1
|
Wigerinck S, Schellekens P, Smith BH, Hanna C, Dachy A, Chedid M, Borghol AH, Senum SR, Bockenhauer D, Harris PC, Jouret F, Bammens B, Chebib FT, Mekahli D. Characteristics of patients with autosomal polycystic kidney disease reaching kidney failure by age 40. Pediatr Nephrol 2025; 40:1997-2007. [PMID: 39891678 DOI: 10.1007/s00467-024-06652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/20/2024] [Accepted: 12/12/2024] [Indexed: 02/03/2025]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) demonstrates broad genetic and phenotypic variability, with kidney failure (KF) occurring across a wide age spectrum. Despite several predictor tools, there remains a need to identify factors associated with rapid disease progression. This study describes the phenotypic characteristics of a multicentric cohort experiencing early-onset KF by age 40. METHODS This retrospective, multicenter cohort study analyzed longitudinal data of rapidly progressive ADPKD patients (n = 199). The prevalence of established risk factors was compared to nine existing ADPKD cohorts (ntotal = 6782) with KF after 40 years of age. We examined the longitudinal impact of early hypertension and urological events on the risk of developing KF. RESULTS The median age at ADPKD diagnosis was 22.3 years (IQR, 16.5-28.6) and median age of KF was 35.6 years (31.7-38.0). Hypertension was observed in 68.1% of cases, with early-onset hypertension being more common among those with accelerated progression towards KF. Urological events were present in 60.1% of cases, with a high burden of gross hematuria (30.4%). Existing ADPKD cohorts had a mean age of 45.5 years, with weighted prevalences of hypertension (71.1%), kidney stones (22.4%), hematuria (22.9%), and urinary tract infections (22.8%). Extrarenal manifestations were less prevalent compared to other ADPKD cohorts. CONCLUSION This study outlines a cohort of ADPKD patients with accelerated disease progression, reaching KF before age 40. Hypertension and urological events were highly prevalent at a young age, emphasizing the importance of early and regular blood pressure monitoring.
Collapse
Affiliation(s)
- Stijn Wigerinck
- PKD Research Group, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Pieter Schellekens
- PKD Research Group, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Nephrology and Renal Transplantation Research Group, Dept. of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Byron H Smith
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Christian Hanna
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Angelique Dachy
- PKD Research Group, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Maroun Chedid
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Sarah R Senum
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Department of Artificial Intelligence & Informatics, Mayo Clinic, Rochester, MN, USA
| | - Detlef Bockenhauer
- PKD Research Group, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Francois Jouret
- Division of Nephrology, University of Liège Hospital, Liège, Belgium
| | - Bert Bammens
- PKD Research Group, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Nephrology and Renal Transplantation Research Group, Dept. of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| | - Djalila Mekahli
- PKD Research Group, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
- Department of Pediatric Nephrology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
2
|
Noels H, van der Vorst EPC, Rubin S, Emmett A, Marx N, Tomaszewski M, Jankowski J. Renal-Cardiac Crosstalk in the Pathogenesis and Progression of Heart Failure. Circ Res 2025; 136:1306-1334. [PMID: 40403103 DOI: 10.1161/circresaha.124.325488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/14/2025] [Accepted: 03/11/2025] [Indexed: 05/24/2025]
Abstract
Chronic kidney disease (CKD) represents a global health issue with a high socioeconomic impact. Beyond a progressive decline of kidney function, patients with CKD are at increased risk of cardiovascular diseases, including heart failure (HF) and sudden cardiac death. HF in CKD can manifest both as HF with reduced ejection fraction and HF with preserved ejection fraction, with the latter further increasing in relative importance in the more advanced stages of CKD. Typical cardiac remodeling characteristics in uremic cardiomyopathy include left ventricular hypertrophy, myocardial fibrosis, cardiac electrical dysregulation, capillary rarefaction, and microvascular dysfunction, which are triggered by increased cardiac preload, cardiac afterload, and preload and afterload-independent factors. The pathophysiological mechanisms underlying cardiac remodeling in CKD are multifactorial and include neurohormonal activation (with increased activation of the renin-angiotensin-aldosterone system, the sympathetic nervous system, and mineralocorticoid receptor signaling), cardiac steroid activation, mitochondrial dysfunction, inflammation, innate immune activation, and oxidative stress. Furthermore, disturbances in cardiac metabolism and calcium homeostasis, macrovascular and microvascular dysfunction, increased cellular profibrotic responses, the accumulation of uremic retention solutes, and mineral and bone disorders also contribute to cardiovascular disease and HF in CKD. Here, we review the current knowledge of HF in CKD, including the clinical characteristics and pathophysiological mechanisms revealed in animal studies. We also elaborate on the detrimental impact of comorbidities of CKD on HF using hypertension as an example and discuss the clinical characteristics of hypertensive heart disease and the genetic predisposition. Overall, this review aims to increase the understanding of HF in CKD to support future research and clinical translational approaches for improved diagnosis and therapy of this vulnerable patient population.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research (H.N., E.P.C.v.d.V., J.J.), Uniklinik RWTH Aachen, RWTH Aachen University, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (H.N., E.P.C.v.d.V., J.J.), Uniklinik RWTH Aachen, RWTH Aachen University, Germany
- Biochemistry Department (H.N.), Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (H.N., E.P.C.v.d.V., J.J.), Uniklinik RWTH Aachen, RWTH Aachen University, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (H.N., E.P.C.v.d.V., J.J.), Uniklinik RWTH Aachen, RWTH Aachen University, Germany
- Interdisciplinary Center for Clinical Research (IZKF) (E.P.C.v.d.V.), RWTH Aachen University, Germany
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (E.P.C.v.d.V.)
| | - Sébastien Rubin
- L'Institut national de la santé et de la recherche médicale (INSERM), BMC, U1034, University of Bordeaux, Pessac, France (S.R.)
- Renal Unit, University Hospital of Bordeaux, France (S.R.)
| | - Amber Emmett
- Faculty of Medicine, Biology and Health, Division of Cardiovascular Sciences, The University of Manchester, United Kingdom (A.E., M.T.)
| | - Nikolaus Marx
- Department of Internal Medicine I-Cardiology, Angiology and Internal Intensive Care Medicine (N.M.), RWTH Aachen University, Germany
| | - Maciej Tomaszewski
- Faculty of Medicine, Biology and Health, Division of Cardiovascular Sciences, The University of Manchester, United Kingdom (A.E., M.T.)
- British Heart Foundation Manchester Centre of Research Excellence, United Kingdom (M.T.)
- Manchester Academic Health Science Centre, Manchester University National Health Service (NHS) Foundation Trust, United Kingdom (M.T.)
- Signature Research Programme in Health Services and Systems Research, Duke-National University of Singapore (M.T.)
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (H.N., E.P.C.v.d.V., J.J.), Uniklinik RWTH Aachen, RWTH Aachen University, Germany
- Biochemistry Department (H.N.), Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
- Pathology Department (J.J.), Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| |
Collapse
|
3
|
Akti SE, Dogan I, Eser B, Yetim M, Kayadibi H. The relationship between serum salusins levels and atherosclerosis, endothelial dysfunction and cardiac morphology in autosomal dominant polycystic kidney disease. Int Urol Nephrol 2025:10.1007/s11255-025-04494-2. [PMID: 40188198 DOI: 10.1007/s11255-025-04494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
PURPOSE We aimed to assess the associations between serum salusins levels and atherosclerosis, endothelial dysfunction and cardiac morphology in autosomal dominant polycystic kidney disease (ADPKD). METHODS This study comprised 83 patients with ADPKD, and 53 healthy individuals. Salusin α and β levels were measured by ELISA. Echocardiography, flow-mediated vasodilatation, and carotid artery intima-media thickness measurements were conducted. RESULTS Serum salusin α levels were significantly lower and the salusin β/α ratio was significantly higher in the patient group compared to Controls [2.64 (1.83-3.30) pg/mL vs. 3.20 (2.55-7.87) pg/mL, P = 0.002 and 2.81 (2.30-3.54) vs. 2.64 (2.02-3.18), P = 0.041, respectively]. Patients were further categorized into two groups: Group 1 (eGFR ≥ 60 mL/min/1.73 m2) and Group 2 (eGFR = 59-15 mL/min/1.73 m2). The salusin α level was 2.31 (1.73-3.24) pg/mL in Group 2 and 2.72 (1.94-3.32) pg/mL in Group 1. In the correlation analysis performed in Group 2, there was a statistically significant negative correlation between salusin α and left ventricular mass (LVM) and LVM index (P = 0.019, P = 0.015, respectively), as well as a statistically significant positive correlation between salusin β/α ratio and LVM (P = 0.004) and LVM index (P = 0.025). In Group 1, a statistically significant positive correlation was detected between proteinuria and salusin β (P = 0.036). CONCLUSION In patients with ADPKD, salusin α was found to be significantly lower, while salusin β/α ratio was found to be significantly higher compared to healthy individuals. Low salusin α levels and high salusin β/α ratio were associated with LVM in advanced stages of ADPKD and salusin β was associated with proteinuria in early stage of ADPKD patients.
Collapse
Affiliation(s)
- Sumeyye Elif Akti
- Department of Internal Medicine, Hitit University Faculty of Medicine, Corum, Turkey
| | - Ibrahim Dogan
- Department of Nephrology, Hitit University Faculty of Medicine, Corum, Turkey.
| | - Baris Eser
- Department of Nephrology, Hitit University Faculty of Medicine, Corum, Turkey
| | - Mucahit Yetim
- Department of Cardiology, Hitit University Faculty of Medicine, Corum, Turkey
| | - Hüseyin Kayadibi
- Department of Biochemistry, Eskişehir Osmangazi University, Eskisehir, Turkey
- Translational Medicine Application and Research Center, Eskişehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
4
|
Ahmed A, Nayak S, Hoteit M, Ameen D, Bauer D, Elshenawy S, Stolear A, Kaddoura R, Buller G. Acute coronary syndrome in patients with autosomal dominant polycystic kidney disease: a systematic review and meta-analysis. Intern Med J 2025; 55:493-502. [PMID: 40055956 DOI: 10.1111/imj.16659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/30/2024] [Indexed: 05/13/2025]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is associated with various cardiovascular abnormalities, including spontaneous coronary artery dissection and atrial fibrillation. However, limited data exist to describe the association between ADPKD and acute coronary syndrome or heart failure. AIMS This systematic review and meta-analysis evaluated the occurrence of cardiovascular events among patients with ADPKD compared to those without ADPKD. METHODS A comprehensive literature search was conducted using Embase, PubMed and Scopus databases. Of 416 initially identified articles, 18 of them were reviewed in detail, and three cohort studies, comprising a total of 7888 patients with ADPKD, were included in the final analysis. RESULTS In comparison with patients without ADPKD, the pooled data revealed that ADPKD patients had a significantly higher odds of any adverse cardiovascular events (odds ratio (OR) 1.36; 95% confidence interval (CI): 1.24-1.28), including myocardial infarction (OR 1.86; 95% CI: 1.05-3.32) and congestive heart failure (OR 1.36; 95% CI: 1.22-1.51). However, there was no significant difference in mortality (OR 1.37; 95% CI: 0.77-2.44). CONCLUSION Patients with ADPKD are at a significantly increased risk for major adverse cardiovascular events, such as myocardial infarction and congestive heart failure. Despite the elevated risk of these cardiovascular complications, no significant difference in overall mortality was observed. Further studies are needed to assess ADPKD's cardiovascular risk and possible preventive strategies.
Collapse
Affiliation(s)
- Ashraf Ahmed
- Department of Internal Medicine, Yale New Haven Health Bridgeport Hospital, Bridgeport, Connecticut, USA
| | - Sandeep Nayak
- Department of Internal Medicine, Yale New Haven Health Bridgeport Hospital, Bridgeport, Connecticut, USA
| | - Mayssaa Hoteit
- Department of Internal Medicine, Yale New Haven Health Bridgeport Hospital, Bridgeport, Connecticut, USA
| | - Daniyal Ameen
- Department of Internal Medicine, Yale New Haven Health Bridgeport Hospital, Bridgeport, Connecticut, USA
| | - David Bauer
- Department of Internal Medicine, Yale New Haven Health Bridgeport Hospital, Bridgeport, Connecticut, USA
| | - Salem Elshenawy
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Anton Stolear
- Department of Cardiovascular Diseases, Yale New Haven Health Bridgeport Hospital, Bridgeport, Connecticut, USA
| | - Rasha Kaddoura
- Department of Pharmacy, Hamad Medical Corporation, Doha, Qatar
| | - Gregory Buller
- Department of Internal Medicine, Yale New Haven Health Bridgeport Hospital, Bridgeport, Connecticut, USA
| |
Collapse
|
5
|
Vitulano C, Forcina G, Colosimo S, Frattolillo V, Villani AV, Marzuillo P, Miraglia Del Giudice E, Di Sessa A. A miRNA-Based Approach in Autosomal Dominant Polycystic Kidney Disease: Challenges and Insights from Adult to Pediatric Evidence. Mol Diagn Ther 2025; 29:183-193. [PMID: 39820940 DOI: 10.1007/s40291-024-00761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 01/19/2025]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) represents the most common inherited kidney disorder leading to kidney failure in a significant percentage of patients over time. Although previously considered as an adult disease, robust evidence demonstrated that clinical manifestations might occur during childhood and adolescence. Therefore, early identification and treatment of the disease are of cardinal importance for pediatricians to ensure the best long-term outcomes. To date, licensed treatment options are limited but promising potential therapeutic targets are emerging. Among these, an intriguing pathophysiological role for microRNAs as small molecules with a critical role in regulating gene expression has been considered possible in ADPKD. Indeed, numerous circulating microRNAs have been found to be dysregulated in ADPKD, suggesting their potential role as biomarkers and therapeutic targets. Based on this background, further detailed insights into the mechanisms of miRNAs contributing to ADPKD development might pave the way for their effective application as a targeted treatment in young patients with ADPKD. We aimed to summarize the most recent evidence in this fascinating research area, providing a comprehensive overview of the current landscape of specific microRNAs in ADPKD as a potential innovative therapeutic strategy for these young patients.
Collapse
Affiliation(s)
- Caterina Vitulano
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Gianmario Forcina
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Simone Colosimo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Vittoria Frattolillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Annalisa Valentina Villani
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Anna Di Sessa
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy.
| |
Collapse
|
6
|
Qin XD, Liang JF, Gan LY, Peng KS, Huang XH, Li XT, Chen JL, Li W, Zhang L, Jian J, Lu J. Blockage of polycystin-2 alleviates myocardial ischemia/reperfusion injury by inhibiting autophagy through the Ca 2+/Akt/Beclin 1 pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119892. [PMID: 39689827 DOI: 10.1016/j.bbamcr.2024.119892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
Autophagy is a well-conserved self-protection process that plays an important role in cardiovascular diseases. Excessive autophagy during myocardial ischemia/reperfusion injury (MIRI) induces calcium overload and the overactivation of an autophagic response, thereby aggravating cardiomyocyte damage. Polycystin-2 (PC2) is a Ca2+-permeable nonselective cation channel implicated in the regulation of autophagy. In the present study, autophagy was upregulated in myocardial ischemia/reperfusion in vivo and in vitro. PC2 knockdown using adeno-associated virus 9 particles containing Pkd2 short hairpin RNA infection markedly ameliorated MIRI, evidenced by reduced infarct size, diminished morphological changes, decreased cTnI levels, and improved cardiac function. Silencing PC2 reduced the autophagic flux in H9c2 cells. PC2 overexpression-mediated autophagic flux was inhibited by intracellular Ca2+ chelation with BAPTA-AM. Furthermore, PC2 ablation upregulated p-Akt (Ser473) and downregulated Beclin 1 in H/R. BAPTA-AM downregulated p-Akt(Ser473) and upregulated Beclin 1in PC2-overexpressing H9c2 cells. Moreover, the Akt inhibitor MK2206 abolished the BAPTA-AM-blunted PC2-dependent control of autophagy. Collectively, these results indicated that blockade of PC2 may be associated with the Ca2+/Akt/Beclin 1 signaling, thereby inhibiting excessive autophagy and serving as a potential strategy for mitigating MIRI.
Collapse
Affiliation(s)
- Xiao-Dan Qin
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jian-Feng Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Chinese People's Liberation Army Joint Logistic Support Force Lushan Rehabilitation and Recuperation Center, Jiujiang 332000, China
| | - Lin-Yu Gan
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Faculty of Pharmacy, Guiping People's Hospital, Guiping 537200, China
| | - Ke-Shan Peng
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, China
| | - Xue-Hong Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, China
| | - Xiao-Ting Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, China
| | - Jin-Li Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, China
| | - Wan Li
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, China
| | - Lei Zhang
- Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, Guilin 541004, China
| | - Jie Jian
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, China
| | - Jun Lu
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
7
|
Saberi N, Khaksar E, Molazem M, Mashhady Rafiee S. Cardiovascular changes in Persian cats with polycystic kidney disease: a study of cardiac troponin I, echocardiography and blood pressure. J Feline Med Surg 2025; 27:1098612X241303311. [PMID: 39751379 DOI: 10.1177/1098612x241303311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
OBJECTIVES Cardiovascular complications are well known in humans with autosomal dominant polycystic kidney disease (PKD), but limited data exist for cats. This study aimed to assess echocardiographic changes, cardiac troponin I (cTnI) levels and systolic blood pressure (SBP) in Persian cats with PKD to detect early cardiac abnormalities. METHODS In total, 52 Persian and mixed-Persian cats were enrolled, with 26 cats in the control group and 26 diagnosed with PKD via ultrasound due to the unavailability of genetic testing. Although genetic testing is the gold standard for definitive diagnosis, this study utilised high-sensitivity ultrasound as an alternative diagnostic tool. This method aligns with existing literature supporting its effectiveness in detecting PKD, particularly in regions where genetic testing is not accessible. Echocardiographic examinations employed M-mode and two-dimensional echocardiography to measure the diastolic thickness of the interventricular septum and the left ventricular free wall. Doppler ultrasonography was used to measure SBP and cTnI serum levels were determined using a Monobind-ELISA kit. RESULTS Median SBP and cTnI levels in PKD cats were 155 mmHg and 85.80 ng/l, respectively, which was significantly higher than the control group (P ⩽0.001). Interventricular septum in systole, as well as diastolic thickness of the interventricular septum and the left ventricular free wall, was significantly elevated in PKD cats compared with controls (P ⩽0.001). No significant differences were observed in other echocardiographic parameters. CONCLUSIONS AND RELEVANCE Asymptomatic PKD-affected Persian cats exhibited elevated SBP and cardiac structural changes; however, the clinical significance of these findings remains uncertain due to a lack of long-term follow-up. While early cardiac changes may be present, further research is necessary to establish their clinical relevance and guide appropriate management strategies. Monitoring PKD cats is advised, but a direct clinical impact is not confirmed at this stage.
Collapse
Affiliation(s)
- Niloufar Saberi
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Khaksar
- Department of Clinical Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Mohammad Molazem
- Department of Veterinary Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Seeyamak Mashhady Rafiee
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Márquez-Nogueras KM, Elliott B, Thuo P, DiNello E, Knutila RM, Fritzmann GE, Vuchkovska V, Flury S, Willis M, Chapman AB, Cao Q, Barefield DY, Kuo IY. Cardiac Localized Polycystin-2 in the Natriuretic Peptide Signaling Pathway and Hypertension. J Am Soc Nephrol 2025; 36:34-47. [PMID: 39302726 PMCID: PMC11706566 DOI: 10.1681/asn.0000000000000490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
Key Points Cardiac localized polycystin facilitates natriuretic peptide signaling pathways. Hypertension associated with autosomal dominant polycystic kidney disease may arise from impaired cardiac natriuretic peptide signaling. Background Hypertension is seen in 70% of patients with autosomal dominant polycystic kidney disease by age of 30 years before decline in kidney function. However, cardiac origins of hypertension, such as the natriuretic peptide signaling pathway, have not been fully investigated. We hypothesized that cardiomyocyte localized polycystin proteins contribute to production of natriuretic peptides, and loss of this pathway would contribute to hypertension. Methods Telemetry, echocardiography, and a molecular analysis of the natriuretic peptide pathway from left ventricular tissue of cardiomyocyte specific knockout models of polycystin-2 (cPC2-KO) mice and Cre control littermates were conducted. Complementary studies were conducted in ex vivo murine hearts, engineered heart tissue with human iPSCs driven into cardiomyocytes with CRISPR/Cas9 knockout of PKD2 and in in vitro cell lines. Results cPC2-KO mice demonstrated diurnal hypertension. Circulating atrial natriuretic peptide (ANP) and brain natriuretic peptide were unchanged between cPC2-KO and Cre mice. Analysis of the pathways involved in production, maturation, and activity of natriuretic peptides identified decreased transcription of chromogranin B, PCSK6, NPR1, and NFAT genes in cPC2-KOs. Human iPSC-derived cardiomyocytes with PC2-KO failed to produce ANP. Re-expression of polycystin-2 in a myoblast cell line, but not pathogenic forms of polycystin-2, restored ANP production. Conclusions Natriuretic peptide production required cardiac localized polycystin-2, and loss of this pathway may contribute to the development of hypertension in autosomal dominant polycystic kidney disease. Podcast This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2024_10_08_ASN0000000000000490.mp3
Collapse
Affiliation(s)
- Karla M. Márquez-Nogueras
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Brandon Elliott
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Paula Thuo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Elisabeth DiNello
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Ryne M. Knutila
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Geena E. Fritzmann
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
- Stritch School of Medicine, Cardiovascular Research Institute, Loyola University Chicago, Maywood, Illinois
| | - Virdjinija Vuchkovska
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Sarah Flury
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Monte Willis
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Arlene B. Chapman
- Section of Nephrology, Biological Sciences Division, Department of Medicine and Institute for Translational Medicine, University of Chicago, Chicago, Illinois
| | - Quan Cao
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
- Stritch School of Medicine, Cardiovascular Research Institute, Loyola University Chicago, Maywood, Illinois
| | - David Y. Barefield
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
- Stritch School of Medicine, Cardiovascular Research Institute, Loyola University Chicago, Maywood, Illinois
| | - Ivana Y. Kuo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
- Stritch School of Medicine, Cardiovascular Research Institute, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
9
|
Koska-Ścigała A, Jankowska H, Jankowska M, Dudziak M, Hellmann M, Dębska-Ślizień A. Echocardiographic characteristics of autosomal dominant polycystic kidney disease. Sci Rep 2024; 14:29867. [PMID: 39622918 PMCID: PMC11612295 DOI: 10.1038/s41598-024-81536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
Cardiovascular complications in patients with autosomal dominant polycystic kidney disease (ADPKD) are frequently investigated extrarenal manifestations with contradictory outcomes. The primary goal of this study is to explore the prevalence of cardiovascular abnormalities using echocardiography and analyze their associations with clinical characteristics at different stages of chronic kidney disease (CKD) progression in ADPKD patients. We included sixty-eight patients in the study. All patients underwent transthoracic echocardiography using GE Vingmed Ultrasound (GE Norway Health Tech, Oslo, Norway). Demographic information, prior medical history, and antihypertensive medication use were recorded. To diagnose the rapid progression of CKD, creatinine levels were measured twice, with a one-year interval. Analysis revealed left ventricular hypertrophy (LVH) in over 40% of ADPKD patients, as indicated by various LVH parameters. Notably, a decline in estimated glomerular filtration rate (eGFR) after one year of observation was associated with increased left ventricular mass. Other prevalent findings included asymptomatic left ventricular diastolic dysfunction (ALVDD) in 39% of patients, left atrium (LA) enlargement in 39%, and mild valvular regurgitations in 80%. Ejection fraction, aortic root dimension, and the prevalence of mitral valve prolapse were not significantly increased. Cardiac indices did not differ substantially across the different eGFR stages. LVH, LA enlargement, ALVDD and valvular regurgitations are characteristics of cardiac phenotype in ADPKD. Cardiac indices were not different across different stages of CKD pointing towards the diagnosis of ADPKD being the main drive of their occurrence.
Collapse
Affiliation(s)
| | - Hanna Jankowska
- Division of Cardiac Diagnostics, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Magdalena Jankowska
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland.
| | - Maria Dudziak
- Division of Cardiac Diagnostics, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Marcin Hellmann
- Division of Cardiac Diagnostics, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
10
|
Subhash S, Vijayvargiya S, Parmar A, Sandhu J, Simmons J, Raina R. Reactive Oxygen Species in Cystic Kidney Disease. Antioxidants (Basel) 2024; 13:1186. [PMID: 39456439 PMCID: PMC11504974 DOI: 10.3390/antiox13101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Polycystic kidney disease (PKD) is a rare but significant renal condition with major implications for global acute and chronic patient care. Oxidative stress and reactive oxygen species (ROS) can significantly alter its pathophysiology, clinical outcomes, and treatment, contributing to negative outcomes, including hypertension, chronic kidney disease, and kidney failure. Inflammation from ROS and existing cysts propagate the generation and accumulation of ROS, exacerbating kidney injury, pro-fibrotic signaling cascades, and interstitial fibrosis. Early identification and prevention of oxidative stress and ROS can contribute to reduced cystic kidney disease progression and improved longitudinal patient outcomes. Increased research regarding biomarkers, the pathophysiology of oxidative stress, and novel therapeutic interventions alongside the creation of comprehensive guidelines establishing methods of assessment, monitoring, and intervention for oxidative stress in cystic kidney disease patients is imperative to standardize clinical practice and improve patient outcomes. The integration of artificial intelligence (AI), genetic editing, and genome sequencing could further improve the early detection and management of cystic kidney disease and mitigate adverse patient outcomes. In this review, we aim to comprehensively assess the multifactorial role of ROS in cystic kidney disease, analyzing its pathophysiology, clinical outcomes, treatment interventions, clinical trials, animal models, and future directions for patient care.
Collapse
Affiliation(s)
- Sanat Subhash
- Department of Internal Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.S.); (J.S.)
| | - Sonya Vijayvargiya
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Aetan Parmar
- Akron Nephrology Associates, Cleveland Clinic Akron General Medical Center, Akron, OH 44307, USA; (A.P.); (J.S.)
| | - Jazlyn Sandhu
- Akron Nephrology Associates, Cleveland Clinic Akron General Medical Center, Akron, OH 44307, USA; (A.P.); (J.S.)
| | - Jabrina Simmons
- Department of Internal Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.S.); (J.S.)
| | - Rupesh Raina
- Akron Nephrology Associates, Cleveland Clinic Akron General Medical Center, Akron, OH 44307, USA; (A.P.); (J.S.)
| |
Collapse
|
11
|
Berg T, Aehling NF, Bruns T, Welker MW, Weismüller T, Trebicka J, Tacke F, Strnad P, Sterneck M, Settmacher U, Seehofer D, Schott E, Schnitzbauer AA, Schmidt HH, Schlitt HJ, Pratschke J, Pascher A, Neumann U, Manekeller S, Lammert F, Klein I, Kirchner G, Guba M, Glanemann M, Engelmann C, Canbay AE, Braun F, Berg CP, Bechstein WO, Becker T, Trautwein C. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:1397-1573. [PMID: 39250961 DOI: 10.1055/a-2255-7246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Affiliation(s)
- Thomas Berg
- Bereich Hepatologie, Medizinischen Klinik II, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Niklas F Aehling
- Bereich Hepatologie, Medizinischen Klinik II, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Tony Bruns
- Medizinische Klinik III, Universitätsklinikum Aachen, Aachen, Deutschland
| | - Martin-Walter Welker
- Medizinische Klinik I Gastroent., Hepat., Pneum., Endokrin. Universitätsklinikum Frankfurt, Frankfurt, Deutschland
| | - Tobias Weismüller
- Klinik für Innere Medizin - Gastroenterologie und Hepatologie, Vivantes Humboldt-Klinikum, Berlin, Deutschland
| | - Jonel Trebicka
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Deutschland
| | - Frank Tacke
- Charité - Universitätsmedizin Berlin, Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Berlin, Deutschland
| | - Pavel Strnad
- Medizinische Klinik III, Universitätsklinikum Aachen, Aachen, Deutschland
| | - Martina Sterneck
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Hamburg, Hamburg, Deutschland
| | - Utz Settmacher
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Universitätsklinikum Jena, Jena, Deutschland
| | - Daniel Seehofer
- Klinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Eckart Schott
- Klinik für Innere Medizin II - Gastroenterologie, Hepatologie und Diabetolgie, Helios Klinikum Emil von Behring, Berlin, Deutschland
| | | | - Hartmut H Schmidt
- Klinik für Gastroenterologie und Hepatologie, Universitätsklinikum Essen, Essen, Deutschland
| | - Hans J Schlitt
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg, Regensburg, Deutschland
| | - Johann Pratschke
- Chirurgische Klinik, Charité Campus Virchow-Klinikum - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Andreas Pascher
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Münster, Münster, Deutschland
| | - Ulf Neumann
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Essen, Essen, Deutschland
| | - Steffen Manekeller
- Klinik und Poliklinik für Allgemein-, Viszeral-, Thorax- und Gefäßchirurgie, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Frank Lammert
- Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Ingo Klein
- Chirurgische Klinik I, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Gabriele Kirchner
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg und Innere Medizin I, Caritaskrankenhaus St. Josef Regensburg, Regensburg, Deutschland
| | - Markus Guba
- Klinik für Allgemeine, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Universitätsklinikum München, München, Deutschland
| | - Matthias Glanemann
- Klinik für Allgemeine, Viszeral-, Gefäß- und Kinderchirurgie, Universitätsklinikum des Saarlandes, Homburg, Deutschland
| | - Cornelius Engelmann
- Charité - Universitätsmedizin Berlin, Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Berlin, Deutschland
| | - Ali E Canbay
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Deutschland
| | - Felix Braun
- Klinik für Allgemeine Chirurgie, Viszeral-, Thorax-, Transplantations- und Kinderchirurgie, Universitätsklinikum Schlewswig-Holstein, Kiel, Deutschland
| | - Christoph P Berg
- Innere Medizin I Gastroenterologie, Hepatologie, Infektiologie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Wolf O Bechstein
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Frankfurt, Frankfurt, Deutschland
| | - Thomas Becker
- Klinik für Allgemeine Chirurgie, Viszeral-, Thorax-, Transplantations- und Kinderchirurgie, Universitätsklinikum Schlewswig-Holstein, Kiel, Deutschland
| | | |
Collapse
|
12
|
Nigro E, D’Arco D, Moscatelli F, Pisani A, Amicone M, Riccio E, Capuano I, Argentino F, Monda M, Messina G, Daniele A, Polito R. Increased Expression of Orexin-A in Patients Affected by Polycystic Kidney Disease. Int J Mol Sci 2024; 25:6243. [PMID: 38892431 PMCID: PMC11172798 DOI: 10.3390/ijms25116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Orexin-A is a neuropeptide product of the lateral hypothalamus that acts on two receptors, OX1R and OX2R. The orexinergic system is involved in feeding, sleep, and pressure regulation. Recently, orexin-A levels have been found to be negatively correlated with renal function. Here, we analyzed orexin-A levels as well as the incidence of SNPs in the hypocretin neuropeptide precursor (HCRT) and its receptors, HCRTR1 and HCRTR2, in 64 patients affected by autosomal dominant polycystic kidney disease (ADPKD) bearing truncating mutations in the PKD1 or PKD2 genes. Twenty-four healthy volunteers constituted the control group. Serum orexin-A was assessed by ELISA, while the SNPs were investigated through Sanger sequencing. Correlations with the main clinical features of PKD patients were assessed. PKD patients showed impaired renal function (mean eGFR 67.8 ± 34.53) and a statistically higher systolic blood pressure compared with the control group (p < 0.001). Additionally, orexin-A levels in PKD patients were statistically higher than those in healthy controls (477.07 ± 69.42 pg/mL vs. 321.49 ± 78.01 pg/mL; p < 0.001). Furthermore, orexin-A inversely correlated with blood pressure (p = 0.0085), while a direct correlation with eGFR in PKD patients was found. None of the analyzed SNPs showed any association with orexin-A levels in PKD. In conclusion, our data highlights the emerging role of orexin-A in renal physiology and its potential relevance to PKD. Further research is essential to elucidate the intricate mechanisms underlying orexin-A signaling in renal function and its therapeutic implications for PKD and associated cardiovascular complications.
Collapse
Affiliation(s)
- Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy;
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (D.D.); (F.A.)
| | - Daniela D’Arco
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (D.D.); (F.A.)
| | - Fiorenzo Moscatelli
- Department of Human Sciences, Telematic University Pegaso, 80100 Naples, Italy;
| | - Antonio Pisani
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Napoli, Italy; (A.P.); (M.A.); (E.R.); (I.C.)
| | - Maria Amicone
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Napoli, Italy; (A.P.); (M.A.); (E.R.); (I.C.)
| | - Eleonora Riccio
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Napoli, Italy; (A.P.); (M.A.); (E.R.); (I.C.)
| | - Ivana Capuano
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Napoli, Italy; (A.P.); (M.A.); (E.R.); (I.C.)
| | - Francesca Argentino
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (D.D.); (F.A.)
| | - Marcellino Monda
- Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.); (G.M.)
| | - Giovanni Messina
- Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.); (G.M.)
| | - Aurora Daniele
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (D.D.); (F.A.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
13
|
Gallini JW, Jasien CL, Mrug M, Cui X. US Veterans Administration Autosomal Dominant Polycystic Kidney Disease Cohort: Demographic, Comorbidity, and Key Laboratory Data Characteristics. KIDNEY360 2024; 5:529-537. [PMID: 38424672 PMCID: PMC11093548 DOI: 10.34067/kid.0000000000000405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Key Points We built a cohort of 12,217 patients diagnosed with autosomal dominant polycystic kidney disease from 1999 to 2020 in the national Veteran Affairs electronic medical record system. We characterized the cohort on demographics, comorbidities, and key laboratory measurements. Background We used the largest integrated US healthcare system, the Veterans Health Administration, to establish a robust resource for demographic, longitudinal outcome, and predictive modeling studies in autosomal dominant polycystic kidney disease (ADPKD). Methods We built the ADPKD cohort by extracting the relevant electronic health record data from nationwide Veterans Health Administration database (years 1999–2020). Results We identified 12,217 patients diagnosed with ADPKD. By the end of the 20-year study period, 5342 patients with ADPKD were deceased, 1583 were alive but reached ESKD, and 4827 remained alive without ESKD. Most demographic characteristics of this ADPKD cohort resemble the total US veteran population. For example, 94% were male patients, 45% age 65 years or older, 85% non-Hispanic, and 66% white; however, 19% were Black/African Americans (versus 12% in the general veteran population; a relevant enrichment after considering age and sex distributions between races). The comorbidities overrepresented in the ADPKD cohort include hypertension (89% versus 50%), diabetes (32% versus 22%), depression (40% versus 10%), chronic obstructive pulmonary disease (30% versus 6%), and congestive heart failure (21% versus 1%). By contrast, obesity was underrepresented in veterans with ADPKD (30% versus 41%). Conclusions We established a large electronic medical record-based cohort of ADPKD veterans. Here, we provide initial analysis of its demographic, comorbidity, and key laboratory data.
Collapse
Affiliation(s)
- Julia W. Gallini
- Foundation for Atlanta Veterans Education and Research, Decatur, Georgia
| | - Christine L. Jasien
- Department of Veterans Affairs Medical Center, Atlanta VA Health Care System, Decatur, Georgia
| | - Michal Mrug
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Xiangqin Cui
- Department of Veterans Affairs Medical Center, Atlanta VA Health Care System, Decatur, Georgia
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| |
Collapse
|
14
|
Amoah Y, Kyei MY, Mensah JE, Palm B, Adrah HK, Asiedu I. Autosomal dominant polycystic kidney disease with ectopic unilateral multicystic kidney: a case report. J Med Case Rep 2024; 18:10. [PMID: 38191584 PMCID: PMC10775661 DOI: 10.1186/s13256-023-04305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/25/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disorder and the fourth cause of death of end-stage renal disease. The disease has a prevalence of 1:400-1:1000 accounting for 10% of patients on dialysis. In most ADPKD patients, bilateral kidneys are similarly affected, with numerous fluid-filled cysts arising from different nephron segments. Only a few cases of ADPKD with ectopic unilateral multicystic kidney have been reported. It has been observed that the deterioration of their kidney function seemed to be quicker than their age- and sex-matched controls and siblings especially when the ectopic kidney is dysplastic. CASE PRESENTATION We report a case of a 46-year-old Ghanaian male patient who presented with left flank pain and hematuria with high BP and deranged renal function. Abdominal ultrasonography showed both kidneys to be larger than normal and had multiple cysts of varying sizes with the right kidney located in the right iliac fossa. Follow up Abdominopelvic computer tomographic scan (CT-Scan) without contrast showed enlarged kidneys with the renal parenchyma replaced by innumerable cyst of varying sizes. The right kidney was ectopically located in the right aspect of the pelvis. A diagnosis of ADPKD with right pelvic ectopic multicystic kidney was made. He was put on antihypertensives, analgesia for the left flank pain and to have follow up at the urology and nephrology departments. CONCLUSION In most ADPKD patients, bilateral kidneys are similarly affected. Only a few cases of ADPKD with ectopic unilateral multicystic kidney have been reported. It has been observed that the deterioration of their kidney function seemed to be quicker than their age- and sex-matched controls and siblings especially when the ectopic kidney is dysplastic.
Collapse
Affiliation(s)
- Yaw Amoah
- Urology Unit, Department of Surgery, Korle-Bu Teaching Hospital, Accra, Ghana.
| | - Mathew Yamoah Kyei
- Urology Unit, Department of Surgery, Korle-Bu Teaching Hospital, Accra, Ghana
- Department of Surgery, University of Ghana Medical School, Accra, Ghana
| | - James Edward Mensah
- Urology Unit, Department of Surgery, Korle-Bu Teaching Hospital, Accra, Ghana
- Department of Surgery, University of Ghana Medical School, Accra, Ghana
| | - Bridget Palm
- Department of Radiology, Korle-Bu Teaching Hospital, Accra, Ghana
| | | | - Isaac Asiedu
- Urology Unit, Department of Surgery, Korle-Bu Teaching Hospital, Accra, Ghana
| |
Collapse
|
15
|
Elliott B, Márquez-Nogueras KM, Thuo P, DiNello E, Knutila RM, Fritzmann GE, Willis M, Chapman AB, Cao Q, Barefield DY, Kuo IY. Cardiac Localized Polycystin-2 plays a Functional Role in Natriuretic Peptide Production and its Absence Contributes to Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573922. [PMID: 38260706 PMCID: PMC10802350 DOI: 10.1101/2024.01.02.573922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cardiovascular complications are the most common cause of mortality in patients with autosomal dominant polycystic kidney disease (ADPKD). Hypertension is seen in 70% of patients by the age of 30 prior to decline in kidney function. The natriuretic peptides (NPs), atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), are released by cardiomyocytes in response to membrane stretch, increasing urinary excretion of sodium and water. Mice heterozygous for Pkd2 have attenuated NP responses and we hypothesized that cardiomyocyte-localized polycystin proteins contribute to production of NPs. Cardiomyocyte-specific knock-out models of polycystin-2 (PC2), one of the causative genes of ADPKD, demonstrate diurnal hypertension. These mice have decreased ANP and BNP expression in the left ventricle. Analysis of the pathways involved in production, maturation, and activity of NPs identified decreased transcription of CgB, PCSK6, and NFAT genes in cPC2-KOs. Engineered heart tissue with human iPSCs driven into cardiomyocytes with CRISPR/Cas9 KO of PKD2 failed to produce ANP. These results suggest that PC2 in cardiomyocytes are involved in NP production and lack of cardiac PC2 predisposes to a hypertensive volume expanded phenotype, which may contribute to the development of hypertension in ADPKD.
Collapse
|
16
|
Ponińska JK, Pelczar-Płachta W, Pollak A, Jończyk-Potoczna K, Truszkowska G, Michałowska I, Szafran E, Bilińska ZT, Bobkowski W, Płoski R. Double Heterozygous Pathogenic Variants in the LOX and PKD1 Genes in a 5-Year-Old Patient with Thoracic Aortic Aneurysm and Polycystic Kidney Disease. Genes (Basel) 2023; 14:1983. [PMID: 38002926 PMCID: PMC10671125 DOI: 10.3390/genes14111983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Familial thoracic aortic aneurysms and dissections may occur as an isolated hereditary trait or as part of connective tissue disorders with Mendelian inheritance, but severe cardiovascular disease in pediatric patients is extremely rare. There is growing knowledge on pathogenic variants causing the disease; however, much of the phenotypic variability and gene-gene interactions remain to be discovered. We present a case report of a 5.5-year-old girl with an aortic aneurysm and concomitant polycystic kidney disease. Whole exome sequencing was performed, followed by family screening by amplicon deep sequencing and diagnostic imaging studies. In the proband, two pathogenic variants were identified: p.Tyr257Ter in the LOX gene inherited from her mother, and p.Thr2977Ile in the PKD1 gene inherited from her father. All adult carriers of either of these variants showed symptoms of aortic disease. We conclude that the coexistence of two independent genetic variants in the proband may be the reason for an early onset of disease.
Collapse
Affiliation(s)
- Joanna Kinga Ponińska
- Department of Medical Biology, National Institute of Cardiology, 04-628 Warszawa, Poland;
| | - Weronika Pelczar-Płachta
- Department of Pediatric Cardiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Agnieszka Pollak
- Department of Medical Genetics, Centre of Biostructure, Medical University of Warsaw, 02-106 Warszawa, Poland
| | | | - Grażyna Truszkowska
- Department of Medical Biology, National Institute of Cardiology, 04-628 Warszawa, Poland;
| | - Ilona Michałowska
- Department of Radiology, National Institute of Cardiology, 04-628 Warszawa, Poland
| | - Emilia Szafran
- Department of Pediatric Cardiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Zofia T. Bilińska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, 04-628 Warszawa, Poland;
| | - Waldemar Bobkowski
- Department of Pediatric Cardiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Centre of Biostructure, Medical University of Warsaw, 02-106 Warszawa, Poland
| |
Collapse
|
17
|
Romano S, Marcon D, Branz L, Tagetti A, Monamì G, Giontella A, Malesani F, Pecoraro L, Minuz P, Brugnara M, Fava C. Subclinical Target Organ Damage in a Sample of Children with Autosomal Dominant Polycystic Kidney Disease: A Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1777. [PMID: 37893495 PMCID: PMC10608453 DOI: 10.3390/medicina59101777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Hypertension and vascular damage can begin in adolescents affected by Autosomal Dominant Polycystic Kidney Disease (ADPKD). This study aimed to evaluate markers of vascular damage and left ventricular geometry in a sample of children with ADPKD. Materials and Methods: Several vascular measurements were obtained: ambulatory blood pressure monitoring (ABPM), carotid intima-media thickness (cIMT), carotid distensibility coefficient (cDC), pulse wave velocity (PWV), and echocardiographic measurements (relative wall thickness (RWT) and left ventricular mass index (LVMI)). Results: Eleven ADPKD children were recruited (four females and seven males, mean age 9.5 ± 3.2 years). Four children were hypertensive at the ABPM, five were normotensive, and for two ABPM was not available. RWT was tendentially high (mean 0.47 ± 0.39). Eight patients had concentric cardiac remodeling, while one patient had cardiac hypertrophy. cIMT was above the 95° percentile for sex and height in 80% of the children (0.5 ± 0.005 mm). The average PWV and cDC were between the normal range (5.5 ± 4.6 m/s and 89.6 ± 16.1 × 10-3/KPa, respectively). We observed a positive correlation between the PWV and RWT (r = 0.616; p = 0.044) and a negative correlation between cDC and RWT (r = -0.770; p = 0.015). Cardiovascular damages (cIMT > 95° percentile) were found in normotensive patients. Conclusions: Increased RWT and high cIMT, indicating subclinical organ damage, are already present in ADPKD children. RWT was significantly correlated to that of cDC and PWV, implying that vascular stiffening is associated with cardiac remodeling. None of the children had an alteration in renal function. Subclinical cardiovascular damage preceded the decline in glomerular filtration rate.
Collapse
Affiliation(s)
- Simone Romano
- Section of General Medicine and Hypertension, Department of Medicine, Policlinico GB Rossi, University of Verona, 37134 Verona, Italy (D.M.); (L.B.); (A.G.); (P.M.); (C.F.)
| | - Denise Marcon
- Section of General Medicine and Hypertension, Department of Medicine, Policlinico GB Rossi, University of Verona, 37134 Verona, Italy (D.M.); (L.B.); (A.G.); (P.M.); (C.F.)
| | - Lorella Branz
- Section of General Medicine and Hypertension, Department of Medicine, Policlinico GB Rossi, University of Verona, 37134 Verona, Italy (D.M.); (L.B.); (A.G.); (P.M.); (C.F.)
| | - Angela Tagetti
- Section of General Medicine and Hypertension, Department of Medicine, Policlinico GB Rossi, University of Verona, 37134 Verona, Italy (D.M.); (L.B.); (A.G.); (P.M.); (C.F.)
| | - Giada Monamì
- Section of General Medicine and Hypertension, Department of Medicine, Policlinico GB Rossi, University of Verona, 37134 Verona, Italy (D.M.); (L.B.); (A.G.); (P.M.); (C.F.)
| | - Alice Giontella
- Section of General Medicine and Hypertension, Department of Medicine, Policlinico GB Rossi, University of Verona, 37134 Verona, Italy (D.M.); (L.B.); (A.G.); (P.M.); (C.F.)
| | - Francesca Malesani
- Section of General Medicine and Hypertension, Department of Medicine, Policlinico GB Rossi, University of Verona, 37134 Verona, Italy (D.M.); (L.B.); (A.G.); (P.M.); (C.F.)
| | - Luca Pecoraro
- Pediatric Clinic, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Pietro Minuz
- Section of General Medicine and Hypertension, Department of Medicine, Policlinico GB Rossi, University of Verona, 37134 Verona, Italy (D.M.); (L.B.); (A.G.); (P.M.); (C.F.)
| | - Milena Brugnara
- Pediatric Clinic, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Cristiano Fava
- Section of General Medicine and Hypertension, Department of Medicine, Policlinico GB Rossi, University of Verona, 37134 Verona, Italy (D.M.); (L.B.); (A.G.); (P.M.); (C.F.)
| |
Collapse
|
18
|
Sagar PS, Rangan GK. Cardiovascular Manifestations and Management in ADPKD. Kidney Int Rep 2023; 8:1924-1940. [PMID: 37850017 PMCID: PMC10577330 DOI: 10.1016/j.ekir.2023.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 10/19/2023] Open
Abstract
Cardiovascular disease (CVD) is the major cause of mortality in autosomal dominant polycystic kidney disease (ADPKD) and contributes to significant burden of disease. The manifestations are varied, including left ventricular hypertrophy (LVH), intracranial aneurysms (ICAs), valvular heart disease, and cardiomyopathies; however, the most common presentation and a major modifiable risk factor is hypertension. The aim of this review is to detail the complex pathogenesis of hypertension and other extrarenal cardiac and vascular conditions in ADPKD drawing on preclinical, clinical, and epidemiological evidence. The main drivers of disease are the renin-angiotensin-aldosterone system (RAAS) and polycystin-related endothelial cell dysfunction, with the sympathetic nervous system (SNS), nitric oxide (NO), endothelin-1 (ET-1), and asymmetric dimethylarginine (ADMA) likely playing key roles in different disease stages. The reported rates of some manifestations, such as LVH, have decreased likely due to the use of antihypertensive therapies; and others, such as ischemic cardiomyopathy, have been reported with increased prevalence likely due to longer survival and higher rates of chronic disease. ADPKD-specific screening and management guidelines exist for hypertension, LVH, and ICAs; and these are described in this review.
Collapse
Affiliation(s)
- Priyanka S. Sagar
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
- Department of Renal Medicine, Nepean Hospital, Nepean Blue Mountains Local Health District, Sydney, New South Wales, Australia
| | - Gopala K. Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Raina R, Shah R, Hong G, Bhatt GC, Abboud B, Jain R, Chanchlani R, Sethi SK. Cardiovascular implications of hypertensive autosomal dominant polycystic kidney disease: a systematic review and meta-analysis. Pediatr Nephrol 2023; 38:2957-2972. [PMID: 36811694 DOI: 10.1007/s00467-023-05893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/28/2022] [Accepted: 01/18/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is among the most common inherited kidney diseases. Hypertension is a frequent cardiovascular manifestation, especially in adults, but elevated blood pressure is also found in children and adolescents. Acknowledgment of pediatric hypertension early is critical, as it can result in serious complications long-term if left undiagnosed. OBJECTIVE We aim to identify the influence of hypertension on cardiovascular outcomes, mainly left ventricular hypertrophy, carotid intima media thickness, and pulse wave velocity. METHODS We performed an extensive search on Medline, Embase, CINAHL, and Web of Science databases through March 2021. Original studies with a mix of retrospective, prospective, case-control studies, cross sectional studies, and observational studies were included in the review. There was no restriction on age group. RESULTS The preliminary search yielded 545 articles with 15 articles included after inclusion and exclusion criteria. In this meta-analysis, LVMI (SMD: 3.47 (95% CI: 0.53-6.41)) and PWV (SMD: 1.72 (95% CI: 0.08-3.36)) were found to be significantly higher in adults with ADPKD compared to non-ADPKD; however, CIMT was not found to be significantly different. Also, LVMI was observed to be significantly higher among hypertensive adults with ADPKD (n = 56) as compared to adults without ADPKD (SMD: 1.43 (95% CI: 1.08-1.79)). Fewer pediatric studies were available with heterogeneity among patient populations and results. CONCLUSIONS Adult patients with ADPKD were found to have worse indicators of cardiovascular outcomes, including LVMI and PWV, as compared to non-ADPKD. This study demonstrates the importance of identifying and managing hypertension, especially early, in this population. Further research, particularly in younger patients, is necessary to further elucidate the relationship between hypertension in patients with ADPKD and cardiovascular disease. REGISTRATION NUMBER PROSPERO REGISTRATION: 343,013.
Collapse
Affiliation(s)
- Rupesh Raina
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA.
- Department of Nephrology, Akron Children's Hospital, Akron, OH, USA.
| | - Raghav Shah
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
| | - Gordon Hong
- Northeast Ohio Medical University, Rootstown, OH, USA
| | - Girish C Bhatt
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Bhopal, Madhya Pradesh, India
| | - Brian Abboud
- Northeast Ohio Medical University, Rootstown, OH, USA
| | - Rohit Jain
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
| | - Rahul Chanchlani
- Division of Pediatric Nephrology, Department of Pediatrics, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Siddharth Kumar Sethi
- Paediatric Nephrology & Paediatric Kidney Transplantation, Kidney and Urology Institute, Medanta, The Medicity Hospital, Gurgaon, India
| |
Collapse
|
20
|
Dennis MR, Pires PW, Banek CT. Vascular Dysfunction in Polycystic Kidney Disease: A Mini-Review. J Vasc Res 2023; 60:125-136. [PMID: 37536302 PMCID: PMC10947982 DOI: 10.1159/000531647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/10/2023] [Indexed: 08/05/2023] Open
Abstract
Polycystic kidney disease (PKD) is one of the most common hereditary kidney diseases, which is characterized by progressive cyst growth and secondary hypertension. In addition to cystogenesis and renal abnormalities, patients with PKD can develop vascular abnormalities and cardiovascular complications. Progressive cyst growth substantially alters renal structure and culminates into end-stage renal disease. There remains no cure beyond renal transplantation, and treatment options remain largely limited to chronic renal replacement therapy. In addition to end-stage renal disease, patients with PKD also present with hypertension and cardiovascular disease, yet the timing and interactions between the cardiovascular and renal effects of PKD progression are understudied. Here, we review the vascular dysfunction found in clinical and preclinical models of PKD, including the clinical manifestations and relationship to hypertension, stroke, and related cardiovascular diseases. Finally, our discussion also highlights the critical questions and emerging areas in vascular research in PKD.
Collapse
Affiliation(s)
- Melissa R Dennis
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Paulo W Pires
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Christopher T Banek
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona, USA
| |
Collapse
|
21
|
Sagar PS, Munt A, Saravanabavan S, Vahedi FA, Elhindi J, Nguyen B, Chau K, Harris DC, Lee V, Sud K, Wong N, Rangan GK. Efficacy of beetroot juice on reducing blood pressure in hypertensive adults with autosomal dominant polycystic kidney disease (BEET-PKD): study protocol for a double-blind, randomised, placebo-controlled trial. Trials 2023; 24:482. [PMID: 37507763 PMCID: PMC10386227 DOI: 10.1186/s13063-023-07519-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND In autosomal dominant polycystic kidney disease (ADPKD) impaired nitric oxide (NO) synthesis, in part, contributes to early-onset hypertension. Beetroot juice (BRJ) reduces blood pressure (BP) by increasing NO-mediated vasodilation. The aim of this double-blind, randomised, placebo-controlled study is to test the hypothesis that BRJ reduces systolic and diastolic clinic BP in hypertensive adults with ADPKD. METHODS Participants with ADPKD and treated hypertension (n = 60) will be randomly allocated (1:1) to receive a daily dose of either nitrate-replete (400 mg nitrate/day) or nitrate-deplete BRJ for 4 weeks. The co-primary outcomes are change in mean systolic and diastolic clinic BP before and after 4 weeks of treatment with daily BRJ. Secondary outcomes are changes in daily home BP, urinary albumin to creatinine ratio, serum and salivary nitrate/nitrite levels and serum asymmetric dimethylarginine levels before and after 4 weeks of BRJ. DISCUSSION The effect of BRJ in ADPKD has not been previously tested. BRJ is an accessible, natural dietary supplement that, if effective, will provide a novel adjunctive approach for treating hypertension in ADPKD. TRIAL REGISTRATION ClinicalTrials.gov NCT05401409. Retrospectively registered on 27th May 2022.
Collapse
Affiliation(s)
- Priyanka S Sagar
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - Alexandra Munt
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - Sayanthooran Saravanabavan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - Farnoosh Asghar Vahedi
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - James Elhindi
- Research and Education Network, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - Beatrice Nguyen
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Katrina Chau
- Department of Renal Medicine, Blacktown Hospital, Western Sydney Local Health District, Sydney, NSW, 2148, Australia
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW, 2148, Australia
| | - David C Harris
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - Vincent Lee
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Kamal Sud
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Nepean Hospital, Nepean Blue Mountains Local Health District, Sydney, NSW, 2750, Australia
| | - Nikki Wong
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Nepean Hospital, Nepean Blue Mountains Local Health District, Sydney, NSW, 2750, Australia
| | - Gopala K Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia.
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia.
| |
Collapse
|
22
|
Orisio S, Noris M, Rigoldi M, Bresin E, Perico N, Trillini M, Donadelli R, Perna A, Benigni A, Remuzzi G. Mutation Analysis of PKD1 and PKD2 Genes in a Large Italian Cohort Reveals Novel Pathogenic Variants Including a Novel Complex Rearrangement. Nephron Clin Pract 2023; 148:273-291. [PMID: 37231942 DOI: 10.1159/000530657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/26/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited disease of the kidney. It occurs in adulthood but is also rarely diagnosed in early childhood. The majority of the disease-causing variants observed in ADPKD patients are in two genes: PKD1 and PKD2. METHODS 237 patients from 198 families with a clinical diagnosis of ADPKD were screened for PKD1 and PKD2 genetic variants using Sanger sequencing and multiple ligation-dependent probe amplification analysis. RESULTS Disease-causing (diagnostic) variants were identified in 173 families (211 patients), 156 on PKD1 and 17 on PKD2. Variants of unknown significance were detected in 6 additional families, while no mutations were found in the remaining 19 families. Among the diagnostic variants detected, 51 were novel. In ten families, seven large rearrangements were found and the molecular breakpoints of 3 rearrangements were identified. Renal survival was significantly worse for PKD1-mutated patients, particularly those carrying truncating mutations. In patients with PKD1 truncating (PKD1-T) mutations, disease onset was significantly earlier than in patients with PKD1 non-truncating variants or PKD2-mutated patients. CONCLUSIONS Comprehensive genetic testing confirms its utility in diagnosing patients with ADPKD and contributes to explaining the clinical heterogeneity observed in this disease. Moreover, the genotype-phenotype correlation can allow for a more accurate disease prognosis.
Collapse
Affiliation(s)
- Silvia Orisio
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Miriam Rigoldi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Elena Bresin
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Norberto Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Matias Trillini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Roberta Donadelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Annalisa Perna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
23
|
Steele CN, Oh ES, Wang W, Farmer-Bailey H, Gitomer BY, Chonchol M, Nowak KL. Cerebrovascular Pulsatility Index Is Reduced in Autosomal Dominant Polycystic Kidney Disease. Am J Nephrol 2023; 54:165-174. [PMID: 37231790 PMCID: PMC10529076 DOI: 10.1159/000530583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/17/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Cerebrovascular dysfunction, characterized by increased brain pulsatile flow, reduced cerebrovascular reactivity, and cerebral hypoperfusion precedes the onset of dementia and is linked to cognitive dysfunction. Autosomal dominant polycystic kidney disease (ADPKD) may increase the risk of dementia, and intracranial aneurysms are more prevalent in ADPKD patients. However, cerebrovascular function has not been previously characterized in patients with ADPKD. METHODS Using transcranial Doppler, we compared middle cerebral artery (MCA) pulsatility index (PI, cerebrovascular stiffness) and MCA blood velocity response to hypercapnia (normalized for blood pressure and end-tidal CO2, cerebrovascular reactivity) in patients with early-stage ADPKD versus age-matched healthy controls. We also administered the NIH cognitive toolbox (cognitive function) and measured carotid-femoral pulse-wave velocity (PWV, aortic stiffness). RESULTS Fifteen participants with ADPKD (9F, 27 ± 4 yrs, eGFR: 106 ± 22 mL/min/1.73 m2) were compared to 15 healthy controls (8F, 29 ± 4 yrs, eGFR: 109 ± 14 mL/min/1.73 m2). MCA PI was unexpectedly lower in ADPKD (0.71 ± 0.07) versus controls (0.82 ± 0.09 AU; p < 0.001); however, normalized MCA blood velocity in response to hypercapnia did not differ between groups (2.0 ± 1.2 vs. 2.1 ± 0.8 %Δ/mm Hg; p = 0.85). Lower MCA PI was associated with a lower crystalized composite score (cognition), which persisted after adjustment for age, sex, eGFR, and education (β = 0.58, p = 0.007). There was no association of MCA PI with carotid-femoral PWV (r = 0.01, p = 0.96), despite greater carotid-femoral PWV in ADPKD, suggesting MCA PI reflects vascular properties other than arterial stiffness (such as low wall shear stress) in ADPKD. DISCUSSION/CONCLUSION MCA PI is lower in patients with ADPKD. Follow-up research on this observation is merited as low PI has been associated with intracranial aneurysm in other populations.
Collapse
Affiliation(s)
- Cortney N Steele
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ester S Oh
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Wei Wang
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Heather Farmer-Bailey
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Berenice Y Gitomer
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristen L Nowak
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
24
|
Dachy A, Van Loo L, Mekahli D. Autosomal Dominant Polycystic Kidney Disease in Children and Adolescents: Assessing and Managing Risk of Progression. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:236-244. [PMID: 37088526 DOI: 10.1053/j.akdh.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 04/25/2023]
Abstract
The clinical management of autosomal dominant polycystic kidney disease (ADPKD) in adults has shifted from managing complications to delaying disease progression through newly emerging therapies. Regarding pediatric management of the disease, there are still specific hurdles related to the management of children and adolescents with ADPKD and, unlike adults, there are no specific therapies for pediatric ADPKD or stratification models to identify children and young adults at risk of rapid decline in kidney function. Therefore, early identification and management of factors that may modify disease progression, such as hypertension and obesity, are of most importance for young children with ADPKD. Many of these risk factors could promote disease progression in both ADPKD and chronic kidney disease. Hence, nephroprotective measures applied early in life can represent a window of opportunity to prevent the decline of the glomerular filtration rate especially in young patients with ADPKD. In this review, we highlight current challenges in the management of patients with pediatric ADPKD, the importance of early modifying factors in disease progression as well as the gaps and future perspectives in the pediatric ADPKD research field.
Collapse
Affiliation(s)
- Angélique Dachy
- PKD Research Group, Department of Cellular and MoleculMedar icine, KU Leuven, Leuven, Belgium; Department of Pediatrics, ULiège Academic Hospital, Liège, Belgium; Laboratory of Translational Research in Nephrology (LTRN), GIGA Cardiovascular Sciences, ULiège, Liège, Belgium
| | - Liselotte Van Loo
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium.
| | - Djalila Mekahli
- PKD Research Group, Department of Cellular and MoleculMedar icine, KU Leuven, Leuven, Belgium; Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
25
|
Savis A, Simpson JM, Kabir S, Peacock K, Beardsley H, Sinha MD. Prevalence of cardiac valvar abnormalities in children and young people with autosomal dominant polycystic kidney disease. Pediatr Nephrol 2023; 38:705-709. [PMID: 35763085 DOI: 10.1007/s00467-022-05500-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Valvar abnormalities in children and adults with autosomal dominant polycystic kidney disease (ADPKD) have previously been reported as a frequent occurrence. Mitral valve prolapse (MVP), in particular, has been reported in almost one-third of adult patients and nearly 12% of children with ADPKD. Our objective in this study was to establish the prevalence of valvar abnormalities in a large, contemporary series of children and young people (CYP) with ADPKD. METHODS A retrospective, single centre, cross-sectional analysis of the echocardiograms performed on all consecutive children seen in a dedicated paediatric ADPKD clinic. Full anatomical and functional echocardiograms were performed and analysed for valvar abnormalities. RESULTS The echocardiograms of 102 CYP with ADPKD (range 0.25-18 years, mean age 10.3 years, SD ± 5.3 years) were analysed. One (0.98%), 3-year-old boy, had MVP. There was no associated mitral regurgitation. Evaluating variations in normal valvar anatomy, 9 (8.8%) patients, aged 7.1 to 18 years, had minor bowing ± visual elongation of either the anterior or posterior leaflet of the mitral valve, none of which fell within the criteria of true MVP. Three (1.9%) patients, 2 boys and 1 girl aged between 7 and 14 years, had trivial or mild aortic regurgitation. No patients had echocardiographic evidence of tricuspid valve prolapse (TVP). CONCLUSION In this contemporary cohort of CYP with ADPKD, the incidence of MVP and other valvar lesions is significantly lower than previously reported. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Alexandra Savis
- Department of Paediatric Cardiology, Evelina London Children's Hospital, Guys & St Thomas NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK
| | - John M Simpson
- Department of Paediatric Cardiology, Evelina London Children's Hospital, Guys & St Thomas NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK
| | - Saleha Kabir
- Department of Paediatric Cardiology, Evelina London Children's Hospital, Guys & St Thomas NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK
| | - Kelly Peacock
- Department of Paediatric Cardiology, Evelina London Children's Hospital, Guys & St Thomas NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK
| | - Hayley Beardsley
- Department of Paediatric Cardiology, Evelina London Children's Hospital, Guys & St Thomas NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK
| | - Manish D Sinha
- Department of Paediatric Nephrology, Evelina London Children's Hospital, Guys & St Thomas NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK.
- Kings College London, London, UK.
| |
Collapse
|
26
|
Affiliation(s)
- Ivana Y Kuo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
27
|
Zubidat D, Hanna C, Randhawa AK, Smith BH, Chedid M, Kaidbay DHN, Nardelli L, Mkhaimer YG, Neal RM, Madsen CD, Senum SR, Gregory AV, Kline TL, Zoghby ZM, Broski SM, Issa NS, Harris PC, Torres VE, Sfeir JG, Chebib FT. Bone health in autosomal dominant polycystic kidney disease (ADPKD) patients after kidney transplantation. Bone Rep 2023; 18:101655. [PMID: 36659900 PMCID: PMC9842864 DOI: 10.1016/j.bonr.2023.101655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
ADPKD is caused by pathogenic variants in PKD1 or PKD2, encoding polycystin-1 and -2 proteins. Polycystins are expressed in osteoblasts and chondrocytes in animal models, and loss of function is associated with low bone mineral density (BMD) and volume. However, it is unclear whether these variants impact bone strength in ADPKD patients. Here, we examined BMD in ADPKD after kidney transplantation (KTx). This retrospective observational study retrieved data from adult patients who received a KTx over the past 15 years. Patients with available dual-energy X-ray absorptiometry (DXA) of the hip and/or lumbar spine (LS) post-transplant were included. ADPKD patients (n = 340) were matched 1:1 by age (±2 years) at KTx and sex with non-diabetic non-ADPKD patients (n = 340). Patients with ADPKD had slightly higher BMD and T-scores at the right total hip (TH) as compared to non-ADPKD patients [BMD: 0.951 vs. 0.897, p < 0.001; T-score: -0.62 vs. -0.99, p < 0.001] and at left TH [BMD: 0.960 vs. 0.893, p < 0.001; T-score: -0.60 vs. -1.08, p < 0.001], respectively. Similar results were found at the right femoral neck (FN) between ADPKD and non-ADPKD [BMD: 0.887 vs. 0.848, p = 0.001; T-score: -1.20 vs. -1.41, p = 0.01] and at left FN [BMD: 0.885 vs. 0.840, p < 0.001; T-score: -1.16 vs. -1.46, p = 0.001]. At the LS level, ADPKD had a similar BMD and lower T-score compared to non-ADPKD [BMD: 1.120 vs. 1.126, p = 0.93; T-score: -0.66 vs. -0.23, p = 0.008]. After adjusting for preemptive KTx, ADPKD patients continued to have higher BMD T-scores in TH and FN. Our findings indicate that BMD by DXA is higher in patients with ADPKD compared to non-ADPKD patients after transplantation in sites where cortical but not trabecular bone is predominant. The clinical benefit of the preserved cortical bone BMD in patients with ADPKD needs to be explored in future studies.
Collapse
Affiliation(s)
- Dalia Zubidat
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christian Hanna
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Pediatric Nephrology and Hypertension, Department of Pediatric Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amarjyot K. Randhawa
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Byron H. Smith
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Maroun Chedid
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Daniel-Hasan N. Kaidbay
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Luca Nardelli
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yaman G. Mkhaimer
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Reem M. Neal
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Charles D. Madsen
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sarah R. Senum
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Ziad M. Zoghby
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Naim S. Issa
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jad G. Sfeir
- Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Fouad T. Chebib
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
- Corresponding author at: 4500 San Pablo Rd S, Jacksonville, FL 32224, USA.
| |
Collapse
|
28
|
Polycystin-1 Is a Crucial Regulator of BIN1 Expression and T-Tubule Remodeling Associated with the Development of Dilated Cardiomyopathy. Int J Mol Sci 2022; 24:ijms24010667. [PMID: 36614108 PMCID: PMC9820588 DOI: 10.3390/ijms24010667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
Cardiomyopathy is commonly observed in patients with autosomal dominant polycystic kidney disease (ADPKD), even when they have normal renal function and arterial pressure. The role of cardiomyocyte polycystin-1 (PC1) in cardiovascular pathophysiology remains unknown. PC1 is a potential regulator of BIN1 that maintains T-tubule structure, and alterations in BIN1 expression induce cardiac pathologies. We used a cardiomyocyte-specific PC1-silenced (PC1-KO) mouse model to explore the relevance of cardiomyocyte PC1 in the development of heart failure (HF), considering reduced BIN1 expression induced T-tubule remodeling as a potential mechanism. PC1-KO mice exhibited an impairment of cardiac function, as measured by echocardiography, but no signs of HF until 7-9 months of age. Of the PC1-KO mice, 43% died suddenly at 7 months of age, and 100% died after 9 months with dilated cardiomyopathy. Total BIN1 mRNA, protein levels, and its localization in plasma membrane-enriched fractions decreased in PC1-KO mice. Moreover, the BIN1 + 13 isoform decreased while the BIN1 + 13 + 17 isoform was overexpressed in mice without signs of HF. However, BIN1 + 13 + 17 overexpression was not observed in mice with HF. T-tubule remodeling and BIN1 score measured in plasma samples were associated with decreased PC1-BIN1 expression and HF development. Our results show that decreased PC1 expression in cardiomyocytes induces dilated cardiomyopathy associated with diminished BIN1 expression and T-tubule remodeling. In conclusion, positive modulation of BIN1 expression by PC1 suggests a novel pathway that may be relevant to understanding the pathophysiological mechanisms leading to cardiomyopathy in ADPKD patients.
Collapse
|
29
|
Hamzaoui M, Groussard D, Nezam D, Djerada Z, Lamy G, Tardif V, Dumesnil A, Renet S, Brunel V, Peters DJ, Chevalier L, Hanoy M, Mulder P, Richard V, Bellien J, Guerrot D. Endothelium-Specific Deficiency of Polycystin-1 Promotes Hypertension and Cardiovascular Disorders. Hypertension 2022; 79:2542-2551. [DOI: 10.1161/hypertensionaha.122.19057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Autosomal dominant polycystic kidney disease is the most frequent hereditary kidney disease and is generally due to mutations in
PKD1
and
PKD2
, encoding polycystins 1 and 2. In autosomal dominant polycystic kidney disease, hypertension and cardiovascular disorders are highly prevalent, but their mechanisms are partially understood.
Methods:
Since endothelial cells express the polycystin complex, where it plays a central role in the mechanotransduction of blood flow, we generated a murine model with inducible deletion of
Pkd1
in endothelial cells (
Cdh5-Cre
ERT2
;
Pkd1
fl/fl
) to specifically determine the role of endothelial polycystin-1 in autosomal dominant polycystic kidney disease.
Results:
Endothelial deletion of
Pkd1
induced endothelial dysfunction, as demonstrated by impaired flow-mediated dilatation of resistance arteries and impaired relaxation to acetylcholine, increased blood pressure and prevented the normal development of arteriovenous fistula. In experimental chronic kidney disease induced by subtotal nephrectomy, endothelial deletion of
Pkd1
further aggravated endothelial dysfunction, vascular remodeling, and heart hypertrophy.
Conclusions:
Altogether, this study provides the first in vivo demonstration that specific deletion of
Pkd1
in endothelial cells promotes endothelial dysfunction and hypertension, impairs arteriovenous fistula development, and potentiates the cardiovascular alterations associated with chronic kidney disease.
Collapse
Affiliation(s)
- Mouad Hamzaoui
- Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France (M.H., D.G., D.N., Z.D., G.L., V.T., A.D., S.R., P.M., V.R., J.B., D.G.)
- Nephrology Department, Rouen University Hospital, Rouen, France (M.H., D.N., G.L., M.H., D.G.)
| | - Deborah Groussard
- Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France (M.H., D.G., D.N., Z.D., G.L., V.T., A.D., S.R., P.M., V.R., J.B., D.G.)
| | - Dorian Nezam
- Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France (M.H., D.G., D.N., Z.D., G.L., V.T., A.D., S.R., P.M., V.R., J.B., D.G.)
- Nephrology Department, Rouen University Hospital, Rouen, France (M.H., D.N., G.L., M.H., D.G.)
| | - Zoubir Djerada
- Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France (M.H., D.G., D.N., Z.D., G.L., V.T., A.D., S.R., P.M., V.R., J.B., D.G.)
- Pharmacology Department, Reims University Hospital, Reims, France (Z.D.)
| | - Gaspard Lamy
- Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France (M.H., D.G., D.N., Z.D., G.L., V.T., A.D., S.R., P.M., V.R., J.B., D.G.)
- Nephrology Department, Rouen University Hospital, Rouen, France (M.H., D.N., G.L., M.H., D.G.)
| | - Virginie Tardif
- Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France (M.H., D.G., D.N., Z.D., G.L., V.T., A.D., S.R., P.M., V.R., J.B., D.G.)
| | - Anais Dumesnil
- Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France (M.H., D.G., D.N., Z.D., G.L., V.T., A.D., S.R., P.M., V.R., J.B., D.G.)
| | - Sylvanie Renet
- Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France (M.H., D.G., D.N., Z.D., G.L., V.T., A.D., S.R., P.M., V.R., J.B., D.G.)
| | - Valery Brunel
- Biochemistry Department, Rouen University Hospital, Rouen, France (V.B.)
| | - Dorien J.M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands (D.J.M.P.)
| | - Laurence Chevalier
- Normandie Univ, UNIROUEN, GPM, UMR CNRS 6634, Saint Etienne de Rouvray (L.C.)
| | - Mélanie Hanoy
- Nephrology Department, Rouen University Hospital, Rouen, France (M.H., D.N., G.L., M.H., D.G.)
| | - Paul Mulder
- Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France (M.H., D.G., D.N., Z.D., G.L., V.T., A.D., S.R., P.M., V.R., J.B., D.G.)
| | - Vincent Richard
- Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France (M.H., D.G., D.N., Z.D., G.L., V.T., A.D., S.R., P.M., V.R., J.B., D.G.)
| | - Jeremy Bellien
- Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France (M.H., D.G., D.N., Z.D., G.L., V.T., A.D., S.R., P.M., V.R., J.B., D.G.)
- Pharmacology Department, Rouen University Hospital, Rouen, France (J.B.)
| | - Dominique Guerrot
- Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France (M.H., D.G., D.N., Z.D., G.L., V.T., A.D., S.R., P.M., V.R., J.B., D.G.)
- Nephrology Department, Rouen University Hospital, Rouen, France (M.H., D.N., G.L., M.H., D.G.)
| |
Collapse
|
30
|
Kocyigit I, Taheri S, Uysal C, Memis M, Ozayturk SG, Zararsiz G, Rassoulzadegan M. Predicting Progression of Autosomal Dominant Polycystic Kidney Disease by Changes in the Telomeric Epigenome. Cells 2022; 11:cells11203300. [PMID: 36291168 PMCID: PMC9600909 DOI: 10.3390/cells11203300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of chronic kidney disease with Polycystin (PKD) 1 and 2 gene mutation. However, the intra-familial variability in symptoms further suggests a non-Mendelian contribution to the disease. Our goal was to find a marker to track the epigenetic changes common to rapidly progressing forms of the disease. The risk of ADPKD increases with age, and aging shortens the telomere length (TL). Telomeres are a nucleoprotein structure composed mainly of three complexes, shelterin, CST and RNA-containing telomere repeat(TERRA), which protects the ends of chromosomes from degradation and fusion, and plays a role in maintaining cellular stability and in the repair of telomeric damage. TERRAs are transcribed from telomeric regions and a part of them is engaged in a DNA/RNA hybrid (R-loop) at each chromosome end. We tracked TL and TERRA levels in blood samples of 78 patients and 20 healthy control. Our study demonstrates that TL was shortened and TERRA expression levels in the DNA-attached fraction increased in autosomal dominant polycystic kidney patients with mutations in PKD1 and PKD2 compared to the control group. Moreover, it was observed that the expression of TERRA engaged in the R-loop was higher and the length of telomeres shorter in patients with ADPKD who showed rapid disease progression. Intrafamilial variation in TL and TERRA levels with the same mutation would indicate reliable epigenetic potential biomarkers in disease monitoring.
Collapse
Affiliation(s)
- Ismail Kocyigit
- Department of Nephrology, Medical School, Erciyes University, 38280 Kayseri, Turkey
- Correspondence:
| | - Serpil Taheri
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, 38280 Kayseri, Turkey
- Department of Medical Biology, Medical School, Erciyes University, 38280 Kayseri, Turkey
| | - Cihan Uysal
- Department of Nephrology, Medical School, Erciyes University, 38280 Kayseri, Turkey
| | - Mehmet Memis
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, 38280 Kayseri, Turkey
| | - Salih Guntug Ozayturk
- Department of Internal Medicine, Medical School, Erciyes University, 38280 Kayseri, Turkey
| | - Gokmen Zararsiz
- Department of Biostatistics, Medical School, Erciyes University, 38280 Kayseri, Turkey
| | - Minoo Rassoulzadegan
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, 38280 Kayseri, Turkey
- INSERM-CNRS, Université de Nice, 06107 Nice, France
| |
Collapse
|
31
|
Fuchs A, Dederichs J, Arjune S, Todorova P, Wöstmann F, Antczak P, Illerhaus A, Gathof B, Grundmann F, Müller RU, Annecke T. Microvascular perfusion, perfused boundary region and glycocalyx shedding in patients with autosomal dominant polycystic kidney disease: results from the GlycoScore III study. Clin Kidney J 2022; 16:384-393. [PMID: 36755834 PMCID: PMC9900573 DOI: 10.1093/ckj/sfac229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Vascular abnormalities and endothelial dysfunction are part of the spectrum of autosomal dominant polycystic kidney disease (ADPKD). The mechanisms behind these manifestations, including potential effects on the endothelial surface layer (ESL) and glycocalyx integrity, remain unknown. Methods Forty-five ambulatory adult patients with ADPKD were enrolled in this prospective, observational, cross-sectional, single-centre study. Fifty-one healthy volunteers served as a control group. All participants underwent real-time microvascular perfusion measurements of the sublingual microcirculation using sidestream dark field imaging. After image acquisition, the perfused boundary region (PBR), an inverse parameter for red blood cell (RBC) penetration into the ESL, was automatically calculated. Microvascular perfusion was assessed by RBC filling and capillary density. Concentrations of circulating glycocalyx components were determined by enzyme-linked immunosorbent assay. Results ADPKD patients showed a significantly larger PBR compared with healthy controls (2.09 ± 0.23 µm versus 1.79 ± 0.25 µm; P < .001). This was accompanied by significantly lower RBC filling (70.4 ± 5.0% versus 77.9 ± 5.4%; P < .001) as well as a higher valid capillary density {318/mm2 [interquartile range (IQR) 269-380] versus 273/mm2 [230-327]; P = .007}. Significantly higher plasma concentrations of heparan sulphate (1625 ± 807 ng/ml versus 1329 ± 316 ng/ml; P = .034), hyaluronan (111 ng/ml [IQR 79-132] versus 92 ng/ml [82-98]; P = .042) and syndecan-1 were noted in ADPKD patients compared with healthy controls (35 ng/ml [IQR 27-57] versus 29 ng/ml [23-42]; P = .035). Conclusions Dimensions and integrity of the ESL are impaired in ADPKD patients. Increased capillary density may be a compensatory mechanism for vascular dysfunction to ensure sufficient tissue perfusion and oxygenation.
Collapse
Affiliation(s)
- Alexander Fuchs
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department of Anaesthesiology and Intensive Care Medicine, Cologne, Germany
| | - Jennifer Dederichs
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department of Anaesthesiology and Intensive Care Medicine, Cologne, Germany,University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Cologne, Germany
| | - Sita Arjune
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Cologne, Germany
| | - Polina Todorova
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Cologne, Germany
| | - Fabian Wöstmann
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Cologne, Germany
| | - Philipp Antczak
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Cologne, Germany
| | - Anja Illerhaus
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department of Dermatology, Cologne, Germany
| | - Birgit Gathof
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Transfusion Medicine, Cologne, Germany
| | - Franziska Grundmann
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Cologne, Germany
| | | | | |
Collapse
|
32
|
Echocardiographic Abnormalities in Autosomal Dominant Polycystic Kidney Disease (ADPKD) Patients. J Clin Med 2022; 11:jcm11205982. [PMID: 36294302 PMCID: PMC9604303 DOI: 10.3390/jcm11205982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular abnormalities, such as left ventricular hypertrophy and valvular disorders, particularly mitral valve prolapse, have been described as highly prevalent among adult patients with autosomal dominant polycystic kidney disease (ADPKD). The present study aimed to assess echocardiographic parameters in a large sample of both normotensive and hypertensive ADPKD patients, regardless of kidney function level, and evaluate their association with clinical and laboratorial parameters. A retrospective study consisted of the analysis of clinical, laboratorial, and transthoracic echocardiograms data retrieved from the medical records of young adult ADPKD outpatients. A total of 294 patients (120 M/174 F, 41.0 ± 13.8 years old, 199 hypertensive and 95 normotensive) with a median estimated glomerular filtration rate (eGFR) of 75.5 mL/min/1.73 m2 were included. The hypertensive group (67.6%) was significantly older and exhibited significantly lower eGFR than the normotensive one. Increased left ventricular mass index (LVMI) was seen in 2.0%, mitral valve prolapse was observed in 3.4%, mitral valve regurgitation in 15.3%, tricuspid valve regurgitation in 16.0%, and aortic valve regurgitation in 4.8% of the whole sample. The present study suggested that the prevalence of mitral valve prolapse was much lower than previously reported, and increased LVMI was not seen in most adult ADPKD patients.
Collapse
|
33
|
Calcium-Sensing Receptor (CaSR)-Mediated Intracellular Communication in Cardiovascular Diseases. Cells 2022; 11:cells11193075. [PMID: 36231037 PMCID: PMC9562006 DOI: 10.3390/cells11193075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The calcium-sensing receptor (CaSR), a G-protein-coupled receptor (GPCR), is a cell-surface-located receptor that can induce highly diffusible messengers (IP3, Ca2+, cAMP) in the cytoplasm to activate various cellular responses. Recently, it has also been suggested that the CaSR mediates the intracellular communications between the endoplasmic reticulum (ER), mitochondria, nucleus, protease/proteasome, and autophagy-lysosome, which are involved in related cardiovascular diseases. The complex intracellular signaling of this receptor challenges it as a valuable therapeutic target. It is, therefore, necessary to understand the mechanisms behind the signaling characteristics of this receptor in intracellular communication. This review provides an overview of the recent research progress on the various regulatory mechanisms of the CaSR in related cardiovascular diseases and the heart-kidney interaction; the associated common causes are also discussed.
Collapse
|
34
|
Au EH, Gupta A. Heterogeneous Cardiovascular Profiles in CKD: ADPKD Versus non-ADPKD. Kidney Int Rep 2022; 7:1930-1932. [PMID: 36090505 PMCID: PMC9459124 DOI: 10.1016/j.ekir.2022.07.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Eric H.K. Au
- Centre for Transplant and Renal Research, Westmead Hospital, Sydney, New South Wales, Australia
- Sydney School of Public Health, University of Sydney, Sydney, New South Wales, Australia
- Centre for Kidney Research, Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Aditi Gupta
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
35
|
Chedid M, Kaidbay HD, Wigerinck S, Mkhaimer Y, Smith B, Zubidat D, Sekhon I, Prajwal R, Duriseti P, Issa N, Zoghby ZM, Hanna C, Senum SR, Harris PC, Hickson LJ, Torres VE, Nkomo VT, Chebib FT. Cardiovascular Outcomes in Kidney Transplant Recipients With ADPKD. Kidney Int Rep 2022; 7:1991-2005. [PMID: 36090485 PMCID: PMC9459062 DOI: 10.1016/j.ekir.2022.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Cardiovascular disease leads to high morbidity and mortality in patients with kidney failure. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disease with various cardiac abnormalities. Details on the cardiovascular profile of patients with ADPKD who are undergoing kidney transplantation (KT) and its progression are limited. Methods Echocardiographic data within 2 years before KT (1993-2020), and major adverse cardiovascular events (MACEs) after transplantation were retrieved. The primary outcome is to assess cardiovascular abnormalities on echocardiography at the time of transplantation in ADPKD as compared with patients without ADPKD matched by sex (male, 59.4%) and age at transplantation (57.2 ± 8.8 years). Results Compared with diabetic nephropathy (DN, n = 271) and nondiabetic, patients without ADPKD (NDNA) (n = 271) at the time of KT, patients with ADPKD (n = 271) had lower rates of left ventricular hypertrophy (LVH) (39.4% vs. 66.4% vs. 48.6%), mitral (2.7% vs. 6.3% vs. 7.45) and tricuspid regurgitations (1.8% vs. 6.6% vs. 7.2%). Patients with ADPKD had less diastolic (25.3%) and systolic (5.6%) dysfunction at time of transplantation. Patients with ADPKD had the most favorable post-transplantation survival (median 18.7 years vs. 12.0 for diabetic nephropathy [DN] and 13.8 years for nondiabetic non-ADPKD [NDNA]; P < 0.01) and the most favorable MACE-free survival rate (hazard ratio = 0.51, P < 0.001). Patients with ADPKD had worsening of their valvular function and an increase in the sinus of Valsalva diameter post-transplantation (38.2 vs. 39.9 mm, P < 0.01). Conclusion ADPKD transplant recipients have the most favorable cardiac profile pretransplantation with better patient survival and MACE-free survival rates but worsening valvular function and increasing sinus of Valsalva diameter, as compared with patients with other kidney diseases.
Collapse
Affiliation(s)
- Maroun Chedid
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Hasan-Daniel Kaidbay
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Lebanese American University, Gilbert and Rose-Mary Chagoury school of medicine, Byblos, Lebanon
| | - Stijn Wigerinck
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yaman Mkhaimer
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Byron Smith
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Dalia Zubidat
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Imranjot Sekhon
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Reddy Prajwal
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Parikshit Duriseti
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Naim Issa
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| | - Ziad M. Zoghby
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Christian Hanna
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pediatric Nephrology and Hypertension, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah R. Senum
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of biochemistry and molecular biology, Mayo Clinic, Rochester, Minnesota, USA
| | - LaTonya J. Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Vuyisile T. Nkomo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Fouad T. Chebib
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
36
|
Agborbesong E, Li LX, Li L, Li X. Molecular Mechanisms of Epigenetic Regulation, Inflammation, and Cell Death in ADPKD. Front Mol Biosci 2022; 9:922428. [PMID: 35847973 PMCID: PMC9277309 DOI: 10.3389/fmolb.2022.922428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder, which is caused by mutations in the PKD1 and PKD2 genes, characterizing by progressive growth of multiple cysts in the kidneys, eventually leading to end-stage kidney disease (ESKD) and requiring renal replacement therapy. In addition, studies indicate that disease progression is as a result of a combination of factors. Understanding the molecular mechanisms, therefore, should facilitate the development of precise therapeutic strategies for ADPKD treatment. The roles of epigenetic modulation, interstitial inflammation, and regulated cell death have recently become the focuses in ADPKD. Different epigenetic regulators, and the presence of inflammatory markers detectable even before cyst growth, have been linked to cyst progression. Moreover, the infiltration of inflammatory cells, such as macrophages and T cells, have been associated with cyst growth and deteriorating renal function in humans and PKD animal models. There is evidence supporting a direct role of the PKD gene mutations to the regulation of epigenetic mechanisms and inflammatory response in ADPKD. In addition, the role of regulated cell death, including apoptosis, autophagy and ferroptosis, have been investigated in ADPKD. However, there is no consensus whether cell death promotes or delays cyst growth in ADPKD. It is therefore necessary to develop an interactive picture between PKD gene mutations, the epigenome, inflammation, and cell death to understand why inherited PKD gene mutations in patients may result in the dysregulation of these processes that increase the progression of renal cyst formation.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Lu Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
37
|
Abou Heidar N, Chehab O, Morsi RZ, Elias J, El Mouhayyar C, Kanj A, Ajam M, Haykal A, Pahuja M, Dakik H, Levine D, Imran N, Abidov A. Association of autosomal dominant polycystic kidney disease with cardiovascular disease: a US-National Inpatient Perspective. Clin Exp Nephrol 2022; 26:659-668. [PMID: 35212882 DOI: 10.1007/s10157-022-02200-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/11/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Data on the epidemiology of cardiovascular diseases (CVD) in patients with autosomal dominant polycystic kidney disease (ADPKD) are limited. In this study, we assess the prevalence of CVD in patients with ADPKD and evaluate associations between these two entities. METHODS Using the National Inpatient Sample database, we identified 71,531 hospitalizations among adults aged ≥ 18 years with ADPKD, from 2006 to 2014 and collected relevant clinical data. RESULTS The prevalence of CVD in the study population was 42.6%. The most common CVD were ischemic heart diseases (19.3%), arrhythmias (14.2%), and heart failure (13.1%). The prevalence of CVD increased with the severity of renal dysfunction (RD). We found an increase in hospitalizations of patients with ADPKD and CVD over the years (ptrend < 0.01), irrespective of the degree of RD. CVD was the greatest independent predictor of mortality in these patients (OR: 3.23; 95% CI 2.38-4.38 [p < 0.001]). In a propensity matched model of hospitalizations of patients with CKD with and without ADPKD, there was a significant increase in the prevalence of atrial fibrillation/flutter (AF), pulmonary hypertension (PHN), non-ischemic cardiomyopathy (NICM), and hemorrhagic stroke among patients with ADPKD when compared to patients with similar degree of RD without ADPKD. CONCLUSIONS The prevalence of CVD is high among patients with ADPKD, and the most important risk factor associated with CVD is severity of RD. We found an increase in the trend of hospitalizations of patients with ADPKD associated with increased risk of AF, PHN, NICM, and hemorrhagic stroke. History of CVD is the strongest predictor of mortality among patients with ADPKD.
Collapse
Affiliation(s)
- Nassib Abou Heidar
- Division of Urology, Department of Surgery, American University of Beirut, Beirut, Lebanon
| | - Omar Chehab
- Department of Medicine, Detroit Medical Center, Wayne State University, 3990 John R., Detroit, MI, 48201, USA.
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rami Z Morsi
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Joseph Elias
- Cardiology Division, Department of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Amjad Kanj
- Department of Medicine, Detroit Medical Center, Wayne State University, 3990 John R., Detroit, MI, 48201, USA
| | - Mustafa Ajam
- Department of Medicine, Detroit Medical Center, Wayne State University, 3990 John R., Detroit, MI, 48201, USA
| | - Abdallah Haykal
- Department of Medicine, Detroit Medical Center, Wayne State University, 3990 John R., Detroit, MI, 48201, USA
| | - Mohit Pahuja
- Department of Medicine, Detroit Medical Center, Wayne State University, 3990 John R., Detroit, MI, 48201, USA
| | - Habib Dakik
- Cardiology Division, Department of Medicine, American University of Beirut, Beirut, Lebanon
| | - Diane Levine
- Department of Medicine, Detroit Medical Center, Wayne State University, 3990 John R., Detroit, MI, 48201, USA
| | - Nashat Imran
- Department of Medicine, Detroit Medical Center, Wayne State University, 3990 John R., Detroit, MI, 48201, USA
- Nephrology Division, Department of Medicine, Detroit Medical Center, Wayne State University, Detroit, MI, USA
| | - Aiden Abidov
- Department of Medicine, Detroit Medical Center, Wayne State University, 3990 John R., Detroit, MI, 48201, USA
- Department of Medicine, Cardiology Section, John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
38
|
TRPP2 ion channels: The roles in various subcellular locations. Biochimie 2022; 201:116-127. [PMID: 35760123 DOI: 10.1016/j.biochi.2022.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
TRPP2 (PC2, PKD2 or Polycytin-2), encoded by PKD2 gene, belongs to the nonselective cation channel TRP family. Recently, the three-dimensional structure of TRPP2 was constructed. TRPP2 mainly functions in three subcellular compartments: endoplasmic reticulum, plasma membrane and primary cilia. TRPP2 can act as a calcium-activated intracellular calcium release channel on the endoplasmic reticulum. TRPP2 also interacts with other Ca2+ release channels to regulate calcium release, like IP3R and RyR2. TRPP2 acts as an ion channel regulated by epidermal growth factor through activation of downstream factors in the plasma membrane. TRPP2 binding to TRPC1 in the plasma membrane or endoplasmic reticulum is associated with mechanosensitivity. In cilium, TRPP2 was found to combine with PKD1 and TRPV4 to form a complex related to mechanosensitivity. Because TRPP2 is involved in regulating intracellular ion concentration, TRPP2 mutations often lead to autosomal dominant polycystic kidney disease, which may also be associated with cardiovascular disease. In this paper, we review the molecular structure of TRPP2, the subcellular localization of TRPP2, the related functions and mechanisms of TRPP2 at different sites, and the diseases related to TRPP2.
Collapse
|
39
|
Priolo M, Mancini C, Pizzi S, Chiriatti L, Radio FC, Cordeddu V, Pintomalli L, Mammì C, Dallapiccola B, Tartaglia M. Complex Presentation of Hao-Fountain Syndrome Solved by Exome Sequencing Highlighting Co-Occurring Genomic Variants. Genes (Basel) 2022; 13:genes13050889. [PMID: 35627274 PMCID: PMC9141324 DOI: 10.3390/genes13050889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 01/05/2023] Open
Abstract
Objective: The co-occurrence of pathogenic variants has emerged as a relatively common finding underlying complex phenotypes. Here, we used whole-exome sequencing (WES) to solve an unclassified multisystem clinical presentation. Patients and Methods: A 20-year-old woman affected by moderate intellectual disability (ID), dysmorphic features, hypertrichosis, scoliosis, recurrent bronchitis, and pneumonia with bronchiectasis, colelithiasis, chronic severe constipation, and a family history suggestive of autosomal dominant recurrence of polycystic kidney disease was analyzed by WES to identify the genomic events underlying the condition. Results: Four co-occurring genomic events fully explaining the proband’s clinical features were identified. A de novo truncating USP7 variant was disclosed as the cause of Hao–Fountain syndrome, a disorder characterized by syndromic ID and distinctive behavior. Compound heterozygosity for a major cystic fibrosis-causing variant and the modulator allele, IVS8-5T, in CFTR explained the recurrent upper and lower respiratory way infections, bronchiectasis, cholelithiasis, and chronic constipation. Finally, a truncating PKD2 variant co-segregating with polycystic kidney disease in the family allowed presymptomatic disease diagnosis. Conclusions: The co-occurring variants in USP7 and CFTR variants explained the multisystem disorder of the patient. The comprehensive dissection of the phenotype and early diagnosis of autosomal dominant polycystic kidney disease allowed us to manage the CFTR-related disorder symptoms and monitor renal function and other complications associated with PKD2 haploinsufficiency, addressing proper care and surveillance.
Collapse
Affiliation(s)
- Manuela Priolo
- Unità di Genetica Medica, Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; (L.C.); (L.P.); (C.M.)
- Correspondence: ; Tel.: +39-09-6539-7319
| | - Cecilia Mancini
- Area di Ricerca Genetica e Malattie Rare, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (C.M.); (S.P.); (F.C.R.); (B.D.); (M.T.)
| | - Simone Pizzi
- Area di Ricerca Genetica e Malattie Rare, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (C.M.); (S.P.); (F.C.R.); (B.D.); (M.T.)
| | - Luigi Chiriatti
- Unità di Genetica Medica, Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; (L.C.); (L.P.); (C.M.)
| | - Francesca Clementina Radio
- Area di Ricerca Genetica e Malattie Rare, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (C.M.); (S.P.); (F.C.R.); (B.D.); (M.T.)
| | - Viviana Cordeddu
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Letizia Pintomalli
- Unità di Genetica Medica, Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; (L.C.); (L.P.); (C.M.)
| | - Corrado Mammì
- Unità di Genetica Medica, Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; (L.C.); (L.P.); (C.M.)
| | - Bruno Dallapiccola
- Area di Ricerca Genetica e Malattie Rare, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (C.M.); (S.P.); (F.C.R.); (B.D.); (M.T.)
| | - Marco Tartaglia
- Area di Ricerca Genetica e Malattie Rare, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (C.M.); (S.P.); (F.C.R.); (B.D.); (M.T.)
| |
Collapse
|
40
|
Miyamoto R, Sekine A, Fujimaru T, Suwabe T, Mizuno H, Hasegawa E, Yamanouchi M, Chiga M, Mori T, Sohara E, Uchida S, Sawa N, Ubara Y, Hoshino J. Echocardiographic Findings and Genotypes in Autosomal Dominant Polycystic Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:246-252. [PMID: 35702705 DOI: 10.1159/000520300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary cystic kidney disease and is well known to have extrarenal complications. Cardiovascular complications are of particular clinical relevance because of their morbidity and mortality; however, unclear is why they occur so frequently in patients with ADPKD and whether they are related to the genotypes. Methods We extracted and retrospectively analyzed clinical data on patients with ADPKD who underwent echocardiography and whose genotype was confirmed by genetic testing between April 2016 and December 2020. We used next-generation sequencing to compare cardiac function, structural data, and the presence of cardiac valvular disease in patients with 1 of 3 genotypes: PKD1, PKD2, and non-PKD1, 2. Results This retrospective study included 65 patients with ADPKD. Patients were divided into 3 groups: PKD1, n = 32; PKD2, n = 12; and non-PKD1, 2, n = 21. The prevalence of mitral regurgitation (MR) was significantly higher in the PKD1 group than in the PKD2 and non-PKD1, 2 group (46.9% vs. 8.3% vs. 19.0%, respectively; p = 0.02). In contrast, no significant difference was found for other cardiac valve complications. Conclusion This study found a significantly higher prevalence of MR in patients with the PKD1 genotype than in those with the PKD2 or non-PKD1, 2 genotypes. Physicians may need to perform echocardiography earlier and more frequently in patients with ADPKD and the PKD1 genotype and to control fluid volume and blood pressure more strictly in these patients to prevent future cardiac events.
Collapse
Affiliation(s)
| | - Akinari Sekine
- Nephrology Center, Toranomon Hospital, Tokyo, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Takuya Fujimaru
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuya Suwabe
- Nephrology Center, Toranomon Hospital, Tokyo, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | | | | | - Masayuki Yamanouchi
- Nephrology Center, Toranomon Hospital, Tokyo, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Motoko Chiga
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoki Sawa
- Nephrology Center, Toranomon Hospital, Tokyo, Japan
| | - Yoshifumi Ubara
- Nephrology Center, Toranomon Hospital, Tokyo, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Junichi Hoshino
- Nephrology Center, Toranomon Hospital, Tokyo, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| |
Collapse
|
41
|
Watanabe M, Umeyama K, Nakano K, Matsunari H, Fukuda T, Matsumoto K, Tajiri S, Yamanaka S, Hasegawa K, Okamoto K, Uchikura A, Takayanagi S, Nagaya M, Yokoo T, Nakauchi H, Nagashima H. Generation of heterozygous PKD1 mutant pigs exhibiting early-onset renal cyst formation. J Transl Med 2022; 102:560-569. [PMID: 34980882 PMCID: PMC9042704 DOI: 10.1038/s41374-021-00717-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/16/2021] [Accepted: 11/27/2021] [Indexed: 11/08/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, manifesting as the progressive development of fluid-filled renal cysts. In approximately half of all patients with ADPKD, end-stage renal disease results in decreased renal function. In this study, we used CRISPR-Cas9 and somatic cell cloning to produce pigs with the unique mutation c.152_153insG (PKD1insG/+). Pathological analysis of founder cloned animals and progeny revealed that PKD1insG/+ pigs developed many pathological conditions similar to those of patients with heterozygous mutations in PKD1. Pathological similarities included the formation of macroscopic renal cysts at the neonatal stage, number and cystogenic dynamics of the renal cysts formed, interstitial fibrosis of the renal tissue, and presence of a premature asymptomatic stage. Our findings demonstrate that PKD1insG/+ pigs recapitulate the characteristic symptoms of ADPKD.
Collapse
Affiliation(s)
- Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Toru Fukuda
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kei Matsumoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Susumu Tajiri
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shuichiro Yamanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Koki Hasegawa
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kazutoshi Okamoto
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Ayuko Uchikura
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Shuko Takayanagi
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
42
|
Steele C, You Z, Gitomer BY, Brosnahan GM, Abebe KZ, Braun WE, Chapman AB, Harris PC, Perrone RD, Steinman TI, Torres VE, Yu AS, Chonchol M, Nowak KL. PKD1 Compared With PK D2 Genotype and Cardiac Hospitalizations in the Halt Progression of Polycystic Kidney Disease Studies. Kidney Int Rep 2022; 7:117-120. [PMID: 35005320 PMCID: PMC8720657 DOI: 10.1016/j.ekir.2021.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Cortney Steele
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zhiying You
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Berenice Y. Gitomer
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Godela M. Brosnahan
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kaleab Z. Abebe
- Division of General Internal Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - William E. Braun
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio, USA
| | - Arlene B. Chapman
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ronald D. Perrone
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Theodore I. Steinman
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alan S.L. Yu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristen L. Nowak
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
43
|
Li J, Peng Y, Zhang X, Yang C, Li X, He H, Li Q, Shu C. Endovascular repair of abdominal aortic or iliac artery pathologies in patients with autosomal dominant polycystic kidney disease. INT ANGIOL 2021; 41:41-47. [PMID: 34751540 DOI: 10.23736/s0392-9590.21.04692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND This study aims to evaluate the efficacy and safety of endovascular aneurysm repair (EVAR) of abdominal aortic or iliac artery pathologies in patients with autosomal dominant polycystic kidney disease (ADPKD). METHODS From January 2014 to December 2019, fifteen consecutive patients (13 men, mean age 69.3 years, range 56-82 years) with abdominal aortic or iliac artery pathologies coexisting with ADPKD underwent EVAR in our department. Their general data, perioperative results and follow-up outcomes were retrospectively reviewed and analyzed. RESULTS:Among the fifteen patients, eleven had abdominal aortic aneurysms, one had isolated abdominal aortic dissection and the other three had iliac artery aneurysms. Three patients had thoracic penetrating aortic ulcer and two had intracranial aneurysms as the comorbidities. All patients underwent EVAR with the aorto-iliac pathologies successfully excluded. The average operative time was 171±73 minutes and average contrast volume was 87±12mL. The average follow-up time was 38.4 months (range 6-60). Aorta-bi-iliac stent-grafts were deployed in fourteen patients, while one patient received tubular stent-graft. Two patients underwent simultaneous TEVAR and EVAR, and One underwent EVAR 3 months after TEVAR. One patient was found to have a hematoma at the site of femoral access 3 days after EVAR. One patient was found to have a Type Ib endoleak 5 months after EVAR, and he recovered well with a secondary endovascular intervention. Contrast-induced nephropathy was observed in two patients (13%) post EVAR. Another patient developed renal failure 20 months after EVAR, and was treated with regular hemodialysis. All other patients did not have any reported significant deterioration of renal function during follow-up. No other adverse events, such as death, paraplegia, aneurysm rupture, or open surgery conversion occurred during operation and follow-up. CONCLUSIONS For patients with abdominal aortic or iliac artery diseases coexisting with ADPKD, EVAR had satisfactory mid-term outcomes, without significantly exacerbating the decline of renal function. However, patients with ADPKD might have multiple vascular lesions, especially intracranial aneurysms, which should be paid enough attention in clinical practice.
Collapse
Affiliation(s)
- Jiehua Li
- Department of Vascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Vascular Disease Institute, Central South University, Changsha, Hunan, China
| | - Yuan Peng
- Department of Vascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Vascular Disease Institute, Central South University, Changsha, Hunan, China
| | - Xiaolong Zhang
- Department of Vascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Vascular Disease Institute, Central South University, Changsha, Hunan, China
| | - Chenzi Yang
- Department of Vascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Vascular Disease Institute, Central South University, Changsha, Hunan, China
| | - Xin Li
- Department of Vascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Vascular Disease Institute, Central South University, Changsha, Hunan, China
| | - Hao He
- Department of Vascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Vascular Disease Institute, Central South University, Changsha, Hunan, China
| | - Quanming Li
- Department of Vascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Vascular Disease Institute, Central South University, Changsha, Hunan, China
| | - Chang Shu
- Department of Vascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China - .,Vascular Disease Institute, Central South University, Changsha, Hunan, China.,Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Sagar PS, Saravanabavan S, Munt A, Wong ATY, Rangan GK. Effect of Early and Delayed Commencement of Paricalcitol in Combination with Enalapril on the Progression of Experimental Polycystic Kidney Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8110144. [PMID: 34821697 PMCID: PMC8621425 DOI: 10.3390/jcdd8110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Vitamin D secosteroids are intranuclear regulators of cellular growth and suppress the renin-angiotensin system. The aim of this study was to test the hypothesis that the vitamin D receptor agonist, paricalcitol (PC), either alone or with enalapril (E) (an angiotensin-converting enzyme inhibitor), reduces the progression of polycystic kidney disease. Preventative treatment of Lewis polycystic kidney (LPK) and Lewis control rats with PC (0.2 μg/kg i.p. 5 days/week) or vehicle from postnatal weeks 3 to 10 did not alter kidney enlargement. To evaluate the efficacy in established disease, LPK rats received either PC (0.8 μg/kg i.p; 3 days/week), vehicle, E (50 mg/L in water) or the combination of PC + E from weeks 10 to 20. In established disease, PC also did not alter the progression of kidney enlargement, kidney cyst growth or decline in renal function in LPK rats. Moreover, the higher dose of PC was associated with increased serum calcium and weight loss. However, in established disease, the combination of PC + E reduced systolic blood pressure and heart-body weight ratio compared to vehicle and E alone (p < 0.05). In conclusion, the combination of PC + E attenuated cardiovascular disease but caused hypercalcaemia and did not alter kidney cyst growth in LPK rats.
Collapse
Affiliation(s)
- Priyanka S. Sagar
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; (P.S.S.); (S.S.); (A.M.); (A.T.Y.W.)
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW 2145, Australia
| | - Sayanthooran Saravanabavan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; (P.S.S.); (S.S.); (A.M.); (A.T.Y.W.)
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW 2145, Australia
| | - Alexandra Munt
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; (P.S.S.); (S.S.); (A.M.); (A.T.Y.W.)
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW 2145, Australia
| | - Annette T. Y. Wong
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; (P.S.S.); (S.S.); (A.M.); (A.T.Y.W.)
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW 2145, Australia
| | - Gopala K. Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; (P.S.S.); (S.S.); (A.M.); (A.T.Y.W.)
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
45
|
Kramers BJ, Koorevaar IW, De Boer R, Hoorn EJ, Pena MJ, Gansevoort RT, Meijer E. Thiazide diuretics and the rate of disease progression in autosomal dominant polycystic kidney disease: an observational study. Nephrol Dial Transplant 2021; 36:1828-1836. [PMID: 33150452 PMCID: PMC8476080 DOI: 10.1093/ndt/gfaa150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In autosomal dominant polycystic kidney disease (ADPKD), hypertension is prevalent and cardiovascular events are the main cause of death. Thiazide diuretics are often prescribed as second-line antihypertensives, on top of renin-angiotensin-aldosterone system (RAAS) blockade. There is a concern, however, that diuretics may increase vasopressin concentration and RAAS activity, thereby worsening disease progression in ADPKD. We aimed to investigate the validity of these suggestions. METHODS We analysed an observational cohort of 533 ADPKD patients. Plasma copeptin (surrogate for vasopressin), aldosterone and renin were measured by enzyme-linked immunosorbent assay and radioimmunoassay, respectively. Linear mixed models were used to assess the association of thiazide use with estimated glomerular filtration rate (eGFR) decline and Cox proportional hazards models for the association with the composite kidney endpoint of incident end-stage kidney disease, 40% eGFR decline or death. RESULTS A total of 23% of participants (n = 125) used thiazide diuretics at baseline. Compared with non-users, thiazide users were older, a larger proportion was male, they had lower eGFRs and similar blood pressure under more antihypertensives. Plasma copeptin was higher, but this difference disappeared after adjustment for age and sex. Both renin and aldosterone were higher in thiazide users. There was no difference between thiazide users and non-users in the rate of eGFR decline {difference -0.35 mL/min/1.73 m2 per year [95% confidence interval (CI) -0.83 to -0.14], P = 0.2} during 3.9 years of follow-up (interquartile range 2.5-4.9). This did not change after adjustment for potential confounders [difference final model: 0.08 mL/min/1.73 m2 per year [95% CI -0.46 to -0.62], P = 0.8). In the crude model, thiazide use was associated with a higher incidence of the composite kidney endpoint [hazard ratio (HR) 1.53 (95% CI 1.05-2.23), P = 0.03]. However, this association lost significance after adjustment for age and sex and remained unassociated after adjustment for additional confounders [final model: HR 0.80 (95% CI 0.50-1.29), P = 0.4]. CONCLUSIONS These data do not show that thiazide diuretics have a detrimental effect on the rate of disease progression in ADPKD and suggest that these drugs can be prescribed as second-line antihypertensives.
Collapse
Affiliation(s)
- Bart J Kramers
- Departments of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Iris W Koorevaar
- Departments of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf De Boer
- Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michelle J Pena
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University Hospital Groningen, Groningen, The Netherlands
| | - Ron T Gansevoort
- Departments of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Esther Meijer
- Departments of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
46
|
Raj P, Louis XL, Yu L, Siow YL, Suh M, Aukema HM, Netticadan T. Saskatoon berry supplementation prevents cardiac remodeling without improving renal disease in an animal model of reno-cardiac syndrome. J Food Biochem 2021; 45:e13893. [PMID: 34459008 DOI: 10.1111/jfbc.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022]
Abstract
Saskatoon berry (SKB) may have the potential to counter reno-cardiac syndrome owing to its antioxidant capacity. Here, we investigated the renal and cardiovascular effects of SKB-enriched diet in a rat model of reno-cardiac disease. Two groups of wild-type rats (+/+) and two groups of Hannover Sprague-Dawley (Han:SPRD-Cy/+) rats were given either regular diet or SKB diet (10% w/w total diet) for 8 weeks. Body weight, kidney weight, kidney water content, and left ventricle (LV) weight were measured. Blood pressure (BP) was measured by the tail-cuff method. Echocardiography was performed to assess cardiac structure and function. Serum creatinine and malondialdehyde (MDA) were also measured. Han:SPRD-Cy/+ rats had significantly higher kidney weight, kidney water content, LV weight, BP, and creatinine compared with wild-type rats (+/+). The SKB diet supplementation did not reduce kidney weight, kidney water content, BP, and LV weight in Han:SPRD-Cy/+ rats. The SKB diet also resulted in higher systolic BP in Han:SPRD-Cy/+rats. Han:SPRD-Cy/+rats showed cardiac structural remodeling (higher LV wall thickness) without any cardiac functional abnormalities. Han:SPRD-Cy/+ rats also had significantly higher creatinine whereas the concentration of MDA was not different. The SKB diet supplementation reduced cardiac remodeling and the concentration of MDA without altering the concentration of creatinine in Han:SPRD-Cy/+ rats. In conclusion, Han:SPRD-Cy/+ rats developed significant renal disease, high BP, and cardiac remodeling by 8 weeks without cardiac functional impairment. The SKB diet may be useful in preventing cardiac remodeling and oxidative stress in Han:SPRD-Cy/+rats. PRACTICAL APPLICATIONS: Saskatoon berry (SKB) is widely consumed as fresh fruit or processed fruit items and has significant commercial value. It may offer health benefits due to the presence of bioactives such as anthocyanins. SKB has very good culinary flavors, and it is an economically viable fruit crop in many parts of the world. The disease-modifying benefits of SKB are mainly ascribed to the antioxidant nature of its bioactive content. Polycystic kidney disease is a serious condition that can lead to renal and cardiac abnormalities. Here, we showed that SKB supplementation was able to mitigate cardiac remodeling and lower the level of a marker of oxidative stress in an animal model of reno-cardiac syndrome. Our study suggests that SKB possesses beneficial cardioprotective properties. Further evidence from human studies may help in increasing the consumption of SKB as a functional food.
Collapse
Affiliation(s)
- Pema Raj
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Agriculture and Agri-Food Canada, Winnipeg, MB, Canada
| | - Xavier L Louis
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Richardson Center for Functional Food and Nutraceuticals, Winnipeg, MB, Canada
| | - Liping Yu
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB, Canada.,Agriculture and Agri-Food Canada, Winnipeg, MB, Canada
| | - Yaw L Siow
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Agriculture and Agri-Food Canada, Winnipeg, MB, Canada
| | - Miyoung Suh
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB, Canada.,Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Richardson Center for Functional Food and Nutraceuticals, Winnipeg, MB, Canada
| | - Harold M Aukema
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB, Canada.,Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Richardson Center for Functional Food and Nutraceuticals, Winnipeg, MB, Canada
| | - Thomas Netticadan
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Agriculture and Agri-Food Canada, Winnipeg, MB, Canada
| |
Collapse
|
47
|
Ding H, Li LX, Harris PC, Yang J, Li X. Extracellular vesicles and exosomes generated from cystic renal epithelial cells promote cyst growth in autosomal dominant polycystic kidney disease. Nat Commun 2021; 12:4548. [PMID: 34315885 PMCID: PMC8316472 DOI: 10.1038/s41467-021-24799-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/08/2021] [Indexed: 01/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by germline mutations of PKD1 or PKD2 on one allele and a somatic mutation inactivating the remaining normal allele. However, if and how null ADPKD gene renal epithelial cells affect the biology and function of neighboring cells, including heterozygous renal epithelial cells, fibroblasts and macrophages during cyst initiation and expansion remains unknown. Here we address this question with a "cystic extracellular vesicles/exosomes theory". We show that cystic cell derived extracellular vesicles and urinary exosomes derived from ADPKD patients promote cyst growth in Pkd1 mutant kidneys and in 3D cultures. This is achieved by: 1) downregulation of Pkd1 gene expression and upregulation of specific miRNAs, resulting in the activation of PKD associated signaling pathways in recipient renal epithelial cells and tissues; 2) the activation of fibroblasts; and 3) the induction of cytokine expression and the recruitment of macrophages to increase renal inflammation in cystic kidneys. Inhibition of exosome biogenesis/release with GW4869 significantly delays cyst growth in aggressive and milder ADPKD mouse models, suggesting that targeting exosome secretion has therapeutic potential for ADPKD.
Collapse
Affiliation(s)
- Hao Ding
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA. .,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
48
|
Gul CB, Yildiz A, Sag S, Oruc A, Ersoy A, Gullulu S. The Effect of Smoking on Endothelial Dysfunction in Autosomal Dominant Polycystic Kidney Disease Patients with Preserved Renal Function. Ren Fail 2021; 43:1124-1129. [PMID: 34256663 PMCID: PMC8279153 DOI: 10.1080/0886022x.2021.1949348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background In autosomal dominant polycystic kidney disease (ADPKD), endothelial dysfunction (ED) is common and occurs much earlier than kidney function impairment. The impact of smoking on ED in ADPKD patients has not been previously studied. The aim of this study was to investigate the potential contribution of smoking habits to ED and subclinical atherosclerosis in these patients. Methods This case-control study included 54 ADPKD patients with preserved renal function and 45 healthy control subjects. ED was assessed using ischemia-induced forearm flow-mediated dilatation (FMD). Carotid intima-media thickness (CIMT) was measured from 10 mm proximal to the right common carotid artery. Clinical demographic characteristics and laboratory data were recorded for the patients and control group. Regression analysis was used to determine independent associations of ED and CIMT. Results FMD was significantly lower in the ADPKD patients (19.5 ± 5.63 vs. 16.56 ± 6.41, p = .018). Compared with nonsmoker ADPKD patients, smoker patients had significantly lower FMD values (18.19 ± 6.52 vs. 13.79 ± 5.27, p = .013). In multiple regression analysis, age (β = –0.294, 95% CI: −0.392: −1.96, p = .001) for FMD and smoking (β = 1.328, 95% CI: 0.251, 2.404, p = .017) for CIMT were independent predictors. Conclusions Patients with ADPKD had more impaired endothelial function and subclinical atherosclerosis compared with control subjects. Smoking may increase the risk of subclinical atherosclerosis in ADPKD patients.
Collapse
Affiliation(s)
- Cuma Bulent Gul
- Department of Nephrology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Abdulmecit Yildiz
- Department of Nephrology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Saim Sag
- Department of Cardiology, Acibadem University Faculty of Medicine, Istanbul, Turkey
| | - Aysegul Oruc
- Department of Nephrology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Alparslan Ersoy
- Department of Nephrology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Sumeyye Gullulu
- Department of Cardiology, Uludag University Faculty of Medicine, Bursa, Turkey
| |
Collapse
|
49
|
Li S, Hildreth CM, Rahman AA, Barton SA, Wyse BF, Lim CK, Pilowsky PM, Phillips JK. Renal denervation does not affect hypertension or the renin-angiotensin system in a rodent model of juvenile-onset polycystic kidney disease: clinical implications. Sci Rep 2021; 11:14286. [PMID: 34253766 PMCID: PMC8275789 DOI: 10.1038/s41598-021-93575-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
We examined the effect of total and afferent renal denervation (RDN) on hypertension and the renin-angiotensin system (RAS) in a rodent model of juvenile-onset polycystic kidney disease (PKD). Lewis Polycystic Kidney (LPK) and control rats received total, afferent or sham RDN by periaxonal application of phenol, capsaicin or normal saline, respectively, and were monitored for 4-weeks. Afferent RDN did not affect systolic blood pressure (SBP) determined by radiotelemetry in either strain (n = 19) while total RDN significantly reduced SBP in Lewis rats 4-weeks post-denervation (total vs. sham, 122 ± 1 vs. 130 ± 2 mmHg, P = 0.002, n = 25). Plasma and kidney renin content determined by radioimmunoassay were significantly lower in LPK vs. Lewis (plasma: 278.2 ± 6.7 vs. 376.5 ± 11.9 ng Ang I/ml/h; kidney: 260.1 ± 6.3 vs. 753.2 ± 37.9 ng Ang I/mg/h, P < 0.001, n = 26). These parameters were not affected by RDN. Intrarenal mRNA expression levels of renin, angiotensinogen, angiotensin-converting enzyme (ACE)2, and angiotensin II receptor type 1a were significantly lower, whereas ACE1 expression was significantly higher in the LPK vs. Lewis (all P < 0.05, n = 26). This pattern of intrarenal RAS expression was not changed by RDN. In conclusion, RDN does not affect hypertension or the RAS in the LPK model and indicates RDN might not be a suitable antihypertensive strategy for individuals with juvenile-onset PKD.
Collapse
Affiliation(s)
- Sheran Li
- Department of Biomedical Sciences, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Cara M Hildreth
- Department of Biomedical Sciences, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ahmed A Rahman
- Department of Biomedical Sciences, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sean A Barton
- Department of Biomedical Sciences, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Benjamin F Wyse
- Department of Biomedical Sciences, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Chai K Lim
- Department of Biomedical Sciences, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Paul M Pilowsky
- Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Jacqueline K Phillips
- Department of Biomedical Sciences, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
50
|
Lu CL, Lin CY, Lin LY, Chen PC, Zheng CM, Lu KC, Yeih DF. Primary prevention of cardiovascular disease events with renin-angiotensin system blockade in autosomal dominant polycystic kidney disease dialysis patients: A nationwide cohort study. Medicine (Baltimore) 2021; 100:e26559. [PMID: 34190195 PMCID: PMC8257834 DOI: 10.1097/md.0000000000026559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 06/12/2021] [Indexed: 01/04/2023] Open
Abstract
Although renin-angiotensin system (RAS) blockade has been shown to reduce cardiovascular disease (CVD) in the general population and high-risk subjects, their protective effect in autosomal dominant polycystic kidney disease (ADPKD) patients under dialysis was still unknown. By using the database from 1995 to 2008 Taiwan National Health Insurance Research Database (Registry for Catastrophic Illnesses), we included 387 ADPKD patients who received dialysis therapy, aged ≥ 18 year-old, and with no evidence of CVD events in 1997 and 1998. We utilized Cox proportional hazards regression analysis and propensity score matching to evaluate adjusted hazard ratios for all-cause mortality and CVD events in users (n=231) and nonusers (n = 156) of an angiotensin-converting enzymes inhibitor (ACEI) / angiotensin II receptor blocker (ARB) during the 12 years of follow-up. All study subjects were followed up for more than 3 months. There was no significant difference between the ACEI/ARB treatment group and the control group in incident CVD events except ischemic stroke and transient ischemic accident (TIA). The results remain similar between groups before and after propensity score matching. Moreover, there was no significant difference in outcomes between ACEI/ARB treatment over 50% of follow-up period and without ACEI/ARB treatment after propensity score matching. This nationwide cohort study failed to prove the protective effects of long-term ACEI or ARB on incident CVD events among APKD dialysis patients. Further larger scale, multicenter and randomized control trials are warranted to show the causal association.
Collapse
Affiliation(s)
- Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital
- School of Medicine, College of Medicine, Fu Jen Catholic University
| | - Chien-Yu Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University
- Division of Nephrology, Department of Internal Medicine, En Chu Kong Hospital
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu
| | - Lian-Yu Lin
- Division of Cardiology, Department of Medicine, National Taiwan University Hospital
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
| | - Dong-Feng Yeih
- School of Medicine, College of Medicine, Fu Jen Catholic University
- Division of Cardiology, Department of Medicine, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| |
Collapse
|