1
|
Tan X, Zhao X, Hu Z, Jiang DS, Ma Z, Sun L, Wang J, Huang X, Xie B, Wu M, Ma M, Wang CY, Zhang S, Chen L, Chen Z, Chen G, Lan P. Targeting Setdb1 in T cells induces transplant tolerance without compromising antitumor immunity. Nat Commun 2025; 16:4534. [PMID: 40374612 PMCID: PMC12081883 DOI: 10.1038/s41467-025-58841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/01/2025] [Indexed: 05/17/2025] Open
Abstract
Suppressing immune responses promotes allograft survival but also favours tumour progression and recurrence. Selectively suppressing allograft rejection while maintaining or even enhancing antitumor immunity is challenging. Here, we show loss of allograft-related rejection in mice deficient in Setdb1, an H3K9 methyltransferase, while antitumor immunity remains intact. RNA sequencing shows that Setdb1-deficiency does not affect T-cell activation or cytokine production but induces an increase in Treg-cell-associated gene expression. Depletion of Treg cells impairs graft acceptance in Setdb1-deficient mice, indicating that the Treg cells promote allograft survival. Surprisingly, Treg cell-specific Setdb1 deficiency does not prolong allograft survival, suggesting that Setdb1 may function prior to Foxp3 induction. Using single-cell RNA sequencing, we find that Setdb1 deficiency induces a new Treg population in the thymus. This subset of Treg cells expresses less IL-1R2 and IL-18R1. Mechanistically, during Treg cell induction, Setdb1 is recruited by transcription factor ATF and altered histone methylation. Our data thus define Setdb1 in T cells as a hub for Treg cell differentiation, in the absence of which suppressing allograft rejection is uncoupled from maintaining antitumor immunity.
Collapse
Affiliation(s)
- Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030, Wuhan, People's Republic of China
| | - Xiangli Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Zunsong Hu
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91016, USA
| | - Ding-Sheng Jiang
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030, Wuhan, People's Republic of China
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Zhibo Ma
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Lingjuan Sun
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Jingzeng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Xia Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030, Wuhan, People's Republic of China
| | - Bin Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030, Wuhan, People's Republic of China
| | - Mi Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Min Ma
- School of Medicine, South China University of Technology, 510000, Guangzhou, People's Republic of China
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Shu Zhang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Li Chen
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030, Wuhan, People's Republic of China.
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030, Wuhan, People's Republic of China.
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030, Wuhan, People's Republic of China.
| |
Collapse
|
2
|
Bayanova M, Bolatov A, Malik D, Zhenissova A, Abdikadirova A, Sapargaliyeva M, Nazarova L, Myrzakhmetova G, Novikova S, Turganbekova A, Pya Y. Whole-Exome Sequencing Followed by dPCR-Based Personalized Genetic Approach in Solid Organ Transplantation: A Study Protocol and Preliminary Results. Methods Protoc 2025; 8:27. [PMID: 40126245 PMCID: PMC11932258 DOI: 10.3390/mps8020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Genetic profiling and molecular biology methods have made it possible to study the etiology of the end-stage organ disease that led to transplantation, the genetic factors of compatibility and tolerance of the transplant, and the pharmacogenetics of immunosuppressive drugs and allowed for the development of monitoring methods for the early assessment of allograft rejection. This study aims to report the design and baseline characteristics of an integrated personalized genetic approach in solid organ transplantation, including whole-exome sequencing (WES) and the monitoring of dd-cfDNA by dPCR. Preliminary results reported female recipients with male donors undergoing two pediatric and five adult kidney and three heart transplantations. WES revealed a pathogenic mutation in RBM20 and VUS in TTN and PKP2 in heart recipients, while kidney donors presented mutations in UMOD and APOL1 associated with autosomal-dominant kidney diseases, highlighting the risks requiring the long-term monitoring of recipients, donors, and their family members. %dd-cfDNA levels were generally stable but elevated in cadaveric kidney recipient and one pediatric patient with infectious complications and genetic variants in the ABCB1 and ABCC2 genes. These findings highlight the potential of combining genetic and molecular biomarker-based approaches to improve donor-recipient matching, predict complications, and personalize post-transplant care, paving the way for precision medicine in transplantation.
Collapse
Affiliation(s)
- Mirgul Bayanova
- Genetic Unit, Department of Laboratory Medicine, Pathology and Genetics, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (M.B.); (D.M.); (A.Z.); (A.A.); (M.S.); (L.N.)
| | - Aidos Bolatov
- Genetic Unit, Department of Laboratory Medicine, Pathology and Genetics, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (M.B.); (D.M.); (A.Z.); (A.A.); (M.S.); (L.N.)
- School of Medicine, Shenzhen University, Shenzhen 518060, China
- School of Medicine, Astana Medical University, Astana 010000, Kazakhstan
| | - Dias Malik
- Genetic Unit, Department of Laboratory Medicine, Pathology and Genetics, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (M.B.); (D.M.); (A.Z.); (A.A.); (M.S.); (L.N.)
| | - Aida Zhenissova
- Genetic Unit, Department of Laboratory Medicine, Pathology and Genetics, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (M.B.); (D.M.); (A.Z.); (A.A.); (M.S.); (L.N.)
| | - Aizhan Abdikadirova
- Genetic Unit, Department of Laboratory Medicine, Pathology and Genetics, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (M.B.); (D.M.); (A.Z.); (A.A.); (M.S.); (L.N.)
| | - Malika Sapargaliyeva
- Genetic Unit, Department of Laboratory Medicine, Pathology and Genetics, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (M.B.); (D.M.); (A.Z.); (A.A.); (M.S.); (L.N.)
| | - Lyazzat Nazarova
- Genetic Unit, Department of Laboratory Medicine, Pathology and Genetics, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (M.B.); (D.M.); (A.Z.); (A.A.); (M.S.); (L.N.)
| | - Gulzhan Myrzakhmetova
- Clinical Academic Department of Cardiology, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan;
| | - Svetlana Novikova
- Clinical Academic Department of Cardiac Surgery, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (S.N.); (Y.P.)
| | - Aida Turganbekova
- HLA-Laboratory, Scientific-Production Center of Transfusiology, Astana 010000, Kazakhstan;
| | - Yuriy Pya
- Clinical Academic Department of Cardiac Surgery, “University Medical Center” Corporate Fund, Astana 010000, Kazakhstan; (S.N.); (Y.P.)
| |
Collapse
|
3
|
Belardi R, Pacifici F, Baldetti M, Velocci S, Minieri M, Pieri M, Campione E, Della-Morte D, Tisone G, Anselmo A, Novelli G, Bernardini S, Terrinoni A. Trends in Precision Medicine and Pharmacogenetics as an Adjuvant in Establishing a Correct Immunosuppressive Therapy for Kidney Transplant: An Up-to-Date Historical Overview. Int J Mol Sci 2025; 26:1960. [PMID: 40076585 PMCID: PMC11900248 DOI: 10.3390/ijms26051960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Kidney transplantation is currently the treatment of choice for patients with end-stage kidney diseases. Although significant advancements in kidney transplantation have been achieved over the past decades, the host's immune response remains the primary challenge, often leading to potential graft rejection. Effective management of the immune response is essential to ensure the long-term success of kidney transplantation. To address this issue, immunosuppressives have been developed and are now fully integrated into the clinical management of transplant recipients. However, the considerable inter- and intra-patient variability in pharmacokinetics (PK) and pharmacodynamics (PD) of these drugs represents the primary cause of graft rejection. This variability is primarily attributed to the polymorphic nature (genetic heterogeneity) of genes encoding xenobiotic-metabolizing enzymes, transport proteins, and, in some cases, drug targets. These genetic differences can influence drug metabolism and distribution, leading to either toxicity or reduced efficacy. The main objective of the present review is to report an historical overview of the pharmacogenetics of immunosuppressants, shedding light on the most recent findings and also suggesting how relevant is the research and investment in developing validated NGS-based commercial panels for pharmacogenetic profiling in kidney transplant recipients. These advancements will enable the implementation of precision medicine, optimizing immunosuppressive therapies to improve graft survival and kidney transplanted patient outcomes.
Collapse
Affiliation(s)
- Riccardo Belardi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Francesca Pacifici
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (F.P.); (D.D.-M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Matteo Baldetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Silvia Velocci
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Marilena Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Elena Campione
- Dermatology Unit, Policlinico Tor Vergata, System Medicine Department, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - David Della-Morte
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (F.P.); (D.D.-M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Giuseppe Tisone
- Department of Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.T.)
| | - Alessandro Anselmo
- Department of Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.T.)
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| |
Collapse
|
4
|
Lloberas N, Vidal-Alabró A, Colom H. Customizing Tacrolimus Dosing in Kidney Transplantation: Focus on Pharmacogenetics. Ther Drug Monit 2025; 47:141-151. [PMID: 39774592 DOI: 10.1097/ftd.0000000000001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/22/2024] [Indexed: 01/11/2025]
Abstract
ABSTRACT Different polymorphisms in genes encoding metabolizing enzymes and drug transporters have been associated with tacrolimus pharmacokinetics. In particular, studies on CYP3A4 and CYP3A5, and their combined cluster have demonstrated their significance in adjusting tacrolimus dosing to minimize under- and overexposure thereby increasing the proportion of patients who achieve tacrolimus therapeutic target. Many factors influence the pharmacokinetics of tacrolimus, contributing to inter-patient variability affecting individual dosing requirements. On the other hand, the growing use of population pharmacokinetic models in solid organ transplantation, including different tacrolimus formulations, has facilitated the integration of pharmacogenetic data and other variables into algorithms to easier implement the personalized dose adjustment in transplant centers. The future of personalized medicine in transplantation lies in implementing these models in clinical practice, with pharmacogenetics as a key factor to account for the high inter-patient variability in tacrolimus exposure. To date, three clinical trials have validated the clinical application of these approaches. The aim of this review is to provide an overview of the current studies regarding the different population pharmacokinetic including pharmacogenetics and those translated to the clinical practice for individualizing tacrolimus dose adjustment in kidney transplantation.
Collapse
Affiliation(s)
- Nuria Lloberas
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL); and
| | - Anna Vidal-Alabró
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL); and
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Zheng X, Qin S, Zhong M, Xu Q, Huai C, Qiu X. PPP3R1 Promoter Polymorphism (Allelic Variation) Affects Tacrolimus Treatment Efficacy by Modulating E2F6 Binding Affinity. Biomedicines 2024; 12:2896. [PMID: 39767802 PMCID: PMC11727355 DOI: 10.3390/biomedicines12122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Tacrolimus is widely used as a first-line immunosuppressant in transplant immunology; however, its clinical application is constrained by the narrow therapeutic index and considerable interindividual variability. In this study, we identified the potential regulatory role of a novel PPP3R1 promoter polymorphism, rs4519508 C > T, in the tacrolimus pharmacodynamic pathway. METHODS Dual-luciferase reporter assays and bioinformatic analysis were applied to assess the impact of allelic variation. Electrophoretic mobility shift assays (EMSA) validated the altered binding of transcription factors. Quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and Western blots were used to determine the immunosuppressive effect of tacrolimus. RESULTS Assays revealed that rs4519508 C > T markedly enhanced PPP3R1 promoter activity. EMSA assays validated the binding of E2F6 to rs4519508 C (wild-type) and the binding was significantly weaker to the rs4519508 T (mutant-type). The overexpression of E2F6 significantly reduced the transcriptional activity and expression of PPP3R1 when the rs4519508 site presented as major C allele, an effect that was not observed with the rs4519508 T allele. Furthermore, the downregulation of E2F6 raises the level of downstream immune cytokines inhibited by TAC. CONCLUSIONS This study proposed that E2F6 suppresses the expression of PPP3R1, while rs4519508 C > T impairs the binding of E2F6, and thus elevates the level of PPP3R1, so that the inhibition of the downstream immune cytokines by TAC is attenuated. Our findings reported the potential regulatory role of a novel polymorphism, PPP3R1 rs4519508 C > T, which may serve as pharmacodynamic-associated pharmacogenetic biomarker indicating individual response variability of tacrolimus, and thus aid the clinical management of transplant immunology.
Collapse
Affiliation(s)
- Xinyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; (X.Z.)
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 1954 Huashan Rd, Shanghai 200030, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; (X.Z.)
| | - Qinxia Xu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 1954 Huashan Rd, Shanghai 200030, China
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; (X.Z.)
| |
Collapse
|
6
|
Helanterä I, Markkinen S, Partanen J, Hyvärinen K. Novel Aspects of Immunogenetics and Post-Transplant Events in Kidney Transplantation. Transpl Int 2024; 37:13317. [PMID: 39703873 PMCID: PMC11655191 DOI: 10.3389/ti.2024.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
HLA typing and matching have been crucial in kidney transplantation, but methods for assessing tissue histocompatibility have advanced significantly. While serological-level HLA typing remains common, it captures only a small fraction of true HLA variation, and molecular matching is already replacing traditional HLA matching. Recent studies have expanded our understanding of genetic tissue compatibility beyond HLA loci. Candidate gene analyses and genome-wide association studies (GWAS) have identified genetic factors linked to post-transplant complications, though replication of these findings is challenging. An alternative approach involves genome-wide matching of genes or genetic variations. This method has shown promise in hematopoietic stem cell and kidney transplantation. For instance, homozygous gene deletions in LIMS1 or complement factor H (CFH) genes have been associated with acute rejection risk. This may be due to alloimmune responses against proteins absent in the patient but present in the graft, or due to the missing protein's function. Genetic studies in clinical medicine face challenges due to the interplay of genetic and environmental factors, necessitating large datasets for meaningful associations. International collaboration and large consortia, like iGeneTRAin, are essential for validating findings and advancing the field. This review highlights recent advancements in immunogenetics and tissue histocompatibility, emphasizing future research directions.
Collapse
Affiliation(s)
- Ilkka Helanterä
- Transplantation and Liver Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
7
|
Zhou L, Zhu JQ, Kou JT, Xu WL, Lyu SC, Du GS, Yang HW, Wang JF, Hu XP, Yu CZ, Yuan CH, Han DD, Sang CQ, Li B, Gao J, Qi HZ, Wang LM, Lyu L, Liu H, Wu JY, Lang R, He Q, Li XL. Chinese expert consensus on quantitatively monitoring and assessing immune cell function status and its clinical application (2024 edition). Hepatobiliary Pancreat Dis Int 2024; 23:551-558. [PMID: 39448347 DOI: 10.1016/j.hbpd.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Lin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ji-Qiao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jian-Tao Kou
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wen-Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shao-Cheng Lyu
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Guo-Sheng Du
- Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang 110010, China
| | - Hong-Wei Yang
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang 110010, China
| | - Jian-Feng Wang
- Department of Interventional Therapy, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiao-Peng Hu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Chun-Zhao Yu
- Department of General Surgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Chun-Hui Yuan
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Dong-Dong Han
- Liver Transplantation Department, China-Japan Friendship Hospital, Beijing 100029, China
| | - Cui-Qin Sang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Bo Li
- Department of Hepatobiliary Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100871, China
| | - Hai-Zhi Qi
- Department of General Surgery/Organ Transplant Center, The Second Xiangya Hospital of Central South Univercity, Changsha 410011, China
| | - Li-Ming Wang
- Organ Transplant Center, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Ling Lyu
- Department of General Surgery, Jiangsu Provincial People's Hospital, Nanjing 210029, China
| | - Hao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jian-Yong Wu
- Kidney Transplant Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ren Lang
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Qiang He
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xian-Liang Li
- Department of Hepatobiliary and Pancreatic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
8
|
Li X, Sabbatini D, Pegoraro E, Bello L, Clemens P, Guglieri M, van den Anker J, Damsker J, McCall J, Dang UJ, Hoffman EP, Jusko WJ. Assessing Pharmacogenomic loci Associated with the Pharmacokinetics of Vamorolone in Boys with Duchenne Muscular Dystrophy. J Clin Pharmacol 2024; 64:1130-1140. [PMID: 38682893 PMCID: PMC11357888 DOI: 10.1002/jcph.2446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024]
Abstract
Human genetic variation (polymorphisms) in genes coding proteins involved in the absorption, distribution, metabolism, and elimination (ADME) of drugs can have a strong effect on drug exposure and downstream efficacy and safety outcomes. Vamorolone, a dissociative steroidal anti-inflammatory drug for treating Duchenne muscular dystrophy (DMD), primarily undergoes oxidation by CYP3A4 and CYP3A5 and glucuronidation by UDP-glucuronosyltransferases. This work assesses the pharmacokinetics (PKs) of vamorolone and sources of interindividual variability (IIV) in 81 steroid-naïve boys with DMD aged 4 to <7 years old considering the genetic polymorphisms of CYPS3A4 (CYP3A4*22, CYP3A4*1B), CYP3A5 (CYP3A5*3), and UGT1A1 (UGT1A1*60) utilizing population PK modeling. A one-compartment model with zero-order absorption (Tk0, duration of absorption), linear clearance (CL/F), and volume (V/F) describes the plasma PK data for boys with DMD receiving a wide range of vamorolone doses (0.25-6 mg/kg/day). The typical CL/F and V/F values of vamorolone were 35.8 L/h and 119 L, with modest IIV. The population Tk0 was 3.14 h yielding an average zero-order absorption rate (k0) of 1.16 mg/kg/h with similar absorption kinetics across subjects at the same vamorolone dose (i.e., no IIV on Tk0). The covariate analysis showed that none of the genetic covariates had any significant impact on the PKs of vamorolone in boys with DMD. Thus, the PKs of vamorolone is very consistent in these young boys with DMD.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Paula Clemens
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michela Guglieri
- John Walton Centre for Neuromuscular Disease, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - John van den Anker
- Division of Clinical Pharmacology, Children’s National Hospital, Washington, DC, USA
- ReveraGen BioPharma, Rockville, MD, USA
| | | | | | - Utkarsh J. Dang
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Eric P. Hoffman
- ReveraGen BioPharma, Rockville, MD, USA
- Department of Pharmaceutical Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
9
|
Jiang J, Luan J. Effect of CYP3A5 Gene Polymorphisms on Tacrolimus Blood Concentrations and Adverse Events in Allogeneic Hematopoietic Stem Cell Transplant Patients. Transplant Proc 2024; 56:1678-1682. [PMID: 39147616 DOI: 10.1016/j.transproceed.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Tacrolimus is the core basic immunosuppressant after transplantation. Cytochrome P450 3A5 (CYP3A5) is the main enzyme involved in tacrolimus metabolism, and rs776746A>G is the most frequently studied polymorphism in the CYP3A5 gene. The aim of this study was to investigate the effect of CYP3A5 gene polymorphisms on tacrolimus blood concentrations and acute graft versus host disease (GVHD) in patients with allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS This study included adult patients who received allo-HSCT at the First Affiliated Hospital of Wannan Medical College from January 2021 to June 2022, and received postoperative treatment with tacrolimus. Tacrolimus blood levels were obtained by fully automatic chemiluminescence immunoassay analyzer. Polymerase chain reaction/restriction fragment length polymorphism was used to genotype for CYP3A5*3 allelic variants. RESULTS In a total of 50 transplant patients, 30 patients were detected with CYP3A5*3/*3 genotype, 15 patients with CYP3A5*1/*3 genotype, and 5 patients with CYP3A5*1/*1 genotype. The initial tacrolimus blood concentrations in allo-HSCT patients with CYP3A5*1/*1, *1/*3, and *3/*3 genes were 7.75, 8.61, and 10.19 ng/mL, respectively; The initial blood concentration/dose (C/D) ratios were 4.08, 4.42 and 5.66 ng/(mL·mg), respectively. The C/D ratios of allo-HSCT patients carrying CYP3A5*1/*1, *1/*3, and *3/*3 genes were 4.35 and 4.71 and 5.58, 4.19, 4.56 and 5.71 ng/(mL·mg) in the second and 3rd weeks after operation. These results showed that the blood concentration and C/D ratio of tacrolimus in patients with CYP3A5*3/*3 genotype were significantly higher than those in patients with CYP3A5*1/*3 or CYP3A5*1/*1 genotype. Moreover, the incidence of acute GVHD after allo-HSCT in patients with CYP3A5*1/*1 genotype was significantly higher than that in patients with CYP3A5*1/*3 or CYP3A5*3/*3 genotype. CONCLUSIONS Most patients carry the mutant allele CYP3A5*3. CYP3A5 gene polymorphisms affect tacrolimus blood concentrations and acute GVHD after allo-HSCT.
Collapse
Affiliation(s)
- Jia Jiang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China.
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| |
Collapse
|
10
|
Abderahmene A, Francke MI, Andrews LM, Hesselink DA, Amor D, Sahtout W, Ajmi M, Mastouri H, Bouslama A, Zellama D, Omezzine A, De Winter BCM. A Population Pharmacokinetic Model to Predict the Individual Starting Dose of Tacrolimus for Tunisian Adults after Renal Transplantation. Ther Drug Monit 2024; 46:57-66. [PMID: 38018879 DOI: 10.1097/ftd.0000000000001147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/23/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Tacrolimus is the most frequently used immunosuppressive drug for preventing renal rejection. However, its use is hampered by its narrow therapeutic index and large intra and interpatient variability in pharmacokinetics. The objective of this study was to externally validate a tacrolimus population pharmacokinetic model developed for the Dutch population and adjust the model for the Tunisian population for use in predicting the starting dose requirement after kidney transplantation. METHODS Data on tacrolimus exposure were obtained from kidney transplant recipients (KTRs) during the first 3 months post-transplantation. External validation of the Dutch model and its adjustment for the Tunisian population was performed using nonlinear mixed-effects modeling. RESULTS In total, 1901 whole-blood predose tacrolimus concentrations from 196 adult KTRs were analyzed. According to a visual predictive check, the Dutch model underestimated the starting dose for the Tunisian adult population. The effects of age, together with the CYP3A5*3 and CYP3A4*22 genotypes on tacrolimus clearance were significantly different in the Tunisian population than in the Dutch population. Based on a bodyweight-based dosing, only 21.9% of tacrolimus concentrations were within the target range, whereas this was estimated to be 54.0% with the newly developed model-based dosing. After adjustment, the model was successfully validated internally in a Tunisian population. CONCLUSIONS A starting-dose population pharmacokinetic model of tacrolimus for Tunisian KTRs was developed based on a previously published Dutch model. Using this starting dose could potentially increase the percentage of patients achieving target tacrolimus concentrations after the initial starting dose.
Collapse
Affiliation(s)
- Amani Abderahmene
- Department of Biochemistry , LR12SP11, Sahloul University Hospital, Sousse, University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
- Rotterdam Clinical Pharmacometrics Group, Rotterdam, the Netherlands
| | - Marith I Francke
- Rotterdam Clinical Pharmacometrics Group, Rotterdam, the Netherlands
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Rotterdam, the Netherlands
| | - Louise M Andrews
- Department of Hospital Pharmacy, Meander MC, Amersfoort, the Netherlands
| | - Dennis A Hesselink
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Rotterdam, the Netherlands
| | - Dorra Amor
- Department of Biochemistry , LR12SP11, Sahloul University Hospital, Sousse, University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Wissal Sahtout
- Department of Nephrology, Sahloul University Hospital, Sousse, Tunisia; and
| | - Marwa Ajmi
- Department of Biochemistry , LR12SP11, Sahloul University Hospital, Sousse, University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Hayfa Mastouri
- Department of Biochemistry , LR12SP11, Sahloul University Hospital, Sousse, University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Ali Bouslama
- Department of Biochemistry , LR12SP11, Sahloul University Hospital, Sousse, University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Dorsaf Zellama
- Department of Nephrology, Sahloul University Hospital, Sousse, Tunisia; and
| | - Asma Omezzine
- Department of Biochemistry , LR12SP11, Sahloul University Hospital, Sousse, University of Monastir Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Brenda C M De Winter
- Rotterdam Clinical Pharmacometrics Group, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Rotterdam, the Netherlands
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| |
Collapse
|
11
|
Rios-Usuga C, Martinez-Gutierrez M, Ruiz-Saenz J. Antiviral Potential of Azathioprine and Its Derivative 6- Mercaptopurine: A Narrative Literature Review. Pharmaceuticals (Basel) 2024; 17:174. [PMID: 38399389 PMCID: PMC10892228 DOI: 10.3390/ph17020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The use of azathioprine (AZA) in human medicine dates back to research conducted in 1975 that led to the development of several drugs, including 6-mercaptopurine. In 1958, it was shown that 6-mercaptopurine decreased the production of antibodies against earlier administered antigens, raising the hypothesis of an immunomodulatory effect. AZA is a prodrug that belongs to the thiopurine group of drugs that behave as purine analogs. After absorption, it is converted into 6-mercaptopurine. Subsequently, it can be degraded through various enzymatic pathways into inactive compounds and biologically active compounds related to the mechanism of action, which has been the subject of study to evaluate a possible antiviral effect. This study aims to examine the metabolism, mechanism of action, and antiviral potential of AZA and its derivatives, exploring AZA impact on antiviral targets and adverse effects through a narrative literature review. Ultimately, the review will provide insights into the antiviral mechanism, present evidence of its in vitro effectiveness against various DNA and RNA viruses, and suggest in vivo studies to further demonstrate its antiviral effects.
Collapse
Affiliation(s)
- Carolina Rios-Usuga
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (C.R.-U.); (M.M.-G.)
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (C.R.-U.); (M.M.-G.)
- Grupo de Investigación en Microbiología Veterinaria, Escuela de Microbiología, Universidad de Antioquia UdeA, Medellín 050001, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (C.R.-U.); (M.M.-G.)
| |
Collapse
|
12
|
Abderahmene A, Khalij Y, Moussa A, Ammar M, Ellouz A, Amor D, Abbes H, Ganouni MR, Sahtout W, Chouchene S, Omezzine A, Zellama D, Bouslama A. The pharmacogenetics of tacrolimus in renal transplant patients: association with tremors, new-onset diabetes and other clinical events. THE PHARMACOGENOMICS JOURNAL 2024; 24:3. [PMID: 38253626 DOI: 10.1038/s41397-024-00323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Our study is the first study to investigate the effect of SNPs in CYP3A5, CYP3A4, ABCB1 and POR genes on the incidence of tremors, nephrotoxicity, and diabetes mellitus. A total of 223 renal transplant patients receiving tacrolimus and mycophenolate mofetil (MMF) were recruited. Both adults and children patients participated in the study. Genotyping was performed using PROFLEX-PCR followed by RFLP. MPA and tacrolimus plasma concentrations were measured by immunoassay. The AUC0-12h of MMF was estimated by a Bayesian method. We found a statistically significant association between the CYP3A5*3 and CYP3A4*1B genotypes and the tacrolimus exposure. We found a lower occurrence of nephrotoxicity (p = 0.03), tremor (p = 0.01), and new-onset diabetes (p = 0.002) associated with CYP3A5*1 allele. The CYP3A4*1B allele was significantly associated with a lower occurrence of new-onset diabetes (p = 0.026). The CYP3A5*1 allele was significantly associated with an increased risk of acute and chronic rejection (p = 0.03 and p < 0.001, respectively). Our results support the usefulness of tacrolimus pharmacokinetics in pre-kidney transplant assessments.
Collapse
Affiliation(s)
- Amani Abderahmene
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia.
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia.
| | - Yassine Khalij
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Amira Moussa
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Meriam Ammar
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Amel Ellouz
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Dorra Amor
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Houwaida Abbes
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Mohamed Rayen Ganouni
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Wissal Sahtout
- Nephrology Department, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
| | - Saoussen Chouchene
- Hematology Department, Fattouma Bourguiba University Hospital, 5000, Monastir, Tunisia
| | - Asma Omezzine
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| | - Dorsaf Zellama
- Nephrology Department, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
| | - Ali Bouslama
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Street Route Ceinture Sahloul, 4054, Sousse, Tunisia
- University of Monastir, Faculty of Pharmacy of Monastir, Street Ibn Sina, 5000, Monastir, Tunisia
| |
Collapse
|
13
|
Aravamudhan A, Johnson CL, Seegmiller JC. Quantification of Mycophenolic Acid in Plasma by High Performance Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Methods Mol Biol 2024; 2737:329-336. [PMID: 38036834 DOI: 10.1007/978-1-0716-3541-4_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Mycophenolate mofetil (MMF) and sodium mycophenolate are commonly prescribed immunosuppressive drugs for patients who have undergone solid organ transplant. Therapeutic drug monitoring (TDM) of these drugs is performed by assessing mycophenolic acid (MPA) in plasma. Due to the large inter-individual variability and narrow therapeutic range, the precise determination of systemic MPA concentration carries great clinical significance. We present a rapid, sensitive, specific, and robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantitation of MPA in plasma. A Waters Xevo TQ-S Micro mass spectrometer coupled to a Water's Acquity liquid chromatography system was used in positive electrospray ionization (ESI) mode. MPA quantitation was achieved using multiple reaction monitoring (MRM). Mycophenolic acid carboxybutoxy ether (MPAC) was employed as an internal standard. The method is linear from 0.25 to 40.00 mg/L, has intra-assay (N = 24) imprecision of 2.7% at 1.57 mg/L and 3.9% at 4.61 mg/L and inter-assay (N = 20 days) imprecision of 4.0% at 1.62 mg/L and 5.6% at 4.68 mg/L.
Collapse
Affiliation(s)
- Aja Aravamudhan
- University of Minnesota, Department of Laboratory Medicine and Pathology, Minneapolis, MN, USA
| | | | - Jesse C Seegmiller
- University of Minnesota, Department of Laboratory Medicine and Pathology, Minneapolis, MN, USA.
- M Health Fairview, Minneapolis, MN, USA.
| |
Collapse
|
14
|
Chen F, Yang X, Li H, Zeng X, Deng Z, Wang H, Jin Y, Qiu C, Shi Z. Improved LC-MS/MS method for the simultaneous quantification of tacrolimus and cyclosporine A in human blood and application to therapeutic drug monitoring. Biomed Chromatogr 2023; 37:e5751. [PMID: 37772369 DOI: 10.1002/bmc.5751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023]
Abstract
In order to facilitate therapeutic drug monitoring of tacrolimus and cyclosporine A in clinical practice, a simple, rapid, robust, sensitive and specific LC-MS/MS assay was developed and validated for the simultaneous determination of tacrolimus and cyclosporine A in human whole blood. Erythrocytes were destroyed using internal standard solution with 10% (w/v) zinc sulfate in water. The analytes were extracted from 100 μl of whole blood by protein precipitation with acetonitrile. Chromatographic separation was conducted on a Kinetex PFP column (60°C) by a gradient elution with a flow rate of 0.450 ml/min in 2.5 min. Quantitative analysis was performed using electrospray ionization and multiple reaction monitoring in positive ionization mode. The method was fully validated as per current guidelines on bioanalytical methodologies of the US Food and Drug Administration and European Medicines Agency. The method developed was applied successfully in analyzing clinical samples from patients administered tacrolimus or cyclosporine A. The sample treatment procedure was rationalized and improved to fulfill the complete target extraction. The chromatography conditions were optimized to achieve rapid and accurate quantification of both analytes. This method may be beneficial as a constructive input for the therapeutic drug monitoring of tacrolimus and cyclosporine A in obtaining individualized therapy.
Collapse
Affiliation(s)
- Feng Chen
- Department of Clinical Pharmacy, Hunan University of Medicine General Hospital, Huaihua, China
| | - Xiaoxia Yang
- Department of Endocrine Metabolism and Clinical Nutrition, Hunan University of Medicine General Hospital, Huaihua, China
| | - Huanhuan Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Xiaodan Zeng
- Department of Clinical Pharmacy, Hunan University of Medicine General Hospital, Huaihua, China
- Department of Evidence-Based Medicine and Clinical Center, Hunan University of Medicine General Hospital, Huaihua, China
| | - Ziwei Deng
- Department of Clinical Pharmacy, Hunan University of Medicine General Hospital, Huaihua, China
- Department of Evidence-Based Medicine and Clinical Center, Hunan University of Medicine General Hospital, Huaihua, China
| | - Hongqiang Wang
- Department of Clinical Pharmacy, Hunan University of Medicine General Hospital, Huaihua, China
- Department of Evidence-Based Medicine and Clinical Center, Hunan University of Medicine General Hospital, Huaihua, China
| | - Yuanxiang Jin
- Department of Clinical Pharmacy, Hunan University of Medicine General Hospital, Huaihua, China
- Department of Evidence-Based Medicine and Clinical Center, Hunan University of Medicine General Hospital, Huaihua, China
| | - Chengfeng Qiu
- Department of Clinical Pharmacy, Hunan University of Medicine General Hospital, Huaihua, China
- Department of Evidence-Based Medicine and Clinical Center, Hunan University of Medicine General Hospital, Huaihua, China
| | - Zhihua Shi
- Department of Clinical Pharmacy, Hunan University of Medicine General Hospital, Huaihua, China
- Department of Evidence-Based Medicine and Clinical Center, Hunan University of Medicine General Hospital, Huaihua, China
| |
Collapse
|
15
|
Mangodt TC, Vanden Driessche K, Norga KK, Moes N, De Bruyne M, Haerynck F, Bordon V, Jansen AC, Jonckheere AI. Central nervous system manifestations of LRBA deficiency: case report of two siblings and literature review. BMC Pediatr 2023; 23:353. [PMID: 37443020 PMCID: PMC10339488 DOI: 10.1186/s12887-023-04182-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND LPS-responsive beige-like anchor protein (LRBA) deficiency is a primary immunodeficiency disease (PID) characterized by a regulatory T cell defect resulting in immune dysregulation and autoimmunity. We present two siblings born to consanguineous parents of North African descent with LRBA deficiency and central nervous system (CNS) manifestations. As no concise overview of these manifestations is available in literature, we compared our patient's presentation with a reviewed synthesis of the available literature. CASE PRESENTATIONS The younger brother presented with enteropathy at age 1.5 years, and subsequently developed Evans syndrome and diabetes mellitus. These autoimmune manifestations led to the genetic diagnosis of LRBA deficiency through whole exome sequencing with PID gene panel. At 11 years old, he had two tonic-clonic seizures. Brain MRI showed multiple FLAIR-hyperintense lesions and a T2-hyperintense lesion of the cervical medulla. His sister presented with immune cytopenia at age 9 years, and developed diffuse lymphadenopathy and interstitial lung disease. Genetic testing confirmed the same mutation as her brother. At age 13 years, a brain MRI showed multiple T2-FLAIR-hyperintense lesions. She received an allogeneic hematopoietic stem cell transplantation (allo-HSCT) 3 months later. Follow-up MRI showed regression of these lesions. CONCLUSIONS Neurological disease is documented in up to 25% of patients with LRBA deficiency. Manifestations range from cerebral granulomas to acute disseminating encephalomyelitis, but detailed descriptions of neurological and imaging phenotypes are lacking. LRBA deficiency amongst other PIDs should be part of the differential diagnosis in patients with inflammatory brain lesions. We strongly advocate for a more detailed description of CNS manifestations in patients with LRBA deficiency, when possible with MR imaging. This will aid clinical decision concerning both anti-infectious and anti-inflammatory therapy and in considering the indication for allo-HSCT.
Collapse
Affiliation(s)
- T C Mangodt
- Division of Pediatric Neurology, Department of Pediatrics, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium.
| | - K Vanden Driessche
- Pediatric Infectious Diseases, Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - K K Norga
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - N Moes
- Division of Pediatric Gastro-Enterology, Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - M De Bruyne
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - F Haerynck
- Department of Pediatric Immunology and Pulmonology, Ghent University Hospital, Ghent, Belgium
| | - V Bordon
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - A C Jansen
- Division of Pediatric Neurology, Department of Pediatrics, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - A I Jonckheere
- Division of Pediatric Neurology, Department of Pediatrics, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| |
Collapse
|
16
|
Marín-Candón A, García-García I, Arias P, Carcas AJ, Díaz-García L, Feltes Ochoa R, Hernández Cano N, Herranz Pinto P, Jiménez González M, López-Granados E, Martínez-Feito A, Mayor-Ibarguren A, Rosas-Alonso R, Seco-Meseguer E, Borobia AM. Identifying biomarkers of treatment response to ciclosporin in atopic dermatitis through multiomic predictive modelling: DERMATOMICS study protocol. BMJ Open 2023; 13:e072350. [PMID: 37429687 DOI: 10.1136/bmjopen-2023-072350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
INTRODUCTION There is a need to optimise the management of atopic dermatitis (AD), improving the efficacy of treatments and reducing the toxicity associated with them. Although the efficacy of ciclosporine (CsA) in the treatment of AD has been thoroughly documented in the literature, the optimal dose has not been yet established. The use of multiomic predictive models of treatment response could optimise CsA therapy in AD. METHODS AND ANALYSIS The study is a low-intervention phase 4 trial to optimise the treatment of patients with moderate-severe AD requiring systemic treatment. The primary objectives are to identify biomarkers that could allow for the selection of responders and non-responders to first-line treatment with CsA and to develop a response prediction model to optimise the CsA dose and treatment regimen in responding patients based on these biomarkers. The study is divided into two cohorts: the first comprised of patients starting treatment with CsA (cohort 1), and the second, of patients already receiving or who have received CsA therapy (cohort 2). ETHICS AND DISSEMINATION The study activities began following authorisation by the Spanish Regulatory Agency (AEMPS) and the Clinical Research Ethics Committee of La Paz University Hospital approval. Trial results will be submitted for publication in an open access peer-reviewed medical speciality-specific publication.Trial registration of this study can be located at the EU Clinical Trials Register, available from https://euclinicaltrials.eu/search-for-clinical-trials/?lang=en. Our clinical trial was registered in the website before the enrolment of the first patient complying with European regulations. EU Clinical Trials Register is a primary registry according the WHO. Once our trial was included in a primary and official registry, in order to extend the accessibility to our research, we also registered it retrospectively in clinicaltrials.gov; however, this is not mandatory as per our regulation. TRIAL REGISTRATION NUMBER NCT05692843.
Collapse
Affiliation(s)
- Alicia Marín-Candón
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Irene García-García
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Pedro Arias
- Genetic Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Antonio J Carcas
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Pharmacology Department, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lucía Díaz-García
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Rosa Feltes Ochoa
- Dermatology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | | | | | | | | | - Ana Martínez-Feito
- Immunology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | | | | | | | - Alberto M Borobia
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Pharmacology Department, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Wm Te Loo DM, Harbers V, Vermeltfoort L, Coenen MJ. Influence of genetic variants on the pharmacokinetics and pharmacodynamics of sirolimus: a systematic review. Pharmacogenomics 2023; 24:629-639. [PMID: 37551646 DOI: 10.2217/pgs-2022-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Sirolimus is an antiproliferative and immunosuppressive compound inhibiting the mTOR pathway, which is often activated in congenital low-flow vascular malformations. Studies have demonstrated the efficacy of sirolimus for this disease. Studies in kidney transplant patients suggest that genetic variants can influence these pharmacokinetic parameters. Therefore, a systematic literature search was performed to gain insight into pharmacogenetic studies with sirolimus. Most studies investigated CYP3A4 and CYP3A5, with inconsistent results. No pharmacogenetic studies focusing on sirolimus have been performed for low-flow vascular malformations. We analyzed two common variants of CYP3A4 and CYP3A5 (CYP3A4*22 and CYP3A5*3, respectively) in patients (n = 59) with congenital low-flow vascular malformations treated with sirolimus. No association with treatment outcome was identified in this small cohort of patients.
Collapse
Affiliation(s)
- D Maroeska Wm Te Loo
- Department of Pediatric Hematology, Amalia Children's Hospital, Radboud university medical center, Geert Grooteplein Zuid 32, Nijmegen, 6525 GA, The Netherlands
- Radboudumc Center of Expertise Hemangiomas & Congenital Vascular Malformations Nijmegen, Amalia Children's Hospital, Radboud university medical center, Rene Descartes Dreef 1, Nijmegen, 6525 GL, The Netherlands
| | - Veroniek Harbers
- Department of Medical Imaging, Radboud university medical center, Geert Grooteplein Zuid 22, Nijmegen, 6525 GA, The Netherlands
| | - Lars Vermeltfoort
- Department of Pediatric Hematology, Amalia Children's Hospital, Radboud university medical center, Geert Grooteplein Zuid 32, Nijmegen, 6525 GA, The Netherlands
| | - Marieke Jh Coenen
- Department of Clinical Chemistry, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| |
Collapse
|
18
|
Xu G, Duan Z, Luo K, Yang J. Nanotherapeutics for solid organ transplantation: new kid on the block. EBioMedicine 2023; 92:104624. [PMID: 37209534 PMCID: PMC10209123 DOI: 10.1016/j.ebiom.2023.104624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023] Open
Affiliation(s)
- Gang Xu
- Liver Transplant Center, Organ Transplant Center, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China; Laboratory of Liver Transplantation, NHC Key Laboratory of Transplant Engineering and Immunology, Chengdu, 610041, China
| | - Zhenyu Duan
- Liver Transplant Center, Organ Transplant Center, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Liver Transplant Center, Organ Transplant Center, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Jiayin Yang
- Liver Transplant Center, Organ Transplant Center, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China; Laboratory of Liver Transplantation, NHC Key Laboratory of Transplant Engineering and Immunology, Chengdu, 610041, China.
| |
Collapse
|
19
|
Miotto IZ, Neto CF, de Oliveira WRP. Cutaneous infections from viral sources in solid organ transplant recipients. Transpl Immunol 2023; 78:101838. [PMID: 37085124 DOI: 10.1016/j.trim.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/16/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023]
Abstract
INTRODUCTION Solid organ transplant recipients (SOTRs) are susceptible to various dermatological complications caused by long-term immunosuppressive therapy. Of these complications, viral infections are noteworthy because of their high prevalence and the potential morbidity associated with viral carcinogenesis. OBJECTIVES To evaluate the occurrence of cutaneous viral infections in SOTRs and their correlation with clinical features, transplant type, and the length and intensity of immunosuppressive therapy. METHODS This retrospective cohort study included SOTRs followed up at the Department of Dermatology in a tertiary hospital. The outcomes analyzed were the occurrence of cutaneous viral infections, including human papillomavirus (HPV) infection, herpes simplex, herpes zoster, molluscum contagiosum, Merkel cell carcinoma, Kaposi's sarcoma, and cytomegalovirus, and the occurrence of HPV-related neoplasms. Clinical variables, such as length and intensity of immunosuppression, type of transplanted organ, and comorbidities, were analyzed as possible risk factors for cutaneous viral infections in SOTRs. RESULTS A total of 528 SOTRs were included in this study, among which 53.8% had one or more viral infections. Of these, 10% developed a virus-associated malignancy (HPV-associated carcinoma, Merkel cell carcinoma, or Kaposi's sarcoma). The higher risk of viral infections among SOTRs was associated with cyclosporine intake (1.40-fold higher risk) and younger age at transplantation. The use of an immunosuppressive regimen, including additional drugs, was associated with a higher risk of genital HPV infection (1.50-fold higher risk for each incremental drug). CONCLUSIONS The occurrence of cutaneous viral infections in SOTRs is directly associated with the duration and intensity of immunosuppressive therapy. Patients at higher risk were those taking drugs with a stronger impact on cellular immunity and/or those on an immunosuppressive regimen comprising various drugs.
Collapse
Affiliation(s)
- Isadora Zago Miotto
- Department of Dermatology, University of São Paulo Medical School, Av Dr Enéas de Carvalho Aguiar, 255, Zip Code, 05403-900, São Paulo, Brazil.
| | - Cyro Festa Neto
- Department of Dermatology, University of São Paulo Medical School, Av Dr Enéas de Carvalho Aguiar, 255, Zip Code, 05403-900, São Paulo, Brazil
| | - Walmar Roncalli Pereira de Oliveira
- Department of Dermatology, University of São Paulo Medical School, Av Dr Enéas de Carvalho Aguiar, 255, Zip Code, 05403-900, São Paulo, Brazil.
| |
Collapse
|
20
|
Liu Y, Li X, Wu X, Luo X, Yan B, Mo C, Guo H, Yang S, Wang Y, Lai Y, Puno P, Li L. Sis-25, a meroditerpenoid derivative with a cyclobutane scaffold, inhibits activated T cell proliferation by targeting GSK3β in vitro and in vivo. Eur J Pharmacol 2022; 929:175151. [PMID: 35841942 DOI: 10.1016/j.ejphar.2022.175151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/03/2022]
Abstract
A series of novel scopariusicide derivatives were designed and synthesized starting from the main diterpenoid from the aerial parts of Isodon scoparius. Sis-25 was the most effective compound among them. The potential mechanism(s) of its immunosuppressive activity in vitro, as well as its effects on delayed type hypersensitivity (DTH) reaction and imiquimod-induced dermatitis in vivo were investigated in this study. Sis-25 inhibited anti-CD3/anti-CD28 mAbs, PHA or alloantigen-induced T cell proliferation without obvious cytotoxicity. Sis-25 was a highly selective inhibitor of GSK3-β and inhibited the mTOR/p70S6K pathway but not the PI3K/Akt, p38 MAPK/ERK 1/2 and JAK3/STAT5 pathways. Furthermore, Sis-25 significantly inhibited IFN-γ, IL-6 and IL-17 expression but not IL-10 expression in activated T cells. Finally, Sis-25 treatment mitigated the DNFB-induced DTH reaction and ameliorated imiquimod-induced dermatitis. In summary, Sis-25 exerted significant immunosuppressive activity by targeting GSK3β in vitro and in vivo. Sis-25 may guide the design of new drugs for more effective and safer treatments of autoimmune diseases and provide new insight into developing utilizations of Isodon scoparius.
Collapse
Affiliation(s)
- Yang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, PR China; Research Center, Chengdu Medical College, Chengdu, 610500, Sichuan, PR China
| | - Xingren Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
| | - Xiuyin Wu
- Research Center, Chengdu Medical College, Chengdu, 610500, Sichuan, PR China
| | - Xingyan Luo
- Research Center, Chengdu Medical College, Chengdu, 610500, Sichuan, PR China
| | - Bingchao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
| | - Chunfen Mo
- Research Center, Chengdu Medical College, Chengdu, 610500, Sichuan, PR China
| | - Huijie Guo
- Research Center, Chengdu Medical College, Chengdu, 610500, Sichuan, PR China
| | - Shuxia Yang
- Research Center, Chengdu Medical College, Chengdu, 610500, Sichuan, PR China
| | - Yantang Wang
- Research Center, Chengdu Medical College, Chengdu, 610500, Sichuan, PR China
| | - Yi Lai
- Research Center, Chengdu Medical College, Chengdu, 610500, Sichuan, PR China
| | - Pematenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China.
| | - Limei Li
- College of Pharmacy, Southwest Minzu University, Chengdu, 610225, Sichuan, PR China.
| |
Collapse
|
21
|
Crespo E, Vidal-Alabró A, Jouve T, Fontova P, Stein M, Mocka S, Meneghini M, Sefrin A, Hruba P, Gomà M, Torija A, Donadeu L, Favà A, Cruzado JM, Melilli E, Moreso F, Viklicky O, Bemelman F, Reinke P, Grinyó J, Lloberas N, Bestard O. Tacrolimus CYP3A Single-Nucleotide Polymorphisms and Preformed T- and B-Cell Alloimmune Memory Improve Current Pretransplant Rejection-Risk Stratification in Kidney Transplantation. Front Immunol 2022; 13:869554. [PMID: 35833145 PMCID: PMC9272702 DOI: 10.3389/fimmu.2022.869554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Achieving fast immunosuppression blood exposure after kidney transplantation is key to abrogating both preformed and de novo anti-donor humoral and cellular alloresponses. However, while tacrolimus (TAC) is the cornerstone immunosuppressant inhibiting adaptive alloimmunity, its blood exposure is directly impacted by different single-nucleotide polymorphisms (SNPs) in CYP3A TAC-metabolizing enzymes. Here, we investigated how functional TAC-CYP3A genetic variants (CYP3A4*22/CYP3A5*3) influence the main baseline clinical and immunological risk factors of biopsy-proven acute rejection (BPAR) by means of preformed donor-specific antibodies (DSAs) and donor-specific alloreactive T cells (DSTs) in a large European cohort of 447 kidney transplants receiving TAC-based immunosuppression. A total of 70 (15.7%) patients developed BPAR. Preformed DSAs and DSTs were observed in 12 (2.7%) and 227 (50.8%) patients, respectively. According to the different CYP3A4*22 and CYP3A5*3 functional allele variants, we found 4 differential new clusters impacting fasting TAC exposure after transplantation; 7 (1.6%) were classified as high metabolizers 1 (HM1), 71 (15.9%) as HM2, 324 (72.5%) as intermediate (IM), and 45 (10.1%) as poor metabolizers (PM1). HM1/2 showed significantly lower TAC trough levels and higher dose requirements than IM and PM (p < 0.001) and more frequently showed TAC underexposure (<5 ng/ml). Multivariate Cox regression analyses revealed that CYP3A HM1 and IM pharmacogenetic phenotypes (hazard ratio (HR) 12.566, 95% CI 1.99–79.36, p = 0.007, and HR 4.532, 95% CI 1.10–18.60, p = 0.036, respectively), preformed DSTs (HR 3.482, 95% CI 1.99–6.08, p < 0.001), DSAs (HR 4.421, 95% CI 1.63–11.98, p = 0.003), and delayed graft function (DGF) (HR 2.023, 95% CI 1.22–3.36, p = 0.006) independently predicted BPAR. Notably, a significant interaction between T-cell depletion and TAC underexposure was observed, showing a reduction of the BPAR risk (HR 0.264, 95% CI 0.08–0.92, p = 0.037). Such variables except for DSAs displayed a higher predictive risk for the development of T cell-mediated rejection (TCMR). Refinement of pretransplant monitoring by incorporating TAC CYP3A SNPs with preformed DSAs as well as DSTs may improve current rejection-risk stratification and help induction treatment decision-making.
Collapse
Affiliation(s)
- Elena Crespo
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- *Correspondence: Oriol Bestard, ; Elena Crespo,
| | - Anna Vidal-Alabró
- Experimental Nephrology and Transplantation Laboratory, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Thomas Jouve
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Faculty of Health, Université Grenoble Alpes, Grenoble, France
- Institute for Advanced Biosciences, INSERM 1209, CNRS 5309, Grenoble, France
| | - Pere Fontova
- Experimental Nephrology and Transplantation Laboratory, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Maik Stein
- Berlin Center for Advanced Therapies (BeCAT), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Sonila Mocka
- Experimental Nephrology and Transplantation Laboratory, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Maria Meneghini
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Kidney Transplant Unit and Nephrology Department, Vall d’Hebron Hospital, Barcelona, Spain
| | - Anett Sefrin
- Berlin Center for Advanced Therapies (BeCAT), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Petra Hruba
- Department of Nephrology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
| | - Montserrat Gomà
- Pathology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Alba Torija
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Laura Donadeu
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Alex Favà
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Josep M. Cruzado
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Edoardo Melilli
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Francesc Moreso
- Kidney Transplant Unit and Nephrology Department, Vall d’Hebron Hospital, Barcelona, Spain
| | - Ondrej Viklicky
- Department of Nephrology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
| | - Frederike Bemelman
- Renal Transplant Unit, Department of Internal Medicine, Amsterdam University Medical Centers, Academic Medical Center—University of Amsterdam, Amsterdam, Netherlands
| | - Petra Reinke
- Berlin Center for Advanced Therapies (BeCAT), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Josep Grinyó
- Department of Clinical Sciences, Barcelona University, Barcelona, Spain
| | - Nuria Lloberas
- Experimental Nephrology and Transplantation Laboratory, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Oriol Bestard
- Nephrology and Transplant Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Kidney Transplant Unit and Nephrology Department, Vall d’Hebron Hospital, Barcelona, Spain
- *Correspondence: Oriol Bestard, ; Elena Crespo,
| |
Collapse
|
22
|
Taleb A, Afshari M, Samzadeh M, Sarhangi N, Nafar M, Hasanzad M. Influence of cytotoxic T lymphocyte antigen 4 genetic variants on acute rejection in kidney transplant patients: precision medicine perspective. J Diabetes Metab Disord 2022; 21:69-75. [PMID: 35673498 DOI: 10.1007/s40200-021-00936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022]
Abstract
Background The most effective and common treatment for end-stage renal disease is kidney transplantation.The personalized approach to kidney transplantation, which utilizes precision medicine principles, determines distinctive genomics characteristics of candidates/recipients that must be taken into account. Cytotoxic T lymphocyte associated protein 4 (CTLA4) may be a suitable candidate gene for studying allograft rejection. The aim of this study was to understand whether we can consider two common variants of the CTLA4 gene as a risk factor of transplant rejection in a group of Iranian population. Methods Totally, 169 kidney transplant recipients, including acute rejections (N=39) and non-rejection (N=130) groups who underwent transplantation were included in this study. The genotyping of rs5742909 (-318C/T) and rs231775 (+49A/G) variants of the CTLA4 gene were performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Results The AG genotype frequency of rs231775 variant was the same in both patients with and without a history of rejection while, none of those groups had homozygote genotype. In rs5742909, both CT and TT frequencies of patients with rejected transplant were lower than patients with a normal outcome. Conclusions The results of the presented study suggest that rs231775 and rs5742909 of CTLA4 genetic variants are not linked to acute rejection who underwent kidney transplantation. So, these variants cannot be considered as risk factors of acute allograft rejection in a group of Iranian renal transplantation recipients. However, the transplantation precision medicine may be an important area for the improvement of patients outcome as the precision medicine has already entered clinical practice in kidney transplantation.
Collapse
Affiliation(s)
- Andia Taleb
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Afshari
- Department of Community Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammad Samzadeh
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Sarhangi
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nafar
- Urology Nephrology Research Center, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mandana Hasanzad
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Na Takuathung M, Sakuludomkan W, Koonrungsesomboon N. The Impact of Genetic Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Mycophenolic Acid: Systematic Review and Meta-analysis. Clin Pharmacokinet 2021; 60:1291-1302. [PMID: 34105062 DOI: 10.1007/s40262-021-01037-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Mycophenolic acid (MPA) is among the most commonly prescribed medications for immunosuppression following organ transplantation. Highly variable MPA exposure and drug response are observed among individuals receiving the same dosage of the drug. Identification of candidate genes whose polymorphisms could be used to predict MPA exposure and clinical outcome is of clinical value. OBJECTIVES This study aimed to determine the impact of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of MPA in humans by means of a systematic review and meta-analysis. METHODS A systematic search was conducted on PubMed, EMBASE, Web of Sciences, Scopus, and the Cochrane Library databases. A meta-analysis was conducted to determine any associations between genetic polymorphisms and pharmacokinetic or pharmacodynamic parameters of MPA. Pooled-effect estimates were calculated by means of the random-effects model. RESULTS A total of 37 studies involving 3844 individuals were included in the meta-analysis. Heterozygous carriers of the UGT1A9 -275T>A polymorphism were observed to have a significantly lower MPA exposure than wild-type individuals. Four single nucleotide polymorphisms (SNPs), namely UGT1A9 -2152C>T, UGT1A8 518C>G, UGT2B7 211G>T, and SLCO1B1 521T>C, were also significantly associated with altered MPA pharmacokinetics. However, none of the investigated SNPs, including SNPs in the IMPDH gene, were found to be associated with the clinical efficacy of MPA. The only SNP that was associated with adverse outcomes was SLCO1B3 344T>G. CONCLUSIONS The present systematic review and meta-analysis identified six SNPs that were significantly associated with pharmacokinetic variability or adverse effects of MPA. Our findings represent the basis for future research and clinical implications with regard to the role of pharmacogenetics in MPA pharmacokinetics and drug response.
Collapse
Affiliation(s)
- Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand
| | - Wannachai Sakuludomkan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand.
- Musculoskeletal Science and Translational Research (MSTR) Center, , Chiang Mai University, Muang, Chiang Mai, Thailand.
| |
Collapse
|
24
|
Chen ZY, Zhu YH, Zhou LY, Shi WQ, Qin Z, Wu B, Yan Y, Pei YW, Chao NN, Zhang R, Wang MY, Su ZH, Lu XJ, He ZY, Xu T. Association Between Genetic Polymorphisms of Metabolic Enzymes and Azathioprine-Induced Myelosuppression in 1,419 Chinese Patients: A Retrospective Study. Front Pharmacol 2021; 12:672769. [PMID: 34084143 PMCID: PMC8167793 DOI: 10.3389/fphar.2021.672769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to investigate the correlation between genetic polymorphisms of azathioprine-metabolizing enzymes and adverse reactions of myelosuppression. To this end, a retrospective analysis was performed on 1,419 Chinese patients involving 40 different diseases and 3 genes: ITPA (94C>A), TPMT*3 (T>C), and NUDT15 (415C>T). Strict inclusion and exclusion criteria were established to collect the relative cases, and the correlation between azathioprine and myelosuppression was evaluated by adverse drug reaction criteria. The mutation rates of the three genes were 29.32, 3.73, and 21.92% and grades I to IV myelosuppression occurred in 54 (9.28%) of the 582 patients who took azathioprine. The highest proportion of myelosuppression was observed in 5 of the 6 (83.33%) patients carrying the NUDT15 (415C>T) TT genotype and 12 of the 102 (11.76%) patients carrying the NUDT15 (415C>T) CT genotype. Only the NUDT15 (415C>T) polymorphism was found to be associated with the adverse effects of azathioprine-induced myelosuppression (odds ratio [OR], 51.818; 95% CI, 5.280–508.556; p = 0.001), which suggested that the NUDT15 (415C>T) polymorphism could be an influencing factor of azathioprine-induced myelosuppression in the Chinese population. Epistatic interactions between ITPA (94C>A) and NUDT15 (415C>T) affect the occurrence of myelosuppression. Thus, it is recommended that the genotype of NUDT15 (415C>T) and ITPA (94C>A) be checked before administration, and azathioprine should be avoided in patients carrying a homozygous NUDT15 (415C>T) mutation. This study is the first to investigate the association between genetic polymorphisms of these three azathioprine-metabolizing enzymes and myelosuppression in a large number of cases with a diverse range of diseases.
Collapse
Affiliation(s)
- Zhao-Yang Chen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang-Hui Zhu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ling-Yan Zhou
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Qiao Shi
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhou Qin
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Yan
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Wen Pei
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ning-Ning Chao
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Zhang
- Department of Information Center, Engineering Research Center of Medical Information Technology of the Education Ministry, West China Hospital, Sichuan University, Chengdu, China
| | - Mi-Ye Wang
- Department of Information Center, Engineering Research Center of Medical Information Technology of the Education Ministry, West China Hospital, Sichuan University, Chengdu, China
| | - Ze-Hao Su
- Med-X Center for Informatics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Jun Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Yao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Significance of Ethnic Factors in Immunosuppressive Therapy Management After Organ Transplantation. Ther Drug Monit 2021; 42:369-380. [PMID: 32091469 DOI: 10.1097/ftd.0000000000000748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical outcomes after organ transplantation have greatly improved in the past 2 decades with the discovery and development of immunosuppressive drugs such as calcineurin inhibitors, antiproliferative agents, and mammalian target of rapamycin inhibitors. However, individualized dosage regimens have not yet been fully established for these drugs except for therapeutic drug monitoring-based dosage modification because of extensive interindividual variations in immunosuppressive drug pharmacokinetics. The variations in immunosuppressive drug pharmacokinetics are attributed to interindividual variations in the functional activity of cytochrome P450 enzymes, UDP-glucuronosyltransferases, and ATP-binding cassette subfamily B member 1 (known as P-glycoprotein or multidrug resistance 1) in the liver and small intestine. Some genetic variations have been found to be involved to at least some degree in pharmacokinetic variations in post-transplant immunosuppressive therapy. It is well known that the frequencies and effect size of minor alleles vary greatly between different races. Thus, ethnic considerations might provide useful information for optimizing individualized immunosuppressive therapy after organ transplantation. Here, we review ethnic factors affecting the pharmacokinetics of immunosuppressive drugs requiring therapeutic drug monitoring, including tacrolimus, cyclosporine, mycophenolate mofetil, sirolimus, and everolimus.
Collapse
|
26
|
Tziastoudi M, Pissas G, Raptis G, Cholevas C, Eleftheriadis T, Dounousi E, Stefanidis I, Theoharides TC. A Systematic Review and Meta-Analysis of Pharmacogenetic Studies in Patients with Chronic Kidney Disease. Int J Mol Sci 2021; 22:ijms22094480. [PMID: 33923087 PMCID: PMC8123337 DOI: 10.3390/ijms22094480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is an important global public health problem due to its high prevalence and morbidity. Although the treatment of nephrology patients has changed considerably, ineffectiveness and side effects of medications represent a major issue. In an effort to elucidate the contribution of genetic variants located in several genes in the response to treatment of patients with CKD, we performed a systematic review and meta-analysis of all available pharmacogenetics studies. The association between genotype distribution and response to medication was examined using the dominant, recessive, and additive inheritance models. Subgroup analysis based on ethnicity was also performed. In total, 29 studies were included in the meta-analysis, which examined the association of 11 genes (16 polymorphisms) with the response to treatment regarding CKD. Among the 29 studies, 18 studies included patients with renal transplantation, 8 involved patients with nephrotic syndrome, and 3 studies included patients with lupus nephritis. The present meta-analysis provides strong evidence for the contribution of variants harbored in the ABCB1, IL-10, ITPA, MIF, and TNF genes that creates some genetic predisposition that reduces effectiveness or is associated with adverse events of medications used in CKD.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (G.P.); (T.E.); (I.S.)
- Correspondence: ; Tel.: +30-24-1350-1667; Fax: +30-24-1350-1015
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (G.P.); (T.E.); (I.S.)
| | | | - Christos Cholevas
- AHEPA Hospital, First Department of Ophthalmology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece;
| | - Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (G.P.); (T.E.); (I.S.)
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (G.P.); (T.E.); (I.S.)
| | | |
Collapse
|
27
|
Martial LC, Biewenga M, Ruijter BN, Keizer R, Swen JJ, van Hoek B, Moes DJAR. Population pharmacokinetics and genetics of oral meltdose tacrolimus (Envarsus) in stable adult liver transplant recipients. Br J Clin Pharmacol 2021; 87:4262-4272. [PMID: 33786892 PMCID: PMC8596620 DOI: 10.1111/bcp.14842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
AIMS Meltdose tacrolimus (Envarsus) is marketed as a formulation with a more consistent exposure. Due to the narrow therapeutic window, therapeutic drug monitoring is essential to maintain adequate exposure. The primary objective of this study was to develop a population pharmacokinetic (PK) model of Envarsus among liver transplant patients and select a limited sampling strategy (LSS) for AUC estimation. The secondary objective was to investigate potential covariates including CYP3A/IL genotype suitable for initial dose optimization when converting to Envarsus. METHODS Adult liver transplant patients were converted from prolonged release tacrolimus (Advagraf) to Envarsus and blood samples were obtained using whole blood and dried blood spot sampling. Subsequently the population PK parameters were estimated using nonlinear-mixed effect modelling. Demographic factors, and recipient and donor CYP3A4, CYP3A5, IL-6, -10 and -18 genotype were tested as potential covariates to explain interindividual variability. RESULTS Fifty-five patients were included. A 2-compartment model with delayed absorption was the most suitable to describe population PK parameters. The population PK parameters were as follows: clearance, 3.27 L/h; intercompartmental clearance, 9.6 L/h; volume of distribution of compartments 1 and 2, 95 and 500 L, respectively. No covariates were found to significantly decrease interindividual variability. The best 3-point LSS was t = 0,4,8 with a median bias of 1.8% (-12.5-12.5). CONCLUSIONS The LSS can be used to adequately predict the AUC. No clinically relevant covariates known to influence the PK of Envarsus, including CYP3A status, were identified and therefore do not seem useful for initial dose optimization.
Collapse
Affiliation(s)
- Lisa C Martial
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, Netherlands
| | - Maaike Biewenga
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, Netherlands
| | - Bastian N Ruijter
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, Netherlands
| | - Bart van Hoek
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, Netherlands
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
28
|
Nobakht E, Jagadeesan M, Paul R, Bromberg J, Dadgar S. Precision Medicine in Kidney Transplantation: Just Hype or a Realistic Hope? Transplant Direct 2021; 7:e650. [PMID: 33437865 PMCID: PMC7793397 DOI: 10.1097/txd.0000000000001102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Desirable outcomes including rejection- and infection-free kidney transplantation are not guaranteed despite current strategies for immunosuppression and using prophylactic antimicrobial medications. Graft survival depends on factors beyond human leukocyte antigen matching such as the level of immunosuppression, infections, and management of other comorbidities. Risk stratification of transplant patients based on predisposing genetic modifiers and applying precision pharmacotherapy may help improving the transplant outcomes. Unlike certain fields such as oncology in which consistent attempts are being carried out to move away from the "error and trial approach," transplant medicine is lagging behind in implementing personalized immunosuppressive therapy. The need for maintaining a precarious balance between underimmunosuppression and overimmunosuppression coupled with adverse effects of medications calls for a gene-based guidance for precision pharmacotherapy in transplantation. Technologic advances in molecular genetics have led to increased accessibility of genetic tests at a reduced cost and have set the stage for widespread use of gene-based therapies in clinical care. Evidence-based guidelines available for precision pharmacotherapy have been proposed, including guidelines from Clinical Pharmacogenetics Implementation Consortium, the Pharmacogenomics Knowledge Base National Institute of General Medical Sciences of the National Institutes of Health, and the US Food and Drug Administration. In this review, we discuss the implications of pharmacogenetics and potential role for genetic variants-based risk stratification in kidney transplantation. A single score that provides overall genetic risk, a polygenic risk score, can be achieved by combining of allograft rejection/loss-associated variants carried by an individual and integrated into practice after clinical validation.
Collapse
Affiliation(s)
- Ehsan Nobakht
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
| | - Muralidharan Jagadeesan
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
| | - Rohan Paul
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
| | - Jonathan Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Sherry Dadgar
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
- Personalized Medicine Care Diagnostics Laboratory (PMCDx), Inc., Germantown, MD
| |
Collapse
|
29
|
Zheng X, Huai C, Xu Q, Xu L, Zhang M, Zhong M, Qiu X. FKBP-CaN-NFAT pathway polymorphisms selected by in silico biological function prediction are associated with tacrolimus efficacy in renal transplant patients. Eur J Pharm Sci 2020; 160:105694. [PMID: 33383132 DOI: 10.1016/j.ejps.2020.105694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/26/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
AIM The aim of the present study was to investigate the potential effects of genetic variations in the FKBP-CaN-NFAT pathway on clinical events associated with tacrolimus efficacy in Chinese renal transplant patients. METHODS One hundred and forty Chinese renal transplant patients of Han ethnicity with over five years of follow-up were enrolled in our study. A pool of single nucleotide polymorphisms (SNPs) (1284 SNPs) was extracted from the Ensembl database according to chromosomal regions of the candidate genes. Next, 109 SNPs were screened out from this pool using multiple bioinformatics tools for subsequent genotyping using the MALDI-TOF-MS method. The associations of these candidate SNPs with acute rejection, nephrotoxicity, pneumonia and post-transplant estimated glomerular filtration rate (eGFR) were explored. RESULTS Fourty-four SNPs were found to be associated with tacrolimus-related clinical drug response. Specifically, eight SNPs were associated with the incidence of biopsy-proven acute rejection, four SNPs were associated with the rate of nephrotoxicity, 16 SNPs were correlated with the onset of pneumonia, and 26 SNPs were found to significantly influence post-transplant eGFR trend. An elaborate scoring system was implemented to prioritize the validation of these potentially causal SNPs. In particular, NFATC2 rs150348438 (G>T) performed well during integrative scoring (Ptotal=23.8) and was significantly associated with the occurrence of pneumonia (P = 0.0035, HR=0.91, 95% CI=0.85-0.97) and post-transplant eGFR levels (P = 0.000003). CONCLUSIONS NFATC2 rs150348438, rs6013219, rs1052653, and NFATC1 rs754093, ranking high in scoring, significantly affected the post-transplant eGFR and the incidence of pneumonia, acute rejection, and nephrotoxicity in renal transplant patients taking tacrolimus. Those SNPs may alter the expression and regulation of FKBP-CaN-NFAT pathway by influencing transcription regulation, mature mRNA degradation and RNA splicing, or protein coding. Critical SNPs of high ranking may serve as PD-associated pharmacogenetic biomarkers indicating individual response variability of TAC, and thus aid the clinical management of renal transplant patients.
Collapse
Affiliation(s)
- Xinyi Zheng
- Department of Pharmacy, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Cong Huai
- Bio-X Institutes, Shanghai Jiao Tong University and Research Division, 55 Guangyuan West Road, Shanghai, 200030, China
| | - Qinxia Xu
- Department of Pharmacy, Zhongshan hospital, Fudan University, Shanghai, China
| | - Luyang Xu
- Department of Pharmacy, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Ming Zhang
- Department of Nephrology, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| |
Collapse
|
30
|
Anandi P, Dickson AL, Feng Q, Wei WQ, Dupont WD, Plummer D, Liu G, Octaria R, Barker KA, Kawai VK, Birdwell K, Cox NJ, Hung A, Stein CM, Chung CP. Combining clinical and candidate gene data into a risk score for azathioprine-associated leukopenia in routine clinical practice. THE PHARMACOGENOMICS JOURNAL 2020; 20:736-745. [PMID: 32054992 PMCID: PMC7426242 DOI: 10.1038/s41397-020-0163-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
Leukopenia is a serious, frequent side effect associated with azathioprine use. Currently, we use thiopurine methyltransferase (TPMT) testing to predict leukopenia in patients taking azathioprine. We hypothesized that a risk score incorporating additional clinical and genetic variables would improve the prediction of azathioprine-associated leukopenia. In the discovery phase, we developed four risk score models: (1) age, sex, and TPMT metabolizer status; (2) model 1 plus additional clinical variables; (3) sixty candidate single nucleotide polymorphisms; and (4) model 2 plus model 3. The area under the receiver-operating-characteristic curve (AUC) of the risk scores was 0.59 (95% CI: 0.54-0.64), 0.75 (0.71-0.80), 0.66 (0.61-0.71), and 0.78 (0.74-0.82) for models 1, 2, 3, and 4, respectively. During the replication phase, models 2 and 4 (AUC = 0.64, 95% CI: 0.59-0.70 and AUC = 0.63, 95% CI: 0.58-0.69, respectively) were significant in an independent group. Compared with TPMT testing alone, additional genetic and clinical variables improve the prediction of azathioprine-associated leukopenia.
Collapse
Affiliation(s)
- Prathima Anandi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alyson L Dickson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - QiPing Feng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William D Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dale Plummer
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ge Liu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rany Octaria
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine A Barker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vivian K Kawai
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelly Birdwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adriana Hung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - C Michael Stein
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cecilia P Chung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
31
|
Genvigir FDV, Campos-Salazar AB, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Doi SDQ, Cerda A, Hirata MH, Herrero MJ, Aliño SF, Hirata RDC. CYP3A5*3 and CYP2C8*3 variants influence exposure and clinical outcomes of tacrolimus-based therapy. Pharmacogenomics 2020; 21:7-21. [PMID: 31849280 DOI: 10.2217/pgs-2019-0120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The influence of variants in pharmacokinetics-related genes on long-term exposure to tacrolimus (TAC)-based therapy and clinical outcomes was investigated. Patients & methods: Brazilian kidney recipients were treated with TAC combined with everolimus (n = 178) or mycophenolate sodium (n = 97). The variants in CYP2C8, CYP2J2, CYP3A4, CYP3A5, POR, ABCB1, ABCC2, ABCG2, SLCO1B1 and SLCO2B1 were analyzed. Main results: CYP3A5*3/*3 genotype influenced increase in TAC concentration from week 1 to month 6 post-transplantation (p < 0.05). The living donor and CYP2C8*3 variant were associated with reduced risk for delayed graft function (OR = 0.07; 95% CI = 0.03-0.18 and OR = 0.45; 95% CI = 0.20-0.99, respectively, p < 0.05). Conclusion: The CYP3A5*3 variant is associated with increased early exposure to TAC. Living donor and CYP2C8*3 variant seem to be protective factors for delayed graft function in kidney recipients.
Collapse
Affiliation(s)
- Fabiana Dalla Vecchia Genvigir
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Antony Brayan Campos-Salazar
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,Bioinformatics & Pharmacogenetics Laboratory, METOSMOD Research Group, School of Pharmacy & Biochemistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Claudia Rosso Felipe
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Sonia de Quateli Doi
- Nephrology Research Laboratory, School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Mario Hiroyuki Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - María José Herrero
- Department of Pharmacology, University of Valencia. Pharmacogenetics, Instituto Investigación Sanitaria y Hospital La Fe, Valencia, Spain
| | - Salvador Francisco Aliño
- Department of Pharmacology, University of Valencia. Pharmacogenetics, Instituto Investigación Sanitaria y Hospital La Fe, Valencia, Spain
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
32
|
Li C, Guo F, Wang X, Liu D, Wu B, Wang F, Chen W. Exosome-based targeted RNA delivery for immune tolerance induction in skin transplantation. J Biomed Mater Res A 2020; 108:1493-1500. [PMID: 32170897 DOI: 10.1002/jbm.a.36919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Exosomes have been widely applied to the delivery of RNA and small molecules currently. However, the low targeting and specificity greatly limited the effect of exosome delivery. Here we designed an exosome that can perform the targeted delivery of two different types of RNA. Based on the mesenchymal stem cells (MSCs) derived exosomes, the RNA delivery system of targeted dendritic cells (DC-Exosome) was constructed, using the layer by layer self-assembly. DC-Exosomes can specifically bind to DCs, while guiding the endocytosis of chimeras and exosome. Then aptamer/siRNA chimera was cut into mTOR siRNA by Dicer, and microRNA was released from exosome under lysosomal digestion. SIGN aptamer performed the rapid induction of immune tolerance, and later mTOR siRNA was formed to inhibit mTOR pathway and suppress immune responses. Exosomes could maintain long time-stability after PEG-PEI polyplexes modification and promote HLA-G expression in DCs continuously. Animal experiments showed that DC-Exosomes could induce immune tolerance at 3, 7, and 14 days after skin transplantation. Compared with the microRNA-Exosome group, the number of CD11c+ DCs in DC-Exosome group decreased, while the proportion of HLA-G+ DCs increased remarkably. In conclusion, we constructed a new exosome-based targeted delivery system which could effectively induce the immune tolerance in transplantation.
Collapse
Affiliation(s)
- Chunmin Li
- Department of Vascular Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Fengjie Guo
- Department of Pathology, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xueli Wang
- Department of Pathology, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dongxu Liu
- Department of Pathology, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bolun Wu
- Department of Pathology, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fenghua Wang
- Department of Pathology, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wen Chen
- Department of Pathology, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
33
|
Lai Y, Luo XY, Guo HJ, Wang SY, Xiong J, Yang SX, Li LM, Zou Q, Mo CF, Wang YT, Liu Y. PO-322 exerts potent immunosuppressive effects in vitro and in vivo by selectively inhibiting SGK1 activity. Br J Pharmacol 2020; 177:1666-1676. [PMID: 31724152 DOI: 10.1111/bph.14926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/14/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Immunosuppressive drugs have shown great promise in treating autoimmune diseases in recent years. A series of novel oxazole derivatives were screened for their immunosuppressive activity. PO-322 [1H-indole-2,3-dione 3-(1,3-benzoxazol-2-ylhydrazone)] was identified as the most effective of these compounds. Here, we have investigated the mechanism(s) underlying the inhibition of T-cell proliferation in vitro by PO-322, as well as its effects on the delayed-type hypersensitivity (DTH) response and imiquimod-induced dermatitis in vivo. EXPERIMENTAL APPROACH T-cell proliferation and apoptosis were analysed with flow cytometry. Cell viability was assessed with a CCK-8 assay. Protein kinase activity was assessed by SelectScreen Kinase Profiling Services. The phosphorylation of signal-regulated molecules was measured by Western blot. Cytokine levels were determined by elisa. The effect of PO-322 on DTH and imiquimod-induced dermatitis was evaluated in BALB/c mice. KEY RESULTS PO-322 inhibited human T-cell proliferation with anti-CD3/anti-CD28 mAbs or alloantigen without significant cytotoxicity. Importantly, PO-322 was a selective inhibitor of the serum- and glucocorticoid-regulated kinase 1 (SGK1) and decreased NDRG1 phosphorylation but not p70S6K, STAT5, Akt, or ERK1/2 phosphorylation. Furthermore, PO-322 inhibited IFN-γ, IL-6, and IL-17 expression but not IL-10 expression. Finally, treatment with PO-322 was safe and effective for ameliorating the DTH response and imiquimod-induced dermatitis in mice. CONCLUSIONS AND IMPLICATIONS PO-322 exerted immunosuppressive activity in vitro and in vivo by selectively inhibiting SGK1 activity. PO-322 represents a potential lead compound for the design and development of new drugs for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yi Lai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Xing-Yan Luo
- Research Center, Chengdu Medical College, Chengdu, China
| | - Hui-Jie Guo
- Research Center, Chengdu Medical College, Chengdu, China
| | - Si-Yu Wang
- Research Center, Chengdu Medical College, Chengdu, China
| | - Jing Xiong
- Research Center, Chengdu Medical College, Chengdu, China
| | - Shu-Xia Yang
- Research Center, Chengdu Medical College, Chengdu, China
| | - Li-Mei Li
- Research Center, Chengdu Medical College, Chengdu, China
| | - Qiang Zou
- Research Center, Chengdu Medical College, Chengdu, China
| | - Chun-Fen Mo
- Research Center, Chengdu Medical College, Chengdu, China
| | - Yan-Tang Wang
- Research Center, Chengdu Medical College, Chengdu, China.,Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Yang Liu
- Research Center, Chengdu Medical College, Chengdu, China.,Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| |
Collapse
|
34
|
Bonora M, Wieckowski MR, Sinclair DA, Kroemer G, Pinton P, Galluzzi L. Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nat Rev Cardiol 2019; 16:33-55. [PMID: 30177752 DOI: 10.1038/s41569-018-0074-0] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large body of evidence indicates that mitochondrial dysfunction has a major role in the pathogenesis of multiple cardiovascular disorders. Over the past 2 decades, extraordinary efforts have been focused on the development of agents that specifically target mitochondria for the treatment of cardiovascular disease. Despite such an intensive wave of investigation, no drugs specifically conceived to modulate mitochondrial functions are currently available for the clinical management of cardiovascular disease. In this Review, we discuss the therapeutic potential of targeting mitochondria in patients with cardiovascular disease, examine the obstacles that have restrained the development of mitochondria-targeting agents thus far, and identify strategies that might empower the full clinical potential of this approach.
Collapse
Affiliation(s)
- Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell, Regenerative Medicine Research, Department of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - David A Sinclair
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.,Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Guido Kroemer
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Pinton
- Department of Morphology, Surgery, and Experimental Medicine, Section of Pathology, Oncology, and Experimental Biology, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy. .,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy.
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France. .,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
35
|
Tong C, Xia J, Xie B, Li M, Du F, Li C, Li Y, Shan Z, Qi Z. Immunogenicity analysis of decellularized cardiac scaffolds after transplantation into rats. Regen Med 2019; 14:447-464. [PMID: 31070505 DOI: 10.2217/rme-2018-0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Cardiac extracellular matrix (cECM) scaffolds are promising biomaterials for clinical applications. Our aim is to determine the immunogenicity of decellularized scaffolds from different sources for use as artificial organs during organ transplantation. Materials & methods: We transplanted Lewis rats with syngeneic (Lewis rat cECM), allogeneic (BN rat cECM) or xenogeneic (hamster cECM) decellularized cardiac scaffolds. Acute vascular and cellular rejection was quantified by immunohistochemistry and immune cell infiltration. Results: BN rat and hamster hearts were rejected following transplantation. BN and hamster cECMs had similarly low immunogenicity compared with Lewis rat cECMs and did not lead to increased rejection. Conclusion: We found that scaffolds from all sources did not induce vascular or cellular rejection and exhibited low immunogenicity.
Collapse
Affiliation(s)
- Cailing Tong
- School of Life Science, Xiamen University, Fujian, 361102, China.,Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Junjie Xia
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Baiyi Xie
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Minghui Li
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Feifei Du
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Cheng Li
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Yaguang Li
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Zhonggui Shan
- Department of Cardiac Surgery, The First Affiliated Hospital of Xiamen University, Fujian, 361003, China
| | - Zhongquan Qi
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| |
Collapse
|
36
|
Andrews LM, Hesselink DA, van Schaik RHN, van Gelder T, de Fijter JW, Lloberas N, Elens L, Moes DJAR, de Winter BCM. A population pharmacokinetic model to predict the individual starting dose of tacrolimus in adult renal transplant recipients. Br J Clin Pharmacol 2019; 85:601-615. [PMID: 30552703 PMCID: PMC6379219 DOI: 10.1111/bcp.13838] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Aims The aims of this study were to describe the pharmacokinetics of tacrolimus immediately after kidney transplantation, and to develop a clinical tool for selecting the best starting dose for each patient. Methods Data on tacrolimus exposure were collected for the first 3 months following renal transplantation. A population pharmacokinetic analysis was conducted using nonlinear mixed‐effects modelling. Demographic, clinical and genetic parameters were evaluated as covariates. Results A total of 4527 tacrolimus blood samples collected from 337 kidney transplant recipients were available. Data were best described using a two‐compartment model. The mean absorption rate was 3.6 h−1, clearance was 23.0 l h–1 (39% interindividual variability, IIV), central volume of distribution was 692 l (49% IIV) and the peripheral volume of distribution 5340 l (53% IIV). Interoccasion variability was added to clearance (14%). Higher body surface area (BSA), lower serum creatinine, younger age, higher albumin and lower haematocrit levels were identified as covariates enhancing tacrolimus clearance. Cytochrome P450 (CYP) 3A5 expressers had a significantly higher tacrolimus clearance (160%), whereas CYP3A4*22 carriers had a significantly lower clearance (80%). From these significant covariates, age, BSA, CYP3A4 and CYP3A5 genotype were incorporated in a second model to individualize the tacrolimus starting dose:
Dosemg=222nghml–1*22.5lh–1*1.0ifCYP3A5*3/*3or1.62ifCYP3A5*1/*3orCYP3A5*1/*1*1.0ifCYP3A4*1or unknownor0.814ifCYP3A4*22*Age56−0.50*BSA1.930.72/1000Both models were successfully internally and externally validated. A clinical trial was simulated to demonstrate the added value of the starting dose model. Conclusions For a good prediction of tacrolimus pharmacokinetics, age, BSA, CYP3A4 and CYP3A5 genotype are important covariates. These covariates explained 30% of the variability in CL/F. The model proved effective in calculating the optimal tacrolimus dose based on these parameters and can be used to individualize the tacrolimus dose in the early period after transplantation.
Collapse
Affiliation(s)
- L M Andrews
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - D A Hesselink
- Department of Internal Medicine, Division of Nephrology & Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Rotterdam Transplant Group, Rotterdam, The Netherlands
| | - R H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - T van Gelder
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Internal Medicine, Division of Nephrology & Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Rotterdam Transplant Group, Rotterdam, The Netherlands
| | - J W de Fijter
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - N Lloberas
- Department of Nephrology, IDIBELL, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - L Elens
- Department of Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - D J A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - B C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
37
|
Clinical aspects of tacrolimus use in paediatric renal transplant recipients. Pediatr Nephrol 2019; 34:31-43. [PMID: 29479631 DOI: 10.1007/s00467-018-3892-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/30/2022]
Abstract
The calcineurin inhibitor tacrolimus, cornerstone of most immunosuppressive regimens, is a drug with a narrow therapeutic window: underexposure can lead to allograft rejection and overexposure can result in an increased incidence of infections, toxicity and malignancies. Tacrolimus is metabolised in the liver and intestine by the cytochrome P450 3A (CYP3A) isoforms CYP3A4 and CYP3A5. This review focusses on the clinical aspects of tacrolimus pharmacodynamics, such as efficacy and toxicity. Factors affecting tacrolimus pharmacokinetics, including pharmacogenetics and the rationale for routine CYP3A5*1/*3 genotyping in prospective paediatric renal transplant recipients, are also reviewed. Therapeutic drug monitoring, including pre-dose concentrations and pharmacokinetic profiles with the available "reference values", are discussed. Factors contributing to high intra-patient variability in tacrolimus exposure and its impact on clinical outcome are also reviewed. Lastly, suggestions for future research and clinical perspectives are discussed.
Collapse
|
38
|
Woillard JB, Gatault P, Picard N, Arnion H, Anglicheau D, Marquet P. A donor and recipient candidate gene association study of allograft loss in renal transplant recipients receiving a tacrolimus-based regimen. Am J Transplant 2018; 18:2905-2913. [PMID: 29689130 DOI: 10.1111/ajt.14894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 01/25/2023]
Abstract
This work investigated, in two large cohorts of French renal transplants treated with tacrolimus, the influence of donor and recipient ABCB1, CYP3A4, and CYP3A5 genotypes on the risk of allograft loss. A discovery and a replication population of 330 and 369 adult renal transplant patients, each from a different transplantation center and all receiving a tacrolimus-based immunosuppressive regimen, were retrospectively genotyped. The influence of genetic factors and other known risk factors on allograft loss was investigated using multivariate Cox proportional hazard analyses. The existence of previous transplantations (per unit HR = 1.89 [1.10-3.26] P = .0216) and the donor ABCB1 c.1199GA/AA genotype (GA/AAvs GG: HR = 3.22 [1.14-9.09], P = .0288) were associated with an increased risk of allograft loss in the discovery cohort and with graft loss due to humoral rejection in the replication cohort (per unit HR = 2.26 [1.34-3.81], P = .00229; GA/AAvs GG HR = 3.42 [1.28-9.16], P = .0142). Genotyping the donor for the ABCB1 c.1199 G>A (exon 11, rs2229109) allele may be of interest before prescribing tacrolimus to the recipient, although this polymorphism is rather rare and its effect may be limited to certain mechanisms of graft loss.
Collapse
Affiliation(s)
- Jean-Baptiste Woillard
- Department of Pharmacology and Toxicology, CHU Limoges, Limoges, France.,INSERM, UMR 1248, Limoges, France.,University of Limoges, Limoges, France
| | - Philippe Gatault
- CHRU Bretonneau, Service de néphrologie et Immunologie Clinique, Tours, France.,Université de Tours, Tours, France
| | - Nicolas Picard
- Department of Pharmacology and Toxicology, CHU Limoges, Limoges, France.,INSERM, UMR 1248, Limoges, France.,University of Limoges, Limoges, France
| | - Hélène Arnion
- INSERM, UMR 1248, Limoges, France.,University of Limoges, Limoges, France
| | - Dany Anglicheau
- Service de Néphrologie et Transplantation, Adulte Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Pierre Marquet
- Department of Pharmacology and Toxicology, CHU Limoges, Limoges, France.,INSERM, UMR 1248, Limoges, France.,University of Limoges, Limoges, France
| |
Collapse
|
39
|
Tron C, Lemaitre F, Verstuyft C, Petitcollin A, Verdier MC, Bellissant E. Pharmacogenetics of Membrane Transporters of Tacrolimus in Solid Organ Transplantation. Clin Pharmacokinet 2018; 58:593-613. [DOI: 10.1007/s40262-018-0717-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Iovino L, Taddei R, Bindi ML, Morganti R, Ghinolfi D, Petrini M, Biancofiore G. Clinical use of an immune monitoring panel in liver transplant recipients: A prospective, observational study. Transpl Immunol 2018; 52:45-52. [PMID: 30414446 DOI: 10.1016/j.trim.2018.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
Immunosuppressive therapy greatly contributed to making liver transplantation the standard treatment for end-stage liver diseases. However, it remains difficult to predict and measure the efficacy of pharmacological immunosuppression. Therefore, we used a panel of standardized, commonly available, biomarkers with the aim to describe their changes in the first 3 weeks after the transplant procedure and assess if they may help therapeutic drug monitoring in better tailoring the dose of the immunosuppressive drugs. We prospectively studied 72 consecutive patients from the day of liver transplant (post-operative day #0) until the post-operative day #21. Leukocytes, neutrophils, lymphocytes (CD4+, CD8+), natural killer cells, monocytes, immunoglobulins and tacrolimus serum levels were measured on peripheral blood (at day 0, 3, 7, 14, 21 after surgery). Patients who developed infections showed significantly higher CD64+ monocytes on post operative day #7. IgG levels were lower on post operative day #3 among patients who later developed infections. We also found that a sharp decrease in IgA from post operative day #0 to 3 (-226 mg/dL in the ROC curve analysis) strongly correlates with the onset of infections among HCV- patients. No specific markers of rejection emerged from the tested panel of markers. Our results show that some early changes in peripheral blood white cells and immunoglobulins may predict the onset of infections and may be useful in modulating the immunosuppressive therapy. However, a panel of commonly available, standardized biomarkers do not support in improving therapeutic drug monitoring ability to individualize immunosuppressive drugs dosing.
Collapse
Affiliation(s)
- Lorenzo Iovino
- Hematology Division, University School of Medicine, Via Roma, 56100 Pisa, Italy; Program in Immunology, Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle (WA), USA
| | - Riccardo Taddei
- Transplant Anesthesia and Critical Care, Azienda Ospedaliera Universitaria Pisana, University School of Medicine, Via Paradisa, 2, 56100 Pisa, Italy
| | - Maria Lucia Bindi
- Transplant Anesthesia and Critical Care, Azienda Ospedaliera Universitaria Pisana, University School of Medicine, Via Paradisa, 2, 56100 Pisa, Italy
| | - Riccardo Morganti
- Department of Clinical and Experimental Medicine, University School of Medicine, Via Roma, 56100 Pisa, Italy
| | - Davide Ghinolfi
- Liver Transplant Surgery, Azienda Ospedaliera Universitaria Pisana, University School of Medicine, Via Paradisa, 2, 56100 Pisa, Italy
| | - Mario Petrini
- Hematology Division, University School of Medicine, Via Roma, 56100 Pisa, Italy
| | - Gianni Biancofiore
- Transplant Anesthesia and Critical Care, Azienda Ospedaliera Universitaria Pisana, University School of Medicine, Via Paradisa, 2, 56100 Pisa, Italy.
| |
Collapse
|
41
|
Campagne O, Mager DE, Tornatore KM. Population Pharmacokinetics of Tacrolimus in Transplant Recipients: What Did We Learn About Sources of Interindividual Variabilities? J Clin Pharmacol 2018; 59:309-325. [PMID: 30371942 DOI: 10.1002/jcph.1325] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/18/2018] [Indexed: 12/24/2022]
Abstract
Tacrolimus, a calcineurin inhibitor, is a common immunosuppressant prescribed after organ transplantation and has notable inter- and intrapatient pharmacokinetic variability. The sources of variability have been investigated using population pharmacokinetic modeling over the last 2 decades. This article provides an updated synopsis on published nonlinear mixed-effects analyses developed for tacrolimus in transplant recipients. The objectives were to establish a detailed overview of the current data and to investigate covariate relationships determined by the models. Sixty-three published analyses were reviewed, and data regarding the study design, modeling approach, and resulting findings were extracted and summarized. Most of the studies investigated tacrolimus pharmacokinetics in adult and pediatric renal and liver transplants after administration of the immediate-release formulation. Model structures largely depended on the study sampling strategy, with ∼50% of studies developing a 1-compartment model using trough concentrations and a 2-compartment model with delayed absorption from intensive sampling. The CYP3A5 genotype, as a covariate, consistently impacted tacrolimus clearance, and dosing adjustments were required to achieve similar drug exposure among patients. Numerous covariates were identified as sources of interindividual variability on tacrolimus pharmacokinetics with limited consistency across these studies, which may be the result of the study designs. Additional analyses are required to further evaluate the potential impact of these covariates and the clinical implementation of these models to guide tacrolimus dosing recommendations. This article may be useful for guiding the design of future population pharmacokinetic studies and provides recommendations for the selection of an existing optimal model to individualize tacrolimus therapy.
Collapse
Affiliation(s)
- Olivia Campagne
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA.,Faculty of Pharmacy, Universités Paris Descartes-Paris Diderot, Paris, France
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Kathleen M Tornatore
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Immunosuppressive Pharmacology Research Program, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
42
|
Wu Z, Xu Q, Qiu X, Xu L, Jiao Z, Zhang M, Zhong M. FKBP1A rs6041749 polymorphism is associated with allograft function in renal transplant patients. Eur J Clin Pharmacol 2018; 75:33-40. [PMID: 30215102 DOI: 10.1007/s00228-018-2546-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
Abstract
AIM To investigate the potential impact of single-nucleotide polymorphisms (SNPs) in the FK506-binding protein (FKBP)-calcineurin (CaN)-nuclear factor of activated T cells (NFAT) signaling pathway on the efficacy and safety of tacrolimus (TAC) in Chinese renal transplant patients. METHODS Seventy-seven tag SNPs were detected in 146 patients who were on TAC-based maintenance immunosuppression and who followed up for at least 2 years. The relationships of these polymorphisms with clinical outcomes such as acute rejection, acute nephrotoxicity, pneumonia, and estimated glomerular filtration rate (eGFR) were explored. For the FKBP1A rs6041749 polymorphism, which has a significant association with renal function over time, a preliminary functional analysis was performed using a dual-luciferase reporter gene system. RESULTS The patients with FKBP1A rs6041749 TT genotype had a more stable eGFR level than CC and CT carriers (P = 2.08 × 10-8) during the 2 years following transplantation. Dual-luciferase reporter assay results showed that the rs6041749 C variant could enhance the relative luciferase activity compared with the T variant, which indicated that the rs6041749 C allele may increase the FKBP1A gene transcription. In addition, we did not find any association between these genetic variants and the risk of acute rejection, acute nephrotoxicity, and pneumonia in renal transplant patients receiving TAC-based immunosuppression. CONCLUSIONS FKBP1A rs6041749 C allele carriers are at higher risk for eGFR deterioration. The variant might serve as a biomarker to predict allograft function in renal transplant patients.
Collapse
Affiliation(s)
- Zhuo Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | - Qinxia Xu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China.
| | - Luyang Xu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | - Zheng Jiao
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | - Ming Zhang
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| |
Collapse
|
43
|
The Effect of Immunosuppressive Drugs on MDSCs in Transplantation. J Immunol Res 2018; 2018:5414808. [PMID: 30057917 PMCID: PMC6051033 DOI: 10.1155/2018/5414808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of innate immune cells that regulates both innate and adaptive immune responses. In recent years, MDSCs were shown to play an important negative regulatory role in transplant immunology even upstream of regulatory T cells. In certain cases, MDSCs are closely involved in transplantation immune tolerance induction and maintenance. It is known that some immunosuppressant drugs negatively regulate MDSCs but others have positive effects on MDSCs in different transplant cases. We herein summarized our recent insights into the regulatory roles of MDSCs in transplantation specially focusing on the effects of immunosuppressive drugs on MDSCs and their mechanisms of action. Studies on the effects of immunosuppressive drugs on MDSCs will significantly expand our understanding of immunosuppressive drugs on immune regulatory cells in transplantation and offer new insights into transplant tolerance. We hope to emphasize our concern for the negative effects of immunosuppressive agents on MDSCs, which may potentially attenuate the immune tolerance induction in transplanted recipients.
Collapse
|
44
|
Raimondi A, Colombo F, Pintarelli G, Morosi C, Renne SL, Frezza AM, Saponara M, Dei Tos AP, Mazzocchi A, Provenzano S, Casali PG, Stacchiotti S. Prolonged activity and toxicity of sirolimus in a patient with metastatic renal perivascular epithelioid cell tumor: a case report and literature review. Anticancer Drugs 2018; 29:589-595. [PMID: 29668485 DOI: 10.1097/cad.0000000000000634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Perivascular epithelioid cell tumor (PEComa) is a family of mesenchymal tumors. Conventional chemotherapy has little activity in this disease, but case reports are available on the activity of mammalian target of rapamycin inhibitors (e.g. sirolimus and temsirolimus). Pharmacokinetic assays of sirolimus are available as this drug has a precise therapeutic window and blood levels might be influenced by CYP3A4 polymorphisms and drug interactions. We report on a case of a patient with metastatic, progressive PEComa who started sirolimus at a dose of 5 mg/day with evidence of grade (G) 3 mucositis, G2 thrombocytopenia, and G1 leucopenia 10 days after the treatment started, in absence of concomitant medications or prohibited food assumption. Elevated sirolimus blood levels were detected (156.8 ng/ml). Sirolimus was stopped, and toxicity resolved in 5 weeks. Computed tomography scan 2 months after the treatment started showed a partial response (RECIST). After toxicity resolution, the patient restarted sirolimus at a dose of 1 mg/day, with blood levels in the range of 10-20 ng/ml. Tumor response was confirmed and maintained, and the patient is still under treatment 18 months later, with no additional adverse effects. Genetic analysis of five selected polymorphisms (rs2740574, rs776746, rs1128503, rs2032582, and rs1045642) in drug metabolism enzymes and transporters did not provide a clear explanation of the observed unusual pharmacokinetic. This case confirms the activity of mammalian target of rapamycin inhibitors in PEComa and strengthens the importance of pharmacokinetic drug blood levels monitoring in patients treated with sirolimus. In our patient, after dose adjustment, sirolimus could be restarted with a prolonged clinical benefit and no additional toxicity.
Collapse
Affiliation(s)
- Alessandra Raimondi
- Departments of Medicine, Adult Mesenchymal and Rare Tumor Medical Oncology Unit
| | | | | | | | - Salvatore L Renne
- Diagnostic Pathology and Laboratory Medicine, Soft Tissue, Bone and Pediatric Pathology Unit
| | - Anna M Frezza
- Departments of Medicine, Adult Mesenchymal and Rare Tumor Medical Oncology Unit
| | - Maristella Saponara
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna
| | - Angelo P Dei Tos
- Department of Pathology, Treviso General Hospital, Treviso, Italy
| | - Arabella Mazzocchi
- Immunohematology and Transfusion Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| | | | - Paolo G Casali
- Departments of Medicine, Adult Mesenchymal and Rare Tumor Medical Oncology Unit
| | - Silvia Stacchiotti
- Departments of Medicine, Adult Mesenchymal and Rare Tumor Medical Oncology Unit
| |
Collapse
|
45
|
Yang L, de Winter BCM, van Schaik RHN, Xie RX, Li Y, Andrews LM, Shuker N, Bahmany S, Koch B, van Gelder T, Hesselink DA. CYP3A5 and ABCB1 polymorphisms in living donors do not impact clinical outcome after kidney transplantation. Pharmacogenomics 2018; 19:895-903. [PMID: 29991328 DOI: 10.2217/pgs-2018-0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: To investigate the association between donor CYP3A5 and ABCB1 polymorphisms and tacrolimus (Tac)-induced nephrotoxicity and renal function in kidney transplant recipients. Methods: The CYP3A5 6986A>G and ABCB1 3435C>T polymorphisms were determined in 237 recipients and donors. Results: There was no significant association between Tac-related nephrotoxicity and donor CYP3A5 and ABCB1 genotype. The donor ABCB1 3435C>T polymorphism was associated with estimated glomerular filtration rate on day 7 and month 1. The combined donor–recipient ABCB1 genotype (3435C>T polymorphism) was significantly related with estimated glomerular filtration rate on day 3 and 7 in univariate analysis. However, these differences were no longer statistically significant in multivariate analysis. Conclusion: A genetic analysis of ABCB1 and CYP3A5 of kidney transplant donors is not helpful to improve renal transplant outcomes.
Collapse
Affiliation(s)
- Lin Yang
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, PR China
| | - Brenda CM de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ron HN van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rui-Xiang Xie
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, PR China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, PR China
| | - Louise M Andrews
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nauras Shuker
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Soma Bahmany
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Birgit Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Teun van Gelder
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Nephrology & Transplantation, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology & Transplantation, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
46
|
Campagne O, Mager DE, Brazeau D, Venuto RC, Tornatore KM. Tacrolimus Population Pharmacokinetics and Multiple CYP3A5 Genotypes in Black and White Renal Transplant Recipients. J Clin Pharmacol 2018; 58:1184-1195. [PMID: 29775201 DOI: 10.1002/jcph.1118] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/13/2018] [Indexed: 01/08/2023]
Abstract
Tacrolimus exhibits inter-patient pharmacokinetic variability attributed to CYP3A5 isoenzymes and the efflux transporter, P-glycoprotein. Most black renal transplant recipients require higher tacrolimus doses compared to whites to achieve similar troughs when race-adjusted recommendations are used. An established guideline provides tacrolimus genotype dosing recommendations based on CYP3A5*1(W/T) and loss of protein function variants: CYP3A5*3 (rs776746), CYP3A5*6 (rs10264272), CYP3A5*7 (rs41303343) and may provide more comprehensive race-adjusted dosing recommendations. Our objective was to develop a tacrolimus population pharmacokinetic model evaluating demographic, clinical, and genomic factors in stable black and white renal transplant recipients. A secondary objective investigated race-based tacrolimus regimens and genotype-specific dosing. Sixty-seven recipients receiving oral tacrolimus and mycophenolic acid ≥6 months completed a 12-hour pharmacokinetic study. CYP3A5*3,*6,*7 and ABCB1 1236C>T, 2677G>T/A, 3435C>T polymorphisms were characterized. Patients were classified as extensive, intermediate, and poor metabolizers using a novel CYP3A5*3*6*7 metabolic composite. Modeling and simulation was performed with computer software (NONMEM 7.3, ICON Development Solutions; Ellicott City, Maryland). A 2-compartment model with first-order elimination and absorption with lag time best described the data. The CYP3A5*3*6*7 metabolic composite was significantly associated with tacrolimus clearance (P value < .05), which was faster in extensive (mean: 45.0 L/hr) and intermediate (29.5 L/hr) metabolizers than poor metabolizers (19.8 L/hr). Simulations support CYP3A5*3*6*7 genotype-based tacrolimus dosing to enhance general race-adjusted regimens, with dose increases of 1.5-fold and 2-fold, respectively, in intermediate and extensive metabolizers for comparable exposures to poor metabolizers. This model offers a novel approach to determine tacrolimus dosing adjustments that maintain comparable therapeutic exposure between black and white recipients with different CYP3A5 genotypes.
Collapse
Affiliation(s)
- Olivia Campagne
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA.,Faculty of Pharmacy, Universités Paris Descartes-Paris Diderot, Paris, France
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Daniel Brazeau
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, USA
| | - Rocco C Venuto
- Erie County Medical Center, Division of Nephrology, Department of Medicine, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kathleen M Tornatore
- Erie County Medical Center, Division of Nephrology, Department of Medicine, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Immunosuppressive Pharmacology Research Program, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
47
|
Yang J, Claas FHJ, Eikmans M. Genome-wide association studies in kidney transplantation: Advantages and constraints. Transpl Immunol 2018; 49:1-4. [PMID: 29704558 DOI: 10.1016/j.trim.2018.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 01/03/2023]
Abstract
Since the discovery of the human leukocyte antigen (HLA) system, the role of HLA molecules in the field of transplantation has been appreciated: better matching leads to better graft function. Since then, the association of other genetic polymorphisms with clinical outcome has been investigated in many studies. Genome-wide association studies (GWAS) represent a powerful tool to identify causal genetic variants, by simultaneously analyzing millions of single nucleotide polymorphisms scattered across the genome. GWAS in transplantation may indeed be useful to reveal novel markers that may potentially be involved in the mechanism of allograft rejection and graft failure. However, the relevance of GWAS for risk stratification or donor selection for an individual patient is limited as is already reflected by the fact that many parameters, significant in one study, cannot be confirmed in another one.
Collapse
Affiliation(s)
- Jianxin Yang
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans H J Claas
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Eikmans
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
48
|
Cascorbi I. The Pharmacogenetics of Immune-Modulating Therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:275-296. [PMID: 29801578 DOI: 10.1016/bs.apha.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunosuppressive drugs are a prerequisite in organ transplantation to prevent rejection and are also widely used in inflammatory diseases such as inflammatory bowel disease (IBD) or also in some hematologic malignancies-depending on the mode of action. For thiopurine analogs the polymorphic thiopurine S-methyltransferase (TPMT) was early detected to be associated with thiopurine-induced leukopenia; recent studies identified also NUDT15 to be related to this severe side effect. For drugs like methotrexate and mycophenolate mofetil a number of ADME genes like UDP-glucuronosyltransferases (UGTs) and ABC efflux transporters were investigated, however, with partly contradicting results. For calcineurin inhibitors like cyclosporine and in particular tacrolimus however, cytochrome P450 3A4 and 3A5 variants were found to significantly affect the pharmacokinetics. Genetic variants in genes encoding relevant pharmacodynamic proteins, however, lacked compelling evidence to affect the clinical outcome. This chapter reviews the current evidence on the association of pharmacogenetic traits to dose finding and clinical outcome of small-molecule immunosuppressants. Moreover this chapter critically summarizes suitability to apply pharmacogenetics in clinical practice in order to optimize immunosuppressant therapy.
Collapse
Affiliation(s)
- Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
49
|
Ghadimi M, Dashti-Khavidaki S, Shahali M, Gohari M, Khatami MR, Alamdari A. Tacrolimus interaction with oral oestrogen in kidney transplant recipients: A case-control study. J Clin Pharm Ther 2018; 43:513-518. [DOI: 10.1111/jcpt.12672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Affiliation(s)
- M. Ghadimi
- Faculty of Pharmacy, Resident of Clinical Pharmacy; Tehran University of Medical Sciences; Tehran Iran
- Resident of Clinical Pharmacy; Liver Transplantation Research Center; Imam Khomeini Hospital Complex; Tehran University of Medical Sciences; Tehran Iran
| | - S. Dashti-Khavidaki
- Nephrology Research Center; Tehran University of Medical Sciences; Tehran Iran
- Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - M. Shahali
- Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - M. Gohari
- Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - M.-R. Khatami
- Nephrology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - A. Alamdari
- Nephrology Research Center; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
50
|
Regenerative Medicine Applications of Mesenchymal Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1089:115-141. [PMID: 29767289 DOI: 10.1007/5584_2018_213] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major research challenge is to develop therapeutics that assist with healing damaged tissues and organs because the human body has limited ability to restore the majority of these tissues and organs to their original state. Tissue engineering (TE) and regenerative medicine (RM) promises to offer efficient therapeutic biological strategies that use mesenchymal stem cells (MSCs). MSCs possess the capability for self-renewal, multilineage differentiation, and immunomodulatory properties that make them attractive for clinical applications. They have been extensively investigated in numerous preclinical and clinical settings in an attempt to overcome their challenges and promote tissue regeneration and repair. This review explores the exciting opportunities afforded by MSCs, their desirable properties as cellular therapeutics in RM, and implicates their potential use in clinical practice. Here, we attempt to identify challenges and issues that determine the clinical efficacy of MSCs as treatment for skeletal and non-skeletal tissues.
Collapse
|