1
|
Yao F, Cai SQ, Cheng HX, Ren LW, Hui KL, Liu QZ, Guo M, Chen LH, Qian B, Zeng Y, Li F, Duan ML. Therapeutic Hypothermia Increases the Expression of RNA-binding Protein Motif 3 and Attenuates Cognitive Deficits Following Cardiac Arrest in Rats. Neurochem Res 2025; 50:134. [PMID: 40257581 PMCID: PMC12011659 DOI: 10.1007/s11064-025-04383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/22/2025]
Abstract
Cardiac arrest (CA) remains a leading cause of mortality and morbidity worldwide. Cognitive deficits are common neurological sequelae among CA survivors. Preclinical and clinical studies have confirmed that therapeutic hypothermia (TH) is an effective intervention for mitigating brain injury following CA. Hypothermia induces the expression of specific small proteins, including RNA-binding motif protein 3 (RBM3), which provides neuroprotection under stress conditions. However, the role of RBM3 in TH after CA has not been fully elucidated. In this study, we investigated the role of RBM3 in attenuating cognitive deficits following hypothermic brain resuscitation. We constructed a rat model of CA and resuscitation, and used shRNA transfection to interfere with RBM3 expression to explore the underlying mechanisms of TH's effects on cognitive alterations. Rats were randomly assigned to one of five groups: sham group (Sham), CA group (CA), TH group (TH), adeno-associated virus (AAV)-shRNA-RBM3 transfection group (shRNA-RBM3), and AAV-shRNA-negative control transfection group (shRNA-control). Key synaptic regulatory proteins, dendritic spines, and synaptic ultrastructures were examined. The rats exhibited spatial learning and memory impairments in the Morris water maze test and novel object recognition task. Hypothermia increased RBM3 expression in hippocampal neurons, mitigated early brain injury, preserved dendritic spine integrity and synaptic ultrastructure, upregulated key synaptic regulatory proteins, and ameliorated cognitive impairment following resuscitation. When RBM3 expression in the hippocampus was inhibited, the beneficial effects of therapeutic hypothermia were partially reversed. Overall, our findings provide new insights into the mechanisms of hypothermia-induced neuroprotection, demonstrating that neuroplasticity and rehabilitation can be achieved following global cerebral ischemia-reperfusion injury after CA. Therefore, the RBM3-mediated cold shock pathway represents a potential target for enhancing neuroprotection and neurorehabilitation through hypothermia.
Collapse
Affiliation(s)
- Fen Yao
- Department of Anesthesiology, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Anesthesiology, The First People's Hospital of Yancheng, Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China
| | - Shen-Quan Cai
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Hui-Xian Cheng
- Department of Anesthesiology, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Li-Wen Ren
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Kang-Li Hui
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Qing-Zhen Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Min Guo
- Department of Anesthesiology, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Li-Hui Chen
- Department of Anesthesiology, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Qian
- Department of Anesthesiology, The First People's Hospital of Yancheng, Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China
| | - Yang Zeng
- Department of Anesthesiology, The First People's Hospital of Yancheng, Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China
| | - Feng Li
- Department of Anesthesiology, The First People's Hospital of Yancheng, Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China.
| | - Man-Lin Duan
- Department of Anesthesiology, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Anesthesiology, Nanjing Tianyishan Hospital, The First Affiliated Hospital of China Pharmaceutical University, Jiangsu, China.
| |
Collapse
|
2
|
Zhang D, Dai Y, Xu X, Ma F, Wang M, Qin W. S100A8-CAMKK2-AMPK axis confers the protective effects of mild hypothermia against cerebral ischemia-reperfusion injury in rats. Sci Rep 2025; 15:2793. [PMID: 39843475 PMCID: PMC11754893 DOI: 10.1038/s41598-025-87184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
To investigate the neuroprotective mechanism of mild hypothermia (MH) in ameliorating cerebral ischemia reperfusion (IR) injury. The Pulsinelli's four-vessel ligation method was utilized to establish a rat model of global cerebral IR injury. To investigate the role of S100A8 in MH treatment of cerebral IR injury, hippocampus-specific S100A8 loss or gain of function was achieved using an adeno-associated virus system. We examined the effect of S100A8 over-expression or knock-down on the function of the SH-SY5Y cell line subjected to oxygen-glucose deprivation reoxygenation (OGDR) injury under MH treatment and delved into the underlying mechanisms. MH significantly ameliorates IR-induced neurological injury in the brain. Similarly to MH, knock-down of S100A8 significantly reduced neuronal oxidative stress, attenuated mitochondrial damage, inhibited apoptosis, and improved cognitive function in IR rats. Conversely, over-expression of S100A8 attenuated MH's protective effect and aggravated brain IR injury. In vitro, low expression of S100A8 significantly inhibited the decline in mitochondrial membrane potential induced by OGDR, reduced oxidative stress response, and decreased cell apoptosis, acting as a protective agent nearly equivalent to MH in SH-SY5Y cells. However, over-expression of S100A8 significantly inhibited these protective effects of MH. Mechanistically, MH down-regulated S100A8 expression, enhancing mitochondrial function via activation of the CAMKK2/AMPK signaling pathway. Moreover, with MH treatment, the administration of CAMKK2 and AMPK inhibitors STO-609 and Dorsomorphin significantly increased oxidative stress, mitochondrial damage, and cell apoptosis, thereby diminishing MH's neuroprotective effect against cerebral IR injury. Our study identified S100A8 as a master regulator that enables MH to ameliorate neurological injury during the early stage of cerebral IR injury by enhancing mitochondrial function. By targeting the S100A8-initiated CAMKK2/AMPK signaling pathway, we may unlock a novel therapeutic intervention or develop a refined MH therapeutic strategy against cerebral IR injury.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Yuting Dai
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Xiaoyan Xu
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
- School of Anesthesiology, Shandong Second Medical University, Weifang, 262700, China
| | - Fuguo Ma
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Mingshan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Weiwei Qin
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China.
| |
Collapse
|
3
|
Burrows DJ, McGown A, Abduljabbar O, Castelli LM, Shaw PJ, Hautbergue GM, Ramesh TM. RAN Translation of C9orf72-Related Dipeptide Repeat Proteins in Zebrafish Recapitulates Hallmarks of Amyotrophic Lateral Sclerosis and Identifies Hypothermia as a Therapeutic Strategy. Ann Neurol 2024; 96:1058-1069. [PMID: 39215697 DOI: 10.1002/ana.27068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Hexanucleotide repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A large body of evidence implicates dipeptide repeats (DPRs) proteins as one of the main drivers of neuronal injury in cell and animal models. METHODS A pure repeat-associated non-AUG (RAN) translation zebrafish model of C9orf72-ALS/FTD was generated. Embryonic and adult transgenic zebrafish lysates were investigated for the presence of RAN-translated DPR species and adult-onset motor deficits. Using C9orf72 cell models as well as embryonic C9orf72-ALS/FTD zebrafish, hypothermic-therapeutic temperature management (TTM) was explored as a potential therapeutic option for C9orf72-ALS/FTD. RESULTS Here, we describe a pure RAN translation zebrafish model of C9orf72-ALS/FTD that exhibits significant RAN-translated DPR pathology and progressive motor decline. We further demonstrate that hypothermic-TTM results in a profound reduction in DPR species in C9orf72-ALS/FTD cell models as well as embryonic C9orf72-ALS/FTD zebrafish. INTERPRETATION The transgenic model detailed in this paper provides a medium throughput in vivo research tool to further investigate the role of RAN-translation in C9orf72-ALS/FTD and further understand the mechanisms that underpin neuroprotective strategies. Hypothermic-TTM presents a viable therapeutic avenue to explore in the context of C9orf72-ALS/FTD. ANN NEUROL 2024;96:1058-1069.
Collapse
Affiliation(s)
- David J Burrows
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Alexander McGown
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Olfat Abduljabbar
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Lydia M Castelli
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, UK
| | - Tennore M Ramesh
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Hu L, Geli S, Long F, Nie L, Wu J, Zhou J, Wang M, Chen Y. The 100 most-cited articles in hypothermic brain protection journals: a bibliometric and visualized analysis. Front Neurol 2024; 15:1433025. [PMID: 39563775 PMCID: PMC11575058 DOI: 10.3389/fneur.2024.1433025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Introduction A bibliometric analysis is used to assess the impact of research in a particular field. However, a specialized bibliometric analysis focused on hypothermic brain protection has not yet been conducted. This study aimed to identify the 100 most-cited articles published in the field of hypothermic brain protection and analyze their bibliometric characteristics. Methods After screening articles from the Web of Science citation database, complete bibliographic records were imported into Python for data extraction. The following parameters were analyzed: title, author's name and affiliation, country, publication year, publication date, first author, corresponding author, study design, language, number of citations, journal impact factors, keywords, Keywords Plus®, and research topic. Results The 100 articles were published between 1990 and 2016. The citation frequency for each publication ranged from 86 to 470. Among the 100 articles, 73 were original articles, 18 were review articles, 8 were clinical articles, and 1 was editorial material. These papers were published in 37 journals, with the Journal of Cerebral Blood Flow and Metabolism being the most prolific with 15 papers. Eighteen countries contributed to the 100 publications, 51 of which were from United States institutions. In addition, the keywords in the Sankey plot indicated that research in the field of hypothermic brain protection is growing deeper and overlapping with other disciplines. Discussion The results provide an overview of research on hypothermic brain protection, which may help researchers better understand classical research, historical developments, and new discoveries, as well as providing ideas for future research.
Collapse
Affiliation(s)
- Liren Hu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Sichuan Province, China
| | - Sirui Geli
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Sichuan Province, China
| | - Feiyu Long
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Sichuan Province, China
| | - Liang Nie
- Department of Anesthesiology, Fushun County People's Hospital, Zigong, Sichuan Province, China
| | - Jiali Wu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Sichuan Province, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Sichuan Province, China
| | - Maohua Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Sichuan Province, China
| | - Yingxu Chen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Sichuan Province, China
| |
Collapse
|
5
|
Choi A, Woo JS, Park YS, Kim JH, Chung YE, Lee S, Beom JH, You JS. TARGETED TEMPERATURE MANAGEMENT AT 36°C IMPROVES SURVIVAL AND PROTECTS TISSUES BY MITIGATING THE DELETERIOUS INFLAMMATORY RESPONSE FOLLOWING HEMORRHAGIC SHOCK. Shock 2024; 62:716-727. [PMID: 39186053 DOI: 10.1097/shk.0000000000002453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
ABSTRACT Hemorrhagic shock (HS) is a life-threatening condition with high mortality rates despite current treatments. This study investigated whether targeted temperature management (TTM) could improve outcomes by modulating inflammation and protecting organs following HS. Using a rat model of HS, TTM was applied at 33°C and 36°C after fluid resuscitation. Surprisingly, TTM at 33°C increased mortality, while TTM at 36°C significantly improved survival rates. It also reduced histological damage in lung and kidney tissues, lowered serum lactate levels, and protected against apoptosis and excessive reactive oxygen species production. TTM at 36°C inhibited the release of high mobility group box 1 protein (HMGB1), a key mediator of inflammation, and decreased proinflammatory cytokine levels in the kidneys and lungs. Moreover, it influenced macrophage behavior, suppressing the harmful M1 phenotype while promoting the beneficial M2 polarization. Cytokine array analysis confirmed reduced levels of proinflammatory cytokines with TTM at 36°C. These results collectively highlight the potential of TTM at 36°C as a therapeutic approach to improve outcomes in HS. By addressing multiple aspects of injury and inflammation, including modulation of macrophage responses and cytokine profiles, TTM at 36°C offers promising implications for critical care management after HS, potentially reducing mortality and improving patient recovery.
Collapse
Affiliation(s)
- Arom Choi
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Sun Woo
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo Seok Park
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hee Kim
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Eun Chung
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sojung Lee
- Class of 2025, Biology B.S., Emory University, Atlanta, Georgia
| | - Jin Ho Beom
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Je Sung You
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Li X, Deng J, Long Y, Ma Y, Wu Y, Hu Y, He X, Yu S, Li D, Li N, He F. Focus on brain-lung crosstalk: Preventing or treating the pathological vicious circle between the brain and the lung. Neurochem Int 2024; 178:105768. [PMID: 38768685 DOI: 10.1016/j.neuint.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Recently, there has been increasing attention to bidirectional information exchange between the brain and lungs. Typical physiological data is communicated by channels like the circulation and sympathetic nervous system. However, communication between the brain and lungs can also occur in pathological conditions. Studies have shown that severe traumatic brain injury (TBI), cerebral hemorrhage, subarachnoid hemorrhage (SAH), and other brain diseases can lead to lung damage. Conversely, severe lung diseases such as acute respiratory distress syndrome (ARDS), pneumonia, and respiratory failure can exacerbate neuroinflammatory responses, aggravate brain damage, deteriorate neurological function, and result in poor prognosis. A brain or lung injury can have adverse effects on another organ through various pathways, including inflammation, immunity, oxidative stress, neurosecretory factors, microbiome and oxygen. Researchers have increasingly concentrated on possible links between the brain and lungs. However, there has been little attention given to how the interaction between the brain and lungs affects the development of brain or lung disorders, which can lead to clinical states that are susceptible to alterations and can directly affect treatment results. This review described the relationships between the brain and lung in both physiological and pathological conditions, detailing the various pathways of communication such as neurological, inflammatory, immunological, endocrine, and microbiological pathways. Meanwhile, this review provides a comprehensive summary of both pharmacological and non-pharmacological interventions for diseases related to the brain and lungs. It aims to support clinical endeavors in preventing and treating such ailments and serve as a reference for the development of relevant medications.
Collapse
Affiliation(s)
- Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yuanyuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaofang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei He
- Department of Geratology, Yongchuan Hospital of Chongqing Medical University(the Fifth Clinical College of Chongqing Medical University), Chongqing, 402160, China.
| |
Collapse
|
7
|
Eberle MJ, Thorkelsson AB, Liddle LJ, Almekhlafi M, Colbourne F. Longer Periods of Hypothermia Provide Greater Protection Against Focal Ischemia: A Systematic Review of Animal Studies Manipulating Treatment Duration. Ther Hypothermia Temp Manag 2024; 14:144-151. [PMID: 37788401 DOI: 10.1089/ther.2023.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Decades of animal research show therapeutic hypothermia (TH) to be potently neuroprotective after cerebral ischemic injuries. While there have been some translational successes, clinical efficacy after ischemic stroke is unclear. One potential reason for translational failures could be insufficient optimization of dosing parameters. In this study, we conducted a systematic review of the PubMed database to identify all preclinical controlled studies that compared multiple TH durations following focal ischemia, with treatment beginning at least 1 hour after ischemic onset. Six studies met our inclusion criteria. In these six studies, six of seven experiments demonstrated an increase in cerebroprotection at the longest duration tested. The average effect size (mean Cohen's d ± 95% confidence interval) at the shortest and longest durations was 0.4 ± 0.3 and 1.9 ± 1.1, respectively. At the longest durations, this corresponded to percent infarct volume reductions between 31.2% and 83.9%. Our analysis counters previous meta-analytic findings that there is no relationship, or an inverse relationship between TH duration and effect size. However, underreporting often led to high or unclear risks of bias for each study as gauged by the SYRCLE Risk of Bias tool. We also found a lack of investigations of the interactions between duration and other treatment considerations (e.g., method, delay, and ischemic severity). With consideration of methodological limitations, an understanding of the relationships between treatment parameters is necessary to determine proper "dosage" of TH, and should be further studied, considering clinical failures that contrast with strong cerebroprotective results in most animal studies.
Collapse
Affiliation(s)
- Megan J Eberle
- Neuroscience and Mental Health Institute, and University of Alberta, Edmonton, Canada
| | | | - Lane J Liddle
- Department of Psychology, University of Alberta, Edmonton, Canada
| | - Mohammed Almekhlafi
- Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary, Canada
| | - Frederick Colbourne
- Neuroscience and Mental Health Institute, and University of Alberta, Edmonton, Canada
- Department of Psychology, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Haltenhof T, Preußner M, Heyd F. Thermoregulated transcriptomics: the molecular basis and biological significance of temperature-dependent alternative splicing. Biochem J 2024; 481:999-1013. [PMID: 39083035 PMCID: PMC11346455 DOI: 10.1042/bcj20230410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024]
Abstract
Temperature-dependent alternative splicing (AS) is a crucial mechanism for organisms to adapt to varying environmental temperatures. In mammals, even slight fluctuations in body temperature are sufficient to drive significant AS changes in a concerted manner. This dynamic regulation allows organisms to finely tune gene expression and protein isoform diversity in response to temperature cues, ensuring proper cellular function and physiological adaptation. Understanding the molecular mechanisms underlying temperature-dependent AS thus provides valuable insights into the intricate interplay between environmental stimuli and gene expression regulation. In this review, we provide an overview of recent advances in understanding temperature-regulated AS across various biological processes and systems. We will discuss the machinery sensing and translating temperature cues into changed AS patterns, the adaptation of the splicing regulatory machinery to extreme temperatures, the role of temperature-dependent AS in shaping the transcriptome, functional implications and the development of potential therapeutics targeting temperature-sensitive AS pathways.
Collapse
Affiliation(s)
- Tom Haltenhof
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
9
|
Lin V, Tian C, Wahlster S, Castillo-Pinto C, Mainali S, Johnson NJ. Temperature Control in Acute Brain Injury: An Update. Semin Neurol 2024; 44:308-323. [PMID: 38593854 DOI: 10.1055/s-0044-1785647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Temperature control in severe acute brain injury (SABI) is a key component of acute management. This manuscript delves into the complex role of temperature management in SABI, encompassing conditions like traumatic brain injury (TBI), acute ischemic stroke (AIS), intracerebral hemorrhage (ICH), aneurysmal subarachnoid hemorrhage (aSAH), and hypoxemic/ischemic brain injury following cardiac arrest. Fever is a common complication in SABI and is linked to worse neurological outcomes due to increased inflammatory responses and intracranial pressure (ICP). Temperature management, particularly hypothermic temperature control (HTC), appears to mitigate these adverse effects primarily by reducing cerebral metabolic demand and dampening inflammatory pathways. However, the effectiveness of HTC varies across different SABI conditions. In the context of post-cardiac arrest, the impact of HTC on neurological outcomes has shown inconsistent results. In cases of TBI, HTC seems promising for reducing ICP, but its influence on long-term outcomes remains uncertain. For AIS, clinical trials have yet to conclusively demonstrate the benefits of HTC, despite encouraging preclinical evidence. This variability in efficacy is also observed in ICH, aSAH, bacterial meningitis, and status epilepticus. In pediatric and neonatal populations, while HTC shows significant benefits in hypoxic-ischemic encephalopathy, its effectiveness in other brain injuries is mixed. Although the theoretical basis for employing temperature control, especially HTC, is strong, the clinical outcomes differ among various SABI subtypes. The current consensus indicates that fever prevention is beneficial across the board, but the application and effectiveness of HTC are more nuanced, underscoring the need for further research to establish optimal temperature management strategies. Here we provide an overview of the clinical evidence surrounding the use of temperature control in various types of SABI.
Collapse
Affiliation(s)
- Victor Lin
- Department of Neurology, University of Washington, Seattle, Washington
| | - Cindy Tian
- Department of Emergency Medicine, University of Washington, Seattle, Washington
| | - Sarah Wahlster
- Department of Neurology, University of Washington, Seattle, Washington
- Department of Neurosurgery, University of Washington, Seattle, Washington
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | | | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Nicholas J Johnson
- Department of Emergency Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
10
|
Zhang H, Wang J, Su N, Yang N, Wang X, Li C. Identification and validation of a novel Parkinson-Glioma feature gene signature in glioma and Parkinson's disease. Front Aging Neurosci 2024; 16:1352681. [PMID: 38872623 PMCID: PMC11170708 DOI: 10.3389/fnagi.2024.1352681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/29/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction The prognosis for glioma is generally poor, and the 5-year survival rate for patients with this disease has not shown significant improvement over the past few decades. Parkinson's disease (PD) is a prevalent movement disorder, ranking as the second most common neurodegenerative disease after Alzheimer's disease. Although Parkinson's disease and glioma are distinct diseases, they may share certain underlying biological pathways that contribute to their development. Objective This study aims to investigate the involvement of genes associated with Parkinson's disease in the development and prognosis of glioma. Methods We obtained datasets from the TCGA, CGGA, and GEO databases, which included RNA sequencing data and clinical information of glioma and Parkinson's patients. Eight machine learning algorithms were used to identify Parkinson-Glioma feature genes (PGFGs). PGFGs associated with glioma prognosis were identified through univariate Cox analysis. A risk signature was constructed based on PGFGs using Cox regression analysis and the Least Absolute Shrinkage and Selection Operator (LASSO) method. We subsequently validated its predictive ability using various methods, including ROC curves, calibration curves, KM survival analysis, C-index, DCA, independent prognostic analysis, and stratified analysis. To validate the reproducibility of the results, similar work was performed on three external test datasets. Additionally, a meta-analysis was employed to observe the heterogeneity and consistency of the signature across different datasets. We also compared the differences in genomic variations, functional enrichment, immune infiltration, and drug sensitivity analysis based on risk scores. This exploration aimed to uncover potential mechanisms of glioma occurrence and prognosis. Results We identified 30 PGFGs, of which 25 were found to be significantly associated with glioma survival. The prognostic signature, consisting of 19 genes, demonstrated excellent predictive performance for 1-, 2-, and 3-year overall survival (OS) of glioma. The signature emerged as an independent prognostic factor for glioma overall survival (OS), surpassing the predictive performance of traditional clinical variables. Notably, we observed differences in the tumor microenvironment (TME), levels of immune cell infiltration, immune gene expression, and drug resistance analysis among distinct risk groups. These findings may have significant implications for the clinical treatment of glioma patients. Conclusion The expression of genes related to Parkinson's disease is closely associated with the immune status and prognosis of glioma patients, potentially regulating glioma pathogenesis through multiple mechanisms. The interaction between genes associated with Parkinson's disease and the immune system during glioma development provides novel insights into the molecular mechanisms and targeted therapies for glioma.
Collapse
Affiliation(s)
- Hengrui Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Nan Su
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xinyu Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Chao Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
11
|
Lin P, Lin C, Diao L. RBM3 Ameliorates Acute Brain Injury-induced Inflammation and Oxidative Stress by Stabilizing GAS6 mRNA Through Nrf2 Signaling Pathway. Neuroscience 2024; 547:74-87. [PMID: 38555015 DOI: 10.1016/j.neuroscience.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
RNA-binding motif protein 3 (RBM3), as a cold-inducible protein, exhibits neuroprotective function in brain disorders. This study was conducted to investigate the effects of RBM3 on acute brain injury (ABI) and its underlying mechanism. The cerebral injury (CI) rat model and oxygen-glucose deprivation (OGD) cell model were established. The neurological severity score, wire-grip score, morris water maze test, and Y-maze test were used to detect the neurological damage, vestibular motor, learning, and memory functions. Cerebral injury, apoptosis, oxidative stress, and inflammatory level were evaluated by hematoxylin-eosin and TUNEL staining and specific kits. Flow cytometry was used to analyze the apoptosis rate. The relationship between RBM3 and growth arrest specific (GAS) 6 was analyzed by RNA immunoprecipitation assay. The results indicated that RBM3 recovered of neurological function and behaviour impairment of CI rats. Additionally, RBM3 reversed the increased oxidative stress, inflammatory level, and apoptosis induced by CI and OGD. RBM3 interacted with GAS6 to activate the Nrf2 signaling pathway, thus playing neuroprotection on ABI. Besides, the results of RBM3 treatment were similar to those of mild hypothermia treatment. In summary, RBM3 exerted neuroprotection and ameliorated inflammatory levels and oxidative stress by stabilizing GAS6 mRNA through the Nrf2 signaling pathway, suggesting that RBM3 might be a potential therapeutic candidate for treating ABI.
Collapse
Affiliation(s)
- Pingqing Lin
- Department Of Emergency, Fuzhou Second General Hospital, Fuzhou City, Fujian Province 350007, China.
| | - Chengshi Lin
- Department Of Emergency, Fuzhou Second General Hospital, Fuzhou City, Fujian Province 350007, China
| | - Liangbiao Diao
- Department Of Nephrology, Fuzhou Second General Hospital, Fuzhou City, Fujian Province 350007, China
| |
Collapse
|
12
|
Lee S, Kim M, Kwon MY, Kwon SM, Ko YS, Chung Y, Park W, Park JC, Ahn JS, Jeon H, Im J, Kim JH. The efficacy of therapeutic hypothermia in patients with poor-grade aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Acute Crit Care 2024; 39:282-293. [PMID: 38863359 PMCID: PMC11167421 DOI: 10.4266/acc.2024.00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND This study evaluates the effectiveness of Therapeutic Hypothermia (TH) in treating poor-grade aneurysmal subarachnoid hemorrhage (SAH), focusing on functional outcomes, mortality, and complications such as vasospasm, delayed cerebral ischemia (DCI), and hydrocephalus. METHODS Adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, a comprehensive literature search was conducted across multiple databases, including Medline, Embase, and Cochrane Central, up to November 2023. Nine studies involving 368 patients were selected based on eligibility criteria focusing on TH in poor-grade SAH patients. Data extraction, bias assessment, and evidence certainty were systematically performed. RESULTS The primary analysis of unfavorable outcomes in 271 participants showed no significant difference between the TH and standard care groups (risk ratio [RR], 0.87). However, a significant reduction in vasospasm was observed in the TH group (RR, 0.63) among 174 participants. No significant differences were found in DCI, hydrocephalus, and mortality rates in the respective participant groups. CONCLUSIONS TH did not significantly improve primary unfavorable outcomes in poor-grade SAH patients. However, the reduction in vasospasm rates indicates potential specific benefits. The absence of significant findings in other secondary outcomes and mortality highlights the need for further research to better understand TH's role in treating this patient population.
Collapse
Affiliation(s)
- Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Moinay Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min-Yong Kwon
- Department of Neurosurgery, Dongsan Medical Center, Keimyung University College of Medicine, Daegu, Korea
| | - Sae Min Kwon
- Department of Neurosurgery, Dongsan Medical Center, Keimyung University College of Medicine, Daegu, Korea
| | - Young San Ko
- Department of Neurosurgery, Dongsan Medical Center, Keimyung University College of Medicine, Daegu, Korea
| | - Yeongu Chung
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Wonhyoung Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Cheol Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Sung Ahn
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hanwool Jeon
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Jihyun Im
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Hyun Kim
- Department of Neurosurgery, Dongsan Medical Center, Keimyung University College of Medicine, Daegu, Korea
| |
Collapse
|
13
|
Chilombe MB, Seydel KB, Hammond CA, Mwanza S, Patel AA, Lungu F, wa Somwe S, Kampondeni S, Potchen MJ, McDermott MP, Birbeck GL. Protocol for a magnetic resonance imaging study of participants in the fever RCT: Does fever control prevent brain injury in malaria? PLoS One 2024; 19:e0294823. [PMID: 38640099 PMCID: PMC11029645 DOI: 10.1371/journal.pone.0294823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Despite eradication efforts, ~135,000 African children sustained brain injuries as a result of central nervous system (CNS) malaria in 2021. Newer antimalarial medications rapidly clear peripheral parasitemia and improve survival, but mortality remains high with no associated decline in post-malaria neurologic injury. A randomized controlled trial of aggressive antipyretic therapy with acetaminophen and ibuprofen (Fever RCT) for malarial fevers being conducted in Malawi and Zambia began enrollment in 2019. We propose to use neuroimaging in the context of the RCT to further evaluate neuroprotective effects of aggressive antipyretic therapy. METHODS This observational magnetic resonance imaging (MRI) ancillary study will obtain neuroimaging and neurodevelopmental and behavioral outcomes in children previously enrolled in the Fever RCT at 1- and 12-months post discharge. Analysis will compare the odds of any brain injury between the aggressive antipyretic therapy and usual care groups based upon MRI structural abnormalities. For children unable to undergo imaging without deep sedation, neurodevelopmental and behavioral outcomes will be used to identify brain injury. DISCUSSION Neuroimaging is a well-established, valid proxy for neurological outcomes after brain injury in pediatric CNS malaria. This MRI ancillary study will add value to the Fever RCT by determining if treatment with aggressive antipyretic therapy is neuroprotective in CNS malaria. It may also help elucidate the underlying mechanism(s) of neuroprotection and expand upon FEVER RCT safety assessments.
Collapse
Affiliation(s)
- Moses B. Chilombe
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Karl B. Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, Michigan, United States of America
| | - Colleen A. Hammond
- Department of Radiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Suzanna Mwanza
- Department of Pediatrics and Child Health, Chipata Central Hospital, Chipata, Zambia
| | - Archana A. Patel
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Frank Lungu
- Neurology Research Office, University Teaching Hospitals Children’s Hospital, Lusaka, Zambia
| | - Somwe wa Somwe
- Neurology Research Office, University Teaching Hospitals Children’s Hospital, Lusaka, Zambia
| | - Sam Kampondeni
- Mpingwe Clinic, Limbe, Malawi
- Department of Imaging Sciences, University of Rochester, Rochester, New York, United States of America
| | - Michael J. Potchen
- Department of Imaging Sciences, University of Rochester, Rochester, New York, United States of America
- Zambia College of Medicine and Surgery, Lusaka, Zambia
| | - Michael P. McDermott
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, United States of America
- Department of Neurology, University of Rochester, Rochester, New York, United States of America
| | - Gretchen L. Birbeck
- Neurology Research Office, University Teaching Hospitals Children’s Hospital, Lusaka, Zambia
- Department of Neurology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
14
|
Xu W, Geng X, Fayyaz AI, Ding Y. The Modulatory Role of Hypothermia in Poststroke Brain Inflammation: Mechanisms and Clinical Implications. Cerebrovasc Dis 2024; 53:776-788. [PMID: 38286123 PMCID: PMC11633906 DOI: 10.1159/000536384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Acute ischemic stroke remains a major contributor to mortality and disability worldwide. The use of hypothermia has emerged as a promising neuroprotective strategy, with proven effectiveness in cardiac arrest and neonatal hypoxic-ischemic injury. SUMMARY This review explores the therapeutic potential of hypothermia in ischemic stroke by examining its impact on poststroke inflammatory responses. We synthesized evidence from basic and clinical studies to illustrate the inhibitory effects of hypothermia on poststroke brain inflammation. The underlying mechanisms include modulation of microglial activation and polarization; downregulation of key inflammatory pathways such as MAPKs, NF-KB, and JAK/STAT; protection of the blood-brain barrier integrity; and reduction of immune cell infiltration into the brain. We also discuss the current limitations of hypothermia treatment in clinical practice and highlight future research directions for optimizing protocols and evaluating its clinical efficacy in stroke patients. KEY MESSAGES Therapeutic hypothermia (TH) has evolved significantly with advancements in medical technologies, especially with the introduction of automated cooling devices, both intravascular and surface based. However, a refined, highly individualized, and effective hypothermia protocol may stand robust against the devastating consequences of ischemic stroke, and we think it should become the future development goal.
Collapse
Affiliation(s)
- Wei Xu
- Department of Luhe Institute of Neuroscience, Capital Medical University, Beijing, China,
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China,
| | - Xiaokun Geng
- Department of Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aminah I Fayyaz
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
15
|
Chilombe MB, Seydel KB, Hammond C, Mwanza S, Patel AA, Lungu F, Somwe SW, Kampondeni S, Potchen MJ, McDermott MP, Birbeck GL. Protocol for a Magnetic Resonance Imaging (MRI) Study of Participants in the Fever Randomized Controlled Trial: Does fever control prevent brain injury in malaria? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.10.23298374. [PMID: 37986869 PMCID: PMC10659499 DOI: 10.1101/2023.11.10.23298374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Despite eradication efforts, ~135,000 African children sustained brain injuries as a result of central nervous system (CNS) malaria in 2021. Newer antimalarial medications rapidly clear peripheral parasitemia and improve survival, but mortality remains high with no associated decline in post-malaria neurologic injury. A randomized controlled trial of aggressive antipyretic therapy with acetaminophen and ibuprofen (Fever RCT) for malarial fevers being conducted in Malawi and Zambia began enrollment in 2019. We propose to use neuroimaging in the context of the RCT to further evaluate neuroprotective effects of aggressive antipyretic therapy. Methods This observational magnetic resonance imaging (MRI) ancillary study will obtain neuroimaging and neurodevelopmental and behavioral outcomes in children previously enrolled in the Fever RCT at 1- and 12-months post discharge. Analysis will compare the odds of any brain injury between the aggressive antipyretic therapy and usual care groups based upon MRI structural abnormalities. For children unable to undergo imaging without deep sedation, neurodevelopmental and behavioral outcomes will be used to identify brain injury. Discussion Neuroimaging is a well-established, valid proxy for neurological outcomes after brain injury in pediatric CNS malaria. This MRI ancillary study will add value to the Fever RCT by determining if treatment with aggressive antipyretic therapy is neuroprotective in CNS malaria. It may also help elucidate the underlying mechanism(s) of neuroprotection and expand upon FEVER RCT safety assessments.
Collapse
Affiliation(s)
- Moses B. Chilombe
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Karl B. Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, Michigan, USA
| | - Colleen Hammond
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Suzanna Mwanza
- Department of Pediatrics and Child Health, Chipata Central Hospital, Chipata, Zambia
| | - Archana A. Patel
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Frank Lungu
- University Teaching Hospitals Children’s Hospital, Neurology Research Office, Lusaka, Zambia
| | - Somwe wa Somwe
- University Teaching Hospitals Children’s Hospital, Neurology Research Office, Lusaka, Zambia
| | - Sam Kampondeni
- Mpingwe Clinic, Limbe, Malawi
- Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
| | - Michael J. Potchen
- Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
- Zambia College of Medicine and Surgery, Lusaka, Zambia
| | - Michael P. McDermott
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
- Department of Neurology, University of Rochester, Rochester, New York, USA
| | - Gretchen L. Birbeck
- University Teaching Hospitals Children’s Hospital, Neurology Research Office, Lusaka, Zambia
- Department of Neurology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
16
|
Zhang Z, Liu X, Yang Z, Mo X. Study on the protective effect of RNA-binding motif protein 3 in mild hypothermia oxygen-glucose deprivation/reoxygenation cell model. Cryobiology 2023; 112:104544. [PMID: 37211323 DOI: 10.1016/j.cryobiol.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/13/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
Mild hypothermia is proven neuroprotective in clinical practice. While hypothermia leads to the decrease of global protein synthesis rate, it upregulates a small subset of protein including RNA-binding motif protein 3 (RBM3). In this study, we treated mouse neuroblastoma cells (N2a) with mild hypothermia before oxygen-glucose deprivation/reoxygenation (OGD/R) and discovered the decrease of apoptosis rate, down-regulation of apoptosis-associated protein and enhancement of cell viability. Overexpression of RBM3 via plasmid exerted similar effect while silencing RBM3 by siRNAs partially reversed the protective effect exerted by mild hypothermia pretreatment. The protein level of Reticulon 3(RTN3), a downstream gene of RBM3, also increased after mild hypothermia pretreatment. Silencing RTN3 weakened the protective effect of mild hypothermia pretreatment or RBM3 overexpression. Also, the protein level of autophagy gene LC3B increased after OGD/R or RBM3 overexpression while silencing RTN3 decreased this trend. Furthermore, immunofluorescence observed enhanced fluorescence signal of LC3B and RTN3 as well as a large number of overlaps after RBM3 overexpressing. In conclusion, RBM3 plays a cellular protective role by regulating apoptosis and viability via its downstream gene RTN3 in the hypothermia OGD/R cell model and autophagy may participate in it.
Collapse
Affiliation(s)
- Zhixuan Zhang
- Department of Cardiothoracic Surgery, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China; Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoxu Liu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhaocong Yang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
17
|
Liang S, Ti Y, Li X, Zhou W. The Protective Role and Mechanism of Mild Therapeutic Hypothermia Protection on Brain Cells. Neuropsychiatr Dis Treat 2023; 19:1625-1631. [PMID: 37484118 PMCID: PMC10361083 DOI: 10.2147/ndt.s412227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Background Moderate therapeutic hypothermia is protective against several cellular stressors. However, the mechanisms behind this protection are not entirely known. In the current investigation, we investigated that therapeutic hypothermia at 33°C administered following peroxide-induced oxidative stress might protect human oligodendroglioma cells using an in vitro model. Methods and Results Tert-butyl peroxide treatment for one hour significantly increased cell apoptosis and suppressed cell viability. In the range of 50-1000 M tert-butyl peroxide, this cell death was dose-dependent. MTT assay and cell apoptosis assay were applied to analyze cell viability/death at 24 hours after peroxide-induced stress. Therapeutic hypothermia at 33°C delivered for two hours after peroxide exposure significantly increased cell viability and suppressed cell death. Even 15 minutes after peroxide washout when delayed hypothermia was used, this protection was still apparent. Three FDA-approved antioxidants (Tempol, EUK134, and Edaravone at 100 M) were added immediately after tert-butyl peroxide, followed by hypothermia treatment. These three antioxidants greatly increased cell viability and cell apoptosis. RT-qPCR was applied to determine the effects of hypothermia treatment on the expression of caspase-3 and -8 as well as tumor necrosis factor-alpha (TNF-α). Therapeutic hypothermia significantly downregulated these three factors. Conclusion Overall, these findings confirmed that hypothermia and antioxidants quenching reactive oxygen species may lower mitochondrial oxidative stress and/or apoptotic pathways. Further investigation are needed to investigate the role of hypothermia in other cell models.
Collapse
Affiliation(s)
- Suixin Liang
- Department of CICU, Shenzhen Children’s Hospital, Shenzhen City, Guangdong Province, People’s Republic of China
| | - Yunxing Ti
- Department of Cardiothoracic Surgery, Shenzhen Children’s Hospital, Shenzhen City, Guangdong Province, People’s Republic of China
| | - Xiuhong Li
- Department of CICU, Shenzhen Children’s Hospital, Shenzhen City, Guangdong Province, People’s Republic of China
| | - Wenjia Zhou
- Department of CICU, Shenzhen Children’s Hospital, Shenzhen City, Guangdong Province, People’s Republic of China
| |
Collapse
|
18
|
Yoon SG, Choi K, Kyung KH, Kim MS. Analysis of rebound intracranial pressure occurring during rewarming after therapeutic hypothermia in traumatic brain injury patients. Clin Neurol Neurosurg 2023; 230:107755. [PMID: 37207371 DOI: 10.1016/j.clineuro.2023.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
OBJECTIVE To investigate the risk factors associated with rebound intracranial pressure (ICP), a phenomenon that occurs when brain swelling reprogresses rapidly during rewarming in patients who have undergone therapeutic hypothermia for traumatic brain injury (TBI). METHODS This study analyzed 42 patients who underwent therapeutic hypothermia among 172 patients with severe TBI admitted to a single regional trauma center between January 2017 and December 2020. Forty-two patients were classified into 34.5 °C (mild) and 33 °C (moderate) hypothermia groups according to the therapeutic hypothermia protocol for TBI. Rewarming was initiated post-hypothermia, wherein ICP was maintained at ≤ 20 mmHg and cerebral perfusion pressure was maintained at ≥ 50 mmHg for ≥ 24 h. In the rewarming protocol, the target core temperature was increased to 36.5 °C at 0.1 °C/h. RESULTS Of the 42 patients who underwent therapeutic hypothermia, 27 did not survive: 9 in the mild and 18 in the moderate hypothermia groups. The moderate hypothermia group had a significantly higher mortality rate than the mild hypothermia group (p = 0.013). Rebound ICP occurred in 9 of 25 patients: 2 in the mild and 7 in the moderate hypothermia groups. In the risk factor analysis of rebound ICP, only the degree of hypothermia was statistically significant, and rebound ICP was observed more frequently in the moderate than in the mild hypothermia group (p = 0.025). CONCLUSIONS In patients who underwent rewarming after therapeutic hypothermia, rebound ICP presented a higher risk at 33 °C than at 34.5 °C. Therefore, more careful rewarming is needed in patients receiving therapeutic hypothermia at 33 °C.
Collapse
Affiliation(s)
- Sun Geon Yoon
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, 877, Bangeojin sunhwando-ro, Dong-gu, Ulsan 44033, Republic of Korea
| | - Kyunghak Choi
- Department of Trauma Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, 877, Bangeojin sunhwando-ro, Dong-gu, Ulsan 44033, Republic of Korea
| | - Kyu-Hyouck Kyung
- Department of Trauma Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, 877, Bangeojin sunhwando-ro, Dong-gu, Ulsan 44033, Republic of Korea
| | - Min Soo Kim
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, 877, Bangeojin sunhwando-ro, Dong-gu, Ulsan 44033, Republic of Korea.
| |
Collapse
|
19
|
Cheng Z, Ding Y, Rajah GB, Gao J, Li F, Ma L, Geng X. Vertebrobasilar artery cooling infusion in acute ischemic stroke for posterior circulation following thrombectomy: Rationale, design and protocol for a prospective randomized controlled trial. Front Neurosci 2023; 17:1149767. [PMID: 37113154 PMCID: PMC10126519 DOI: 10.3389/fnins.2023.1149767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Although endovascular mechanical thrombectomy demonstrates clinical efficacy in posterior circulation acute ischemic stroke (AIS), only one third of these patients attain functional independence with a third of patients' expiring despite vascular recanalization. Neuroprotection strategies, such as therapeutic hypothermia (TH) have been considered a promising adjunctive treatment in AIS. We propose the following rationale, design and protocol for a prospective randomized controlled trial (RCT) aimed to determine whether Vertebrobasilar Artery Cooling Infusion (VACI) improves functional outcomes in posterior circulation AIS patients post mechanical thrombectomy. METHODS Subjects in the study will be assigned randomly to either the cooling infusion or the control group in a 1:1 ratio (n = 40). Patients allocated to the cooling infusion group will receive 300 ml cool saline at 4C through the catheter (30 ml/min) into vertebral artery after thrombectomy. The control group will receive the same volume of 37C saline. All patients enrolled will receive standard care according to current guidelines for stroke management. The primary outcome is symptomatic intracranial hemorrhage (ICH), whereas the secondary outcomes include functional outcome score, infarction volume, mortality, ICH, fatal ICH, cerebral vasospasm, coagulation abnormality, pneumonia and urinary infection. DISCUSSIONS This study will determine the preliminary safety, feasibility, and neuroprotective benefits of VACI in posterior circulation AIS patients with reperfusion therapy. The results of this study may provide evidence for VACI as a new therapy in posterior circulation AIS. CLINICAL TRIAL REGISTRATION www.chictr.org.cn, ChiCTR2200065806, registered on November 15, 2022.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Gary B. Rajah
- Department of Neurosurgery, Munson Healthcare, Traverse City, MI, United States
| | - Jie Gao
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Luhe Hospital, Capital Medical University, Beijing, China
| | - Fenghai Li
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Luhe Hospital, Capital Medical University, Beijing, China
| | - Linlin Ma
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Zhou C, Wang J, Shao G, Xia X, Wu L, Yu A, Yang Z. Mild Hypothermia Protects Brain Injury After Intracerebral Hemorrhage in Mice Via Enhancing the Nrdp1/MyD88 Signaling Pathway. Neurotox Res 2022; 40:1664-1672. [PMID: 36125699 DOI: 10.1007/s12640-022-00576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mild hypothermia has been identified to reduce brain injury following intracerebral hemorrhage (ICH) by protecting neuron cells through several pathways. However, the role of hypothermia in brain function following ICH and the related mechanisms have not been well identified. Ubiquitination-mediated inflammation plays important roles in the pathogenesis of immune diseases. The experiment analyzed anti-inflammatory effects of mild hypothermia following ICH. METHODS The model of ICH was induced by injecting autologous blood. Neuregulin receptor degradation protein-1 (Nrdp1) and downstream molecule were analyzed. In addition, brain inflammatory response, brain edema, and neurological functions of ICH mice were also assessed. RESULTS We found that mild hypothermia attenuated proinflammatory factors production after ICH. Mild hypothermia significantly inhibited BBB injury, water content, and neurological damage following ICH in vivo. Moreover, mild hypothermia also increased Nrdp1/MyD88 levels and thus affect neuronal apoptosis and inflammation. CONCLUSIONS Taken together, these results suggest that mild hypothermia can attenuate the neuroinflammatory response and neuronal apoptosis after ICH through the regulation of the Nrdp1 levels.
Collapse
Affiliation(s)
- Changlong Zhou
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Jinping Wang
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Gaohai Shao
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xiaohui Xia
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Lirong Wu
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Anyong Yu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
| | - Zhao Yang
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
| |
Collapse
|
21
|
Bindal S, Conner CR, Akkanti B, Nathan SS, Choi HA, Kar B, Tandon N. Multiple decompressive craniectomies and hematoma evacuation in a patient undergoing extracorporeal membrane oxygenation. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
22
|
Enam SF, Kilic CY, Huang J, Kang BJ, Chen R, Tribble CS, Ilich E, Betancur MI, Blocker SJ, Owen SJ, Buckley AF, Lyon JG, Bellamkonda RV. Cytostatic hypothermia and its impact on glioblastoma and survival. SCIENCE ADVANCES 2022; 8:eabq4882. [PMID: 36427309 PMCID: PMC9699673 DOI: 10.1126/sciadv.abq4882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Patients with glioblastoma (GBM) have limited options and require novel approaches to treatment. Here, we studied and deployed nonfreezing "cytostatic" hypothermia to stunt GBM growth. This growth-halting method contrasts with ablative, cryogenic hypothermia that kills both neoplastic and infiltrated healthy tissue. We investigated degrees of hypothermia in vitro and identified a cytostatic window of 20° to 25°C. For some lines, 18 hours/day of cytostatic hypothermia was sufficient to halt division in vitro. Next, we fabricated an experimental tool to test local cytostatic hypothermia in two rodent GBM models. Hypothermia more than doubled median survival, and all rats that successfully received cytostatic hypothermia survived their study period. Unlike targeted therapeutics that are successful in preclinical models but fail in clinical trials, cytostatic hypothermia leverages fundamental physics that influences biology broadly. It is a previously unexplored approach that could provide an additional option to patients with GBM by halting tumor growth.
Collapse
Affiliation(s)
- Syed Faaiz Enam
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27705, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Cem Y. Kilic
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27705, USA
| | - Jianxi Huang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27705, USA
| | - Brian J. Kang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27705, USA
| | - Reed Chen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27705, USA
| | - Connor S. Tribble
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27705, USA
| | - Ekaterina Ilich
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27705, USA
| | - Martha I. Betancur
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27705, USA
| | - Stephanie J. Blocker
- Department of Radiology, Center for In Vivo Microscopy, Duke University, Durham, NC 27705, USA
| | - Steven J. Owen
- Bio-medical Machine Shop, Pratt School of Engineering, Duke University, Durham, NC 27705, USA
| | - Anne F. Buckley
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27705, USA
| | - Johnathan G. Lyon
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27705, USA
- Department of Biology, Emory University, Atlanta, GA 30332, USA
| | - Ravi V. Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27705, USA
- Department of Biology, Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
23
|
Therapeutic hypothermia and acute brain injury. ANAESTHESIA & INTENSIVE CARE MEDICINE 2022. [DOI: 10.1016/j.mpaic.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Siwicka-Gieroba D, Robba C, Gołacki J, Badenes R, Dabrowski W. Cerebral Oxygen Delivery and Consumption in Brain-Injured Patients. J Pers Med 2022; 12:1763. [PMID: 36573716 PMCID: PMC9698645 DOI: 10.3390/jpm12111763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/30/2022] Open
Abstract
Organism survival depends on oxygen delivery and utilization to maintain the balance of energy and toxic oxidants production. This regulation is crucial to the brain, especially after acute injuries. Secondary insults after brain damage may include impaired cerebral metabolism, ischemia, intracranial hypertension and oxygen concentration disturbances such as hypoxia or hyperoxia. Recent data highlight the important role of clinical protocols in improving oxygen delivery and resulting in lower mortality in brain-injured patients. Clinical protocols guide the rules for oxygen supplementation based on physiological processes such as elevation of oxygen supply (by mean arterial pressure (MAP) and intracranial pressure (ICP) modulation, cerebral vasoreactivity, oxygen capacity) and reduction of oxygen demand (by pharmacological sedation and coma or hypothermia). The aim of this review is to discuss oxygen metabolism in the brain under different conditions.
Collapse
Affiliation(s)
- Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Chiara Robba
- Department of Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Jakub Gołacki
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari, University of Valencia, 46010 Valencia, Spain
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| |
Collapse
|
25
|
Chilombe MB, McDermott MP, Seydel KB, Mathews M, Mwenechanya M, Birbeck GL. Aggressive antipyretics in central nervous system malaria: Study protocol of a randomized-controlled trial assessing antipyretic efficacy and parasite clearance effects (Malaria FEVER study). PLoS One 2022; 17:e0268414. [PMID: 36206262 PMCID: PMC9543763 DOI: 10.1371/journal.pone.0268414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Malaria remains a major public health challenge in Africa where annually, ~250,000 children with malaria experience a neurologic injury with subsequent neuro-disability. Evidence indicates that a higher temperature during the acute illness is a risk factor for post-infectious neurologic sequelae. As such, aggressive antipyretic therapy may be warranted among children with complicated malaria at substantial risk of brain injury. Previous clinical trials conducted primarily in children with uncomplicated malaria and using only a single antipyretic medication have shown limited benefits in terms of fever reduction; however, no studies to date have examined malaria fever management using dual therapies. In this clinical trial of aggressive antipyretic therapy, children hospitalized with central nervous system (CNS) malaria will be randomized to usual care (acetaminophen every 6 hours for a temperature ≥ 38.5°C) vs. prophylactic acetaminophen and ibuprofen every 6 hours for 72 hours. METHODS In this double-blinded, placebo controlled, two-armed clinical trial, we will enroll 284 participants from three settings at Queen Elizabeth Central Hospital in Blantyre, Malawi; at the University Teaching Hospitals Children's Hospital in Lusaka, Zambia and at Chipata Central Hospital, Chipata, Zambia. Parents or guardians must provide written informed consent. Eligible participants are 2-11 years with evidence of P. falciparum malaria infection by peripheral blood smear or rapid diagnostic test with CNS symptoms associated with malaria. Eligible children will receive treatment allocation randomization either to standard of care for fever management or to prophylactic, scheduled treatment every 6 hours for 72 hours with dual antipyretic therapies using acetaminophen and ibuprofen. Assignment to treatment groups will be with 1:1 allocation using blocked randomization. The primary outcome will be maximum temperature in the 72 hours after enrolment. Secondary outcomes include parasite clearance as determined by quantitative Histidine Rich Protein II and seizures through 72 hours after enrolment. DISCUSSION This clinical trial seeks to challenge the practice paradigm of limited fever treatment based upon hyperpyrexia by evaluating the fever-reduction efficacy of more aggressive antipyretic using two antipyretics and prophylactic administration and will elucidate the impact of antipyretics on parasite clearance and acute symptomatic seizures. If aggressive antipyretic therapy is shown to safely reduce the maximum temperature, a clinical trial evaluating the neuroprotective effects of temperature reduction in CNS malaria is warranted.
Collapse
Affiliation(s)
- Moses B. Chilombe
- Blantyre Malaria Project, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Michael P. McDermott
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, United States of America
| | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Manoj Mathews
- University Teaching Hospitals Children’s Hospital, Lusaka, Zambia
| | | | - Gretchen L. Birbeck
- University Teaching Hospitals Children’s Hospital, Lusaka, Zambia
- University of Zambia School of Medicine, Lusaka, Zambia
- Department of Neurology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
26
|
You JS, Kim JY, Yenari MA. Therapeutic hypothermia for stroke: Unique challenges at the bedside. Front Neurol 2022; 13:951586. [PMID: 36262833 PMCID: PMC9575992 DOI: 10.3389/fneur.2022.951586] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022] Open
Abstract
Therapeutic hypothermia has shown promise as a means to improving neurological outcomes at several neurological conditions. At the clinical level, it has been shown to improve outcomes in comatose survivors of cardiac arrest and in neonatal hypoxic ischemic encephalopathy, but has yet to be convincingly demonstrated in stroke. While numerous preclinical studies have shown benefit in stroke models, translating this to the clinical level has proven challenging. Major obstacles include cooling patients with typical stroke who are awake and breathing spontaneously but often have significant comorbidities. Solutions around these problems include selective brain cooling and cooling to lesser depths or avoiding hyperthermia. This review will cover the mechanisms of protection by therapeutic hypothermia, as well as recent progress made in selective brain cooling and the neuroprotective effects of only slightly lowering brain temperature. Therapeutic hypothermia for stroke has been shown to be feasible, but has yet to be definitively proven effective. There is clearly much work to be undertaken in this area.
Collapse
Affiliation(s)
- Je Sung You
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Midori A. Yenari
- Department of Neurology, The San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Midori A. Yenari
| |
Collapse
|
27
|
Hu Y, Liu Y, Quan X, Fan W, Xu B, Li S. RBM3 is an outstanding cold shock protein with multiple physiological functions beyond hypothermia. J Cell Physiol 2022; 237:3788-3802. [PMID: 35926117 DOI: 10.1002/jcp.30852] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
RNA-binding motif protein 3 (RBM3), an outstanding cold shock protein, is rapidly upregulated to ensure homeostasis and survival in a cold environment, which is an important physiological mechanism in response to cold stress. Meanwhile, RBM3 has multiple physiological functions and participates in the regulation of various cellular physiological processes, such as antiapoptosis, circadian rhythm, cell cycle, reproduction, and tumogenesis. The structure, conservation, and tissue distribution of RBM3 in human are demonstrated in this review. Herein, the multiple physiological functions of RBM3 were summarized based on recent research advances. Meanwhile, the cytoprotective mechanism of RBM3 during stress under various adverse conditions and its regulation of transcription were discussed. In addition, the neuroprotection of RBM3 and its oncogenic role and controversy in various cancers were investigated in our review.
Collapse
Affiliation(s)
- Yajie Hu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Yang Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Xin Quan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Wenxuan Fan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| |
Collapse
|
28
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
29
|
Cai H, Ma X, Lu D, Chen L, Bian X, Zhang N, Tang W, Liu X, Li Z. Mild Hypothermia Promotes Ischemic Tolerance and Survival of Neural Stem Cell Grafts by Enhancing Global SUMOylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6503504. [PMID: 35669854 PMCID: PMC9166982 DOI: 10.1155/2022/6503504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022]
Abstract
Cerebral infarct penumbra due to hypoxia and toxin accumulation is not conducive to the transplantation of neural stem cells (NSCs), although mild hypothermia can improve the local microenvironment of the ischemic penumbra and exert neuroprotective effects. However, insufficient understanding of the molecular mechanism by which mild hypothermia protects the brain limits widespread clinical application. This study evaluated the molecular mechanism of mild hypothermia-induced brain protection from the perspective of global protein small ubiquitin-like modifier (SUMO) modification, with the aim of improving NSC transplant survival rates in the penumbra to enhance neurological function. NSCs from neonatal rats were extracted to detect the effects of hypoxia and mild hypothermia on SUMOylation modification levels, cell stemness, and hypoxia-induced injury. Overexpression and knockdown of UBC9 in NSCs were used to evaluate their ability to maintain stemness and withstand hypoxic injury. Finally, a rat middle cerebral artery occlusion (MCAO) model was used to verify the effect of mild hypothermia treatment and UBC9 overexpression on neural function of NSCs following penumbra transplantation in rats. Results showed that hypoxia and mild hypothermia promoted both the SUMOylation modification and maintenance of NSC stemness. Overexpression of UBC9 enhanced the abilities of NSCs to maintain stemness and resist hypoxic injury, while UBC9 knockdown had the opposite effect. Following transplantation into the ischemic penumbra of MCAO model rats, mild hypothermia and Ubc9-overexpressing NSCs significantly reduced cerebral infarct areas and improved neurological function. In conclusion, this study demonstrated that global protein SUMOylation is an important molecular mechanism for NSCs to tolerate hypoxia, and mild hypothermia can further increase the degree of global SUMOylation to enhance the hypoxia tolerance of NSCs, which increases their survival during transplantation in situ and ability to perform nerve repair in the penumbra of cerebral infarction.
Collapse
Affiliation(s)
- Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiaofang Ma
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Dading Lu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Liangyu Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Nan Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Wei Tang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Zhiqing Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| |
Collapse
|
30
|
Kim JY, Kim JH, Park J, Beom JH, Chung SP, You JS, Lee JE. Targeted Temperature Management at 36 °C Shows Therapeutic Effectiveness via Alteration of Microglial Activation and Polarization After Ischemic Stroke. Transl Stroke Res 2022; 13:132-141. [PMID: 33893993 DOI: 10.1007/s12975-021-00910-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 02/02/2023]
Abstract
Ischemic injury leads to cell death and inflammatory responses after stroke. Microglia especially play a crucial role in this brain inflammation. Targeted temperature management (TTM) at 33 °C has shown neuroprotective effects against many acute ischemic injuries. However, it has also shown some adverse effects in preclinical studies. Therefore, we explored the neuroprotective effect of TTM at 36 °C in the ischemic brain. To confirm the neuroprotective effects of hypothermia, mice were subjected to a permanent stroke and then treated with one of the TTM paradigms at 33 and 36 °C. For comparison of TTM at 33 and 36 °C, we examined neuronal cell death and inflammatory response, including activation and polarization of microglia in the ischemic brain. TTM at 33 and 36 °C showed neuroprotective effects in comparison with normal body temperature (NT) at 37.5 °C. Mice under TTM at 33 and 36 °C showed ~ 45-50% fewer TUNEL-positive cells than those under NT. In IVIS spectrum CT, the activation of microglia/macrophage in CX3CR1GFP mice reduced after TTM at 33 and 36 °C in comparison with that after NT on day 7 after ischemic stroke. The number of Tmem119-positive cells under TTM at 33 and 36 °C was ~ 45-50% lower than that in mice under NT. TTM at 33 and 36 °C also increased the ratio of CD206-/CD86-positive cells than the ratio of CD86-/CD206-positive cells by ~ 1.2-fold. Thus, TTM at 33 and 36 °C could equivalently decrease the expression of certain cytokines after ischemic stroke. Our study suggested that TTM at 33 or 36 °C produces equivalent neuroprotective effects by attenuating cell death and by altering microglial activation and polarization. Therefore, TTM at 36 °C can be considered for its safety and effectiveness in ischemic stroke.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hee Kim
- Department of Emergency Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Ho Beom
- Department of Emergency Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Sung Phil Chung
- Department of Emergency Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Je Sung You
- Department of Emergency Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea.
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Medical School Building Room # 146, Seoul, 03722, Republic of Korea.
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Inoue S. Temperature management for deliberate mild hypothermia during neurosurgical procedures. Fukushima J Med Sci 2022; 68:143-151. [PMID: 36517037 PMCID: PMC9840888 DOI: 10.5387/fms.2022-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Deliberate mild hypothermia is safer from the point of view of adverse events and does not require a specific technique, unlike deep or moderate hypothermia. Therefore, mild hypothermia was widely used for neurosurgical procedures. Unfortunately, the neuroprotective efficacy of intraoperative mild hypothermia has not yet been proven; however, temperature management for intraoperative deliberate mild hypothermia has been improved over the past two decades. It is very important to achieve mild hypothermia before the commencement of the main surgery, and to maintain the patient's body temperature until the procedure is completed. In addition, it is also important to complete rewarming by the end of the surgery so that an accurate neurological evaluation can be made. Regarding the effects of mild hypothermia on outcomes, a large randomized controlled study reported that unfavorable outcomes did not differ between participants with or without hypothermia. Apart from these unfavorable outcomes, it is known that temperature management during deliberate intraoperative mild hypothermia has contributed to improvement of anesthesia practice. The accumulation of experience in this field is important. Clinical interest in deliberate mild hypothermia is currently low; however, anesthesiologists should be prepared for the time when it is required again in the future.
Collapse
Affiliation(s)
- Satoki Inoue
- Department of Anesthesiology, Fukushima Medical University
| |
Collapse
|
32
|
Elmimehr R, Motamed-Sanaye A, Brazvan B, Abtahi-Eivary SH, Moghimian M, Fani M. Effects of hypothermia and pentoxifylline on the adnexal torsion/detorsion injuries in a rat testis model. Andrologia 2021; 53:e14143. [PMID: 34115392 DOI: 10.1111/and.14143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023] Open
Abstract
This study was designed to investigate the effects of separate and combined administration of hypothermia and pentoxifylline to preserve the effects on the testicles in an experimental model of testicular torsion/ detorsion injuries in rats. Forty male adult Wistar rats were randomly divided into five groups, control, torsion/detorsion (TD), torsion/detorsion/hypothermia (TD+ICE), torsion/detorsion received of pentoxifylline (40mg/kg, ip) (TD+PTX) and torsion/detorsion/hypothermia/PTX (TD+ICE+PTX). Left testicular torsion (TT) was performed for 4 and half hours, and ice fragments have been used at the beginning of torsion. After the reperfusion period (a week), oxidative maker's serum levels, testosterone hormone, sperm parameters, and histopathological and gene expression evaluations have been performed. Significant adverse changes were observed in the TD group for histological variables, sperm count, oxidative marker, testosterone hormone, Bax, BCL2 and caspase-3 expression. The parameters studied in the group receiving PTX improved in comparison with the TD group, while macroscopical parameters of both the hypothermia and PTX+ICE groups were not different compared with the TD group. The results revealed that PTX, as an antioxidant component, was protective against testicular torsion, while hypothermia and hypothermia plus PTX did not exhibit this property, which may have been due to the duration of hypothermia (4 hr) or reperfusion period.
Collapse
Affiliation(s)
- Reza Elmimehr
- Department of Urology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Motamed-Sanaye
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Balal Brazvan
- Department of Anatomy, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | - Maryam Moghimian
- Department of Physiology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Masoumeh Fani
- Department of Anatomy, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
33
|
Transient Global Ischemia-Induced Brain Inflammatory Cascades Attenuated by Targeted Temperature Management. Int J Mol Sci 2021; 22:ijms22105114. [PMID: 34066051 PMCID: PMC8151768 DOI: 10.3390/ijms22105114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Sudden cardiac arrest leads to a significantly increased risk of severe neurological impairment and higher mortality rates in survivors due to global brain tissue injury caused by prolonged whole-body ischemia and reperfusion. The brain undergoes various deleterious cascading events. Among these damaging mechanisms, neuroinflammation plays an especially crucial role in the exacerbation of brain damage. Clinical guidelines indicate that 33 °C and 36 °C are both beneficial for targeted temperature management (TTM) after cardiac arrest. To clarify the mechanistic relationship between TTM and inflammation in transient global ischemia (TGI) and determine whether 36 °C produces a neuroprotective effect comparable to 33 °C, we performed an experiment using a rat model. We found that TTM at 36 °C and at 33 °C attenuated neuronal cell death and apoptosis, with significant improvements in behavioral function that lasted for up to 72 h. TTM at 33 °C and 36 °C suppressed the propagation of inflammation including the release of high mobility group box 1 from damaged cells, the activation and polarization of the microglia, and the excessive release of activated microglia-induced inflammatory cytokines. There were equal neuroprotective effects for TTM at 36 °C and 33 °C. In addition, hypothermic complications and should be considered safe and effective after cardiac arrest.
Collapse
|
34
|
Wilkinson CM, Kung TF, Jickling GC, Colbourne F. A translational perspective on intracranial pressure responses following intracerebral hemorrhage in animal models. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
35
|
Usefulness of chloride levels for fluid resuscitation in patients undergoing targeted temperature management after out-of-hospital cardiac arrest. Am J Emerg Med 2021; 43:69-76. [PMID: 33529852 DOI: 10.1016/j.ajem.2021.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Chloride is an important electrolyte in the body. In this study, we aimed to evaluate the associations between chloride levels on emergency department (ED) admission and neurologic outcomes by stratifying patients undergoing targeted temperature management (TTM) after out-of-hospital cardiac arrest (OHCA) into three groups (hyper/normo/hypochloremia); we also assessed the effect of changes in chloride levels from baseline over time on outcomes. METHODS This retrospective, observational cohort study of 346 patients was conducted between 2011 and 2019. The chloride levels were categorized as hypochloremia, normochloremia, and hyperchloremia by predetermined definitions. The primary endpoint was poor neurologic outcomes after hospital discharge. We evaluated the associations between chloride levels on ED admission and neurologic outcomes and assess the effect of changes in chloride levels over time on clinical outcomes. RESULTS On ED admission, compared with normochloremia, hypochloremia was significantly associated with unfavorable neurologic outcomes (OR, 2.668; 95% CI, 1.217-5.850, P = 0.014). Over time, unfavorable neurologic outcomes were significantly associated with increases in chloride levels in the hyperchloremia and normochloremia groups after ED admission. The rates of poor neurologic outcomes in the hyperchloremia and normochloremia groups were increased by 14.2% at Time-12, 20.1% at Time-24, and 9.3% at Time-48 with a 1-mEq/L increase in chloride levels. CONCLUSION In clinical practice, chloride levels can be routinely and serially measured cost-effectively. Thus, baseline chloride levels may be a promising tool for rapid risk stratification of patients after OHCA. For fluid resuscitation after cardiac arrest, a chloride-restricted solution may be an early therapeutic strategy.
Collapse
|
36
|
Beom JH, Kim JH, Seo J, Lee JH, Chung YE, Chung HS, Chung SP, Kim CH, You JS. Targeted temperature management at 33°C or 36℃ induces equivalent myocardial protection by inhibiting HMGB1 release in myocardial ischemia/reperfusion injury. PLoS One 2021; 16:e0246066. [PMID: 33503060 PMCID: PMC7840046 DOI: 10.1371/journal.pone.0246066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/13/2021] [Indexed: 01/03/2023] Open
Abstract
Acute myocardial infarction (AMI) is lethal and causes myocardial necrosis via time-dependent ischemia due to prolonged occlusion of the infarct-related artery. No effective therapy or potential therapeutic targets can prevent myocardial ischemia/reperfusion (I/R) injury. Targeted temperature management (TTM) may reduce peri-infarct regions by inhibiting the extracellular release of high mobility group box-1 (HMGB1) as a primary mediator of the innate immune response. We used a rat left anterior descending (LAD) coronary artery ligation model to determine if TTM at 33°C and 36°C had similar myocardial protective effects. Rats were divided into sham, LAD I/R+37°C normothermia, LAD I/R+33°C TTM, and LAD I/R+36°C TTM groups (n = 5 per group). To verify the cardioprotective effect of TTM by specifically inhibiting HMGB1, rats were assigned to sham, LAD I/R, and LAD I/R after pre-treatment with glycyrrhizin (known as a pharmacological inhibitor of HMGB1) groups (n = 5 per group). Different target temperatures of 33°C and 36°C caused equivalent reductions in infarct volume after myocardial I/R, inhibited the extracellular release of HMGB1 from infarct tissue, and suppressed the expression of inflammatory cytokines from peri-infarct regions. TTM at 33°C and 36°C significantly attenuated the elevation of cardiac troponin, a sensitive and specific marker of heart muscle damage, after injury. Similarly, glycyrrhizin alleviated myocardial damage by suppressing the extracellular release of HMGB1. TTM at 33°C and 36°C had equivalent myocardial protective effects by similar inhibiting HMGB1 release against myocardial I/R injury. This is the first study to suggest that a target core temperature of 36°C is applicable for cardioprotection.
Collapse
Affiliation(s)
- Jin Ho Beom
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hee Kim
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeho Seo
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Ho Lee
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Yong Eun Chung
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Soo Chung
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Phil Chung
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Je Sung You
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
37
|
Zhao S, Liu X, Kang J, Sun S, Li Y, Zhang J, Li Q, Ji X. Analysis of microRNA expression in cerebral ischemia/reperfusion after mild therapeutic hypothermia treatment in rats. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:168. [PMID: 33569470 PMCID: PMC7867934 DOI: 10.21037/atm-21-143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background This study aimed to explore the molecular mechanism of mild hypothermia in in the treatment of cerebral ischemia, microRNA (miRNA) microarrays and bioinformatics analysis were employed to examine the miRNA expression profiles of rats with mild therapeutic hypothermia after middle cerebral artery occlusion (MCAO). Methods MCAO was induced in Male Sprague–Dawley rats. Mild hypothermia treatment began from the onset of ischemia and maintained for 3 hours. miRNA expressions following focal cerebral ischemia and mild hypothermia treatment were profiled using microarray technology. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the functions of the target genes in mild therapeutic hypothermia after MCAO. 60 min before MCAO, mimics and inhibitor of miR-291b were injected into the right lateral ventricle respectively, then the infarct volume and neuronal apoptosis were analyzed. Results Six upregulated miRNAs and 6 downregulated miRNAs were detected 4 hours after mild therapeutic hypothermia, and after 24 hours, 41 and 10 miRNAs were upregulated and downregulated, respectively. The target genes of the differentially expressed genes were mainly related with multicellular organism development and the mucin type O-glycan biosynthesis pathway was the most enriched KEGG pathway. Among the differentially expressed miRNAs, miR-291b was selected to assess the effects of mild therapeutic hypothermia in MCAO rats. At 24 hours after mild therapeutic hypothermia, miR-291b overexpression was proved to exhibit neuroprotective effects. Conclusions The results showed that miRNAs might play a pivotal role in mild therapeutic hypothermia in cerebral ischemia/reperfusion injury. Further understanding of the mechanism and function of miRNAs would help to illuminate the mechanism of mild therapeutic hypothermia in cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Shangfeng Zhao
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiangrong Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Kang
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Si Sun
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yong Li
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jialiang Zhang
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qi Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Yang L, Dong Y, Wu C, Youngblood H, Li Y, Zong X, Li L, Xu T, Zhang Q. Effects of prenatal photobiomodulation treatment on neonatal hypoxic ischemia in rat offspring. Theranostics 2021; 11:1269-1294. [PMID: 33391534 PMCID: PMC7738878 DOI: 10.7150/thno.49672] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) injury is a severe complication often leading to neonatal death and long-term neurobehavioral deficits in children. Currently, the only treatment option available for neonatal HI injury is therapeutic hypothermia. However, the necessary specialized equipment, possible adverse side effects, and limited effectiveness of this therapy creates an urgent need for the development of new HI treatment methods. Photobiomodulation (PBM) has been shown to be neuroprotective against multiple brain disorders in animal models, as well as limited human studies. However, the effects of PBM treatment on neonatal HI injury remain unclear. Methods: Two-minutes PBM (808 nm continuous wave laser, 8 mW/cm2 on neonatal brain) was applied three times weekly on the abdomen of pregnant rats from gestation day 1 (GD1) to GD21. After neonatal right common carotid artery ligation, cortex- and hippocampus-related behavioral deficits due to HI insult were measured using a battery of behavioral tests. The effects of HI insult and PBM pretreatment on infarct size; synaptic, dendritic, and white matter damage; neuronal degeneration; apoptosis; mitochondrial function; mitochondrial fragmentation; oxidative stress; and gliosis were then assessed. Results: Prenatal PBM treatment significantly improved the survival rate of neonatal rats and decreased infarct size after HI insult. Behavioral tests revealed that prenatal PBM treatment significantly alleviated cortex-related motor deficits and hippocampus-related memory and learning dysfunction. In addition, mitochondrial function and integrity were protected in HI animals treated with PBM. Additional studies revealed that prenatal PBM treatment significantly alleviated HI-induced neuroinflammation, oxidative stress, and myeloid cell/astrocyte activation. Conclusion: Prenatal PBM treatment exerts neuroprotective effects on neonatal HI rats. Underlying mechanisms for this neuroprotection may include preservation of mitochondrial function, reduction of inflammation, and decreased oxidative stress. Our findings support the possible use of PBM treatment in high-risk pregnancies to alleviate or prevent HI-induced brain injury in the perinatal period.
Collapse
Affiliation(s)
- Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Hannah Youngblood
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Yong Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Xuemei Zong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lei Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Tongda Xu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| |
Collapse
|
39
|
Frajewicki A, Laštůvka Z, Borbélyová V, Khan S, Jandová K, Janišová K, Otáhal J, Mysliveček J, Riljak V. Perinatal hypoxic-ischemic damage: review of the current treatment possibilities. Physiol Res 2020; 69:S379-S401. [PMID: 33464921 DOI: 10.33549/physiolres.934595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is a disorder with heterogeneous manifestation due to asphyxia during perinatal period. It affects approximately 3-12 children per 1000 live births and cause death of 1 million neonates worldwide per year. Besides, motor disabilities, seizures, impaired muscle tone and epilepsy are few of the consequences of hypoxic-ischemic encephalopathy. Despite an extensive research effort regarding various treatment strategies, therapeutic hypothermia with intensive care unit supportive treatment remains the only approved method for neonates who have suffered from moderate to severe hypoxic-ischemic encephalopathy. However, these protocols are only partially effective given that many infants still suffer from severe brain damage. Thus, further research to systematically test promising neuroprotective treatments in combination with hypothermia is essential. In this review, we discussed the pathophysiology of hypoxic-ischemic encephalopathy and delved into different promising treatment modalities, such as melatonin and erythropoietin. However, preclinical studies and clinical trials are still needed to further elucidate the mechanisms of action of these modalities.
Collapse
Affiliation(s)
- A Frajewicki
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li J, Gu Y, Li G, Wang L, Cheng X, Wang M, Zhao M. The Role of Hypothermia in Large Hemispheric Infarction: A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:549872. [PMID: 33192981 PMCID: PMC7653189 DOI: 10.3389/fneur.2020.549872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/18/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Hypothermia is used in the treatment of large hemispheric infarction (LHI); however, its role in outcomes for LHI patients remains ambiguous. This systematic review and meta-analysis was conducted to evaluate the effect of hypothermia on the outcomes of LHI patients. Methods: We searched MEDLINE, Embase, Cochrane Central Register of Controlled Trials, China Biological Medicine Database, and clinical trials registers before September 21, 2018, and then scanned the reference lists. Randomized controlled trials that compared hypothermia with normothermia in LHI patients were included. Primary outcomes that we reviewed were mortality and neurological outcome. Adverse events during treatment were defined as secondary outcomes. We performed a meta-analysis to calculate pooled risk ratios (RRs), standardized mean differences (SMDs), and 95% confidence intervals (CIs) using fixed-effect models. Results: Three randomized controlled trials involving 131 participants were included. No statistically significant association was revealed between hypothermia and mortality (RR, 1.12; 95% CI, 0.76-1.65). There was significant association between hypothermia and good neurological outcome as assessed by modified Rankin Scale score (mRS of 0-3) of survivors (RR, 2.09; 95% CI, 1.14-3.82), and with neurological outcome by mRS (SMD, -0.54; 95% CI, -1.07 to -0.01). However, significant associations were found between hypothermia and gastrointestinal bleeding, gastric retention, electrolyte derangement, and shivering. No significant differences were detected in the incidence of developing herniation in the rewarming process, pneumonia, cardiac arrhythmia, hemorrhagic transformation, hyperglycemia, hypotension, acute kidney injury, and venous thrombotic events in LHI patients who underwent hypothermia compared with those who had normothermia. Conclusions: This meta-analysis suggested that hypothermia was not associated with mortality in LHI patients. However, it was associated with the improvement of neurological outcome, but with a higher risk of adverse events during treatment. Future studies are needed to demonstrate the efficacy and safety of hypothermia for LHI. The protocol for this systematic review was obtained from PROSPERO (registration number: CRD42018111761).
Collapse
Affiliation(s)
- Jing Li
- Department of Intensive Care Unit, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Yanghui Gu
- Department of Cardiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Gang Li
- Department of Intensive Care Unit, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Lixin Wang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobin Cheng
- Department of Intensive Care Unit, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Min Wang
- Department of Intensive Care Unit, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Min Zhao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
41
|
Therapeutic Hypothermia in Patients with Malignant Ischemic Stroke and Hemicraniectomy—A Systematic Review and Meta-analysis. World Neurosurg 2020; 141:e677-e685. [DOI: 10.1016/j.wneu.2020.05.277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 02/02/2023]
|
42
|
Liu B, Cao Y, Shi F, Wang L, Li N, Cheng X, Du J, Tian Q, Zhou X. The overexpression of RBM3 alleviates TBI-induced behaviour impairment and AD-like tauopathy in mice. J Cell Mol Med 2020; 24:9176-9188. [PMID: 32648620 PMCID: PMC7417709 DOI: 10.1111/jcmm.15555] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/08/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
The therapeutic hypothermia is an effective tool for TBI‐associated brain impairment, but its side effects limit in clinical routine use. Hypothermia up‐regulates RNA‐binding motif protein 3 (RBM3), which is verified to protect synaptic plasticity. Here, we found that cognitive and LTP deficits, loss of spines, AD‐like tau pathologies are displayed one month after TBI in mice. In contrast, the deficits of LTP and cognitive, loss of spines and tau abnormal phosphorylation at several sites are obviously reversed in TBI mice combined with hypothermia pre‐treatment (HT). But, the neuroprotective role of HT disappears in TBI mouse models under condition of blocking RBM3 expression with RBM3 shRNA. In other hand, overexpressing RBM3 by AAV‐RBM3 plasmid can mimic HT‐like neuroprotection against TBI‐induced chronic brain injuries, such as improving LTP and cognitive, loss of spines and tau hyperphosphorylation in TBI mouse models. Taken together, hypothermia pre‐treatment reverses TBI‐induced chronic AD‐like pathology and behaviour deficits in RBM3 expression dependent manner, RBM3 may be a potential target for neurodegeneration diseases including Alzheimer disease.
Collapse
Affiliation(s)
- Bingjin Liu
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, China
| | - Yun Cao
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangxiao Shi
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Li
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangshu Cheng
- Department of Neurology, Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| | - Jin Du
- Department of Neurology, Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| | - Qing Tian
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinwen Zhou
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Gallagher MJ, Hogg FRA, Kearney S, Kopp MA, Blex C, Serdani L, Sherwood O, Schwab JM, Zoumprouli A, Papadopoulos MC, Saadoun S. Effects of local hypothermia-rewarming on physiology, metabolism and inflammation of acutely injured human spinal cord. Sci Rep 2020; 10:8125. [PMID: 32415143 PMCID: PMC7229228 DOI: 10.1038/s41598-020-64944-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
In five patients with acute, severe thoracic traumatic spinal cord injuries (TSCIs), American spinal injuries association Impairment Scale (AIS) grades A-C, we induced cord hypothermia (33 °C) then rewarming (37 °C). A pressure probe and a microdialysis catheter were placed intradurally at the injury site to monitor intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), tissue metabolism and inflammation. Cord hypothermia-rewarming, applied to awake patients, did not cause discomfort or neurological deterioration. Cooling did not affect cord physiology (ISP, SCPP), but markedly altered cord metabolism (increased glucose, lactate, lactate/pyruvate ratio (LPR), glutamate; decreased glycerol) and markedly reduced cord inflammation (reduced IL1β, IL8, MCP, MIP1α, MIP1β). Compared with pre-cooling baseline, rewarming was associated with significantly worse cord physiology (increased ICP, decreased SCPP), cord metabolism (increased lactate, LPR; decreased glucose, glycerol) and cord inflammation (increased IL1β, IL8, IL4, IL10, MCP, MIP1α). The study was terminated because three patients developed delayed wound infections. At 18-months, two patients improved and three stayed the same. We conclude that, after TSCI, hypothermia is potentially beneficial by reducing cord inflammation, though after rewarming these benefits are lost due to increases in cord swelling, ischemia and inflammation. We thus urge caution when using hypothermia-rewarming therapeutically in TSCI.
Collapse
Affiliation(s)
- Mathew J Gallagher
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - Florence R A Hogg
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - Siobhan Kearney
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - Marcel A Kopp
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health, QUEST-Center for Transforming Biomedical Research, Berlin, Germany
| | - Christian Blex
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Leonarda Serdani
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Oliver Sherwood
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - Jan M Schwab
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Belford Center for Spinal Cord Injury, Departments of Neurology, Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, 43210, USA
| | - Argyro Zoumprouli
- Neuro-Anaesthesia and Neuro-Intensive Care Unit, St. George's Hospital, London, UK
| | - Marios C Papadopoulos
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - Samira Saadoun
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK.
| |
Collapse
|
44
|
Kuczynski AM, Marzoughi S, Al Sultan AS, Colbourne F, Menon BK, van Es ACGM, Berez AL, Goyal M, Demchuk AM, Almekhlafi MA. Therapeutic Hypothermia in Acute Ischemic Stroke-a Systematic Review and Meta-Analysis. Curr Neurol Neurosci Rep 2020; 20:13. [PMID: 32372297 DOI: 10.1007/s11910-020-01029-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Therapeutic hypothermia (TH) in stroke demonstrates robust neuroprotection in animals but clinical applications remain controversial. We assessed current literature on the efficacy of TH in ischemic stroke. RECENT FINDINGS We conducted a meta-analysis comparing TH versus controls in studies published until June 2019. Controlled studies reporting on ≥ 10 adults with acute ischemic stroke were included. Primary outcome was functional independence (modified Rankin Scale [mRS] ≤ 2). Twelve studies (n = 351 TH, n = 427 controls) were included. Functional independence did not differ between groups (RR 1.17, 95% CI 0.93-1.46, random-effects p = 0.2). Five studies reported individual mRS outcomes and demonstrated a shift toward better outcome with TH (unadjusted cOR 1.57, 95% CI 1.01-2.44, p = 0.05). Overall complications were higher with TH (RR 1.18, 95% CI 1.06-1.32, p < 0.01). We did not observe an overall beneficial effect of TH in this analysis although some studies showed a shift toward better outcome. TH was associated with increased complications.
Collapse
Affiliation(s)
| | - Sina Marzoughi
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | - Bijoy K Menon
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Adriaan C G M van Es
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Mayank Goyal
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Andrew M Demchuk
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Mohammed A Almekhlafi
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary, AB, Canada.
| |
Collapse
|
45
|
Mild Hypothermia Attenuates Hepatic Ischemia-Reperfusion Injury through Regulating the JAK2/STAT3-CPT1a-Dependent Fatty Acid β-Oxidation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5849794. [PMID: 32256954 PMCID: PMC7109578 DOI: 10.1155/2020/5849794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Hepatic ischemia–reperfusion (IR) injury is a clinical issue that can result in poor outcome and lacks effective therapies at present. Mild hypothermia (32–35°C) is a physiotherapy that has been reported to significantly alleviate IR injury, while its protective effects are attributed to multiple mechanisms, one of which may be the regulation of fatty acid β-oxidation (FAO). The aim of the present study was to investigate the role and underlying mechanisms of FAO in the protective effects of mild hypothermia. We used male mice to establish the experimental models as previously described. In brief, before exposure to in situ ischemia for 1 h and reperfusion for 6 h, mice received pretreatment with mild hypothermia for 2 h and etomoxir (inhibitor of FAO) or leptin (activator of FAO) for 1 h, respectively. Then, tissue and blood samples were collected to evaluate the liver injury, oxidative stress, and changes in hepatic FAO. We found that mild hypothermia significantly reduced the hepatic enzyme levels and the score of hepatic pathological injury, hepatocyte apoptosis, oxidative stress, and mitochondrial injury. In addition, the expression of the rate-limiting enzyme (CPT1a) of hepatic FAO was downregulated almost twofold by IR, while this inhibition could be significantly reversed by mild hypothermia. Experiments with leptin and etomoxir confirmed that activation of FAO could also reduce the hepatic enzyme levels and the score of hepatic pathological injury, hepatocyte apoptosis, oxidative stress, and mitochondrial injury induced by IR, which had the similar effects to mild hypothermia, while inhibition of FAO had negative effects. Furthermore, mild hypothermia and leptin could promote the phosphorylation of JAK2/STAT3 and upregulate the ratio of BCL-2/BAX to suppress hepatocyte apoptosis. Thus, we concluded that FAO played an important role in hepatic IR injury and mild hypothermia attenuated hepatic IR injury mainly via the regulation of JAK2/STAT3-CPT1a-dependent FAO.
Collapse
|
46
|
Khellaf A, Khan DZ, Helmy A. Recent advances in traumatic brain injury. J Neurol 2019; 266:2878-2889. [PMID: 31563989 PMCID: PMC6803592 DOI: 10.1007/s00415-019-09541-4] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 01/31/2023]
Abstract
Traumatic brain injury (TBI) is the most common cause of death and disability in those aged under 40 years in the UK. Higher rates of morbidity and mortality are seen in low-income and middle-income countries making it a global health challenge. There has been a secular trend towards reduced incidence of severe TBI in the first world, driven by public health interventions such as seatbelt legislation, helmet use, and workplace health and safety regulations. This has paralleled improved outcomes following TBI delivered in a large part by the widespread establishment of specialised neurointensive care. This update will focus on three key areas of advances in TBI management and research in moderate and severe TBI: refining neurointensive care protocolized therapies, the recent evidence base for decompressive craniectomy and novel pharmacological therapies. In each section, we review the developing evidence base as well as exploring future trajectories of TBI research.
Collapse
Affiliation(s)
- Abdelhakim Khellaf
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Box 167, Hills Road, Cambridge, CB2 0QQ UK
- Faculty of Medicine, McGill University, Montreal, Canada
| | - Danyal Zaman Khan
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Box 167, Hills Road, Cambridge, CB2 0QQ UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Box 167, Hills Road, Cambridge, CB2 0QQ UK
| |
Collapse
|
47
|
Targeted Temperature Management at 33°C or 36°C Produces Equivalent Neuroprotective Effects in the Middle Cerebral Artery Occlusion Rat Model of Ischemic Stroke. Shock 2019; 50:714-719. [PMID: 29337840 DOI: 10.1097/shk.0000000000001106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Targeted temperature management (TTM, 32°C to 36°C) is one of the most successful achievements in modern resuscitation medicine. It has become standard treatment for survivors of sudden cardiac arrest to minimize secondary brain damage. TTM at 36°C is just as effective as TTM at 33°C and is actually preferred because it reduces adverse TTM-associated effects. TTM also likely has direct neuroprotective effects in ischemic brains in danger of stroke. It remains unclear, however, whether higher temperature TTM is equally effective in protecting the brain from the effects of stroke. Here, we asked whether TTM at 36°C is as effective as TTM at 33°C in improving outcomes in a middle cerebral artery occlusion (MCAO) model of ischemic stroke. After dividing rats randomly into MCAO, MCAO+33°C TTM, MCAO+36°C TTM, and sham groups, we subjected all of them except for the sham group to MCAO for 3 h (for the behavioral tests) or 4 h (for all other biochemical analyses). We found TTM protocols at both 33°C and 36°C to produce comparable reductions of infarct volumes in the MCAO territory and equally attenuate the extracellular release of high mobility group box 1 in postischemic brains. Both the TTM conditions prevent the mRNA induction of a major pro-inflammatory cytokine, tissue necrosis factor-α, in the ischemic penumbra region. Finally, both the TTM protocols produce similar improvements in neurological outcomes in rats, as measured by a battery of behavior tests 21 h after the start of reperfusion. These data acquired in a rat MCAO model suggest TTM at 36°C has excellent therapeutic potential for improving clinical outcomes for patients with acute ischemic stroke.
Collapse
|
48
|
Halstead MR, Geocadin RG. The Medical Management of Cerebral Edema: Past, Present, and Future Therapies. Neurotherapeutics 2019; 16:1133-1148. [PMID: 31512062 PMCID: PMC6985348 DOI: 10.1007/s13311-019-00779-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cerebral edema is commonly associated with cerebral pathology, and the clinical manifestation is largely related to the underlying lesioned tissue. Brain edema usually amplifies the dysfunction of the lesioned tissue and the burden of cerebral edema correlates with increased morbidity and mortality across diseases. Our modern-day approach to the medical management of cerebral edema has largely revolved around, an increasingly artificial distinction between cytotoxic and vasogenic cerebral edema. These nontargeted interventions such as hyperosmolar agents and sedation have been the mainstay in clinical practice and offer noneloquent solutions to a dire problem. Our current understanding of the underlying molecular mechanisms driving cerebral edema is becoming much more advanced, with differences being identified across diseases and populations. As our understanding of the underlying molecular mechanisms in neuronal injury continues to expand, so too is the list of targeted therapies in the pipeline. Here we present a brief review of the molecular mechanisms driving cerebral edema and a current overview of our understanding of the molecular targets being investigated.
Collapse
Affiliation(s)
- Michael R Halstead
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA.
| | - Romergryko G Geocadin
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| |
Collapse
|
49
|
Li F, Wong R, Luo Z, Du L, Turlova E, Britto LRG, Feng ZP, Sun HS. Neuroprotective Effects of AG490 in Neonatal Hypoxic-Ischemic Brain Injury. Mol Neurobiol 2019; 56:8109-8123. [PMID: 31190145 DOI: 10.1007/s12035-019-01656-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 11/28/2022]
Abstract
In infants and children, neonatal hypoxic-ischemic (HI) brain injury represents a major cause of chronic neurological morbidity. The transient receptor potential melastatin 2 (TRPM2), a non-selective cation channel that conducts calcium, can mediate neuronal death following HI brain injury. An important endogenous activator of TRPM2 is H2O2, which has previously been reported to be upregulated in the neonatal brain after hypoxic ischemic injury. Here, incorporating both in vitro (H2O2-induced neuronal cell death model) and in vivo (mouse HI brain injury model) approaches, we examined the effects of AG490, which can inhibit the H2O2-induced TRPM2 channel. We found that AG490 elicited neuroprotective effects. We confirmed that AG490 reduced H2O2-induced TRPM2 currents. Specifically, application of AG490 to neurons ameliorated H2O2-induced cell injury in vitro. In addition, AG490 administration reduced brain damage and improved neurobehavioral performance following HI brain injury in vivo. The neuroprotective benefits of AG490 suggest that pharmacological inhibition of H2O2-activated TRPM2 currents can be exploited as a potential therapeutic strategy to treat HI-induced neurological complications.
Collapse
Affiliation(s)
- Feiya Li
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Raymond Wong
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Zhengwei Luo
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Lida Du
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Ekaterina Turlova
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Luiz R G Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada. .,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
50
|
Kuczynski AM, Demchuk AM, Almekhlafi MA. Therapeutic hypothermia: Applications in adults with acute ischemic stroke. Brain Circ 2019; 5:43-54. [PMID: 31334356 PMCID: PMC6611191 DOI: 10.4103/bc.bc_5_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/05/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
The advent of mechanical thrombectomy and increasing alteplase use have transformed the care of patients with acute ischemic stroke. Patients with major arterial occlusions with poor outcomes now have a chance of returning to independent living in more than half of the cases. However, many patients with these severe strokes suffer major disability despite these therapies. The search is ongoing for agents that can be combined with thrombectomy to achieve better recovery through halting infarct growth and mitigating injury after ischemic stroke. Several studies in animals and humans have demonstrated that therapeutic hypothermia (TH) offers potential to interrupt the ischemic cascade, reduce infarct volume, and improve functional independence. We performed a literature search to look up recent advances in the use of TH surrounding the science, efficacy, and feasibility of inducing TH in modern stroke treatments. While protocols remain controversial, there is a real opportunity to combine TH with the existing therapies to improve outcome in adults with acute ischemic stroke.
Collapse
Affiliation(s)
| | - Andrew M Demchuk
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Mohammed A Almekhlafi
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary, AB, Canada
- O'Brien Institute for Public Health, Calgary, AB, Canada
| |
Collapse
|