1
|
Yin H, Sun X, Yang K, Lan Y, Lu Z. Regulation of dentate gyrus pattern separation by hilus ectopic granule cells. Cogn Neurodyn 2025; 19:10. [PMID: 39801911 PMCID: PMC11718051 DOI: 10.1007/s11571-024-10204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/11/2024] [Accepted: 10/10/2024] [Indexed: 01/16/2025] Open
Abstract
The dentate gyrus (DG) in hippocampus is reported to perform pattern separation, converting similar inputs into different outputs and thus avoiding memory interference. Previous studies have found that human and mice with epilepsy have significant pattern separation defects and a portion of adult-born granule cells (abGCs) migrate abnormally into the hilus, forming hilus ectopic granule cells (HEGCs). For the lack of relevant pathophysiological experiments, how HEGCs affect pattern separation remains unclear. Therefore, in this paper, we will construct the DG neuronal circuit and focus on discussing effects of HEGCs on pattern separation numerically. The obtained results showed that HEGCs impaired pattern separation efficiency since the sparse firing of granule cells (GCs) was destroyed. We provided new insights into the underlining mechanisms of HEGCs impairing pattern separation through analyzing two excitatory circuits: GC-HEGC-GC and GC-Mossy cell (MC)-GC, both of which involve the participation of HEGCs within the DG. It is revealed that the recurrent excitatory circuit GC-HEGC-GC formed by HEGCs mossy fiber sprouting significantly enhanced GCs activity, consequently disrupted pattern separation. However, another excitatory circuit had negligible effects on pattern separation due to the direct and indirect influences of MCs on GCs, which in turn led to the GCs sparse firing. Thus, HEGCs impair DG pattern separation mainly through the GC-HEGC-GC circuit and therefore ablating HEGCs may be one of the effective ways to improve pattern separation in patients with epilepsy.
Collapse
Affiliation(s)
- Haibin Yin
- School of Science, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
- Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
| | - Xiaojuan Sun
- School of Science, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
- Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
| | - Kai Yang
- School of Science, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
- Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
| | - Yueheng Lan
- School of Science, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
- Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
| | - Zeying Lu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People’s Republic of China
| |
Collapse
|
2
|
Balcı A, Cankurtaran BP, Akyel A, Arıkan KB, Ünal B, Ünal ÇT. Neuroanatomical Correlates of Memory Strategies in Rats. Synapse 2025; 79:e70015. [PMID: 40172864 DOI: 10.1002/syn.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/08/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Navigation incorporates a continuum of strategies, where the allocentric strategy relies on relationships between environmental landmarks resulting in a cognitive map, and the egocentric strategy revolves around the body position and stimulus response chains with the body as a reference. Although multiple brain regions contribute to navigation, the hippocampus dominates allocentric navigation, whereas the striatum is key for egocentric navigation. Neuromodulators, such as dopamine and acetylcholine, regulate both the hippocampus and striatum to influence behavior, yet their influence on navigational strategy has not been determined. Interindividual differences in strategy preference are known to exist. Building on these pre-existing interindividual differences, this study explored the neuroanatomical underpinnings on navigational strategy variations in rats through a dual-solution T-maze and immunocytochemistry. Surprisingly, interindividual variations eluded explanation through the density of cholinergic neurons supplying acetylcholine to the hippocampus and striatum. Similarly, the soma morphologies of these neurons exhibited no discernible differences. Dopaminergic cell densities in the ventral tegmental area (VTA), projecting to the hippocampus, and substantia nigra pars compacta (SNpc), projecting to the striatum, failed to account for individual variations as well. Nevertheless, allocentric rats displayed higher VTA/SNpc dopamine neuron fusiformity indexes, potentially contributing to computational distinctions underlying interindividual variations in navigation strategies. This study delves into potential explanations and charts promising avenues for future research. A graphical abstract summarizing the main findings of this study is provided.
Collapse
Affiliation(s)
- Aysu Balcı
- Department of Biomolecular Sciences, Çanakkale Onsekiz Mart University, Terzioğlu Campus School of Graduate Studies, Çanakkale, Türkiye
- Comparative Cognition Laboratory, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Buse Pınar Cankurtaran
- Department of Biomolecular Sciences, Çanakkale Onsekiz Mart University, Terzioğlu Campus School of Graduate Studies, Çanakkale, Türkiye
- Comparative Cognition Laboratory, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Aybüke Akyel
- Comparative Cognition Laboratory, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
- Molecular Biology and Genetics, Faculty of Science and Letters, Çanakkale Onsekiz Mart Üniversitesi, Terzioğlu Campus, Çanakkale, Türkiye
| | - Kutluk Bilge Arıkan
- Faculty of Engineering, Department of Biomedical Engineering, Division of Biomedical Engineering, Ankara University, Ankara, Türkiye
- NÖROM Neuroscience and Neurotechnology Center of Excellence, Ankara, Türkiye
| | - Bengi Ünal
- Comparative Cognition Laboratory, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
- NÖROM Neuroscience and Neurotechnology Center of Excellence, Ankara, Türkiye
- Department of Psychology, Faculty of Humanities and Social Sciences, Çanakkale Onsekiz Mart University, Terzioğlu Campus, Çanakkale, Türkiye
| | - Çağrı Temuçin Ünal
- Comparative Cognition Laboratory, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
- NÖROM Neuroscience and Neurotechnology Center of Excellence, Ankara, Türkiye
- Department of Psychology, Faculty of Humanities and Social Sciences, Çanakkale Onsekiz Mart University, Terzioğlu Campus, Çanakkale, Türkiye
| |
Collapse
|
3
|
Kupke J, Oliveira AMM. The molecular and cellular basis of memory engrams: Mechanisms of synaptic and systems consolidation. Neurobiol Learn Mem 2025; 219:108057. [PMID: 40258487 DOI: 10.1016/j.nlm.2025.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
The capacity to record and store life experiences for periods ranging from days to a lifetime is what allows an individual to adapt and survive. Memory consolidation is the process that drives the stabilization and long-term storage of memory and takes place at two levels - synaptic and systems. Recently, several studies have provided insight into the processes that drive synaptic and systems consolidation through the characterization of the molecular, functional and structural changes of memory engram cells at distinct time points of the memory consolidation process. In this review we summarize and discuss these recent findings that have allowed a significant step forward in our understanding of how episodic memory is formed and stored in engram cells of the hippocampus and the medial prefrontal cortex.
Collapse
Affiliation(s)
- Janina Kupke
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; Department of Molecular and Cellular Cognition Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany.
| |
Collapse
|
4
|
Golbabaei A, Frankland PW. The post-"standard model" age: Updating theories of systems consolidation. Neuron 2025; 113:339-341. [PMID: 39914365 DOI: 10.1016/j.neuron.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 05/07/2025]
Abstract
Memories for events that we experience in our lives are not immutable but change organizationally and qualitatively over time. In this issue of Neuron, Lei and colleagues1 highlight how memory recall triggers these changes, leading to the formation of a new, updated memory trace (or engram) in the hippocampus.
Collapse
Affiliation(s)
- Ali Golbabaei
- Program in Neuroscience & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Institute for Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Paul W Frankland
- Program in Neuroscience & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Institute for Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Canadian Institute for Advanced Research, Program in Child and Brain Development, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Wang Z, Di Tullio RW, Rooke S, Balasubramanian V. Time Makes Space: Emergence of Place Fields in Networks Encoding Temporally Continuous Sensory Experiences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.11.607484. [PMID: 39185149 PMCID: PMC11343115 DOI: 10.1101/2024.08.11.607484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The vertebrate hippocampus is believed to use recurrent connectivity in area CA3 to support episodic memory recall from partial cues. This brain area also contains place cells, whose location-selective firing fields implement maps supporting spatial memory. Here we show that place cells emerge in networks trained to remember temporally continuous sensory episodes. We model CA3 as a recurrent autoencoder that recalls and reconstructs sensory experiences from noisy and partially occluded observations by agents traversing simulated arenas. The agents move in realistic trajectories modeled from rodents and environments are modeled as continuously varying, high-dimensional, sensory experience maps (spatially smoothed Gaussian random fields). Training our autoencoder to accurately pattern-complete and reconstruct sensory experiences with a constraint on total activity causes spatially localized firing fields, i.e., place cells, to emerge in the encoding layer. The emergent place fields reproduce key aspects of hippocampal phenomenology: a) remapping (maintenance of and reversion to distinct learned maps in different environments), implemented via repositioning of experience manifolds in the network's hidden layer, b) orthogonality of spatial representations in different arenas, c) robust place field emergence in differently shaped rooms, with single units showing multiple place fields in large or complex spaces, and d) slow representational drift of place fields. We argue that these results arise because continuous traversal of space makes sensory experience temporally continuous. We make testable predictions: a) rapidly changing sensory context will disrupt place fields, b) place fields will form even if recurrent connections are blocked, but reversion to previously learned representations upon remapping will be abolished, c) the dimension of temporally smooth experience sets the dimensionality of place fields, including during virtual navigation of abstract spaces. Code for our experiments is available at.
Collapse
Affiliation(s)
- Zhaoze Wang
- Department of Computer and Information Science, University of Pennsylvania
| | | | | | - Vijay Balasubramanian
- Department of Physics, University of Pennsylvania
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford
- Santa Fe Institute
| |
Collapse
|
6
|
Choo SH, Park HR, Lee S, Lee JI, Joo EY, Seo DW, Hong SB, Shon YM. Hippocampal deep brain stimulation for drug-resistant epilepsy: Insights from bilateral temporal lobe and posterior epilepsy cases. Seizure 2025; 124:57-65. [PMID: 39662128 DOI: 10.1016/j.seizure.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/17/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024] Open
Abstract
PURPOSE This study evaluates the long-term efficacy of hippocampal deep brain stimulation (Hip-DBS) in patients with drug-resistant epilepsy (DRE), specifically focusing on bilateral temporal lobe epilepsy (BTLE) and posterior epilepsy (PE). METHODS A retrospective analysis was conducted on 15 DRE patients (11 BTLE, 4 PE) who underwent bilateral Hip-DBS at Samsung Medical Center over an eight-year period. Medical records, seizure diaries, and neuropsychological assessments were reviewed. The surgical and follow-up protocols were adapted from our previous clinical research. RESULTS The median seizure reduction rate was 77.8 % for disabling seizures (DS) and 47.9 % for non-disabling seizures (NDS). Subgroup analysis revealed a 77.8 % reduction in DS for BTLE patients and 68.8 % for PE patients. The overall responder rate was 86.7 % for DS and 50 % for NDS. Neuropsychological evaluations showed stable cognitive functions post-treatment, with a non-significant trend towards improvement in non-verbal and visuo-spatial cognitive domains. CONCLUSION This study provides preliminary evidence supporting the efficacy of Hip-DBS in reducing seizure frequency in both BTLE and PE patients, with a more pronounced effect on disabling seizures. The potential cognitive preservation and possible enhancement in specific domains warrant further investigation. Despite limitations such as the retrospective design and reliance on self-reported seizure frequencies, these findings encourage further exploration of Hip-DBS as a treatment modality for DRE, particularly in cases where resective surgery is contraindicated.
Collapse
Affiliation(s)
- Seung Ho Choo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hea Ree Park
- Department of Neurology, Inje University College of Medicine, Ilsan Paik Hospital, Goyang, Korea
| | - Seunghoon Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Yeon Joo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dae-Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seung Bong Hong
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Medical Device Management and Research, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea; Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
7
|
van Zundert B, Montecino M. Epigenetics in Learning and Memory. Subcell Biochem 2025; 108:51-71. [PMID: 39820860 DOI: 10.1007/978-3-031-75980-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
In animals, memory formation and recall are essential for their survival and for adaptations to a complex and often dynamically changing environment. During memory formation, experiences prompt the activation of a selected and sparse population of cells (engram cells) that undergo persistent physical and/or chemical changes allowing long-term memory formation, which can last for decades. Over the past few decades, important progress has been made on elucidating signaling mechanisms by which synaptic transmission leads to the induction of activity-dependent gene regulation programs during the different phases of learning (acquisition, consolidation, and recall). But what are the molecular mechanisms that govern the expression of immediate-early genes (IEGs; c-fos, Npas4) and plasticity-related genes (PRGs; Dlg4/PSD95 and Grin2b/NR2B) in memory ensemble? Studies in relatively simple in vitro and in vivo neuronal model systems have demonstrated that synaptic activity during development, or when induced by chemical stimuli (i.e., cLTP, KCl, picrotoxin), activates the NMDAR-Ca2+-CREB signaling pathway that upregulates gene expression through changes in the epigenetic landscape (i.e., histone marks and DNA methylation) and/or 3D chromatin organization. The data support a model in which epigenetic modifications in promoters and enhancers facilitate the priming and activation of these regulatory regions, hence leading to the formation of enhancer-promoter interactions (EPIs) through chromatin looping. The exploration of whether similar molecular mechanisms drive gene expression in learning and memory has presented notable challenges due to the distinct phases of learning and the activation of only sparse population of cells (the engram). Consequently, such studies demand precise temporal and spatial control. By combining activity-dependent engram tagging strategies (i.e., TRAP mice) with multi-omics analyses (i.e., RNA-seq, ChiP-seq, ATAC-seq, and Hi-C), it has been recently possible to associate changes in the epigenomic landscape and/or 3D genome architecture with transcriptional waves in engram cells of mice subjected to contextual fear conditioning (CFC), a relevant one-shot Pavlovian learning task. These studies support the role of specific epigenetic mechanisms and of the 3D chromatin organization during the control of gene transcription waves in engram cells. Advancements in our comprehension of the molecular mechanisms driving memory ensemble will undoubtedly play a crucial role in the development of better-targeted strategies to tackle cognitive diseases, including Alzheimer's disease and frontotemporal dementia, among other information-processing disorders.
Collapse
Affiliation(s)
- Brigitte van Zundert
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, USA.
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
| |
Collapse
|
8
|
de Melo AB, Landeira-Fernandez J, Krahe TE. Women show enhanced proprioceptive target estimation through visual-proprioceptive conflict resolution. Front Psychol 2024; 15:1462934. [PMID: 39737242 PMCID: PMC11684459 DOI: 10.3389/fpsyg.2024.1462934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/20/2024] [Indexed: 01/01/2025] Open
Abstract
To form a unified and coherent perception of the organism's state and its relationship with the surrounding environment, the nervous system combines information from various sensory modalities through multisensory integration processes. Occasionally, data from two or more sensory channels may provide conflicting information. This is particularly evident in experiments using the mirror-guided drawing task and the mirror-box illusion, where there is conflict between positional estimates guided by vision and proprioception. This study combined two experimental protocols (the mirror-box and the mirror-guided drawing tasks) to examine whether the learned resolution of visuo-proprioceptive conflicts in the mirror-guided drawing task would improve proprioceptive target estimation of men and women during the mirror-box test. Our results confirm previous findings of visual reaching bias produced by the mirror-box illusion and show that this effect is progressively reduced by improvement in the mirror drawing task performance. However, this was only observed in women. We discuss these findings in the context of possible gender differences in multisensory integration processes as well as in embodiment.
Collapse
Affiliation(s)
| | | | - Thomas Eichenberg Krahe
- Departamento de Psicologia, Laboratório de Neurociência do Comportamento, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Mittermaier FX, Kalbhenn T, Xu R, Onken J, Faust K, Sauvigny T, Thomale UW, Kaindl AM, Holtkamp M, Grosser S, Fidzinski P, Simon M, Alle H, Geiger JRP. Membrane potential states gate synaptic consolidation in human neocortical tissue. Nat Commun 2024; 15:10340. [PMID: 39668146 PMCID: PMC11638263 DOI: 10.1038/s41467-024-53901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Synaptic mechanisms that contribute to human memory consolidation remain largely unexplored. Consolidation critically relies on sleep. During slow wave sleep, neurons exhibit characteristic membrane potential oscillations known as UP and DOWN states. Coupling of memory reactivation to these slow oscillations promotes consolidation, though the underlying mechanisms remain elusive. Here, we performed axonal and multineuron patch-clamp recordings in acute human brain slices, obtained from neurosurgeries, to show that sleep-like UP and DOWN states modulate axonal action potentials and temporarily enhance synaptic transmission between neocortical pyramidal neurons. Synaptic enhancement by UP and DOWN state sequences facilitates recruitment of postsynaptic action potentials, which in turn results in long-term stabilization of synaptic strength. In contrast, synapses undergo lasting depression if presynaptic neurons fail to recruit postsynaptic action potentials. Our study offers a mechanistic explanation for how coupling of neural activity to slow waves can cause synaptic consolidation, with potential implications for brain stimulation strategies targeting memory performance.
Collapse
Affiliation(s)
- Franz X Mittermaier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Thilo Kalbhenn
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Ran Xu
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich W Thomale
- Pediatric Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pawel Fidzinski
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Matthias Simon
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Henrik Alle
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Jörg R P Geiger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany.
| |
Collapse
|
10
|
Gilmore AW, Audrain S, Snow J, Gollomp E, Wilson JM, Agron AM, Hammoud DA, Butman JA, Martin A. Long-term retention of real-world experiences in a patient with profound amnesia. Neuropsychologia 2024; 204:109010. [PMID: 39389294 DOI: 10.1016/j.neuropsychologia.2024.109010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/31/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
The medial temporal lobe (MTL) is known to be critical for healthy memory function, but patients with MTL damage can, under certain circumstances, demonstrate successful learning of novel information encountered outside the laboratory. Here, we describe a patient, D.C., with extensive but focal bilateral MTL damage centering primarily on his hippocampus, whose memory for real-world experiences was assessed. Tests of remote memory indicated at least some capacity to retrieve specific details. To test his anterograde memory, he was taken on a tour of the NIH Clinical Center, with unique events occurring at each of ten specific locations. His memory for these events was tested after 1 h, and again after fifteen months. Initially, D.C. could not recall having participated in the tour, even when cued with photographs of specific places he had visited. However, he achieved 90% accuracy on a forced choice recognition test of old and new objects he encountered on the tour, and his recognition of these objects remained intact over a year later when he was tested once again. Subsequent recognition memory tests using novel picture stimuli in a standard laboratory-style computer task resulted in chance-level performance across multiple test formats and stimulus categories. These findings suggest a potentially privileged role for natural learning for long-term retention in a patient with severely damaged medial temporal lobes.
Collapse
Affiliation(s)
- Adrian W Gilmore
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA.
| | - Sam Audrain
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Joseph Snow
- Office of the Clinical Director, National Institute of Mental Health, Bethesda, MD, USA
| | - Elyse Gollomp
- Office of the Clinical Director, National Institute of Mental Health, Bethesda, MD, USA
| | - Jenna M Wilson
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna M Agron
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD, USA
| | - John A Butman
- Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD, USA; Human Imaging and Image Processing Core, Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Peng N, Noè U, Della Sala S. Did H.M. exhibit accelerated long-term forgetting? Measuring forgetting in amnesia. Cortex 2024; 180:35-41. [PMID: 39317109 DOI: 10.1016/j.cortex.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
The early investigations of patient H.M. inaugurated the modern era of memory research. During the 1970s and 1980s, a key debate over whether H.M. with bilateral medial temporal lobe lesions exhibited accelerated long-term forgetting attracted an increasing interest in forgetting research among amnestic patients. Huppert and Piercy (1979) examined H.M.'s performance in visual recognition at 10-minute, 1-day, and 7-day intervals and suggested that H.M. was subjected to rapid forgetting compared with Korsakoff patients and healthy participants reported in Huppert and Piercy (1978). In contrast, Freed et al. (1987) employed the same experimental paradigm and concluded that forgetting rates in H.M. did not differ from those in healthy controls. These incompatible findings highlighted a methodological challenge in measuring forgetting in the cross-group comparison design, where closely equalising the initial performance between patient and control groups is usually suggested. The re-analysis in this viewpoint, using both linear- and nonlinear-based modelling, reconciled the discrepancy between the aforementioned studies. Our results indicated that the rate of forgetting in H.M. did not differ from that in healthy controls, regardless of whether the initial performance was closely matched. Here, we suggest that the cross-group comparisons in forgetting studies do not necessarily seek a perfect match in initial performance unless the risks of confounding encoding and retrieval processes can be effectively controlled.
Collapse
Affiliation(s)
- Nan Peng
- Human Cognitive Neuroscience, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK.
| | - Umberto Noè
- Human Cognitive Neuroscience, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - Sergio Della Sala
- Human Cognitive Neuroscience, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Dang R, Liu A, Zhou Y, Li X, Wu M, Cao K, Meng Y, Zhang H, Gan G, Xie W, Jia Z. Astrocytic neuroligin 3 regulates social memory and synaptic plasticity through adenosine signaling in male mice. Nat Commun 2024; 15:8639. [PMID: 39366972 PMCID: PMC11452673 DOI: 10.1038/s41467-024-52974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Social memory impairment is a key symptom of many brain disorders, but its underlying mechanisms remain unclear. Neuroligins (NLGs) are a family of cell adhesion molecules essential for synapse development and function and their dysfunctions are linked to neurodevelopmental and neuropsychiatric disorders, including autism and schizophrenia. Although NLGs are extensively studied in neurons, their role in glial cells is poorly understood. Here we show that astrocytic deletion of NLG3 in the ventral hippocampus of adult male mice impairs social memory, attenuates astrocytic Ca2+ signals, enhances the expression of EAAT2 and prevents long-term potentiation, and these impairments are rescued by increasing astrocyte activity, reducing EAAT2 function or enhancing adenosine/A2a receptor signaling. This study has revealed an important role of NLG3 in astrocyte function, glutamate homeostasis and social memory and identified the glutamate transporter and adenosine signaling pathway as potential therapeutic strategies to treat brain disorders.
Collapse
Affiliation(s)
- Rui Dang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Shenzhen, 518063, China
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - An Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
- Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Shenzhen, 518063, China.
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada.
| | - Yu Zhou
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Shenzhen, 518063, China
| | - Xingcan Li
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Miao Wu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Kun Cao
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Yanghong Meng
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Haiwang Zhang
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Guangming Gan
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
- Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
13
|
Xu X, Du K, Mao D. Spatial dissociation between recognition and navigation in the primate hippocampus. SCIENCE ADVANCES 2024; 10:eado7392. [PMID: 39292773 PMCID: PMC11409969 DOI: 10.1126/sciadv.ado7392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
The primate hippocampus, crucial for both episodic memory and spatial navigation, remains an enigma regarding whether these functions share the same neural substrates. We investigated how identical hippocampal neurons in macaque monkeys dynamically shifted their representations between tasks. In a recognition memory task, a notable fraction of hippocampal neurons showed that rate modulation strongly correlated with recognition performance. During free navigation in an open arena, spatial view, rather than position, predominantly influenced the spatial selectivity of hippocampal neurons. Neurons selective for recognition memory displayed minimal spatial tuning, while spatially tuned neurons exhibited limited memory-related activity. These neural correlates of recognition memory and space were more pronounced in the anterior and posterior portions of the hippocampus, respectively. These opposing gradients extended further into the anterior and posterior neocortices. Overall, our findings suggest the presence of orthogonal long-axis gradients between recognition memory and spatial navigation in the hippocampal-neocortical networks of macaque monkeys.
Collapse
Affiliation(s)
- Xiao Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Key Laboratory of Brain Cognition and Brain-inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Lingang Laboratory, Shanghai 200031, China
| | - Kechen Du
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Key Laboratory of Brain Cognition and Brain-inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dun Mao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Key Laboratory of Brain Cognition and Brain-inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Rolls ET, Treves A. A theory of hippocampal function: New developments. Prog Neurobiol 2024; 238:102636. [PMID: 38834132 DOI: 10.1016/j.pneurobio.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
We develop further here the only quantitative theory of the storage of information in the hippocampal episodic memory system and its recall back to the neocortex. The theory is upgraded to account for a revolution in understanding of spatial representations in the primate, including human, hippocampus, that go beyond the place where the individual is located, to the location being viewed in a scene. This is fundamental to much primate episodic memory and navigation: functions supported in humans by pathways that build 'where' spatial view representations by feature combinations in a ventromedial visual cortical stream, separate from those for 'what' object and face information to the inferior temporal visual cortex, and for reward information from the orbitofrontal cortex. Key new computational developments include the capacity of the CA3 attractor network for storing whole charts of space; how the correlations inherent in self-organizing continuous spatial representations impact the storage capacity; how the CA3 network can combine continuous spatial and discrete object and reward representations; the roles of the rewards that reach the hippocampus in the later consolidation into long-term memory in part via cholinergic pathways from the orbitofrontal cortex; and new ways of analysing neocortical information storage using Potts networks.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
15
|
Pishdadian S, Coutrot A, Webber L, Hornberger M, Spiers H, Rosenbaum RS. Combining patient-lesion and big data approaches to reveal hippocampal contributions to spatial memory and navigation. iScience 2024; 27:109977. [PMID: 38947515 PMCID: PMC11214368 DOI: 10.1016/j.isci.2024.109977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/14/2024] [Accepted: 05/11/2024] [Indexed: 07/02/2024] Open
Abstract
Classic findings of impaired allocentric spatial learning and memory following hippocampal lesions indicate that the hippocampus supports cognitive maps of one's environment. Many studies assess navigation in vista space virtual reality environments and compare hippocampal-lesioned individuals' performance to that of small control samples, potentially stifling detection of preserved and impaired performance. Using the mobile app Sea Hero Quest, we examined navigation in diverse complex environments in two individuals with hippocampal lesions relative to demographically matched controls (N = 17,734). We found surprisingly accurate navigation in several environments, particularly those containing a constrained set of sub-goals, paths, and/or turns. Areas of impaired performance may reflect a role for the hippocampus in anterograde memory and more flexible and/or precise spatial representations, even when the need for allocentric processing is minimal. The results emphasize the value of combining single cases with big data and illustrate navigation performance profiles in individuals with hippocampal compromise.
Collapse
Affiliation(s)
- Sara Pishdadian
- Department of Psychology, York University, Toronto M3J 1P3, Canada
- Vision: Science to Application (VISTA) Program, York University, Toronto M3J 1P3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto M6A 2E1, Canada
- Complex Care and Recovery Program, Centre for Addiction and Mental Health (CAMH), Toronto M6J 1H4, Canada
| | - Antoine Coutrot
- Centre National de la Recherche Scientifique (CNRS), University of Lyon, 69361 Lyon, France
| | - Lauren Webber
- Department of Psychology, York University, Toronto M3J 1P3, Canada
| | | | - Hugo Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1N 3AZ, UK
| | - R. Shayna Rosenbaum
- Department of Psychology, York University, Toronto M3J 1P3, Canada
- Vision: Science to Application (VISTA) Program, York University, Toronto M3J 1P3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto M6A 2E1, Canada
| |
Collapse
|
16
|
Cristofori I, Cohen-Zimerman S, Krueger F, Jabbarinejad R, Delikishkina E, Gordon B, Beuriat PA, Grafman J. Studying the social mind: An updated summary of findings from the Vietnam Head Injury Study. Cortex 2024; 174:164-188. [PMID: 38552358 DOI: 10.1016/j.cortex.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/26/2024] [Accepted: 03/01/2024] [Indexed: 04/21/2024]
Abstract
Lesion mapping studies allow us to evaluate the potential causal contribution of specific brain areas to human cognition and complement other cognitive neuroscience methods, as several authors have recently pointed out. Here, we present an updated summary of the findings from the Vietnam Head Injury Study (VHIS) focusing on the studies conducted over the last decade, that examined the social mind and its intricate neural and cognitive underpinnings. The VHIS is a prospective, long-term follow-up study of Vietnam veterans with penetrating traumatic brain injury (pTBI) and healthy controls (HC). The scope of the work is to present the studies from the latest phases (3 and 4) of the VHIS, 70 studies since 2011, when the Raymont et al. paper was published (Raymont et al., 2011). These studies have contributed to our understanding of human social cognition, including political and religious beliefs, theory of mind, but also executive functions, intelligence, and personality. This work finally discusses the usefulness of lesion mapping as an approach to understanding the functions of the human brain from basic science and clinical perspectives.
Collapse
Affiliation(s)
- Irene Cristofori
- Institute of Cognitive Sciences Marc Jeannerod CNRS, UMR 5229, Bron, France; University of Lyon, Villeurbanne, France.
| | - Shira Cohen-Zimerman
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA.
| | - Frank Krueger
- School of Systems Biology, George Mason University, Manassas, VA, USA; Department of Psychology, George Mason University, Fairfax, VA, USA.
| | - Roxana Jabbarinejad
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, USA.
| | - Ekaterina Delikishkina
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA.
| | - Barry Gordon
- Cognitive Neurology/Neuropsychology Division, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD USA.
| | - Pierre-Aurélien Beuriat
- Institute of Cognitive Sciences Marc Jeannerod CNRS, UMR 5229, Bron, France; University of Lyon, Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, Bron, France.
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA; Departments of Neurology, Psychiatry, and Cognitive Neurology & Alzheimer's Disease, Feinberg School of Medicine, Chicago, IL, USA; Department of Psychology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
17
|
Yadav N, Toader A, Rajasethupathy P. Beyond hippocampus: Thalamic and prefrontal contributions to an evolving memory. Neuron 2024; 112:1045-1059. [PMID: 38272026 DOI: 10.1016/j.neuron.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
The hippocampus has long been at the center of memory research, and rightfully so. However, with emerging technological capabilities, we can increasingly appreciate memory as a more dynamic and brain-wide process. In this perspective, our goal is to begin developing models to understand the gradual evolution, reorganization, and stabilization of memories across the brain after their initial formation in the hippocampus. By synthesizing studies across the rodent and human literature, we suggest that as memory representations initially form in hippocampus, parallel traces emerge in frontal cortex that cue memory recall, and as they mature, with sustained support initially from limbic then diencephalic then cortical circuits, they become progressively independent of hippocampus and dependent on a mature cortical representation. A key feature of this model is that, as time progresses, memory representations are passed on to distinct circuits with progressively longer time constants, providing the opportunity to filter, forget, update, or reorganize memories in the process of committing to long-term storage.
Collapse
Affiliation(s)
- Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Andrew Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
18
|
Lopez MR, Wasberg SMH, Gagliardi CM, Normandin ME, Muzzio IA. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci Biobehav Rev 2024; 159:105574. [PMID: 38331127 DOI: 10.1016/j.neubiorev.2024.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The quest to understand the memory engram has intrigued humans for centuries. Recent technological advances, including genetic labelling, imaging, optogenetic and chemogenetic techniques, have propelled the field of memory research forward. These tools have enabled researchers to create and erase memory components. While these innovative techniques have yielded invaluable insights, they often focus on specific elements of the memory trace. Genetic labelling may rely on a particular immediate early gene as a marker of activity, optogenetics may activate or inhibit one specific type of neuron, and imaging may capture activity snapshots in a given brain region at specific times. Yet, memories are multifaceted, involving diverse arrays of neuronal subpopulations, circuits, and regions that work in concert to create, store, and retrieve information. Consideration of contributions of both excitatory and inhibitory neurons, micro and macro circuits across brain regions, the dynamic nature of active ensembles, and representational drift is crucial for a comprehensive understanding of the complex nature of memory.
Collapse
Affiliation(s)
- M R Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - S M H Wasberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - C M Gagliardi
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - M E Normandin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - I A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
19
|
Kurkela K, Ritchey M. Intrinsic functional connectivity among memory networks does not predict individual differences in narrative recall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.31.555768. [PMID: 38464053 PMCID: PMC10925185 DOI: 10.1101/2023.08.31.555768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Individuals differ greatly in their ability to remember the details of past events, yet little is known about the brain processes that explain such individual differences in a healthy young population. Previous research suggests that episodic memory relies on functional communication among ventral regions of the default mode network ("DMN-C") that are strongly interconnected with the medial temporal lobes. In this study, we investigated whether the intrinsic functional connectivity of the DMN-C subnetwork is related to individual differences in memory ability, examining this relationship across 243 individuals (ages 18-50 years) from the openly available Cambridge Center for Aging and Neuroscience (Cam-CAN) dataset. We first estimated each participant's whole-brain intrinsic functional brain connectivity by combining data from resting-state, movie-watching, and sensorimotor task scans to increase statistical power. We then examined whether intrinsic functional connectivity predicted performance on a narrative recall task. We found no evidence that functional connectivity of the DMN-C, with itself, with other related DMN subnetworks, or with the rest of the brain, was related to narrative recall. Exploratory connectome-based predictive modeling (CBPM) analyses of the entire connectome revealed a whole-brain multivariate pattern that predicted performance, although these changes were largely outside of known memory networks. These results add to emerging evidence suggesting that individual differences in memory cannot be easily explained by brain differences in areas typically associated with episodic memory function.
Collapse
Affiliation(s)
- Kyle Kurkela
- Department of Psychology and Neuroscience, Boston College
| | | |
Collapse
|
20
|
Li A, Lei X, Herdman K, Waidergoren S, Gilboa A, Rosenbaum RS. Impoverished details with preserved gist in remote and recent spatial memory following hippocampal and fornix lesions. Neuropsychologia 2024; 194:108787. [PMID: 38184190 DOI: 10.1016/j.neuropsychologia.2024.108787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
INTRODUCTION Cognitive Map Theory predicts that the hippocampus (HPC) plays a specialized, time-invariant role in supporting allocentric spatial memory, while Standard Consolidation Theory makes the competing prediction that the HPC plays a time-limited role, with more remote memories gaining independence of HPC function. These theories, however, are largely informed by the results of laboratory-based tests that are unlikely to simulate the demands of representing real-world environments in humans. Validation of these theories is further limited by an overall focus on spatial memory of newly encountered environments and on individuals with extensive lesions to the HPC and to surrounding medial temporal lobe (MTL) regions. The current study incorporates naturalistic tests of spatial memory based on recently and remotely encountered environments navigated by individuals with lesions to the HPC/MTL or that are limited to the HPC's major output, the fornix. METHODS Four participants with bilateral HPC/MTL and/or fornix lesions drew sketch maps of recently and remotely experienced neighbourhoods and houses. Tests of the appearance, distances, and routes between landmarks from the same real-world environments were also administered. Performance on the tasks was compared to that of control participants closely matched in terms of exposure to the same neighbourhoods and home environments as well as to actual maps. RESULTS The performance of individuals with fornix/MTL lesions was found to be largely comparable to that of controls on objective tests of spatial memory, other than one case who was impaired on remote and recent conditions for several tasks. The nature of deficits in recent and remote spatial memory were further revealed on house floorplan drawings, which contained spatial distortions, room/structure transpositions, and omissions, and on neighbourhood sketch maps, which were intact in terms of overall layout but sparse in details such as landmarks. CONCLUSION Lab-based tests of spatial memory of newly learned environments are unlikely to fully capture patterns of spared and impaired representations of real-world environments (e.g., peripheral features, configurations). Naturalistic tasks, including generative drawing tasks, indicate that contrary to Cognitive Map Theory, neither HPC nor MTL are critical for allocentric gross representations of large-scale environments. Conversely, the HPC appears critical for representing detailed spatial information of local naturalistic environments and environmental objects regardless of the age of the memory, contrary to Standard Consolidation Theory.
Collapse
Affiliation(s)
| | - Xuehui Lei
- York University, Toronto, Ontario, Canada
| | | | | | - Asaf Gilboa
- Rotman Research Institute, Toronto, Ontario, Canada
| | - R Shayna Rosenbaum
- York University, Toronto, Ontario, Canada; Rotman Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Grella SL, Donaldson TN. Contextual memory engrams, and the neuromodulatory influence of the locus coeruleus. Front Mol Neurosci 2024; 17:1342622. [PMID: 38375501 PMCID: PMC10875109 DOI: 10.3389/fnmol.2024.1342622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Here, we review the basis of contextual memory at a conceptual and cellular level. We begin with an overview of the philosophical foundations of traversing space, followed by theories covering the material bases of contextual representations in the hippocampus (engrams), exploring functional characteristics of the cells and subfields within. Next, we explore various methodological approaches for investigating contextual memory engrams, emphasizing plasticity mechanisms. This leads us to discuss the role of neuromodulatory inputs in governing these dynamic changes. We then outline a recent hypothesis involving noradrenergic and dopaminergic projections from the locus coeruleus (LC) to different subregions of the hippocampus, in sculpting contextual representations, giving a brief description of the neuroanatomical and physiological properties of the LC. Finally, we examine how activity in the LC influences contextual memory processes through synaptic plasticity mechanisms to alter hippocampal engrams. Overall, we find that phasic activation of the LC plays an important role in promoting new learning and altering mnemonic processes at the behavioral and cellular level through the neuromodulatory influence of NE/DA in the hippocampus. These findings may provide insight into mechanisms of hippocampal remapping and memory updating, memory processes that are potentially dysregulated in certain psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephanie L. Grella
- MNEME Lab, Department of Psychology, Program in Neuroscience, Loyola University Chicago, Chicago, IL, United States
| | - Tia N. Donaldson
- Systems Neuroscience and Behavior Lab, Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
22
|
Yokose J, Marks WD, Kitamura T. Visuotactile integration facilitates mirror-induced self-directed behavior through activation of hippocampal neuronal ensembles in mice. Neuron 2024; 112:306-318.e8. [PMID: 38056456 DOI: 10.1016/j.neuron.2023.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 12/08/2023]
Abstract
Remembering the visual features of oneself is critical for self-recognition. However, the neural mechanisms of how the visual self-image is developed remain unknown because of the limited availability of behavioral paradigms in experimental animals. Here, we demonstrate a mirror-induced self-directed behavior (MSB) in mice, resembling visual self-recognition. Mice displayed increased mark-directed grooming to remove ink placed on their heads when an ink-induced visual-tactile stimulus contingency occurred. MSB required mirror habituation and social experience. The chemogenetic inhibition of dorsal or ventral hippocampal CA1 (vCA1) neurons attenuated MSB. Especially, a subset of vCA1 neurons activated during the mirror exposure was significantly reactivated during re-exposure to the mirror and was necessary for MSB. The self-responding vCA1 neurons were also reactivated when mice were exposed to a conspecific of the same strain. These results suggest that visual self-image may be developed through social experience and mirror habituation and stored in a subset of vCA1 neurons.
Collapse
Affiliation(s)
- Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - William D Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
23
|
Boscaglia M, Gastaldi C, Gerstner W, Quian Quiroga R. A dynamic attractor network model of memory formation, reinforcement and forgetting. PLoS Comput Biol 2023; 19:e1011727. [PMID: 38117859 PMCID: PMC10766193 DOI: 10.1371/journal.pcbi.1011727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 01/04/2024] [Accepted: 12/02/2023] [Indexed: 12/22/2023] Open
Abstract
Empirical evidence shows that memories that are frequently revisited are easy to recall, and that familiar items involve larger hippocampal representations than less familiar ones. In line with these observations, here we develop a modelling approach to provide a mechanistic understanding of how hippocampal neural assemblies evolve differently, depending on the frequency of presentation of the stimuli. For this, we added an online Hebbian learning rule, background firing activity, neural adaptation and heterosynaptic plasticity to a rate attractor network model, thus creating dynamic memory representations that can persist, increase or fade according to the frequency of presentation of the corresponding memory patterns. Specifically, we show that a dynamic interplay between Hebbian learning and background firing activity can explain the relationship between the memory assembly sizes and their frequency of stimulation. Frequently stimulated assemblies increase their size independently from each other (i.e. creating orthogonal representations that do not share neurons, thus avoiding interference). Importantly, connections between neurons of assemblies that are not further stimulated become labile so that these neurons can be recruited by other assemblies, providing a neuronal mechanism of forgetting.
Collapse
Affiliation(s)
- Marta Boscaglia
- Centre for Systems Neuroscience, University of Leicester, United Kingdom
- School of Psychology and Vision Sciences, University of Leicester, United Kingdom
| | - Chiara Gastaldi
- School of Computer and Communication Sciences and School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Wulfram Gerstner
- School of Computer and Communication Sciences and School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Rodrigo Quian Quiroga
- Centre for Systems Neuroscience, University of Leicester, United Kingdom
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Ruijin hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
24
|
Grilli MD, Sabharwal-Siddiqi S, Thayer SC, Rapcsak SZ, Ekstrom AD. Evidence of Impaired Remote Experience-near Semantic Memory in Medial Temporal Lobe Amnesia. J Cogn Neurosci 2023; 35:2002-2013. [PMID: 37713665 PMCID: PMC10824049 DOI: 10.1162/jocn_a_02057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Neuropsychological research suggests that "experience-near" semantic memory, meaning knowledge attached to a spatiotemporal or event context, is commonly impaired in individuals who have medial temporal lobe amnesia. It is not known if this impairment extends to remotely acquired experience-near knowledge, which is a question relevant to understanding hippocampal/medial temporal lobe functioning. In the present study, we administered a novel semantic memory task designed to target knowledge associated with remote, "dormant" concepts, in addition to knowledge associated with active concepts, to four individuals with medial temporal lobe amnesia and eight matched controls. We found that the individuals with medial temporal lobe amnesia generated significantly fewer experience-near semantic memories for both remote concepts and active concepts. In comparison, the generation of abstract or "experience-far" knowledge was largely spared in the individuals with medial temporal lobe amnesia, regardless of whether the targets for retrieval were remote or active concepts. We interpret these findings as evidence that the medial temporal lobes may have a sustained role in the retrieval of semantic memories associated with spatiotemporal and event contexts, which are cognitive features often ascribed to episodic memory. These results align with recent theoretical models proposing that the hippocampus/medial temporal lobes support cognitive processes that are involved in, but not exclusive to, episodic memory.
Collapse
Affiliation(s)
| | | | | | - Steven Z Rapcsak
- University of Arizona, Tucson AZ
- Banner Alzheimer's Institute, Tucson, AZ
| | | |
Collapse
|
25
|
Hung YC, Wu YJ, Chien ME, Lin YT, Tsai CF, Hsu KS. Loss of oxytocin receptors in hilar mossy cells impairs social discrimination. Neurobiol Dis 2023; 187:106311. [PMID: 37769745 DOI: 10.1016/j.nbd.2023.106311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Hippocampal oxytocin receptor (OXTR) signaling is crucial for discrimination of social stimuli to guide social recognition, but circuit mechanisms and cell types involved remain incompletely understood. Here, we report a role for OXTR-expressing hilar mossy cells (MCs) of the dentate gyrus in social stimulus discrimination by regulating granule cell (GC) activity. Using a Cre-loxP recombination approach, we found that ablation of Oxtr from MCs impairs discrimination of social, but not object, stimuli in adult male mice. Ablation of MC Oxtr increases spontaneous firing rate of GCs, synaptic excitation to inhibition ratio of MC-to-GC circuit, and GC firing when temporally associated with the lateral perforant path inputs. Using mouse hippocampal slices, we found that bath application of OXTR agonist [Thr4,Gly7]-oxytocin causes membrane depolarization and increases MC firing activity. Optogenetic activation of MC-to-GC circuit ameliorates social discrimination deficit in MC OXTR deficient mice. Together, our results uncover a previously unknown role of MC OXTR signaling for discrimination of social stimuli and delineate a MC-to-GC circuit responsible for social information processing.
Collapse
Affiliation(s)
- Yu-Chieh Hung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Jen Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan; Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Miao-Er Chien
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan
| | - Yu-Ting Lin
- Institute of Systems Neuroscience, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Fang Tsai
- Department of Physical Medicine and Rehabilitation, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
26
|
Tsutsumi M, Takahashi T, Kobayashi K, Nemoto T. Fluorescence radial fluctuation enables two-photon super-resolution microscopy. Front Cell Neurosci 2023; 17:1243633. [PMID: 37881492 PMCID: PMC10595032 DOI: 10.3389/fncel.2023.1243633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
Despite recent improvements in microscopy, it is still difficult to apply super-resolution microscopy for deep imaging due to the deterioration of light convergence properties in thick specimens. As a strategy to avoid such optical limitations for deep super-resolution imaging, we focused on super-resolution radial fluctuation (SRRF), a super-resolution technique based on image analysis. In this study, we applied SRRF to two-photon microscopy (2P-SRRF) and characterized its spatial resolution, suitability for deep observation, and morphological reproducibility in real brain tissue. By the comparison with structured illumination microscopy (SIM), it was confirmed that 2P-SRRF exhibited two-point resolution and morphological reproducibility comparable to that of SIM. The improvement in spatial resolution was also demonstrated at depths of more than several hundred micrometers in a brain-mimetic environment. After optimizing SRRF processing parameters, we successfully demonstrated in vivo high-resolution imaging of the fifth layer of the cerebral cortex using 2P-SRRF. This is the first report on the application of SRRF to in vivo two-photon imaging. This method can be easily applied to existing two-photon microscopes and can expand the visualization range of super-resolution imaging studies.
Collapse
Affiliation(s)
- Motosuke Tsutsumi
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Research Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Taiga Takahashi
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Research Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kentaro Kobayashi
- Nikon Imaging Center, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Tomomi Nemoto
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Research Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Nikon Imaging Center, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
27
|
Addante RJ, Lopez-Calderon J, Allen N, Luck C, Muller A, Sirianni L, Inman CS, Drane DL. An ERP measure of non-conscious memory reveals dissociable implicit processes in human recognition using an open-source automated analytic pipeline. Psychophysiology 2023; 60:e14334. [PMID: 37287106 PMCID: PMC10524783 DOI: 10.1111/psyp.14334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/07/2023] [Accepted: 05/01/2023] [Indexed: 06/09/2023]
Abstract
Non-conscious processing of human memory has traditionally been difficult to objectively measure and thus understand. A prior study on a group of hippocampal amnesia (N = 3) patients and healthy controls (N = 6) used a novel procedure for capturing neural correlates of implicit memory using event-related potentials (ERPs): old and new items were equated for varying levels of memory awareness, with ERP differences observed from 400 to 800 ms in bilateral parietal regions that were hippocampal-dependent. The current investigation sought to address the limitations of that study by increasing the sample of healthy subjects (N = 54), applying new controls for construct validity, and developing an improved, open-source tool for automated analysis of the procedure used for equating levels of memory awareness. Results faithfully reproduced prior ERP findings of parietal effects that a series of systematic control analyses validated were not contributed to nor contaminated by explicit memory. Implicit memory effects extended from 600 to 1000 ms, localized to right parietal sites. These ERP effects were found to be behaviorally relevant and specific in predicting implicit memory response times, and were topographically dissociable from other traditional ERP measures of implicit memory (miss vs. correct rejections) that instead occurred in left parietal regions. Results suggest first that equating for reported awareness of memory strength is a valid, powerful new method for revealing neural correlates of non-conscious human memory, and second, behavioral correlations suggest that these implicit effects reflect a pure form of priming, whereas misses represent fluency leading to the subjective experience of familiarity.
Collapse
Affiliation(s)
- Richard J Addante
- School of Psychology, Florida Institute of Technology, Melbourne, Florida, USA
| | - Javier Lopez-Calderon
- Instituto de Matemáticas, Universidad de Talca, Talca, Chile
- Newencode Analytics, Talca, Chile
| | - Nathaniel Allen
- School of Psychology, Florida Institute of Technology, Melbourne, Florida, USA
| | - Carter Luck
- Department of Computer Science, Reed College, Portland, Oregon, USA
| | - Alana Muller
- Department of Psychology, University of Arizona, Tucson, Arizona, USA
| | - Lindsey Sirianni
- School of Health Sciences, University of California - San Diego Moores Cancer Center, San Diego, CA, USA
| | - Cory S Inman
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
| | - Daniel L Drane
- Departments of Neurology and Pediatrics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Abstract
Perception and memory are traditionally thought of as separate cognitive functions, supported by distinct brain regions. The canonical perspective is that perceptual processing of visual information is supported by the ventral visual stream, whereas long-term declarative memory is supported by the medial temporal lobe. However, this modular framework cannot account for the increasingly large body of evidence that reveals a role for early visual areas in long-term recognition memory and a role for medial temporal lobe structures in high-level perceptual processing. In this article, we review relevant research conducted in humans, nonhuman primates, and rodents. We conclude that the evidence is largely inconsistent with theoretical proposals that draw sharp functional boundaries between perceptual and memory systems in the brain. Instead, the weight of the empirical findings is best captured by a representational-hierarchical model that emphasizes differences in content, rather than in cognitive processes within the ventral visual stream and medial temporal lobe.
Collapse
Affiliation(s)
- Chris B Martin
- Department of Psychology, Florida State University, Tallahassee, Florida, USA;
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada;
- Rotman Research Institute, Baycrest Hospital, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Annese J, Klaming R, Haase Alasantro L, Feinstein JS. A case of severe anterograde amnesia in the era of smartphone technology. J Clin Exp Neuropsychol 2023; 45:498-512. [PMID: 37916950 DOI: 10.1080/13803395.2023.2254911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/29/2023] [Indexed: 11/03/2023]
Abstract
A.V. is a young herpes simplex encephalitis (HSE) survivor who suffered extensive bilateral damage to the medial temporal lobe (MTL) leading to a severe and pervasive form of anterograde amnesia. Structural Magnetic Resonance Imaging (MRI) revealed lesions that encompass the hippocampus and amygdala in both hemispheres and that extend more laterally in the right temporal lobe. At the same time, detailed neuropsychological testing showed that the disparity between A.V.'s preserved intellectual functioning (Full Scale IQ: 115) and severe memory deficit (Delayed Memory Index: 42) is one of the largest on record. Despite this deficit, A.V. has regained a higher level of functioning and autonomy compared to previously documented amnesic cases with major bilateral MTL lesions. As a millennial, one advantage which A.V. has over prior amnesic cases is fluency with digital technology - particularly the smartphone. The analysis of his phone and specific app usage showed a pattern that is consistent with the strategy to offload cognitive tasks that would normally be supported by the MTL. A.V.'s behavior is significant in terms of rehabilitation and may have broader implications at the societal level and for public health given the ubiquity of smartphone technology and its potential to become integrated with neural mnemonic functions.
Collapse
Affiliation(s)
| | - Ruth Klaming
- Department of Psychiatry, University of California, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
- Vrije Universiteit Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Lori Haase Alasantro
- Department of Psychiatry, University of California, San Diego, CA, USA
- The Neurology Center of Southern California, Carlsbad, CA, USA
| | - Justin S Feinstein
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
30
|
Lim YL, Lang DJ, Diana RA. Cognitive tasks affect the relationship between representational pattern similarity and subsequent item memory in the hippocampus. Neuroimage 2023:120241. [PMID: 37348623 DOI: 10.1016/j.neuroimage.2023.120241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023] Open
Abstract
Episodic memories are records of personally experienced events, coded neurally via the hippocampus and surrounding medial temporal lobe cortex. Information about the neural signal corresponding to a memory representation can be measured in fMRI data when the pattern across voxels is examined. Prior studies have found that similarity in the voxel patterns across repetition of a to-be-remembered stimulus predicts later memory retrieval, but the results are inconsistent across studies. The current study investigates the possibility that cognitive goals (defined here via the task instructions given to participants) during encoding affect the voxel pattern that will later support memory retrieval, and therefore that neural representations cannot be interpreted based on the stimulus alone. The behavioral results showed that exposure to variable cognitive tasks across repetition of events benefited subsequent memory retrieval. Voxel patterns in the hippocampus indicated a significant interaction between cognitive tasks (variable vs. consistent) and memory (remembered vs. forgotten) such that reduced voxel pattern similarity for repeated events with variable cognitive tasks, but not consistent cognitive tasks, supported later memory success. There was no significant interaction in neural pattern similarity between cognitive tasks and memory success in medial temporal cortices or lateral occipital cortex. Instead, higher similarity in voxel patterns in right medial temporal cortices was associated with later memory retrieval, regardless of cognitive task. In conclusion, we found that the relationship between pattern similarity across repeated encoding and memory success in the hippocampus (but not medial temporal lobe cortex) changes when the cognitive task during encoding does or does not vary across repetitions of the event.
Collapse
Affiliation(s)
- Ye-Lim Lim
- Virginia Tech, Dept. of Psychology, 890 Drillfield Dr., Blacksburg, VA 24061
| | - Davis J Lang
- Virginia Tech, Dept. of Psychology, 890 Drillfield Dr., Blacksburg, VA 24061
| | - Rachel A Diana
- Virginia Tech, Dept. of Psychology, 890 Drillfield Dr., Blacksburg, VA 24061.
| |
Collapse
|
31
|
Kwon M, Lee SW, Lee SH. Hippocampal integration and separation processes with different temporal and spatial dynamics during learning for associative memory. Hum Brain Mapp 2023; 44:3873-3884. [PMID: 37145954 DOI: 10.1002/hbm.26319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
The hippocampus is known to be critically involved in associative memory formation. However, the role of the hippocampus during the learning of associative memory is still controversial; while the hippocampus is considered to play a critical role in the integration of related stimuli, numerous studies also suggest a role of the hippocampus in the separation of different memory traces for rapid learning. Here, we employed an associative learning paradigm consisting of repeated learning cycles. By tracking the changes in the hippocampal representations of associated stimuli on a cycle-by-cycle basis as learning progressed, we show that both integration and separation processes occur in the hippocampus with different temporal dynamics. We found that the degree of shared representations for associated stimuli decreased significantly during the early phase of learning, whereas it increased during the later phase of learning. Remarkably, these dynamic temporal changes were observed only for stimulus pairs remembered 1 day or 4 weeks after learning, but not for forgotten pairs. Further, the integration process during learning was prominent in the anterior hippocampus, while the separation process was obvious in the posterior hippocampus. These results demonstrate temporally and spatially dynamic hippocampal processing during learning that can lead to the maintenance of associative memory.
Collapse
Affiliation(s)
- Minjae Kwon
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sang Wan Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sue-Hyun Lee
- Department of Psychology, College of Social Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Ekstrom AD, Hill PF. Spatial navigation and memory: A review of the similarities and differences relevant to brain models and age. Neuron 2023; 111:1037-1049. [PMID: 37023709 PMCID: PMC10083890 DOI: 10.1016/j.neuron.2023.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023]
Abstract
Spatial navigation and memory are often seen as heavily intertwined at the cognitive and neural levels of analysis. We review models that hypothesize a central role for the medial temporal lobes, including the hippocampus, in both navigation and aspects of memory, particularly allocentric navigation and episodic memory. While these models have explanatory power in instances in which they overlap, they are limited in explaining functional and neuroanatomical differences. Focusing on human cognition, we explore the idea of navigation as a dynamically acquired skill and memory as an internally driven process, which may better account for the differences between the two. We also review network models of navigation and memory, which place a greater emphasis on connections rather than the functions of focal brain regions. These models, in turn, may have greater explanatory power for the differences between navigation and memory and the differing effects of brain lesions and age.
Collapse
Affiliation(s)
- Arne D Ekstrom
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA.
| | - Paul F Hill
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA
| |
Collapse
|
33
|
Quian Quiroga R. An integrative view of human hippocampal function: Differences with other species and capacity considerations. Hippocampus 2023; 33:616-634. [PMID: 36965048 DOI: 10.1002/hipo.23527] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/11/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
We describe an integrative model that encodes associations between related concepts in the human hippocampal formation, constituting the skeleton of episodic memories. The model, based on partially overlapping assemblies of "concept cells," contrast markedly with the well-established notion of pattern separation, which relies on conjunctive, context dependent single neuron responses, instead of the invariant, context independent responses found in the human hippocampus. We argue that the model of partially overlapping assemblies is better suited to cope with memory capacity limitations, that the finding of different types of neurons and functions in this area is due to a flexible and temporary use of the extraordinary machinery of the hippocampus to deal with the task at hand, and that only information that is relevant and frequently revisited will consolidate into long-term hippocampal representations, using partially overlapping assemblies. Finally, we propose that concept cells are uniquely human and that they may constitute the neuronal underpinnings of cognitive abilities that are much further developed in humans compared to other species.
Collapse
Affiliation(s)
- Rodrigo Quian Quiroga
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK
- Department of neurosurgery, clinical neuroscience center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Fang C, Aronov D, Abbott LF, Mackevicius EL. Neural learning rules for generating flexible predictions and computing the successor representation. eLife 2023; 12:e80680. [PMID: 36928104 PMCID: PMC10019889 DOI: 10.7554/elife.80680] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/26/2022] [Indexed: 03/18/2023] Open
Abstract
The predictive nature of the hippocampus is thought to be useful for memory-guided cognitive behaviors. Inspired by the reinforcement learning literature, this notion has been formalized as a predictive map called the successor representation (SR). The SR captures a number of observations about hippocampal activity. However, the algorithm does not provide a neural mechanism for how such representations arise. Here, we show the dynamics of a recurrent neural network naturally calculate the SR when the synaptic weights match the transition probability matrix. Interestingly, the predictive horizon can be flexibly modulated simply by changing the network gain. We derive simple, biologically plausible learning rules to learn the SR in a recurrent network. We test our model with realistic inputs and match hippocampal data recorded during random foraging. Taken together, our results suggest that the SR is more accessible in neural circuits than previously thought and can support a broad range of cognitive functions.
Collapse
Affiliation(s)
- Ching Fang
- Zuckerman Institute, Department of Neuroscience, Columbia UniversityNew YorkUnited States
| | - Dmitriy Aronov
- Zuckerman Institute, Department of Neuroscience, Columbia UniversityNew YorkUnited States
| | - LF Abbott
- Zuckerman Institute, Department of Neuroscience, Columbia UniversityNew YorkUnited States
| | - Emily L Mackevicius
- Zuckerman Institute, Department of Neuroscience, Columbia UniversityNew YorkUnited States
- Basis Research InstituteNew YorkUnited States
| |
Collapse
|
35
|
Fan CL, Sokolowski HM, Rosenbaum RS, Levine B. What about "space" is important for episodic memory? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1645. [PMID: 36772875 DOI: 10.1002/wcs.1645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
Early cognitive neuroscientific research revealed that the hippocampus is crucial for spatial navigation in rodents, and for autobiographical episodic memory in humans. Researchers quickly linked these streams to propose that the human hippocampus supports memory through its role in representing space, and research on the link between spatial cognition and episodic memory in humans has proliferated over the past several decades. Different researchers apply the term "spatial" in a variety of contexts, however, and it remains unclear what aspect of space may be critical to memory. Similarly, "episodic" has been defined and tested in different ways. Naturalistic assessment of spatial memory and episodic memory (i.e., episodic autobiographical memory) is required to unify the scale and biological relevance in comparisons of spatial and mnemonic processing. Limitations regarding the translation of rodent to human research, human ontogeny, and inter-individual variability require greater consideration in the interpretation of this literature. In this review, we outline the aspects of space that are (and are not) commonly linked to episodic memory, and then we discuss these dimensions through the lens of individual differences in naturalistic autobiographical memory. Future studies should carefully consider which aspect(s) of space are being linked to memory within the context of naturalistic human cognition. This article is categorized under: Psychology > Memory.
Collapse
Affiliation(s)
- Carina L Fan
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | | | - R Shayna Rosenbaum
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Psychology, York University, Toronto, Ontario, Canada
| | - Brian Levine
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Medicine, Neurology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Knötzele J, Riemann D, Frase L, Feige B, van Elst LT, Kornmeier J. Presenting rose odor during learning, sleep and retrieval helps to improve memory consolidation: a real-life study. Sci Rep 2023; 13:2371. [PMID: 36759589 PMCID: PMC9911722 DOI: 10.1038/s41598-023-28676-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Improving our learning abilities is important for numerous aspects of our life. Several studies found beneficial effects of presenting cues (odor or sounds) during learning and during sleep for memory performance. A recent study applying a real-life paradigm indicated that additional odor cueing during a Final Test can further increase this cueing effect. The present online study builds on these findings with the following questions: (1) Can we replicate beneficial memory effects of additional odor cueing during tests? (2) How many odor cueing learning sessions and odor cueing nights of sleep maximize the learning success? (3) Can odor cueing also reduce the amount of forgetting over time? 160 Participants learned 40 German Japanese word pairs in four groups with separate experimental conditions over three days. Group N received no odor during the whole study. Group LS received odor cueing during learning and sleep, group LT during learning and testing and group LST during learning, sleep and testing. Participants performed intermediate tests after each learning session plus three final tests 1, 7 and 28 days after the last learning session. Results: (1) Group LST learned 8.5% more vocabulary words than the other groups overall. (2) This odor cueing effect increased across the three days of cued learning. (3) We found no clear evidence for effects of odor cueing on the forgetting dynamics. Our findings support the notion of a beneficial effect of odor cueing. They further suggest to use at least 3 days and nights of odor cueing. Overall, this study indicates that there is an easy, efficient and economical way to enhance memory performance in daily life.
Collapse
Affiliation(s)
- Jessica Knötzele
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Frase
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Kornmeier
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany. .,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
37
|
Roüast NM, Schönauer M. Continuously changing memories: a framework for proactive and non-linear consolidation. Trends Neurosci 2023; 46:8-19. [PMID: 36428193 DOI: 10.1016/j.tins.2022.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
The traditional view of long-term memory is that memory traces mature in a predetermined 'linear' process: their neural substrate shifts from rapidly plastic medial temporal regions towards stable neocortical networks. We propose that memories remain malleable, not by repeated reinstantiations of this linear process but instead via dynamic routes of proactive and non-linear consolidation: memories change, their trajectory is flexible and reversible, and their physical basis develops continuously according to anticipated demands. Studies demonstrating memory updating, increasing hippocampal dependence to support adaptive use, and rapid neocortical plasticity provide evidence for continued non-linear consolidation. Although anticipated demand can affect all stages of memory formation, the extent to which it shapes the physical memory trace repeatedly and proactively will require further dedicated research.
Collapse
Affiliation(s)
- Nora Malika Roüast
- Institute for Psychology, Neuropsychology, University of Freiburg, Freiburg, Germany.
| | - Monika Schönauer
- Institute for Psychology, Neuropsychology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
38
|
Dial HR, Europa E, Grasso SM, Mandelli ML, Schaffer KM, Hubbard HI, Wauters LD, Wineholt L, Wilson SM, Gorno-Tempini ML, Henry ML. Baseline structural imaging correlates of treatment outcomes in semantic variant primary progressive aphasia. Cortex 2023; 158:158-175. [PMID: 36577212 PMCID: PMC9904210 DOI: 10.1016/j.cortex.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/25/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022]
Abstract
Semantic variant primary progressive aphasia (svPPA) is a neurodegenerative disorder characterized by a loss of semantic knowledge in the context of anterior temporal lobe atrophy (left > right). Core features of svPPA include anomia and single-word comprehension impairment. Despite growing evidence supporting treatment for anomia in svPPA, there is a paucity of research investigating neural mechanisms supporting treatment-induced gains and generalization to untrained items. In the current study, we examined the relation between the structural integrity of brain parenchyma (tissue inclusive of gray and white matter) at pre-treatment and treatment outcomes for trained and untrained items in a group of 19 individuals with svPPA who completed lexical retrieval treatment. Two structural neuroimaging approaches were used: an exploratory, whole-brain, voxel-wise approach and an a priori region of interest (ROI) approach. Based on previous research, bilateral temporal (inferior, middle, and superior temporal gyri), parietal (supramarginal and angular gyri), frontal (inferior and middle frontal gyri) and medial temporal (hippocampus and parahippocampal gyri) ROIs were selected from the Automated Anatomical Labeling (AAL) atlas. Analyses revealed improved naming of trained items and generalization to untrained items following treatment, providing converging evidence that individuals with svPPA can benefit from treatment for anomia. Better post-treatment naming accuracy was associated with the structural integrity of inferior parietal cortex and the hippocampus. Specifically, improved naming of trained items was related to the left supramarginal (phonological processing) and angular gyri (phonological and semantic processing), and improved naming of trained and untrained items was related to the left hippocampus (episodic, context-based memory). Future research should examine treatment outcomes in relation to pre-treatment functional and structural connectivity as well as changes in network dynamics following speech-language intervention to further elucidate the neural mechanisms underlying treatment response in svPPA and related disorders.
Collapse
Affiliation(s)
- Heather R Dial
- Department of Communication Sciences and Disorders, University of Houston, 3871 Holman St, Houston, TX, USA; Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA.
| | - Eduardo Europa
- Connie L. Lurie College of Education, San Jose State University, One Washington Square, San Jose, CA, USA
| | - Stephanie M Grasso
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA
| | - Maria Luisa Mandelli
- Memory and Aging Center, University of California, San Francisco. 675 Nelson Rising Lane (Suite 190), San Francisco, CA USA
| | - Kristin M Schaffer
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA
| | - H Isabel Hubbard
- College of Health Sciences, University of Kentucky, 900 S. Limestone, Lexington, KY, USA
| | - Lisa D Wauters
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA
| | - Lindsey Wineholt
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA
| | - Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Ave S, Nashville, TN, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, University of California, San Francisco. 675 Nelson Rising Lane (Suite 190), San Francisco, CA USA
| | - Maya L Henry
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA; Department of Neurology, Dell Medical School, University of Texas at Austin, 1601 Trinity St., Bldg. B, Stop Z0700, Austin, TX USA
| |
Collapse
|
39
|
Mysin I, Shubina L. Hippocampal non-theta state: The "Janus face" of information processing. Front Neural Circuits 2023; 17:1134705. [PMID: 36960401 PMCID: PMC10027749 DOI: 10.3389/fncir.2023.1134705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
The vast majority of studies on hippocampal rhythms have been conducted on animals or humans in situations where their attention was focused on external stimuli or solving cognitive tasks. These studies formed the basis for the idea that rhythmical activity coordinates the work of neurons during information processing. However, at rest, when attention is not directed to external stimuli, brain rhythms do not disappear, although the parameters of oscillatory activity change. What is the functional load of rhythmical activity at rest? Hippocampal oscillatory activity during rest is called the non-theta state, as opposed to the theta state, a characteristic activity during active behavior. We dedicate our review to discussing the present state of the art in the research of the non-theta state. The key provisions of the review are as follows: (1) the non-theta state has its own characteristics of oscillatory and neuronal activity; (2) hippocampal non-theta state is possibly caused and maintained by change of rhythmicity of medial septal input under the influence of raphe nuclei; (3) there is no consensus in the literature about cognitive functions of the non-theta-non-ripple state; and (4) the antagonistic relationship between theta and delta rhythms observed in rodents is not always observed in humans. Most attention is paid to the non-theta-non-ripple state, since this aspect of hippocampal activity has not been investigated properly and discussed in reviews.
Collapse
|
40
|
Offline neuronal activity and synaptic plasticity during sleep and memory consolidation. Neurosci Res 2022; 189:29-36. [PMID: 36584924 DOI: 10.1016/j.neures.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022]
Abstract
After initial formation during learning, memories are further processed in the brain during subsequent days for long-term consolidation, with sleep playing a key role in this process. Studies have shown that neuronal activity patterns during the awake period are repeated in the hippocampus during sleep, which may coordinate brain-wide reactivation leading to memory consolidation. Consistently, perturbation of this activity blocks the formation of long-term memory. This 'replay' of activity during sleep likely triggers plastic changes in synaptic transmission, a cellular substrate of memory, in multiple brain regions, which likely plays a critical role in long-term memory. Two forms of synaptic plasticity, potentiation and depression of synaptic transmission, are induced in parallel during sleep and is termed "offline synaptic plasticity", as opposed to the "online synaptic plasticity" that occurs immediately following a memory event.
Collapse
|
41
|
Comrie AE, Frank LM, Kay K. Imagination as a fundamental function of the hippocampus. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210336. [PMID: 36314152 PMCID: PMC9620759 DOI: 10.1098/rstb.2021.0336] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 08/25/2023] Open
Abstract
Imagination is a biological function that is vital to human experience and advanced cognition. Despite this importance, it remains unknown how imagination is realized in the brain. Substantial research focusing on the hippocampus, a brain structure traditionally linked to memory, indicates that firing patterns in spatially tuned neurons can represent previous and upcoming paths in space. This work has generally been interpreted under standard views that the hippocampus implements cognitive abilities primarily related to actual experience, whether in the past (e.g. recollection, consolidation), present (e.g. spatial mapping) or future (e.g. planning). However, relatively recent findings in rodents identify robust patterns of hippocampal firing corresponding to a variety of alternatives to actual experience, in many cases without overt reference to the past, present or future. Given these findings, and others on hippocampal contributions to human imagination, we suggest that a fundamental function of the hippocampus is to generate a wealth of hypothetical experiences and thoughts. Under this view, traditional accounts of hippocampal function in episodic memory and spatial navigation can be understood as particular applications of a more general system for imagination. This view also suggests that the hippocampus contributes to a wider range of cognitive abilities than previously thought. This article is part of the theme issue 'Thinking about possibilities: mechanisms, ontogeny, functions and phylogeny'.
Collapse
Affiliation(s)
- Alison E. Comrie
- Neuroscience Graduate Program, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Departments of Physiology and Psychiatry, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Loren M. Frank
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Departments of Physiology and Psychiatry, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Kenneth Kay
- Zuckerman Institute, Center for Theoretical Neuroscience, Columbia University, 3227 Broadway, New York, NY 10027, USA
| |
Collapse
|
42
|
Wu Z, Buckley MJ. Prefrontal and Medial Temporal Lobe Cortical Contributions to Visual Short-Term Memory. J Cogn Neurosci 2022; 35:27-43. [PMID: 36306260 DOI: 10.1162/jocn_a_01937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A number of recent studies have indicated that the medial temporal lobe (MTL) plays a critical role in working memory (WM) and perception, but these results have been highly controversial given the traditional association of MTL with long-term memory. We review the research and highlight important factors that need to be considered in determining the role of MTL in WM including set-size of used stimuli and feature complexity and/or feature conjunctions/bindings embedded in those stimuli. These factors relate to hierarchical and, accordingly, domain-specific theories of functional organization within the temporal lobe. In addition, one must consider process-specific theories too, because two key processes commonly understood to contribute recognition memory, namely, recollection and familiarity, also have robust support from neurophysiological and neuroimaging research as to their functional dissociations within MTL. PFC has long been heavily implicated in WM; however, relatively less is known about how the PFC contributes to recollection and familiarity, although dynamic prefrontal coding models in WM may help to explain their neural mechanisms. The MTL and PFC are heavily interconnected and do not operate independently in underlying WM. We propose that investigation of the interactions between these two regions in WM, particularly their coordinated neural activities, and the modeling of such interactions, will be crucial for the advancing understanding of the neural mechanisms of WM.
Collapse
Affiliation(s)
- Zhemeng Wu
- University of Oxford, United Kingdom.,University of Toronto, Ontario, Canada
| | | |
Collapse
|
43
|
Kurkela KA, Cooper RA, Ryu E, Ritchey M. Integrating Region- and Network-level Contributions to Episodic Recollection Using Multilevel Structural Equation Modeling. J Cogn Neurosci 2022; 34:2341-2359. [PMID: 36007077 DOI: 10.1162/jocn_a_01904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The brain is composed of networks of interacting brain regions that support higher-order cognition. Among these, a core network of regions has been associated with recollection and other forms of episodic construction. Past research has focused largely on the roles of individual brain regions in recollection or on their mutual engagement as part of an integrated network. However, the relationship between these region- and network-level contributions remains poorly understood. Here, we applied multilevel structural equation modeling to examine the functional organization of the posterior medial (PM) network and its relationship to episodic memory outcomes. We evaluated two aspects of functional heterogeneity in the PM network: first, the organization of individual regions into subnetworks, and second, the presence of regionally specific contributions while accounting for network-level effects. Our results suggest that the PM network is composed of ventral and dorsal subnetworks, with the ventral subnetwork making a unique contribution to recollection, especially to recollection of spatial information, and that memory-related activity in individual regions is well accounted for by these network-level effects. These findings highlight the importance of considering the functions of individual brain regions within the context of their affiliated networks.
Collapse
Affiliation(s)
| | | | - Ehri Ryu
- Boston College, Chestnut Hill, MA
| | | |
Collapse
|
44
|
Clough S, Hilverman C, Brown-Schmidt S, Duff MC. Evidence of Audience Design in Amnesia: Adaptation in Gesture but Not Speech. Brain Sci 2022; 12:1082. [PMID: 36009145 PMCID: PMC9405987 DOI: 10.3390/brainsci12081082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022] Open
Abstract
Speakers design communication for their audience, providing more information in both speech and gesture when their listener is naïve to the topic. We test whether the hippocampal declarative memory system contributes to multimodal audience design. The hippocampus, while traditionally linked to episodic and relational memory, has also been linked to the ability to imagine the mental states of others and use language flexibly. We examined the speech and gesture use of four patients with hippocampal amnesia when describing how to complete everyday tasks (e.g., how to tie a shoe) to an imagined child listener and an adult listener. Although patients with amnesia did not increase their total number of words and instructional steps for the child listener, they did produce representational gestures at significantly higher rates for the imagined child compared to the adult listener. They also gestured at similar frequencies to neurotypical peers, suggesting that hand gesture can be a meaningful communicative resource, even in the case of severe declarative memory impairment. We discuss the contributions of multiple memory systems to multimodal audience design and the potential of gesture to act as a window into the social cognitive processes of individuals with neurologic disorders.
Collapse
Affiliation(s)
- Sharice Clough
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Caitlin Hilverman
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Qntfy Corporation, Arlington, VA 22209, USA
| | - Sarah Brown-Schmidt
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Melissa C. Duff
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
45
|
de Brouwer AJ, Areshenkoff CN, Rashid MR, Flanagan JR, Poppenk J, Gallivan JP. Human Variation in Error-Based and Reinforcement Motor Learning Is Associated With Entorhinal Volume. Cereb Cortex 2022; 32:3423-3440. [PMID: 34963128 PMCID: PMC9376876 DOI: 10.1093/cercor/bhab424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
Error-based and reward-based processes are critical for motor learning and are thought to be mediated via distinct neural pathways. However, recent behavioral work in humans suggests that both learning processes can be bolstered by the use of cognitive strategies, which may mediate individual differences in motor learning ability. It has been speculated that medial temporal lobe regions, which have been shown to support motor sequence learning, also support the use of cognitive strategies in error-based and reinforcement motor learning. However, direct evidence in support of this idea remains sparse. Here we first show that better overall learning during error-based visuomotor adaptation is associated with better overall learning during the reward-based shaping of reaching movements. Given the cognitive contribution to learning in both of these tasks, these results support the notion that strategic processes, associated with better performance, drive intersubject variation in both error-based and reinforcement motor learning. Furthermore, we show that entorhinal cortex volume is larger in better learning individuals-characterized across both motor learning tasks-compared with their poorer learning counterparts. These results suggest that individual differences in learning performance during error and reinforcement learning are related to neuroanatomical differences in entorhinal cortex.
Collapse
Affiliation(s)
- Anouk J de Brouwer
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Corson N Areshenkoff
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Mohammad R Rashid
- School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Jordan Poppenk
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
- School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
46
|
Davidson TL, Stevenson RJ. Appetitive interoception, the hippocampus and western-style diet. Rev Endocr Metab Disord 2022; 23:845-859. [PMID: 35067848 DOI: 10.1007/s11154-021-09698-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/06/2023]
Abstract
Obesity, Type 2 diabetes and other metabolic disorders continue to pose serious challenges to human health and well-being. An important source of these challenges is the overconsumption of saturated fats and sugar, main staples of what has been called the Western-style diet (WD). The current paper describes a theoretical model and supporting evidence that links intake of a WD to interference with a specific brain substrate that underlies processing of interoceptive signals of hunger and satiety. We review findings from rats and humans that the capacity of these signals to modulate the strength of appetitive and eating behavior depends on the functional integrity of the hippocampus and the learning memory operations it performs. Important among these operations is the use of contextual information to retrieve memories that are associated with other events. Within our framework, satiety provides an interoceptive context that informs animals that food cues and appetitive behavior will not be followed by rewarding postingestive outcomes. This serves to prevent those cues and responses from retrieving those reward memories. The findings reviewed provide evidence that consuming a WD and the high amounts of saturated fat and sugar it contains (a) is associated with the emergence of pathophysiologies to which the hippocampus appears selectively vulnerable (b) impairs hippocampal-dependent learning and memory (HDLM) and (c) weakens behavioral control by interoceptive hunger and satiety contextual stimuli. It is hypothesized that these consequences of WD intake may establish the conditions for a vicious cycle of further WD intake, obesity, and potentially cognitive decline.
Collapse
Affiliation(s)
- Terry L Davidson
- Department of Neuroscience and the Center for Neuroscience and Behavior, American University, Washington, DC, USA.
| | | |
Collapse
|
47
|
Rolls ET. The hippocampus, ventromedial prefrontal cortex, and episodic and semantic memory. Prog Neurobiol 2022; 217:102334. [PMID: 35870682 DOI: 10.1016/j.pneurobio.2022.102334] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
The human ventromedial prefrontal cortex (vmPFC)/anterior cingulate cortex is implicated in reward and emotion, but also in memory. It is shown how the human orbitofrontal cortex connecting with the vmPFC and anterior cingulate cortex provide a route to the hippocampus for reward and emotional value to be incorporated into episodic memory, enabling memory of where a reward was seen. It is proposed that this value component results in primarily episodic memories with some value component to be repeatedly recalled from the hippocampus so that they are more likely to become incorporated into neocortical semantic and autobiographical memories. The same orbitofrontal and anterior cingulate regions also connect in humans to the septal and basal forebrain cholinergic nuclei, thereby helping to consolidate memory, and helping to account for why damage to the vMPFC impairs memory. The human hippocampus and vmPFC thus contribute in complementary ways to forming episodic and semantic memories.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; University of Warwick, Department of Computer Science, Coventry, UK.
| |
Collapse
|
48
|
McAvan AS, Wank AA, Rapcsak SZ, Grilli MD, Ekstrom AD. Largely intact memory for spatial locations during navigation in an individual with dense amnesia. Neuropsychologia 2022; 170:108225. [PMID: 35367237 PMCID: PMC9058227 DOI: 10.1016/j.neuropsychologia.2022.108225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022]
Abstract
Spatial navigation and event memory (termed episodic memory) are thought to be heavily intertwined, both in terms of their cognitive processes and underlying neural systems. Some theoretical models posit that both memory for places during navigation and episodic memory depend on highly overlapping brain systems. Here, we assessed this relationship by testing navigation in an individual with severe retrograde and anterograde amnesia; the amnesia stemmed from bilateral lesions in the medial temporal lobes from two separate strokes. The individual with amnesia and age-matched controls were tested on their memories for the locations of previously seen objects relative to distal mountain cues in an immersive virtual environment involving free ambulation. All participants were tested from both repeated and novel start locations and when a single distal mountain cue was unknowingly moved to determine if they relied on a single (beacon) cue to a greater extent than the collection of all distal cues. Compared to age-matched controls, the individual with amnesia showed no significant deficits in navigation from either the repeated or novel start points, although both the individual with amnesia and controls performed well above chance at placing objects near their correct locations. The individual with amnesia also relied on a combination of distal cues in a manner comparable to age-matched controls. Despite largely intact memory for locations using distal cues, the individual with amnesia walked longer paths, rotated more, and took longer to complete trials. Our findings suggest that memory for places during navigation and episodic memory may involve partially dissociable brain circuits and that other brain regions outside of the medial temporal lobe partially support some aspects of navigation. At the same time, the fact that the individual with amnesia walked more circuitous paths and had dense amnesia for autobiographic events supports the idea that the hippocampus may be important for binding information as part of a larger role in memory.
Collapse
Affiliation(s)
- Andrew S McAvan
- Psychology Department, University of Arizona, 1503 E University Blvd, Tucson, AZ, 85721, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E University Blvd, Tucson, AZ, 85721, USA
| | - Aubrey A Wank
- Psychology Department, University of Arizona, 1503 E University Blvd, Tucson, AZ, 85721, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E University Blvd, Tucson, AZ, 85721, USA
| | - Steven Z Rapcsak
- Psychology Department, University of Arizona, 1503 E University Blvd, Tucson, AZ, 85721, USA; Neurology Department, University of Arizona, 1501 N Campbell Ave, Tucson, AZ, 85724, USA; Banner Alzheimer's Institute, 2626 E River Rd, Tucson, AZ, 85718, USA
| | - Matthew D Grilli
- Psychology Department, University of Arizona, 1503 E University Blvd, Tucson, AZ, 85721, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E University Blvd, Tucson, AZ, 85721, USA; Neurology Department, University of Arizona, 1501 N Campbell Ave, Tucson, AZ, 85724, USA
| | - Arne D Ekstrom
- Psychology Department, University of Arizona, 1503 E University Blvd, Tucson, AZ, 85721, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E University Blvd, Tucson, AZ, 85721, USA.
| |
Collapse
|
49
|
Synaptic plasticity during systems memory consolidation. Neurosci Res 2022; 183:1-6. [PMID: 35667493 DOI: 10.1016/j.neures.2022.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
Abstract
After learning, memory is initially encoded in the hippocampus but subsequently stabilized in other brain regions such as the cortex for long-lasting storage. This process is known as systems memory consolidation, and its cellular mechanism has long been a fundamental question. Synaptic plasticity is the major cellular mechanism underlying learning and memory, and is therefore considered a key function in the process of systems memory consolidation. Therefore, many studies have aimed to establish a causal link between synaptic plasticity in the brain and memory-associated behaviors. In this review, I discuss the various lines of research showing the function of synaptic plasticity, mainly in the hippocampus and cortex during memory consolidation.
Collapse
|
50
|
Kim T, Kim S, Kang J, Kwon M, Lee SH. The Common Effects of Sleep Deprivation on Human Long-Term Memory and Cognitive Control Processes. Front Neurosci 2022; 16:883848. [PMID: 35720688 PMCID: PMC9201256 DOI: 10.3389/fnins.2022.883848] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep deprivation is known to have adverse effects on various cognitive abilities. In particular, a lack of sleep has been reported to disrupt memory consolidation and cognitive control functions. Here, focusing on long-term memory and cognitive control processes, we review the consistency and reliability of the results of previous studies of sleep deprivation effects on behavioral performance with variations in the types of stimuli and tasks. Moreover, we examine neural response changes related to these behavioral changes induced by sleep deprivation based on human fMRI studies to determine the brain regions in which neural responses increase or decrease as a consequence of sleep deprivation. Additionally, we discuss about the possibility that light as an environmentally influential factor affects our sleep cycles and related cognitive processes.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sejin Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Joonyoung Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Minjae Kwon
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Sue-Hyun Lee,
| |
Collapse
|