1
|
Yang HY, Wen KC, Chiu PF, Chen WC, Chang TH, Chang CJ, Hsu WH, Chen SC. Environmental risk factors for chronic kidney disease of non-traditional causes in tropical coastal areas: A systematic review and meta-analysis. PLoS Negl Trop Dis 2025; 19:e0013056. [PMID: 40327660 PMCID: PMC12054882 DOI: 10.1371/journal.pntd.0013056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Chronic kidney disease of non-traditional etiology (CKDnt) is a neglected tropical disease prevalent in tropical coastal areas. First reported in the 1990s along the Pacific coast of Central America, its spread to other regions has raised concerns about environmental risk factors, particularly heat stress. However, the relationship between elevated ambient temperatures and CKDnt remains uncertain. The study aimed to identify risk factors for chronic kidney disease (CKD) in regions affected by the CKDnt epidemic and to investigate the relationship between ambient temperatures and CKD risk. METHODS We conducted a systematic review and meta-regression of CKD in agricultural regions where CKDnt is endemic, covering studies published between January 2010 and October 2023, followed by a meta-analysis to estimate the effect of traditional and non-traditional risk factors for CKD. A meta-regression was used to examine the relationship between geological latitude and ambient temperature on CKD. RESULTS We screened 1,327 articles, with 28 articles meeting the inclusion criteria. The pooled OR for CKD in the agricultural population compared to the non-agricultural population was 2.12 (95% CI 1.75‒2.58, I2 = 85.1%). Significant non-traditional kidney disease risk factors for CKD included drinking well water (OR = 2.75, 95% CI 2.04‒3.70), malaria (OR = 2.64, 95% CI 1.44‒4.83), low water intake (pooled OR = 2.06, 95% CI 1.17‒3.63), water sources (pooled OR = 1.50, 95% CI 1.11‒2.02), agrochemicals (OR = 1.50, 95% CI 1.26‒1.77), heat exposure (OR = 1.46, 95% CI 1.37‒1.55), alcohol consumption (OR = 1.27, 95% CI 1.11‒1.46), and low BMI. The meta-regression indicates that geographic latitude and temperature are statistically significant moderators of CKD risk, with a higher risk observed in studies conducted at lower latitudes closer to the equator (QM-test = 10.11, df = 1, P < 0.05). Temperature is a significant moderator (QM-test = 44.36, df = 1, P = 0.04) with 1°C increase in the CKDnt epidemic region associated with an 8% increase in CKD risk (OR = 1.08, 95% CI 1.01-1.16). CONCLUSION CKDnt is a multifactorial tropical disease driven by heat exposure, infectious diseases, physically demanding work without adequate hydration, water contamination, and agrochemical exposure. Addressing these factors is essential for developing effective occupational health policies and tailored prevention programs to reduce CKDnt among high-risk agricultural populations in tropical endemic regions.
Collapse
Affiliation(s)
- Hsiao-Yu Yang
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
- Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan
- Population Health Research Center, National Taiwan University, Taipei, Taiwan
- Department of Family Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Chieh Wen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ping-Fang Chiu
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
- Department of Post Baccalaureate, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Chin Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
- Department of Post Baccalaureate, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Teng-Hsiang Chang
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Che-Jui Chang
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
- Department of Family Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Hung Hsu
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Family Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Shin-Chien Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Occupational Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| |
Collapse
|
2
|
Wang W, Zhang X, Zhang M, Zhang F, Li C, Yang C, Zhao Z, Wang J, Wang F, Li P, Zhou Y, Wang L, Zhang L. Extreme temperature events, "Life's Essential 8", and prevalence of chronic kidney disease: A nationally representative surveillance in China. ENVIRONMENT INTERNATIONAL 2024; 194:109176. [PMID: 39657396 DOI: 10.1016/j.envint.2024.109176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
The population disease burden caused by extreme temperature events has been increasing. However, research on the long-term effects of extreme temperature events on chronic kidney disease (CKD), as well as the combined effects with individual behaviors and metabolic factors is still lacking. Based on 176,874 participants from the most recent nationally representative surveillance on CKD and validated high spatial resolution (0.1°) remote-sensing products, this study investigated the associations between extreme temperature events in the preceding five years before investigation and CKD (defined by reduced renal function or albuminuria) prevalence. We also investigated the associations between "Life's Essential 8", a recognized scale to evaluate overall cardiovascular health (CVH) based on individual behaviors and metabolic indicators and CKD prevalence, as well as its combined effects with extreme temperature events. One additional day of heat waves and cold spells per year was associated with increased ORs of CKD [1.10 (95 % CI: 1.08, 1.11) and 1.07 (95 % CI: 1.05, 1.09), respectively]. Meanwhile, per standard deviation (SD) increment in health behavior score (SD = 16.1), health factor score (SD = 18.4), and overall CVH score (SD = 12.4) were associated with decreased ORs of CKD [0.92 (95 % CI: 0.90, 0.93), 0.60 (95 % CI: 0.59, 0.61), and 0.64 (95 % CI: 0.63, 0.65, respectively]. Relative to higher heat wave & lower CVH score group, the ORs of CKD were 0.87 (95 % CI: 0.84, 0.90), 0.51 (95 % CI: 0.48, 0.53), and 0.42 (95 % CI: 0.40, 0.44) in lower & lower, higher & higher, and lower & higher group, respectively. Our findings underscore the importance of considering the synergistic effects of individual behavioral and metabolic factors for strategies to mitigate the impacts of climate change on CKD.
Collapse
Affiliation(s)
- Wanzhou Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, People's Republic of China; National Institute of Health Data Science at Peking University, Beijing 100191, People's Republic of China; Center for Digital Health and Artificial Intelligence, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Xiao Zhang
- National Center for Chronic and Noncommunicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mei Zhang
- National Center for Chronic and Noncommunicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Feifei Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, People's Republic of China; National Institute of Health Data Science at Peking University, Beijing 100191, People's Republic of China; Center for Digital Health and Artificial Intelligence, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Chun Li
- National Center for Chronic and Noncommunicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Chao Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, People's Republic of China; Advanced Institute of Information Technology, Peking University, Hangzhou 311215, People's Republic of China; Center for Digital Health and Artificial Intelligence, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Zhenping Zhao
- National Center for Chronic and Noncommunicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jinwei Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, People's Republic of China
| | - Fulin Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, People's Republic of China; National Institute of Health Data Science at Peking University, Beijing 100191, People's Republic of China
| | - Pengfei Li
- Advanced Institute of Information Technology, Peking University, Hangzhou 311215, People's Republic of China
| | - Ying Zhou
- Center for Smart and Healthy Buildings, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Limin Wang
- National Center for Chronic and Noncommunicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| | - Luxia Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, People's Republic of China; National Institute of Health Data Science at Peking University, Beijing 100191, People's Republic of China; Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, People's Republic of China; Advanced Institute of Information Technology, Peking University, Hangzhou 311215, People's Republic of China; Center for Digital Health and Artificial Intelligence, Peking University First Hospital, Beijing 100034, People's Republic of China.
| |
Collapse
|
3
|
Wu JJ, Tung CW, Lin CW, Huang JC, Yang JT, Tsai YH, Peng YS. Serum Osmolality as a Predictor of Renal Function Decline: A Retrospective Cohort Study. J Clin Med 2024; 13:6505. [PMID: 39518643 PMCID: PMC11545865 DOI: 10.3390/jcm13216505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background and Aims: Dehydration is a prevalent and costly healthcare concern, linked to heightened risks of acute kidney injury and in-hospital mortality. Despite its significance, limited evidence exists regarding its prevalence and correlation with renal function decline in apparently healthy individuals. This retrospective cohort study aimed to investigate the prevalence and association of dehydration with renal function decline and the development or progression of chronic kidney disease (CKD) in the general population. Methods: The medical records of subjects undergoing annual health check-ups from 2016 to 2019 at a single center in Taiwan were analyzed, and those with CKD stage V, insufficient data, or an increased estimated glomerular filtration rate (eGFR) were excluded. Serum osmolality, eGFR, and relevant parameters were measured. Logistic regression and Kaplan-Meier analyses were used to assess associations between osmolality and CKD-related outcomes. Results: Among the 4449 eligible subjects, those in the higher osmolality quartiles had an elevated risk of CKD or CKD progression. Multivariate analyses identified age, systolic blood pressure, serum osmolality, uric acid, proteinuria, and a history of diabetes as independent risk factors, with high-density lipoprotein being protective. Cumulative incidence curves demonstrated a significant increase in the risk of CKD with increasing osmolality levels. Restricted cubic spline analyses confirmed a nonlinear relationship between osmolality and CKD risk. Conclusions: Elevated serum osmolality independently predicted renal function decline and CKD development in apparently healthy individuals, and this effect persisted after adjusting for established risk factors. Our findings underscore the importance of addressing dehydration as a modifiable risk factor for CKD.
Collapse
Affiliation(s)
- Jheng-Jia Wu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (J.-J.W.); (J.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Chun-Wu Tung
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Chang Gung Medical Education Research Centre, Taoyuan 33302, Taiwan
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 61363, Taiwan
| | - Chun-Wei Lin
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Jui-Chu Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (J.-J.W.); (J.-C.H.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Yunlin 638, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Chiayi 613, Taiwan
| | - Jen-Tsung Yang
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yuan-Hsiung Tsai
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Yun-Shing Peng
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (J.-J.W.); (J.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| |
Collapse
|
4
|
Hasbal NB, Bakir CN, Incir S, Siriopol D, Sanchez-Lozada LG, Lanaspa MA, Johnson RJ, Kanbay M. A study on the early metabolic effects of salt and fructose consumption: the protective role of water. Hypertens Res 2024; 47:1797-1810. [PMID: 38750219 PMCID: PMC11224018 DOI: 10.1038/s41440-024-01686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/22/2024] [Accepted: 03/17/2024] [Indexed: 07/06/2024]
Abstract
Increasing serum osmolality has recently been linked with acute stress responses, which over time can lead to increased risk for obesity, hypertension, and other chronic diseases. Salt and fructose are two major stimuli that can induce acute changes in serum osmolality. Here we investigate the early metabolic effects of sodium and fructose consumption and determine whether the effects of sodium or fructose loading can be mitigated by blocking the change in osmolality with hydration. Forty-four healthy subjects without disease and medication were recruited into four groups. After overnight fasting, subjects in Group 1 drank 500 mL of salty soup, while those in Group 2 drank 500 mL of soup without salt for 15 min. Subjects in Group 3 drank 500 mL of 100% apple juice in 5 min, while subjects in Group 4 drank 500 mL of 100% apple juice and 500 mL of water in 5 min. Blood pressure (BP), plasma sodium, and glucose levels were measured every 15 min in the first 2 h. Serum and urine osmolarity, serum uric acid, cortisol, fibroblast growth factor 21 (FGF21), aldosterone, adrenocorticotropic hormone (ACTH) level, and plasma renin activity (PRA) were measured at the baseline and 2 h. Both acute intake of salt or fructose increased serum osmolality (maximum ∼4 mOsm/L peaking at 75 min) associated with a rise in systolic and diastolic BP, PRA, aldosterone, ACTH, cortisol, plasma glucose, uric acid, and FGF21. Salt tended to cause greater activation of the renin-angiotensin-system (RAS), while fructose caused a greater rise in glucose and FGF21. In both cases, hydration could prevent the osmolality and largely block the acute stress response. Acute changes in serum osmolality can induce remarkable activation of the ACTH-cortisol, RAS, glucose metabolism, and uric acid axis that is responsive to hydration. In addition to classic dehydration, salt, and fructose-containing sugars can activate these responses. Staying well hydrated may provide benefits despite exposure to sugar and salt. More studies are needed to investigate whether hydration can block the chronic effects of sugar and salt on disease.
Collapse
Affiliation(s)
- Nuri Baris Hasbal
- Division of Nephrology, Department of Internal Medicine, Koc University School of Medicine, İstanbul, Turkey.
| | | | - Said Incir
- Department of Biochemistry, Koc University School of Medicine, Istanbul, Turkey
| | - Dimitrie Siriopol
- Department of Nephrology, "Saint John the New" County Hospital, Stefan cel Mare University, Suceava, Romania
| | - Laura G Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología "Ignacio Chavez", Mexico City, Mexico
| | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Richard J Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Mehmet Kanbay
- Division of Nephrology, Department of Internal Medicine, Koc University School of Medicine, İstanbul, Turkey
| |
Collapse
|
5
|
Li S, Xiao X, Zhang X. Association between plain water intake and risk of hypertension: longitudinal analyses from the China Health and Nutrition Survey. Front Public Health 2024; 11:1280653. [PMID: 38269373 PMCID: PMC10807041 DOI: 10.3389/fpubh.2023.1280653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Objective This study aimed to investigate the prospective association between plain water intake and the risk of hypertension based on a longitudinal cohort study in China. Methods Logistic regression analyses were performed to investigate the association between plain water intake and hypertension. Restricted cubic spline model was use to evaluate non-linear relationship between plain water intake and hypertension. Subgroup analyses and interaction tests were conducted based on age, gender, residence site, educational level and tea consumption. Results A total of 3,823 participants (46.5% male) with a mean age of 46.8 years from the China Health and Nutrition Survey (CHNS) were assessed and divided into 4 groups based on plain water intake. There was a decreasing trend of hypertension risk as plain water intake increased. Logistic regression analyses indicated that participants consuming plain water ≥6 cups/day (1 cup ≈ 240 mL) had significantly lower risk of hypertension compared to those consuming ≤1 cup/day, even after adjustments for covariates. Restricted cubic spline curve revealed that participants consuming about 6-8 cups/day were at lower risk for developing hypertension. In subgroup analyses, the results were generally consistent with the main findings in participants who aged less than 60 years, who were male, who attained higher education and who were low tea consumers. Conclusion Our findings suggested that there might be a favorable effect of plain water intake on preventing hypertension in a large cohort of Chinese adults from the general population. Drinking adequate amounts of plain water (about 6-8 cups/day) may reduce the risk of hypertension, particularly in the selected population. Further interventional studies are required to investigate the potential effect of increasing plain water intake on blood pressure regulation.
Collapse
Affiliation(s)
| | | | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Shafeek F, El-Kashef DH, Abu-Elsaad N, Ibrahim T. Epigallocatechin-3-gallate in combination with corticosteroids mitigates heat stress-induced acute kidney injury through modulating heat shock protein 70 and toll-like receptor 4-dependent pathways. Phytother Res 2023; 37:3559-3571. [PMID: 37092712 DOI: 10.1002/ptr.7834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/25/2023]
Abstract
Recently, recurrent heat stress (HS) and dehydration have been exhibited to give rise to kidney disease epidemic in hot regions. The current study was carried out to estimate a possible renoprotective effect of dexamethasone (Dexa) and epigallocatechin-3-gallate (EGCG) as a heat shock protein (HSP)-70 inhibitor on HS-induced nephropathy. In total, five groups of rats were used: control group, HS group (exposed to heat for 40 min), Dexa+HS group (rats were injected with Dexa i.p.15 mg/kg/day for 3 days followed by HS), EGCG+HS group (rats received EGCG 100 mg/kg/day, orally, for 7 days followed by HS), and EGCG+ Dexa +HS group (rats received EGCG 100 mg/kg/day, orally, for 7 days and injected Dexa as described along the last 3 days followed by HS). Kidney sections were stained with H&E and scored for tubular injury. A marked increase in creatinine, urea, malondialdehyde (MDA), monocyte chemoattractant protein (MCP)-1, HSP-70, nuclear factor kappa B (NF-κB), toll-like receptor 4 (TLR-4) and Caspase-3 expression was observed after HS induction (p < 0.001). Treatment with EGCG combined with Dexa notably reduced tubular injury, MCP-1, HSP-70, NF-κB, and TLR-4 levels (p < 0.001). Moreover, it increased IL-10, antioxidant capacity and Bcl-2 expression levels in the kidney (p < 0.001). This renoprotective impact might be attributed to anti-inflammatory, antioxidant, and anti-apoptotic mechanisms besides interfering with TLR-4-mediated NF-κB activation pathway.
Collapse
Affiliation(s)
- Faten Shafeek
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Mansoura University, Mansoura, Egypt
| | - Dalia H El-Kashef
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Mansoura University, Mansoura, Egypt
| | - Nashwa Abu-Elsaad
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Mansoura University, Mansoura, Egypt
| | - Tarek Ibrahim
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Watts JA, Arroyo JP. Rethinking Vasopressin: New Insights into Vasopressin Signaling and Its Implications. KIDNEY360 2023; 4:1174-1180. [PMID: 37357355 PMCID: PMC10476687 DOI: 10.34067/kid.0000000000000194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Vasopressin is a highly conserved peptide hormone that has been traditionally associated with water homeostasis. There is accumulating evidence in both humans and animal models that vasopressin is implicated in the regulation of metabolism. This review focuses on the effects that vasopressin exerts on the regulation of glucose and fatty acids with a particular emphasis on the potential repercussions of metabolic dysregulation in kidney disease.
Collapse
Affiliation(s)
- Jason A. Watts
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Juan Pablo Arroyo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
8
|
Wang S, Zhao D, Yang T, Deng B, Sun J, Gu L, Wang H, Wang L. Association of serum osmolality with all-cause and cardiovascular mortality in US adults: A prospective cohort study. Nutr Metab Cardiovasc Dis 2023; 33:844-852. [PMID: 36710117 DOI: 10.1016/j.numecd.2023.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS The association between serum osmolality, an effective indicator of body hydration status, and long-term mortality in the general population remains undetermined. The present study aimed to investigate the association of serum osmolality with long-term all-cause and cardiovascular mortality among adults in the United States. METHODS AND RESULTS This cohort study used data from the National Health and Nutrition Examination Survey (NHANES) 2007-2014. Participants were linked to National Death Index mortality data from the survey date through December 31, 2019. Cox proportional hazards regression model was used to calculate hazard ratios (HRs) and 95% CIs, and restricted cubic spline (RCS) regression was conducted. A total of 18312 US adults were included. During a median follow-up of 8.7 years, 1353 total deaths occurred, including 379 cardiovascular deaths. After multivariable adjustments, compared with the 3rd quartile (Q3) of serum osmolality, participants in the 1st (Q1) and 4th (Q4) quartiles were at a significantly higher risk of all-cause mortality (HR 1.41 [95% CI, 1.14-1.75] and 1.29 [95% CI, 1.04-1.61], respectively). RCS revealed a nonlinear relationship of serum osmolality to all-cause and cardiovascular mortality, with an inflection point of 278 mmol/kg. CONCLUSION In the nationally representative cohort of US adults, serum osmolality was nonlinearly associated with all-cause and cardiovascular mortality. The risk of mortality was lowest around an osmolality of 278 mmol/kg. These findings suggest the importance of serum osmolality management for long-term health outcomes.
Collapse
Affiliation(s)
- Sibo Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Di Zhao
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Tongtong Yang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Bo Deng
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Jiateng Sun
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Lingfeng Gu
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Liansheng Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China.
| |
Collapse
|
9
|
Winchester LJ, Hooper AL, Kerch CJ. Ease of restroom access influences fluid consumption habits and health in classroom teachers. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2023; 29:386-391. [PMID: 35296215 DOI: 10.1080/10803548.2022.2053346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objectives. There are rising concerns about the health of classroom teachers in the USA, including stress, hypertension and frequent urinary tract infections. Teacher working conditions are likely a contributor to their health concerns. Many teachers report that they cannot easily take a restroom break at work, and therefore they consume minimal water or other fluids. This study investigated the relationship between restroom access and fluid consumption and the prevalence of renal and cardiovascular health complications in classroom teachers. Methods. The responses of 844 teachers (92% women, 8% men; 65.1% between age 26 and 45 years) to an online survey about restroom accessibility, fluid consumption and health were analyzed using descriptive statistics, χ2 analyses and logistic regression. Results. Fifty-nine percent of teachers could not easily take a restroom break, and 54.7% consumed fewer than 2 cups of water per workday. Furthermore, 44.8% reported being pre-hypertensive and 4.9% reported being hypertensive. Teachers with insufficient restroom access were significantly more likely to report frequent urinary tract infections. Conclusions. This study demonstrates a relationship between restroom access, fluid consumption and renal/cardiovascular health in classroom teachers. Future research should directly investigate how teacher work environment impacts renal and cardiovascular health.
Collapse
|
10
|
Chen P, Reed G, Jiang J, Wang Y, Sunega J, Dong R, Ma Y, Esparham A, Ferrell R, Levine M, Drisko J, Chen Q. Pharmacokinetic Evaluation of Intravenous Vitamin C: A Classic Pharmacokinetic Study. Clin Pharmacokinet 2022; 61:1237-1249. [PMID: 35750958 PMCID: PMC9439974 DOI: 10.1007/s40262-022-01142-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Intravenous vitamin C (IVC) is used in a variety of disorders with limited supporting pharmacokinetic data. Herein we report a pharmacokinetic study in healthy volunteers and cancer participants with IVC doses in the range of 1-100 g. METHODS A pharmacokinetic study was conducted in 21 healthy volunteers and 12 oncology participants. Healthy participants received IVC infusions of 1-100 g; oncology participants received IVC infusions of 25-100 g. Serial blood and complete urine samples were collected pre-infusion and for 24 h post-infusion. Pharmacokinetic parameters were computed using noncompartmental methods. Adverse events were monitored during the study. RESULTS In both cohorts, IVC exhibited first-order kinetics at doses up to 75 g. At 100 g, maximum concentration (Cmax) plateaued in both groups, whereas area under the concentration-time curve (AUC) only plateaued in the healthy group. IVC was primarily excreted through urine. No saturation of clearance was observed; however, the mean 24-h total IVC excretion in urine for all doses was lower in oncology participants (89% of dose) than in healthy participants at 100 g (99%). No significant adverse events were observed; thus, maximum tolerated dose (MTD) was not reached. CONCLUSION IVC followed first-order pharmacokinetics up to 75 g and at up to 100 g had complete renal clearance in 24 h. IVC up to 100 g elicited no adverse effects or significant physiological/biochemical changes and appears to be safe. These data can be used to rectify existing misinformation and to guide future clinical trials. REGISTRATION ClinicalTrials.gov identifier number NCT01833351.
Collapse
Affiliation(s)
- Ping Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Greg Reed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Joyce Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health School of Public Health, University of Memphis, Memphis, TN, USA
| | - Yaohui Wang
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Jean Sunega
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ruochen Dong
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yan Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anna Esparham
- Division of Neurology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Ryan Ferrell
- Department or Cardiovascular Medicine, University of Kansas Health System, Kansas City, KS, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Jeanne Drisko
- Department of Internal Medicine, Integrative Medicine Research, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
11
|
Upamalika SWAM, Wannige CT, Vidanagamachchi SM, Gunasekara SC, Kolli RT, De Silva PMCS, Kulasiri D, Jayasundara N. A review of molecular mechanisms linked to potential renal injury agents in tropical rural farming communities. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103850. [PMID: 35301132 DOI: 10.1016/j.etap.2022.103850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The chronic kidney disease of unknown etiology (CKDu) is a global health concern primarily impacting tropical farming communities. Although the precise etiology is debated, CKDu is associated with environmental exposures including heat stress and chemical contaminants such as fluoride, heavy metals, and herbicide glyphosate. However, a comprehensive synthesis is lacking on molecular networks underpinning renal damage induced by these factors. Addressing this gap, here we present key molecular events associated with heat and chemical exposures. We identified that caspase activation and lipid peroxidation are common endpoints of glyphosate exposure, while vasopressin and polyol pathways are associated with heat stress and dehydration. Heavy metal exposure is shown to induce lipid peroxidation and endoplasmic reticulum stress from ROS activated MAPK, NFĸB, and caspase. Collectively, we identify that environmental exposure induced increased cellular oxidative stress as a common mechanism mediating renal cell inflammation, apoptosis, and necrosis, likely contributing to CKDu initiation and progression.
Collapse
Affiliation(s)
| | | | | | | | - Ramya Tulasi Kolli
- Nicholas School of the Environment, Duke University, NC 27708, United States.
| | | | - Don Kulasiri
- Department of Molecular Biosciences, and Centre for Advanced Computational Solutions (C-fACS), Lincoln University, New Zealand.
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, NC 27708, United States.
| |
Collapse
|
12
|
Liu J, Varghese BM, Hansen A, Borg MA, Zhang Y, Driscoll T, Morgan G, Dear K, Gourley M, Capon A, Bi P. Hot weather as a risk factor for kidney disease outcomes: A systematic review and meta-analysis of epidemiological evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149806. [PMID: 34467930 DOI: 10.1016/j.scitotenv.2021.149806] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The occurrence or exacerbation of kidney disease has been documented as a growing problem associated with hot weather. The implementation of effective prevention measures requires a better understanding of the risk factors that increase susceptibility. To fill gaps in knowledge, this study reviews the current literature on the effects of heat on kidney-disease outcomes (ICD-10 N00-N39), including morbidity and mortality. METHODS Databases were systematically searched for relevant literature published between 1990 and 2020 and the quality of evidence evaluated. We performed random effects meta-analysis to calculate the pooled relative risks (RRs) of the association between high temperatures (and heatwaves) and kidney disease outcomes. We further evaluated vulnerability concerning contextual population characteristics. RESULTS Of 2739 studies identified, 91 were reviewed and 82 of these studies met the criteria for inclusion in a meta-analysis. Findings showed that with a 1 °C increase in temperature, the risk of kidney-related morbidity increased by 1% (RR 1.010; 95% CI: 1.009-1.011), with the greatest risk for urolithiasis. Heatwaves were also associated with increased morbidity with a trend observed with heatwave intensity. During low-intensity heatwaves, there was an increase of 5.9% in morbidity, while during high-intensity heatwaves there was a 7.7% increase. There were greater RRs for males, people aged ≤64 years, and those living in temperate climate zones. Similarly, for every 1 °C temperature increase, there was a 3% (RR 1.031; 95% CI: 1.018-1.045) increase in the risk of kidney-related mortality, which also increased during heatwaves. CONCLUSIONS High temperatures (and heatwaves) are associated with an elevated risk of kidney disease outcomes, particularly urolithiasis. Preventive measures that may minimize risks in vulnerable individuals during hot spells are discussed.
Collapse
Affiliation(s)
- Jingwen Liu
- School of Public Health, The University of Adelaide, Australia
| | | | - Alana Hansen
- School of Public Health, The University of Adelaide, Australia
| | - Matthew A Borg
- School of Public Health, The University of Adelaide, Australia
| | - Ying Zhang
- Sydney School of Public Health, The University of Sydney, Australia
| | - Timothy Driscoll
- Sydney School of Public Health, The University of Sydney, Australia
| | - Geoffrey Morgan
- Sydney School of Public Health, The University of Sydney, Australia
| | - Keith Dear
- School of Public Health, The University of Adelaide, Australia
| | - Michelle Gourley
- Burden of Disease and Mortality Unit, Australian Institute of Health and Welfare, Australia
| | - Anthony Capon
- Monash Sustainable Development Institute, Monash University, Australia
| | - Peng Bi
- School of Public Health, The University of Adelaide, Australia.
| |
Collapse
|
13
|
López-Gálvez N, Wagoner R, Canales RA, Ernst K, Burgess JL, de Zapien J, Rosales C, Beamer P. Longitudinal assessment of kidney function in migrant farm workers. ENVIRONMENTAL RESEARCH 2021; 202:111686. [PMID: 34273367 PMCID: PMC8578352 DOI: 10.1016/j.envres.2021.111686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 05/30/2023]
Abstract
Chronic kidney disease of unknown etiology (CKDu) is an epidemic that affects young agricultural workers in several warm regions of the world. However, there is a lack of monitoring of kidney issues in regions with extremely warm environments such as the Northwest of Mexico, a semi-arid region with a growing agricultural industry, where migrant and seasonal farm workers (MSFWs) travel to work in the fields. The objective of this study was to longitudinally assess kidney functioning of MSFWs in relation to pesticide exposure, heat stress and dehydration in a large-scale farm in Mexico. We enrolled 101 MSFWs, of whom 50 were randomly selected to work in an organic certified area and 51 were randomly selected to work in a conventional area. We also enrolled 50 office workers within the same region as a reference group. We collected urine and blood samples from all workers in addition to demographic, behavioral, and occupational characteristics. The physiological strain index (PSI) was used to estimate workers' heat strain. Sampling was conducted at pre-harvest (March) and late in the harvest (July). Linear mixed models were built with the estimated glomerular filtration rate (eGFR) as the dependent variable. We found a significant decrease in kidney function in MSFWs compared to office workers. By the late harvest, one MSFW developed kidney disease, two MSFWs suffered a kidney injury, and 14 MSFWs were at risk of a kidney injury. We found that the eGFR in MSFWs decreased significantly from pre-harvest (125 ± 13.0 mL/min/1.73 m2) to late harvest (109 ± 13.6 mL/min/1.73 m2) (p < 0.001), while no significant change was observed in office workers. The eGFR was significantly lower in MSFWs who worked in the conventional field (101.2 ± 19.4 mL/min/1.73 m2) vs the organic field (110.9 ± 13.6 mL/min/1.73 m2) (p = 0.002). In our final model, we found that dehydration was associated with the decrease of eGFR. We also found an interaction between heat strain and job category, as a significant decline in eGFR by job category (conventional/organic MSFWs and office workers) was related to an increase in heat strain. This suggests that pesticide exposure needs to be considered in combination with heat stress and dehydration. This study provides valuable information on kidney function in MSFWs, and it shows the importance of early long-term monitoring in farm workers in other regions where CKDu has not been evaluated yet.
Collapse
Affiliation(s)
- Nicolás López-Gálvez
- San Diego State University Research Foundation, San Diego State University, 5250 Campanile Dr, San Diego, CA, 92182, USA; Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA.
| | - Rietta Wagoner
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Robert A Canales
- Interdisciplinary Program in Applied Mathematics, University of Arizona, 617 N. Santa Rita Ave, PO Box 210089, Tucson, AZ, 85721, USA
| | - Kacey Ernst
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Jefferey L Burgess
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Jill de Zapien
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Cecilia Rosales
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Paloma Beamer
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| |
Collapse
|
14
|
Alginates as food ingredients absorb extra salt in sodium chloride-treated mice. Heliyon 2021; 7:e06551. [PMID: 33851051 PMCID: PMC8022156 DOI: 10.1016/j.heliyon.2021.e06551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/18/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Many patients with impaired renal function undergoing dialysis are subject to severe dietary restrictions. Especially overdose of salt is related to crisis of their life, so their meals are basically salt-free or low salt. Therefore, their quality of life is declined due to their yearning for salty taste. In the present study, we searched new salt-adsorbing food materials in dietary fibers to develop food ingredients preventing salt-sensitive hypertension and kidney dysfunction. As a result, calcium alginate and ammonium alginate possessed sodium-binding capacity without releasing potassium which causes a problem in chronic kidney injury. Furthermore, the administration of those fibers inhibited blood NaCl concentration and induced NaCl excretion in mice model. Therefore, calcium alginate and ammonium alginate are new candidate materials as salt-adsorbing materials, thus indicating that the health foods and/or health supplements containing those fibers may be a potentially new tool for prevention of salt-sensitive hypertension and kidney dysfunction.
Collapse
|
15
|
Chapman CL, Johnson BD, Parker MD, Hostler D, Pryor RR, Schlader Z. Kidney physiology and pathophysiology during heat stress and the modification by exercise, dehydration, heat acclimation and aging. Temperature (Austin) 2020; 8:108-159. [PMID: 33997113 PMCID: PMC8098077 DOI: 10.1080/23328940.2020.1826841] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The kidneys' integrative responses to heat stress aid thermoregulation, cardiovascular control, and water and electrolyte regulation. Recent evidence suggests the kidneys are at increased risk of pathological events during heat stress, namely acute kidney injury (AKI), and that this risk is compounded by dehydration and exercise. This heat stress related AKI is believed to contribute to the epidemic of chronic kidney disease (CKD) occurring in occupational settings. It is estimated that AKI and CKD affect upwards of 45 million individuals in the global workforce. Water and electrolyte disturbances and AKI, both of which are representative of kidney-related pathology, are the two leading causes of hospitalizations during heat waves in older adults. Structural and physiological alterations in aging kidneys likely contribute to this increased risk. With this background, this comprehensive narrative review will provide the first aggregation of research into the integrative physiological response of the kidneys to heat stress. While the focus of this review is on the human kidneys, we will utilize both human and animal data to describe these responses to passive and exercise heat stress, and how they are altered with heat acclimation. Additionally, we will discuss recent studies that indicate an increased risk of AKI due to exercise in the heat. Lastly, we will introduce the emerging public health crisis of older adults during extreme heat events and how the aging kidneys may be more susceptible to injury during heat stress.
Collapse
Affiliation(s)
- Christopher L. Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Blair D. Johnson
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Mark D. Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Riana R. Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zachary Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
16
|
Tanaka S, Nakano T, Tokumoto M, Masutani K, Tsuchimoto A, Ooboshi H, Kitazono T. Estimated plasma osmolarity and risk of end-stage kidney disease in patients with IgA nephropathy. Clin Exp Nephrol 2020; 24:910-918. [PMID: 32594371 DOI: 10.1007/s10157-020-01919-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 06/07/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Several experimental studies have indicated that increased plasma osmolarity caused by recurrent dehydration is involved in kidney injury via a mechanism, mediated by vasopressin secretion and activation of the aldose reductase pathway. Epidemiologic evidence linking increased plasma osmolarity and the onset of end-stage kidney disease (ESKD), in patients with primary glomerulonephritis, is lacking. METHODS We retrospectively examined 663 patients with IgA nephropathy (IgAN) diagnosed by kidney biopsy and evaluated the association between estimated plasma osmolarity and ESKD prevalence, using a Cox proportional hazards model. RESULTS During follow-up (median 80.4 months; interquartile range 22.2-120.1), 73 patients developed ESKD. In a baseline survey, plasma osmolarity was correlated negatively with the mean value of the estimated glomerular filtration rate, but correlated positively with the mean value of urinary protein excretion, systolic blood pressure, and pathologic severity of extracapillary proliferation, in addition to tissue fibrosis and sclerosis. The incidence rate of ESKD increased linearly with increase in plasma osmolarity (P < 0.05 for trend). In multivariate analyses, plasma osmolarity was an independent risk factor for ESKD (hazard ratio for each increment of 5 mOsm/kg in plasma osmolarity 1.56; 95% confidence interval 1.18-2.07) even after adjustment for potential confounders. CONCLUSIONS Increased plasma osmolarity was associated significantly with an increased risk of ESKD in patients with IgAN. Maintenance of plasma osmolarity by appropriate control of the balance between salt and water may contribute to kidney protection.
Collapse
Affiliation(s)
- Shigeru Tanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Masanori Tokumoto
- Department of Internal Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Kosuke Masutani
- Department of Nephrology and Rheumatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Akihiro Tsuchimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroaki Ooboshi
- Department of Internal Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
17
|
Bethancourt HJ, Swanson ZS, Nzunza R, Huanca T, Conde E, Kenney WL, Young SL, Ndiema E, Braun D, Pontzer H, Rosinger AY. Hydration in relation to water insecurity, heat index, and lactation status in two small-scale populations in hot-humid and hot-arid environments. Am J Hum Biol 2020; 33:e23447. [PMID: 32583580 DOI: 10.1002/ajhb.23447] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES This study compared the prevalence of concentrated urine (urine specific gravity ≥1.021), an indicator of hypohydration, across Tsimane' hunter-forager-horticulturalists living in hot-humid lowland Bolivia and Daasanach agropastoralists living in hot-arid Northern Kenya. It tested the hypotheses that household water and food insecurity would be associated with higher odds of hypohydration. METHODS This study collected spot urine samples and corresponding weather data along with data on household water and food insecurity, demographics, and health characteristics among 266 Tsimane' households (N = 224 men, 235 women, 219 children) and 136 Daasanach households (N = 107 men, 120 women, 102 children). RESULTS The prevalence of hypohydration among Tsimane' men (50.0%) and women (54.0%) was substantially higher (P < .001) than for Daasanach men (15.9%) and women (17.5%); the prevalence of hypohydration among Tsimane' (37.0%) and Daasanach (31.4%) children was not significantly different (P = .33). Multiple logistic regression models suggested positive but not statistically significant trends between household water insecurity and odds of hypohydration within populations, yet some significant joint effects of water and food insecurity were observed. Heat index (2°C) was associated with a 23% (95% confidence interval [CI]: 1.09-1.40, P = .001), 34% (95% CI: 1.18-1.53, P < .0005), and 23% (95% CI: 1.04-1.44, P = .01) higher odds of hypohydration among Tsimane' men, women, and children, respectively, and a 48% (95% CI: 1.02-2.15, P = .04) increase in the odds among Daasanach women. Lactation status was also associated with hypohydration among Tsimane' women (odds ratio = 3.35, 95% CI: 1.62-6.95, P = .001). CONCLUSION These results suggest that heat stress and reproductive status may have a greater impact on hydration status than water insecurity across diverse ecological contexts.
Collapse
Affiliation(s)
- Hilary J Bethancourt
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Zane S Swanson
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | | | - Tomas Huanca
- Centro Boliviano de Investigacion y Desarrollo Socio Integral (CBIDSI), San Borja, Bolivia
| | - Esther Conde
- Centro Boliviano de Investigacion y Desarrollo Socio Integral (CBIDSI), San Borja, Bolivia
| | - W Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sera L Young
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Emmanuel Ndiema
- Department of Earth Sciences, National Museums of Kenya, Nairobi, Kenya
| | - David Braun
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA.,Department of Human Evolution, Max Planck Institute of Evolutionary Anthropology, Leipzig, Germany
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA.,Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Asher Y Rosinger
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Anthropology, The Pennsylvania State University, Pennsylvania, USA
| |
Collapse
|
18
|
Hyperosmolarity and Increased Serum Sodium Concentration Are Risks for Developing Hypertension Regardless of Salt Intake: A Five-Year Cohort Study in Japan. Nutrients 2020; 12:nu12051422. [PMID: 32423124 PMCID: PMC7284783 DOI: 10.3390/nu12051422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/23/2023] Open
Abstract
The potential contribution of serum osmolarity in the modulation of blood pressure has not been evaluated. This study was done to examine the relationship between hyperosmolarity and hypertension in a five-year longitudinal design. We enrolled 10,157 normotensive subjects without diabetes who developed hypertension subsequently as determined by annual medical examination in St. Luke's International Hospital, Tokyo, between 2004 and 2009. High salt intake was defined as >12 g/day by a self-answered questionnaire and hyperosmolarity was defined as >293 mOsm/L serum osmolarity, calculated using serum sodium, fasting blood glucose, and blood urea nitrogen. Statistical analyses included adjustments for age, gender, body mass index, smoking, drinking alcohol, dyslipidemia, hyperuricemia, and chronic kidney disease. In the patients with normal osmolarity, the group with high salt intake had a higher cumulative incidence of hypertension than the group with normal salt intake (8.4% versus 6.7%, p = 0.023). In contrast, in the patients with high osmolarity, the cumulative incidence of hypertension was similar in the group with high salt intake and in the group with normal salt intake (13.1% versus 12.9%, p = 0.84). The patients with hyperosmolarity had a higher incidence of hypertension over five years compared to that of the normal osmolarity group (p < 0.001). After multiple adjustments, elevated osmolarity was an independent risk for developing hypertension (OR (odds ratio), 1.025; 95% CI (confidence interval), 1.006-1.044), regardless of the amount of salt intake. When analyzed in relation to each element of calculated osmolarity, serum sodium and fasting blood glucose were independent risks for developing hypertension. Our results suggest that hyperosmolarity is a risk for developing hypertension regardless of salt intake.
Collapse
|
19
|
Buziau AM, Schalkwijk CG, Stehouwer CDA, Tolan DR, Brouwers MCGJ. Recent advances in the pathogenesis of hereditary fructose intolerance: implications for its treatment and the understanding of fructose-induced non-alcoholic fatty liver disease. Cell Mol Life Sci 2020; 77:1709-1719. [PMID: 31713637 PMCID: PMC11105038 DOI: 10.1007/s00018-019-03348-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022]
Abstract
Hereditary fructose intolerance (HFI) is a rare inborn disease characterized by a deficiency in aldolase B, which catalyzes the cleavage of fructose 1,6-bisphosphate and fructose 1-phosphate (Fru 1P) to triose molecules. In patients with HFI, ingestion of fructose results in accumulation of Fru 1P and depletion of ATP, which are believed to cause symptoms, such as nausea, vomiting, hypoglycemia, and liver and kidney failure. These sequelae can be prevented by a fructose-restricted diet. Recent studies in aldolase B-deficient mice and HFI patients have provided more insight into the pathogenesis of HFI, in particular the liver phenotype. Both aldolase B-deficient mice (fed a very low fructose diet) and HFI patients (treated with a fructose-restricted diet) displayed greater intrahepatic fat content when compared to controls. The liver phenotype in aldolase B-deficient mice was prevented by reduction in intrahepatic Fru 1P concentrations by crossing these mice with mice deficient for ketohexokinase, the enzyme that catalyzes the synthesis of Fru 1P. These new findings not only provide a potential novel treatment for HFI, but lend insight into the pathogenesis of fructose-induced non-alcoholic fatty liver disease (NAFLD), which has raised to epidemic proportions in Western society. This narrative review summarizes the most recent advances in the pathogenesis of HFI and discusses the implications for the understanding and treatment of fructose-induced NAFLD.
Collapse
Affiliation(s)
- Amée M Buziau
- Division of Endocrinology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dean R Tolan
- Department of Biology, Boston University, Boston, MA, USA.
| | - Martijn C G J Brouwers
- Division of Endocrinology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands.
| |
Collapse
|
20
|
Serum osmolarity as a potential predictor for contrast-induced nephropathy following elective coronary angiography. Int Urol Nephrol 2020; 52:541-547. [PMID: 32008199 DOI: 10.1007/s11255-020-02391-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/13/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Contrast-induced nephropathy (CIN) is a relatively common complication following primary coronary angiography (CAG) or percutaneous coronary intervention (PCI), especially in at-risk patients. The goal of this study is to evaluate the role of pre-procedural serum osmolarity as a risk factor for CIN in patients undergoing elective CAG for stable coronary artery disease (CAD). MATERIALS AND METHODS A total of 356 stable CAD patients scheduled to undergo CAG or PCI were included in this two-center study. Serum osmolarity was calculated on admission. CIN was defined according to the KDIGO criteria. RESULTS There were 45 (12.6%) patients who developed CIN 48-72 h after CAG or PCI. CIN patients had a higher prevalence of diabetes (51.1% in those with CIN vs 24.4% in those without CIN, p < 0.001), higher serum glucose (129 mg/dL in those with CIN vs 108 mg/dL in those without CIN, p < 0.001), blood urea nitrogen (22.4 mg/dL in those with CIN vs 19.0 mg/dL in those without CIN, p = 0.01) and serum osmolarity (294.2 mOsm in those with CIN vs 290.1 mOsm in those without CIN, p < 0.001) levels, had received a higher dose of contrast (250 mL in those with CIN vs 200 mL in those without CIN, p = 0.03) but had lower hemoglobin (12.9 g/dL in those with CIN vs 13.6 g/dL in those without CIN, p = 0.04) level. In multivariate analysis, serum osmolarity [odds ratio (OR) 1.11; 95% confidence interval (CI) 1.04-1.18 for each mOsm/L increase; p = 0.001], diabetes (OR 2.43, 95% CI 1.26-4.71; p = 0.01), C-reactive protein (OR 1.04, 95% CI 1.01-1.08 for each mg/dL increase; p = 0.02) and contrast volume (OR 34.66, 95% CI 1.25-962.22 for each L increase; p = 0.04) remained as independent predictors of CIN. Serum sodium, glucose and blood urea nitrogen contributed to the excess serum osmolarity of CIN patients. CONCLUSION Serum osmolarity is a cheap and widely available marker that can reliably predict CIN after CAG or PCI. Future research should focus on determining a clinically optimal cutoff for serum osmolarity that would warrant preventive interventions. Furthermore, later research may investigate the role of serum osmolarity not only as a risk factor but also as a pathogenetic mechanism underlying CIN.
Collapse
|
21
|
Wesseling C, Glaser J, Rodríguez-Guzmán J, Weiss I, Lucas R, Peraza S, da Silva AS, Hansson E, Johnson RJ, Hogstedt C, Wegman DH, Jakobsson K. Chronic kidney disease of non-traditional origin in Mesoamerica: a disease primarily driven by occupational heat stress. Rev Panam Salud Publica 2020; 44:e15. [PMID: 31998376 PMCID: PMC6984407 DOI: 10.26633/rpsp.2020.15] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/09/2020] [Indexed: 12/30/2022] Open
Abstract
The death toll of the epidemic of chronic kidney disease of nontraditional origin (CKDnt) in Mesoamerica runs into the tens of thousands, affecting mostly young men. There is no consensus on the etiology. Anecdotal evidence from the 1990s pointed to work in sugarcane; pesticides and heat stress were suspected. Subsequent population-based surveys supported an occupational origin with overall high male-female ratios in high-risk lowlands, but small sex differences within occupational categories, and low prevalence in non-workers. CKDnt was reported in sugarcane and other high-intensity agriculture, and in non-agricultural occupations with heavy manual labor in hot environments, but not among subsistence farmers. Recent studies with stronger designs have shown cross-shift changes in kidney function and hydration biomarkers and cross-harvest kidney function declines related to heat and workload. The implementation of a water-rest-shade intervention midharvest in El Salvador appeared to halt declining kidney function among cane cutters. In Nicaragua a water-rest-shade program appeared sufficient to prevent kidney damage among cane workers with low-moderate workload but not among cutters with heaviest workload. Studies on pesticides and infectious risk factors have been largely negative. Non-occupational risk factors do not explain the observed epidemiologic patterns. In conclusion, work is the main driver of the CKDnt epidemic in Mesoamerica, with occupational heat stress being the single uniting factor shown to lead to kidney dysfunction in affected populations. Sugarcane cutters with extreme heat stress could be viewed as a sentinel occupational population. Occupational heat stress prevention is critical, even more so in view of climate change.
Collapse
Affiliation(s)
- Catharina Wesseling
- La Isla NetworkLa Isla NetworkWashington DCUnited States of AmericaLa Isla Network, Washington DC, United States of America.
- Karolinska InstitutetKarolinska InstitutetStockholmSwedenKarolinska Institutet, Stockholm, Sweden
| | - Jason Glaser
- La Isla NetworkLa Isla NetworkWashington DCUnited States of AmericaLa Isla Network, Washington DC, United States of America.
| | - Julieta Rodríguez-Guzmán
- Pan-American Health OrganizationPan-American Health OrganizationWashington DCUnited States of AmericaPan-American Health Organization, Washington DC, United States of America
| | - Ilana Weiss
- La Isla NetworkLa Isla NetworkWashington DCUnited States of AmericaLa Isla Network, Washington DC, United States of America.
| | - Rebekah Lucas
- University of BirminghamUniversity of BirminghamBirminghamUnited KingdomUniversity of Birmingham, Birmingham, United Kingdom
| | - Sandra Peraza
- University of El SalvadorUniversity of El SalvadorSan SalvadorEl SalvadorUniversity of El Salvador, San Salvador, El Salvador
| | - Agnes Soares da Silva
- Pan-American Health OrganizationPan-American Health OrganizationWashington DCUnited States of AmericaPan-American Health Organization, Washington DC, United States of America
| | - Erik Hansson
- University of GothenburgUniversity of GothenburgGothenburgSwedenUniversity of Gothenburg, Gothenburg, Sweden
| | - Richard J. Johnson
- University of Colorado at DenverUniversity of Colorado at DenverAuroraUnited States of AmericaUniversity of Colorado at Denver, Aurora, United States of America
| | - Christer Hogstedt
- Karolinska InstitutetKarolinska InstitutetStockholmSwedenKarolinska Institutet, Stockholm, Sweden
| | - David H. Wegman
- University of Massachusetts LowellUniversity of Massachusetts LowellLowellUnited States of AmericaUniversity of Massachusetts Lowell, Lowell, United States of America
| | - Kristina Jakobsson
- University of GothenburgUniversity of GothenburgGothenburgSwedenUniversity of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Hora M, Pontzer H, Wall-Scheffler CM, Sládek V. Dehydration and persistence hunting in Homo erectus. J Hum Evol 2020; 138:102682. [DOI: 10.1016/j.jhevol.2019.102682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
|
23
|
Fragala MS, Cadore EL, Dorgo S, Izquierdo M, Kraemer WJ, Peterson MD, Ryan ED. Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. J Strength Cond Res 2019; 33:2019-2052. [PMID: 31343601 DOI: 10.1519/jsc.0000000000003230] [Citation(s) in RCA: 625] [Impact Index Per Article: 104.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fragala, MS, Cadore, EL, Dorgo, S, Izquierdo, M, Kraemer, WJ, Peterson, MD, and Ryan, ED. Resistance training for older adults: position statement from the national strength and conditioning association. J Strength Cond Res 33(8): 2019-2052, 2019-Aging, even in the absence of chronic disease, is associated with a variety of biological changes that can contribute to decreases in skeletal muscle mass, strength, and function. Such losses decrease physiologic resilience and increase vulnerability to catastrophic events. As such, strategies for both prevention and treatment are necessary for the health and well-being of older adults. The purpose of this Position Statement is to provide an overview of the current and relevant literature and provide evidence-based recommendations for resistance training for older adults. As presented in this Position Statement, current research has demonstrated that countering muscle disuse through resistance training is a powerful intervention to combat the loss of muscle strength and muscle mass, physiological vulnerability, and their debilitating consequences on physical functioning, mobility, independence, chronic disease management, psychological well-being, quality of life, and healthy life expectancy. This Position Statement provides evidence to support recommendations for successful resistance training in older adults related to 4 parts: (a) program design variables, (b) physiological adaptations, (c) functional benefits, and (d) considerations for frailty, sarcopenia, and other chronic conditions. The goal of this Position Statement is to a) help foster a more unified and holistic approach to resistance training for older adults, b) promote the health and functional benefits of resistance training for older adults, and c) prevent or minimize fears and other barriers to implementation of resistance training programs for older adults.
Collapse
Affiliation(s)
| | - Eduardo L Cadore
- School of Physical Education, Physiotherapy and Dance, Exercise Research Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sandor Dorgo
- Department of Kinesiology, University of Texas at El Paso, El Paso, Texas
| | - Mikel Izquierdo
- Department of Health Sciences, Public University of Navarre, CIBER of Frailty and Healthy Aging (CIBERFES), Navarrabiomed, Pamplona, Navarre, Spain
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Mark D Peterson
- Department of Physical Medicine and Rehabilitation, University of Michigan-Medicine, Ann Arbor, Michigan
| | - Eric D Ryan
- Department of Exercise and Sport Science, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
24
|
Kanbay M, Yilmaz S, Dincer N, Ortiz A, Sag AA, Covic A, Sánchez-Lozada LG, Lanaspa MA, Cherney DZI, Johnson RJ, Afsar B. Antidiuretic Hormone and Serum Osmolarity Physiology and Related Outcomes: What Is Old, What Is New, and What Is Unknown? J Clin Endocrinol Metab 2019; 104:5406-5420. [PMID: 31365096 DOI: 10.1210/jc.2019-01049] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
Abstract
CONTEXT Although the physiology of sodium, water, and arginine vasopressin (AVP), also known as antidiuretic hormone, has long been known, accumulating data suggest that this system operates as a more complex network than previously thought. EVIDENCE ACQUISITION English-language basic science and clinical studies of AVP and osmolarity on the development of kidney and cardiovascular disease and overall outcomes. EVIDENCE SYNTHESIS Apart from osmoreceptors and hypovolemia, AVP secretion is modified by novel factors such as tongue acid-sensing taste receptor cells and brain median preoptic nucleus neurons. Moreover, pharyngeal, esophageal, and/or gastric sensors and gut microbiota modulate AVP secretion. Evidence is accumulating that increased osmolarity, AVP, copeptin, and dehydration are all associated with worse outcomes in chronic disease states such as chronic kidney disease (CKD), diabetes, and heart failure. On the basis of these pathophysiological relationships, an AVP receptor 2 blocker is now licensed for CKD related to polycystic kidney disease. CONCLUSION From a therapeutic perspective, fluid intake may be associated with increased AVP secretion if it is driven by loss of urine concentration capacity or with suppressed AVP if it is driven by voluntary fluid intake. In the current review, we summarize the literature on the relationship between elevated osmolarity, AVP, copeptin, and dehydration with renal and cardiovascular outcomes and underlying classical and novel pathophysiologic pathways. We also review recent unexpected and contrasting findings regarding AVP physiology in an attempt to explain and understand some of these relationships.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sezen Yilmaz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Neris Dincer
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alberto Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Adrian Covic
- Nephrology Department, Dialysis and Renal Transplant Center, "Dr. C. I. Parhon" University Hospital, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology, Department of Nephrology, INC Ignacio Chávez, Mexico City, Mexico
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Baris Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| |
Collapse
|
25
|
The Effect of Heat Stress on Autophagy and Apoptosis of Rumen, Abomasum, Duodenum, Liver and Kidney Cells in Calves. Animals (Basel) 2019; 9:ani9100854. [PMID: 31652592 PMCID: PMC6826413 DOI: 10.3390/ani9100854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to assess the effect of heat stress on the autophagy and apoptosis of the rumen, abomasum, duodenum, liver and kidney in calves. Two groups of Holstein male calves were selected with similar birth weights and health conditions. Heat stress (HT): Six calves (birth weight 42.2 ± 2.3) were raised from July 15 to August 19. Cooling (CL): Six calves (birth weight 41.5 ± 3.1 kg) were raised from April 10 to May 15. All the calves were euthanized following captive bolt gun stunning at 35 d of age. The expression of protein 1 light chain 3-Ⅱ (LC3-Ⅱ) and caspase3 in the rumen, abomasum, duodenum, liver and kidney were determined by western blotting. In addition, other possible relevant serum biochemical parameters were evaluated. Significant differences were observed in alkaline phosphatase (ALP), albumin (ALB) and glucose (Glu). The results showed that heat stress could increase the autophagy and apoptosis of the kidney, duodenum and abomasum. However, heat stress had no effect on the autophagy and apoptosis of the liver. Additionally, the expression of caspase-3 in the rumen in HT was significantly lower than that in CL. In conclusion, the effects of heat stress on autophagy and apoptosis are organ-specific. The results provide knowledge regarding autophagy and autophagy in calf heat stress management.
Collapse
|
26
|
Schlader ZJ, Hostler D, Parker MD, Pryor RR, Lohr JW, Johnson BD, Chapman CL. The Potential for Renal Injury Elicited by Physical Work in the Heat. Nutrients 2019; 11:nu11092087. [PMID: 31487794 PMCID: PMC6769672 DOI: 10.3390/nu11092087] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
An epidemic of chronic kidney disease (CKD) is occurring in laborers who undertake physical work in hot conditions. Rodent data indicate that heat exposure causes kidney injury, and when this injury is regularly repeated it can elicit CKD. Studies in humans demonstrate that a single bout of exercise in the heat increases biomarkers of acute kidney injury (AKI). Elevations in AKI biomarkers in this context likely reflect an increased susceptibility of the kidneys to AKI. Data largely derived from animal models indicate that the mechanism(s) by which exercise in the heat may increase the risk of AKI is multifactorial. For instance, heat-related reductions in renal blood flow may provoke heterogenous intrarenal blood flow. This can promote localized ischemia, hypoxemia and ATP depletion in renal tubular cells, which could be exacerbated by increased sodium reabsorption. Heightened fructokinase pathway activity likely exacerbates ATP depletion occurring secondary to intrarenal fructose production and hyperuricemia. Collectively, these responses can promote inflammation and oxidative stress, thereby increasing the risk of AKI. Equivalent mechanistic evidence in humans is lacking. Such an understanding could inform the development of countermeasures to safeguard the renal health of laborers who regularly engage in physical work in hot environments.
Collapse
Affiliation(s)
- Zachary J Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA.
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN 47405, USA.
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Riana R Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - James W Lohr
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Blair D Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Christopher L Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
27
|
Song J, Yang X, Yan LJ. Role of pseudohypoxia in the pathogenesis of type 2 diabetes. HYPOXIA (AUCKLAND, N.Z.) 2019; 7:33-40. [PMID: 31240235 PMCID: PMC6560198 DOI: 10.2147/hp.s202775] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes is caused by persistent high blood glucose, which is known as diabetic hyperglycemia. This hyperglycemic situation, when not controlled, can overproduce NADH and lower nicotinamide adenine dinucleotide (NAD), thereby creating NADH/NAD redox imbalance and leading to cellular pseudohypoxia. In this review, we discussed two major enzymatic systems that are activated by diabetic hyperglycemia and are involved in creation of this pseudohypoxic condition. One system is aldose reductase in the polyol pathway, and the other is poly (ADP ribose) polymerase. While aldose reductase drives overproduction of NADH, PARP could in contrast deplete NAD. Therefore, activation of the two pathways underlies the major mechanisms of NADH/NAD redox imbalance and diabetic pseudohypoxia. Consequently, reductive stress occurs, followed by oxidative stress and eventual cell death and tissue dysfunction. Additionally, fructose formed in the polyol pathway can also cause metabolic syndrome such as hypertension and nonalcoholic fatty liver disease. Moreover, pseudohypoxia can also lower sirtuin protein contents and induce protein acetylation which can impair protein function. Finally, we discussed the possibility of using nicotinamide riboside, an NAD precursor, as a promising therapeutic agent for restoring NADH/NAD redox balance and for preventing the occurrence of diabetic pseudohypoxia.
Collapse
Affiliation(s)
- Jing Song
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
- School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaojuan Yang
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Geriatrics, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
28
|
Chapman CL, Johnson BD, Sackett JR, Parker MD, Schlader ZJ. Soft drink consumption during and following exercise in the heat elevates biomarkers of acute kidney injury. Am J Physiol Regul Integr Comp Physiol 2019; 316:R189-R198. [DOI: 10.1152/ajpregu.00351.2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to test the hypothesis that consuming a soft drink (i.e., a high-fructose, caffeinated beverage) during and following exercise in the heat elevates biomarkers of acute kidney injury (AKI) in humans. Twelve healthy adults drank 2 liters of an assigned beverage during 4 h of exercise in the heat [35.1 (0.1)°C, 61 (5)% relative humidity] in counterbalanced soft drink and water trials, and ≥1 liter of the same beverage after leaving the laboratory. Stage 1 AKI (i.e., increased serum creatinine ≥0.30 mg/dl) was detected at postexercise in 75% of participants in the Soft Drink trial compared with 8% in Water trial ( P = 0.02). Furthermore, urinary neutrophil gelatinase-associated lipocalin (NGAL), a biomarker of AKI, was higher during an overnight collection period after the Soft Drink trial compared with Water in both absolute concentration [6 (4) ng/dl vs. 5 (4) ng/dl, P < 0.04] and after correcting for urine flow rate [6 (7) (ng/dl)/(ml/min) vs. 4 (4) (ng/dl)/(ml/min), P = 0.03]. Changes in serum uric acid from preexercise were greater in the Soft Drink trial than the Water trial at postexercise ( P < 0.01) and 24 h ( P = 0.05). There were greater increases from preexercise in serum copeptin, a stable marker of vasopressin, at postexercise in the Soft Drink trial ( P < 0.02) than the Water trial. These findings indicate that consuming a soft drink during and following exercise in the heat induces AKI, likely via vasopressin-mediated mechanisms.
Collapse
Affiliation(s)
- Christopher L. Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Blair D. Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - James R. Sackett
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Mark D. Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Zachary J. Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
29
|
Nelson DA, Marks ES, Deuster PA, O'Connor FG, Kurina LM. Association of Nonsteroidal Anti-inflammatory Drug Prescriptions With Kidney Disease Among Active Young and Middle-aged Adults. JAMA Netw Open 2019; 2:e187896. [PMID: 30768191 PMCID: PMC6484592 DOI: 10.1001/jamanetworkopen.2018.7896] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPORTANCE Concern about the renal effects of nonsteroidand al anti-inflammatory drugs (NSAIDs) among young, healthy adults has been limited, but more attention may be warranted given the prevalent use of these agents. OBJECTIVE To test for associations between dispensed NSAIDs and incident acute kidney injury and chronic kidney disease while controlling for other risk factors. DESIGN, SETTING, AND PARTICIPANTS This retrospective, longitudinal cohort study used deidentified medical and administrative data on 764 228 active-duty US Army soldiers serving between January 1, 2011, and December 31, 2014. Analysis was conducted from August 1 to November 30, 2018. All individuals new to Army service were included in the analysis. Persons already serving in January 2011 were required to have at least 7 months of observable time to eliminate those with kidney disease histories. EXPOSURES Mean total defined daily doses of prescribed NSAIDs dispensed per month in the prior 6 months. MAIN OUTCOMES AND MEASURES Incident outcomes were defined by diagnoses documented in health records and a military-specific digital system. RESULTS Among the 764 228 participants (655 392 [85.8%] men; mean [SD] age, 28.6 [7.9] years; median age, 27.0 years [interquartile range, 22.0-33.0 years]), 502 527 (65.8%) were not dispensed prescription NSAIDs in the prior 6 months, 137 108 (17.9%) were dispensed 1 to 7 mean total defined daily doses per month, and 124 594 (16.3%) received more than 7 defined daily doses per month. There were 2356 acute kidney injury outcomes (0.3% of participants) and 1634 chronic kidney disease outcomes (0.2%) observed. Compared with participants who received no medication, the highest exposure level was associated with significantly higher adjusted hazard ratios (aHRs) for acute kidney injury (aHR, 1.2; 95% CI, 1.1-1.4) and chronic kidney disease (aHR, 1.2; 95% CI, 1.0-1.3), with annual outcome excesses per 100 000 exposed individuals totaling 17.6 cases for acute kidney injury and 30.0 cases for chronic kidney disease. CONCLUSIONS AND RELEVANCE Modest but statistically significant associations were noted between the highest observed doses of NSAID exposure and incident kidney problems among active young and middle-aged adults.
Collapse
Affiliation(s)
- D Alan Nelson
- Division of Primary Care and Population Health, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Eric S Marks
- Division of Nephrology, Department of Medicine, Uniformed Services University, Bethesda, Maryland
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, Maryland
| | - Francis G O'Connor
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, Maryland
| | - Lianne M Kurina
- Division of Primary Care and Population Health, Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
30
|
Canuto LP, Collares-Buzato CB. Increased osmolality enhances the tight junction-mediated barrier function in a cultured renal epithelial cell line. Cell Biol Int 2018; 43:73-82. [DOI: 10.1002/cbin.11074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 11/11/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Leandro P. Canuto
- Department of Biochemistry and Tissue Biology; Institute of Biology; University of Campinas; Campinas São Paulo Brazil
| | - Carla B. Collares-Buzato
- Department of Biochemistry and Tissue Biology; Institute of Biology; University of Campinas; Campinas São Paulo Brazil
| |
Collapse
|
31
|
Yuan P, Pan LY, Xiong LG, Tong JW, Li J, Huang JA, Gong YS, Liu ZH. Black tea increases hypertonic stress resistance in C. elegans. Food Funct 2018; 9:3798-3806. [PMID: 29932178 DOI: 10.1039/c7fo02017a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Here we identified that BTE (black tea extract), within the studied concentration range, is more effective than GTE (green tea extract) in protecting C. elegans against hypertonic stress, by enhancing survival after exposure to various salts, and alleviating suffered motility loss and body shrinkage. The mechanism of such protection may be due to the ability of black tea to induce the conserved WNK/GCK signaling pathway and down-regulation of the expression levels of nlp-29. Intriguingly, black tea does not relieve hypertonicity-induced protein damage. The findings implicate the potential health benefits of black tea consumed worldwide.
Collapse
Affiliation(s)
- Pei Yuan
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
El Boustany R, Tasevska I, Meijer E, Kieneker LM, Enhörning S, Lefèvre G, Mohammedi K, Marre M, Fumeron F, Balkau B, Bouby N, Bankir L, Bakker SJ, Roussel R, Melander O, Gansevoort RT, Velho G. Plasma copeptin and chronic kidney disease risk in 3 European cohorts from the general population. JCI Insight 2018; 3:121479. [PMID: 29997293 PMCID: PMC6124520 DOI: 10.1172/jci.insight.121479] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The prevalence of chronic kidney disease (CKD) is increasing worldwide. The identification of factors contributing to its progression is important for designing preventive measures. Previous studies have suggested that chronically high vasopressin is deleterious to renal function. Here, we evaluated the association of plasma copeptin, a surrogate of vasopressin, with the incidence of CKD in the general population. METHODS We studied 3 European cohorts: DESIR (n = 5,047; France), MDCS-CC (n = 3,643; Sweden), and PREVEND (n = 7,684; the Netherlands). Median follow-up was 8.5, 16.5, and 11.3 years, respectively. Pooled data were analyzed at an individual level for 4 endpoints during follow-up: incidence of stage 3 CKD (estimated glomerular filtration rate [eGFR] < 60 ml/min/1.73 m2); the KDIGO criterion "certain drop in eGFR"; rapid kidney function decline (eGFR slope steeper than -3 ml/min/1.73 m2/yr); and incidence of microalbuminuria. RESULTS The upper tertile of plasma copeptin was significantly and independently associated with a 49% higher risk for stage 3 CKD (P < 0.0001); a 64% higher risk for kidney function decline, as defined by the KDIGO criterion (P < 0.0001); a 79% higher risk for rapid kidney function decline (P < 0.0001); and a 24% higher risk for microalbuminuria (P = 0.008). CONCLUSIONS High copeptin levels are associated with the development and the progression of CKD in the general population. Intervention studies are needed to assess the potential beneficial effect on kidney health in the general population of reducing vasopressin secretion or action. FUNDING INSERM and Danone Research Centre for Specialized Nutrition.
Collapse
Affiliation(s)
- Ray El Boustany
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
- Danone Nutricia Research, Palaiseau, France
| | - Irina Tasevska
- Departments of Internal Medicine and Clinical Sciences, Lund University, Malmö, Sweden
| | - Esther Meijer
- Department of Internal Medicine, University Medical Center, Division of Nephrology, University of Groningen, Groningen, Netherlands
| | - Lyanne M. Kieneker
- Department of Internal Medicine, University Medical Center, Division of Nephrology, University of Groningen, Groningen, Netherlands
| | - Sofia Enhörning
- Departments of Internal Medicine and Clinical Sciences, Lund University, Malmö, Sweden
| | - Guillaume Lefèvre
- Service de Biochimie et Hormonologie, Assistance Publique — Hôpitaux de Paris, Hôpitaux Universitaires Est Parisien–Tenon, Paris, France
| | - Kamel Mohammedi
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
- Department of Diabetology, Endocrinology and Nutrition, DHU Fire, Assistance Publique — Hôpitaux de Paris, Bichat Hospital, Paris, France
| | - Michel Marre
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
- Department of Diabetology, Endocrinology and Nutrition, DHU Fire, Assistance Publique — Hôpitaux de Paris, Bichat Hospital, Paris, France
- UFR de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Frédéric Fumeron
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
- UFR de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Beverley Balkau
- Inserm Research Unit 1018, Center for Research in Epidemiology and Population Health, Villejuif, France
- Université Paris Sud, Villejuif, France
| | - Nadine Bouby
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Lise Bankir
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
- UPMC University Paris 6, Sorbonne Universités, Paris, France
| | - Stephan J.L. Bakker
- Department of Internal Medicine, University Medical Center, Division of Nephrology, University of Groningen, Groningen, Netherlands
| | - Ronan Roussel
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
- Department of Diabetology, Endocrinology and Nutrition, DHU Fire, Assistance Publique — Hôpitaux de Paris, Bichat Hospital, Paris, France
- UFR de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Olle Melander
- Departments of Internal Medicine and Clinical Sciences, Lund University, Malmö, Sweden
| | - Ron T. Gansevoort
- Department of Internal Medicine, University Medical Center, Division of Nephrology, University of Groningen, Groningen, Netherlands
| | - Gilberto Velho
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
33
|
Yan L. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model Exp Med 2018; 1:7-13. [PMID: 29863179 PMCID: PMC5975374 DOI: 10.1002/ame2.12001] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
In diabetes mellitus, the polyol pathway is highly active and consumes approximately 30% glucose in the body. This pathway contains 2 reactions catalyzed by aldose reductase (AR) and sorbitol dehydrogenase, respectively. AR reduces glucose to sorbitol at the expense of NADPH, while sorbitol dehydrogenase converts sorbitol to fructose at the expense of NAD+, leading to NADH production. Consumption of NADPH, accumulation of sorbitol, and generation of fructose and NADH have all been implicated in the pathogenesis of diabetes and its complications. In this review, the roles of this pathway in NADH/NAD+ redox imbalance stress and oxidative stress in diabetes are highlighted. A potential intervention using nicotinamide riboside to restore redox balance as an approach to fighting diabetes is also discussed.
Collapse
Affiliation(s)
- Liang‐jun Yan
- Department of Pharmaceutical SciencesUNT System College of PharmacyUniversity of North Texas Health Science CenterFort WorthTXUSA
| |
Collapse
|
34
|
Su J, Liu X, Xu C, Lu X, Wang F, Fang H, Lu A, Qiu Q, Li C, Yang T. NF-κB-dependent upregulation of (pro)renin receptor mediates high-NaCl-induced apoptosis in mouse inner medullary collecting duct cells. Am J Physiol Cell Physiol 2017; 313:C612-C620. [PMID: 29021196 DOI: 10.1152/ajpcell.00068.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
(Pro)renin receptor (PRR), a component of the renin-angiotensin system, has emerged as a new regulator of collecting duct function. The present study was designed to investigate the role of PRR in high salt-induced apoptosis in cultured mouse inner medullary collecting duct cells, mIMCD-K2 cells. Exposure to high NaCl at 550 mosM/kgH2O increased PRR protein abundance, as did exposure to mannitol, sodium gluconate, or choline chloride. This was accompanied by upregulation of the abundance of phosphorylated NF-κB p65 protein. NF-κB inhibition with QNZ, caffeic acid phenethyl ester, or small interfering RNA (siRNA)-mediated silencing of NF-κB p65 attenuated high-NaCl-induced PRR upregulation. Exposure to high salt for 24 h induced apoptosis, as assessed by immunoblotting and immunocytochemistry analysis of cleaved caspase-3 and flow cytometry analysis of the number of apoptotic cells. High-NaCl-induced apoptosis was attenuated by a PRR decoy inhibitor, PRO20, or siRNA-mediated silencing of NF-κB p65. These results show that induction of PRR expression by exposure to high NaCl occurs through activation of NF-κB, thus contributing to cell apoptosis.
Collapse
Affiliation(s)
- Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Xiyang Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Chuanming Xu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Xiaohan Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China.,Department of Internal Medicine, University of Utah, and Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Fei Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China.,Department of Internal Medicine, University of Utah, and Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Hui Fang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Qixiang Qiu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Tianxin Yang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China.,Department of Internal Medicine, University of Utah, and Veterans Affairs Medical Center , Salt Lake City, Utah
| |
Collapse
|
35
|
Nerbass FB, Pecoits-Filho R, Clark WF, Sontrop JM, McIntyre CW, Moist L. Occupational Heat Stress and Kidney Health: From Farms to Factories. Kidney Int Rep 2017; 2:998-1008. [PMID: 29270511 PMCID: PMC5733743 DOI: 10.1016/j.ekir.2017.08.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/02/2017] [Accepted: 08/21/2017] [Indexed: 12/24/2022] Open
Abstract
Millions of workers around the world are exposed to high temperatures, intense physical activity, and lax labor practices that do not allow for sufficient rehydration breaks. The extent and consequences of heat exposure in different occupational settings, countries, and cultural contexts is not well studied. We conducted an in-depth review to examine the known effects of occupational heat stress on the kidney. We also examined methods of heat-stress assessment, strategies for prevention and mitigation, and the economic consequences of occupational heat stress. Our descriptive review summarizes emerging evidence that extreme occupational heat stress combined with chronic dehydration may contribute to the development of CKD and ultimately kidney failure. Rising global temperatures, coupled with decreasing access to clean drinking water, may exacerbate the effects of heat exposure in both outdoor and indoor workers who are exposed to chronic heat stress and recurrent dehydration. These changes create an urgent need for health researchers and industry to identify work practices that contribute to heat-stress nephropathy, and to test targeted, robust prevention and mitigation strategies. Preventing occupational heat stress presents a great challenge for a concerted multidisciplinary effort from employers, health authorities, engineers, researchers, and governments.
Collapse
Affiliation(s)
- Fabiana B Nerbass
- Nephrology Division, Pro-rim Foundation, Joinville, Santa Catarina, Brazil.,School of Medicine, Pontificia Universidade Catolica do Parana, Curitiba, Parana, Brazil
| | - Roberto Pecoits-Filho
- School of Medicine, Pontificia Universidade Catolica do Parana, Curitiba, Parana, Brazil.,Renal and Metabolic Division, George Institute for Global Health, Sydney, New South Wales, Australia
| | - William F Clark
- Division of Nephrology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Kidney Clinical Research Unit, London Health Sciences Centre, London, Ontario, Canada
| | - Jessica M Sontrop
- Kidney Clinical Research Unit, London Health Sciences Centre, London, Ontario, Canada
| | - Christopher W McIntyre
- Division of Nephrology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Kidney Clinical Research Unit, London Health Sciences Centre, London, Ontario, Canada
| | - Louise Moist
- Division of Nephrology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of and Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| |
Collapse
|
36
|
García-Arroyo FE, Tapia E, Blas-Marron MG, Gonzaga G, Silverio O, Cristóbal M, Osorio H, Arellano-Buendía AS, Zazueta C, Aparicio-Trejo OE, Reyes-García JG, Pedraza-Chaverri J, Soto V, Roncal-Jiménez C, Johnson RJ, Sánchez-Lozada LG. Vasopressin Mediates the Renal Damage Induced by Limited Fructose Rehydration in Recurrently Dehydrated Rats. Int J Biol Sci 2017; 13:961-975. [PMID: 28924378 PMCID: PMC5599902 DOI: 10.7150/ijbs.20074] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/26/2017] [Indexed: 12/26/2022] Open
Abstract
Recurrent dehydration and heat stress cause chronic kidney damage in experimental animals. The injury is exacerbated by rehydration with fructose-containing beverages. Fructose may amplify dehydration-induced injury by directly stimulating vasopressin release and also by acting as a substrate for the aldose reductase-fructokinase pathway, as both of these systems are active during dehydration. The role of vasopressin in heat stress associated injury has not to date been explored. Here we show that the amplification of renal damage mediated by fructose in thermal dehydration is mediated by vasopressin. Fructose rehydration markedly enhanced vasopressin (copeptin) levels and activation of the aldose reductase-fructokinase pathway in the kidney. Moreover, the amplification of the renal functional changes (decreased creatinine clearance and tubular injury with systemic inflammation, renal oxidative stress, and mitochondrial dysfunction) were prevented by the blockade of V1a and V2 vasopressin receptors with conivaptan. On the other hand, there are also other operative mechanisms when water is used as rehydration fluid that produce milder renal damage that is not fully corrected by vasopressin blockade. Therefore, we clearly showed evidence of the cross-talk between fructose, even at small doses, and vasopressin that interact to amplify the renal damage induced by dehydration. These data may be relevant for heat stress nephropathy as well as for other renal pathologies due to the current generalized consumption of fructose and deficient hydration habits.
Collapse
Affiliation(s)
| | - Edilia Tapia
- Laboratory of Renal Physiopathology. INC Ignacio Chávez. Mexico City. Mexico.,Dept. of Nephrology. INC Ignacio Chávez. Mexico City. Mexico
| | | | - Guillermo Gonzaga
- Laboratory of Renal Physiopathology. INC Ignacio Chávez. Mexico City. Mexico
| | - Octaviano Silverio
- Laboratory of Renal Physiopathology. INC Ignacio Chávez. Mexico City. Mexico
| | - Magdalena Cristóbal
- Laboratory of Renal Physiopathology. INC Ignacio Chávez. Mexico City. Mexico.,Dept. of Nephrology. INC Ignacio Chávez. Mexico City. Mexico
| | - Horacio Osorio
- Laboratory of Renal Physiopathology. INC Ignacio Chávez. Mexico City. Mexico.,Dept. of Nephrology. INC Ignacio Chávez. Mexico City. Mexico
| | - Abraham S Arellano-Buendía
- Laboratory of Renal Physiopathology. INC Ignacio Chávez. Mexico City. Mexico.,Dept. of Nephrology. INC Ignacio Chávez. Mexico City. Mexico
| | - Cecilia Zazueta
- Dept. of Cardiovascular Biomedicine. INC Ignacio Chávez. Mexico City. Mexico
| | | | - Juan G Reyes-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, IPN Mexico City. Mexico
| | | | - Virgilia Soto
- Dept. of Pathology. INC Ignacio Chávez. Mexico City. Mexico
| | | | | | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology. INC Ignacio Chávez. Mexico City. Mexico.,Dept. of Nephrology. INC Ignacio Chávez. Mexico City. Mexico
| |
Collapse
|
37
|
Moyce S, Mitchell D, Armitage T, Tancredi D, Joseph J, Schenker M. Heat strain, volume depletion and kidney function in California agricultural workers. Occup Environ Med 2017; 74:402-409. [PMID: 28093502 DOI: 10.1136/oemed-2016-103848] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/23/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Agricultural work can expose workers to increased risk of heat strain and volume depletion due to repeated exposures to high ambient temperatures, arduous physical exertion and limited rehydration. These risk factors may result in acute kidney injury (AKI). METHODS We estimated AKI cumulative incidence in a convenience sample of 283 agricultural workers based on elevations of serum creatinine between preshift and postshift blood samples. Heat strain was assessed based on changes in core body temperature and heart rate. Volume depletion was assessed using changes in body mass over the work shift. Logistic regression models were used to estimate the associations of AKI with traditional risk factors (age, diabetes, hypertension and history of kidney disease) as well as with occupational risk factors (years in farm work, method of payment and farm task). RESULTS 35 participants were characterised with incident AKI over the course of a work shift (12.3%). Workers who experienced heat strain had increased adjusted odds of AKI (1.34, 95% CI 1.04 to 1.74). Piece rate work was associated with 4.24 odds of AKI (95% CI 1.56 to 11.52). Females paid by the piece had 102.81 adjusted odds of AKI (95% CI 7.32 to 1443.20). DISCUSSION Heat strain and piece rate work are associated with incident AKI after a single shift of agricultural work, though gender differences exist. Modifications to payment structures may help prevent AKI.
Collapse
Affiliation(s)
- Sally Moyce
- Betty Irene Moore School of Nursing, University of California, Davis, Sacramento, California, USA
| | - Diane Mitchell
- Department of Public Health Sciences, University of California, Davis, Davis, California, USA
| | - Tracey Armitage
- Department of Public Health Sciences, University of California, Davis, Davis, California, USA
| | - Daniel Tancredi
- Department of Pediatrics, University of California, Davis, Davis, California, USA
| | - Jill Joseph
- Betty Irene Moore School of Nursing, University of California, Davis, Sacramento, California, USA
| | - Marc Schenker
- Department of Public Health Sciences, University of California, Davis, Davis, California, USA
| |
Collapse
|
38
|
Increased Serum Sodium and Serum Osmolarity Are Independent Risk Factors for Developing Chronic Kidney Disease; 5 Year Cohort Study. PLoS One 2017; 12:e0169137. [PMID: 28081152 PMCID: PMC5231381 DOI: 10.1371/journal.pone.0169137] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022] Open
Abstract
Background Epidemics of chronic kidney disease (CKD) not due to diabetes mellitus (DM) or hypertension have been observed among individuals working in hot environments in several areas of the world. Experimental models have documented that recurrent heat stress and water restriction can lead to CKD, and the mechanism may be mediated by hyperosmolarity that activates pathways (vasopressin, aldose reductase-fructokinase) that induce renal injury. Here we tested the hypothesis that elevated serum sodium, which reflects serum osmolality, may be an independent risk factor for the development of CKD. Methods This study was a large-scale, single-center, retrospective 5-year cohort study at Center for Preventive Medicine, St. Luke’s International Hospital, Tokyo, Japan, between 2004 and 2009. We analyzed 13,201 subjects who underwent annual medical examination of which 12,041 subjects (age 35 to 85) without DM and/or CKD were enrolled. This analysis evaluated age, sex, body mass index, abdominal circumference, hypertension, dyslipidemia, hyperuricemia, fasting glucose, BUN, serum sodium, potassium, chloride and calculated serum osmolarity. Results Elevated serum sodium was an independent risk factor for development of CKD (OR: 1.03, 95% CI, 1.00–1.07) after adjusted regression analysis with an 18 percent increased risk for every 5 mmol/L change in serum sodium. Calculated serum osmolarity was also an independent risk factor for CKD (OR: 1.04; 95% CI, 1.03–1.05) as was BUN (OR: 1.08; 95% CI, 1.06–1.10) (independent of serum creatinine). Conclusions Elevated serum sodium and calculated serum osmolarity are independent risk factors for developing CKD. This finding supports the role of limiting salt intake and preventing dehydration to reduce risk of CKD.
Collapse
|
39
|
Roncal-Jimenez CA, Milagres T, Andres-Hernando A, Kuwabara M, Jensen T, Song Z, Bjornstad P, Garcia GE, Sato Y, Sanchez-Lozada LG, Lanaspa MA, Johnson RJ. Effects of exogenous desmopressin on a model of heat stress nephropathy in mice. Am J Physiol Renal Physiol 2016; 312:F418-F426. [PMID: 28003190 PMCID: PMC5374310 DOI: 10.1152/ajprenal.00495.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 11/22/2022] Open
Abstract
Recurrent heat stress and dehydration have recently been shown experimentally to cause chronic kidney disease (CKD). One potential mediator may be vasopressin, acting via the type 2 vasopressin receptor (V2 receptor). We tested the hypothesis that desmopressin accelerates CKD in mice subjected to heat stress and recurrent dehydration. Recurrent exposure to heat with limited water availability was performed in male mice over a 5-wk period, with one group receiving desmopressin two times daily and the other group receiving vehicle. Two additional control groups were not exposed to heat or dehydration and received vehicle or desmopressin. The effects of the treatment on renal injury were assessed. Heat stress and recurrent dehydration induced functional changes (albuminuria, elevated urinary neutrophil gelatinase-associated protein), glomerular changes (mesangiolysis, matrix expansion), and tubulointerstitial changes (fibrosis, inflammation). Desmopressin also induced albuminuria, glomerular changes, and tubulointerstitial fibrosis in normal animals and also exacerbated injury in mice with heat stress nephropathy. Both heat stress and/or desmopressin were also associated with activation of the polyol pathway in the renal cortex, likely due to increased interstitial osmolarity. Our studies document both glomerular and tubulointerstitial injury and inflammation in heat stress nephropathy and may be clinically relevant to the pathogenesis of Mesoamerican nephropathy. Our data also suggest that vasopressin may play a role in the pathogenesis of the renal injury of heat stress nephropathy, likely via a V2 receptor-dependent pathway.
Collapse
Affiliation(s)
| | - Tamara Milagres
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Masanari Kuwabara
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Thomas Jensen
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado.,Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Aurora, Colorado
| | - Zhilin Song
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado.,Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Aurora, Colorado
| | - Petter Bjornstad
- Division of Pediatric Endocrinology, University of Colorado, Aurora, Colorado; and
| | - Gabriela E Garcia
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Yuka Sato
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | | | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado;
| |
Collapse
|
40
|
Kupferman J, Amador JJ, Lynch KE, Laws RL, López-Pilarte D, Ramírez-Rubio O, Kaufman JS, Lau JL, Weiner DE, Robles NV, Verma KP, Scammell MK, McClean MD, Brooks DR, Friedman DJ. Characterization of Mesoamerican Nephropathy in a Kidney Failure Hotspot in Nicaragua. Am J Kidney Dis 2016; 68:716-725. [PMID: 27575010 DOI: 10.1053/j.ajkd.2016.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/07/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Mesoamerican nephropathy (MeN) is a kidney disease of unknown cause that mainly affects working-age men in Central America. Despite being a major cause of morbidity and mortality in this region, its clinical characteristics have not been well defined. STUDY DESIGN Cross-sectional family-based study. SETTING & PARTICIPANTS 266 members of 24 families with high chronic kidney disease (CKD) burdens in a MeN hotspot in Northwestern Nicaragua. We compared clinical and biochemical characteristics of affected individuals first with their unaffected relatives and then with NHANES (National Health and Nutrition Examination Survey) participants with CKD in order to reveal identifying features of MeN. PREDICTOR CKD defined as serum creatinine level ≥ 1.5mg/dL in men and ≥1.4mg/dL in women. OUTCOMES Clinical and biochemical parameters, including serum sodium, potassium, bicarbonate, calcium, magnesium, phosphorus, and uric acid. RESULTS Hyperuricemia, in many cases severe, was common among patients with MeN. Uric acid levels in patients with MeN were higher than those in NHANES participants (mean, 9.6 vs 7.4mg/dL for men in each group) despite more frequent use of uric acid-lowering medications in Nicaraguan individuals (71.7% vs 11.2%). In multivariable linear mixed-effects regression analysis, uric acid levels were 2.0mg/dL (95% CI, 1.0-3.0; P<0.001) higher in patients with MeN compared with their NHANES counterparts after adjusting for age, estimated glomerular filtration rate, and uric acid-lowering therapies. In contrast to prior reports, hyponatremia and hypokalemia were not common. LIMITATIONS CKD defined by single serum creatinine measurement; population likely not representative of full MeN phenotype spectrum across Central America; major differences between MeN and NHANES groups in important characteristics such as age, ancestry, and recruitment method. CONCLUSIONS Hyperuricemia out of proportion to the degree of decreased kidney function was common among Nicaraguan patients with MeN. Our results suggest that rather than being solely a consequence of CKD, hyperuricemia may play a role in MeN pathogenesis, a hypothesis that deserves further study.
Collapse
Affiliation(s)
- Joseph Kupferman
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Juan José Amador
- Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Katherine E Lynch
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Rebecca L Laws
- Department of Environmental Health, Boston University School of Public Health, Boston, MA
| | | | - Oriana Ramírez-Rubio
- Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - James S Kaufman
- Research Service, VA New York Harbor Healthcare System and Department of Medicine, New York University School of Medicine, New York, NY
| | - Jorge Luis Lau
- Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - Daniel E Weiner
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA
| | - Ninoska Violeta Robles
- Centro Nacional de Diagnóstico y Referencia, Nicaraguan Ministry of Health, Managua, Nicaragua
| | - Karina P Verma
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Madeleine K Scammell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA
| | - Michael D McClean
- Department of Environmental Health, Boston University School of Public Health, Boston, MA
| | - Daniel R Brooks
- Department of Epidemiology, Boston University School of Public Health, Boston, MA.
| | - David J Friedman
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
41
|
Glaser J, Lemery J, Rajagopalan B, Diaz HF, García-Trabanino R, Taduri G, Madero M, Amarasinghe M, Abraham G, Anutrakulchai S, Jha V, Stenvinkel P, Roncal-Jimenez C, Lanaspa MA, Correa-Rotter R, Sheikh-Hamad D, Burdmann EA, Andres-Hernando A, Milagres T, Weiss I, Kanbay M, Wesseling C, Sánchez-Lozada LG, Johnson RJ. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy. Clin J Am Soc Nephrol 2016; 11:1472-1483. [PMID: 27151892 PMCID: PMC4974898 DOI: 10.2215/cjn.13841215] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Climate change has led to significant rise of 0.8°C-0.9°C in global mean temperature over the last century and has been linked with significant increases in the frequency and severity of heat waves (extreme heat events). Climate change has also been increasingly connected to detrimental human health. One of the consequences of climate-related extreme heat exposure is dehydration and volume loss, leading to acute mortality from exacerbations of pre-existing chronic disease, as well as from outright heat exhaustion and heat stroke. Recent studies have also shown that recurrent heat exposure with physical exertion and inadequate hydration can lead to CKD that is distinct from that caused by diabetes, hypertension, or GN. Epidemics of CKD consistent with heat stress nephropathy are now occurring across the world. Here, we describe this disease, discuss the locations where it appears to be manifesting, link it with increasing temperatures, and discuss ongoing attempts to prevent the disease. Heat stress nephropathy may represent one of the first epidemics due to global warming. Government, industry, and health policy makers in the impacted regions should place greater emphasis on occupational and community interventions.
Collapse
Affiliation(s)
- Jason Glaser
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Sontrop JM, Huang SH, Garg AX, Moist L, House AA, Gallo K, Clark WF. Effect of increased water intake on plasma copeptin in patients with chronic kidney disease: results from a pilot randomised controlled trial. BMJ Open 2015; 5:e008634. [PMID: 26603245 PMCID: PMC4663439 DOI: 10.1136/bmjopen-2015-008634] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Increased water intake may have a beneficial effect on the kidney through suppression of plasma vasopressin. We examined the effect of increased water intake on plasma copeptin (a marker of vasopressin) over 6 weeks in patients with chronic kidney disease. DESIGN Secondary analysis of a randomised controlled parallel-group pilot trial. SETTING Canada, 2012-2013. PARTICIPANTS 28 patients with stage 3 chronic kidney disease randomised (2:1) to a hydration (n=17) or control group (n=11). INTERVENTION The hydration group was coached to increase water intake by up to 1.5 L/day for 6 weeks. The control group was asked to maintain regular water intake. MEASURES AND OUTCOMES Participants provided blood and 24 h urine samples at baseline and 6 weeks. Change in plasma copeptin was compared within and between study groups. RESULTS Participants were 64% male with a mean age of 62 years and an estimated glomerular filtration rate of 40 mL/min/1.73 m(2). Between baseline and 6 weeks, 24 h urine volume increased by 0.7 L/day in the hydration group, rising from 2.3 to 3.0 L/day (p=0.01), while decreasing by 0.3 L/day among controls, from 2.0 to 1.7 L/day (p=0.07); between-group difference: 0.9 L/day (95% CI 0.37 to 1.46; p=0.002). In the hydration group, median copeptin decreased by 3.6 pmol/L, from 15.0 to 10.8 pmol/L (p=0.005), while remaining stable among controls at 19 pmol/L (p=0.76; p=0.19 for the between-group difference in median change); the between-group difference in mean change was 5.4 pmol/L (95% CI -1.2 to 12.0; p=0.11). CONCLUSIONS Adults with stage 3 chronic kidney disease can be successfully randomised to drink approximately 1 L more per day than controls. This increased water intake caused a significant decrease in plasma copeptin concentration. Our larger 12-month trial will examine whether increased water intake can slow renal decline in patients with chronic kidney disease. TRIAL REGISTRATION NUMBER NCT01753466.
Collapse
Affiliation(s)
- Jessica M Sontrop
- Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada
- Department of Epidemiology & Biostatistics, Western University, London, Ontario, Canada
| | - Shi-Han Huang
- Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Amit X Garg
- Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada
- Department of Epidemiology & Biostatistics, Western University, London, Ontario, Canada
| | - Louise Moist
- Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada
- Department of Epidemiology & Biostatistics, Western University, London, Ontario, Canada
| | - Andrew A House
- Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Kerri Gallo
- Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - William F Clark
- Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
44
|
Luo X, Li R, Yan LJ. Roles of Pyruvate, NADH, and Mitochondrial Complex I in Redox Balance and Imbalance in β Cell Function and Dysfunction. J Diabetes Res 2015; 2015:512618. [PMID: 26568959 PMCID: PMC4629043 DOI: 10.1155/2015/512618] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 12/25/2022] Open
Abstract
Pancreatic β cells not only use glucose as an energy source, but also sense blood glucose levels for insulin secretion. While pyruvate and NADH metabolic pathways are known to be involved in regulating insulin secretion in response to glucose stimulation, the roles of many other components along the metabolic pathways remain poorly understood. Such is the case for mitochondrial complex I (NADH/ubiquinone oxidoreductase). It is known that normal complex I function is absolutely required for episodic insulin secretion after a meal, but the role of complex I in β cells in the diabetic pancreas remains to be investigated. In this paper, we review the roles of pyruvate, NADH, and complex I in insulin secretion and hypothesize that complex I plays a crucial role in the pathogenesis of β cell dysfunction in the diabetic pancreas. This hypothesis is based on the establishment that chronic hyperglycemia overloads complex I with NADH leading to enhanced complex I production of reactive oxygen species. As nearly all metabolic pathways are impaired in diabetes, understanding how complex I in the β cells copes with elevated levels of NADH in the diabetic pancreas may provide potential therapeutic strategies for diabetes.
Collapse
Affiliation(s)
- Xiaoting Luo
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Rongrong Li
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| |
Collapse
|
45
|
Roncal-Jimenez C, García-Trabanino R, Barregard L, Lanaspa MA, Wesseling C, Harra T, Aragón A, Grases F, Jarquin ER, González MA, Weiss I, Glaser J, Sánchez-Lozada LG, Johnson RJ. Heat Stress Nephropathy From Exercise-Induced Uric Acid Crystalluria: A Perspective on Mesoamerican Nephropathy. Am J Kidney Dis 2015; 67:20-30. [PMID: 26455995 DOI: 10.1053/j.ajkd.2015.08.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/07/2015] [Indexed: 11/11/2022]
Abstract
Mesoamerican nephropathy (MeN), an epidemic in Central America, is a chronic kidney disease of unknown cause. In this article, we argue that MeN may be a uric acid disorder. Individuals at risk for developing the disease are primarily male workers exposed to heat stress and physical exertion that predisposes to recurrent water and volume depletion, often accompanied by urinary concentration and acidification. Uric acid is generated during heat stress, in part consequent to nucleotide release from muscles. We hypothesize that working in the sugarcane fields may result in cyclic uricosuria in which uric acid concentrations exceed solubility, leading to the formation of dihydrate urate crystals and local injury. Consistent with this hypothesis, we present pilot data documenting the common presence of urate crystals in the urine of sugarcane workers from El Salvador. High end-of-workday urinary uric acid concentrations were common in a pilot study, particularly if urine pH was corrected to 7. Hyperuricemia may induce glomerular hypertension, whereas the increased urinary uric acid may directly injure renal tubules. Thus, MeN may result from exercise and heat stress associated with dehydration-induced hyperuricemia and uricosuria. Increased hydration with water and salt, urinary alkalinization, reduction in sugary beverage intake, and inhibitors of uric acid synthesis should be tested for disease prevention.
Collapse
Affiliation(s)
| | - Ramón García-Trabanino
- Scientific Board, Department of Investigation, Hospital Nacional Rosales, San Salvador, El Salvador
| | - Lars Barregard
- Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, Gothenburg, Sweden
| | - Miguel A Lanaspa
- Division of Kidney Diseases and Hypertension, University of Colorado, Denver, CO
| | - Catharina Wesseling
- Unit of Occupational Medicine, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Tamara Harra
- Division of Kidney Diseases and Hypertension, University of Colorado, Denver, CO
| | - Aurora Aragón
- Research Center on Health, Work and Environment (CISTA), National Autonomous University of Nicaragua at León (UNAN-León), León, Nicaragua
| | - Felix Grases
- University of Balearic Islands, Palma de Mallorca, Spain
| | - Emmanuel R Jarquin
- Agencia para el Desarrollo y la Salud Agropecuaria, San Salvador, El Salvador
| | - Marvin A González
- Research Center on Health, Work and Environment (CISTA), National Autonomous University of Nicaragua at León (UNAN-León), León, Nicaragua; Department of Non-communicable Disease Epidemiology of London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ilana Weiss
- La Isla Foundation, San Salvador, El Salvador
| | | | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology and Nephrology Department, INC Ignacio Chavez, Mexico City, Mexico
| | - Richard J Johnson
- Division of Kidney Diseases and Hypertension, University of Colorado, Denver, CO; Division of Nephrology, Eastern Colorado Health Care System, Department of Veteran Affairs, Denver, CO.
| |
Collapse
|
46
|
García-Trabanino R, Jarquín E, Wesseling C, Johnson RJ, González-Quiroz M, Weiss I, Glaser J, José Vindell J, Stockfelt L, Roncal C, Harra T, Barregard L. Heat stress, dehydration, and kidney function in sugarcane cutters in El Salvador--A cross-shift study of workers at risk of Mesoamerican nephropathy. ENVIRONMENTAL RESEARCH 2015. [PMID: 26209462 DOI: 10.1016/j.envres.2015.07.007] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND An epidemic of progressive kidney failure afflicts sugarcane workers in Central America. Repeated high-intensity work in hot environments is a possible cause. OBJECTIVES To assess heat stress, dehydration, biomarkers of renal function and their possible associations. A secondary aim was to evaluate the prevalence of pre-shift renal damage and possible causal factors. METHODS Sugarcane cutters (N=189, aged 18-49 years, 168 of them male) from three regions in El Salvador were examined before and after shift. Cross-shift changes in markers of dehydration and renal function were examined and associations with temperature, work time, region, and fluid intake were assessed. Pre-shift glomerular filtration rate was estimated (eGFR) from serum creatinine. RESULTS The mean work-time was 4 (1.4-11) hours. Mean workday temperature was 34-36 °C before noon, and 39-42 °C at noon. The mean liquid intake during work was 0.8L per hour. There were statistically significant changes across shift. The mean urine specific gravity, urine osmolality and creatinine increased, and urinary pH decreased. Serum creatinine, uric acid and urea nitrogen increased, while chloride and potassium decreased. Pre-shift serum uric acid levels were remarkably high and pre-shift eGFR was reduced (<60 mL/min) in 23 male workers (14%). CONCLUSIONS The high prevalence of reduced eGFR, and the cross-shift changes are consistent with recurrent dehydration from strenuous work in a hot and humid environment as an important causal factor. The pathophysiology may include decreased renal blood flow, high demands on tubular reabsorption, and increased levels of uric acid.
Collapse
Affiliation(s)
- Ramón García-Trabanino
- Scientific Board, Department of Investigation, Hospital Nacional Rosales, San Salvador, El Salvador.
| | - Emmanuel Jarquín
- Agency for Agricultural Health and Development (AGDYSA), San Salvador, El Salvador.
| | - Catharina Wesseling
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Richard J Johnson
- Division of Kidney Diseases and Hypertension, University of Colorado, Denver, CO, United State.
| | - Marvin González-Quiroz
- Research Centre on Health, Work and Environment (CISTA), National Autonomous University of Nicaragua at León, (UNAN-León), León, Nicaragua; Department of Non-communicable Disease Epidemiology of London School of Hygiene and Tropical Medicine, London, UK.
| | | | | | | | - Leo Stockfelt
- Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.B 414, SE 405 30, Gothenburg, Sweden.
| | - Carlos Roncal
- Division of Kidney Diseases and Hypertension, University of Colorado, Denver, CO, United State.
| | - Tamara Harra
- Division of Kidney Diseases and Hypertension, University of Colorado, Denver, CO, United State.
| | - Lars Barregard
- Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.B 414, SE 405 30, Gothenburg, Sweden.
| |
Collapse
|
47
|
Kataria A, Trasande L, Trachtman H. The effects of environmental chemicals on renal function. Nat Rev Nephrol 2015; 11:610-25. [PMID: 26100504 DOI: 10.1038/nrneph.2015.94] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The global incidence of chronic kidney disease (CKD) is increasing among individuals of all ages. Despite advances in proteomics, genomics and metabolomics, there remains a lack of safe and effective drugs to reverse or stabilize renal function in patients with glomerular or tubulointerstitial causes of CKD. Consequently, modifiable risk factors that are associated with a progressive decline in kidney function need to be identified. Numerous reports have documented the adverse effects that occur in response to graded exposure to a wide range of environmental chemicals. This Review summarizes the effects of such chemicals on four aspects of cardiorenal function: albuminuria, glomerular filtration rate, blood pressure and serum uric acid concentration. We focus on compounds that individuals are likely to be exposed to as a consequence of normal consumer activities or medical treatment, namely phthalates, bisphenol A, polyfluorinated alkyl acids, dioxins and furans, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environmental exposure to these chemicals during everyday life could have adverse consequences on renal function and might contribute to progressive cumulative renal injury over a lifetime. Regulatory efforts should be made to limit individual exposure to environmental chemicals in an attempt to reduce the incidence of cardiorenal disease.
Collapse
Affiliation(s)
- Anglina Kataria
- Department of Pediatrics, Clinical and Translational Science Institute, New York University School of Medicine, 227 East 30th Street, Room #733, New York, NY 10016, USA
| | - Leonardo Trasande
- Department of Pediatrics, Clinical and Translational Science Institute, New York University School of Medicine, 227 East 30th Street, Room #733, New York, NY 10016, USA
| | - Howard Trachtman
- Department of Pediatrics, Clinical and Translational Science Institute, New York University School of Medicine, 227 East 30th Street, Room #733, New York, NY 10016, USA
| |
Collapse
|
48
|
Bjornstad P, Maahs DM. Diabetes Complications in Childhood Diabetes-New Biomarkers and Technologies. CURRENT PEDIATRICS REPORTS 2015; 3:177-186. [PMID: 26425403 DOI: 10.1007/s40124-015-0081-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A major challenge in preventing vascular complications in diabetes is the inability to identify high-risk patients at an early stage, emphasizing the importance of discovering new risk factors, technologies and therapeutic targets to reduce the development and progression of complications. Promising biomarkers which may improve risk stratification and serve as therapeutic targets, include: uric acid, insulin sensitivity, copeptin, SGLT-2 and Klotho/FGF-23. Non-invasive measures of macrovasuclar disease in youth, include: 1) pulse wave velocity to examine arterial stiffness; 2) carotid intima-media thickness to evaluate arterial thickness; 3) cardiac MRI to investigate cardiac function and structure. Novel microvascular measures include: GFR by iohexol clearance using filter paper to directly measure GFR, retinal vascular geometry to predict early retinal changes and corneal confocal microscopy to improve detection of early nerve loss to better predict diabetic neuropathy. Herein we will review technologies, novel biomarkers, and therapeutic targets in relation to vascular complications of diabetes.
Collapse
Affiliation(s)
- Petter Bjornstad
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States ; Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - David M Maahs
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States ; Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, United States
| |
Collapse
|
49
|
Ramos AM, González-Guerrero C, Sanz A, Sanchez-Niño MD, Rodríguez-Osorio L, Martín-Cleary C, Fernández-Fernández B, Ruiz-Ortega M, Ortiz A. Designing drugs that combat kidney damage. Expert Opin Drug Discov 2015; 10:541-56. [PMID: 25840605 DOI: 10.1517/17460441.2015.1033394] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Kidney disease remains one of the last worldwide frontiers in the field of non-communicable human disease. From 1990 to 2013, chronic kidney disease (CKD) was the top non-communicable cause of death with a greatest increase in global years of life lost while mortality of acute kidney injury (AKI) still hovers around 50%. This reflects the paucity (for CKD) or lack of (for AKI) therapeutic approaches beyond replacing renal function. Understanding what the barriers are and what potential pathways may facilitate the design of new drugs to combat kidney disease is a key public health priority. AREAS COVERED The authors discuss the hurdles and opportunities for future drug development for kidney disease in light of experience accumulated with drugs that made it to clinical trials. EXPERT OPINION Inflammation, cell death and fibrosis are key therapeutic targets to combat kidney damage. While the specific targeting of drugs to kidney cells would be desirable, the technology is only working at the preclinical stage and with mixed success. Nanomedicines hold promise in this respect. Most drugs undergoing clinical trials for kidney disease have been repurposed from other indications. Currently, the chemokine receptor inhibitor CCX140 holds promise for CKD and the p53 inhibitor QPI-1002 for AKI.
Collapse
Affiliation(s)
- Adrián M Ramos
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Laboratory of Renal and Vascular Pathology and Diabetes , Av. Reyes Católicos 2, 28040, Madrid , Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sharma N, Li L, Ecelbarger CM. Sex differences in renal and metabolic responses to a high-fructose diet in mice. Am J Physiol Renal Physiol 2014; 308:F400-10. [PMID: 25537743 DOI: 10.1152/ajprenal.00403.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High fructose intake has been associated with increased incidences of renal disease and hypertension, among other pathologies. Most fructose is cleared by the portal system and metabolized in the liver; however, systemic levels of fructose can rise with increased consumption. We tested whether there were sex differences in the renal responses to a high-fructose diet in mice. Two-month-old male and female C57BL6/129/SV mice (n = 6 mice per sex per treatment) were randomized to receive control or high-fructose (65% by weight) diets as pelleted chow ad libitum for 3 mo. Fructose feeding did not significantly affect body weight but led to a 19% and 10% increase in kidney weight in male and female mice, respectively. In male mice, fructose increased the expression (∼50%) of renal cortical proteins involved in metabolism, including glucose transporter 5 (facilitative fructose transporter), ketohexokinase, and the insulin receptor (β-subunit). Female mice had lower basal levels of glucose transporter 5, which were unresponsive to fructose. However, female mice had increased urine volume and plasma K(+) and decreased plasma Na(+) with fructose, whereas male mice were less affected. Likewise, female mice showed a two- to threefold reduction in the expression Na(+)-K(+)-2Cl(-) cotransporter 2 in the thick ascending limb and aquaporin-2 in the collecting duct with fructose relative to female control mice, whereas male mice had no change. Overall, our results support greater proximal metabolism of fructose in male animals and greater distal tubule/collecting duct (electrolyte homeostasis) alterations in female animals. These sex differences may be important determinants of the specific nature of pathologies that develop in association with high fructose consumption.
Collapse
Affiliation(s)
- Nikhil Sharma
- Division of Endocrinology and Metabolism, Georgetown University, Washington, District of Columbia; and
| | - Lijun Li
- Division of Endocrinology and Metabolism, Georgetown University, Washington, District of Columbia; and Center for the Study of Sex Differences in Health, Aging, and Disease, Department of Medicine, Georgetown University, Washington, District of Columbia
| | - C M Ecelbarger
- Division of Endocrinology and Metabolism, Georgetown University, Washington, District of Columbia; and Center for the Study of Sex Differences in Health, Aging, and Disease, Department of Medicine, Georgetown University, Washington, District of Columbia
| |
Collapse
|