1
|
Skuljec J, Sardari M, Su C, Müller-Dahlke J, Singh V, Janjic MM, Kleinschnitz C, Pul R. Glatiramer Acetate Modifies the Immune Profiles of Monocyte-Derived Dendritic Cells In Vitro Without Affecting Their Generation. Int J Mol Sci 2025; 26:3013. [PMID: 40243628 PMCID: PMC11989142 DOI: 10.3390/ijms26073013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Glatiramer acetate (GA) is the first-line therapy for relapsing-remitting multiple sclerosis (MS) and is increasingly demonstrating promising therapeutic benefits in a range of other conditions. Despite its extensive use, the precise pharmacological mechanism of GA remains unclear. In addition to T and B cells, dendritic cells (DCs) and monocytes play significant roles in the neuroinflammation associated with MS, positioning them as potential initial targets for GA. Here, we investigated GA's influence on the differentiation of human monocytes from healthy donors into monocyte-derived dendritic cells (moDCs) and assessed their activation status. Our results indicate that GA treatment does not hinder the differentiation of monocytes into moDCs or macrophages. Notably, we observed a significant increase in the expression of molecules required for antigen recognition, presentation, and co-stimulation in GA-treated moDCs. Conversely, there was a significant downregulation of CD1a, which is crucial for activating auto-aggressive T cells that respond to the lipid components of myelin. Furthermore, GA treatment resulted in an increased expression of CD68 on both CD14+CD16+ and CD14+CD16- monocyte subsets. These in vitro findings suggest that GA treatment does not impede the generation of moDCs under inflammatory conditions; however, it may modify their functional characteristics in potentially beneficial ways. This provides a basis for future clinical studies in MS patients to elucidate its precise mode of action.
Collapse
Affiliation(s)
- Jelena Skuljec
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Maryam Sardari
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Chuanxin Su
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | | | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Medicine Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Marija M. Janjic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Refik Pul
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| |
Collapse
|
2
|
Zhang Q, Ma J, Zhou J, Zhang H, Li M, Gong H, Wang Y, Zheng H, Li J, Leng L. A Study on the Inflammatory Response of the Brain in Neurosyphilis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406971. [PMID: 39574316 PMCID: PMC11792053 DOI: 10.1002/advs.202406971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/24/2024] [Indexed: 02/05/2025]
Abstract
Neurosyphilis (NS) is a clinical condition caused by infection of the central nervous system (CNS) by Treponema pallidum (Tp) that can lead to asymptomatic meningitis and more serious neurological diseases, such as dementia and blindness. However, current studies on the pathogenesis of NS are limited. Here, through the integration analysis of proteomics and single-cell transcriptomics, Toll-like/NF-κB signaling is identified as the key pathway involved in CNS damage caused by Tp. Moreover, monocyte-derived macrophages are key cells involved in the inflammatory response to Tp in the CNS of NS patients. In addition, it is found that inflammatory cells in peripheral blood may cause neurological damage through disruption of the blood‒brain barrier (BBB) in individuals with NS. Notably, activation of the Toll-like/NF-κB signaling pathway, as well as dysregulation of neural function, is likewise validated in an in vitro NS brain organoid model. In conclusion, the results revealed the mechanisms of inflammation-mediated brain injury in Tp-induced NS and provided new ideas for the clinical treatment of Tp infection.
Collapse
Affiliation(s)
- Qiyu Zhang
- Stem cell and Regenerative Medicine LabInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
- Department of DermatologyInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeNational Clinical Research Center for Dermatologic and Immunologic DiseasesBeijing100730China
| | - Jie Ma
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Jia Zhou
- Stem cell and Regenerative Medicine LabInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
- Department of DermatologyInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeNational Clinical Research Center for Dermatologic and Immunologic DiseasesBeijing100730China
| | - Hanlin Zhang
- Department of DermatologyInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeNational Clinical Research Center for Dermatologic and Immunologic DiseasesBeijing100730China
| | - Mansheng Li
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Huizi Gong
- Department of DermatologyInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeNational Clinical Research Center for Dermatologic and Immunologic DiseasesBeijing100730China
| | - Yujie Wang
- Stem cell and Regenerative Medicine LabInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Heyi Zheng
- Department of DermatologyInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeNational Clinical Research Center for Dermatologic and Immunologic DiseasesBeijing100730China
| | - Jun Li
- Department of DermatologyInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeNational Clinical Research Center for Dermatologic and Immunologic DiseasesBeijing100730China
| | - Ling Leng
- Stem cell and Regenerative Medicine LabInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| |
Collapse
|
3
|
Al Jaf AIA, Peria S, Fabiano T, Ragnini-Wilson A. Remyelinating Drugs at a Crossroad: How to Improve Clinical Efficacy and Drug Screenings. Cells 2024; 13:1326. [PMID: 39195216 PMCID: PMC11352944 DOI: 10.3390/cells13161326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Axons wrapped around the myelin sheath enable fast transmission of neuronal signals in the Central Nervous System (CNS). Unfortunately, myelin can be damaged by injury, viral infection, and inflammatory and neurodegenerative diseases. Remyelination is a spontaneous process that can restore nerve conductivity and thus movement and cognition after a demyelination event. Cumulative evidence indicates that remyelination can be pharmacologically stimulated, either by targeting natural inhibitors of Oligodendrocyte Precursor Cells (OPCs) differentiation or by reactivating quiescent Neural Stem Cells (qNSCs) proliferation and differentiation in myelinating Oligodendrocytes (OLs). Although promising results were obtained in animal models for demyelination diseases, none of the compounds identified have passed all the clinical stages. The significant number of patients who could benefit from remyelination therapies reinforces the urgent need to reassess drug selection approaches and develop strategies that effectively promote remyelination. Integrating Artificial Intelligence (AI)-driven technologies with patient-derived cell-based assays and organoid models is expected to lead to novel strategies and drug screening pipelines to achieve this goal. In this review, we explore the current literature on these technologies and their potential to enhance the identification of more effective drugs for clinical use in CNS remyelination therapies.
Collapse
Affiliation(s)
- Aland Ibrahim Ahmed Al Jaf
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Simone Peria
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Tommaso Fabiano
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Antonella Ragnini-Wilson
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
4
|
Montalban X, Piasecka-Stryczynska K, Kuhle J, Benkert P, Arnold DL, Weber MS, Seitzinger A, Guehring H, Shaw J, Tomic D, Hyvert Y, Harlow DE, Dyroff M, Wolinsky JS. Efficacy and safety results after >3.5 years of treatment with the Bruton's tyrosine kinase inhibitor evobrutinib in relapsing multiple sclerosis: Long-term follow-up of a Phase II randomised clinical trial with a cerebrospinal fluid sub-study. Mult Scler 2024; 30:558-570. [PMID: 38436271 PMCID: PMC11080380 DOI: 10.1177/13524585241234783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Evobrutinib - an oral, central nervous system (CNS)-penetrant, and highly selective Bruton's tyrosine kinase inhibitor - has shown efficacy in a 48-week, double-blind, Phase II trial in patients with relapsing MS. OBJECTIVE Report results of the Phase II open-label extension (OLE; up to week 192 from randomisation) and a cerebrospinal fluid (CSF) sub-study. METHODS In the 48-week double-blind period (DBP), patients received evobrutinib 25 mg once-daily, 75 mg once-daily, 75 mg twice-daily or placebo (switched to evobrutinib 25 mg once-daily after week 24). Patients could then enter the OLE, receiving evobrutinib 75 mg once-daily (mean (± standard deviation (SD)) duration = 50.6 weeks (±6.0)) before switching to 75 mg twice-daily. RESULTS Of 164 evobrutinib-treated patients who entered the OLE, 128 (78.0%) completed ⩾192 weeks of treatment. Patients receiving DBP evobrutinib 75 mg twice-daily: annualised relapse rate at week 48 (0.11 (95% confidence interval (CI) = 0.04-0.25)) was maintained with the OLE twice-daily dose up to week 192 (0.11 (0.05-0.22)); Expanded Disability Status Scale score remained stable; serum neurofilament light chain fell to levels like a non-MS population (Z-scores); T1 gadolinium-enhancing lesion numbers remained low. No new safety signals were identified. In the OLE, evobrutinib was detected in the CSF of all sub-study patients. CONCLUSION Long-term evobrutinib treatment was well tolerated and associated with a sustained low level of disease activity. Evobrutinib was present in CSF at concentrations similar to plasma.
Collapse
Affiliation(s)
- Xavier Montalban
- Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d’Hebron, Barcelona, Spain
| | | | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Douglas L Arnold
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada; NeuroRx, Montreal, QC, Canada
| | - Martin S Weber
- Institute of Neuropathology, Department of Neurology, University Medical Center, University of Göttingen, Göttingen, Germany; Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | | | | | - Jamie Shaw
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA, an affiliate of Merck KGaA
| | - Davorka Tomic
- Ares Trading SA, Eysins, Switzerland, an affiliate of Merck KGaA
| | | | - Danielle E Harlow
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA, an affiliate of Merck KGaA
| | - Martin Dyroff
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA, an affiliate of Merck KGaA
| | - Jerry S Wolinsky
- McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| |
Collapse
|
5
|
Arnold DL, Elliott C, Martin EC, Hyvert Y, Tomic D, Montalban X. Effect of Evobrutinib on Slowly Expanding Lesion Volume in Relapsing Multiple Sclerosis: A Post Hoc Analysis of a Phase 2 Trial. Neurology 2024; 102:e208058. [PMID: 38335474 PMCID: PMC11067693 DOI: 10.1212/wnl.0000000000208058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/19/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Chronic active lesions (CALs) are demyelinated multiple sclerosis (MS) lesions with ongoing microglia/macrophage activity, resulting in irreversible neuronal damage and axonal loss. Evobrutinib is a highly selective, covalent, CNS-penetrant, Bruton tyrosine kinase inhibitor. This post hoc analysis evaluated the effect of evobrutinib on slowly expanding lesion (SEL) volume, an MRI marker of CALs, assessed baseline-week 48 in a phase 2, double-blind, randomized trial (NCT02975349) in relapsing MS (RMS). METHODS In the 48-week, double-blind trial, adult patients received evobrutinib (25 mg once daily [QD], 75 mg QD, or 75 mg twice daily [BID]), placebo (switched to evobrutinib 25 mg QD after week 24), or open-label dimethyl fumarate (DMF) 240 mg BID. SELs were defined as slowly and consistently radially expanding areas of preexisting T2 lesions of ≥10 contiguous voxels (∼30 mm3) over time. SELs were identified by MRI and assessed by the Jacobian determinant of the nonlinear deformation from baseline to week 48. SEL volume analysis, stratified by baseline T2 lesion volume tertiles, was based on week 48/end-of-treatment status (completers/non-completers). Treatment effect was analyzed using the stratified Hodges-Lehmann estimate of shift in distribution and stratified Wilcoxon rank-sum test. Comparisons of evobrutinib and DMF vs placebo/evobrutinib 25 mg QD were made. Subgroup analyses used pooled treatment groups (evobrutinib high dose [75 mg QD/BID] vs low dose [placebo/evobrutinib 25 mg QD]). RESULTS The SEL analysis set included 223 patients (mean [SD] age: 42.4 [10.7] years; 69.3% female; 87.4% relapsing/remitting MS). Mean (SD) SEL volume was 2,099 (2,981.0) mm3 with evobrutinib 75 mg BID vs 2,681 (3,624.2) mm3 with placebo/evobrutinib 25 mg QD. Median number of SELs/patient ranged from 7 to 11 across treatments. SEL volume decreased with increasing evobrutinib dose vs placebo/evobrutinib 25 mg QD, and no difference with DMF vs placebo/evobrutinib 25 mg QD was noted. SEL volume significantly decreased with evobrutinib 75 mg BID vs placebo/evobrutinib 25 mg QD (-474.5 mm3 [-1,098.0 to -3.0], p = 0.047) and vs DMF (-711.6 [-1,290.0 to -149.0], p = 0.011). SEL volume was significantly reduced for evobrutinib high vs low dose within baseline Expanded Disability Status Scale ≥3.5 and longer disease duration (≥8.5 years) subgroups. DISCUSSION Evobrutinib reduced SEL volume in a dose-dependent manner in RMS, with a significant reduction with evobrutinib 75 mg BID. This is evident that evobrutinib affects brain lesions associated with chronic inflammation and tissue loss. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov number: NCT02975349. Submitted to ClinicalTrials.gov on November 29, 2016. First patient enrolled: March 7, 2017. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that evobrutinib reduces the volume of SELs assessed on MRI comparing baseline with week 48, in patients with RMS.
Collapse
Affiliation(s)
- Douglas L Arnold
- From the Montreal Neurological Institute (D.L.A.), McGill University; NeuroRx Research (D.L.A., C.E.), Montreal, Quebec, Canada; EMD Serono (E.C.M.), Billerica, MA; The Healthcare Business of Merck KGaA (Y.H.); Ares Trading SA (D.T.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany; and Centre d'Esclerosi Múltiple de Catalunya (Cemcat) (X.M.), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Colm Elliott
- From the Montreal Neurological Institute (D.L.A.), McGill University; NeuroRx Research (D.L.A., C.E.), Montreal, Quebec, Canada; EMD Serono (E.C.M.), Billerica, MA; The Healthcare Business of Merck KGaA (Y.H.); Ares Trading SA (D.T.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany; and Centre d'Esclerosi Múltiple de Catalunya (Cemcat) (X.M.), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Emily C Martin
- From the Montreal Neurological Institute (D.L.A.), McGill University; NeuroRx Research (D.L.A., C.E.), Montreal, Quebec, Canada; EMD Serono (E.C.M.), Billerica, MA; The Healthcare Business of Merck KGaA (Y.H.); Ares Trading SA (D.T.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany; and Centre d'Esclerosi Múltiple de Catalunya (Cemcat) (X.M.), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Yann Hyvert
- From the Montreal Neurological Institute (D.L.A.), McGill University; NeuroRx Research (D.L.A., C.E.), Montreal, Quebec, Canada; EMD Serono (E.C.M.), Billerica, MA; The Healthcare Business of Merck KGaA (Y.H.); Ares Trading SA (D.T.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany; and Centre d'Esclerosi Múltiple de Catalunya (Cemcat) (X.M.), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Davorka Tomic
- From the Montreal Neurological Institute (D.L.A.), McGill University; NeuroRx Research (D.L.A., C.E.), Montreal, Quebec, Canada; EMD Serono (E.C.M.), Billerica, MA; The Healthcare Business of Merck KGaA (Y.H.); Ares Trading SA (D.T.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany; and Centre d'Esclerosi Múltiple de Catalunya (Cemcat) (X.M.), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Xavier Montalban
- From the Montreal Neurological Institute (D.L.A.), McGill University; NeuroRx Research (D.L.A., C.E.), Montreal, Quebec, Canada; EMD Serono (E.C.M.), Billerica, MA; The Healthcare Business of Merck KGaA (Y.H.); Ares Trading SA (D.T.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany; and Centre d'Esclerosi Múltiple de Catalunya (Cemcat) (X.M.), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
6
|
Zhang X, Yuan J, Zhang S, Li W, Xu Y, Li H, Zhang L, Chen X, Ding W, Zhu J, Song J, Wang X, Zhu C. Germinal matrix hemorrhage induces immune responses, brain injury, and motor impairment in neonatal rats. J Cereb Blood Flow Metab 2023; 43:49-65. [PMID: 36545808 PMCID: PMC10638988 DOI: 10.1177/0271678x221147091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Germinal matrix hemorrhage (GMH) is a major complication of prematurity that causes secondary brain injury and is associated with long-term neurological disabilities. This study used a postnatal day 5 rat model of GMH to explore immune response, brain injury, and neurobehavioral changes after hemorrhagic injury. The results showed that CD45high/CD11b+ immune cells increased in the brain after GMH and were accompanied by increased macrophage-related chemokine/cytokines and inflammatory mediators. Hematoma formed as early as 2 h after injection of collagenase VII and white matter injury appeared not only in the external capsule and hippocampus, but also in the thalamus. In addition, GMH caused abnormal motor function as revealed by gait analysis, and locomotor hyperactivity in the elevated plus maze, though no other obvious anxiety or recognition/memory function changes were noted when examined by the open field test and novel object recognition test. The animal model used here partially reproduces the GMH-induced brain injury and motor dysfunction seen in human neonates and therefore can be used as a valid tool in experimental studies for the development of effective therapeutic strategies for GMH-induced brain injury.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Jing Yuan
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Wendong Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Xi Chen
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Wenjun Ding
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Jinjin Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
- Center for Perinatal Medicine and Health, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
- Center for Bran Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Doghish AS, Elazazy O, Mohamed HH, Mansour RM, Ghanem A, Faraag AHI, Elballal MS, Elrebehy MA, Elesawy AE, Abdel Mageed SS, Mohammed OA, Nassar YA, Abulsoud AI, Raouf AA, Abdel-Reheim MA, Rashad AA, Elawady AS, Elsisi AM, Alsalme A, Ali MA. The role of miRNAs in multiple sclerosis pathogenesis, diagnosis, and therapeutic resistance. Pathol Res Pract 2023; 251:154880. [PMID: 37832353 DOI: 10.1016/j.prp.2023.154880] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
In recent years, microRNAs (miRNAs) have gained increased attention from researchers around the globe. Although it is twenty nucleotides long, it can modulate several gene targets simultaneously. Their mal expression is a signature of various pathologies, and they provide the foundation to elucidate the molecular mechanisms of each pathology. Among the debilitating central nervous system (CNS) disorders with a growing prevalence globally is the multiple sclerosis (MS). Moreover, the diagnosis of MS is challenging due to the lack of disease-specific biomarkers, and the diagnosis mainly depends on ruling out other disabilities. MS could adversely affect patients' lives through its progression, and only symptomatic treatments are available as therapeutic options, but an exact cure is yet unavailable. Consequently, this review hopes to further the study of the biological features of miRNAs in MS and explore their potential as a therapeutic target.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hend H Mohamed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Alaa S Elawady
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Mohammed Elsisi
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University, Al-Arish, Egypt
| | - Ali Alsalme
- Chemistry Department, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
8
|
Diebold M, Fehrenbacher L, Frosch M, Prinz M. How myeloid cells shape experimental autoimmune encephalomyelitis: At the crossroads of outside-in immunity. Eur J Immunol 2023; 53:e2250234. [PMID: 37505465 DOI: 10.1002/eji.202250234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/21/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of central nervous system (CNS) autoimmunity. It is most commonly used to mimic aspects of multiple sclerosis (MS), a demyelinating disorder of the human brain and spinal cord. The innate immune response displays one of the core pathophysiological features linked to both the acute and chronic stages of MS. Hence, understanding and targeting the innate immune response is essential. Microglia and other CNS resident MUs, as well as infiltrating myeloid cells, diverge substantially in terms of both their biology and their roles in EAE. Recent advances in the field show that antigen presentation, as well as disease-propagating and regulatory interactions with lymphocytes, can be attributed to specific myeloid cell types and cell states in EAE lesions, following a distinct temporal pattern during disease initiation, propagation and recovery. Furthermore, single-cell techniques enable the assessment of characteristic proinflammatory as well as beneficial cell states, and identification of potential treatment targets. Here, we discuss the principles of EAE induction and protocols for varying experimental paradigms, the composition of the myeloid compartment of the CNS during health and disease, and systematically review effects on myeloid cells for therapeutic approaches in EAE.
Collapse
Affiliation(s)
- Martin Diebold
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
| | - Luca Fehrenbacher
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
| | - Maximilian Frosch
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Belousova O, Lopatina A, Kuzmina U, Melnikov M. The role of biogenic amines in the modulation of monocytes in autoimmune neuroinflammation. Mult Scler Relat Disord 2023; 78:104920. [PMID: 37536214 DOI: 10.1016/j.msard.2023.104920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Multiple sclerosis (MS) is inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) with autoimmune mechanism of development. The study of the neuroimmune interactions is one of the most developing directions in the research of the pathogenesis of MS. The influence of biogenic amines on the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and MS was shown by the modulation of subsets of T-helper cells and B-cells, which plays a crucial role in the autoimmunity of the CNS. However, along with T- and B-cells the critical involvement of mononuclear phagocytes such as dendritic cells, macrophages, and monocytes in the development of neuroinflammation also was shown. It was demonstrated that the activation of microglial cells (resident macrophages of the CNS) could initiate the neuroinflammation in the EAE, suggesting their role at an early stage of the disease. In contrast, monocytes, which migrate from the periphery into the CNS through the blood-brain barrier, mediate the effector phase of the disease and cause neurological disability in EAE. In addition, the clinical efficacy of the therapy with depletion of the monocytes in EAE was shown, suggesting their crucial role in the autoimmunity of the CNS. Biogenic amines, such as epinephrine, norepinephrine, dopamine, and serotonin are direct mediators of the neuroimmune interaction and may affect the pathogenesis of EAE and MS by modulating the immune cell activity and cytokine production. The anti-inflammatory effect of targeting the biogenic amines receptors on the pathogenesis of EAE and MS by suppression of Th17- and Th1-cells, which are critical for the CNS autoimmunity, was shown. However, the latest data showed the potential ability of biogenic amines to affect the functions of the mononuclear phagocytes and their involvement in the modulation of neuroinflammation. This article reviews the literature data on the role of monocytes in the pathogenesis of EAE and MS. The data on the effect of targeting of biogenic amine receptors on the function of monocytes are presented.
Collapse
Affiliation(s)
- Olga Belousova
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Anna Lopatina
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Ulyana Kuzmina
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia; Laboratory of Molecular Pharmacology and Immunology, Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Science, Ufa, Russia
| | - Mikhail Melnikov
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia; Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia; Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia.
| |
Collapse
|
10
|
Proschmann U, Shalchi Amirkhiz P, Andres P, Haase R, Inojosa H, Ziemssen T, Akgün K. Influence of Pre-Analytic Conditions on Quantity of Lymphocytes. Int J Mol Sci 2023; 24:13479. [PMID: 37686285 PMCID: PMC10487632 DOI: 10.3390/ijms241713479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Lymphocytes are key players in the pathogenesis of multiple sclerosis and a distinct target of several immunomodulatory treatment strategies. In this study, we aim to evaluate the effect of various pre-analytic conditions on immune cell counts to conclude the relevance for clinical implications. Twenty healthy donors were assessed for the effects of distinct storage temperatures and times after blood draws, different durations of tourniquet application, body positions and varying aspiration forces during blood draws. Immune cell frequencies were analyzed using multicolor flowcytometry. While storage for 24 h at 37 °C after blood draws was associated with significantly lower cell counts, different durations of tourniquet application, body positions and varying aspirations speeds did not have significant impacts on the immune cell counts. Our data suggest that immune cell counts are differently affected by pre-analytic conditions being more sensitive to storage temperature. Pre-analytic conditions should be carefully considered when interpreting the laboratory values of immune cell subpopulations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, University of Technology, 01307 Dresden, Germany; (U.P.); (H.I.); (T.Z.)
| |
Collapse
|
11
|
Wang J, Brown K, Danehy C, Mérigeon E, Goralski S, Rice S, Torgbe K, Thomas F, Block D, Olsen H, Strome SE, Fitzpatrick EA. Fc multimers effectively treat murine models of multiple sclerosis. Front Immunol 2023; 14:1199747. [PMID: 37638040 PMCID: PMC10451071 DOI: 10.3389/fimmu.2023.1199747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic neurodegenerative disease with limited therapeutic options. Recombinant Fc multimers (rFc), designed to mirror many of the anti-inflammatory activities of Intravenous Immunoglobulin (IVIG), have been shown to effectively treat numerous immune-mediated diseases in rodents. In this study we used the experimental autoimmune encephalomyelitis (EAE) murine model of MS to test the efficacy of a rFc, M019, that consists of multimers of the Fc portion of IgG2, in inhibiting disease severity. We show that M019 effectively reduced clinical symptoms when given either pre- or post-symptom onset compared to vehicle treated EAE induced mice. M019 was effective in reducing symptoms in both SJL model of relapsing remitting MS as well as the B6 model of chronic disease. M019 binds to FcγR bearing-monocytes both in vivo and in vitro and prevented immune cell infiltration into the CNS of treated mice. The lack of T cell infiltration into the spinal cord was not due to a decrease in T cell priming; there was an equivalent frequency of Th17 cells in the spleens of M019 and vehicle treated EAE induced mice. Surprisingly, there was an increase in chemokines in the sera but not in the CNS of M019 treated mice compared to vehicle treated animals. We postulate that M019 interacts with a FcγR rich monocyte intermediary to prevent T cell migration into the CNS and demyelination.
Collapse
Affiliation(s)
- Jin Wang
- Dept. of Microbiology Immunology and Biochemistry, UTHSC, Memphis, TN, United States
| | - Kellie Brown
- Dept. of Microbiology Immunology and Biochemistry, UTHSC, Memphis, TN, United States
| | - Caroline Danehy
- College of Graduate Health Sciences, UTHSC, Memphis, TN, United States
| | | | | | - Samuel Rice
- College of Medicine, UTHSC, Memphis, TN, United States
| | - Kwame Torgbe
- Dept. of Pathology, UTHSC, Memphis, TN, United States
| | - Fridtjof Thomas
- Div. of Biostatistics, Dept. of Preventive Medicine, UTHSC, Memphis, TN, United States
| | | | | | - Scott E. Strome
- Dept. of Microbiology Immunology and Biochemistry, UTHSC, Memphis, TN, United States
| | | |
Collapse
|
12
|
Kang J, Kim M, Yoon DY, Kim WS, Choi SJ, Kwon YN, Kim WS, Park SH, Sung JJ, Park M, Lee JS, Park JE, Kim SM. AXL +SIGLEC6 + dendritic cells in cerebrospinal fluid and brain tissues of patients with autoimmune inflammatory demyelinating disease of CNS. Clin Immunol 2023; 253:109686. [PMID: 37414380 DOI: 10.1016/j.clim.2023.109686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Inflammatory demyelinating disease of the CNS (IDD) is a heterogeneous group of autoimmune diseases, and multiple sclerosis is the most common type. Dendritic cells (DCs), major antigen-presenting cells, have been proposed to play a central role in the pathogenesis of IDD. The AXL+SIGLEC6+ DC (ASDC) has been only recently identified in humans and has a high capability of T cell activation. Nevertheless, its contribution to CNS autoimmunity remains still obscure. Here, we aimed to identify the ASDC in diverse sample types from IDD patients and experimental autoimmune encephalomyelitis (EAE). A detailed analysis of DC subpopulations using single-cell transcriptomics for the paired cerebrospinal fluid (CSF) and blood samples of IDD patients (total n = 9) revealed that three subtypes of DCs (ASDCs, ACY3+ DCs, and LAMP3+ DCs) were overrepresented in CSF compared with their paired blood. Among these DCs, ASDCs were also more abundant in CSF of IDD patients than in controls, manifesting poly-adhesional and stimulatory characteristics. In the brain biopsied tissues of IDD patients, obtained at the acute attack of disease, ASDC were also frequently found in close contact with T cells. Lastly, the frequency of ASDC was found to be temporally more abundant in acute attack of disease both in CSF samples of IDD patients and in tissues of EAE, an animal model for CNS autoimmunity. Our analysis suggests that the ASDC might be involved in the pathogenesis of CNS autoimmunity.
Collapse
Affiliation(s)
- Junho Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Moonhang Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Da-Young Yoon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo-Seok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seok-Jin Choi
- Department of Neurology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea
| | - Young-Nam Kwon
- Department of Neurology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea
| | - Won-Seok Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea
| | - Myungsun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jung Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Sung-Min Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Frisch ES, Häusler D, Weber MS. Natalizumab Promotes Activation of Peripheral Monocytes in Patients With Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/4/e200114. [PMID: 37072216 PMCID: PMC10112857 DOI: 10.1212/nxi.0000000000200114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVES Natalizumab (NTZ), a monoclonal antibody against very late antigen-4 (VLA-4), is one of the most efficient therapies to prevent acute relapses in multiple sclerosis (MS). VLA-4 is the key adhesion molecule for peripheral immune cells, especially lymphocytes to enter the CNS. While its blockade thus virtually abrogates CNS infiltration of these cells, long-term exposure to natalizumab may also affect immune cell function. METHODS In this study, we report that in patients with MS, NTZ treatment is associated with an enhanced activation status of peripheral monocytes. RESULTS Expression of 2 independent activation markers, CD69 and CD150, was significantly higher on blood monocytes from NTZ-treated patients when compared with those from matched untreated patients with MS, while other properties such as cytokine production remained unchanged. DISCUSSION These findings consolidate the concept that peripheral immune cells remain fully competent on NTZ treatment, an excellent asset rare among MS treatments. However, they also suggest that NTZ may exert nondesirable effects on the progressive aspect of MS, where myeloid cells and their chronic activation are attributed a prominent pathophysiologic role.
Collapse
Affiliation(s)
- Esther S Frisch
- From the Department of Neuropathology (E.S.F., D.H., M.S.W.), University Medical Center; Department of Neurology (E.S.F., M.S.W.), University Medical Center; and Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP (D.H., M.S.W.), Göttingen, Germany
| | - Darius Häusler
- From the Department of Neuropathology (E.S.F., D.H., M.S.W.), University Medical Center; Department of Neurology (E.S.F., M.S.W.), University Medical Center; and Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP (D.H., M.S.W.), Göttingen, Germany
| | - Martin S Weber
- From the Department of Neuropathology (E.S.F., D.H., M.S.W.), University Medical Center; Department of Neurology (E.S.F., M.S.W.), University Medical Center; and Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP (D.H., M.S.W.), Göttingen, Germany.
| |
Collapse
|
14
|
Chaney AM, Cropper HC, Jain P, Wilson E, Simonetta F, Johnson EM, Alam IS, Patterson ITJ, Swarovski M, Stevens MY, Wang Q, Azevedo C, Nagy SC, Ramos Benitez J, Deal EM, Vogel H, Andreasson KI, James ML. PET imaging of TREM1 identifies CNS-infiltrating myeloid cells in a mouse model of multiple sclerosis. Sci Transl Med 2023; 15:eabm6267. [PMID: 37379371 DOI: 10.1126/scitranslmed.abm6267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS) that causes substantial morbidity and diminished quality of life. Evidence highlights the central role of myeloid lineage cells in the initiation and progression of MS. However, existing imaging strategies for detecting myeloid cells in the CNS cannot distinguish between beneficial and harmful immune responses. Thus, imaging strategies that specifically identify myeloid cells and their activation states are critical for MS disease staging and monitoring of therapeutic responses. We hypothesized that positron emission tomography (PET) imaging of triggering receptor expressed on myeloid cells 1 (TREM1) could be used to monitor deleterious innate immune responses and disease progression in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. We first validated TREM1 as a specific marker of proinflammatory, CNS-infiltrating, peripheral myeloid cells in mice with EAE. We show that the 64Cu-radiolabeled TREM1 antibody-based PET tracer monitored active disease with 14- to 17-fold higher sensitivity than translocator protein 18 kDa (TSPO)-PET imaging, the established approach for detecting neuroinflammation in vivo. We illustrate the therapeutic potential of attenuating TREM1 signaling both genetically and pharmacologically in the EAE mice and show that TREM1-PET imaging detected responses to an FDA-approved MS therapy with siponimod (BAF312) in these animals. Last, we observed TREM1+ cells in clinical brain biopsy samples from two treatment-naïve patients with MS but not in healthy control brain tissue. Thus, TREM1-PET imaging has potential for aiding in the diagnosis of MS and monitoring of therapeutic responses to drug treatment.
Collapse
Affiliation(s)
- Aisling M Chaney
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Haley C Cropper
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Poorva Jain
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Edward Wilson
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva 1205, Switzerland
- Translational Research Centre in Onco-Haematology, Faculty of Medicine, University of Geneva, Geneva 1205, Switzerland
| | - Emily M Johnson
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Israt S Alam
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Ian T J Patterson
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Michelle Swarovski
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
| | - Marc Y Stevens
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Qian Wang
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
| | - Carmen Azevedo
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Sydney C Nagy
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Javier Ramos Benitez
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
| | - Emily M Deal
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Katrin I Andreasson
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Michelle L James
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Kapate N, Dunne M, Kumbhojkar N, Prakash S, Wang LLW, Graveline A, Park KS, Chandran Suja V, Goyal J, Clegg JR, Mitragotri S. A backpack-based myeloid cell therapy for multiple sclerosis. Proc Natl Acad Sci U S A 2023; 120:e2221535120. [PMID: 37075071 PMCID: PMC10151518 DOI: 10.1073/pnas.2221535120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/20/2023] [Indexed: 04/20/2023] Open
Abstract
Multiple sclerosis (MS) is an incurable autoimmune disease and is currently treated by systemic immunosuppressants with off-target side effects. Although aberrant myeloid function is often observed in MS plaques in the central nervous system (CNS), the role of myeloid cells in therapeutic intervention is currently overlooked. Here, we developed a myeloid cell-based strategy to reduce the disease burden in experimental autoimmune encephalomyelitis (EAE), a mouse model of progressive MS. We developed monocyte-adhered microparticles ("backpacks") for activating myeloid cell phenotype to an anti-inflammatory state through localized interleukin-4 and dexamethasone signals. We demonstrate that backpack-laden monocytes infiltrated into the inflamed CNS and modulated both the local and systemic immune responses. Within the CNS, backpack-carrying monocytes regulated both the infiltrating and tissue-resident myeloid cell compartments in the spinal cord for functions related to antigen presentation and reactive species production. Treatment with backpack-monocytes also decreased the level of systemic pro-inflammatory cytokines. Additionally, backpack-laden monocytes induced modulatory effects on TH1 and TH17 populations in the spinal cord and blood, demonstrating cross talk between the myeloid and lymphoid arms of disease. Backpack-carrying monocytes conferred therapeutic benefit in EAE mice, as quantified by improved motor function. The use of backpack-laden monocytes offers an antigen-free, biomaterial-based approach to precisely tune cell phenotype in vivo, demonstrating the utility of myeloid cells as a therapeutic modality and target.
Collapse
Affiliation(s)
- Neha Kapate
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Michael Dunne
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
| | - Ninad Kumbhojkar
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
| | - Supriya Prakash
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Amanda Graveline
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
| | - Kyung Soo Park
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
| | - Vineeth Chandran Suja
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
| | - Juhee Goyal
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
| | - John R. Clegg
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Boston, MA02115
| |
Collapse
|
16
|
Zhang Y, Tang J, Zhou Y, Xiao Q, Chen Q, Wang H, Lan J, Wu L, Peng Y. Short-term exposure to dimethyl fumarate (DMF) inhibits LPS-induced IκBζ expression in macrophages. Front Pharmacol 2023; 14:1114897. [PMID: 36817140 PMCID: PMC9929133 DOI: 10.3389/fphar.2023.1114897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Background: The pharmacological activity of dimethyl fumarate (DMF) in treating psoriasis and multiple sclerosis (MS) is not fully understood. DMF is hydrolysed to monomethyl fumarate (MMF) in vivo, which is believed to account for the therapeutic effects of DMF. However, previous studies have provided evidence that DMF also enters the circulation. Given that DMF is short-lived in the blood, whether DMF has a therapeutic impact is still unclear. Methods: Lipopolysaccharide (LPS)-mediated RAW264.7 cell activation was used as a model of inflammation to explore the anti-inflammatory effects of short-term DMF exposure in vitro. Whole blood LPS stimulation assay was applied to compare the anti-inflammatory effects of DMF and MMF in vivo. Griess assay was performed to examined nitrite release. The expression of pro-inflammatory cytokines and transcription factors were measured by quantitative PCR (qPCR), ELISA and Western blot. Depletion of intracellular glutathione (GSH) was evaluated by Ellman's assay. Luciferase reporter assays were performed to evaluate DMF effects on Nrf2-ARE pathway activation, promoter activity of Nfkbiz and mRNA stability of Nfkbiz. Binding of STAT3 to the IκBζ promoter were examined using Chromatin immunoprecipitation (ChIP) assay. Results: Short-term exposure to DMF significantly inhibited the inflammatory response of RAW264.7 cells and suppressed LPS-induced IκBζ expression. Importantly, oral DMF but not oral MMF administration significantly inhibited IκBζ transcription in murine peripheral blood cells. We demonstrated that the expression of IκBζ is affected by the availability of intracellular GSH and regulated by the transcription factor Nrf2 and STAT3. DMF with strong electrophilicity can rapidly deplete intracellular GSH, activate the Nrf2-ARE pathway, and inhibit the binding of STAT3 to the IκBζ promoter, thereby suppressing IκBζ expression in macrophages. Conclusion: These results demonstrate the rapid anti-inflammatory effects of DMF in macrophages, providing evidence to support the direct anti-inflammatory activity of DMF.
Collapse
|
17
|
Zhang W, Wu Q, Hao S, Chen S. The hallmark and crosstalk of immune cells after intracerebral hemorrhage: Immunotherapy perspectives. Front Neurosci 2023; 16:1117999. [PMID: 36711145 PMCID: PMC9877537 DOI: 10.3389/fnins.2022.1117999] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is one of the most dangerous types of strokes with a high morbidity and mortality rate. Currently, the treatment of ICH is not well developed, mainly because its mechanisms are still unclear. Inflammation is one of the main types of secondary injury after ICH and catalyzes the adverse consequences of ICH. A large number of immune cells are involved in neuroinflammation, such as microglia, astrocytes, oligodendrocytes, lymphocytes, macrophages, and neutrophils. Nevertheless, the characteristics and crosstalk of immune cells have not been fully elucidated. In this review, we endeavor to delve into the respective characteristics of immune cells and their interactions in neuroimmune inflammation, and further elucidate favorable immunotherapeutic approaches regarding ICH, and finally present an outlook.
Collapse
Affiliation(s)
- Wenqing Zhang
- School of Medicine, Chongqing University, Chongqing, China,Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qingyuan Wu
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China,*Correspondence: Shilei Hao,
| | - Shengli Chen
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China,Shengli Chen,
| |
Collapse
|
18
|
Tredicine M, Ria F, Poerio N, Lucchini M, Bianco A, De Santis F, Valentini M, De Arcangelis V, Rende M, Stabile AM, Pistilli A, Camponeschi C, Nociti V, Mirabella M, Fraziano M, Di Sante G. Liposome-based nanoparticles impact on regulatory and effector phenotypes of macrophages and T cells in multiple Sclerosis patients. Biomaterials 2023; 292:121930. [PMID: 36493716 DOI: 10.1016/j.biomaterials.2022.121930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
Current available treatments of Multiple Sclerosis (MS) reduce neuroinflammation acting on different targets on the immune system, but potentially lead to severe side effects and have a limited efficacy in slowing the progression of the disease. Here, we evaluated in vitro the immunomodulatory potential of a new class of nanoparticles - liposomes, constituted by a double-layer of phosphatidylserine (PSCho/PS), and double-faced, with an outer layer of phosphatidylserine and an inner layer of phosphatidic acid (PSCho/PA), either alone or in the presence of the myelin basic protein (MBP) peptide (residues 85-99) (PSCho/PS-MBP and PSCho/PA-MBP). Results showed that PSCho/PS are equally and efficiently internalized by pro- and anti-inflammatory macrophages (M1 and M2 respectively), while PSCho/PA were internalized better by M2 than M1. PSCho/PS liposomes were able to inhibit the secretion of innate pro-inflammatory cytokine IL-1β. PSCho/PS liposomes expanded Tregs, reducing Th1 and Th17 cells, while PSCho/PA liposomes were unable to dampen pro-inflammatory T cells and to promote immune-regulatory phenotype (Treg). The ability of PSCho/PS liposomes to up-regulate Treg cells was more pronounced in MS patients with high basal expression of M2 markers. PSCho/PS liposomes were more effective in decreasing Th1 (but not Th17) cells in MS patients with a disease duration >3 months. On the other hand, down-modulation of Th17 cells was evident in MS patients with active, Gadolinium enhancing lesions at MRI and in MS patients with a high basal expression of M1-associated markers in the monocytes. The same findings were observed for the modulation of MBP-driven Th1/Th17/Treg responses. These observations suggest that early MS associate to a hard-wired pro-Th1 phenotype of M1 that is lost later during disease course. On the other hand, acute inflammatory events reflect a temporary decrease of M2 phenotype that however is amenable to restauration upon treatment with PSCho/PS liposomes. Thus, together these data indicate that monocytes/macrophages may play an important regulatory function during MS course and suggest a role for PSCho/PS and PSCho/PS-MBP as new therapeutic tools to dampen the pro-inflammatory immune responses and to promote its regulatory branch.
Collapse
Affiliation(s)
- Maria Tredicine
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Francesco Ria
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Department Laboratory and Infectious diseases Sciences, Largo Agostino Gemelli 1-8, 00168, Rome, Italy.
| | - Noemi Poerio
- Department of Biology, University of Rome "TorVergata", Via della Ricerca Scientifica 1, 00173, Rome, Italy.
| | - Matteo Lucchini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC of Neurology, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Neurosciences, Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Assunta Bianco
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC of Neurology, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Neurosciences, Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Federica De Santis
- Department of Biology, University of Rome "TorVergata", Via della Ricerca Scientifica 1, 00173, Rome, Italy.
| | - Mariagrazia Valentini
- Section of Pathology, Department of Woman, Child and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168, Rome, Italy.
| | - Valeria De Arcangelis
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC of Neurology, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Neurosciences, Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Mario Rende
- Department of Surgery and Medicine, Institute of Human, Clinical and Forensic Anatomy, Piazza L. Severi 1, 06125, Perugia, Italy.
| | - Anna Maria Stabile
- Department of Surgery and Medicine, Institute of Human, Clinical and Forensic Anatomy, Piazza L. Severi 1, 06125, Perugia, Italy.
| | - Alessandra Pistilli
- Department of Surgery and Medicine, Institute of Human, Clinical and Forensic Anatomy, Piazza L. Severi 1, 06125, Perugia, Italy.
| | - Chiara Camponeschi
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Viviana Nociti
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC of Neurology, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Neurosciences, Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Massimiliano Mirabella
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC of Neurology, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Neurosciences, Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Maurizio Fraziano
- Department of Biology, University of Rome "TorVergata", Via della Ricerca Scientifica 1, 00173, Rome, Italy.
| | - Gabriele Di Sante
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Department of Surgery and Medicine, Institute of Human, Clinical and Forensic Anatomy, Piazza L. Severi 1, 06125, Perugia, Italy.
| |
Collapse
|
19
|
Farzam-Kia N, Lemaître F, Carmena Moratalla A, Carpentier Solorio Y, Da Cal S, Jamann H, Klement W, Antel J, Duquette P, Girard JM, Prat A, Larochelle C, Arbour N. Granulocyte-macrophage colony-stimulating factor-stimulated human macrophages demonstrate enhanced functions contributing to T-cell activation. Immunol Cell Biol 2023; 101:65-77. [PMID: 36260372 DOI: 10.1111/imcb.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been implicated in numerous chronic inflammatory diseases, including multiple sclerosis (MS). GM-CSF impacts multiple properties and functions of myeloid cells via species-specific mechanisms. Therefore, we assessed the effect of GM-CSF on different human myeloid cell populations found in MS lesions: monocyte-derived macrophages (MDMs) and microglia. We previously reported a greater number of interleukin (IL)-15+ myeloid cells in the brain of patients with MS than in controls. Therefore, we investigated whether GM-CSF exerts its deleterious effects in MS by increasing IL-15 expression on myeloid cells. We found that GM-CSF increased the proportion of IL-15+ cells and/or IL-15 levels on nonpolarized, M1-polarized and M2-polarized MDMs from healthy donors and patients with MS. GM-CSF also increased IL-15 levels on human adult microglia. When cocultured with GM-CSF-stimulated MDMs, activated autologous CD8+ T lymphocytes secreted and expressed significantly higher levels of effector molecules (e.g. interferon-γ and GM-CSF) compared with cocultures with unstimulated MDMs. However, neutralizing IL-15 did not attenuate enhanced effector molecule expression on CD8+ T lymphocytes triggered by GM-CSF-stimulated MDMs. We showed that GM-CSF stimulation of MDMs increased their expression of CD80 and ICAM-1 and their secretion of IL-6, IL-27 and tumor necrosis factor. These molecules could participate in boosting the effector properties of CD8+ T lymphocytes independently of IL-15. By contrast, GM-CSF did not alter CD80, IL-27, tumor necrosis factor and chemokine (C-X-C motif) ligand 10 expression/secretion by human microglia. Therefore, our results underline the distinct impact of GM-CSF on human myeloid cells abundantly present in MS lesions.
Collapse
Affiliation(s)
- Negar Farzam-Kia
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Florent Lemaître
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Ana Carmena Moratalla
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Yves Carpentier Solorio
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Sandra Da Cal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Hélène Jamann
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Wendy Klement
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jack Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Pierre Duquette
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Multiple Sclerosis Clinic-CHUM, Montréal, QC, Canada
| | - Jean Marc Girard
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Multiple Sclerosis Clinic-CHUM, Montréal, QC, Canada
| | - Alexandre Prat
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Multiple Sclerosis Clinic-CHUM, Montréal, QC, Canada
| | - Catherine Larochelle
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Multiple Sclerosis Clinic-CHUM, Montréal, QC, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| |
Collapse
|
20
|
Liu C, Zhu J, Mi Y, Jin T. Impact of disease-modifying therapy on dendritic cells and exploring their immunotherapeutic potential in multiple sclerosis. J Neuroinflammation 2022; 19:298. [PMID: 36510261 PMCID: PMC9743681 DOI: 10.1186/s12974-022-02663-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs), which play a pivotal role in inducing either inflammatory or tolerogenic response based on their subtypes and environmental signals. Emerging evidence indicates that DCs are critical for initiation and progression of autoimmune diseases, including multiple sclerosis (MS). Current disease-modifying therapies (DMT) for MS can significantly affect DCs' functions. However, the study on the impact of DMT on DCs is rare, unlike T and B lymphocytes that are the most commonly discussed targets of these therapies. Induction of tolerogenic DCs (tolDCs) with powerful therapeutic potential has been well-established to combat autoimmune responses in laboratory models and early clinical trials. In contrast to in vitro tolDC induction, in vivo elicitation by specifically targeting multiple cell-surface receptors has shown greater promise with more advantages. Here, we summarize the role of DCs in governing immune tolerance and in the process of initiating and perpetuating MS as well as the effects of current DMT drugs on DCs. We then highlight the most promising cell-surface receptors expressed on DCs currently being explored as the viable pharmacological targets through antigen delivery to generate tolDCs in vivo.
Collapse
Affiliation(s)
- Caiyun Liu
- grid.430605.40000 0004 1758 4110Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- grid.430605.40000 0004 1758 4110Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China ,grid.24381.3c0000 0000 9241 5705Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Yan Mi
- grid.430605.40000 0004 1758 4110Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Tao Jin
- grid.430605.40000 0004 1758 4110Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Franklin RJM, Simons M. CNS remyelination and inflammation: From basic mechanisms to therapeutic opportunities. Neuron 2022; 110:3549-3565. [PMID: 36228613 DOI: 10.1016/j.neuron.2022.09.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
Remyelination, the myelin regenerative response that follows demyelination, restores saltatory conduction and function and sustains axon health. Its declining efficiency with disease progression in the chronic autoimmune disease multiple sclerosis (MS) contributes to the currently untreatable progressive phase of the disease. Although some of the bona fide myelin regenerative medicine clinical trials have succeeded in demonstrating proof-of-principle, none of these compounds have yet proceeded toward approval. There therefore remains a need to increase our understanding of the fundamental biology of remyelination so that existing targets can be refined and new ones discovered. Here, we review the role of inflammation, in particular innate immunity, in remyelination, describing its many and complex facets and discussing how our evolving understanding can be harnessed to translational goals.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK.
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, Munich, Germany.
| |
Collapse
|
22
|
Carnero Contentti E, Correale J. Current Perspectives: Evidence to Date on BTK Inhibitors in the Management of Multiple Sclerosis. Drug Des Devel Ther 2022; 16:3473-3490. [PMID: 36238195 PMCID: PMC9553159 DOI: 10.2147/dddt.s348129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system leading to demyelination and neurodegeneration. Basic and translational studies have shown that B cells and myeloid cells are critical players for the development and course of the disease. Bruton's tyrosine kinase (BTK) is essential for B cell receptor-mediated B cell activation and for normal B cell development and maturation. In addition to its role in B cells, BTK is also involved in several functions of myeloid cells. Although significant number of disease-modifying treatments (DMTs) have been approved for clinical use in MS patients, novel targeted therapies should be studied in refractory patients and patients with progressive forms of the disease. On the basis of its role in B cells and myeloid cells, BTK inhibitors can provide attractive therapeutic benefits for MS. In this article, we review the main effects of BTK inhibitors on different cell types involved in the pathogenesis of MS and summarise recent advances in the development of BTK inhibitors as novel therapeutic approaches in different MS clinical trials. Available data regarding the efficacy and safety of these drugs are described.
Collapse
Affiliation(s)
| | - Jorge Correale
- Department of Neurology, Fleni, Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquimíca Biológicas (IQUIFIB), Buenos Aires, Argentina
| |
Collapse
|
23
|
Li H, Xie L, Zhu L, Li Z, Wang R, Liu X, Huang Z, Chen B, Gao Y, Wei L, He C, Ju R, Liu Y, Liu X, Zheng Y, Su W. Multicellular immune dynamics implicate PIM1 as a potential therapeutic target for uveitis. Nat Commun 2022; 13:5866. [PMID: 36195600 PMCID: PMC9532430 DOI: 10.1038/s41467-022-33502-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Uveitis is a severe autoimmune disease, and a common cause of blindness; however, its individual cellular dynamics and pathogenic mechanism remain poorly understood. Herein, by performing single-cell RNA sequencing (scRNA-seq) on experimental autoimmune uveitis (EAU), we identify disease-associated alterations in cell composition and transcriptional regulation as the disease progressed, as well as a disease-related molecule, PIM1. Inhibiting PIM1 reduces the Th17 cell proportion and increases the Treg cell proportion, likely due to regulation of PIM1 to the protein kinase B (AKT)/Forkhead box O1 (FOXO1) pathway. Moreover, inhibiting PIM1 reduces Th17 cell pathogenicity and reduces plasma cell differentiation. Importantly, the upregulation of PIM1 in CD4+ T cells and plasma cells is conserved in a human uveitis, Vogt-Koyanagi-Harada disease (VKH), and inhibition of PIM1 reduces CD4+ T and B cell expansion. Collectively, a dynamic immune cellular atlas during uveitis is developed and implicate that PIM1 may be a potential therapeutic target for VKH. Uveitis is a complex autoimmune inflammatory disease of the eye and defining molecules involved is a priority. Here the authors use scRNA sequencing in mouse experimental autoimmune uveitis (EAU) and show PIM1 promotes the imbalance of Th17 and Treg cells, and find elevated PIM-1 in human uveitis disease.
Collapse
Affiliation(s)
- He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lihui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Rong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China. .,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
24
|
O'Connell P, Blake MK, Godbehere S, Amalfitano A, Aldhamen YA. SLAMF7 modulates B cells and adaptive immunity to regulate susceptibility to CNS autoimmunity. J Neuroinflammation 2022; 19:241. [PMID: 36199066 PMCID: PMC9533612 DOI: 10.1186/s12974-022-02594-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic, debilitating condition characterized by CNS autoimmunity stemming from a complex etiology involving both environmental and genetic factors. Our current understanding of MS points to dysregulation of the immune system as the pathogenic culprit, however, it remains unknown as to how the many genes associated with increased susceptibility to MS are involved. One such gene linked to MS susceptibility and known to regulate immune function is the self-ligand immune cell receptor SLAMF7. Methods We subjected WT and SLAMF7−/− mice to multiple EAE models, compared disease severity, and comprehensively profiled the CNS immune landscape of these mice. We identified all SLAMF7-expressing CNS immune cells and compared the entire CNS immune niche between genotypes. We performed deep phenotyping and in vitro functional studies of B and T cells via spectral cytometry and BioPlex assays. Adoptive transfer studies involving the transfer of WT and SLAMF7−/− B cells into B cell-deficient mice (μMT) were also performed. Finally, B–T cell co-culture studies were performed, and a comparative cell–cell interaction network derived from scRNA-seq data of SLAMF7+ vs. SLAMF7− human CSF immune cells was constructed. Results We found SLAMF7−/− mice to be more susceptible to EAE compared to WT mice and found SLAMF7 to be expressed on numerous CNS immune cell subsets. Absence of SLAMF7 did not grossly alter the CNS immune landscape, but allowed for altered immune cell subset infiltration during EAE in a model-dependent manner. Global lack of SLAMF7 expression increased myeloid cell activation states along with augmented T cell anti-MOG immunity. B cell profiling studies revealed increased activation states of specific plasma and B cell subsets in SLAMF7−/− mice during EAE, and functional co-culture studies determined that SLAMF7−/− B cells induce exaggerated T cell activation. Adoptive transfer studies revealed that the increased susceptibility of SLAMF7−/− mice to EAE is partly B cell dependent and reconstruction of the human CSF SLAMF7-interactome found B cells to be critical to cell–cell communication between SLAMF7-expressing cells. Conclusions Our studies have identified novel roles for SLAMF7 in CNS immune regulation and B cell function, and illuminate underpinnings of the genetic association between SLAMF7 and MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02594-9.
Collapse
Affiliation(s)
- Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA
| | - Maja K Blake
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA.,Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA.
| |
Collapse
|
25
|
Sawant H, Bihl T, Nguyen D, Iwuchukwu I, Bihl J. The profile of inflammatory extracellular vesicles in intracerebral hemorrhage patients. FRONTIERS IN STROKE 2022; 1:988081. [PMID: 40129971 PMCID: PMC11932702 DOI: 10.3389/fstro.2022.988081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Background Intracerebral hemorrhage (ICH) is one of the leading life-threatening types of strokes with high mortality. A prominent feature of ICH is neuroinflammation involving leukocytes, such as neutrophils and macrophages. Large extracellular vesicles (lEV) and small extracellular vesicles (sEV) released from various cells are used as biomarkers for different diseases. Here, we aimed to determine the concentration/population of lEV and sEV from different leukocytes in ICH patients and analyze the correlation of these lEV/sEV with clinical parameters. Methods lEV and sEV were isolated from the plasma of ICH patients (n = 39) by using the serial centrifuge methods. Nanoparticle tracking analysis (NTA, NS300) was used to determine the type and concentration of different leukocytes-released lEV/sEV. Specific antibodies, CD66b, P2RY12, and CD80 were used for different leukocyte types. Results A predictive relationship between both hospital length of stay (R 2 = 0.83) and Intensive care units (ICU) length of stay (R 2 = 0.88) was found with lEV and sEV and patient data [including low-density lipoprotein (LDL), ICH volume, etc.]. Further predictive-multiple linear regression relationship was seen between lEV and sEV concentrations and MRSV3 (Modified Rankin Scale at 90 days) (R 2 = 0.46) and MRSV5 (modified Rankin Scale at 180 days) (R 2 = 0.51). Additionally, a slight, but statistically significant (p = 0.0151), multiple linear regression relationship was seen between lEV and sEV concentrations and ICU length of stay (R 2 = 0.26). Conclusion This study found predictive relationships between patient outcomes and lEV and sEV. When combined with generally collected patient data (LDL, etc.), measurements of lEV and sEV are strongly predictive of overall patient outcome. Further, larger studies should investigate these effects.
Collapse
Affiliation(s)
- Harshal Sawant
- Department of Biomedical Sciences, Marshall University, Huntington, WV, United States
| | - Trevor Bihl
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, United States
| | - Doan Nguyen
- Institute for Translational Research, Ochsner Medical Center, New Orleans, LA, United States
- Department of Neurology, Ochsner Medical Center, New Orleans, LA, United States
| | - Ifeanyi Iwuchukwu
- Institute for Translational Research, Ochsner Medical Center, New Orleans, LA, United States
- Department of Neurology, Ochsner Medical Center, New Orleans, LA, United States
| | - Ji Bihl
- Department of Biomedical Sciences, Marshall University, Huntington, WV, United States
| |
Collapse
|
26
|
Abstract
The central nervous system (CNS) has been viewed as an immunologically privileged site, but emerging works are uncovering a large array of neuroimmune interactions primarily occurring at its borders. CNS barriers sites host diverse population of both innate and adaptive immune cells capable of, directly and indirectly, influence the function of the residing cells of the brain parenchyma. These structures are only starting to reveal their role in controlling brain function under normal and pathological conditions and represent an underexplored therapeutic target for the treatment of brain disorders. This review will highlight the development of the CNS barriers to host neuro-immune interactions and emphasize their newly described roles in neurodevelopmental, neurological, and neurodegenerative disorders, particularly for the meninges.
Collapse
Affiliation(s)
- Natalie M Frederick
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gabriel A Tavares
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Antoine Louveau
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Kent University, Neurosciences, School of Biomedical Sciences, Cleveland, Ohio, USA
| |
Collapse
|
27
|
Yu Z, Fang X, Liu W, Sun R, Zhou J, Pu Y, Zhao M, Sun D, Xiang Z, Liu P, Ding Y, Cao L, He C. Microglia Regulate Blood-Brain Barrier Integrity via MiR-126a-5p/MMP9 Axis during Inflammatory Demyelination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105442. [PMID: 35758549 PMCID: PMC9403646 DOI: 10.1002/advs.202105442] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/14/2022] [Indexed: 05/14/2023]
Abstract
Blood-brain barrier (BBB) impairment is an early prevalent feature of multiple sclerosis (MS), and remains vital for MS progression. Microglial activation precedes BBB disruption and cellular infiltrates in the brain of MS patients. However, little is known about the function of microglia in BBB impairment. Here, microglia acts as an important modulator of BBB integrity in inflammatory demyelination. Microglial depletion profoundly ameliorates BBB impairment in experimental autoimmune encephalomyelitis (EAE). Specifically, miR-126a-5p in microglia is positively correlated with BBB integrity in four types of MS plaques. Mechanistically, microglial deletion of miR-126a-5p exacerbates BBB leakage and EAE severity. The protective effect of miR-126a-5p is mimicked and restored by specific inhibition of MMP9 in microglia. Importantly, Auranofin, an FDA-approved drug, is identified to protect BBB integrity and mitigate EAE progression via a microglial miR-126a-5p dependent mechanism. Taken together, microglia can be manipulated to protect BBB integrity and ameliorate inflammatory demyelination. Targeting microglia to regulate BBB permeability merits consideration in therapeutic interventions in MS.
Collapse
Affiliation(s)
- Zhongwang Yu
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Xue Fang
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
- Department of GastroenterologyChanghai HospitalSMMUShanghai200433China
| | - Weili Liu
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Rui Sun
- Department of NeurologyChanghai HospitalSMMUShanghai200433China
| | - Jintao Zhou
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Yingyan Pu
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Ming Zhao
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Dingya Sun
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Zhenghua Xiang
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Peng Liu
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Yuqiang Ding
- Department of Laboratory Animal Scienceand State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceFudan UniversityShanghai200032China
| | - Li Cao
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Cheng He
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| |
Collapse
|
28
|
Zhu K, Wang Y, Sarlus H, Geng K, Nutma E, Sun J, Kung SY, Bay C, Han J, Min JH, Benito-Cuesta I, Lund H, Amor S, Wang J, Zhang XM, Kutter C, Guerreiro-Cacais AO, Högberg B, Harris RA. Myeloid cell-specific topoisomerase 1 inhibition using DNA origami mitigates neuroinflammation. EMBO Rep 2022; 23:e54499. [PMID: 35593064 PMCID: PMC9253741 DOI: 10.15252/embr.202154499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Targeting myeloid cells, especially microglia, for the treatment of neuroinflammatory diseases such as multiple sclerosis (MS), is underappreciated. Our in silico drug screening reveals topoisomerase 1 (TOP1) inhibitors as promising drug candidates for microglial modulation. We show that TOP1 is highly expressed in neuroinflammatory conditions, and TOP1 inhibition using camptothecin (CPT) and its FDA-approved analog topotecan (TPT) reduces inflammatory responses in microglia/macrophages and ameliorates neuroinflammation in vivo. Transcriptomic analyses of sorted microglia from LPS-challenged mice reveal an altered transcriptional phenotype following TPT treatment. To target myeloid cells, we design a nanosystem using β-glucan-coated DNA origami (MyloGami) loaded with TPT (TopoGami). MyloGami shows enhanced specificity to myeloid cells while preventing the degradation of the DNA origami scaffold. Myeloid-specific TOP1 inhibition using TopoGami significantly suppresses the inflammatory response in microglia and mitigates MS-like disease progression. Our findings suggest that TOP1 inhibition in myeloid cells represents a therapeutic strategy for neuroinflammatory diseases and that the myeloid-specific nanosystems we designed may also benefit the treatment of other diseases with dysfunctional myeloid cells.
Collapse
Affiliation(s)
- Keying Zhu
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Yang Wang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Heela Sarlus
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Keyi Geng
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Erik Nutma
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jingxian Sun
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, China.,Shanghai Medical College, Fudan University, Shanghai, China
| | - Shin-Yu Kung
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Cindy Bay
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jinming Han
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jin-Hong Min
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Irene Benito-Cuesta
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Harald Lund
- Department of Physiology and Pharmacology, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, China.,Shanghai Medical College, Fudan University, Shanghai, China
| | - Xing-Mei Zhang
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - André Ortlieb Guerreiro-Cacais
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Björn Högberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Robert A Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Steudler J, Ecott T, Ivan DC, Bouillet E, Walthert S, Berve K, Dick TP, Engelhardt B, Locatelli G. Autoimmune neuroinflammation triggers mitochondrial oxidation in oligodendrocytes. Glia 2022; 70:2045-2061. [PMID: 35762739 PMCID: PMC9546135 DOI: 10.1002/glia.24235] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/06/2022]
Abstract
Oligodendrocytes (ODCs) are myelinating cells of the central nervous system (CNS) supporting neuronal survival. Oxidants and mitochondrial dysfunction have been suggested as the main causes of ODC damage during neuroinflammation as observed in multiple sclerosis (MS). Nonetheless, the dynamics of this process remain unclear, thus hindering the design of neuroprotective therapeutic strategies. To decipher the spatio-temporal pattern of oxidative damage and dysfunction of ODC mitochondria in vivo, we created a novel mouse model in which ODCs selectively express the ratiometric H2 O2 biosensor mito-roGFP2-Orp1 allowing for quantification of redox changes in their mitochondria. Using 2-photon imaging of the exposed spinal cord, we observed significant mitochondrial oxidation in ODCs upon induction of the MS model experimental autoimmune encephalomyelitis (EAE). This redox change became already apparent during the preclinical phase of EAE prior to CNS infiltration of inflammatory cells. Upon clinical EAE development, mitochondria oxidation remained detectable and was associated with a significant impairment in organelle density and morphology. These alterations correlated with the proximity of ODCs to inflammatory lesions containing activated microglia/macrophages. During the chronic progression of EAE, ODC mitochondria maintained an altered morphology, but their oxidant levels decreased to levels observed in healthy mice. Taken together, our study implicates oxidative stress in ODC mitochondria as a novel pre-clinical sign of MS-like inflammation and demonstrates that evolving redox and morphological changes in mitochondria accompany ODC dysfunction during neuroinflammation.
Collapse
Affiliation(s)
- Jasmin Steudler
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Timothy Ecott
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Daniela C Ivan
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Elisa Bouillet
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | - Kristina Berve
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | |
Collapse
|
30
|
Seals MR, Moran MM, Leavenworth JD, Leavenworth JW. Contribution of Dysregulated B-Cells and IgE Antibody Responses to Multiple Sclerosis. Front Immunol 2022; 13:900117. [PMID: 35784370 PMCID: PMC9243362 DOI: 10.3389/fimmu.2022.900117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS), a debilitating autoimmune inflammatory disease that affects the brain and spinal cord, causes demyelination of neurons, axonal damage, and neurodegeneration. MS and the murine experimental autoimmune encephalomyelitis (EAE) model have been viewed mainly as T-cell-mediated diseases. Emerging data have suggested the contribution of B-cells and autoantibodies to the disease progression. However, the underlying mechanisms by which dysregulated B-cells and antibody response promote MS and EAE remain largely unclear. Here, we provide an updated review of this specific subject by including B-cell biology and the role of B-cells in triggering autoimmune neuroinflammation with a focus on the regulation of antibody-producing B-cells. We will then discuss the role of a specific type of antibody, IgE, as it relates to the potential regulation of microglia and macrophage activation, autoimmunity and MS/EAE development. This knowledge can be utilized to develop new and effective therapeutic approaches to MS, which fits the scope of the Research Topic "Immune Mechanism in White Matter Lesions: Clinical and Pathophysiological Implications".
Collapse
Affiliation(s)
- Malik R. Seals
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Multidisciplinary Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Monica M. Moran
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jonathan D. Leavenworth
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- The O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
31
|
Nishi R, Ohyagi M, Nagata T, Mabuchi Y, Yokota T. Regulation of activated microglia and macrophages by systemically administered DNA/RNA heteroduplex oligonucleotides. Mol Ther 2022; 30:2210-2223. [PMID: 35189344 PMCID: PMC9171263 DOI: 10.1016/j.ymthe.2022.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/05/2022] [Accepted: 02/15/2022] [Indexed: 11/19/2022] Open
Abstract
Microglial activation followed by recruitment of blood-borne macrophages into the central nervous system (CNS) aggravates neuroinflammation. Specifically, in multiple sclerosis (MS) as well as in experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, activated microglia and macrophages (Mg/Mφ) promote proinflammatory responses and expand demyelination in the CNS. However, a potent therapeutic approach through the systemic route for regulating their functions has not yet been developed. Here, we demonstrate that a systemically injected DNA/RNA heteroduplex oligonucleotide (HDO), composed of an antisense oligonucleotide (ASO) and its complementary RNA, conjugated to cholesterol (Chol-HDO) distributed more efficiently to demyelinating lesions of the spinal cord in EAE mice with significant gene silencing than the parent ASO. Importantly, systemic administration of Cd40-targeting Chol-HDO improved clinical signs of EAE with significant downregulation of Cd40 in Mg/Mφ. Furthermore, we successfully identify that macrophage scavenger receptor 1 (MSR1) is responsible for the uptake of Chol-HDO by Mg/Mφ of EAE mice. Overall, our findings demonstrate the therapeutic potency of systemically administered Chol-HDO to regulate activated Mg/Mφ in neuroinflammation.
Collapse
Affiliation(s)
- Rieko Nishi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Ohyagi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
32
|
Galloway DA, Carew SJ, Blandford SN, Benoit RY, Fudge N, Berry T, Moore GRW, Barron J, Moore CS. Investigating the NLRP3 Inflammasome and its Regulator miR-223-3p in Multiple Sclerosis and Experimental Demyelination. J Neurochem 2022; 163:94-112. [PMID: 35633501 DOI: 10.1111/jnc.15650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Innate immune signalling pathways are essential mediators of inflammation and repair following myelin injury. Inflammasome activation has recently been implicated as a driver of myelin injury in multiple sclerosis (MS) and its animal models, although the regulation and contributions of inflammasome activation in the demyelinated central nervous system (CNS) are not completely understood. Herein, we investigated the NLRP3 (NBD-, LRR- and pyrin domain-containing protein 3) inflammasome and its endogenous regulator microRNA-223-3p within the demyelinated CNS in both MS and an animal model of focal demyelination. We observed that NLRP3 inflammasome components and microRNA-223-3p were upregulated at sites of myelin injury within activated macrophages and microglia. Both microRNA-223-3p and a small-molecule NLRP3 inhibitor, MCC950, supressed inflammasome activation in macrophages and microglia in vitro; compared with microglia, macrophages were more prone to inflammasome activation in vitro. Finally, systemic delivery of MCC950 to mice following lysolecithin-induced demyelination resulted in a significant reduction in axonal injury within demyelinated lesions. In conclusion, we demonstrate that NLRP3 inflammasome activity by macrophages and microglia is a critical component of the inflammatory microenvironment following demyelination and represents a potential therapeutic target for inflammatory-mediated demyelinating diseases, including MS.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - Samantha J Carew
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - Stephanie N Blandford
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - Rochelle Y Benoit
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - Neva Fudge
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - Tangyne Berry
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - G R Wayne Moore
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver British Columbia, Canada
| | - Jane Barron
- Discipline of Laboratory Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, Canada
| | - Craig S Moore
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada.,Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
33
|
MacDougall M, El-Hajj Sleiman J, Beauchemin P, Rangachari M. SARS-CoV-2 and Multiple Sclerosis: Potential for Disease Exacerbation. Front Immunol 2022; 13:871276. [PMID: 35572514 PMCID: PMC9102605 DOI: 10.3389/fimmu.2022.871276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
While the respiratory tract is the primary route of entry for SARS-CoV-2, evidence shows that the virus also impacts the central nervous system. Intriguingly, case reports have documented SARS-CoV-2 patients presenting with demyelinating lesions in the brain, spinal cord, and optic nerve, suggesting possible implications in neuroimmune disorders such as multiple sclerosis (MS) and other related neuroimmune disorders. However, the cellular mechanisms underpinning these observations remain poorly defined. The goal of this paper was to review the literature to date regarding possible links between SARS-CoV-2 infection and neuroimmune demyelinating diseases such as MS and its related disorders, with the aim of positing a hypothesis for disease exacerbation. The literature suggests that SARS-CoV, SARS-CoV-2, and orthologous murine coronaviruses invade the CNS via the olfactory bulb, spreading to connected structures via retrograde transport. We hypothesize that a glial inflammatory response may contribute to damaged oligodendrocytes and blood brain barrier (BBB) breakdown, allowing a second route for CNS invasion and lymphocyte infiltration. Potential for molecular mimicry and the stimulation of autoreactive T cells against myelin is also described. It is imperative that further studies on SARS-CoV-2 neuroinvasion address the adverse effects of the virus on myelin and exacerbation of MS symptoms, as nearly 3 million people suffer from MS worldwide.
Collapse
Affiliation(s)
- Madison MacDougall
- Department of Biological Sciences, Salisbury University, Salisbury, MD, United States
- Department of Psychology, Salisbury University, Salisbury, MD, United States
| | - Jad El-Hajj Sleiman
- Division of Neurology, Department of Medicine, CHU de Québec – Université Laval, Quebec City, QC, Canada
| | - Philippe Beauchemin
- Division of Neurology, Department of Medicine, CHU de Québec – Université Laval, Quebec City, QC, Canada
| | - Manu Rangachari
- Axe Neurosciences, Centre de Recherche du CHU de Québec – Université Laval, Quebec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
34
|
Linnerbauer M, Lößlein L, Vandrey O, Tsaktanis T, Beer A, Naumann UJ, Panier F, Beyer T, Nirschl L, Kuramatsu JB, Winkler J, Quintana FJ, Rothhammer V. Intranasal delivery of a small-molecule ErbB inhibitor promotes recovery from acute and late-stage CNS inflammation. JCI Insight 2022; 7:154824. [PMID: 35393953 PMCID: PMC9057609 DOI: 10.1172/jci.insight.154824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the CNS that is characterized by demyelination and axonal degeneration. Although several established treatments reduce relapse burden, effective treatments to halt chronic progression are scarce. Single-cell transcriptomic studies in MS and its animal models have described astrocytes and their spatial and functional heterogeneity as important cellular determinants of chronic disease. We combined CNS single-cell transcriptome data and small-molecule screens in primary mouse and human astrocytes to identify glial interactions, which could be targeted by repurposing FDA-approved small-molecule modulators for the treatment of acute and late-stage CNS inflammation. Using hierarchical in vitro and in vivo validation studies, we demonstrate that among selected pathways, blockade of ErbB by the tyrosine kinase inhibitor afatinib efficiently mitigates proinflammatory astrocyte polarization and promotes tissue-regenerative functions. We found that i.n. delivery of afatinib during acute and late-stage CNS inflammation ameliorates disease severity by reducing monocyte infiltration and axonal degeneration while increasing oligodendrocyte proliferation. We used unbiased screening approaches of astrocyte interactions to identify ErbB signaling and its modulation by afatinib as a potential therapeutic strategy for acute and chronic stages of autoimmune CNS inflammation.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Lößlein
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Vandrey
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Beer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrike J Naumann
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Panier
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Beyer
- Department of Neurology, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany
| | - Lucy Nirschl
- Department of Neurology, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany
| | - Joji B Kuramatsu
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
35
|
Spiteri AG, Wishart CL, Pamphlett R, Locatelli G, King NJC. Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathol 2022; 143:179-224. [PMID: 34853891 PMCID: PMC8742818 DOI: 10.1007/s00401-021-02384-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
Abstract
In neurological diseases, the actions of microglia, the resident myeloid cells of the CNS parenchyma, may diverge from, or intersect with, those of recruited monocytes to drive immune-mediated pathology. However, defining the precise roles of each cell type has historically been impeded by the lack of discriminating markers and experimental systems capable of accurately identifying them. Our ability to distinguish microglia from monocytes in neuroinflammation has advanced with single-cell technologies, new markers and drugs that identify and deplete them, respectively. Nevertheless, the focus of individual studies on particular cell types, diseases or experimental approaches has limited our ability to connect phenotype and function more widely and across diverse CNS pathologies. Here, we critically review, tabulate and integrate the disease-specific functions and immune profiles of microglia and monocytes to provide a comprehensive atlas of myeloid responses in viral encephalitis, demyelination, neurodegeneration and ischemic injury. In emphasizing the differential roles of microglia and monocytes in the severe neuroinflammatory disease of viral encephalitis, we connect inflammatory pathways common to equally incapacitating diseases with less severe inflammation. We examine these findings in the context of human studies and highlight the benefits and inherent limitations of animal models that may impede or facilitate clinical translation. This enables us to highlight common and contrasting, non-redundant and often opposing roles of microglia and monocytes in disease that could be targeted therapeutically.
Collapse
|
36
|
Kuntzel T, Bagnard D. Manipulating Macrophage/Microglia Polarization to Treat Glioblastoma or Multiple Sclerosis. Pharmaceutics 2022; 14:344. [PMID: 35214076 PMCID: PMC8877500 DOI: 10.3390/pharmaceutics14020344] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Macrophages and microglia are implicated in several diseases with divergent roles in physiopathology. This discrepancy can be explained by their capacity to endorse different polarization states. Theoretical extremes of these states are called M1 and M2. M1 are pro-inflammatory, microbicidal, and cytotoxic whereas M2 are anti-inflammatory, immunoregulatory cells in favor of tumor progression. In pathological states, these polarizations are dysregulated, thus restoring phenotypes could be an interesting treatment approach against diseases. In this review, we will focus on compounds targeting macrophages and microglia polarization in two very distinctive pathologies: multiple sclerosis and glioblastoma. Multiple sclerosis is an inflammatory disease characterized by demyelination and axon degradation. In this case, macrophages and microglia endorse a M1-like phenotype inducing inflammation. Promoting the opposite M2-like polarization could be an interesting treatment strategy. Glioblastoma is a brain tumor in which macrophages and microglia facilitate tumor progression, spreading, and angiogenesis. They are part of the tumor associated macrophages displaying an anti-inflammatory phenotype, thereby inhibiting anti-tumoral immunity. Re-activating them could be a method to limit and reduce tumor progression. These two pathologies will be used to exemplify that targeting the polarization of macrophages and microglia is a promising approach with a broad spectrum of applications deserving more attention.
Collapse
Affiliation(s)
- Thomas Kuntzel
- UMR7242 Biotechnology and Cell Signaling, Centre National de la Recherche Scientifique, Strasbourg Drug Discovery and Development Institute (IMS), University of Strasbourg, 67400 Illkirch-Graffenstaden, France;
| | - Dominique Bagnard
- UMR7242 Biotechnology and Cell Signaling, Centre National de la Recherche Scientifique, Strasbourg Drug Discovery and Development Institute (IMS), University of Strasbourg, 67400 Illkirch-Graffenstaden, France;
- Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
37
|
Liu J, Yang X, Pan J, Wei Z, Liu P, Chen M, Liu H. Single-Cell Transcriptome Profiling Unravels Distinct Peripheral Blood Immune Cell Signatures of RRMS and MOG Antibody-Associated Disease. Front Neurol 2022; 12:807646. [PMID: 35095746 PMCID: PMC8795627 DOI: 10.3389/fneur.2021.807646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Relapsing-remitting multiple sclerosis (RRMS) and myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) are inflammatory demyelinating diseases of the central nervous system (CNS). Due to the shared clinical manifestations, detection of disease-specific serum antibody of the two diseases is currently considered as the gold standard for the diagnosis; however, the serum antibody levels are unpredictable during different stages of the two diseases. Herein, peripheral blood single-cell transcriptome was used to unveil distinct immune cell signatures of the two diseases, with the aim to provide predictive discrimination. Single-cell RNA sequencing (scRNA-seq) was conducted on the peripheral blood from three subjects, i.e., one patient with RRMS, one patient with MOGAD, and one patient with healthy control. The results showed that the CD19+ CXCR4+ naive B cell subsets were significantly expanded in both RRMS and MOGAD, which was verified by flow cytometry. More importantly, RRMS single-cell transcriptomic was characterized by increased naive CD8+ T cells and cytotoxic memory-like Natural Killer (NK) cells, together with decreased inflammatory monocytes, whereas MOGAD exhibited increased inflammatory monocytes and cytotoxic CD8 effector T cells, coupled with decreased plasma cells and memory B cells. Collectively, our findings indicate that the two diseases exhibit distinct immune cell signatures, which allows for highly predictive discrimination of the two diseases and paves a novel avenue for diagnosis and therapy of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Ju Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiali Pan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihua Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peidong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbo Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hongbo Liu
| |
Collapse
|
38
|
Cantuti-Castelvetri L, Gokce O, Simons M. Reparative inflammation in multiple sclerosis. Semin Immunol 2022; 59:101630. [PMID: 35750551 DOI: 10.1016/j.smim.2022.101630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Affiliation(s)
- Ludovico Cantuti-Castelvetri
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
39
|
Scheible H, Dyroff M, Seithel‐Keuth A, Harrison‐Moench E, Mammasse N, Port A, Bachmann A, Dong J, van Lier JJ, Tracewell W, Mitchell D. Evobrutinib, a covalent Bruton's tyrosine kinase inhibitor: Mass balance, elimination route, and metabolism in healthy participants. Clin Transl Sci 2021; 14:2420-2430. [PMID: 34374206 PMCID: PMC8604242 DOI: 10.1111/cts.13108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 11/30/2022] Open
Abstract
The highly selective, covalent Bruton's tyrosine kinase inhibitor evobrutinib is under investigation for treatment of patients with multiple sclerosis (MS). Early clinical studies in healthy participants and patients with relapsing MS indicated that evobrutinib is well-tolerated and effective. We undertook a mass balance study in six men who received a single 75-mg oral dose of evobrutinib containing ~ 3.6 MBq (100 μCi) 14 C-evobrutinib, to determine the absorption, metabolic pathways, and routes of excretion of evobrutinib. The primary objectives of this phase I study (NCT03725072) were to (1) determine the rates and routes of total radioactivity excretion, including the mass balance of total drug-related radioactivity in urine and feces, (2) assess the pharmacokinetics (PKs) of total radioactivity in blood and plasma, and (3) characterize the plasma PKs of evobrutinib. Exploratory end points included identifying and quantifying evobrutinib and its metabolites in plasma and excreta (urine and feces) and exploring key biotransformation pathways and clearance mechanisms. Evobrutinib was primarily eliminated in feces (arithmetic mean percentage, SD, 71.0, 2.1) and, to a lesser extent, in urine (20.6, 2.0), with most of the total radioactivity (85.3%) excreted in the first 72 h after administration. No unchanged evobrutinib was detected in excreta. Evobrutinib was rapidly absorbed and substantially metabolized upon absorption. Only one major metabolite M463-2 (MSC2430422) was identified in plasma above the 10% of total drug exposure threshold, which classifies M463-2 (MSC2430422) as a major metabolite according to the US Food and Drug Administration (FDA; metabolites in safety testing [MIST]) and the European Medicines Agency (EMA; International Conference on Harmonization [ICH] M3). These results support further development of evobrutinib and may help inform subsequent investigations.
Collapse
Affiliation(s)
| | | | | | | | | | - Andreas Port
- The healthcare business of Merck KGaADarmstadtGermany
| | | | | | | | | | | |
Collapse
|
40
|
McGill MM, Richman AR, Boyd JR, Sabikunnahar B, Lahue KG, Montgomery TL, Caldwell S, Varnum S, Frietze S, Krementsov DN. p38 MAP Kinase Signaling in Microglia Plays a Sex-Specific Protective Role in CNS Autoimmunity and Regulates Microglial Transcriptional States. Front Immunol 2021; 12:715311. [PMID: 34707603 PMCID: PMC8542909 DOI: 10.3389/fimmu.2021.715311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system, representing the leading cause of non-traumatic neurologic disease in young adults. This disease is three times more common in women, yet more severe in men, but the mechanisms underlying these sex differences remain largely unknown. MS is initiated by autoreactive T helper cells, but CNS-resident and CNS-infiltrating myeloid cells are the key proximal effector cells regulating disease pathology. We have previously shown that genetic ablation of p38α MAP kinase broadly in the myeloid lineage is protective in the autoimmune model of MS, experimental autoimmune encephalomyelitis (EAE), but only in females, and not males. To precisely define the mechanisms responsible, we used multiple genetic approaches and bone marrow chimeras to ablate p38α in microglial cells, peripheral myeloid cells, or both. Deletion of p38α in both cell types recapitulated the previous sex difference, with reduced EAE severity in females. Unexpectedly, deletion of p38α in the periphery was protective in both sexes. In contrast, deletion of p38α in microglia exacerbated EAE in males only, revealing opposing roles of p38α in microglia vs. periphery. Bulk transcriptional profiling revealed that p38α regulated the expression of distinct gene modules in male vs. female microglia. Single-cell transcriptional analysis of WT and p38α-deficient microglia isolated from the inflamed CNS revealed a diversity of complex microglial states, connected by distinct convergent transcriptional trajectories. In males, microglial p38α deficiency resulted in enhanced transition from homeostatic to disease-associated microglial states, with the downregulation of regulatory genes such as Atf3, Rgs1, Socs3, and Btg2, and increased expression of inflammatory genes such as Cd74, Trem2, and MHC class I and II genes. In females, the effect of p38α deficiency was divergent, exhibiting a unique transcriptional profile that included an upregulation of tissue protective genes, and a small subset of inflammatory genes that were also upregulated in males. Taken together, these results reveal a p38α-dependent sex-specific molecular pathway in microglia that is protective in CNS autoimmunity in males, suggesting that autoimmunity in males and females is driven by distinct cellular and molecular pathways, thus suggesting design of future sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Mahalia M McGill
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Alyssa R Richman
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Joseph R Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Bristy Sabikunnahar
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Theresa L Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Sydney Caldwell
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Stella Varnum
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| |
Collapse
|
41
|
Shao Y, Chen C, Zhu T, Sun Z, Li S, Gong L, Dong X, Shen W, Zeng L, Xie Y, Jiang P. TRPM2 contributes to neuroinflammation and cognitive deficits in a cuprizone-induced multiple sclerosis model via NLRP3 inflammasome. Neurobiol Dis 2021; 160:105534. [PMID: 34673151 DOI: 10.1016/j.nbd.2021.105534] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system (CNS) that is characterized by demyelination, axonal injury and neurological deterioration. Few medications are available for progressive MS, which is associated with neuroinflammation confined to the CNS compartment. Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, non-selective cation channel that plays pathological roles in a wide range of neuroinflammatory diseases; however, the underlying molecular mechanisms of TRPM2 remain elusive. Here, we established a cuprizone model that presents hallmark MS pathologies to investigate the role of TRPM2 in progressive MS. We demonstrated that genetic deletion of TRPM2 yields protection from the cuprizone-induced demyelination, synapse loss, microglial activation, NLRP3 inflammasome activation and proinflammatory cytokines production and ultimately leads to an improvement in cognitive decline. Furthermore, we showed that the pharmacological inhibition of NLRP3 ameliorated the demyelination, neuroinflammation and cognitive impairment in the model with no additive effects on the TRPM2 KO mice. Taken together, these results indicated that TRPM2 plays important roles in regulating neuroinflammation in progressive MS via NLRP3 inflammasome, and the results shed light on TRPM2's potential role as a therapeutic target for MS.
Collapse
Affiliation(s)
- Yu Shao
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China; Department of Pediatrics, Wenling First People's Hospital, Wenling 317500, China
| | - Chen Chen
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Zengxian Sun
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China; Department of Pediatrics, Lishui Central Hospital, Lishui 323000, China
| | - Shufen Li
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China; Department of Pediatrics, Lishui Central Hospital, Lishui 323000, China
| | - Lifen Gong
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Xinyan Dong
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Weida Shen
- Department of Pharmacy, Zhejiang University City College School of Medicine, Hangzhou 310015, China
| | - Linghui Zeng
- Department of Pharmacy, Zhejiang University City College School of Medicine, Hangzhou 310015, China
| | - Yicheng Xie
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China.
| | - Peifang Jiang
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China.
| |
Collapse
|
42
|
Ruppova K, Lim JH, Fodelianaki G, August A, Neuwirth A. Eosinophils are dispensable for development of MOG 35-55-induced experimental autoimmune encephalomyelitis in mice. Immunol Lett 2021; 239:72-76. [PMID: 34499922 DOI: 10.1016/j.imlet.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/30/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) represents the mouse model of multiple sclerosis, a devastating neurological disorder. EAE development and progression involves the infiltration of different immune cells into the brain and spinal cord. However, less is known about a potential role of eosinophil granulocytes for EAE disease pathogenesis. In the present study, we found enhanced eosinophil abundance accompanied by increased concentration of the eosinophil chemoattractant eotaxin-1 in the spinal cord in the course of EAE induced in C57BL/6 mice by immunization with MOG35-55 peptide. However, the absence of eosinophils did not affect neuroinflammation, demyelination and clinical development or severity of EAE, as assessed in ∆dblGATA1 eosinophil-deficient mice. Taken together, despite their enhanced abundance in the inflamed spinal cord during disease progression, eosinophils were dispensable for EAE development.
Collapse
Affiliation(s)
- Klara Ruppova
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic, Technische Universität Dresden, Dresden, Germany
| | - Jong-Hyung Lim
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic, Technische Universität Dresden, Dresden, Germany
| | - Georgia Fodelianaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic, Technische Universität Dresden, Dresden, Germany
| | - Avery August
- Department of Microbiology & Immunology, Cornell Center for Immunology, Cornell Institute for Host-Microbe Interactions & Disease, Cornell Center for Health Equity, Cornell University, Ithaca, NY, USA
| | - Ales Neuwirth
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic, Technische Universität Dresden, Dresden, Germany; Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
43
|
Radandish M, Khalilian P, Esmaeil N. The Role of Distinct Subsets of Macrophages in the Pathogenesis of MS and the Impact of Different Therapeutic Agents on These Populations. Front Immunol 2021; 12:667705. [PMID: 34489926 PMCID: PMC8417824 DOI: 10.3389/fimmu.2021.667705] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/31/2021] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating inflammatory disorder of the central nervous system (CNS). Besides the vital role of T cells, other immune cells, including B cells, innate immune cells, and macrophages (MФs), also play a critical role in MS pathogenesis. Tissue-resident MФs in the brain’s parenchyma, known as microglia and monocyte-derived MФs, enter into the CNS following alterations in CNS homeostasis that induce inflammatory responses in MS. Although the neuroprotective and anti-inflammatory actions of monocyte-derived MФs and resident MФs are required to maintain CNS tolerance, they can release inflammatory cytokines and reactivate primed T cells during neuroinflammation. In the CNS of MS patients, elevated myeloid cells and activated MФs have been found and associated with demyelination and axonal loss. Thus, according to the role of MФs in neuroinflammation, they have attracted attention as a therapeutic target. Also, due to their different origin, location, and turnover, other strategies may require to target the various myeloid cell populations. Here we review the role of distinct subsets of MФs in the pathogenesis of MS and different therapeutic agents that target these cells.
Collapse
Affiliation(s)
- Maedeh Radandish
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Khalilian
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
44
|
Abstract
The CNS vasculature tightly regulates the passage of circulating molecules and leukocytes into the CNS. In the neuroinflammatory disease multiple sclerosis (MS), these regulatory mechanisms fail, and autoreactive T cells invade the CNS via blood vessels, leading to neurological deficits depending on where the lesions are located. The region-specific mechanisms directing the development of such lesions are not well understood. In this study, we investigated whether pericytes regulate CNS endothelial cell permissiveness toward leukocyte trafficking into the brain parenchyma. By using a pericyte-deficient mouse model, we show that intrinsic changes in the brain vasculature due to absence of pericytes facilitate the neuroinflammatory cascade and can influence the localization of the neuroinflammatory lesions. Pericytes regulate the development of organ-specific characteristics of the brain vasculature such as the blood–brain barrier (BBB) and astrocytic end-feet. Whether pericytes are involved in the control of leukocyte trafficking in the adult central nervous system (CNS), a process tightly regulated by CNS vasculature, remains elusive. Using adult pericyte-deficient mice (Pdgfbret/ret), we show that pericytes limit leukocyte infiltration into the CNS during homeostasis and autoimmune neuroinflammation. The permissiveness of the vasculature toward leukocyte trafficking in Pdgfbret/ret mice inversely correlates with vessel pericyte coverage. Upon induction of experimental autoimmune encephalomyelitis (EAE), pericyte-deficient mice die of severe atypical EAE, which can be reversed with fingolimod, indicating that the mortality is due to the massive influx of immune cells into the brain. Additionally, administration of anti-VCAM-1 and anti–ICAM-1 antibodies reduces leukocyte infiltration and diminishes the severity of atypical EAE symptoms of Pdgfbret/ret mice, indicating that the proinflammatory endothelium due to absence of pericytes facilitates exaggerated neuroinflammation. Furthermore, we show that the presence of myelin peptide-specific peripheral T cells in Pdgfbret/ret;2D2tg mice leads to the development of spontaneous neurological symptoms paralleled by the massive influx of leukocytes into the brain. These findings indicate that intrinsic changes within brain vasculature can promote the development of a neuroinflammatory disorder.
Collapse
|
45
|
Pfeil J, Simonetti M, Lauer U, von Thülen B, Durek P, Poulsen C, Pawlowska J, Kröger M, Krähmer R, Leenders F, Hoffmann U, Hamann A. Prevention of EAE by tolerogenic vaccination with PEGylated antigenic peptides. Ther Adv Chronic Dis 2021; 12:20406223211037830. [PMID: 34408824 PMCID: PMC8366199 DOI: 10.1177/20406223211037830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Therapeutic treatment options for chronic autoimmune disorders such as multiple sclerosis (MS) rely largely on the use of non-specific immunosuppressive drugs, which are not able to cure the disease. Presently, approaches to induce antigen-specific tolerance as a therapeutic approach; for example, by peptide-based tolerogenic 'inverse' vaccines have regained great interest. We have previously shown that coupling of peptides to carriers can enhance their capacity to induce regulatory T cells in vivo. METHOD In this present study, we investigated whether the tolerogenic potential of immunodominant myelin T-cell epitopes can be improved by conjugation to the synthetic carrier polyethylene glycol (PEG) in an experimental autoimmune encephalomyelitis (EAE) mouse model for chronic MS (MOG C57BL/6). RESULTS Preventive administration of the PEGylated antigenic peptide could strongly suppress the development of EAE, accompanied by reduced immune cell infiltration in the central nervous system (CNS). Depletion of regulatory T cells (Tregs) abrogated the protective effect indicating that Tregs play a crucial role in induction of antigen-specific tolerance in EAE. Treatment during the acute phase of disease was safe and did not induce immune activation. However, treatment at the peak of disease did not affect the disease course, suggesting that either induction of Tregs does not occur in the highly inflamed situation, or that the immune system is refractory to regulation in this condition. CONCLUSION PEGylation of antigenic peptides is an effective and feasible strategy to improve tolerogenic (Treg-inducing) peptide-based vaccines, but application for immunotherapy of overt disease might require modifications or combination therapies that simultaneously suppress effector mechanisms.
Collapse
Affiliation(s)
- Jennifer Pfeil
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | - Mario Simonetti
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Uta Lauer
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | | | - Pawel Durek
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | - Christina Poulsen
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | - Justyna Pawlowska
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | - Matthias Kröger
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | | | | | - Ute Hoffmann
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | - Alf Hamann
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum Berlin, Charitéplatz 1, Berlin 10117, Germany
| |
Collapse
|
46
|
Transcriptomic Analysis of Peripheral Monocytes upon Fingolimod Treatment in Relapsing Remitting Multiple Sclerosis Patients. Mol Neurobiol 2021; 58:4816-4827. [PMID: 34181235 DOI: 10.1007/s12035-021-02465-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
Fingolimod (FTY), a second-line oral drug approved for relapsing remitting Multiple Sclerosis (RRMS) acts in preventing lymphocyte migration outside lymph nodes; moreover, several lines of evidence suggest that it also inhibits myeloid cell activation. In this study, we investigated the transcriptional changes induced by FTY in monocytes in order to better elucidate its mechanism of action. CD14+ monocytes were collected from 24 RRMS patients sampled at baseline and after 6 months of treatment and RNA profiles were obtained through next-generation sequencing. We conducted pathway and sub-paths analysis, followed by centrality analysis of cell-specific interactomes on differentially expressed genes (DEGs). We investigated also the predictive role of baseline monocyte transcription profile in influencing the response to FTY therapy. We observed a marked down-regulation effect (60 down-regulated vs. 0 up-regulated genes). Most of the down-regulated DEGs resulted related with monocyte activation and migration like IL7R, CCR7 and the Wnt signaling mediators LEF1 and TCF7. The involvement of Wnt signaling was also confirmed by subpaths analyses. Furthermore, pathway and network analyses showed an involvement of processes related to immune function and cell migration. Baseline transcriptional profile of the HLA class II gene HLA-DQA1 and HLA-DPA1 were associated with evidence of disease activity after 2 years of treatment. Our data support the evidence that FTY induces major transcriptional changes in monocytes, mainly regarding genes involved in cell trafficking and immune cell activation. The baseline transcriptional levels of genes associated with antigen presenting function were associated with disease activity after 2 years of FTY treatment.
Collapse
|
47
|
Human Monocytes Plasticity in Neurodegeneration. Biomedicines 2021; 9:biomedicines9070717. [PMID: 34201693 PMCID: PMC8301413 DOI: 10.3390/biomedicines9070717] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
Monocytes play a crucial role in immunity and tissue homeostasis. They constitute the first line of defense during the inflammatory process, playing a role in the pathogenesis and progression of diseases, making them an attractive therapeutic target. They are heterogeneous in morphology and surface marker expression, which suggest different molecular and physiological properties. Recent evidences have demonstrated their ability to enter the brain, and, as a consequence, their hypothetical role in different neurodegenerative diseases. In this review, we will discuss the current knowledge about the correlation between monocyte dysregulation in the brain and/or in the periphery and neurological diseases in humans. Here we will focus on the most common neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis.
Collapse
|
48
|
Couloume L, Ferrant J, Le Gallou S, Mandon M, Jean R, Bescher N, Zephir H, Edan G, Thouvenot E, Ruet A, Debouverie M, Tarte K, Amé P, Roussel M, Michel L. Mass Cytometry Identifies Expansion of T-bet + B Cells and CD206 + Monocytes in Early Multiple Sclerosis. Front Immunol 2021; 12:653577. [PMID: 34017332 PMCID: PMC8129576 DOI: 10.3389/fimmu.2021.653577] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/09/2021] [Indexed: 01/11/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-driven demyelinating disease of the central nervous system. Immune cell features are particularly promising as predictive biomarkers due to their central role in the pathogenesis but also as drug targets, even if nowadays, they have no impact in clinical practice. Recently, high-resolution approaches, such as mass cytometry (CyTOF), helped to better understand the diversity and functions of the immune system. In this study, we performed an exploratory analysis of blood immune response profiles in healthy controls and MS patients sampled at their first neurological relapse, using two large CyTOF panels including 62 markers exploring myeloid and lymphoid cells. An increased abundance of both a T-bet-expressing B cell subset and a CD206+ classical monocyte subset was detected in the blood of early MS patients. Moreover, T-bet-expressing B cells tended to be enriched in aggressive MS patients. This study provides new insights into understanding the pathophysiology of MS and the identification of immunological biomarkers. Further studies will be required to validate these results and to determine the exact role of the identified clusters in neuroinflammation.
Collapse
Affiliation(s)
- Laura Couloume
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Juliette Ferrant
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Simon Le Gallou
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Pole Biologie-CHU Rennes, 2 rue Henri Le Guilloux, Rennes, France
| | - Marion Mandon
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Pole Biologie-CHU Rennes, 2 rue Henri Le Guilloux, Rennes, France
| | - Rachel Jean
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Pole Biologie-CHU Rennes, 2 rue Henri Le Guilloux, Rennes, France
| | - Nadège Bescher
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Pole Biologie-CHU Rennes, 2 rue Henri Le Guilloux, Rennes, France
| | | | - Gilles Edan
- Neurology Department, Rennes Clinical Investigation Centre, Rennes University Hospital-Rennes University-INSERM, Rennes, France
| | - Eric Thouvenot
- Department of Neurology, Nimes University Hospital, Nimes, France.,Institut de Génomique Fonctionnelle, UMR5203, Inserm 1191, Université de Montpellier, Montpellier, France
| | - Aurelie Ruet
- Université de Bordeaux, Bordeaux, France.,Neurocentre Magendie, INSERM U1215, Bordeaux, France.,CHU de Bordeaux, Department of Neurology, Bordeaux, France
| | - Marc Debouverie
- Nancy University Hospital, Department of Neurology, Nancy, France.,Université de Lorraine, APEMAC, Nancy, France
| | - Karin Tarte
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Pole Biologie-CHU Rennes, 2 rue Henri Le Guilloux, Rennes, France
| | - Patricia Amé
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Pole Biologie-CHU Rennes, 2 rue Henri Le Guilloux, Rennes, France
| | - Mikael Roussel
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Pole Biologie-CHU Rennes, 2 rue Henri Le Guilloux, Rennes, France
| | - Laure Michel
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Pole Biologie-CHU Rennes, 2 rue Henri Le Guilloux, Rennes, France.,Neurology Department, Rennes Clinical Investigation Centre, Rennes University Hospital-Rennes University-INSERM, Rennes, France
| |
Collapse
|
49
|
Bar-Or A, Li R. Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. Lancet Neurol 2021; 20:470-483. [PMID: 33930317 DOI: 10.1016/s1474-4422(21)00063-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 01/04/2023]
Abstract
Novel insights from basic and translational studies are reshaping concepts of the immunopathogenesis of multiple sclerosis and understanding of the different inflammatory responses throughout the disease course. Previously, the cellular immunology of relapsing multiple sclerosis was considered to be principally T-cell driven; however, this process is now understood to involve multiple cell types and their functionally distinct subsets. Particularly, relapsing multiple sclerosis appears to involve imbalanced interactions between T cells, myeloid cells, B cells, and their effector and regulatory subpopulations. The major contributors to such imbalances differ across patients. Several emerging techniques enable comprehensive immune cell profiling at the single-cell level, revealing substantial functional heterogeneity and plasticity that could influence disease state and response to treatment. Findings from clinical trials with agents that successfully limit new multiple sclerosis disease activity and trials of agents that inadvertently exacerbate CNS inflammation have helped to elucidate disease mechanisms, better define the relevant modes of action of current immune therapies, and pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Multiple Sclerosis Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rui Li
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Multiple Sclerosis Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
50
|
Ivan DC, Walthert S, Locatelli G. Central Nervous System Barriers Impact Distribution and Expression of iNOS and Arginase-1 in Infiltrating Macrophages During Neuroinflammation. Front Immunol 2021; 12:666961. [PMID: 33936108 PMCID: PMC8082146 DOI: 10.3389/fimmu.2021.666961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
In multiple sclerosis (MS) and other neuroinflammatory diseases, monocyte-derived cells (MoCs) traffic through distinct central nervous system (CNS) barriers and gain access to the organ parenchyma exerting detrimental or beneficial functions. How and where these MoCs acquire their different functional commitments during CNS invasion remains however unclear, thus hindering the design of MS treatments specifically blocking detrimental MoC actions. To clarify this issue, we investigated the distribution of iNOS+ pro-inflammatory and arginase-1+ anti-inflammatory MoCs at the distinct border regions of the CNS in a mouse model of MS. Interestingly, MoCs within perivascular parenchymal spaces displayed a predominant pro-inflammatory phenotype compared to MoCs accumulating at the leptomeninges and at the intraventricular choroid plexus (ChP). Furthermore, in an in vitro model, we could observe the general ability of functionally-polarized MoCs to migrate through the ChP epithelial barrier, together indicating the ChP as a potential CNS entry and polarization site for MoCs. Thus, pro- and anti-inflammatory MoCs differentially accumulate at distinct CNS barriers before reaching the parenchyma, but the mechanism for their phenotype acquisition remains undefined. Shedding light on this process, we observed that endothelial (BBB) and epithelial (ChP) CNS barrier cells can directly regulate transcription of Nos2 (coding for iNOS) and Arg1 (coding for arginase-1) in interacting MoCs. More specifically, while TNF-α+IFN-γ stimulated BBB cells induced Nos2 expression in MoCs, IL-1β driven activation of endothelial BBB cells led to a significant upregulation of Arg1 in MoCs. Supporting this latter finding, less pro-inflammatory MoCs could be found nearby IL1R1+ vessels in the mouse spinal cord upon neuroinflammation. Taken together, our data indicate differential distribution of pro- and anti-inflammatory MoCs at CNS borders and highlight how the interaction of MoCs with CNS barriers can significantly affect the functional activation of these CNS-invading MoCs during autoimmune inflammation.
Collapse
Affiliation(s)
- Daniela C Ivan
- Theodor Kocher Institute, University Bern, Bern, Switzerland
| | | | | |
Collapse
|