1
|
Jin T, Li F, Wei W, Li Q, Gao Y, Yuwen C, Sun Y, Li W, Zhu L, Hao J. SDF2L1 downregulation mediates high glucose-caused Schwann cell dysfunction by inhibiting nuclear import of TFEB and CREB via KPNA3. Exp Neurol 2025; 390:115273. [PMID: 40294738 DOI: 10.1016/j.expneurol.2025.115273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
Schwann cells dysfunction is a key contributor to diabetic peripheral neuropathy (DPN), affecting both neurons and blood vessels. However, the precise mechanisms underlying high glucose-induced Schwann cells dysfunction are still not fully elucidated. In the present study, we investigated the expression, function and molecular mechanisms of SDF2L1 in Schwann cells using diabetic mice, SDF2L1 KO mice, rat Schwann cell (RSC96) and primary rat Schwann cell (PRSC). The RNA-seq of high glucose-treated RSC96 cells revealed an evident downregulation of SDF2L1 at both 48 and 72 h. The inhibition of high glucose on SDF2L1 expression was further confirmed at the levels of mRNA and protein in RSC96 and PRSC cells. Again, reduced SDF2L1 expression was also observed in the sciatic nerves of both type 1 and 2 diabetic mice. Functional exploration revealed that SDF2L1 knockdown in RSC96 cells suppressed the expression of LC3-II, P62, BDNF, NGF and IGF. In vivo SDF2L1 KO also decreased these proteins expression in the sciatic nerve of C57BL/6 J mice, along with the reduced nerve conduction velocity and action potential amplitude. Then, proteomics analyses and biological experiments demonstrated that SDF2L1 knockdown significantly decreased KPNA3 expression in RSC96 cells. Overexpression of KPNA3 ameliorated the decreases in LC3-II, P62, BDNF, NGF and IGF caused by SDF2L1 downregulation in vitro. Moreover, KPNA3 affected the nuclear import of transcription factors TFEB and CREB in RSC96 cells. Next, KPNA3 overexpression reversed SDF2L1 KO-reduced the nuclear aggregation of TFEB and CREB, and the expression of LC3, P62, BDNF and NGF in vivo. Collectively, these findings suggest that decreased SDF2L1 inhibits cell autophagy and neurotrophin expression by impeding the nuclear import of TFEB and CREB via KPNA3 downregulation in high glucose-treated Schwann cells.
Collapse
Affiliation(s)
- Tingting Jin
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wandi Wei
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiuli Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yue Gao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Yuwen
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuanyuan Sun
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenhui Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lin Zhu
- Department of Electromyogram, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Kautzmann S, Rey S, Krebs A, Klämbt C. Cholinergic and Glutamatergic Axons Differentially Require Glial Support in the Drosophila PNS. Glia 2025; 73:1365-1382. [PMID: 40097245 PMCID: PMC12121464 DOI: 10.1002/glia.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
In vertebrates, there is a differential interaction between peripheral axons and their associated glial cells. While large-caliber axons are covered by a myelin sheath, small-diameter axons are simply wrapped in Remak fibers. In peripheral nerves of Drosophila larvae, axons are covered by wrapping glial cell processes similar to vertebrate Remak fibers. Whether differences in axonal diameter influence the interaction with glial processes in Drosophila has not yet been analyzed. Likewise, it is not understood whether the modality of the neuron affects the interaction with the wrapping glia. To start to decipher the mechanisms underlying glial wrapping, we employed APEX2 labeling in larval filet preparations. This allowed us to follow individual axons of defined segmental nerves at ultrastructural resolution in the presence or absence of wrapping glia. Using these tools, we first demonstrate that motor axons are larger compared to sensory axons. Sensory axons fasciculate in larger groups than motor axons, suggesting that they do not require direct contact with wrapping glia. However, unlike motor axons, sensory axons show length-dependent degeneration upon ablation of wrapping glia. These data suggest that Drosophila may help to understand peripheral neuropathies caused by defects in Schwann cell function, in which a similar degeneration of sensory axons is observed.
Collapse
Affiliation(s)
- Steffen Kautzmann
- Institut für Neuro‐ Und VerhaltensbiologieUniversität MünsterMünsterGermany
| | - Simone Rey
- Institut für Neuro‐ Und VerhaltensbiologieUniversität MünsterMünsterGermany
| | - Amber Krebs
- Institut für Neuro‐ Und VerhaltensbiologieUniversität MünsterMünsterGermany
| | - Christian Klämbt
- Institut für Neuro‐ Und VerhaltensbiologieUniversität MünsterMünsterGermany
| |
Collapse
|
3
|
He X, Wang R, Liu X, Peng R, Zhou B, Wang L, Wei X, Wang S, Bai J, Feng Q, Zhou F, Liu H, Fan Y. Customizable Silk Fibroin-Based Hydrogel Fibrous Scaffold for On-Demand Multifaceted Tissue Repair. ACS NANO 2025; 19:20841-20862. [PMID: 40448661 DOI: 10.1021/acsnano.5c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
Hydrogel scaffolds represent an attractive tool for tissue repair. However, targeted tissue repair requires a specific shape and biological function design, and most natural-protein-based hydrogel scaffolds are predominantly confined to specific tissue repair applications. Here, we developed a versatile structural biomimetic natural protein platform through synergistic electrospinning, photopolymerization, and metal-coordination strategies. By integrating methacrylated silk fibroin (SFMA) with acrylated bisphosphonates (AcBP), we developed a dynamically functionalizable matrix that enables (1) customizable shape control via tunable electrospinning collectors and (2) on-demand biological function customization through metal-ion chelation. As a proof of concept, we demonstrate this platform's scenario-specific therapeutic efficacy: (i) Mg2+-functionalized membranes (S-LB-Mg) that orchestrate angiogenic-osteogenic coupling in critical-sized calvarial defects, (ii) Ag+-integrated dressing (S-LB-Ag) enabling bacterial eradication via a nonantibiotic mechanism and accelerating infected wound closure, and (iii) Zn2+-loaded conduits (S-LB-Zn) that drive macrophage M2 polarization to enhance peripheral nerve regeneration. This naturally derived protein-based platform overcomes the potential side effects associated with clinical bioactive factor/antibiotic composite scaffolds, offering a simple and customizable solution for the repair and regeneration of diverse tissues in a cost-effective yet highly effective manner. Overall, our strategy provides an alternative perspective for constructing protein-derived hydrogel microfibers with customizable functions and shapes for tissue repair applications.
Collapse
Affiliation(s)
- Xi He
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ruideng Wang
- Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing 100083, China
| | - Xuezhe Liu
- Key Laboratory of Biorheological Science and Technology Ministry of Education, Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Renpeng Peng
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430073, China
| | - Bikun Zhou
- Key Laboratory of Biorheological Science and Technology Ministry of Education, Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Li Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing 210008, Jiangsu, P. R. China
| | - Xinbo Wei
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shuang Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jinwu Bai
- Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing 100083, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology Ministry of Education, Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Fang Zhou
- Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, Beijing 100083, China
| | - Haifeng Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Lu X, Xu R, Dong X, Bai D, Ji W, Chen X, Chen H, Hou C, Gao J. Cell-derived exosome therapy for diabetic peripheral neuropathy: a preclinical animal studies systematic review and meta-analysis. Stem Cell Res Ther 2025; 16:297. [PMID: 40490808 DOI: 10.1186/s13287-025-04432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Accepted: 06/02/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUNDS Exosomes is a promising cell-free therapy for Diabetic peripheral neuropathy (DPN) that imposes long-term negative effects on patients' finances, mental health, and quality of life. We conducted a meta-analysis to assess the therapeutic effects of exosomes (such as SCs-derived, FCs-derived, BMSCs-derived, MSCs-derived, and Plasma-derived) on DPN. METHODS We searched nine databases from inception to February 2025, then two researchers independently screened studies, extracted data, and assessed the quality of included studies using SYRCLE's tool. The outcome indicators consisted of at least one of the three key DPN endpoints (electrophysiology, behavioural assessment, and nerve structure) based on the Neurodiab guidelines. R 4.4.2 software was used to conduct all statistical analyses. RESULTS 11 studies were identified, and the risk of bias in most studies was unclear generally. Pooled analyses demonstrated that exosome improved the nerve conduction velocity [MCV (SMD = 4.71 [2.18;7.25], P = 0.0003; I²= 91.8%), SCV (SMD = 1.07 [0.30;1.85], P = 0.0069; I²= 85.3%)], may restore IENFD [SMD = 1.46 [-0.85; 3.77], P = 0.2164; I²=88.7%], alleviated neuropathic pain [mechanical allodynia (SMD= -0.27 [-1.02;0.47], P = 0.4697; I2 = 85.0%), thermal hyperalgesia (SMD= -1.48 [-2.45;-0.50], P = 0.003; I2 = 88.4%)], ameliorated vascular function [blood flow perfusion in plantar (SMD = 2.84 [0.89; 4.80], P = 0.0043; I2 = 74.9%), blood flow perfusion in sciatic nerves (SMD = 2.62 [0.80; 4.43], P = 0.0047; I2 = 75.9%), vessel density (SMD = 2.69 [0.90; 4.49], P = 0.0032; I2 = 0%)], and restored the peripheral nerve structure [sciatic nerve fiber diameter (SMD = 3.29 [1.61; 4.96], P = 0.0066; I2 = 75.5%), axon diameter (SMD = 2.26 [1.64; 2.88], P < 0.0001; I2 = 54.3%), myelin sheath thickness (SMD = 2.56 [1.39; 3.72], P < 0.0001; I2 = 73.0%), g-ratio (SMD= -1.64 [-3.28; 0.00], P = 0.0502; I2 = 34.17)]. Furthermore, after exosome therapy, the expressions of NF-200 (SMD = 2.57 [0.39; 4.75], P = 0.0210; I2 = 33.0%), MBP (SMD = 2.27 [-1.49; 6.02], P = 0.1064; I2 = 59.0%), and S-100β (SMD = 1.90 [0.09; 3.72], P = 0.0399; I2 = 32.5%) evaluating axonal regeneration and remyelination increased significantly. Notably, high-glucose pretreatment of exosomes significantly attenuated these effects, while genetic overexpression modifications or novel dressings-mediated delivery partially counteracted this suppression. CONCLUSIONS Exosome therapy provides a novel therapeutic strategy for the benefit of neurovascular remodeling and functional recovery of DPN, especially when used in conjunction with exosome modification and novel dressings. To bridge the translational gap between preclinical and clinical studies, future research should conduct more large-scale, meticulously designed preclinical trials adhering to ARRIVE criteria before proceeding to clinical translation, to enhance translational rigor and mitigate risks associated with variability in study design.
Collapse
Affiliation(s)
- Xianying Lu
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ran Xu
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohui Dong
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingxi Bai
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenting Ji
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Chen
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Chen
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaoming Hou
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jing Gao
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
5
|
Zhang YY, Zhu DX, Wang MY, Yi YT, Feng YH, Zhou C, Li CJ, Liu F, Shen JF. Activation of NR2A-Wnt-TLR2 Signaling Axis in Satellite Glial Cells of the Dorsal Root Ganglion Contributes to Neuropathic Pain Induced by Nerve Injury in Diabetic Mice. Mol Neurobiol 2025; 62:8013-8037. [PMID: 39964585 DOI: 10.1007/s12035-025-04754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/06/2025] [Indexed: 03/17/2025]
Abstract
Diabetic peripheral neuropathic pain (DPNP), a common diabetic mellitus (DM) complication, may result from the activation of satellite glial cells (SGCs) in the dorsal root ganglion (DRG), potentially enhancing peripheral sensitization. The N-methyl-D-aspartate receptor (NMDAR) subtype NR2A and Toll-like receptor (TLR)2 play key roles in neuroimmune interactions. However, their roles in SGCs of DRG and the precise mechanisms mediating peripheral sensitization in DPNP remain unclear. Here, we found that the expression of glial fibrillary acidic protein (GFAP), NR2A, and TLR2 in SGCs from DRG significantly increased under increased glucose and NMDA stimulation in vitro. Additionally, upregulation of interleukin (IL)-6 and nerve growth factor (NGF) was observed. Notably, lentivirus-induced NR2A knockdown (KD) and C29 (TLR2 inhibitor) significantly blocked the above SGCs changes induced by NMDA and increased glucose. Behavior tests showed mechanical and thermal sensitivities induced by sciatic nerve ligation (SNL) were more obvious in DM background related to streptozotocin (STZ) injection than non-DM background mice, which were significantly alleviated by NR2A conditional knockout (CKO) in SGCs and TLR2 KO. Moreover, immunofluorescence (IF) results revealed the co-expression of NR2A and TLR2 in neurons and SGCs in the DRG. Following SNL in DM mice, the upregulation of NR2A, TLR2, GFAP, β-catenin, p-GSK-3β, p-nuclear factor kappa (NF-κ)-B, IL-6, NGF, Bcl-2-associated X protein (Bax), and Caspase 3, and the significant downregulation of Bcl-2 were consistent with the changes observed after increased glucose and NMDA treatment. The upregulation of TLR2 was blocked by NR2A CKO and Wnt signal pathway inhibition. Additionally, the activation of SGCs, upregulated IL-6 as well as NGF secretion and increased apoptosis, associated with nerve injury in DM background were altered by TLR2 KO and NF-κB pathway inhibition. In conclusion, the activation of the NR2A-Wnt-TLR2 signaling axis mediated peripheral sensitization in the DRG by influencing SGCs' activation, and the synthesis and secretion of pro-inflammatory cytokines and NGF, promoting SGCs' apoptosis, thus exacerbating a peripheral nerve injury related-NP in DM background. Our study provided insights into the role of NR2A-Wnt-TLR2 signaling axis of SGCs in mediating the generation and maintenance of DPNP and suggested targeting this signaling axis may be a promising therapeutic approach for DPNP.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - De-Xin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mu-Yun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ya-Ting Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yu-Heng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Devroy P, Das D, Bala A, Mukherjee AK. A comprehensive review of scientifically reported phytochemicals to manage allodynia in chronic diabetes complications. J Pharm Pharmacol 2025:rgaf012. [PMID: 40448953 DOI: 10.1093/jpp/rgaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/11/2025] [Indexed: 06/02/2025]
Abstract
BACKGROUND The global prevalence of diabetes mellitus and its associated complications is increasing, impacting both developed and developing nations. One common complication is neuropathy and neuropathic pain, which often manifests as symptoms such as allodynia-a condition where patients experience pain from non-painful stimuli. OBJECTIVE This review seeks to explore scientifically validated medicinal plants and phytochemicals, presenting the findings in an organized format based on published literature. METHODOLOGY Data were searched in pubmed literature and only the scientifically reported phytochemicals were considered to include in this review. KEY FINDINGS The U.S. Food and Drug Administration (FDA) has not approved many medications targeting the root causes of neuropathy. Instead, various strategies are employed to manage the symptoms of allodynia. Research on plant-based ethno-pharmaceuticals aims to address the symptoms without affecting the disease's progression, which involves the gradual loss of nerve fibres from the extremities. This article delves into allodynia's different forms, implications, and underlying signalling mechanisms. CONCLUSION The hope is that further research on phytochemicals could lead to the development of therapies for managing various forms of allodynia in diabetic patients.
Collapse
Affiliation(s)
- Piyali Devroy
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati, 781035 Assam, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR (an Indian Institute of National Importance), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Dorothy Das
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati, 781035 Assam, India
- Microbial Biotechnology and Protein Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati, 781035 Assam, India
| | - Asis Bala
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati, 781035 Assam, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR (an Indian Institute of National Importance), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashis Kumar Mukherjee
- Academy of Scientific and Innovative Research (AcSIR), AcSIR (an Indian Institute of National Importance), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
- Microbial Biotechnology and Protein Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati, 781035 Assam, India
| |
Collapse
|
7
|
Jiang T, Wang D, Chai R, Hu Y, Zhu L, Fang F, Li N, Wan C, Liu F. Attenuated Niacin Skin Flushing Response in Diabetic Peripheral Neuropathy Patients: A Novel Clinical Diagnostic Tool. Diabetes Metab Res Rev 2025; 41:e70042. [PMID: 40277306 DOI: 10.1002/dmrr.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/28/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
AIMS The diagnosis of diabetic peripheral neuropathy (DPN) remains challenging because of the lack of objective biomarkers. In this study, we explored the niacin-induced skin flushing response (NSFR) as a novel diagnostic biomarker for DPN on the basis of its association with microangiopathy. MATERIALS AND METHODS We recruited 114 patients with type 2 diabetes (51 with DPN, 59 without DPN, and 4 with unclear neuropathy status) and 91 healthy controls. Peripheral neuropathy was assessed through clinical symptoms and signs, vibration threshold testing and electromyography. NSFR was measured using a six-chamber sandwich patch and six concentrations of aqueous methyl nicotinate. Demographic and clinical data were collected via questionnaires and medical records. RESULTS The NSFR was significantly lower in patients with type 2 diabetes than in healthy controls (1613 ± 1130.1 vs. 2494.6 ± 1071.9, p < 0.001) and was further reduced in DPN patients than in those without DPN (1105.4 ± 950.93 vs. 2063.7 ± 1119.3, p < 0.001). The association between the NSFR and the risk of developing DPN remained significant after adjusting for potential confounding factors (OR 0.848, 95% CI 0.757-0.949; p = 0.004). A nomogram illustrated the role of the NSFR in predicting DPN occurrence. The ROC curve for the NSFR had an AUC of 0.740, with 72.55% sensitivity and 66.10% specificity. For the combined model, the AUC improved to 0.898, with 89.58% sensitivity and 78.85% specificity. Decision curve analysis confirmed the practical clinical value of the NSFR for predicting DPN risk. CONCLUSIONS NSFR is significantly associated with the risk of developing peripheral neuropathy in diabetic patients and shows promise as a diagnostic tool for DPN.
Collapse
Affiliation(s)
- Tianyuan Jiang
- Department of Endocrinology and Metabolism, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Ruoting Chai
- Department of Endocrinology and Metabolism, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyun Hu
- Department of Endocrinology and Metabolism, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Liying Zhu
- Department of Endocrinology and Metabolism, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Fang
- Department of Endocrinology and Metabolism, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Na Li
- Department of Endocrinology and Metabolism, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Wan
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Liu
- Department of Endocrinology and Metabolism, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Yang Y, Zhao B, Wang Y, Lan H, Liu X, Hu Y, Cao P. Diabetic neuropathy: cutting-edge research and future directions. Signal Transduct Target Ther 2025; 10:132. [PMID: 40274830 PMCID: PMC12022100 DOI: 10.1038/s41392-025-02175-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 02/08/2025] [Indexed: 04/26/2025] Open
Abstract
Diabetic neuropathy (DN) is a prevalent and debilitating complication of diabetes mellitus, significantly impacting patient quality of life and contributing to morbidity and mortality. Affecting approximately 50% of patients with diabetes, DN is predominantly characterized by distal symmetric polyneuropathy, leading to sensory loss, pain, and motor dysfunction, often resulting in diabetic foot ulcers and lower-limb amputations. The pathogenesis of DN is multifaceted, involving hyperglycemia, dyslipidemia, oxidative stress, mitochondrial dysfunction, and inflammation, which collectively damage peripheral nerves. Despite extensive research, disease-modifying treatments remain elusive, with current management primarily focusing on symptom control. This review explores the complex mechanisms underlying DN and highlights recent advances in diagnostic and therapeutic strategies. Emerging insights into the molecular and cellular pathways have unveiled potential targets for intervention, including neuroprotective agents, gene and stem cell therapies, and innovative pharmacological approaches. Additionally, novel diagnostic tools, such as corneal confocal microscopy and biomarker-based tests, have improved early detection and intervention. Lifestyle modifications and multidisciplinary care strategies can enhance patient outcomes. While significant progress has been made, further research is required to develop therapies that can effectively halt or reverse disease progression, ultimately improving the lives of individuals with DN. This review provides a comprehensive overview of current understanding and future directions in DN research and management.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bing Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanzhe Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Hu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
9
|
Liu C, Liu K, Zhang D, Liu Y, Yu Y, Kang H, Dong X, Dai H, Yu A. Dual-layer microneedles with NO/O 2 releasing for diabetic wound healing via neurogenesis, angiogenesis, and immune modulation. Bioact Mater 2025; 46:213-228. [PMID: 39802419 PMCID: PMC11719290 DOI: 10.1016/j.bioactmat.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic wounds present multiple functional impairments, including neurovascular dysregulation, oxidative imbalance, and immune dysfunction, making wound healing particularly challenging, while traditional therapeutical strategies fail to address these complex issues effectively. Herein, we propose a strategy utilizing dual-layer microneedles to deliver therapeutic gases by modulating neurovascular coupling and immune functions for diabetic wound treatment. The microneedle can respond to reactive oxygen species (ROS) in the diabetic microenvironment and subsequently generate oxygen (O2) and nitric oxide (NO). These gases comprehensively promote neuro-vascular regeneration, reduce oxidative stress levels, and attenuate inflammation. In vivo studies demonstrate that the microneedle can accelerate diabetic wound healing by modulating neurovascular regeneration and inflammatory processes. Transcriptomic analyses further validate the involvement of related advantageous signaling pathways. The potential mechanism involves the activation of the PI3K-AKT-mTOR pathway to facilitate autophagy, ultimately accelerating the healing process. Thus, our multifunctional dual-layer microneedles provide an effective strategy for treating diabetic wounds.
Collapse
Affiliation(s)
- Changjiang Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Dong Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Yuting Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Yifeng Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Haifei Kang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China
- Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan, 528400, PR China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| |
Collapse
|
10
|
Tajabadi Z, Dadkhah PA, Gholami Chahkand MS, Esmaeilpour Moallem F, Karimi MA, Amini-Salehi E, Karimi M. Exploring the role of exosomes in diabetic neuropathy: From molecular mechanisms to therapeutic potential. Biomed Pharmacother 2025; 185:117959. [PMID: 40056828 DOI: 10.1016/j.biopha.2025.117959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025] Open
Abstract
Diabetic neuropathy (DN) is a debilitating complication of diabetes mellitus (DM), characterized by progressive neuronal damage, sensory dysfunction, and impaired quality of life. Recent advances in exosome research have elucidated their crucial role in DN's pathogenesis, diagnosis, and treatment. Exosomes-nanoscale extracellular vesicles-function as vehicles for molecular cargo, including microRNAs (miRNAs), proteins, and lipids, which mediate intercellular communication and regulate key biological processes. Pathologically, hyperglycemia and hyperlipidemia induce the release of exosomes enriched with pathogenic miRNAs, such as miR-130a and miR-20b-3p, which disrupt neuronal function, axonal regeneration, and inflammatory pathways. Conversely, diagnostic studies highlight the utility of exosomal biomarkers like miR-7 and miR-221 in the early detection and monitoring of DN. Therapeutically, Schwann cell-derived and mesenchymal stromal cell (MSC)-derived exosomes demonstrate neuroprotective and reparative effects by enhancing mitochondrial function, modulating inflammation, and promoting axonal repair. Emerging approaches, including engineered exosomes and miRNA-enriched vesicles, further expand their therapeutic potential. Despite these advances, challenges such as standardization, large-scale production, and clinical validation remain in translating these findings into clinical practice. This review underscores the multifaceted roles of exosomes in DN and highlights their potential as innovative tools for precision diagnostics and targeted therapies, paving the way for future research and clinical applications.
Collapse
Affiliation(s)
- Zohreh Tajabadi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine
| |
Collapse
|
11
|
Nashtahosseini Z, Eslami M, Paraandavaji E, Haraj A, Dowlat BF, Hosseinzadeh E, Oksenych V, Naderian R. Cytokine Signaling in Diabetic Neuropathy: A Key Player in Peripheral Nerve Damage. Biomedicines 2025; 13:589. [PMID: 40149566 PMCID: PMC11940495 DOI: 10.3390/biomedicines13030589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a debilitating complication of diabetes mellitus, characterized by progressive nerve damage driven by chronic hyperglycemia and systemic inflammation. The pathophysiology of DPN is significantly influenced by pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α. These cytokines promote oxidative stress, vascular dysfunction, and neuronal degeneration by activating important signaling pathways including NF-κB and MAPK. While IL-6 promotes a pro-inflammatory microenvironment, increasing neuronal damage and neuropathic pain, TNF-α and IL-1β worsen Schwann cell failure by compromising axonal support and causing demyelination. Immune cell infiltration and TLR activation increase the inflammatory cascade in DPN, resulting in a persistent neuroinflammatory state that sustains peripheral nerve injury. The main characteristics of DPN are axonal degeneration, decreased neurotrophic support, and Schwann cell dysfunction, which weaken nerve transmission and increase susceptibility to damage. Advanced glycation end-products, TNF-α, and CXCL10 are examples of biomarkers that may be used for early diagnosis and disease progression monitoring. Additionally, crucial molecular targets have been found using proteomic and transcriptome techniques, enabling precision medicine for the treatment of DPN. This review emphasizes the importance of cytokine signaling in the pathogenesis of DPN and how cytokine-targeted treatments might reduce inflammation, restore nerve function, and improve clinical outcomes for diabetic patients.
Collapse
Affiliation(s)
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran;
| | - Elham Paraandavaji
- Clinical Research Development Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran 13399-73111, Iran
| | - Alireza Haraj
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14496-1453, Iran
| | - Bahram Fadaee Dowlat
- Faculty of Medicine, Iran University of Medical Sciences, Tehran 14496-1453, Iran
| | - Ehsan Hosseinzadeh
- Department of Surgery, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | | | - Ramtin Naderian
- Clinical Research Development Unit, Kowsar Educational, Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| |
Collapse
|
12
|
Yang YM, Ma HB, Xiong Y, Wu Q, Gao XK. PEX11B palmitoylation couples peroxisomal dysfunction with Schwann cells fail in diabetic neuropathy. J Biomed Sci 2025; 32:20. [PMID: 39934809 PMCID: PMC11818136 DOI: 10.1186/s12929-024-01115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/22/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Diabetic neuropathy (DN) is a prevalent and painful complication of diabetes; however, the mechanisms underlying its pathogenesis remain unclear, and effective clinical treatments are lacking. This study aims to explore the role of peroxisomes in Schwann cells in DN. METHODS The abundance of peroxisomes in the sciatic nerves of mice or Schwann cells was analyzed using laser confocal super-resolution imaging and western blotting. The RFP-GFP-SKL (Ser-Lys-Leu) probe was utilized to assess pexophagy (peroxisomes autophagy) levels. To evaluate the palmitoylation of PEX11B, the acyl-resin assisted capture (acyl-RAC) assay and the Acyl-Biotin Exchange (ABE) assay were employed. Additionally, MR (Mendelian randomization) analysis was conducted to investigate the potential causal relationship between DN and MS (Multiple sclerosis). RESULTS There was a decrease in peroxisomal abundance in the sciatic nerves of diabetic mice, and palmitic acid (PA) induced a reduction in peroxisomal abundance by inhibiting peroxisomal biogenesis in Schwann cells. Mechanistically, PA induced the palmitoylation of PEX11B at C25 site, disrupting its self-interaction and impeding peroxisome elongation. Fenofibrate, a PPARα agonist, effectively rescued peroxisomal dysfunction caused by PA and restored the peroxisomal abundance in diabetic mice. Lastly, MR analysis indicates a notable causal influence of DN on MS, with its onset and progression intricately linked to peroxisomal dysfunction. CONCLUSIONS Targeting the peroxisomal biogenesis pathway may be an effective strategy for preventing and treating DN, underscoring the importance of addressing MS risk at the onset of DN.
Collapse
Affiliation(s)
- Yu Mei Yang
- Department of Endocrinology, Center for Metabolism Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Hang Bin Ma
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yue Xiong
- Department of Endocrinology, Center for Metabolism Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Qian Wu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| | - Xiu Kui Gao
- Department of Endocrinology, Center for Metabolism Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
13
|
Guo S, Keremu A, Hu M, He F, Maiwulanjiang M, Aisa HA, Xin X. Evaluation of the effect of Ela tablets in the treatment of diabetic nephropathy based on rat experiments and screening strategy for quality markers of Ela tablets targeting aldose reductase. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124450. [PMID: 39793182 DOI: 10.1016/j.jchromb.2025.124450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/25/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Ela tablets (ALP) is a traditional Uyghur medicinal formulation comprising 9 herbs. Clinical applications have demonstrated its potential in treating diabetic nephropathy (DN). However, its specific medicinal effects and pharmacodynamic components have not been elucidated. This research aims to investigate the efficacy of ALP in treating DN and to explore the quality markers (Q-markers) for its exertion of efficacy. Using the UHPLC-Q-Orbitrap HRMS technique, a total of 60 compounds were identified within ALP. Animal experiments were conducted to investigate the effect of ALP intervention at doses of 80, 160, and 320 mg/kg in Sprague-Dawley rats. Then, fingerprints of ten batches of ALP extracts were established using UPLC-DAD. Spectrum-effect relationship analysis of these fingerprints and aldose reductase (AR) activity was conducted by chemometric analysis methods. The results were further validated by molecular docking and cellular experiments. The animal experiments indicated that ALP had a therapeutic effect on DN. Specifically, ALP reduced biochemical indexes such as serum creatinine (SCr), 24-hour urinary total protein (24 h UTP), uric acid (UA), blood urea nitrogen (BUN), triglycerides (TG), and total cholesterol (TC). ALP stabilized body weight and fasting blood glucose, enhanced the antioxidant capacity of kidneys, and improved renal pathology. Comprehensive analysis indicated that crocin-I and gallic acid may be used as Q-markers for ALP. In summary, ALP has been identified as a treatment for DN, and gallic acid and crocin-I can be used as its Q-markers.
Collapse
Affiliation(s)
- Shunan Guo
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Aizaiti Keremu
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Miao Hu
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fei He
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Maitinuer Maiwulanjiang
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haji Akber Aisa
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Xuelei Xin
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
14
|
Wang W, Wang Y, Huang X, Wu P, Li L, Zhang Y, Chen Y, Chen Z, Li C, Zhou Y, Zhang J. Pathophysiology-Directed Engineering of a Combination Nanoanalgesic for Neuropathic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405483. [PMID: 39716944 PMCID: PMC11848598 DOI: 10.1002/advs.202405483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/08/2024] [Indexed: 12/25/2024]
Abstract
Neuropathic pain, one of the most refractory pain diseases, remains a formidable medical challenge. There is still an unmet demand for effective and safe therapies to address this condition. Herein, a rat model of nerve injury-induced neuropathic pain is first established to explore its pathophysiological characteristics. Recognizing the role of neuroinflammation, an inflammation-resolving amphiphilic conjugate PPT is designed and synthesized by simultaneously conjugating polyethylene glycol, phenylboronic acid pinacol ester, and Tempol onto a cyclic scaffold. PPT can self-assemble into nanomicelles (termed PPTN). Following intravenous injection, PPTN preferentially accumulates in the injured nerve, ameliorates the neuroinflammatory milieu, and promotes nerve regeneration, thereby shortening neuropathic pain duration in rats. Moreover, the Ca2+ channel α2δ1 subunit is identified as a therapeutic target by RNA-sequencing analysis of the injured nerve. Based on this target, a mimicking peptide (AD peptide) is screened as an analgesic. By packaging AD peptide into PPTN, a combination nano-analgesic APTN is developed. Besides potentiated anti-hyperalgesic effects due to site-specific delivery and on-demand release of AD peptide at target sites, APTN simultaneously inhibits neuroinflammation and promotes nerve regeneration by reprogramming macrophages via regulating MAPK/NF-kB signaling pathways and NLRP3 inflammasome activation, thus affording synergistic efficacies in treating nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Wenkai Wang
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
- Department of OrthopedicsGeneral Hospital of PLA Xizang Military Area CommandLhasa850007P. R. China
| | - Yan Wang
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- War Trauma Medical CenterState key Laboratory of TraumaBurns and Combined injuryArmy Medical CenterDaping HospitalThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Xinle Huang
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
- Department of OrthopedicsThe Second Naval Hospital of Southern Theater CommandSanya572000P. R. China
| | - Peng Wu
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- School of PharmacyHanzhong Vocational and Technical CollegeHanzhong723002P. R. China
| | - Lanlan Li
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Yang Zhang
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Yihui Chen
- Department of General SurgeryXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Zhiyu Chen
- Department of OrthopedicsThe First Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Changqing Li
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Yue Zhou
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Jianxiang Zhang
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- State Key Laboratory of Trauma and Chemical PoisoningThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Yu‐Yue Pathology Scientific Research Center313 Gaoteng Avenue, Jiulongpo DistrictChongqing400039P. R. China
| |
Collapse
|
15
|
Hsueh YS, Chen SH, Tseng WL, Lin SC, Chen DQ, Huang CC, Hsueh YY. Leptin deficiency leads to nerve degeneration and impairs axon remyelination by inducing Schwann cell apoptosis and demyelination in type 2 diabetic peripheral neuropathy in rats. Neurochem Int 2025; 182:105908. [PMID: 39608454 DOI: 10.1016/j.neuint.2024.105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Diabetic peripheral neuropathy, characterized by symptoms such as paresthesia, neuropathic pain, and potential lower limb amputation, poses significant clinical management challenges. Recent studies suggest that chronic hyperglycemia-induced Schwann cells (SCs) apoptosis contributes to neurodegeneration and impaired nerve regeneration, but the detailed mechanisms are still unknown. Our study investigated a mixed-sex type 2 diabetes mellitus (T2DM) rat model using leptin knockout (KO) to simulate obesity and diabetes-related conditions. Through extensive assessments, including mechanical allodynia, electrophysiology, and microcirculation analyses, along with myelin degradation studies in KO versus wild-type rats, we focused on apoptosis, autophagy, and SCs dedifferentiation in the sciatic nerve and examined nerve regeneration in KO rats. KO rats exhibited notable reductions in mechanical withdrawal force, prolonged latency, decreased compound muscle action potential (CMAP) amplitude, reduced microcirculation, myelin sheath damage, and increases in apoptosis, autophagy, and SCs dedifferentiation. Moreover, leptin KO was found to impair peripheral nerve regeneration postinjury, as indicated by reduced muscle weight, lower CMAP amplitude, extended latency, and decreased remyelination and SCs density. These findings underscore the effectiveness of the T2DM rat model in clarifying the impact of leptin KO on SCs apoptosis, dedifferentiation, and demyelination, providing valuable insights into new therapeutic avenues for treating T2DM-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Yuan-Shuo Hsueh
- Department of Physiology, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Han Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wan-Ling Tseng
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Sheng-Che Lin
- Division of Plastic Surgery, Department of Surgery, An-Nan Hospital, China Medical University, Tainan, 709, Taiwan
| | - De-Quan Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yuan-Yu Hsueh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
16
|
Ma J, Dong Y, Liu J, Gao S, Quan J. The role of GRB2 in diabetes, diabetes complications and related disorders. Diabetes Obes Metab 2025; 27:23-34. [PMID: 39478285 DOI: 10.1111/dom.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 12/06/2024]
Abstract
Growth factor receptor-bound protein 2 (GRB2) is a key adaptor protein involved in multiple signalling pathways, and its dysregulation is associated with various diseases. Type 2 diabetes is a systemic condition characterized by insulin resistance and impaired β-cell function. The complications of diabetes significantly reduce life expectancy and quality of life, imposing a substantial burden on society. However, the role of GRB2 in diabetes and associated complications is largely unknown. Emerging evidence suggests that GRB2 plays a crucial role in insulin resistance, inflammation, immune activation and the regulation of cellular processes such as cell proliferation, growth, metabolism, angiogenesis, apoptosis and differentiation. Dysregulation of GRB2-mediated pathways contributes to the progression of diabetic neuropathy, cognitive dysfunction, nephropathy, retinopathy and related disorders. This review provides a comprehensive overview of the current understanding of the role of GRB2 in diabetes, diabetes complications and related disorders, alongside recent advances in the development of GRB2-targeted therapies. Elucidating the complex role of GRB2 in these disorders provides valuable insights into potential therapeutic strategies targeting GRB2-mediated pathways.
Collapse
Affiliation(s)
- Jing Ma
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| | - Yuyan Dong
- Clinical College of Ningxia Medical University, Yinchuan, China
| | - Juxiang Liu
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| | - Shuo Gao
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jinxing Quan
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| |
Collapse
|
17
|
ARIKAN ED, ÇİMEN B, GEZEN YILMAZ AE, AKAYDIN E, ALPAY B, ERBAŞ DE, NIKSHIQI E, MÜFTÜOĞLU SF, SARA Y. Impact of ivermectin on nerve regeneration following sciatic injury in mice: the consequences of dietary high fructose. Turk J Med Sci 2024; 55:299-312. [PMID: 40104317 PMCID: PMC11913497 DOI: 10.55730/1300-0144.5971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/18/2025] [Accepted: 12/19/2024] [Indexed: 03/20/2025] Open
Abstract
Background/aim Peripheral nerve injuries (PNIs) are debilitating disorders affecting predominantly the younger generation, often leading to significant disabilities. Current treatment strategies are inadequate for addressing the complex nature of these injuries. Peripheral nerve healing and functional recovery are crucial components of both pathophysiology and therapeutic approaches. High fructose corn syrup (HFCS) is a sweetener frequently used in several beverages and foods. It is associated with several metabolic disturbances including insulin resistance and may impair nerve healing. This study investigated the therapeutic role of ivermectin on nerve regeneration following sciatic nerve injury and evaluated motor and sensorial functions together with histopathological evaluation. Additionally, we aimed to compare nerve healing between animals that consume HFCS and those that do not. Materials and methods Forty-eight male Swiss albino mice were randomly divided into six groups, with three consuming HFCS-42 (11% v/v) and the other three regular tap water for 8 weeks. On day 28, sciatic nerve injury (SNI) was caused in all groups. Ivermectin (1 mg/kg) or gabapentin (30 mg/kg) treatments were administered to selected groups. Body weight, blood glucose, motor function (rotarod, open field test), and thermal-mechanical sensorial functions were assessed weekly. Finally, insulin levels were measured and histopathological samples were taken. Results Eight weeks of HFCS consumption impaired mechanical and thermal sensory functions and resulted in histopathologically poor nerve repair. Ivermectin resulted in improved sensorial and faster motor function recovery in the HFCS groups. Elevated plasma insulin levels/HOMA-IR values were diminished by ivermectin in the HFCS groups. In the ivermectin non-HFCS group, histopathology revealed accelerated healing and higher scores in total. Ivermectin also ameliorated mechanical sensation loss after SNI along with cold sensation. Conclusion Ivermectin accelerated sensorial and motor nerve recovery, resulting in faster nerve healing alongside improved insulin resistance, suggesting it might serve as a potential foundation for developing a new treatment for nerve regeneration after injury.
Collapse
Affiliation(s)
- Ezgi Deniz ARIKAN
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Ankara,
Turkiye
| | - Barışcan ÇİMEN
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Ankara,
Turkiye
| | - Ayşe Ece GEZEN YILMAZ
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Ankara,
Turkiye
| | - Elif AKAYDIN
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Ankara,
Turkiye
| | - Berkay ALPAY
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Ankara,
Turkiye
| | - Deniz Ekin ERBAŞ
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara,
Turkiye
| | - Erblina NIKSHIQI
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara,
Turkiye
| | - Sevda F. MÜFTÜOĞLU
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara,
Turkiye
| | - Yıldırım SARA
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Ankara,
Turkiye
| |
Collapse
|
18
|
Pantazopoulos D, Gouveri E, Rizzo M, Papanas N. Cilostazol for the treatment of distal symmetrical polyneuropathy in diabetes mellitus: Where do we stand? J Diabetes Complications 2024; 38:108905. [PMID: 39522391 DOI: 10.1016/j.jdiacomp.2024.108905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Diabetic Neuropathy (DN) is one of the most frequent chronic complications of diabetes mellitus. Its commonest form, distal symmetrical polyneuropathy (DSPN), is characterised by slowly progressing length-dependent nerve damage in the lower limbs, increasing the risk of foot ulcerations and leading to symptoms like tingling, pain, or numbness. AIM The aim of this review was to discuss the utility of cilostazol, a phosphodiesterase inhibitor with known antiplatelet, vasodilatory, anti-inflammation properties, in the treatment of DSPN. RESULTS Preclinical studies in animals have demonstrated the ability of cilostazol to improve nerve function and to protect from peripheral nerve disruption and central sensitisation. However, clinical trials in humans are very sparse and have so far not been encouraging. CONCLUSIONS Further research is needed to fully understand the mechanisms and potential efficacy of cilostazol in treating DSPN.
Collapse
Affiliation(s)
- Dimitrios Pantazopoulos
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Evanthia Gouveri
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo, Palermo, Italy
| | - Nikolaos Papanas
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece.
| |
Collapse
|
19
|
Wiegand V, Gao Y, Teusch N. Pharmacological Effects of Paeonia lactiflora Focusing on Painful Diabetic Neuropathy. PLANTA MEDICA 2024; 90:1115-1129. [PMID: 39471979 DOI: 10.1055/a-2441-6488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Painful diabetic neuropathy (PDN) is a highly prevalent complication in patients suffering from diabetes mellitus. Given the inadequate pain-relieving effect of current therapies for PDN, there is a high unmet medical need for specialized therapeutic options. In traditional Chinese medicine (TCM), various herbal formulations have been implemented for centuries to relieve pain, and one commonly used plant in this context is Paeonia lactiflora (P. lactiflora). Here, we summarize the chemical constituents of P. lactiflora including their pharmacological mechanisms-of-action and discuss potential benefits for the treatment of PDN. For this, in silico data, as well as preclinical and clinical studies, were critically reviewed and comprehensively compiled. Our findings reveal that P. lactiflora and its individual constituents exhibit a variety of pharmacological properties relevant for PDN, including antinociceptive, anti-inflammatory, antioxidant, and antiapoptotic activities. Through this multifaceted and complex combination of various pharmacological effects, relevant hallmarks of PDN are specifically addressed, suggesting that P. lactiflora may represent a promising source for novel therapeutic approaches for PDN.
Collapse
Affiliation(s)
- Vanessa Wiegand
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Germany
| | - Ying Gao
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Germany
| | - Nicole Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
20
|
Song W, Zhao B, Wu Q, Gong Y, Jia Y, Zhang Y, Yang Y, Zhang B, Liang X, Zhang Q. Gastrodin alleviates diabetic peripheral neuropathy by regulating energy homeostasis via activating AMPK and inhibiting MMP9. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156033. [PMID: 39306880 DOI: 10.1016/j.phymed.2024.156033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/04/2024] [Accepted: 09/07/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a serious complication of diabetes that lacks effective treatment. Gastrodin, the primary bioactive compound derived from Rhizoma Gastrodiae, has a long history in treating epilepsy and various central nervous system disorders. However, its effect on DPN remains uncertain. PURPOSE This study aims to explore the therapeutic potential and underlying mechanisms of gastrodin in the treatment of DPN. METHOD DPN model rats were induced with streptozotocin (STZ) injection and divided into four groups receiving either gastrodin at two doses (30 and 60 mg kg-1 per day), α-lipoic acid (positive drug, 60 mg kg-1 per day), or placebo. Healthy rats were administrated with placebo. The administrations began eight weeks post-STZ injection and continued for six weeks. Following a comprehensive evaluation of the neuroprotective effects, a systematic pharmacology-based approach was subsequently employed to investigate the underlying mechanism of gastrodin in vivo and in vitro. RESULTS Gastrodin was demonstrated to effectively enhance peripheral nerve function and reduce pathological damages in DPN rats. Furthermore, gastrodin facilitated the expression of remyelination-related proteins and mitigated oxidative stress in DPN rats. Transcriptomic analysis indicated that the modulation of energy metabolism was pivotal in the neuroprotective effect of gastrodin, corroborated by targeted metabolomic analysis using high-performance ion chromatography coupled with mass spectrometry. Using network pharmacology analysis, 12 potential targets of gastrodin were identified. Among these, matrix metallopeptidase 9 (MMP9) was further validated as the primary target through molecular docking and cellular thermal shift assays. Functional Analysis of the potential targets underscored the pivotal role of AMPK signaling, and gastrodin demonstrated the capability to activate AMPK and inhibit MMP9 in vivo. In vitro studies further found that gastrodin enhanced antioxidant capacity and mitochondrial function of high glucose-cultured rat Schwann cells RSC96 in an AMPK-dependent manner. Inhibition of AMPK hindered the decrease of MMP9 induced by gastrodin in vitro. CONCLUSION This study revealed the new role of gastrodin in alleviating DPN by restoring the homeostasis of energy metabolism through activating AMPK and inhibiting MMP9. These findings highlight gastrodin's potential as a novel therapeutic candidate against DPN, and underscores an appealing strategy of regulating energy metabolism for DPN therapy.
Collapse
Affiliation(s)
- Wei Song
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Institute of Clinical Medicine, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bingjia Zhao
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qunli Wu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yiyi Gong
- Institute of Clinical Medicine, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yifan Jia
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yamin Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yunshuang Yang
- Department of Preventive Medicine, Beijing Longfu Hospital, Beijing 100010, China
| | - Bo Zhang
- Institute of Clinical Medicine, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaochun Liang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Qian Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
21
|
Lin Z, Wang S, Cao Y, Lin J, Sun A, Huang W, Zhou J, Hong Q. Bioinformatics and validation reveal the potential target of curcumin in the treatment of diabetic peripheral neuropathy. Neuropharmacology 2024; 260:110131. [PMID: 39179172 DOI: 10.1016/j.neuropharm.2024.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a common nerve-damaging complication of diabetes mellitus. Effective treatments are needed to alleviate and reverse diabetes-associated damage to the peripheral nerves. Curcumin is an effective neuroprotectant that plays a protective role in DPN promoted by Schwann cells (SCs) lesions. However, the potential molecular mechanism of curcumin remains unclear. Therefore, our aim is to study the detailed molecular mechanism of curcumin-mediated SCs repair in order to improve the efficacy of curcumin in the clinical treatment of DPN. First, candidate target genes of curcumin in rat SC line RSC96 cells stimulated by high glucose were identified by RNA sequencing and bioinformatic analyses. Enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was carried out by Metascape, followed by 8 algorithms on Cytoscape to determine 4 hub genes, namly Hmox1, Pten, Vegfa and Myc. Next, gene set enrichment analysis (GSEA) and Pearson function showed that Hmox1 was significantly correlated with apoptosis. Subsequently, qRT-PCR, MTT assay, flow cytometry, caspase-3 activity detection and westernblot showed that curcumin treatment increased RSC96 cell viability, reduced cell apoptosis, increased Hmox1, Pten, Vegfa and Myc expression, and up-regulated Akt phosphorylation level under high glucose environment. Finally, molecular docking predicted the binding site of curcumin to Hmox1. These results suggest that curcumin can reduce the apoptosis of SCs induced by high glucose, and Hmox1 is a potential target for curcumin. Our findings provide new insights about the mechanism of action of curcumin on SC as a potential treatment in DPN.
Collapse
Affiliation(s)
- Ziqiang Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China; Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, No. 183 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong, 510000, China
| | - Suo Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China
| | - Yu Cao
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, No. 183 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong, 510000, China
| | - Jialing Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China
| | - Ailing Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China
| | - Wei Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, No. 183 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong, 510000, China.
| | - Qingxiong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
22
|
Evans AJ, Li YL. Remodeling of the Intracardiac Ganglia During the Development of Cardiovascular Autonomic Dysfunction in Type 2 Diabetes: Molecular Mechanisms and Therapeutics. Int J Mol Sci 2024; 25:12464. [PMID: 39596529 PMCID: PMC11594459 DOI: 10.3390/ijms252212464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most significant health issues worldwide, with associated healthcare costs estimated to surpass USD 1054 billion by 2045. The leading cause of death in T2DM patients is the development of cardiovascular disease (CVD). In the early stages of T2DM, patients develop cardiovascular autonomic dysfunction due to the withdrawal of cardiac parasympathetic activity. Diminished cardiac parasympathetic tone can lead to cardiac arrhythmia-related sudden cardiac death, which accounts for 50% of CVD-related deaths in T2DM patients. Regulation of cardiovascular parasympathetic activity is integrated by neural circuitry at multiple levels including afferent, central, and efferent components. Efferent control of cardiac parasympathetic autonomic tone is mediated through the activity of preganglionic parasympathetic neurons located in the cardiac extensions of the vagus nerve that signals to postganglionic parasympathetic neurons located in the intracardiac ganglia (ICG) on the heart. Postganglionic parasympathetic neurons exert local control on the heart, independent of higher brain centers, through the release of neurotransmitters, such as acetylcholine. Structural and functional alterations in cardiac parasympathetic postganglionic neurons contribute to the withdrawal of cardiac parasympathetic tone, resulting in arrhythmogenesis and sudden cardiac death. This review provides an overview of the remodeling of parasympathetic postganglionic neurons in the ICG, and potential mechanisms contributing to the withdrawal of cardiac parasympathetic tone, ventricular arrhythmogenesis, and sudden cardiac death in T2DM. Improving cardiac parasympathetic tone could be a therapeutic avenue to reduce malignant ventricular arrhythmia and sudden cardiac death, increasing both the lifespan and improving quality of life of T2DM patients.
Collapse
Affiliation(s)
- Anthony J. Evans
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
23
|
López-Villodres JA, García-Díaz B. Oligodendroctyes: the forgotten players of diabetes pathophysiology. Neural Regen Res 2024; 19:2349-2350. [PMID: 38526269 PMCID: PMC11090424 DOI: 10.4103/nrr.nrr-d-23-01754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/24/2023] [Indexed: 03/26/2024] Open
Affiliation(s)
- Juan Antonio López-Villodres
- Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Beatriz García-Díaz
- UGC Neurociencia. Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma Bionand), Málaga, Spain
| |
Collapse
|
24
|
Pham VM. Targeting PI3K/AKT and MEK/ERK pathways for synergic effects on improving features of peripheral diabetic neuropathy. J Diabetes Investig 2024; 15:1537-1544. [PMID: 39162579 PMCID: PMC11527830 DOI: 10.1111/jdi.14289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
Diabetic neuropathy is one of the most serious and common complications of diabetes with a wide spectrum, affecting 30-50% of diabetic patients. However, the current treatments of this disorder, mainly based on controlling blood glucose level, show an inadequate clinical outcome. Better approaches are needed. In this fashion, it is noted that promoting nerve regeneration and preventing nerve degeneration should be focused on equally and appropriately. In this mini review, how more effective approaches are in targeting PI3K/AKT and MEK/ERK pathways in the treatment of peripheral diabetic neuropathy is discussed. Future treatment of peripheral diabetic neuropathy should consider these approaches.
Collapse
Affiliation(s)
- Vuong M. Pham
- Faculty of Biology and EnvironmentHo Chi Minh City University of Industry and TradeHo Chi Minh CityVietnam
| |
Collapse
|
25
|
Singh S, Singh TG. Unlocking the mechanistic potential of Thuja occidentalis for managing diabetic neuropathy and nephropathy. J Tradit Complement Med 2024; 14:581-597. [PMID: 39850604 PMCID: PMC11752125 DOI: 10.1016/j.jtcme.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 01/25/2025] Open
Abstract
Diabetes mellitus and its debilitating microvascular complications, including diabetic neuropathy and nephropathy, represent a growing global health burden. Despite advances in conventional therapies, their suboptimal efficacy and adverse effects necessitate exploring complementary and alternative medicine approaches. Thuja occidentalis, a coniferous tree species native to eastern North America, has gained significant attention for its potential therapeutic applications in various disorders, attributed to its rich phytochemical composition. The present comprehensive review evaluates the therapeutic potential of Thuja occidentalis in managing diabetic neuropathy and nephropathy, with a particular emphasis on elucidating the underlying cellular and molecular mechanisms. The review delves into the active constituents of Thuja occidentalis, such as essential oils, flavonoids, tannins, and proanthocyanidin compounds, which have demonstrated antioxidant, anti-inflammatory, and other beneficial properties in preclinical studies. Importantly, the review provides an in-depth analysis of the intricate signaling pathways modulated by Thuja occidentalis, including NF-κB, PI3K-Akt, JAK-STAT, JNK, MAPK/ERK, and Nrf2 cascades. These pathways are intricately linked to oxidative stress, inflammation, and apoptosis processes, which play pivotal roles in the pathogenesis of diabetic neuropathy and nephropathy. Furthermore, the review critically evaluates the evidence-based toxicological data of Thuja occidentalis as a more effective and comprehensive therapeutic strategy in diabetes complications. Therefore, the current review aims to provide a comprehensive understanding of the therapeutic potential of Thuja occidentalis as an adjunctive treatment strategy for diabetic neuropathy and nephropathy while highlighting the need for further research to optimize its clinical translation.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
26
|
Yasir M, Park J, Han ET, Han JH, Park WS, Chun W. Investigating the Inhibitory Potential of Flavonoids against Aldose Reductase: Insights from Molecular Docking, Dynamics Simulations, and gmx_MMPBSA Analysis. Curr Issues Mol Biol 2024; 46:11503-11518. [PMID: 39451563 PMCID: PMC11506312 DOI: 10.3390/cimb46100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia, with aldose reductase playing a critical role in the pathophysiology of diabetic complications. This study aimed to investigate the efficacy of flavonoid compounds as potential aldose reductase inhibitors using a combination of molecular docking and molecular dynamics (MD) simulations. The three-dimensional structures of representative flavonoid compounds were obtained from PubChem, minimized, and docked against aldose reductase using Discovery Studio's CDocker module. The top 10 compounds Daidzein, Quercetin, Kaempferol, Butin, Genistein, Sterubin, Baicalein, Pulchellidin, Wogonin, and Biochanin_A were selected based on their lowest docking energy values for further analysis. Subsequent MD simulations over 100 ns revealed that Daidzein and Quercetin maintained the highest stability, forming multiple conventional hydrogen bonds and strong hydrophobic interactions, consistent with their favorable interaction energies and stable RMSD values. Comparative analysis of hydrogen bond interactions and RMSD profiles underscored the ligand stability. MMPBSA analysis further confirmed the significant binding affinities of Daidzein and Quercetin, highlighting their potential as aldose reductase inhibitors. This study highlights the potential of flavonoids as aldose reductase inhibitors, offering insights into their binding interactions and stability, which could contribute to developing novel therapeutics for DM complications.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| |
Collapse
|
27
|
Liao C, Zhang W. Nerve decompression for diabetic peripheral neuropathy with nerve entrapment: a narrative review. Ther Adv Neurol Disord 2024; 17:17562864241265287. [PMID: 39411723 PMCID: PMC11475385 DOI: 10.1177/17562864241265287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/12/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes which primarily affects the sensory nervous system. Pain is the most common complaint that prompts patients to seek medical advice. With various presentations and intricate pathological mechanisms, diabetic peripheral neuropathic pain is currently the most crucial and challenging aspect of managing diabetic complications. As a heterogeneous disorder, there is no medication or treatment modality that is effective for all types of DPN and its associated neuropathic pain. Peripheral nerve decompression provides a new option for treating patients with diabetic peripheral neuropathic pain in the lower extremities. However, the clinical applicability of nerve decompression has been debated since it was first proposed. This review discusses the theoretical basis of nerve decompression, the clinical indications, and the progress of basic research based on the pathological mechanisms and nerve impairment patterns of diabetic peripheral neuropathic pain. The heterogeneity of DPN patients is summarized in terms of three aspects: complex pathophysiological mechanisms, multilevel nervous system involvement, and various nerve impairment properties. Identifying the presence of nerve entrapment among complex pathophysiological mechanisms is the key to successful outcomes. Tinel signs, focal pain, mechanical allodynia, and two-point discrimination were reported to be prognostic factors for good surgical outcomes, and their predictive ability might stem from their association with the early stage of entrapment neuropathy.
Collapse
Affiliation(s)
- Chenlong Liao
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenchuan Zhang
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Shanghai Zhizaoju Road, Huangpu District, Shanghai 200011, China
| |
Collapse
|
28
|
Abd Razak NH, Idris J, Hassan NH, Zaini F, Muhamad N, Daud MF. Unveiling the Role of Schwann Cell Plasticity in the Pathogenesis of Diabetic Peripheral Neuropathy. Int J Mol Sci 2024; 25:10785. [PMID: 39409114 PMCID: PMC11476695 DOI: 10.3390/ijms251910785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 10/20/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes that affects a significant proportion of diabetic patients worldwide. Although the pathogenesis of DPN involves axonal atrophy and demyelination, the exact mechanisms remain elusive. Current research has predominantly focused on neuronal damage, overlooking the potential contributions of Schwann cells, which are the predominant glial cells in the peripheral nervous system. Schwann cells play a critical role in neurodevelopment, neurophysiology, and nerve regeneration. This review highlights the emerging understanding of the involvement of Schwann cells in DPN pathogenesis. This review explores the potential role of Schwann cell plasticity as an underlying cellular and molecular mechanism in the development of DPN. Understanding the interplay between Schwann cell plasticity and diabetes could reveal novel strategies for the treatment and management of DPN.
Collapse
Affiliation(s)
- Nurul Husna Abd Razak
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Jalilah Idris
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Nur Hidayah Hassan
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Fazlin Zaini
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL), No. 3, Jalan Greentown, Ipoh 30450, Perak, Malaysia; (F.Z.); (N.M.)
| | - Noorzaid Muhamad
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL), No. 3, Jalan Greentown, Ipoh 30450, Perak, Malaysia; (F.Z.); (N.M.)
| | - Muhammad Fauzi Daud
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| |
Collapse
|
29
|
Koyanagi M, Ogido R, Moriya A, Saigo M, Ihida S, Teranishi T, Kawada J, Katsuno T, Matsubara K, Terada T, Yamashita A, Imai S. Development of a 3-dimensional organotypic model with characteristics of peripheral sensory nerves. CELL REPORTS METHODS 2024; 4:100835. [PMID: 39116883 PMCID: PMC11384078 DOI: 10.1016/j.crmeth.2024.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
We developed a rat dorsal root ganglion (DRG)-derived sensory nerve organotypic model by culturing DRG explants on an organoid culture device. With this method, a large number of organotypic cultures can be produced simultaneously with high reproducibility simply by seeding DRG explants derived from rat embryos. Unlike previous DRG explant models, this organotypic model consists of a ganglion and an axon bundle with myelinated A fibers, unmyelinated C fibers, and stereo-myelin-forming nodes of Ranvier. The model also exhibits Ca2+ signaling in cell bodies in response to application of chemical stimuli to nerve terminals. Further, axonal transection increases the activating transcription factor 3 mRNA level in ganglia. Axons and myelin are shown to regenerate 14 days following transection. Our sensory organotypic model enables analysis of neuronal excitability in response to pain stimuli and tracking of morphological changes in the axon bundle over weeks.
Collapse
Affiliation(s)
- Madoka Koyanagi
- Department of Medical Neuropharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Ryosuke Ogido
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Akari Moriya
- Department of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Mamiko Saigo
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Satoshi Ihida
- New Business Promotion Division, Business Development Unit, Panel Semicon Laboratories, Sharp Corporation, Tenri, Nara 632-8567, Japan
| | - Tomoko Teranishi
- New Business Promotion Division, Business Development Unit, Panel Semicon Laboratories, Sharp Corporation, Tenri, Nara 632-8567, Japan
| | - Jiro Kawada
- Jiksak Bioengineering, Inc., Kawasaki, Kanagawa 210-0821, Japan
| | - Tatsuya Katsuno
- Division of Electron Microscopic Study, Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuo Matsubara
- School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Tomohiro Terada
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Akira Yamashita
- Department of Medical Neuropharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Satoshi Imai
- Department of Medical Neuropharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan; Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto 606-8507, Japan.
| |
Collapse
|
30
|
Wu L, Wang XJ, Luo X, Zhang J, Zhao X, Chen Q. Diabetic peripheral neuropathy based on Schwann cell injury: mechanisms of cell death regulation and therapeutic perspectives. Front Endocrinol (Lausanne) 2024; 15:1427679. [PMID: 39193373 PMCID: PMC11348392 DOI: 10.3389/fendo.2024.1427679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a complication of diabetes mellitus that lacks specific treatment, its high prevalence and disabling neuropathic pain greatly affects patients' physical and mental health. Schwann cells (SCs) are the major glial cells of the peripheral nervous system, which play an important role in various inflammatory and metabolic neuropathies by providing nutritional support, wrapping axons and promoting repair and regeneration. Increasingly, high glucose (HG) has been found to promote the progression of DPN pathogenesis by targeting SCs death regulation, thus revealing the specific molecular process of programmed cell death (PCD) in which SCs are disrupted is an important link to gain insight into the pathogenesis of DPN. This paper is the first to review the recent progress of HG studies on apoptosis, autophagy, pyroptosis, ferroptosis and necroptosis pathways in SCs, and points out the crosstalk between various PCDs and the related therapeutic perspectives, with the aim of providing new perspectives for a deeper understanding of the mechanisms of DPN and the exploration of effective therapeutic targets.
Collapse
Affiliation(s)
- Lijiao Wu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Jin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, China
| | - Xi Luo
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingqi Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Zhao
- College of lntegrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
31
|
Zhang J, Wu T, Li C, Du J. A glycopolymersome strategy for 'drug-free' treatment of diabetic nephropathy. J Control Release 2024; 372:347-361. [PMID: 38908757 DOI: 10.1016/j.jconrel.2024.06.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
Diabetic nephropathy is a severe complication of diabetes. Treatment of diabetic nephropathy is an important challenge due to persistent hyperglycemia and elevated levels of reactive oxygen species (ROS) in the kidney. Herein, we designed a glycopolymersome that can treat type 2 diabetic nephropathy by effectively inhibiting hyperglycemia and ROS-associated diabetic nephropathy pathogenesis. The glycopolymersome is self-assembled from phenylboronic acid derivative-containing copolymer, poly(ethylene oxide)45-block-poly[(aspartic acid)13-stat-glucosamine24-stat-(phenylboronic acid)18-stat-(phenylboronic acid pinacol ester)3] [PEO45-b-P(Asp13-stat-GA24-stat-PBA18-stat-PAPE3)]. PBA segment can reversibly bind blood glucose or GA segment for long-term regulation of blood glucose levels; PAPE segment can scavenge excessive ROS for renoprotection. In vitro studies confirmed that the glycopolymersomes exhibit efficient blood glucose responsiveness within 2 h and satisfactory ROS-scavenging ability with 500 μM H2O2. Moreover, the glycopolymersomes display long-acting regulation of blood glucose levels in type 2 diabetic nephropathy mice within 32 h. Dihydroethidium staining revealed that these glycopolymersomes reduced ROS to normal levels in the kidney, which led to 61.7% and 76.6% reduction in creatinine and urea levels, respectively, along with suppressing renal apoptosis, collagen accumulation, and glycogen deposition in type 2 diabetic nephropathy mice. Notably, the polypeptide-based glycopolymersome was synthesized by ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs), thereby exhibiting favorable biodegradability. Overall, we proposed a new glycopolymersome strategy for 'drug-free' treatment of diabetic nephropathy, which could be extended to encompass the design of various multifunctional nanoparticles targeting diabetes and its associated complications.
Collapse
Affiliation(s)
- Jiamin Zhang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Tong Wu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China; Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Chang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Institute for Advanced Study, Tongji University, Shanghai 200092, China.
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China..
| |
Collapse
|
32
|
Chang LL, Wu YM, Wang HC, Tseng KY, Wang YH, Lu YM, Cheng KI. Cilostazol Ameliorates Motor Dysfunction and Schwann Cell Impairment in Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2024; 25:7847. [PMID: 39063088 PMCID: PMC11277457 DOI: 10.3390/ijms25147847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the effects of cilostazol on motor dysfunction, spinal motor neuron abnormalities, and schwannopathy in rats with diabetes. Diabetes mellitus (DM) was induced in rats via femoral intravenous streptozotocin (STZ) injection (60 mg/kg). After successful DM induction, cilostazol was administered on day 15 via oral gavage (100 mg/kg/day) for 6 weeks until sacrifice. Behavioral assays, including motor function, were performed weekly. The sciatic nerve, L5 spinal cord, and spinal ventral root were collected to evaluate the expression of the glial fibrillary acidic protein (GFAP), myelin protein zero (P0), and choline acetyltransferase (ChAT) by immunofluorescence and Western blotting. DM rats displayed decreased running speeds, running distances, and toe spread but increased foot pressure. In addition, loss of non-myelinating Schwann cells and myelin sheaths was observed in the sciatic nerve and L5 spinal ventral root. Reduced numbers of motor neurons were also found in the L5 spinal ventral horn. Cilostazol administration significantly potentiated running speed and distance; increased hind paw toe spread; and decreased foot pressure. In the sciatic nerve and L5 spinal ventral root, cilostazol treatment significantly improved non-myelinated Schwann cells and increased myelin mass. ChAT expression in motor neurons in the spinal ventral horn was improved, but not significantly. Cilostazol administration may protect sensorimotor function in diabetic rats.
Collapse
Affiliation(s)
- Lin-Li Chang
- Department of Microbiology and Immunology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
| | - Yu-Ming Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Hung-Chen Wang
- Department of Neurosurgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Kuang-Yi Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
| | - Yi-Hsuan Wang
- Department of Microbiology and Immunology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
| | - Yen-Mou Lu
- Division of Pediatric and Spinal Orthopedics, Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan;
| | - Kuang-I Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
| |
Collapse
|
33
|
Lazaro O, Li S, Carter W, Awosika O, Robertson S, Hickey BE, Angus SP, House A, Clapp WD, Qadir AS, Johnson TS, Rhodes SD. A novel induced pluripotent stem cell model of Schwann cell differentiation reveals NF2 - related gene regulatory networks of the extracellular matrix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.591952. [PMID: 38746313 PMCID: PMC11092660 DOI: 10.1101/2024.05.02.591952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Schwann cells are vital to development and maintenance of the peripheral nervous system and their dysfunction has been implicated in a range of neurological and neoplastic disorders, including NF2 -related schwannomatosis. We developed a novel human induced pluripotent stem cell (hiPSC) model to study Schwann cell differentiation in health and disease. We performed transcriptomic, immunofluorescence, and morphological analysis of hiPSC derived Schwann cell precursors (SPCs) and terminally differentiated Schwann cells (SCs) representing distinct stages of development. To validate our findings, we performed integrated, cross-species analyses across multiple external datasets at bulk and single cell resolution. Our hiPSC model of Schwann cell development shared overlapping gene expression signatures with human amniotic mesenchymal stem cell (hAMSCs) derived SCs and in vivo mouse models, but also revealed unique features that may reflect species-specific aspects of Schwann cell biology. Moreover, we identified gene co-expression modules that are dynamically regulated during hiPSC to SC differentiation associated with ear and neural development, cell fate determination, the NF2 gene, and extracellular matrix (ECM) organization. By cross-referencing results between multiple datasets, we identified new genes potentially associated with NF2 expression. Our hiPSC model further provides a tractable platform for studying Schwann cell development in the context of human disease.
Collapse
|
34
|
Khan I, Kaur S, Rishi AK, Boire B, Aare M, Singh M. Cannabidiol and Beta-Caryophyllene Combination Attenuates Diabetic Neuropathy by Inhibiting NLRP3 Inflammasome/NFκB through the AMPK/sirT3/Nrf2 Axis. Biomedicines 2024; 12:1442. [PMID: 39062016 PMCID: PMC11274582 DOI: 10.3390/biomedicines12071442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND In this study, we investigated in detail the role of cannabidiol (CBD), beta-caryophyllene (BC), or their combinations in diabetic peripheral neuropathy (DN). The key factors that contribute to DN include mitochondrial dysfunction, inflammation, and oxidative stress. METHODS Briefly, streptozotocin (STZ) (55 mg/kg) was injected intraperitoneally to induce DN in Sprague-Dawley rats, and we performed procedures involving Randall Sellito calipers, a Von Frey aesthesiometer, a hot plate, and cold plate methods to determine mechanical and thermal hyperalgesia in vivo. The blood flow to the nerves was assessed using a laser Doppler device. Schwann cells were exposed to high glucose (HG) at a dose of 30 mM to induce hyperglycemia and DCFDA, and JC1 and Mitosox staining were performed to determine mitochondrial membrane potential, reactive oxygen species, and mitochondrial superoxides in vitro. The rats were administered BC (30 mg/kg), CBD (15 mg/kg), or combination via i.p. injections, while Schwann cells were treated with 3.65 µM CBD, 75 µM BC, or combination to assess their role in DN amelioration. RESULTS Our results revealed that exposure to BC and CBD diminished HG-induced hyperglycemia in Schwann cells, in part by reducing mitochondrial membrane potential, reactive oxygen species, and mitochondrial superoxides. Furthermore, the BC and CBD combination treatment in vivo could prevent the deterioration of the mitochondrial quality control system by promoting autophagy and mitochondrial biogenesis while improving blood flow. CBD and BC treatments also reduced pain hypersensitivity to hyperalgesia and allodynia, with increased antioxidant and anti-inflammatory action in diabetic rats. These in vivo effects were attributed to significant upregulation of AMPK, sirT3, Nrf2, PINK1, PARKIN, LC3B, Beclin1, and TFAM functions, while downregulation of NLRP3 inflammasome, NFκB, COX2, and p62 activity was noted using Western blotting. CONCLUSIONS the present study demonstrated that STZ and HG-induced oxidative and nitrosative stress play a crucial role in the pathogenesis of diabetic neuropathy. We find, for the first time, that a CBD and BC combination ameliorates DN by modulating the mitochondrial quality control system.
Collapse
Affiliation(s)
- Islauddin Khan
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| | - Sukhmandeep Kaur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| | - Arun K. Rishi
- John D. Dingell Veterans Affairs Medical Center, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Breana Boire
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| | - Mounika Aare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| |
Collapse
|
35
|
Yasir M, Park J, Chun W. Discovery of Novel Aldose Reductase Inhibitors via the Integration of Ligand-Based and Structure-Based Virtual Screening with Experimental Validation. ACS OMEGA 2024; 9:20338-20349. [PMID: 38737046 PMCID: PMC11079907 DOI: 10.1021/acsomega.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
Aldose reductase plays a central role in diabetes mellitus (DM) associated complications by converting glucose to sorbitol, resulting in a harmful increase of reactive oxygen species (ROS) in various tissues, such as the heart, vasculature, neurons, eyes, and kidneys. We employed a comprehensive approach, integrating both ligand- and structure-based virtual screening followed by experimental validation. Initially, candidate compounds were extracted from extensive drug and chemical libraries using the DeepChem's GraphConvMol algorithm, leveraging its capacity for robust molecular feature representation. Subsequent refinement employed molecular docking and molecular dynamics (MD) simulations, which are crucial for understanding compound-receptor interactions and dynamic behavior in a simulated physiological environment. Finally, the candidate compounds were subjected to experimental validation of their biological activity using an aldose reductase inhibitor screening kit. The comprehensive approach led to the identification of a promising compound, demonstrating significant potential as an aldose reductase inhibitor. This comprehensive approach not only yields a potential therapeutic intervention for DM-related complications but also establishes an integrated protocol for drug development, setting a new benchmark in the field.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| |
Collapse
|
36
|
Gao J, Chen S, Lin S, Mei X. Prussian blue analogues improves the microenvironment after spinal cord injury by regulating Zn. Int Immunopharmacol 2024; 131:111868. [PMID: 38493692 DOI: 10.1016/j.intimp.2024.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Mitochondrial injury, neuronal apoptosis and phenotypic transformation of macrophages are the main mechanisms of spinal cord injury. Based on the Prussian blue nanomase's strong ability to clear free radicals, the treatment of spinal cord injury with nano-zirconium (Pb-Zr) was carried out. The disease treatment strategy based on nanomaterials has excellent therapeutic effect, and Prussian blue analogs have good therapeutic properties, so the application prospects of Prussian blue analogs is broad. From the point of view of Prussian blue content, improving the presence of zirconium in the microenvironment significantly increased the activity of Prussian blue. Prussian Blue zirconium significantly improved lipopolysaccharide (LPS) and interferon (IFN-γ) induced neuronal cell (pc12 cells) and macrophage dysfunction by improving oxidative stress, inflammation, and apoptosis in the microenvironment. It can promote the recovery of motor function after spinal cord injury. In vivo experiments, it shows that Prussian blue zirconium can improve inflammation, apoptosis and oxidative stress of spinal cord tissue, promote regenerative therapy after spinal cord injury, and improve motor function. Moreover, it has been reported that high-priced Zr4+ cations can regulate the deposition and nucleation behavior of Zn2+ in high-performance zinc metal anodes. Therefore, we propose the hypothesis that Pb-Zr modulates Zn2+ be used to promote recovery from spinal cord injury. The results show that nanomaterial is beneficial in the treatment of spinal cord injury. This study provides a good prospect for the application of spinal cord injury treatment. It also provides an important feasibility for subsequent clinical conversions.
Collapse
Affiliation(s)
- Jinpeng Gao
- Department of Orthopedic of the Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province 121000, China; Key Laboratory of Medical Tissue Engineering, Jinzhou Medical University, Jinzhou, Liaoning Province 121000, China
| | - ShuRui Chen
- Department of Orthopedic of the Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province 121000, China; Key Laboratory of Medical Tissue Engineering, Jinzhou Medical University, Jinzhou, Liaoning Province 121000, China; Guangdong Second Provincial General Hospital, Integrated Chinese and Western Medicine Postdoctoral Research, Station School of Medicine, Jinan Guangzhou, Guangdong Province 510515, China
| | - Sen Lin
- Department of Orthopedic of the Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province 121000, China; Key Laboratory of Medical Tissue Engineering, Jinzhou Medical University, Jinzhou, Liaoning Province 121000, China.
| | - Xifan Mei
- Department of Orthopedic of the Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province 121000, China; Key Laboratory of Medical Tissue Engineering, Jinzhou Medical University, Jinzhou, Liaoning Province 121000, China.
| |
Collapse
|
37
|
Sajedi F, Abdi A, Mehrpooya M, Faramarzi V, Mohammadi Y, Sheida F. Comparison of therapeutic effects of N-Acetylcysteine with pregabalin in improving the clinical symptoms of painful diabetic neuropathy: a randomized, double-blind clinical trial. Clin Diabetes Endocrinol 2024; 10:15. [PMID: 38641841 PMCID: PMC11031970 DOI: 10.1186/s40842-024-00172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/31/2024] [Indexed: 04/21/2024] Open
Abstract
OBJECTIVES Painful diabetic neuropathy (PDN) is highly prevalent and annoyingly in patients with diabetes. The aim of this study was to investigate the effects of oral N-acetylcysteine (NAC) compared to pregabalin in PDN. METHODS One hundred two eligible patients with type 2 diabetes and PDN were randomly recievied pregabalin (150 mg/day) or N-Acetylcysteine (NAC) (600 mg/ twice a day) for 8 weeks. Mean pain score, Sleep interference score (SIS), Patient Global Impression of Change (PGIC), Clinical Global Impression of Change (CGIC), and also, serum levels of total antioxidant capacity (TAC), total thiol groups (TTG), catalase activity (CAT), nitric oxide (NO), and malondialdehyde (MDA) were assessed at baseline and at the end of the study. RESULTS NAC was well tolerated in all patients. The decrease in mean pain scores and increase in SIS was similar between two groups. More improvement in PGIC and CGIC from the baseline was reported in NAC group. NAC, significantly, decreased serum levels of MDA, and NO, but increased TAC, TTG, and CAT. Pregabalin, significantly, decreased serum levels of MDA, and NO and increased TAC. DISCUSSION NAC is efficacious in alleviate symptoms of PDN which is probably related to its antioxidant effects. TRIAL REGISTRATION The research protocol received approval from the Ethics Committee of Hamadan University of Medical Sciences (IR.UMSHA.REC.1397.137). The trial registry URL and number in Iranian Registry of Clinical Trials (IRCT): https://www.irct.ir/trial/33313 , IRCT20180814040795N2 (Registration date: 2019-01-21, Retrospectively registered).
Collapse
Affiliation(s)
- Firozeh Sajedi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Arman Abdi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vida Faramarzi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Younes Mohammadi
- Modeling of Noncommunicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fateme Sheida
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
38
|
Shi Y, Li H, Lin Y, Wang S, Shen G. Effective constituents and protective effect of Mudan granules against Schwann cell injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117692. [PMID: 38176668 DOI: 10.1016/j.jep.2023.117692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes. Mudan granules (MD) is a Chinese patent medicine for treating DPN, which is composed of nine Chinese medicinal herbs, including the radix of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge. (Huangqi in Chinese), rhizome of Corydalis yanhusuo W.T. Wang (Yanhusuo), radix and rhizome of Panax notoginseng (Burk.) F. H. Chen (Sanqi), radix of Paeonia lactiflora Pall. or Paeonia veitchii Lynch (Chishao), radix and rhizome of Salvia miltiorrhiza Bge. (Danshen), rhizome of Ligusticum chuanxiong Hort. (Chuanxiong), flowers of Carthamus tinctorius L. (Honghua), lignum of Caesalpinia sappan L. (Sumu), and caulis of Spatholobus suberectus Dunn (Jixueteng). MD was reported to have a protective effect on Schwann cell (SC) that is considered as an important therapeutic target of DPN. However, the constituents of MD have not been reported, and the effective constituents and protective pathways for MD against SC injury remain unclear. AIM OF THE STUDY This study aimed to identify the constituents in MD, and to investigate the effective constituents and protective pathways of MD against high-glucose/lipid injury in SC. MATERIALS AND METHODS The chemical constituents of MD were identified using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Protective effect and effective constituents screening were performed in an in vitro SC injury model induced by high glucose and lipid levels. The protective pathways of MD and its effective constituents were investigated by western blotting assay of related proteins. RESULTS A total of 136 constituents were identified in MD. MD downregulated the phosphorylation of extracellular-regulated protein kinases 1/2 (ERK1/2) and expression of cyclooxygenase-2 (COX-2) and upregulated the expression of sirtuin 2 (SIRT2). Seven effective constituents were screened out, including three from Sanqi [20(R)-ginsenoside Rh2, 20(S)-ginsenoside Rh2, and ginsenoside Rk3], one from Huangqi (astragaloside II), one from Danshen (danshensu), and two from Chuanxiong (chlorogenic and cryptochlorogenic acid). Six of the seven compounds, excluding danshensu, inhibited the phosphorylation of ERK1/2. Both astragaloside II and chlorogenic acid upregulated the expression of SIRT2, and cryptochlorogenic acid and danshensu downregulated the expression of COX-2. CONCLUSIONS The constituents of MD were firstly identified, and seven effective constituents were found. MD can protect SC against high-glucose and -lipid injury by downregulating ERK1/2 phosphorylation and COX-2 expression and upregulating SIRT2 expression. Seven effective constituents regulated the expression of these proteins. This study presented an important advance toward elucidating the chemical constituents, and the effective constituents and protective pathways of MD against high-glucose/lipid injury in SC, which is very helpful for investigating the action mechanism of MD on treating DPN, and could ultimately inform the development of effective quality control procedures for MD production.
Collapse
Affiliation(s)
- Yingqiu Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haoran Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yugang Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shufang Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, 321016, China.
| | - Guofang Shen
- Hangzhou Institute for Food and Drug Control, Hangzhou, 310022, China
| |
Collapse
|
39
|
Casselini CM, Parson HK, Frizzi KE, Marquez A, Smith DR, Guernsey L, Nemmani R, Tayarani A, Jolivalt CG, Weaver J, Fernyhough P, Vinik AI, Calcutt NA. A muscarinic receptor antagonist reverses multiple indices of diabetic peripheral neuropathy: preclinical and clinical studies using oxybutynin. Acta Neuropathol 2024; 147:60. [PMID: 38526612 DOI: 10.1007/s00401-024-02710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/27/2024]
Abstract
Preclinical studies indicate that diverse muscarinic receptor antagonists, acting via the M1 sub-type, promote neuritogenesis from sensory neurons in vitro and prevent and/or reverse both structural and functional indices of neuropathy in rodent models of diabetes. We sought to translate this as a potential therapeutic approach against structural and functional indices of diabetic neuropathy using oxybutynin, a muscarinic antagonist approved for clinical use against overactive bladder. Studies were performed using sensory neurons maintained in vitro, rodent models of type 1 or type 2 diabetes and human subjects with type 2 diabetes and confirmed neuropathy. Oxybutynin promoted significant neurite outgrowth in sensory neuron cultures derived from adult normal rats and STZ-diabetic mice, with maximal efficacy in the 1-100 nmol/l range. This was accompanied by a significantly enhanced mitochondrial energetic profile as reflected by increased basal and maximal respiration and spare respiratory capacity. Systemic (3-10 mg/kg/day s.c.) and topical (3% gel daily) oxybutynin reversed paw heat hypoalgesia in the STZ and db/db mouse models of diabetes and reversed paw tactile allodynia in STZ-diabetic rats. Loss of nerve profiles in the skin and cornea of db/db mice was also prevented by daily topical delivery of 3% oxybutynin for 8 weeks. A randomized, double-blind, placebo-controlled interventional trial was performed in subjects with type 2 diabetes and established peripheral neuropathy. Subjects received daily topical treatment with 3% oxybutynin gel or placebo for 6 months. The a priori designated primary endpoint, significant change in intra-epidermal nerve fibre density (IENFD) in skin biopsies taken before and after 20 weeks of treatments, was met by oxybutynin but not placebo. Secondary endpoints showing significant improvement with oxybutynin treatment included scores on clinical neuropathy, pain and quality of life scales. This proof-of-concept study indicates that muscarinic antagonists suitable for long-term use may offer a novel therapeutic opportunity for treatment of diabetic neuropathy. Trial registry number: NCT03050827.
Collapse
Affiliation(s)
- Carolina M Casselini
- Department of Internal Medicine, Strelitz Diabetes Center, Endocrine and Metabolic Disorders, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Henri K Parson
- Department of Internal Medicine, Strelitz Diabetes Center, Endocrine and Metabolic Disorders, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Katie E Frizzi
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Alex Marquez
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Darrell R Smith
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, R4046 - 351 Taché Ave, Winnipeg, MB, R2H 2A6, Canada
| | - Lucie Guernsey
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Rakesh Nemmani
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Alireza Tayarani
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Corinne G Jolivalt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Jessica Weaver
- Department of Internal Medicine, Strelitz Diabetes Center, Endocrine and Metabolic Disorders, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, R4046 - 351 Taché Ave, Winnipeg, MB, R2H 2A6, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Aaron I Vinik
- Department of Internal Medicine, Strelitz Diabetes Center, Endocrine and Metabolic Disorders, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
40
|
Gouveia D, Cardoso A, Carvalho C, Oliveira AC, Almeida A, Gamboa Ó, Lopes B, Coelho A, Alvites R, Varejão AS, Maurício AC, Ferreira A, Martins Â. Early Intensive Neurorehabilitation in Traumatic Peripheral Nerve Injury-State of the Art. Animals (Basel) 2024; 14:884. [PMID: 38539981 PMCID: PMC10967370 DOI: 10.3390/ani14060884] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 02/24/2025] Open
Abstract
Traumatic nerve injuries are common lesions that affect several hundred thousand humans, as well as dogs and cats. The assessment of nerve regeneration through animal models may provide information for translational research and future therapeutic options that can be applied mutually in veterinary and human medicine, from a One Health perspective. This review offers a hands-on vision of the non-invasive and conservative approaches to peripheral nerve injury, focusing on the role of neurorehabilitation in nerve repair and regeneration. The peripheral nerve injury may lead to hypersensitivity, allodynia and hyperalgesia, with the possibility of joint contractures, decreasing functionality and impairing the quality of life. The question remains regarding how to improve nerve repair with surgical possibilities, but also considering electrical stimulation modalities by modulating sensory feedback, upregulation of BDNF, GFNF, TrKB and adenosine monophosphate, maintaining muscle mass and modulating fatigue. This could be improved by the positive synergetic effect of exercises and physical activity with locomotor training, and other physical modalities (low-level laser therapy, ultrasounds, pulsed electromagnetic fields, electroacupuncture and others). In addition, the use of cell-based therapies is an innovative treatment tool in this field. These strategies may help avoid situations of permanent monoplegic limbs that could lead to amputation.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
| | - Ana Catarina Oliveira
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Centro Interdisciplinar—Investigação em Saúde Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Centro Interdisciplinar—Investigação em Saúde Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - André Coelho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Artur Severo Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Centro Interdisciplinar—Investigação em Saúde Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
| |
Collapse
|
41
|
Li S, Zheng Y, Kang Y, He X, Zheng Y, Jiang M, Xu X, Ma L, Wang X, Zhang K, Shao X, Fang J, Jiang Y. Electroacupuncture alleviates streptozotocin-induced diabetic neuropathic pain via suppressing phosphorylated CaMKIIα in rats. Neuroreport 2024; 35:258-268. [PMID: 38305135 PMCID: PMC10852042 DOI: 10.1097/wnr.0000000000002000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Diabetic neuropathic pain (DNP) is a frequent complication of diabetes. Calcium/calmodulin-dependent protein kinase II α (CaMKIIα), a multi-functional serine/threonine kinase subunit, is mainly located in the surface layer of the spinal cord dorsal horn (SCDH) and the primary sensory neurons in dorsal root ganglion (DRG). Numerous studies have indicated electroacupuncture (EA) takes effect in various kinds of pain. In this research, we explored whether CaMKIIα on rats' SCDH and DRG participated in DNP and further explored the mechanisms underlying the analgesic effects of EA. The DNP model in rats was successfully established by intraperitoneal injection of streptozotocin. Certain DNP rats were treated with intrathecal injections of KN93, a CaMKII antagonist, and some of the DNP rats received EA intervention. The general conditions, behaviors, the expressions of CaMKIIα and phosphorylated CaMKIIα (p-CaMKIIα) were evaluated. DNP rats' paw withdrawal threshold was reduced and the expressions of p-CaMKIIα in SCDH and DRG were upregulated compared with the Normal group, while the level of CaMKIIα showed no significance. KN93 attenuated DNP rats' hyperalgesia and reduced the expressions of p-CaMKIIα. We also found EA attenuated the hyperalgesia of DNP rats and reduced the expressions of p-CaMKIIα. The above findings suggest that p-CaMKIIα in SCDH and DRG is involved in DNP. The analgesic effect of EA in DNP might be related to the downregulation of p-CaMKIIα expression level. Our study further supports that EA can be an effective clinical treatment for DNP.
Collapse
Affiliation(s)
- Siyi Li
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yinmu Zheng
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yurong Kang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yu Zheng
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Minjian Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xinnan Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Liqian Ma
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoxiang Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Kunlong Zhang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yongliang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
42
|
Lv Y, Zhai C, Sun G, He Y. Chitosan as a promising materials for the construction of nanocarriers for diabetic retinopathy: an updated review. J Biol Eng 2024; 18:18. [PMID: 38388386 PMCID: PMC10885467 DOI: 10.1186/s13036-024-00414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Diabetic retinopathy (DR) is a condition that causes swelling of the blood vessels of the retina and leaks blood and fluids. It is the most severe form of diabetic eye disease. It causes vision loss in its advanced stage. Diabetic retinopathy is responsible for causing 26% of blindness. Very insufficient therapies are accessible for the treatment of DR. As compared to the conventional therapies, there should be enhanced research on the controlled release, shorter duration, and cost-effective therapy of diabetic retinopathy. The expansion of advanced nanocarriers-based drug delivery systems has been now employed to exploit as well as regulate the transport of many therapeutic agents to target sites via the increase in penetration or the extension of the duration of contact employing production by enclosing as well as distributing tiny molecules in nanostructured formulation. Various polymers have been utilized for the manufacturing of these nanostructured formulations. Chitosan possesses incredible biological and chemical properties, that have led to its extensive use in pharmaceutical and biomedical applications. Chitosan has been used in many studies because of its enhanced mucoadhesiveness and non-toxicity. Multiple studies have used chitosan as the best candidate for manufacturing nanocarriers and treating diabetic retinopathy. Numerous nanocarriers have been formulated by using chitosan such as nanostructured lipid carriers, solid lipid nanoparticles, liposomes, and dendrimers for treating diabetic retinopathy. This current review elaborates on the recent advancements of chitosan as a promising approach for the manufacturing of nanocarriers that can be used for treating diabetic retinopathy.
Collapse
Affiliation(s)
- Yan Lv
- Department of Ophthalmology, Jilin Province FAW General Hospital, Changchun, 130011, China
| | - Chenglei Zhai
- Department of Orthopaedics, Jilin Province FAW General Hospital, Changchun, 130011, China
| | - Gang Sun
- Department of General Surgery, Jilin Province FAW General Hospital, Changchun, 130011, China.
| | - Yangfang He
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, 130000, China
| |
Collapse
|
43
|
Wang J, Chen P, Han G, Zhou Y, Xiang X, Bian M, Huang L, Wang X, He B, Lu S. Rab32 facilitates Schwann cell pyroptosis in rats following peripheral nerve injury by elevating ROS levels. J Transl Med 2024; 22:194. [PMID: 38388913 PMCID: PMC10885539 DOI: 10.1186/s12967-024-04999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Peripheral nerve injury (PNI) is commonly observed in clinical practice, yet the underlying mechanisms remain unclear. This study investigated the correlation between the expression of a Ras-related protein Rab32 and pyroptosis in rats following PNI, and potential mechanisms have been explored by which Rab32 may influence Schwann cells pyroptosis and ultimately peripheral nerve regeneration (PNR) through the regulation of Reactive oxygen species (ROS) levels. METHODS The authors investigated the induction of Schwann cell pyroptosis and the elevated expression of Rab32 in a rat model of PNI. In vitro experiments revealed an upregulation of Rab32 during Schwann cell pyroptosis. Furthermore, the effect of Rab32 on the level of ROS in mitochondria in pyroptosis model has also been studied. Finally, the effects of knocking down the Rab32 gene on PNR were assessed, morphology, sensory and motor functions of sciatic nerves, electrophysiology and immunohistochemical analysis were conducted to assess the therapeutic efficacy. RESULTS Silencing Rab32 attenuated PNI-induced Schwann cell pyroptosis and promoted peripheral nerve regeneration. Furthermore, our findings demonstrated that Rab32 induces significant oxidative stress by damaging the mitochondria of Schwann cells in the pyroptosis model in vitro. CONCLUSION Rab32 exacerbated Schwann cell pyroptosis in PNI model, leading to delayed peripheral nerve regeneration. Rab32 can be a potential target for future therapeutic strategy in the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pin Chen
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guanjie Han
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongjie Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingdong Xiang
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Binfeng He
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Genel Practice, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Shunyi Lu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
44
|
Pérez Hernández MF, Calderón Vallejo A, Aguilar Castillo SDJ, Gómez Jiménez DC, Rodríguez Guerrero E, Aguilar Morales F, Moreno Tovar MG, Zurita Muñóz MA, Bautista Cortéz AE, Calzada Mendoza CC, De Nova Ocampo MA, Ordóñez Rodríguez JM, Gómez Esquivel ML, García Méndez A, Flores Gil O, Macías Zaragoza VM, Cortés Moreno GY, Salinas Lara C, Velázquez García G, Saldivar Cerón HI, Pérez Navarro LM, Ávila Jiménez L, Gómez Zamudio JH, Díaz Flores M, Cruz López M, Ocharan Hernández ME, Peralta Romero JDJ. Electroacupuncture efficacy in diabetic polyneuropathy: Study protocol for a double-blinded randomized controlled multicenter clinical trial. BMC Complement Med Ther 2024; 24:90. [PMID: 38360684 PMCID: PMC10868023 DOI: 10.1186/s12906-024-04375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is the most common complication of type 2 diabetes mellitus (T2DM); its diagnosis and treatment are based on symptomatic improvement. However, as pharmacological therapy causes multiple adverse effects, the implementation of acupunctural techniques, such as electroacupuncture (EA) has been suggested as an alternative treatment. Nonetheless, there is a lack of scientific evidence, and its mechanisms are still unclear. We present the design and methodology of a new clinical randomized trial, that investigates the effectiveness of EA for the treatment of DPN. METHODS This study is a four-armed, randomized, controlled, multicenter clinical trial (20-week intervention period, plus 12 weeks of follow-up after concluding intervention). A total of 48 T2DM patients with clinical signs and symptoms of DPN; and electrophysiological signs in the Nerve Conduction Study (NCS); will be treated by acupuncture specialists in outpatient units in Mexico City. Patients will be randomized in a 1:1 ratio to one of the following four groups: (a) short fibre DPN with EA, (b) short fibre DPN with sham EA, (c) axonal DPN with EA and (d) axonal DPN with sham EA treatment. The intervention will consist of 32 sessions, 20 min each, per patient over two cycles of intervention of 8 weeks each and a mid-term rest period of 4 weeks. The primary outcome will be NCS parameters, and secondary outcomes will include DPN-related symptoms and pain by Michigan Neuropathy Screening Instrument (MNSI), Michigan Diabetic Neuropathy Score (MDNS), Dolour Neuropatique Score (DN-4), Semmes-Westein monofilament, Numerical Rating Scale (NRS) for pain assessment, and the 36-item Short Form Health Survey (SF-36). To measure quality of life and improve oxidative stress, the inflammatory response; and genetic expression; will be analysed at the beginning and at the end of treatment. DISCUSSION This study will be conducted to compare the efficacy of EA versus sham EA combined with conventional diabetic and neuropathic treatments if needed. EA may improve NCS, neuropathic pain and symptoms, oxidative stress, inflammatory response, and genetic expression, and it could be considered a potential coadjutant treatment for the management of DPN with a possible remyelinating effect. TRIAL REGISTRATION ClinicalTrials.gov. NCT05521737 Registered on 30 August 2022. International Clinical Trials Registry Platform (ICTRP) ISRCTN97391213 Registered on 26 September 2022 [2b].
Collapse
Affiliation(s)
- María Fernanda Pérez Hernández
- Unidad de Investigación Médica en Bioquímica, Unidad Médica de Alta Especialidad "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, IMSS, Mexico City, 06720, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
- Red MEDICI. Carrera de Médico Cirujano. FES Iztacala, UNAM, Estado de México, State of Mexico, 54090, Mexico
| | - Alejandra Calderón Vallejo
- Departamento de Neurología de la Unidad Médica de Alta Especialidad "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, IMSS, Mexico City, 06720, Mexico
| | - Sergio de Jesús Aguilar Castillo
- Departamento de Neurofisiología de la Unidad Médica de Alta Especialidad "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, IMSS, Mexico City, 06720, Mexico
| | - Daniel Cuauhtémoc Gómez Jiménez
- Sección de Estudios de Posgrado e Investigación, Especialidad en Acupuntura Humana, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, 07320, Mexico
| | - Eduardo Rodríguez Guerrero
- Sección de Estudios de Posgrado e Investigación, Especialidad en Acupuntura Humana, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, 07320, Mexico
| | | | | | | | | | - Claudia Camelia Calzada Mendoza
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Mónica Ascención De Nova Ocampo
- Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional. Maestría en Ciencias en Biomedicina Molecular, Mexico City, 07320, Mexico
| | - Juan Manuel Ordóñez Rodríguez
- Sección de Estudios de Posgrado e Investigación, Especialidad en Acupuntura Humana, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, 07320, Mexico
| | - Mónica Luz Gómez Esquivel
- Sección de Estudios de Posgrado e Investigación, Especialidad en Acupuntura Humana, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, 07320, Mexico
| | | | - Octavio Flores Gil
- Coordinación de Internado y Servicio Social, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, 07320, Mexico
| | | | | | - Citlaltepetl Salinas Lara
- Red MEDICI. Carrera de Médico Cirujano. FES Iztacala, UNAM, Estado de México, State of Mexico, 54090, Mexico
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, 14269, Mexico
| | - Germán Velázquez García
- Red MEDICI. Carrera de Médico Cirujano. FES Iztacala, UNAM, Estado de México, State of Mexico, 54090, Mexico
- Carrera de Médico Cirujano Facultad de Estudios Superiores Zaragoza, UNAM, Mexico City, 09239, Mexico
- Universidad Intercultural del Estado de México Plantel Tepetlixpa, Tepetlixpa, Estado de México, 56880, México
| | - Héctor Iván Saldivar Cerón
- Red MEDICI. Carrera de Médico Cirujano. FES Iztacala, UNAM, Estado de México, State of Mexico, 54090, Mexico
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, State of Mexico, 54090, Mexico
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, State of Mexico, 54090, Mexico
| | | | - Laura Ávila Jiménez
- Coordinación Auxiliar Médica de Investigación en Salud, Jefatura de Servicios de Prestaciones Médicas, Delegación Estatal Morelos, IMSS, Cuernavaca, Morelos, 62000, Mexico
| | - Jaime Héctor Gómez Zamudio
- Unidad de Investigación Médica en Bioquímica, Unidad Médica de Alta Especialidad "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, IMSS, Mexico City, 06720, Mexico
| | - Margarita Díaz Flores
- Unidad de Investigación Médica en Bioquímica, Unidad Médica de Alta Especialidad "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, IMSS, Mexico City, 06720, Mexico
| | - Miguel Cruz López
- Unidad de Investigación Médica en Bioquímica, Unidad Médica de Alta Especialidad "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, IMSS, Mexico City, 06720, Mexico
| | - María Esther Ocharan Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - José de Jesús Peralta Romero
- Unidad de Investigación Médica en Bioquímica, Unidad Médica de Alta Especialidad "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, IMSS, Mexico City, 06720, Mexico.
- Sección de Estudios de Posgrado e Investigación, Especialidad en Acupuntura Humana, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, 07320, Mexico.
| |
Collapse
|
45
|
Zhao B, Zhang Q, He Y, Cao W, Song W, Liang X. Targeted metabolomics reveals the aberrant energy status in diabetic peripheral neuropathy and the neuroprotective mechanism of traditional Chinese medicine JinMaiTong. J Pharm Anal 2024; 14:225-243. [PMID: 38464790 PMCID: PMC10921333 DOI: 10.1016/j.jpha.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 03/12/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, for which effective therapies are currently lacking. Disturbed energy status plays a crucial role in DPN pathogenesis. However, the integrated profile of energy metabolism, especially the central carbohydrate metabolism, remains unclear in DPN. Here, we developed a metabolomics approach by targeting 56 metabolites using high-performance ion chromatography-tandem mass spectrometry (HPIC-MS/MS) to illustrate the integrative characteristics of central carbohydrate metabolism in patients with DPN and streptozotocin-induced DPN rats. Furthermore, JinMaiTong (JMT), a traditional Chinese medicine (TCM) formula, was found to be effective for DPN, improving the peripheral neurological function and alleviating the neuropathology of DPN rats even after demyelination and axonal degeneration. JMT ameliorated DPN by regulating the aberrant energy balance and mitochondrial functions, including excessive glycolysis restoration, tricarboxylic acid cycle improvement, and increased adenosine triphosphate (ATP) generation. Bioenergetic profile was aberrant in cultured rat Schwann cells under high-glucose conditions, which was remarkably corrected by JMT treatment. In-vivo and in-vitro studies revealed that these effects of JMT were mainly attributed to the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and downstream peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our results expand the therapeutic framework for DPN and suggest the integrative modulation of energy metabolism using TCMs, such as JMT, as an effective strategy for its treatment.
Collapse
Affiliation(s)
- Bingjia Zhao
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qian Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yiqian He
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Weifang Cao
- Institute of Basic Medicine Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Wei Song
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaochun Liang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
46
|
Llorián-Salvador M, Cabeza-Fernández S, Gomez-Sanchez JA, de la Fuente AG. Glial cell alterations in diabetes-induced neurodegeneration. Cell Mol Life Sci 2024; 81:47. [PMID: 38236305 PMCID: PMC10796438 DOI: 10.1007/s00018-023-05024-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 01/19/2024]
Abstract
Type 2 diabetes mellitus is a global epidemic that due to its increasing prevalence worldwide will likely become the most common debilitating health condition. Even if diabetes is primarily a metabolic disorder, it is now well established that key aspects of the pathogenesis of diabetes are associated with nervous system alterations, including deleterious chronic inflammation of neural tissues, referred here as neuroinflammation, along with different detrimental glial cell responses to stress conditions and neurodegenerative features. Moreover, diabetes resembles accelerated aging, further increasing the risk of developing age-linked neurodegenerative disorders. As such, the most common and disabling diabetic comorbidities, namely diabetic retinopathy, peripheral neuropathy, and cognitive decline, are intimately associated with neurodegeneration. As described in aging and other neurological disorders, glial cell alterations such as microglial, astrocyte, and Müller cell increased reactivity and dysfunctionality, myelin loss and Schwann cell alterations have been broadly described in diabetes in both human and animal models, where they are key contributors to chronic noxious inflammation of neural tissues within the PNS and CNS. In this review, we aim to describe in-depth the common and unique aspects underlying glial cell changes observed across the three main diabetic complications, with the goal of uncovering shared glial cells alterations and common pathological mechanisms that will enable the discovery of potential targets to limit neuroinflammation and prevent neurodegeneration in all three diabetic complications. Diabetes and its complications are already a public health concern due to its rapidly increasing incidence, and thus its health and economic impact. Hence, understanding the key role that glial cells play in the pathogenesis underlying peripheral neuropathy, retinopathy, and cognitive decline in diabetes will provide us with novel therapeutic approaches to tackle diabetic-associated neurodegeneration.
Collapse
Affiliation(s)
- María Llorián-Salvador
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK.
| | - Sonia Cabeza-Fernández
- Institute for Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Spain
| | - Jose A Gomez-Sanchez
- Institute for Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Spain
| | - Alerie G de la Fuente
- Institute for Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain.
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Spain.
| |
Collapse
|
47
|
Zhu J, Hu Z, Luo Y, Liu Y, Luo W, Du X, Luo Z, Hu J, Peng S. Diabetic peripheral neuropathy: pathogenetic mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 14:1265372. [PMID: 38264279 PMCID: PMC10803883 DOI: 10.3389/fendo.2023.1265372] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) refers to the development of peripheral nerve dysfunction in patients with diabetes when other causes are excluded. Diabetic distal symmetric polyneuropathy (DSPN) is the most representative form of DPN. As one of the most common complications of diabetes, its prevalence increases with the duration of diabetes. 10-15% of newly diagnosed T2DM patients have DSPN, and the prevalence can exceed 50% in patients with diabetes for more than 10 years. Bilateral limb pain, numbness, and paresthesia are the most common clinical manifestations in patients with DPN, and in severe cases, foot ulcers can occur, even leading to amputation. The etiology and pathogenesis of diabetic neuropathy are not yet completely clarified, but hyperglycemia, disorders of lipid metabolism, and abnormalities in insulin signaling pathways are currently considered to be the initiating factors for a range of pathophysiological changes in DPN. In the presence of abnormal metabolic factors, the normal structure and function of the entire peripheral nervous system are disrupted, including myelinated and unmyelinated nerve axons, perikaryon, neurovascular, and glial cells. In addition, abnormalities in the insulin signaling pathway will inhibit neural axon repair and promote apoptosis of damaged cells. Here, we will discuss recent advances in the study of DPN mechanisms, including oxidative stress pathways, mechanisms of microvascular damage, mechanisms of damage to insulin receptor signaling pathways, and other potential mechanisms associated with neuroinflammation, mitochondrial dysfunction, and cellular oxidative damage. Identifying the contributions from each pathway to neuropathy and the associations between them may help us to further explore more targeted screening and treatment interventions.
Collapse
Affiliation(s)
- Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhenzhong Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
48
|
Xin Z, Wang N, Wang H. Remimazolam and Remifentanil Use Induced Severe Respiratory Depression and Laryngeal Spasm During Intravenous Sedation and Analgesia: A Case Report. Curr Drug Saf 2024; 19:277-281. [PMID: 37198992 PMCID: PMC10680086 DOI: 10.2174/1574886318666230517101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/23/2023] [Accepted: 03/10/2023] [Indexed: 05/19/2023]
Abstract
INTRODUCTION Intravenous sedation and analgesia are widely used in minor surgeries. Remifentanil and remimazolam are advantageous in this setting because of their rapid onset of action, and short duration of action leading to a rapid recovery. However, the two drugs combined need to be titrated to avoid airway-related adverse events. CASE PRESENTATION This article reports a case of severe respiratory depression and severe laryngeal spasm induced by remifentanil and remimazolam when they were used for analgesia and sedation in a patient undergoing oral biopsy. CONCLUSION We aim to improve awareness about the safety of these drugs among anesthesiologists and increase their ability to manage the risk associated with their use.
Collapse
Affiliation(s)
- Zhijun Xin
- Yantai Stomatological Hospital, Yantai, Shandong Province, 264000, China
| | - Ning Wang
- Yantai Stomatological Hospital, Yantai, Shandong Province, 264000, China
| | - Huaizhou Wang
- Yantai Stomatological Hospital, Yantai, Shandong Province, 264000, China
| |
Collapse
|
49
|
Yu D, Wang Y, Ma F, Guan Y, Ye S, Shen G, You L. Analysis of lncRNA and mRNA expression profiles in diabetic peripheral neuropathy based on weighted gene co-expression network analysis. ALL LIFE 2023; 16. [DOI: 10.1080/26895293.2023.2220537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/06/2023] [Indexed: 04/07/2025] Open
Affiliation(s)
- Dongdong Yu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei City, People’s Republic of China
- Graduate Institute, Anhui University of Chinese Medicine, Hefei City, People’s Republic of China
| | - Yongkang Wang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei City, People’s Republic of China
| | - Fangqi Ma
- The Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yuxiang Guan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei City, People’s Republic of China
| | - Shu Ye
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei City, People’s Republic of China
| | - Guoming Shen
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei City, People’s Republic of China
| | - Liangzhen You
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing, People’s Republic of China
| |
Collapse
|
50
|
Hamounpeyma E, Dehghani H, Dashtgard A, Sabouni N, Marzouni HZ. The potential protective effect of aqueous extract of Acanthophyllum glandulosum root on Streptozotocin-induced diabetes in mice. J Diabetes Metab Disord 2023; 22:1231-1243. [PMID: 37975083 PMCID: PMC10638328 DOI: 10.1007/s40200-023-01238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/09/2023] [Indexed: 11/19/2023]
Abstract
Purpose Treatment of diabetes using traditional medicine has attracted attention in recent decades because of its unique benefits. Acanthophyllum glandulosum is known as an herb with therapeutic potential. This research explored the likely protective effects of Acanthophyllum Glandulosum Root (AGR) in mice with Streptozotocin-induced type 2 diabetes mellitus (T2DM) to provide complementary therapy. Methods Diabetes was induced by a single injection of Streptozotocin (STZ) in mice. STZ-diabetic mice were treated with oral dosages of AGR (25, 50, 100, and 200 mg/kg) on different experiment days. During the experiment, the effect of a topical extract of AGR on Glucose level, serum lipid profile, and liver and kidney biomarkers, with the histopathological assessment of heart, kidney, spleen, and liver, were investigated. The gene expression level of inflammation biomarkers (Tumour Necrosis Factor-alpha (TNF-α) and interleukin-1 (IL-1)), apoptosis factor (Caspase3), glucose regulatory genes (Glucose transporter (GLUT) 4 and 2), and lipid regulatory gene (Adenosine 50-monophosphate protein-kinase (AMPK)) were investigated. Results Administration of AGR to STZ-diabetic mice decreased blood glucose level (p < 0.01), normalized the lipid profile (p < 0.01), improved the serum level of kidney (p < 0.01) and liver biomarkers (p < 0.01), and normalized Kidney hypertrophy (p < 0.01), inflammation (p < 0.001), and apoptosis (p < 0.01). The AGR effect was better at 100 mg/kg than Metformin (100 mg/kg) on healing T2DM condition in mice. Conclusion AGR possesses anti-inflammatory, antioxidant, anti-hyperglycemic, anti-hyperlipidemic, and anti-glycation activity, thus exhibiting a protective function in STZ-induced diabetic mice. Further in vitro and in vivo works are necessary, especially to elucidate the mechanism of action of AGR at the cellular and molecular levels.
Collapse
Affiliation(s)
- Esmaeil Hamounpeyma
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Dehghani
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Dashtgard
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasim Sabouni
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Zare Marzouni
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|