods for studying ion channels in vitro, as well as ways to unlock the delivery of therapeutics by modulating them in vivo. This review provides an overview of nanotechnology-enabled approaches for ion channel research with a focus on the synthesis and applications of synthetic ion channels. Further, the uses of nanotechnology for therapeutic applications are critically analyzed. Finally, we provide an outlook on the opportunities and challenges at the intersection of nanotechnology and ion channels. This work highlights the key role of nanoscale interactions in the operation and modulation of ion channels, which may prompt insights into nanotechnology-enabled mechanisms to study and exploit these systems in the near future.
Collapse
Affiliation(s)
- Nafiseh Olov
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Cook
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Department of Medicine, St Vincent's Hospital, Melbourne, Fitzroy, VIC 3065, Australia
| | - Richard J Williams
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
- IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Samuel Cheeseman
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| |
Collapse
|
17
|
Morse J, Nadiveedhi MR, Schmidt M, Tang FK, Hladun C, Ganesh P, Qiu Z, Leung K. Tunable Cytosolic Chloride Indicators for Real-Time Chloride Imaging in Live Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606814. [PMID: 39149292 PMCID: PMC11326291 DOI: 10.1101/2024.08.08.606814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Chloride plays a crucial role in various cellular functions, and its level is regulated by a variety of chloride transporters and channels. However, to date, we still lack the capability to image instantaneous ion flux through chloride channels at single-cell level. Here, we developed a series of cell-permeable, pH-independent, chloride-sensitive fluorophores for real-time cytosolic chloride imaging, which we call CytoCl dyes. We demonstrated the ability of CytoCl dyes to monitor cytosolic chloride and used it to uncover the rapid changes and transient events of halide flux, which cannot be captured by steady-state imaging. Finally, we successfully imaged the proton-activated chloride channel-mediated ion flux at single-cell level, which is, to our knowledge, the first real-time imaging of ion flux through a chloride channel in unmodified cells. By enabling the imaging of single-cell level ion influx through chloride channels and transporters, CytoCl dyes can expand our understanding of ion flux dynamics, which is critical for characterization and modulator screening of these membrane proteins. A conjugable version of CytoCl dyes was also developed for its customization across different applications.
Collapse
Affiliation(s)
- Jared Morse
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| | | | - Matthias Schmidt
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| | - Fung-Kit Tang
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| | - Colby Hladun
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| | - Prasanna Ganesh
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| | - Zhaozhu Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, MD 21205, United States
| | - Kaho Leung
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| |
Collapse
|
18
|
Dong K, Chen F, Wang L, Lin C, Ying M, Li B, Huang T, Wang S. iMSC exosome delivers hsa-mir-125b-5p and strengthens acidosis resilience through suppression of ASIC1 protein in cerebral ischemia-reperfusion. J Biol Chem 2024; 300:107568. [PMID: 39019215 PMCID: PMC11363484 DOI: 10.1016/j.jbc.2024.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 07/01/2024] [Accepted: 06/12/2024] [Indexed: 07/19/2024] Open
Abstract
Acid-sensing ion channel 1 (ASIC1) is critical in acidotoxicity and significantly contributes to neuronal death in cerebral stroke. Pharmacological inhibition of ASIC1 has been shown to reduce neuronal death. However, the potential of utilizing exosomes derived from pluripotent stem cells to achieve inhibition of Asic1 remains to be explored. Developing qualified exosome products with precise and potent active ingredients suitable for clinical application is also ongoing. Here, we adopt small RNA-seq to interrogate the miRNA contents in exosomes of pluripotent stem cell induced mesenchymal stem cell (iMSC). RNA-seq was used to compare the oxygen-glucose deprivation-damaged neurons before and after the delivery of exosomes. We used Western blot to quantify the Asic1 protein abundance in neurons before and after exosome treatment. An in vivo test on rats validated the neuroprotective effect of iMSC-derived exosome and its active potent miRNA hsa-mir-125b-5p. We demonstrate that pluripotent stem cell-derived iMSCs produce exosomes with consistent miRNA contents and sustained expression. These exosomes efficiently rescue injured neurons, alleviate the pathological burden, and restore neuron function in rats under oxygen-glucose deprivation stress. Furthermore, we identify hsa-mir-125b-5p as the active component responsible for inhibiting the Asic1a protein and protecting neurons. We validated a novel therapeutic strategy to enhance acidosis resilience in cerebral stroke by utilizing exosomes derived from pluripotent stem cells with specific miRNA content. This holds promise for cerebral stroke treatment with the potential to reduce neuronal damage and improve clinical patient outcomes.
Collapse
Affiliation(s)
- Kai Dong
- Department of Neurology, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Fangyan Chen
- Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Liang Wang
- Department of Quality Control, Guidon Pharmaceutics, Beijing, China
| | - Chengyu Lin
- Department of Quality Control, Guidon Pharmaceutics, Beijing, China
| | - Mingyao Ying
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bingnan Li
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China.
| | - Tao Huang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Shuyan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
19
|
Holm CM, Topaktas AB, Dannesboe J, Pless SA, Heusser SA. Dynamic conformational changes of acid-sensing ion channels in different desensitizing conditions. Biophys J 2024; 123:2122-2135. [PMID: 38549370 PMCID: PMC11309988 DOI: 10.1016/j.bpj.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/21/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to fast synaptic transmission and have roles in fear conditioning and nociception. Apart from activation at low pH, ASIC1a also undergoes several types of desensitization, including acute desensitization, which terminates activation; steady-state desensitization, which occurs at sub-activating proton concentrations and limits subsequent activation; and tachyphylaxis, which results in a progressive decrease in response during a series of activations. Structural insights from a desensitized state of ASIC1 have provided great spatial detail, but dynamic insights into conformational changes in different desensitizing conditions are largely missing. Here, we use electrophysiology and voltage-clamp fluorometry to follow the functional changes of the pore along with conformational changes at several positions in the extracellular and upper transmembrane domain via cysteine-labeled fluorophores. Acute desensitization terminates activation in wild type, but introducing an N414K mutation in the β11-12 linker of mouse ASIC1a interfered with this process. The mutation also affected steady-state desensitization and led to pronounced tachyphylaxis. Although the extracellular domain of this mutant remained sensitive to pH and underwent pH-dependent conformational changes, these conformational changes did not necessarily lead to desensitization. N414K-containing channels also remained sensitive to a known peptide modulator that increases steady-state desensitization, indicating that the mutation only reduced, but not precluded, desensitization. Together, this study contributes to our understanding of the fundamental properties of ASIC1a desensitization, emphasizing the complex interplay between the conformational changes of the extracellular domain and the pore during channel activation and desensitization.
Collapse
Affiliation(s)
- Caroline Marcher Holm
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Asli B Topaktas
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johs Dannesboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie A Heusser
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Testa L, Dotta S, Vercelli A, Marvaldi L. Communicating pain: emerging axonal signaling in peripheral neuropathic pain. Front Neuroanat 2024; 18:1398400. [PMID: 39045347 PMCID: PMC11265228 DOI: 10.3389/fnana.2024.1398400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
Peripheral nerve damage often leads to the onset of neuropathic pain (NeuP). This condition afflicts millions of people, significantly burdening healthcare systems and putting strain on families' financial well-being. Here, we will focus on the role of peripheral sensory neurons, specifically the Dorsal Root Ganglia neurons (DRG neurons) in the development of NeuP. After axotomy, DRG neurons activate regenerative signals of axons-soma communication to promote a gene program that activates an axonal branching and elongation processes. The results of a neuronal morphological cytoskeleton change are not always associated with functional recovery. Moreover, any axonal miss-targeting may contribute to NeuP development. In this review, we will explore the epidemiology of NeuP and its molecular causes at the level of the peripheral nervous system and the target organs, with major focus on the neuronal cross-talk between intrinsic and extrinsic factors. Specifically, we will describe how failures in the neuronal regenerative program can exacerbate NeuP.
Collapse
Affiliation(s)
- Livia Testa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Sofia Dotta
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Letizia Marvaldi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| |
Collapse
|
21
|
Wang Q, Yang F, Duo K, Liu Y, Yu J, Wu Q, Cai Z. The Role of Necroptosis in Cerebral Ischemic Stroke. Mol Neurobiol 2024; 61:3882-3898. [PMID: 38038880 DOI: 10.1007/s12035-023-03728-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
Cerebral ischemia, also known as ischemic stroke, accounts for nearly 85% of all strokes and is the leading cause of disability worldwide. Due to disrupted blood supply to the brain, cerebral ischemic injury is trigged by a series of complex pathophysiological events including excitotoxicity, oxidative stress, inflammation, and cell death. Currently, there are few treatments for cerebral ischemia owing to an incomplete understanding of the molecular and cellular mechanisms. Accumulated evidence indicates that various types of programmed cell death contribute to cerebral ischemic injury, including apoptosis, ferroptosis, pyroptosis and necroptosis. Among these, necroptosis is morphologically similar to necrosis and is mediated by receptor-interacting serine/threonine protein kinase-1 and -3 and mixed lineage kinase domain-like protein. Necroptosis inhibitors have been shown to exert inhibitory effects on cerebral ischemic injury and neuroinflammation. In this review, we will discuss the current research progress regarding necroptosis in cerebral ischemia as well as the application of necroptosis inhibitors for potential therapeutic intervention in ischemic stroke.
Collapse
Affiliation(s)
- Qingsong Wang
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Fan Yang
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Kun Duo
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Qihui Wu
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenyu Cai
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China.
- Shanghai Tenth People's Hospital, School of MedicineTongji University Cancer Center, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
22
|
Molton O, Bignucolo O, Kellenberger S. Identification of the modulatory Ca 2+-binding sites of acid-sensing ion channel 1a. Open Biol 2024; 14:240028. [PMID: 38896086 PMCID: PMC11335074 DOI: 10.1098/rsob.240028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/12/2024] [Accepted: 04/28/2024] [Indexed: 06/21/2024] Open
Abstract
Acid-sensing ion channels (ASICs) are neuronal Na+-permeable ion channels activated by extracellular acidification. ASICs are involved in learning, fear sensing, pain sensation and neurodegeneration. Increasing the extracellular Ca2+ concentration decreases the H+ sensitivity of ASIC1a, suggesting a competition for binding sites between H+ and Ca2+ ions. Here, we predicted candidate residues for Ca2+ binding on ASIC1a, based on available structural information and our molecular dynamics simulations. With functional measurements, we identified several residues in cavities previously associated with pH-dependent gating, whose mutation reduced the modulation by extracellular Ca2+ of the ASIC1a pH dependence of activation and desensitization. This occurred likely owing to a disruption of Ca2+ binding. Our results link one of the two predicted Ca2+-binding sites in each ASIC1a acidic pocket to the modulation of channel activation. Mg2+ regulates ASICs in a similar way as does Ca2+. We show that Mg2+ shares some of the binding sites with Ca2+. Finally, we provide evidence that some of the ASIC1a Ca2+-binding sites are functionally conserved in the splice variant ASIC1b. Our identification of divalent cation-binding sites in ASIC1a shows how Ca2+ affects ASIC1a gating, elucidating a regulatory mechanism present in many ion channels.
Collapse
Affiliation(s)
- Ophélie Molton
- Department of Biomedical Sciences, University of
Lausanne, 1011 Lausanne,
Switzerland
| | | | - Stephan Kellenberger
- Department of Biomedical Sciences, University of
Lausanne, 1011 Lausanne,
Switzerland
| |
Collapse
|
23
|
Yang Y, Yang W, Zhang R, Wang Y. Peripheral Mechanism of Cancer-Induced Bone Pain. Neurosci Bull 2024; 40:815-830. [PMID: 37798428 PMCID: PMC11178734 DOI: 10.1007/s12264-023-01126-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/28/2023] [Indexed: 10/07/2023] Open
Abstract
Cancer-induced bone pain (CIBP) is a type of ongoing or breakthrough pain caused by a primary bone tumor or bone metastasis. CIBP constitutes a specific pain state with distinct characteristics; however, it shares similarities with inflammatory and neuropathic pain. At present, although various therapies have been developed for this condition, complete relief from CIBP in patients with cancer is yet to be achieved. Hence, it is urgent to study the mechanism underlying CIBP to develop efficient analgesic drugs. Herein, we focused on the peripheral mechanism associated with the initiation of CIBP, which involves tissue injury in the bone and changes in the tumor microenvironment (TME) and dorsal root ganglion. The nerve-cancer and cancer-immunocyte cross-talk in the TME creates circumstances that promote tumor growth and metastasis, ultimately leading to CIBP. The peripheral mechanism of CIBP and current treatments as well as potential therapeutic targets are discussed in this review.
Collapse
Affiliation(s)
- Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Ruofan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Zhongshan-Fudan Joint Innovation Center, Zhongshan, 528437, China.
| |
Collapse
|
24
|
Ling Y, Yu L, Guo Z, Bian F, Wang Y, Wang X, Hou Y, Hou X. Single-Pore Nanofluidic Logic Memristor with Reconfigurable Synaptic Functions and Designable Combinations. J Am Chem Soc 2024; 146:14558-14565. [PMID: 38755097 DOI: 10.1021/jacs.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The biological neural network is a highly efficient in-memory computing system that integrates memory and logical computing functions within synapses. Moreover, reconfiguration by environmental chemical signals endows biological neural networks with dynamic multifunctions and enhanced efficiency. Nanofluidic memristors have emerged as promising candidates for mimicking synaptic functions, owing to their similarity to synapses in the underlying mechanisms of ion signaling in ion channels. However, realizing chemical signal-modulated logic functions in nanofluidic memristors, which is the basis for brain-like computing applications, remains unachieved. Here, we report a single-pore nanofluidic logic memristor with reconfigurable logic functions. Based on the different degrees of protonation and deprotonation of functional groups on the inner surface of the single pore, the modulation of the memristors and the reconfiguration of logic functions are realized. More noteworthy, this single-pore nanofluidic memristor can not only avoid the average effects in multipore but also act as a fundamental component in constructing complex neural networks through series and parallel circuits, which lays the groundwork for future artificial nanofluidic neural networks. The implementation of dynamic synaptic functions, modulation of logic gates by chemical signals, and diverse combinations in single-pore nanofluidic memristors opens up new possibilities for their applications in brain-inspired computing.
Collapse
Affiliation(s)
- Yixin Ling
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lejian Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ziwen Guo
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| | - Fazhou Bian
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Yanqiong Wang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Xin Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yaqi Hou
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
- Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| |
Collapse
|
25
|
Sarkar D, Galleano I, Heusser SA, Ou SY, Uzun GR, Khoo KK, van der Heden van Noort GJ, Harrison JS, Pless SA. Protein semisynthesis underscores the role of a conserved lysine in activation and desensitization of acid-sensing ion channels. Cell Chem Biol 2024; 31:1000-1010.e6. [PMID: 38113885 DOI: 10.1016/j.chembiol.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/21/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Acid-sensing ion channels (ASICs) are trimeric ion channels that open a cation-conducting pore in response to proton binding. Excessive ASIC activation during prolonged acidosis in conditions such as inflammation and ischemia is linked to pain and stroke. A conserved lysine in the extracellular domain (Lys211 in mASIC1a) is suggested to play a key role in ASIC function. However, the precise contributions are difficult to dissect with conventional mutagenesis, as replacement of Lys211 with naturally occurring amino acids invariably changes multiple physico-chemical parameters. Here, we study the contribution of Lys211 to mASIC1a function using tandem protein trans-splicing (tPTS) to incorporate non-canonical lysine analogs. We conduct optimization efforts to improve splicing and functionally interrogate semisynthetic mASIC1a. In combination with molecular modeling, we show that Lys211 charge and side-chain length are crucial to activation and desensitization, thus emphasizing that tPTS can enable atomic-scale interrogations of membrane proteins in live cells.
Collapse
Affiliation(s)
- Debayan Sarkar
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Iacopo Galleano
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Sofie Yuewei Ou
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Gül Refika Uzun
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Keith K Khoo
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | - Stephan Alexander Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
26
|
Nakanishi M, Ibe A, Morishita K, Shinagawa K, Yamamoto Y, Takahashi H, Ikemori K, Muragaki Y, Ehata S. Acid-sensing receptor GPR4 plays a crucial role in lymphatic cancer metastasis. Cancer Sci 2024; 115:1551-1563. [PMID: 38410865 PMCID: PMC11093208 DOI: 10.1111/cas.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Cancer tissues exhibit an acidic microenvironment owing to the accumulation of protons and lactic acid produced by cancer and inflammatory cells. To examine the role of an acidic microenvironment in lymphatic cancer metastasis, gene expression profiling was conducted using human dermal lymphatic endothelial cells (HDLECs) treated with a low pH medium. Microarray and gene set enrichment analysis revealed that acid treatment induced the expression of inflammation-related genes in HDLECs, including genes encoding chemokines and adhesion molecules. Acid treatment-induced chemokines C-X3-C motif chemokine ligand 1 (CX3CL1) and C-X-C motif chemokine ligand 6 (CXCL6) autocrinally promoted the growth and tube formation of HDLECs. The expression of vascular cell adhesion molecule 1 (VCAM-1) increased in HDLECs after acid treatment in a time-dependent manner, which, in turn, enhanced their adhesion to melanoma cells. Among various acid-sensing receptors, HDLECs basally expressed G protein-coupled receptor 4 (GPR4), which was augmented under the acidic microenvironment. The induction of chemokines or VCAM-1 under acidic conditions was attenuated by GPR4 knockdown in HDLECs. In addition, lymph node metastases in a mouse melanoma model were suppressed by administering an anti-VCAM-1 antibody or a GPR4 antagonist. These results suggest that an acidic microenvironment modifies the function of lymphatic endothelial cells via GPR4, thereby promoting lymphatic cancer metastasis. Acid-sensing receptors and their downstream molecules might serve as preventive or therapeutic targets in cancer.
Collapse
Affiliation(s)
- Masako Nakanishi
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Akiya Ibe
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kiyoto Morishita
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kazutaka Shinagawa
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yushi Yamamoto
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hibiki Takahashi
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kyoka Ikemori
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yasuteru Muragaki
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shogo Ehata
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
27
|
Martín Pérez SE, Rodríguez JD, Kalitovics A, de Miguel Rodríguez P, Bortolussi Cegarra DS, Rodríguez Villanueva I, García Molina Á, Ruiz Rodríguez I, Montaño Ocaña J, Martín Pérez IM, Sosa Reina MD, Villafañe JH, Alonso Pérez JL. Effect of Mirror Therapy on Post-Needling Pain Following Deep Dry Needling of Myofascial Trigger Point in Lateral Elbow Pain: Prospective Controlled Pilot Trial. J Clin Med 2024; 13:1490. [PMID: 38592311 PMCID: PMC10934708 DOI: 10.3390/jcm13051490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
Background: This prospective randomized, controlled pilot trial to explore the immediate effect of adding Mirror Visual Feedback Therapy on pain sensitivity and motor performance among subjects suffering from post-needling pain diagnosed as Lateral Elbow Pain. Methods: A total of 49 participants (23 female, 26 male) were enrolled and randomly allocated to either the experimental group, which received Deep Dry Needling in the m. Brachioradialis, Ischemic Compression, Cold Spray, Stretching, and Mirror Visual Feedback Therapy (n = 25), or a control group without Mirror Visual Feedback Therapy (n = 24). Pre- and post-treatment evaluations included assessments of post-needling pain intensity, pressure pain threshold, two-point discrimination threshold, and maximum hand grip strength. Results: Intergroup analysis revealed a statistically significant reduction in post-needling pain intensity favoring the experimental group (U = 188.00, p = 0.034). Additionally, intragroup analysis showed significant improvements in post-needling pain intensity (MD = 0.400, SEM = 0.271, W = 137.00, p = 0.047) and pressure pain threshold (MD = 0.148 Kg/cm2, SEM = 0.038, W = 262.00, p < 0.001) within the experimental group following the intervention. Conclusions: These findings suggest a potential benefit of integrating Mirror Visual Feedback Therapy into treatment protocols for individuals with Lateral Elbow Pain experiencing post-needling discomfort. Further research is necessary to fully elucidate the clinical implications of these findings.
Collapse
Affiliation(s)
- Sebastián Eustaquio Martín Pérez
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain; (J.D.R.); (A.K.); (P.d.M.R.); (J.L.A.P.)
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
- Departamento de Medicina Física y Farmacología, Área de Radiología y Medicina Física, Facultad de Ciencias de la Salud, Universidad de la Laguna, 38200 Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - Jhoselyn Delgado Rodríguez
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain; (J.D.R.); (A.K.); (P.d.M.R.); (J.L.A.P.)
| | - Alejandro Kalitovics
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain; (J.D.R.); (A.K.); (P.d.M.R.); (J.L.A.P.)
| | - Pablo de Miguel Rodríguez
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain; (J.D.R.); (A.K.); (P.d.M.R.); (J.L.A.P.)
| | - Daniela Sabrina Bortolussi Cegarra
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
| | - Iremar Rodríguez Villanueva
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
| | - Álvaro García Molina
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
| | - Iván Ruiz Rodríguez
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
| | - Juan Montaño Ocaña
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
| | - Isidro Miguel Martín Pérez
- Departamento de Medicina Física y Farmacología, Área de Radiología y Medicina Física, Facultad de Ciencias de la Salud, Universidad de la Laguna, 38200 Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - María Dolores Sosa Reina
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Jorge Hugo Villafañe
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - José Luis Alonso Pérez
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain; (J.D.R.); (A.K.); (P.d.M.R.); (J.L.A.P.)
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| |
Collapse
|
28
|
Zhang X, Zhang Y, Su Q, Liu Y, Li Z, Yong VW, Xue M. Ion Channel Dysregulation Following Intracerebral Hemorrhage. Neurosci Bull 2024; 40:401-414. [PMID: 37755675 PMCID: PMC10912428 DOI: 10.1007/s12264-023-01118-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/14/2023] [Indexed: 09/28/2023] Open
Abstract
Injury to the brain after intracerebral hemorrhage (ICH) results from numerous complex cellular mechanisms. At present, effective therapy for ICH is limited and a better understanding of the mechanisms of brain injury is necessary to improve prognosis. There is increasing evidence that ion channel dysregulation occurs at multiple stages in primary and secondary brain injury following ICH. Ion channels such as TWIK-related K+ channel 1, sulfonylurea 1 transient receptor potential melastatin 4 and glutamate-gated channels affect ion homeostasis in ICH. They in turn participate in the formation of brain edema, disruption of the blood-brain barrier, and the generation of neurotoxicity. In this review, we summarize the interaction between ions and ion channels, the effects of ion channel dysregulation, and we discuss some therapeutics based on ion-channel modulation following ICH.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Qiuyang Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
29
|
Kolesova YS, Stroylova YY, Maleeva EE, Moysenovich AM, Pozdyshev DV, Muronetz VI, Andreev YA. Modulation of TRPV1 and TRPA1 Channels Function by Sea Anemones' Peptides Enhances the Viability of SH-SY5Y Cell Model of Parkinson's Disease. Int J Mol Sci 2023; 25:368. [PMID: 38203538 PMCID: PMC10779363 DOI: 10.3390/ijms25010368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Cellular dysfunction during Parkinson's disease leads to neuroinflammation in various brain regions, inducing neuronal death and contributing to the progression of the disease. Different ion channels may influence the process of neurodegeneration. The peptides Ms 9a-1 and APHC3 can modulate the function of TRPA1 and TRPV1 channels, and we evaluated their cytoprotective effects in differentiated to dopaminergic neuron-like SH-SY5Y cells. We used the stable neuroblastoma cell lines SH-SY5Y, producing wild-type alpha-synuclein and its mutant A53T, which are prone to accumulation of thioflavin-S-positive aggregates. We analyzed the viability of cells, as well as the mRNA expression levels of TRPA1, TRPV1, ASIC1a channels, alpha-synuclein, and tyrosine hydroxylase after differentiation of these cell lines using RT-PCR. Overexpression of alpha-synuclein showed a neuroprotective effect and was accompanied by a reduction of tyrosine hydroxylase expression. A mutant alpha-synuclein A53T significantly increased the expression of the pro-apoptotic protein BAX and made cells more susceptible to apoptosis. Generally, overexpression of alpha-synuclein could be a model for the early stages of PD, while expression of mutant alpha-synuclein A53T mimics a genetic variant of PD. The peptides Ms 9a-1 and APHC3 significantly reduced the susceptibility to apoptosis of all cell lines but differentially influenced the expression of the genes of interest. Therefore, these modulators of TRPA1 and TRPV1 have the potential for the development of new therapeutic agents for neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Yuliya S. Kolesova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (Y.S.K.); (E.E.M.); (A.M.M.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Yulia Y. Stroylova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia (V.I.M.)
| | - Ekaterina E. Maleeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (Y.S.K.); (E.E.M.); (A.M.M.)
| | - Anastasia M. Moysenovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (Y.S.K.); (E.E.M.); (A.M.M.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Denis V. Pozdyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia (V.I.M.)
| | - Vladimir I. Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia (V.I.M.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (Y.S.K.); (E.E.M.); (A.M.M.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| |
Collapse
|
30
|
Qin QR, Xu ZQ, Liu TT, Li XM, Qiu CY, Hu WP. CCK-8 enhances acid-sensing ion channel currents in rat primary sensory neurons. Neuropharmacology 2023; 241:109739. [PMID: 37820935 DOI: 10.1016/j.neuropharm.2023.109739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Cholecystokinin (CCK) is a peptide that has been implicated in pain modulation. Acid sensitive ion channels (ASICs) also play an important role in pain associated with tissue acidification. However, it is still unclear whether there is an interaction between CCK signaling and ASICs during pain process. Herein, we report that a functional link between them in rat dorsal root ganglion (DRG) neurons. Pretreatment with CCK-8 concentration-dependently increased acid-evoked ASIC currents. CCK-8 increased the maximum response of ASICs to acid, but did not changed their acid sensitivity. Enhancement of ASIC currents by CCK-8 was mediated by the stimulation of CCK2 receptor (CCK2R), rather than CCK1R. The enhancement of ASIC currents by CCK-8 was prevented by application of either G-protein inhibitor GDP-β-S or protein kinase C (PKC) inhibitor GF109203×, but not by protein kinase A (PKA) inhibitor H-89 or JNK inhibitor SP600125. Moreover, CCK-8 increased the number of action potentials triggered by acid stimuli by activating CCK2R. Finally, CCK-8 dose-dependently exacerbated acid-induced nociceptive behavior in rats through local CCK2R. Together, these results indicated that CCK-8/CCK2R activation enhanced ASIC-mediated electrophysiological activity in DRG neurons and nociception in rats. The enhancement effect depended on G-proteins and intracellular PKC signaling rather than PKA and JNK signaling pathway. These findings provided that CCK-8/CCK2R is an important therapeutic target for ASIC-mediated pain.
Collapse
Affiliation(s)
- Qing-Rui Qin
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Zhong-Qing Xu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Ting-Ting Liu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Xue-Mei Li
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Chun-Yu Qiu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China.
| | - Wang-Ping Hu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China; Department of Physiology, Hubei College of Chinese Medicine, 87 Xueyuan Road, Jingzhou 434020, Hubei, PR China.
| |
Collapse
|
31
|
Zhai R, Wang Q. Phylogenetic Analysis Provides Insight Into the Molecular Evolution of Nociception and Pain-Related Proteins. Evol Bioinform Online 2023; 19:11769343231216914. [PMID: 38107163 PMCID: PMC10725132 DOI: 10.1177/11769343231216914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Nociception and pain sensation are important neural processes in humans to avoid injury. Many proteins are involved in nociception and pain sensation in humans; however, the evolution of these proteins in animals is unknown. Here, we chose nociception- and pain-related proteins, including G protein-coupled receptors (GPCRs), ion channels (ICs), and neuropeptides (NPs), which are reportedly associated with nociception and pain in humans, and identified their homologs in various animals by BLAST, phylogenetic analysis and protein architecture comparison to reveal their evolution from protozoans to humans. We found that the homologs of transient receptor potential channel A 1 (TRPA1), TRAPM, acid-sensing IC (ASIC), and voltage-dependent calcium channel (VDCC) first appear in Porifera. Substance-P receptor 1 (TACR1) emerged from Coelenterata. Somatostatin receptor type 2 (SSTR2), TRPV1 and voltage-dependent sodium channels (VDSC) appear in Platyhelminthes. Calcitonin gene-related peptide receptor (CGRPR) was first identified in Nematoda. However, opioid receptors (OPRs) and most NPs were discovered only in vertebrates and exist from agnatha to humans. The results demonstrated that homologs of nociception and pain-related ICs exist from lower animal phyla to high animal phyla, and that most of the GPCRs originate from low to high phyla sequentially, whereas OPRs and NPs are newly evolved in vertebrates, which provides hints of the evolution of nociception and pain-related proteins in animals and humans.
Collapse
Affiliation(s)
- Rujun Zhai
- Department of Gastrointestinal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, P. R. China
| | - Qian Wang
- Changping Laboratory, Beijing, P. R. China
| |
Collapse
|
32
|
Martínez-Barbero G, García-Mesa Y, Cobo R, Cuendias P, Martín-Biedma B, García-Suárez O, Feito J, Cobo T, Vega JA. Acid-Sensing Ion Channels' Immunoreactivity in Nerve Profiles and Glomus Cells of the Human Carotid Body. Int J Mol Sci 2023; 24:17161. [PMID: 38138991 PMCID: PMC10743051 DOI: 10.3390/ijms242417161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The carotid body is a major peripheral chemoreceptor that senses changes in arterial blood oxygen, carbon dioxide, and pH, which is important for the regulation of breathing and cardiovascular function. The mechanisms by which the carotid body senses O2 and CO2 are well known; conversely, the mechanisms by which it senses pH variations are almost unknown. Here, we used immunohistochemistry to investigate how the human carotid body contributes to the detection of acidosis, analyzing whether it expresses acid-sensing ion channels (ASICs) and determining whether these channels are in the chemosensory glomic cells or in the afferent nerves. In ASIC1, ASIC2, and ASIC3, and to a much lesser extent ASIC4, immunoreactivity was detected in subpopulations of type I glomus cells, as well as in the nerves of the carotid body. In addition, immunoreactivity was found for all ASIC subunits in the neurons of the petrosal and superior cervical sympathetic ganglia, where afferent and efferent neurons are located, respectively, innervating the carotid body. This study reports for the first time the occurrence of ASIC proteins in the human carotid body, demonstrating that they are present in glomus chemosensory cells (ASIC1 < ASIC2 > ASIC3 > ASIC4) and nerves, presumably in both the afferent and efferent neurons supplying the organ. These results suggest that the detection of acidosis by the carotid body can be mediated via the ASIC ion channels present in the type I glomus cells or directly via sensory nerve fibers.
Collapse
Affiliation(s)
- Graciela Martínez-Barbero
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (G.M.-B.); (Y.G.-M.); (R.C.); (P.C.); (O.G.-S.)
| | - Yolanda García-Mesa
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (G.M.-B.); (Y.G.-M.); (R.C.); (P.C.); (O.G.-S.)
| | - Ramón Cobo
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (G.M.-B.); (Y.G.-M.); (R.C.); (P.C.); (O.G.-S.)
- Servicio de Otorrinolaringología, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Patricia Cuendias
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (G.M.-B.); (Y.G.-M.); (R.C.); (P.C.); (O.G.-S.)
| | - Benjamín Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Olivia García-Suárez
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (G.M.-B.); (Y.G.-M.); (R.C.); (P.C.); (O.G.-S.)
| | - Jorge Feito
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario, 37007 Salamanca, Spain;
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto Asturiano de Odontología, 33006 Oviedo, Spain
| | - José A. Vega
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (G.M.-B.); (Y.G.-M.); (R.C.); (P.C.); (O.G.-S.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia 7500912, Región Metropolitana, Chile
| |
Collapse
|
33
|
Staud R, Godfrey MM, Stroman PW. Fibromyalgia is associated with hypersensitivity but not with abnormal pain modulation: evidence from QST trials and spinal fMRI. FRONTIERS IN PAIN RESEARCH 2023; 4:1284103. [PMID: 38116188 PMCID: PMC10728773 DOI: 10.3389/fpain.2023.1284103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Widespread pain and hyperalgesia are characteristics of chronic musculoskeletal pain conditions, including fibromyalgia syndrome (FM). Despite mixed evidence, there is increasing consensus that these characteristics depend on abnormal pain augmentation and dysfunctional pain inhibition. Our recent investigations of pain modulation with individually adjusted nociceptive stimuli have confirmed the mechanical and thermal hyperalgesia of FM patients but failed to detect abnormalities of pain summation or descending pain inhibition. Furthermore, our functional magnetic resonance imaging evaluations of spinal and brainstem pain processing during application of sensitivity-adjusted heat stimuli demonstrated similar temporal patterns of spinal cord activation in FM and HC participants. However, detailed modeling of brainstem activation showed that BOLD activity during "pain summation" was increased in FM subjects, suggesting differences in brain stem modulation of nociceptive stimuli compared to HC. Whereas these differences in brain stem activation are likely related to the hypersensitivity of FM patients, the overall central pain modulation of FM showed no significant abnormalities. These findings suggest that FM patients are hyperalgesic but modulate nociceptive input as effectively as HC.
Collapse
Affiliation(s)
- Roland Staud
- Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL, United States
| | - Melyssa M. Godfrey
- Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL, United States
| | - Patrick W. Stroman
- Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
34
|
Bader A, Yousaf A, Chu XP. Commentary: Effects of acid-sensing ion channel-1A (ASIC1A) on cocaine-induced synaptic adaptations. Front Physiol 2023; 14:1295561. [PMID: 38111896 PMCID: PMC10725958 DOI: 10.3389/fphys.2023.1295561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Affiliation(s)
| | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| |
Collapse
|
35
|
Thomaidis GV, Papadimitriou K, Michos S, Chartampilas E, Tsamardinos I. A characteristic cerebellar biosignature for bipolar disorder, identified with fully automatic machine learning. IBRO Neurosci Rep 2023; 15:77-89. [PMID: 38025660 PMCID: PMC10668096 DOI: 10.1016/j.ibneur.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 12/01/2023] Open
Abstract
Background Transcriptomic profile differences between patients with bipolar disorder and healthy controls can be identified using machine learning and can provide information about the potential role of the cerebellum in the pathogenesis of bipolar disorder.With this aim, user-friendly, fully automated machine learning algorithms can achieve extremely high classification scores and disease-related predictive biosignature identification, in short time frames and scaled down to small datasets. Method A fully automated machine learning platform, based on the most suitable algorithm selection and relevant set of hyper-parameter values, was applied on a preprocessed transcriptomics dataset, in order to produce a model for biosignature selection and to classify subjects into groups of patients and controls. The parent GEO datasets were originally produced from the cerebellar and parietal lobe tissue of deceased bipolar patients and healthy controls, using Affymetrix Human Gene 1.0 ST Array. Results Patients and controls were classified into two separate groups, with no close-to-the-boundary cases, and this classification was based on the cerebellar transcriptomic biosignature of 25 features (genes), with Area Under Curve 0.929 and Average Precision 0.955. The biosignature includes both genes connected before to bipolar disorder, depression, psychosis or epilepsy, as well as genes not linked before with any psychiatric disease. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed participation of 4 identified features in 6 pathways which have also been associated with bipolar disorder. Conclusion Automated machine learning (AutoML) managed to identify accurately 25 genes that can jointly - in a multivariate-fashion - separate bipolar patients from healthy controls with high predictive power. The discovered features lead to new biological insights. Machine Learning (ML) analysis considers the features in combination (in contrast to standard differential expression analysis), removing both irrelevant as well as redundant markers, and thus, focusing to biological interpretation.
Collapse
Affiliation(s)
- Georgios V. Thomaidis
- Greek National Health System, Psychiatric Department, Katerini General Hospital, Katerini, Greece
| | - Konstantinos Papadimitriou
- Greek National Health System, G. Papanikolaou General Hospital, Organizational Unit - Psychiatric Hospital of Thessaloniki, Thessaloniki, Greece
| | | | - Evangelos Chartampilas
- Laboratory of Radiology, AHEPA General Hospital, University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
36
|
Spekker E, Nagy-Grócz G, Vécsei L. Ion Channel Disturbances in Migraine Headache: Exploring the Potential Role of the Kynurenine System in the Context of the Trigeminovascular System. Int J Mol Sci 2023; 24:16574. [PMID: 38068897 PMCID: PMC10706278 DOI: 10.3390/ijms242316574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Migraine is a primary headache disorder, which is an enormous burden to the healthcare system. While some aspects of the pathomechanism of migraines remain unknown, the most accepted theory is that activation and sensitization of the trigeminovascular system are essential during migraine attacks. In recent decades, it has been suggested that ion channels may be important participants in the pathogenesis of migraine. Numerous ion channels are expressed in the peripheral and central nervous systems, including the trigeminovascular system, affecting neuron excitability, synaptic energy homeostasis, inflammatory signaling, and pain sensation. Dysfunction of ion channels could result in neuronal excitability and peripheral or central sensitization. This narrative review covers the current understanding of the biological mechanisms leading to activation and sensitization of the trigeminovascular pain pathway, with a focus on recent findings on ion channel activation and modulation. Furthermore, we focus on the kynurenine pathway since this system contains kynurenic acid, which is an endogenous glutamate receptor antagonist substance, and it has a role in migraine pathophysiology.
Collapse
Affiliation(s)
| | - Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Hungary;
- Faculty of Health Sciences and Social Studies, University of Szeged, H-6726 Szeged, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6725 Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
37
|
Imomnazarov K, Torrence SE, Lindgren CA. Reduced Plasma-Membrane Calcium ATPase Activity and Extracellular Acidification Trigger Presynaptic Homeostatic Potentiation at the Mouse Neuromuscular Junction. Neuroscience 2023; 532:103-112. [PMID: 37778690 DOI: 10.1016/j.neuroscience.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/23/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
At the vertebrate neuromuscular junction (NMJ), presynaptic homeostatic potentiation (PHP) refers to an increase in neurotransmitter release that restores the strength of synaptic transmission following a blockade of nicotinic acetylcholine receptors (nAChRs). Mechanisms informing the presynaptic terminal of the loss of postsynaptic receptivity remain poorly understood. Previous research at the mouse NMJ suggests that extracellular protons may function as a retrograde signal that triggers an upregulation of neurotransmitter output (measured by quantal content, QC) through the activation of acid-sensing ion channels (ASICs). We further investigated the pH-dependency of PHP in an ex-vivo mouse muscle preparation. We observed that increasing the buffering capacity of the perfusion saline with HEPES abolishes PHP and that acidifying the saline from pH 7.4 to pH 7.2-7.1 increases QC, demonstrating the necessity and sufficiency of extracellular acidification for PHP. We then sought to uncover how the blockade of nAChRs leads to the pH decrease. Plasma-membrane calcium ATPase (PMCA), a calcium-proton antiporter, is known to alkalize the synaptic cleft following neurotransmission in a calcium-dependent manner. We hypothesize that since nAChR blockade reduces postsynaptic calcium entry, it also reduces the alkalizing activity of the PMCA, thereby causing acidosis, ASIC activation, and QC upregulation. In line with this hypothesis, we found that pharmacological inhibition of the PMCA with carboxyeosin induces QC upregulation and that this effect requires functional ASICs. We also demonstrated that muscles pre-treated with carboxyeosin fail to generate PHP. These findings suggest that reduced PMCA activity causes presynaptic homeostatic potentiation by activating ASICs at the mouse NMJ.
Collapse
Affiliation(s)
| | - Sarah E Torrence
- Department of Biology, Grinnell College, Grinnell, IA 50112, United States
| | - Clark A Lindgren
- Department of Biology, Grinnell College, Grinnell, IA 50112, United States.
| |
Collapse
|
38
|
Lyukmanova EN, Zaigraev MM, Kulbatskii DS, Isaev AB, Kukushkin ID, Bychkov ML, Shulepko MA, Chugunov AO, Kirpichnikov MP. Molecular Basis for Mambalgin-2 Interaction with Heterotrimeric α-ENaC/ASIC1a/γ-ENaC Channels in Cancer Cells. Toxins (Basel) 2023; 15:612. [PMID: 37888643 PMCID: PMC10610865 DOI: 10.3390/toxins15100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Cancer progression is characterized by microenvironmental acidification. Tumor cells adapt to low environmental pH by activating acid-sensing trimeric ion channels of the DEG/ENaC family. The α-ENaC/ASIC1a/γ-ENaC heterotrimeric channel is a tumor-specific acid-sensing channel, and its targeting can be considered a new strategy for cancer therapy. Mambalgin-2 from the Dendroaspis polylepis venom inhibits the α-ENaC/ASIC1a/γ-ENaC heterotrimer more effectively than the homotrimeric ASIC1a channel, initially proposed as the target of mambalgin-2. Although the molecular basis of such mambalgin selectivity remained unclear. Here, we built the models of the complexes of mambalgin-2 with the α-ENaC/ASIC1a/γ-ENaC and ASIC1a channels, performed MD and predicted the difference in the binding modes. The importance of the 'head' loop region of mambalgin-2 for the interaction with the hetero-, but not with the homotrimeric channel was confirmed by site-directed mutagenesis and electrophysiology. A new mode of allosteric regulation of the ENaC channels by linking the thumb domain of the ASIC1a subunit with the palm domain of the γ-ENaC subunit was proposed. The data obtained provide new insights into the regulation of various types of acid-sensing ion channels and the development of new strategies for cancer treatment.
Collapse
Affiliation(s)
- Ekaterina N. Lyukmanova
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119234, Russia
| | - Maxim M. Zaigraev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Dmitrii S. Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
| | - Aizek B. Isaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Ilya D. Kukushkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Maxim L. Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
| | | | - Anton O. Chugunov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119234, Russia
| |
Collapse
|
39
|
Battaglia M, Rossignol O, Lorenzo LE, Deguire J, Godin AG, D’Amato FR, De Koninck Y. Enhanced harm detection following maternal separation: Transgenerational transmission and reversibility by inhaled amiloride. SCIENCE ADVANCES 2023; 9:eadi8750. [PMID: 37792939 PMCID: PMC10550232 DOI: 10.1126/sciadv.adi8750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Early-life adversities are associated with altered defensive responses. Here, we demonstrate that the repeated cross-fostering (RCF) paradigm of early maternal separation is associated with enhancements of distinct homeostatic reactions: hyperventilation in response to hypercapnia and nociceptive sensitivity, among the first generation of RCF-exposed animals, as well as among two successive generations of their normally reared offspring, through matrilineal transmission. Parallel enhancements of acid-sensing ion channel 1 (ASIC1), ASIC2, and ASIC3 messenger RNA transcripts were detected transgenerationally in central neurons, in the medulla oblongata, and in periaqueductal gray matter of RCF-lineage animals. A single, nebulized dose of the ASIC-antagonist amiloride renormalized respiratory and nociceptive responsiveness across the entire RCF lineage. These findings reveal how, following an early-life adversity, a biological memory reducible to a molecular sensor unfolds, shaping adaptation mechanisms over three generations. Our findings are entwined with multiple correlates of human anxiety and pain conditions and suggest nebulized amiloride as a therapeutic avenue.
Collapse
Affiliation(s)
- Marco Battaglia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Child Youth and Emerging Adult Programme, Centre for Addiction and Mental Health, Toronto, ON, Canada
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| | - Orlane Rossignol
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Louis-Etienne Lorenzo
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Jasmin Deguire
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Antoine G. Godin
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| | - Francesca R. D’Amato
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| |
Collapse
|
40
|
Khataei T, Benson CJ. ASIC3 plays a protective role in delayed-onset muscle soreness (DOMS) through muscle acid sensation during exercise. FRONTIERS IN PAIN RESEARCH 2023; 4:1215197. [PMID: 37795390 PMCID: PMC10546048 DOI: 10.3389/fpain.2023.1215197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/10/2023] [Indexed: 10/06/2023] Open
Abstract
Immediate exercise-induced pain (IEIP) and DOMS are two types of exercise-induced muscle pain and can act as barriers to exercise. The burning sensation of IEIP occurs during and immediately after intensive exercise, whereas the soreness of DOMS occurs later. Acid-sensing ion channels (ASICs) within muscle afferents are activated by H+ and other chemicals and have been shown to play a role in various chronic muscle pain conditions. Here, we further defined the role of ASICs in IEIP, and also tested if ASIC3 is required for DOMS. After undergoing exhaustive treadmill exercise, exercise-induced muscle pain was assessed in wild-type (WT) and ASIC3-/- mice at baseline via muscle withdrawal threshold (MWT), immediately, and 24 h after exercise. Locomotor movement, grip strength, and repeat exercise performance were tested at baseline and 24 h after exercise to evaluate DOMS. We found that ASIC3-/- had similar baseline muscle pain, locomotor activity, grip strength, and exercise performance as WT mice. WT showed diminished MWT immediately after exercise indicating they developed IEIP, but ASIC3-/- mice did not. At 24 h after baseline exercise, both ASIC3-/- and WT had similarly lower MWT and grip strength, however, ASIC3-/- displayed significantly lower locomotor activity and repeat exercise performance at 24 h time points compared to WT. In addition, ASIC3-/- mice had higher muscle injury as measured by serum lactate dehydrogenase and creatine kinase levels at 24 h after exercise. These results show that ASIC3 is required for IEIP, but not DOMS, and in fact might play a protective role to prevent muscle injury associated with strenuous exercise.
Collapse
Affiliation(s)
- Tahsin Khataei
- Department of Internal Medicine, Roy J and Lucile A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa City VA Healthcare System, Iowa City, IA, United States
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, United States
| | - Christopher J. Benson
- Department of Internal Medicine, Roy J and Lucile A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa City VA Healthcare System, Iowa City, IA, United States
| |
Collapse
|
41
|
Park G, Jin Z, Ge Q, Pan Y, Du J. Neuronal acid-sensing ion channel 1a regulates neuron-to-glioma synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555794. [PMID: 37693494 PMCID: PMC10491214 DOI: 10.1101/2023.08.31.555794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Neuronal activity promotes high-grade glioma progression via secreted proteins and neuron-to-glioma synapses, and glioma cells boost neuronal activity to further reinforce the malignant cycle. Whereas strong evidence supports that the activity of neuron-to-glioma synapses accelerates tumor progression, the molecular mechanisms that modulate the formation and function of neuron-to-glioma synapses remain largely unknown. Our recent findings suggest that a proton (H + ) signaling pathway actively mediates neuron-to-glioma synaptic communications by activating neuronal acid-sensing ion channel 1a (Asic1a), a predominant H + receptor in the central nervous system (CNS). Supporting this idea, our preliminary data revealed that local acid puff on neurons in high-grade glioma-bearing brain slices induces postsynaptic currents of glioma cells. Stimulating Asic1a knockout (Asic1a -/- ) neurons results in lower AMPA receptor-dependent excitatory postsynaptic currents (EPSCs) in glioma cells than stimulating wild-type (WT) neurons. Moreover, glioma-bearing Asic1a -/- mice exhibited reduced tumor size and survived longer than the glioma-bearing WT mice. Finally, pharmacologically targeting brain Asic1a inhibited high-grade glioma progression. In conclusion, our findings suggest that the neuronal H + -Asic1a axis plays a key role in regulating the neuron-glioma synapse. The outcomes of this study will greatly expand our understanding of how this deadly tumor integrates into the neuronal microenvironment.
Collapse
|
42
|
Zhao P, Tang C, Yang Y, Xiao Z, Perez-Miller S, Zhang H, Luo G, Liu H, Li Y, Liao Q, Yang F, Dong H, Khanna R, Liu Z. A new polymodal gating model of the proton-activated chloride channel. PLoS Biol 2023; 21:e3002309. [PMID: 37713449 PMCID: PMC10529583 DOI: 10.1371/journal.pbio.3002309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/27/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
The proton-activated chloride (PAC) channel plays critical roles in ischemic neuron death, but its activation mechanisms remain elusive. Here, we investigated the gating of PAC channels using its novel bifunctional modulator C77304. C77304 acted as a weak activator of the PAC channel, causing moderate activation by acting on its proton gating. However, at higher concentrations, C77304 acted as a weak inhibitor, suppressing channel activity. This dual function was achieved by interacting with 2 modulatory sites of the channel, each with different affinities and dependencies on the channel's state. Moreover, we discovered a protonation-independent voltage activation of the PAC channel that appears to operate through an ion-flux gating mechanism. Through scanning-mutagenesis and molecular dynamics simulation, we confirmed that E181, E257, and E261 in the human PAC channel serve as primary proton sensors, as their alanine mutations eliminated the channel's proton gating while sparing the voltage-dependent gating. This proton-sensing mechanism was conserved among orthologous PAC channels from different species. Collectively, our data unveils the polymodal gating and proton-sensing mechanisms in the PAC channel that may inspire potential drug development.
Collapse
Affiliation(s)
- Piao Zhao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Yuqin Yang
- Kuang Yaming Honors School, State Key Laboratory of Analytical Chemistry for Life Science, Engineering Research Center of Protein and Peptide Medicine of Ministry of Education, & Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhen Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology and NYU Pain Research Center, College of Dentistry, New York University, New York, New York, United States of America
| | - Heng Zhang
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guoqing Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hao Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qingyi Liao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Dong
- Kuang Yaming Honors School, State Key Laboratory of Analytical Chemistry for Life Science, Engineering Research Center of Protein and Peptide Medicine of Ministry of Education, & Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Rajesh Khanna
- Department of Molecular Pathobiology and NYU Pain Research Center, College of Dentistry, New York University, New York, New York, United States of America
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, New York, United States of America
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, China
| |
Collapse
|
43
|
Evlanenkov KK, Zhigulin AS, Tikhonov DB. Possible Compensatory Role of ASICs in Glutamatergic Synapses. Int J Mol Sci 2023; 24:12974. [PMID: 37629153 PMCID: PMC10455551 DOI: 10.3390/ijms241612974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Proton-gated channels of the ASIC family are widely distributed in central neurons, suggesting their role in common neurophysiological functions. They are involved in glutamatergic neurotransmission and synaptic plasticity; however, the exact function of these channels remains unclear. One problem is that acidification of the synaptic cleft due to the acidic content of synaptic vesicles has opposite effects on ionotropic glutamate receptors and ASICs. Thus, the pH values required to activate ASICs strongly inhibit AMPA receptors and almost completely inhibit NMDA receptors. This, in turn, suggests that ASICs can provide compensation for post-synaptic responses in the case of significant acidifications. We tested this hypothesis by patch-clamp recordings of rat brain neuron responses to acidifications and glutamate receptor agonists at different pH values. Hippocampal pyramidal neurons have much lower ASICs than glutamate receptor responses, whereas striatal interneurons show the opposite ratio. Cortical pyramidal neurons and hippocampal interneurons show similar amplitudes in their responses to acidification and glutamate. Consequently, the total response to glutamate agonists at different pH levels remains rather stable up to pH 6.2. Besides these pH effects, the relationship between the responses mediated by glutamate receptors and ASICs depends on the presence of Mg2+ and the membrane voltage. Together, these factors create a complex picture that provides a framework for understanding the role of ASICs in synaptic transmission and synaptic plasticity.
Collapse
Affiliation(s)
| | | | - Denis B. Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg 194223, Russia; (K.K.E.); (A.S.Z.)
| |
Collapse
|
44
|
Peng Z, Ziros PG, Martini T, Liao XH, Stoop R, Refetoff S, Albrecht U, Sykiotis GP, Kellenberger S. ASIC1a affects hypothalamic signaling and regulates the daily rhythm of body temperature in mice. Commun Biol 2023; 6:857. [PMID: 37591947 PMCID: PMC10435469 DOI: 10.1038/s42003-023-05221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 08/05/2023] [Indexed: 08/19/2023] Open
Abstract
The body temperature of mice is higher at night than during the day. We show here that global deletion of acid-sensing ion channel 1a (ASIC1a) results in lower body temperature during a part of the night. ASICs are pH sensors that modulate neuronal activity. The deletion of ASIC1a decreased the voluntary activity at night of mice that had access to a running wheel but did not affect their spontaneous activity. Daily rhythms of thyrotropin-releasing hormone mRNA in the hypothalamus and of thyroid-stimulating hormone β mRNA in the pituitary, and of prolactin mRNA in the hypothalamus and pituitary were suppressed in ASIC1a-/- mice. The serum thyroid hormone levels were however not significantly changed by ASIC1a deletion. Our findings indicate that ASIC1a regulates activity and signaling in the hypothalamus and pituitary. This likely leads to the observed changes in body temperature by affecting the metabolism or energy expenditure.
Collapse
Affiliation(s)
- Zhong Peng
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Panos G Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tomaz Martini
- Department of Biology/Unit of Biochemistry, Faculty of Sciences, University of Fribourg, Fribourg, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Ron Stoop
- Center for Psychiatric Neurosciences, Hôpital de Cery, Lausanne University Hospital, Lausanne, Switzerland
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
- Committee on Genetics, The University of Chicago, Chicago, IL, USA
| | - Urs Albrecht
- Department of Biology/Unit of Biochemistry, Faculty of Sciences, University of Fribourg, Fribourg, Switzerland
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
45
|
Díaz M, Pereda de Pablo D, Valdés‐Baizabal C, Santos G, Marin R. Molecular and biophysical features of hippocampal "lipid rafts aging" are modified by dietary n-3 long-chain polyunsaturated fatty acids. Aging Cell 2023; 22:e13867. [PMID: 37254617 PMCID: PMC10410061 DOI: 10.1111/acel.13867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023] Open
Abstract
"Lipid raft aging" in nerve cells represents an early event in the development of aging-related neurodegenerative diseases, such as Alzheimer's disease. Lipid rafts are key elements in synaptic plasticity, and their modification with aging alters interactions and distribution of signaling molecules, such as glutamate receptors and ion channels involved in memory formation, eventually leading to cognitive decline. In the present study, we have analyzed, in vivo, the effects of dietary supplementation of n-3 LCPUFA on the lipid structure, membrane microviscosity, domain organization, and partitioning of ionotropic and metabotropic glutamate receptors in hippocampal lipid raffs in female mice. The results revealed several lipid signatures of "lipid rafts aging" in old mice fed control diets, consisting in depletion of n-3 LCPUFA, membrane unsaturation, along with increased levels of saturates, plasmalogens, and sterol esters, as well as altered lipid relevant indexes. These changes were paralleled by increased microviscosity and changes in the raft/non-raft (R/NR) distribution of AMPA-R and mGluR5. Administration of the n-3 LCPUFA diet caused the partial reversion of fatty acid alterations found in aged mice and returned membrane microviscosity to values found in young animals. Paralleling these findings, lipid rafts accumulated mGluR5, NMDA-R, and ASIC2, and increased their R/NR proportions, which collectively indicate changes in synaptic plasticity. Unexpectedly, this diet also modified the lipidome and dimension of lipid rafts, as well as the domain redistribution of glutamate receptors and acid-sensing ion channels involved in hippocampal synaptic plasticity, likely modulating functionality of lipid rafts in memory formation and reluctance to age-associated cognitive decline.
Collapse
Affiliation(s)
- Mario Díaz
- Department of Physics, Faculty of SciencesUniversity of La LagunaTenerifeSpain
- Instituto Universitario de Neurociencias (IUNE)TenerifeSpain
- Laboratory of Membrane Physiology and Biophysics, School of SciencesUniversity of La LagunaTenerifeSpain
| | - Daniel Pereda de Pablo
- Laboratory of Cellular NeurobiologyDepartment of Basic Medical Sciences, Faculty of Health SciencesUniversity of La LagunaTenerifeSpain
| | - Catalina Valdés‐Baizabal
- Laboratory of Cellular NeurobiologyDepartment of Basic Medical Sciences, Faculty of Health SciencesUniversity of La LagunaTenerifeSpain
| | - Guido Santos
- Department of Biochemistry, Microbiology, Cellular Biology and Genetics, School of SciencesUniversity of La LagunaTenerifeSpain
| | - Raquel Marin
- Laboratory of Cellular NeurobiologyDepartment of Basic Medical Sciences, Faculty of Health SciencesUniversity of La LagunaTenerifeSpain
- Associate Research Unit ULL‐CSIC “Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases”TenerifeSpain
| |
Collapse
|
46
|
Fischer L, Schmidt A, Dopychai A, Joussen S, Joeres N, Oslender-Bujotzek A, Schmalzing G, Gründer S. Physiologically relevant acid-sensing ion channel (ASIC) 2a/3 heteromers have a 1:2 stoichiometry. Commun Biol 2023; 6:701. [PMID: 37422581 PMCID: PMC10329638 DOI: 10.1038/s42003-023-05087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
Acid-sensing ion channels (ASICs) sense extracellular protons and are involved in synaptic transmission and pain sensation. ASIC1a and ASIC3 are the ASIC subunits with the highest proton sensitivity. ASIC2a in contrast has low proton sensitivity but increases the variability of ASICs by forming heteromers with ASIC1a or ASIC3. ASICs are trimers and for the ASIC1a/2a heteromer it has been shown that subunits randomly assemble with a flexible 1:2/2:1 stoichiometry. Both heteromers have almost identical proton sensitivity intermediate between ASIC1a and ASIC2a. Here, we investigated the stoichiometry of the ASIC2a/3 heteromer. Using electrophysiology, we extensively characterized, first, cells expressing ASIC2a and ASIC3 at different ratios, second, concatemeric channels with a fixed subunit stoichiometry, and, third, channels containing loss-of-functions mutations in specific subunits. Our results conclusively show that only ASIC2a/3 heteromers with a 1:2 stoichiometry had a proton-sensitivity intermediate between ASIC2a and ASIC3. In contrast, the proton sensitivity of ASIC2a/3 heteromers with a 2:1 stoichiometry was strongly acid-shifted by more than one pH unit, which suggests that they are not physiologically relevant. Together, our results reveal that the proton sensitivity of the two ASIC2a/3 heteromers is clearly different and that ASIC3 and ASIC1a make remarkably different contributions to heteromers with ASIC2a.
Collapse
Affiliation(s)
- Leon Fischer
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
- Department of Anesthesiology, Technical University Dresden, Dresden, Germany
| | - Axel Schmidt
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Anke Dopychai
- Institute of Clinical Pharmacology, RWTH Aachen University, Wendlingweg, D-52074, Aachen, Germany
| | - Sylvia Joussen
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
| | - Niko Joeres
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
| | | | - Günther Schmalzing
- Institute of Clinical Pharmacology, RWTH Aachen University, Wendlingweg, D-52074, Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany.
| |
Collapse
|
47
|
Gupta SC, Taugher-Hebl RJ, Hardie JB, Fan R, LaLumiere RT, Wemmie JA. Effects of acid-sensing ion channel-1A (ASIC1A) on cocaine-induced synaptic adaptations. Front Physiol 2023; 14:1191275. [PMID: 37389125 PMCID: PMC10300415 DOI: 10.3389/fphys.2023.1191275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Chronic drug abuse is thought to induce synaptic changes in nucleus accumbens medium spiny neurons (MSNs) that promote subsequent craving and drug-seeking behavior. Accumulating data suggest acid-sensing ion channels (ASICs) may play a critical role. In drug naïve mice, disrupting the ASIC1A subunit produced a variety of synaptic changes reminiscent of wild-type mice following cocaine withdrawal, including increased AMPAR/NMDAR ratio, increased AMPAR rectification, and increased dendrite spine density. Importantly, these changes in Asic1a -/- mice were normalized by a single dose of cocaine. Here we sought to understand the temporal effects of cocaine exposure in Asic1a -/- mice and the cellular site of ASIC1A action. Six hours after cocaine exposure, there was no effect. However, 15 h, 24 h and 4 days after cocaine exposure there was a significant reduction in AMPAR/NMDAR ratio in Asic1a -/- mice. Within 7 days the AMPAR/NMDAR ratio had returned to baseline levels. Cocaine-evoked changes in AMPAR rectification and dendritic spine density followed a similar time course with significant reductions in rectification and dendritic spines 24 h after cocaine exposure in Asic1a -/- mice. To test the cellular site of ASIC1A action on these responses, we disrupted ASIC1A specifically in a subpopulation of MSNs. We found that effects of ASIC1A disruption were cell autonomous and restricted to neurons in which the channels are disrupted. We further tested whether ASIC1A disruption differentially affects MSNs subtypes and found AMPAR/NMDAR ratio was elevated in dopamine receptor 1-expressing MSNs, suggesting a preferential effect for these cells. Finally, we tested if protein synthesis was involved in synaptic adaptations that occurred after ASIC1A disruption, and found the protein synthesis inhibitor anisomycin normalized AMPAR-rectification and AMPAR/NMDAR ratio in drug-naïve Asic1a -/- mice to control levels, observed in wild-type mice. Together, these results provide valuable mechanistic insight into the effects of ASICs on synaptic plasticity and drug-induced effects and raise the possibility that ASIC1A might be therapeutically manipulated to oppose drug-induced synaptic changes and behavior.
Collapse
Affiliation(s)
- Subhash C. Gupta
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Rebecca J. Taugher-Hebl
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Jason B. Hardie
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Rong Fan
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Ryan T. LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
48
|
Stover JD, Trone MA, Lawrence B, Bowles RD. Multiplex epigenome editing of ion channel expression in nociceptive neurons abolished degenerative IVD-conditioned media-induced mechanical sensitivity. JOR Spine 2023; 6:e1253. [PMID: 37361323 PMCID: PMC10285767 DOI: 10.1002/jsp2.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/15/2023] [Accepted: 02/27/2023] [Indexed: 06/28/2023] Open
Abstract
Background Low back pain is a major contributor to disability worldwide and generates a tremendous socioeconomic impact. The degenerative intervertebral disc (IVD) has been hypothesized to contribute to discogenic pain by sensitizing nociceptive neurons innervating the disc to stimuli that is nonpainful in healthy patients. Previously, we demonstrated the ability of degenerative IVDs to sensitize neurons to mechanical stimuli; however, elucidation of degenerative IVDs discogenic pain mechanisms is required to develop therapeutic strategies that directly target these mechanisms. Aims In this study, we utilized CRISPR epigenome editing of nociceptive neurons to identify mechanisms of degenerative IVD-induced changes to mechanical nociception and demonstrated the ability of multiplex CRISPR epigenome editing of nociceptive neurons to modulate inflammation-induced mechanical nociception. Methods and Results Utilizing an in vitro model, we demonstrated degenerative IVD-produced IL-6-induced increases in nociceptive neuron activity in response to mechanical stimuli, mediated by TRPA1, ASIC3, and Piezo2 ion channel activity. Once these ion channels were identified as mediators of degenerative IVD-induced mechanical nociception, we developed singleplex and multiplex CRISPR epigenome editing vectors that modulate endogenous expression of TRPA1, ASIC3, and Piezo2 via targeted gene promoter histone methylation. When delivered to nociceptive neurons, the multiplex CRISPR epigenome editing vectors abolished degenerative IVD-induced mechanical nociception while preserving nonpathologic neuron activity. Conclusion This work demonstrates the potential of multiplex CRISPR epigenome editing as a highly targeted gene-based neuromodulation strategy for the treatment of discogenic pain, specifically; and, for the treatment of inflammatory chronic pain conditions, more broadly.
Collapse
Affiliation(s)
- Joshua D. Stover
- Department of BioengineeringUniversity of UtahSalt Lake CityUtahUSA
| | - Matthew A. Trone
- Department of BioengineeringUniversity of UtahSalt Lake CityUtahUSA
| | - Brandon Lawrence
- Department of OrthopaedicsUniversity of UtahSalt Lake CityUtahUSA
| | - Robby D. Bowles
- Department of BioengineeringUniversity of UtahSalt Lake CityUtahUSA
- Department of OrthopaedicsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
49
|
Cherninskyi A, Storozhuk M, Maximyuk O, Kulyk V, Krishtal O. Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors. Neurosci Bull 2023; 39:845-862. [PMID: 36445556 PMCID: PMC9707125 DOI: 10.1007/s12264-022-00986-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.
Collapse
Affiliation(s)
- Andrii Cherninskyi
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine.
| | - Maksim Storozhuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Vyacheslav Kulyk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| |
Collapse
|
50
|
Yoneda T, Hiasa M, Okui T, Hata K. Cancer-nerve interplay in cancer progression and cancer-induced bone pain. J Bone Miner Metab 2023; 41:415-427. [PMID: 36715764 DOI: 10.1007/s00774-023-01401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Cancer-induced bone pain (CIBP) is one of the most common and debilitating complications associated with bone metastasis. Although our understanding of the precise mechanism is limited, it has been known that bone is densely innervated, and that CIBP is elicited as a consequence of increased neurogenesis, reprogramming, and axonogenesis in conjunction with sensitization and excitation of sensory nerves (SNs) in response to the noxious stimuli that are derived from the tumor microenvironment developed in bone. Recent studies have shown that the sensitized and excited nerves innervating the tumor establish intimate communications with cancer cells by releasing various tumor-stimulating factors for tumor progression. APPROACHES In this review, the role of the interactions of cancer cells and SNs in bone in the pathophysiology of CIBP will be discussed with a special focus on the role of the noxious acidic tumor microenvironment, considering that bone is in nature hypoxic, which facilitates the generation of acidic conditions by cancer. Subsequently, the role of SNs in the regulation of cancer progression in the bone will be discussed together with our recent experimental findings. CONCLUSION It is suggested that SNs may be a newly-recognized important component of the bone microenvironment that contribute to not only in the pathophysiology of CIBP but also cancer progression in bone and dissemination from bone. Suppression of the activity of bone-innervating SNs, thus, may provide unique opportunities in the treatment of cancer progression and dissemination, as well as CIBP.
Collapse
Affiliation(s)
- Toshiyuki Yoneda
- Department of Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan.
| | - Masahiro Hiasa
- Department of Biomaterials and Bioengineering, University of Tokushima Graduate School of Dentistry, Tokushima, Tokushima, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Kenji Hata
- Department of Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| |
Collapse
|