1
|
Moghimi P, Hashemi-Gorji F, Jamshidi S, Tehrani Fateh S, Salehpour S, Sadeghi H, Norouzi Rostami F, Mirfakhraie R, Miryounesi M, Ghasemi MR. Broadening the Phenotype and Genotype Spectrum of Glycogen Storage Disease by Unraveling Novel Variants in an Iranian Patient Cohort. Biochem Genet 2025; 63:1752-1779. [PMID: 38619706 DOI: 10.1007/s10528-024-10787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Glycogen storage diseases (GSDs) are a group of rare inherited metabolic disorders characterized by clinical, locus, and allele heterogeneity. This study aims to investigate the phenotype and genotype spectrum of GSDs in a cohort of 14 families from Iran using whole-exome sequencing (WES) and variant analysis. WES was performed on 14 patients clinically suspected of GSDs. Variant analysis was performed to identify genetic variants associated with GSDs. A total of 13 variants were identified, including six novel variants, and seven previously reported pathogenic variants in genes such as AGL, G6PC, GAA, PYGL, PYGM, GBE1, SLC37A4, and PHKA2. Most types of GSDs observed in the cohort were associated with hepatomegaly, which was the most common clinical presentation. This study provides valuable insights into the phenotype and genotype spectrum of GSDs in a cohort of Iranian patients. The identification of novel variants adds to the growing body of knowledge regarding the genetic landscape of GSDs and has implications for genetic counseling and future therapeutic interventions. The diverse nature of GSDs underscores the need for comprehensive genetic testing methods to improve diagnostic accuracy. Continued research in this field will enhance our understanding of GSDs, ultimately leading to improved management and outcomes for individuals affected by these rare metabolic disorders.
Collapse
Affiliation(s)
- Parinaz Moghimi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Islamic Azad University, Tehran Medical sciences, Tehran, Iran
| | - Farzad Hashemi-Gorji
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Jamshidi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shadab Salehpour
- Department of Pediatrics, Clinical Research Development Unit, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Mirfakhraie
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Reza Ghasemi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Krekora U, Mathavan A, Mathavan A, Ataya A. Glycogen storage disease type V: delayed diagnosis of a cause of exercise intolerance in a patient with hereditary haemorrhagic telangiectasia. BMJ Case Rep 2025; 18:e263586. [PMID: 39979034 DOI: 10.1136/bcr-2024-263586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
Hereditary haemorrhagic telangiectasia (HHT) is a genetic disorder characterised by epistaxis, mucocutaneous telangiectasias and arteriovenous malformations. Iron deficiency due to chronic bleeding events is a common manifestation that produces a range of nonspecific symptoms. We report on a patient with HHT with longstanding fatigue and exercise intolerance, which was persistently attributed to iron deficiency, who was revealed to have glycogen storage disease type V, an autosomal recessive metabolic myopathy caused by deficiency of myophosphorylase due to PYGM variants. Genetic testing revealed a pathogenic common exon mutation of one allele and a pathogenic intronic mutation of the other, possibly suggestive of a milder phenotype. We not only detail the first case of concurrent HHT and glycogen storage disease in the literature but more importantly emphasise the need for clinician awareness of the disorders to avoid perpetuating a biased clinical impression and delay in diagnosis as well as prevent potentially harmful interventions.
Collapse
Affiliation(s)
- Urszula Krekora
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Akash Mathavan
- Internal Medicine, University of Florida, Gainesville, Florida, USA
| | - Akshay Mathavan
- Internal Medicine, University of Florida, Gainesville, Florida, USA
| | - Ali Ataya
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida Health, Gainesville, Florida, USA
| |
Collapse
|
3
|
Fu Y, Hao X, Shang P, Nie J, Chamba Y, Zhang B, Zhang H. MUSTN1 Interaction With SMPX Regulates Muscle Development and Regeneration. Cell Prolif 2025:e13809. [PMID: 39828423 DOI: 10.1111/cpr.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Pigs are important agricultural animals whose growth rate and meat production performance are related to muscle development. Musculoskeletal embryonic nuclear protein 1 (MUSTN1) participates in various biological processes, including myogenesis and growth in animals, but the physiological functions and mechanisms of porcine MUSTN1 on muscle development are unclear; thus, we aimed to elucidate them. We found that MUSTN1 was highly expressed in the muscles of fast-growing pigs. Functionally, MUSTN1 promoted myoblast proliferation and differentiation. MUSTN1 knockout mice exhibited reduced muscle mass and fibre cross-sectional area, decreased exercise endurance, and delayed muscle regeneration. Small muscle protein X-linked (SMPX) was identified as an interacting protein of MUSTN1, and its promotion of myogenic differentiation depended on MUSTN1. Furthermore, MUSTN1 stabilised SMPX and maintained myofiber morphology. This study suggests that MUSTN1 is a critical regulator in the control of muscle development and regeneration and is a potential target for animal genetic improvement and the treatment of human muscle disease.
Collapse
Affiliation(s)
- Yu Fu
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing, China
| | - Xin Hao
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing, China
| | - Peng Shang
- Department of Animal Husbandry, Xizang Agricultural and Animal Husbandry University, Linzhi, China
| | - Jingru Nie
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing, China
| | - Yangzom Chamba
- Department of Animal Husbandry, Xizang Agricultural and Animal Husbandry University, Linzhi, China
| | - Bo Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing, China
| | - Hao Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Stefanik E, Dubińska-Magiera M, Lewandowski D, Daczewska M, Migocka-Patrzałek M. Metabolic aspects of glycogenolysis with special attention to McArdle disease. Mol Genet Metab 2024; 142:108532. [PMID: 39018613 DOI: 10.1016/j.ymgme.2024.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
The physiological function of muscle glycogen is to meet the energy demands of muscle contraction. The breakdown of glycogen occurs through two distinct pathways, primarily cytosolic and partially lysosomal. To obtain the necessary energy for their function, skeletal muscles utilise also fatty acids in the β-oxidation. Ketogenesis is an alternative metabolic pathway for fatty acids, which provides an energy source during fasting and starvation. Diseases arising from impaired glycogenolysis lead to muscle weakness and dysfunction. Here, we focused on the lack of muscle glycogen phosphorylase (PYGM), a rate-limiting enzyme for glycogenolysis in skeletal muscles, which leads to McArdle disease. Metabolic myopathies represent a group of genetic disorders characterised by the limited ability of skeletal muscles to generate energy. Here, we discuss the metabolic aspects of glycogenosis with a focus on McArdle disease, offering insights into its pathophysiology. Glycogen accumulation may influence the muscle metabolic dynamics in different ways. We emphasize that a proper treatment approach for such diseases requires addressing three important and interrelated aspects, which include: symptom relief therapy, elimination of the cause of the disease (lack of a functional enzyme) and effective and early diagnosis.
Collapse
Affiliation(s)
- Ewa Stefanik
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Damian Lewandowski
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| |
Collapse
|
5
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Ma M, Cai B, Zhou Z, Kong S, Zhang J, Xu H, Zhang X, Nie Q. LncRNA-TBP mediates TATA-binding protein recruitment to regulate myogenesis and induce slow-twitch myofibers. Cell Commun Signal 2023; 21:7. [PMID: 36635672 PMCID: PMC9835232 DOI: 10.1186/s12964-022-01001-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/30/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Skeletal muscle is comprised of heterogeneous myofibers that differ in their physiological and metabolic parameters. Of these, slow-twitch (type I; oxidative) myofibers have more myoglobin, more mitochondria, and higher activity of oxidative metabolic enzymes compared to fast-twitch (type II; glycolytic) myofibers. METHODS In our previous study, we found a novel LncRNA-TBP (for "LncRNA directly binds TBP transcription factor") is specifically enriched in the soleus (which has a higher proportion of slow myofibers). The primary myoblast cells and animal model were used to assess the biological function of the LncRNA-TBP in vitro or in vivo. Meanwhile, we performed a RNA immunoprecipitation (RIP) and pull-down analysis to validate this interaction between LncRNA-TBP and TBP. RESULTS Functional studies demonstrated that LncRNA-TBP inhibits myoblast proliferation but promotes myogenic differentiation in vitro. In vivo, LncRNA-TBP reduces fat deposition, activating slow-twitch muscle phenotype and inducing muscle hypertrophy. Mechanistically, LncRNA-TBP acts as a regulatory RNA that directly interacts with TBP protein to regulate the transcriptional activity of TBP-target genes (such as KLF4, GPI, TNNI2, and CDKN1A). CONCLUSION Our findings present a novel model about the regulation of LncRNA-TBP, which can regulate the transcriptional activity of TBP-target genes by recruiting TBP protein, thus modulating myogenesis progression and inducing slow-twitch fibers. Video Abstract.
Collapse
Affiliation(s)
- Manting Ma
- grid.20561.300000 0000 9546 5767Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642 Guangdong China ,grid.418524.e0000 0004 0369 6250Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 Guangdong China
| | - Bolin Cai
- grid.20561.300000 0000 9546 5767Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642 Guangdong China ,grid.418524.e0000 0004 0369 6250Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 Guangdong China
| | - Zhen Zhou
- grid.20561.300000 0000 9546 5767Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642 Guangdong China ,grid.418524.e0000 0004 0369 6250Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 Guangdong China
| | - Shaofen Kong
- grid.20561.300000 0000 9546 5767Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642 Guangdong China ,grid.418524.e0000 0004 0369 6250Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 Guangdong China
| | - Jing Zhang
- grid.20561.300000 0000 9546 5767Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642 Guangdong China ,grid.418524.e0000 0004 0369 6250Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 Guangdong China
| | - Haiping Xu
- grid.20561.300000 0000 9546 5767Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642 Guangdong China ,grid.418524.e0000 0004 0369 6250Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 Guangdong China
| | - Xiquan Zhang
- grid.20561.300000 0000 9546 5767Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642 Guangdong China ,grid.418524.e0000 0004 0369 6250Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 Guangdong China
| | - Qinghua Nie
- grid.20561.300000 0000 9546 5767Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642 Guangdong China ,grid.418524.e0000 0004 0369 6250Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 Guangdong China
| |
Collapse
|
7
|
Younger DS. Neonatal and infantile hypotonia. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:401-423. [PMID: 37562880 DOI: 10.1016/b978-0-323-98818-6.00011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The underlying etiology of neonatal and infantile hypotonia can be divided into primary peripheral and central nervous system and acquired or genetic disorders. The approach to identifying the likeliest cause of hypotonia begins with a bedside assessment followed by a careful review of the birth history and early development and family pedigree and obtaining available genetic studies and age- and disease-appropriate laboratory investigations. Until about a decade ago, the main goal was to identify the clinical signs and a battery of basic investigations including electrophysiology to confirm or exclude a given neuromuscular disorder, however the availability of whole-exome sequencing and next generation sequencing and transcriptome sequencing has simplified the identification of specific underlying genetic defect and improved the accuracy of diagnosis in many related Mendelian disorders.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
8
|
Wang S, Tan B, Xiao L, Zeng J, Zhao X, Hong L, Li Z, Cai G, Zheng E, Gu T, Wu Z. Long non-coding RNA Gm10561 promotes myogenesis by sponging miR-432. Epigenetics 2022; 17:2039-2055. [PMID: 35899799 DOI: 10.1080/15592294.2022.2105052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Skeletal myogenesis is a highly ordered process finely regulated by various factors. Long non-coding RNAs play an important regulatory role in myogenesis via multiple mechanisms. In this study, we identified the lncRNA Gm10561, which was upregulated during myogenic differentiation and is highly expressed in skeletal muscle. Knockdown of Gm10561 inhibited the proliferation and differentiation of C2C12 myoblasts in vitro and muscle growth in vivo. Overexpression of Gm10561 promoted the proliferation and differentiation of both C2C12 myoblasts and porcine muscle satellite cells. Notably, lncRNA Gm10561 is localized in the cytoplasm and competitively bound to miR-432, which directly targets MEF2C and E2F3. It was confirmed that lncRNA Gm10561 regulates the proliferation and differentiation of myoblasts by acting as a sponge of miR-432 to modulate MEF2C and E2F3 expression. Thus, the lncRNA-Gm10561-miR-432-MEF2C/E2F3 axis plays an important role in myogenesis.
Collapse
Affiliation(s)
- Shanshan Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Baohua Tan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Liyao Xiao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiekang Zeng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xinming Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, Guangdong, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
García-Consuegra I, Asensio-Peña S, Garrido-Moraga R, Pinós T, Domínguez-González C, Santalla A, Nogales-Gadea G, Serrano-Lorenzo P, Andreu AL, Arenas J, Zugaza JL, Lucia A, Martín MA. Identification of Potential Muscle Biomarkers in McArdle Disease: Insights from Muscle Proteome Analysis. Int J Mol Sci 2022; 23:4650. [PMID: 35563042 PMCID: PMC9100117 DOI: 10.3390/ijms23094650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Glycogen storage disease type V (GSDV, McArdle disease) is a rare genetic myopathy caused by deficiency of the muscle isoform of glycogen phosphorylase (PYGM). This results in a block in the use of muscle glycogen as an energetic substrate, with subsequent exercise intolerance. The pathobiology of GSDV is still not fully understood, especially with regard to some features such as persistent muscle damage (i.e., even without prior exercise). We aimed at identifying potential muscle protein biomarkers of GSDV by analyzing the muscle proteome and the molecular networks associated with muscle dysfunction in these patients. Muscle biopsies from eight patients and eight healthy controls showing none of the features of McArdle disease, such as frequent contractures and persistent muscle damage, were studied by quantitative protein expression using isobaric tags for relative and absolute quantitation (iTRAQ) followed by artificial neuronal networks (ANNs) and topology analysis. Protein candidate validation was performed by Western blot. Several proteins predominantly involved in the process of muscle contraction and/or calcium homeostasis, such as myosin, sarcoplasmic/endoplasmic reticulum calcium ATPase 1, tropomyosin alpha-1 chain, troponin isoforms, and alpha-actinin-3, showed significantly lower expression levels in the muscle of GSDV patients. These proteins could be potential biomarkers of the persistent muscle damage in the absence of prior exertion reported in GSDV patients. Further studies are needed to elucidate the molecular mechanisms by which PYGM controls the expression of these proteins.
Collapse
Affiliation(s)
- Inés García-Consuegra
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - Sara Asensio-Peña
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
| | - Rocío Garrido-Moraga
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
| | - Tomàs Pinós
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Cristina Domínguez-González
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - Alfredo Santalla
- Department of Computer and Sport Sciences, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | - Gisela Nogales-Gadea
- Grup de Recerca en Malalties Neuromusculars i Neuropediàtriques, Department of Neurosciences, Institut d’Investigacio en Ciencies de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Barcelona, Spain;
| | - Pablo Serrano-Lorenzo
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - Antoni L. Andreu
- EATRIS, European Infrastructure for Translational Medicine, 1019 Amsterdam, The Netherlands;
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - José L. Zugaza
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, and Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain;
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Alejandro Lucia
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Miguel A. Martín
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| |
Collapse
|
10
|
Cai B, Ma M, Zhang J, Wang Z, Kong S, Zhou Z, Lian L, Zhang J, Li J, Wang Y, Li H, Zhang X, Nie Q. LncEDCH1 improves mitochondrial function to reduce muscle atrophy by interacting with SERCA2. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:319-334. [PMID: 35024244 PMCID: PMC8717430 DOI: 10.1016/j.omtn.2021.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022]
Abstract
Skeletal muscle is a regulator of the body's energy expenditure and metabolism. Abnormal regulation of skeletal muscle-specific genes leads to various muscle diseases. Long non-coding RNAs (lncRNAs) have been demonstrated to play important roles in muscle growth and muscle atrophy. To explore the potential function of muscle-associated lncRNA, we analyzed our previous RNA-sequencing data and selected the lncRNA (LncEDCH1) as the research object. In this study, we report that LncEDCH1 is specifically enriched in skeletal muscle, and its transcriptional activity is positively regulated by transcription factor SP1. LncEDCH1 regulates myoblast proliferation and differentiation in vitro. In vivo, LncEDCH1 reduces intramuscular fat deposition, activates slow-twitch muscle phenotype, and inhibits muscle atrophy. Mechanistically, LncEDCH1 binds to sarcoplasmic/ER calcium ATPase 2 (SERCA2) protein to enhance SERCA2 protein stability and increase SERCA2 activity. Meanwhile, LncEDCH1 improves mitochondrial efficiency possibly through a SERCA2-mediated activation of the AMPK pathway. Our findings provide a strategy for using LncEDCH1 as an effective regulator for the treatment of muscle atrophy and energy metabolism.
Collapse
Affiliation(s)
- Bolin Cai
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Manting Ma
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Jing Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Zhijun Wang
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Shaofen Kong
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Zhen Zhou
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Ling Lian
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiannan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Juan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yajun Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hongmei Li
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Xiquan Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Qinghua Nie
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| |
Collapse
|
11
|
Álvarez-Velasco R, Nuñez-Peralta CA, Alonso-Pérez J, Gallardo E, Collet-Vidiella R, Reyes-Leiva D, Pascual-Goñi E, Martín-Aguilar L, Caballero-Ávila M, Carbayo-Viejo A, Llauger-Roselló J, Díaz-Manera J, Olivé M. HIGH PREVALENCE OF PARASPINAL MUSCLE INVOLVEMENT IN ADULTS WITH McARDLE DISEASE. Muscle Nerve 2022; 65:568-573. [PMID: 35174518 DOI: 10.1002/mus.27523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION/AIMS Very few studies analyzing the pattern of muscle involvement in magnetic resonance imaging (MRI) of patients with McArdle disease have been reported to date. We aimed to examine the pattern of muscle fat replacement in patients with McArdle disease. METHODS We performed a retrospective study including all patients with genetically confirmed McArdle disease followed in our center from January 2010 to March 2021. Clinical data were collected from the medical record. Whole-body MRI was performed as part of the diagnostic evaluation. The distribution of muscle fat replacement and its severity were analyzed. RESULTS Nine patients were included. Median age at onset was 7 years (range:5-58) and median age at the time when MRI was performed was 57.3 years (range 37.2-72.8). At physical examination 4 patients had permanent weakness: in 3 the weakness was limited to paraspinal muscles whereas in one the weakness involved the paraspinal and proximal upper limb muscles. Muscle MRI showed abnormalities in 6 of the 7 studied patients. In all of them fat replacement of paravertebral muscles was found. Other muscles frequently affected were the tongue in 3, subscapularis in 3, and long head of biceps femoris and semimembranosus in 2. DISCUSSION Our findings suggest that paraspinal muscle involvement is common in McArdle disease and support the need to include this disease in the differential diagnosis of the causes of paraspinal muscle weakness. Involvement of the tongue and subscapularis are also frequent in McArdle disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- R Álvarez-Velasco
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - C A Nuñez-Peralta
- Department of Radiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - J Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - E Gallardo
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - R Collet-Vidiella
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - D Reyes-Leiva
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - E Pascual-Goñi
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - L Martín-Aguilar
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - M Caballero-Ávila
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Spain
| | - A Carbayo-Viejo
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - J Llauger-Roselló
- Department of Radiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - J Díaz-Manera
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,John Walton Muscular Dystrophy Research Centre, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - M Olivé
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| |
Collapse
|
12
|
Liu X, Liu L, Wang J, Cui H, Zhao G, Wen J. FOSL2 Is Involved in the Regulation of Glycogen Content in Chicken Breast Muscle Tissue. Front Physiol 2021; 12:682441. [PMID: 34295261 PMCID: PMC8290175 DOI: 10.3389/fphys.2021.682441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/03/2021] [Indexed: 01/22/2023] Open
Abstract
The glycogen content in muscle of livestock and poultry animals affects the homeostasis of their body, growth performance, and meat quality after slaughter. FOS-like 2, AP-1 transcription factor subunit (FOSL2) was identified as a candidate gene related to muscle glycogen (MG) content in chicken in our previous study, but the role of FOSL2 in the regulation of MG content remains to be elucidated. Differential gene expression analysis and weighted gene coexpression network analysis (WGCNA) were performed on differentially expressed genes (DEGs) in breast muscle tissues from the high-MG-content (HMG) group and low-MG-content (LMG) group of Jingxing yellow chickens. Analysis of the 1,171 DEGs (LMG vs. HMG) identified, besides FOSL2, some additional genes related to MG metabolism pathway, namely PRKAG3, CEBPB, FOXO1, AMPK, and PIK3CB. Additionally, WGCNA revealed that FOSL2, CEBPB, MAP3K14, SLC2A14, PPP2CA, SLC38A2, PPP2R5E, and other genes related to the classical glycogen metabolism in the same coexpressed module are associated with MG content. Also, besides finding that FOSL2 expression is negatively correlated with MG content, a possible interaction between FOSL2 and CEBPB was predicted using the STRING (Search Tool for the Retrieval of Interacting Genes) database. Furthermore, we investigated the effects of lentiviral overexpression of FOSL2 on the regulation of the glycogen content in vitro, and the result indicated that FOSL2 decreases the glycogen content in DF1 cells. Collectively, our results confirm that FOSL2 has a key role in the regulation of the MG content in chicken. This finding is helpful to understand the mechanism of MG metabolism regulation in chicken and provides a new perspective for the production of high-quality broiler and the development of a comprehensive nutritional control strategy.
Collapse
Affiliation(s)
- Xiaojing Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Liu
- College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jie Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huanxian Cui
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Lv W, Jin J, Xu Z, Luo H, Guo Y, Wang X, Wang S, Zhang J, Zuo H, Bai W, Peng Y, Tang J, Zhao S, Zuo B. lncMGPF is a novel positive regulator of muscle growth and regeneration. J Cachexia Sarcopenia Muscle 2020; 11:1723-1746. [PMID: 32954689 PMCID: PMC7749533 DOI: 10.1002/jcsm.12623] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 07/24/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play critical regulatory roles in diverse biological processes and diseases. While a large number of lncRNAs have been identified in skeletal muscles until now, their function and underlying mechanisms in skeletal myogenesis remain largely unclear. METHODS We characterized a novel functional lncRNA designated lncMGPF (lncRNA muscle growth promoting factor) using RACE, Northern blot, fluorescence in situ hybridization and quantitative real-time PCR. Its function was determined by gene overexpression, interference, and knockout experiments in C2C12 myoblasts, myogenic progenitor cells, and an animal model. The molecular mechanism by which lncMGPF regulates muscle differentiation was mainly examined by cotransfection experiments, luciferase reporter assay, RNA immunoprecipitation, RNA pull-down, and RNA stability analyses. RESULTS We report that lncMGPF, which is highly expressed in muscles and positively regulated by myoblast determination factor (MyoD), promotes myogenic differentiation of muscle cells in vivo and in vitro. lncMGPF knockout in mice substantially decreases growth rate, reduces muscle mass, and impairs muscle regeneration. Overexpression of lncMGPF in muscles can rescue the muscle phenotype of knockout mice and promote muscle growth of wild-type mice. Mechanistically, lncMGPF promotes muscle differentiation by acting as a molecular sponge of miR-135a-5p and thus increasing the expression of myocyte enhancer factor 2C (MEF2C), as well as by enhancing human antigen R-mediated messenger RNA stabilization of myogenic regulatory genes such as MyoD and myogenin (MyoG). We confirm that pig lncRNA AK394747 and human lncRNA MT510647 are homologous to mouse lncMGPF, with conserved function and mechanism during myogenesis. CONCLUSIONS Our data reveal that lncMGPF is a novel positive regulator of myogenic differentiation, muscle growth and regeneration in mice, pigs, and humans.
Collapse
Affiliation(s)
- Wei Lv
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianjun Jin
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Luo
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yubo Guo
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojing Wang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Wang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiali Zhang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Zuo
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Bai
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yaxing Peng
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Shuhong Zhao
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
14
|
Angelini C, Marozzo R, Pegoraro V, Sacconi S. Diagnostic challenges in metabolic myopathies. Expert Rev Neurother 2020; 20:1287-1298. [PMID: 32941087 DOI: 10.1080/14737175.2020.1825943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Metabolic myopathies comprise a clinically etiological diverse group of disorders caused by defects in cellular energy metabolism including the breakdown of carbohydrates and fatty acids, which include glycogen storage diseases and fatty acid oxidation disorders. Their wide clinical spectrum ranges from infantile severe multisystemic disorders to adult-onset myopathies. To suspect in adults these disorders, clinical features such as exercise intolerance and recurrent myoglobinuria need investigation while another group presents fixed weakness and cardiomyopathy as a clinical pattern. AREAS COVERED In metabolic myopathies, clinical manifestations are important to guide diagnostic tests used in order to lead to the correct diagnosis. The authors searched in literature the most recent techniques developed. The authors present an overview of the most common phenotypes of Pompe disease and what is currently known about the mechanism of ERT treatment. The most common disorders of lipid metabolism are overviewed, with their possible dietary or supplementary treatments. EXPERT COMMENTARY The clinical suspicion is the clue to conduct in-depth investigations in suspected cases of metabolic myopathies that lead to the final diagnosis with biochemical molecular studies and often nowadays by the use of Next Generation Sequencing (NGS) to determine gene mutations.
Collapse
Affiliation(s)
- Corrado Angelini
- Neuromuscular Center, IRCCS San Camillo Hospital , Venice, Italy
| | - Roberta Marozzo
- Neuromuscular Center, IRCCS San Camillo Hospital , Venice, Italy
| | | | - Sabrina Sacconi
- Peripheral Nervous System and Muscle Department, Université Cote d'Azur, CHU , Nice, France
| |
Collapse
|
15
|
Molenaar JP, Verhoeven JI, Rodenburg RJ, Kamsteeg EJ, Erasmus CE, Vicart S, Behin A, Bassez G, Magot A, Péréon Y, Brandom BW, Guglielmi V, Vattemi G, Chevessier F, Mathieu J, Franques J, Suetterlin K, Hanna MG, Guyant-Marechal L, Snoeck MM, Roberts ME, Kuntzer T, Fernandez-Torron R, Martínez-Arroyo A, Seeger J, Kusters B, Treves S, van Engelen BG, Eymard B, Voermans NC, Sternberg D. Clinical, morphological and genetic characterization of Brody disease: an international study of 40 patients. Brain 2020; 143:452-466. [PMID: 32040565 PMCID: PMC7009512 DOI: 10.1093/brain/awz410] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/30/2019] [Accepted: 11/16/2019] [Indexed: 11/17/2022] Open
Abstract
Brody disease is an autosomal recessive myopathy characterized by exercise-induced muscle stiffness due to mutations in the ATP2A1 gene. Almost 50 years after the initial case presentation, only 18 patients have been reported and many questions regarding the clinical phenotype and results of ancillary investigations remain unanswered, likely leading to incomplete recognition and consequently under-diagnosis. Additionally, little is known about the natural history of the disorder, genotype-phenotype correlations, and the effects of symptomatic treatment. We studied the largest cohort of Brody disease patients to date (n = 40), consisting of 22 new patients (19 novel mutations) and all 18 previously published patients. This observational study shows that the main feature of Brody disease is an exercise-induced muscle stiffness of the limbs, and often of the eyelids. Onset begins in childhood and there was no or only mild progression of symptoms over time. Four patients had episodes resembling malignant hyperthermia. The key finding at physical examination was delayed relaxation after repetitive contractions. Additionally, no atrophy was seen, muscle strength was generally preserved, and some patients had a remarkable athletic build. Symptomatic treatment was mostly ineffective or produced unacceptable side effects. EMG showed silent contractures in approximately half of the patients and no myotonia. Creatine kinase was normal or mildly elevated, and muscle biopsy showed mild myopathic changes with selective type II atrophy. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) activity was reduced and western blot analysis showed decreased or absent SERCA1 protein. Based on this cohort, we conclude that Brody disease should be considered in cases of exercise-induced muscle stiffness. When physical examination shows delayed relaxation, and there are no myotonic discharges at electromyography, we recommend direct sequencing of the ATP2A1 gene or next generation sequencing with a myopathy panel. Aside from clinical features, SERCA activity measurement and SERCA1 western blot can assist in proving the pathogenicity of novel ATP2A1 mutations. Finally, patients with Brody disease may be at risk for malignant hyperthermia-like episodes, and therefore appropriate perioperative measures are recommended. This study will help improve understanding and recognition of Brody disease as a distinct myopathy in the broader field of calcium-related myopathies.
Collapse
Affiliation(s)
- Joery P Molenaar
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jamie I Verhoeven
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Richard J Rodenburg
- Department of Pediatrics, Translational Metabolic Laboratory, Radboud Center for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Erik J Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corrie E Erasmus
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Savine Vicart
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Anthony Behin
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Guillaume Bassez
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Armelle Magot
- CHU Nantes, Centre de Référence Maladies Neuromusculaires AOC, Nantes, France
| | - Yann Péréon
- CHU Nantes, Centre de Référence Maladies Neuromusculaires AOC, Nantes, France
| | - Barbara W Brandom
- Department of Anesthesiology, Children's Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Valeria Guglielmi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | | | - Jean Mathieu
- Neuromuscular Clinic, Centre de Réadaptation en Déficience Physique de Jonquière, Jonquière, Québec, Canada
| | - Jérôme Franques
- Centre de référence des maladies neuromusculaires et de la SLA, hôpital La Timone, AP-HM, Aix-Marseille université, avenue Jean-Moulin, Marseille, France
| | - Karen Suetterlin
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | | | - Marc M Snoeck
- Department of Anaesthesiology, Canisius-Wilhelmina Ziekenhuis, Nijmegen, The Netherlands
| | - Mark E Roberts
- Department of Neurology, Salford Royal NHS Foundation Trust, Greater Manchester, UK
| | - Thierry Kuntzer
- Nerve-Muscle Unit, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Roberto Fernandez-Torron
- Neuromuscular Area, Biodonostia Health Research Institute, Department of Neurology, University Hospital Donostia, CIBERNED, San Sebastián, Spain
| | | | - Juergen Seeger
- Sozialpädiatrisches Zentrum Frankfurt Mitte, Neuromuskulares Zentrum, Frankfurt, Germany
| | - Benno Kusters
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Susan Treves
- Departments of Anesthesia and Biomedicine, Basel University and Basel University Hospital, Basel, Switzerland.,Department of Life Sciences, University of Ferrara, Ferrara, Italy
| | - Baziel G van Engelen
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bruno Eymard
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Nicol C Voermans
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Damien Sternberg
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
16
|
Echaniz-Laguna A, Lornage X, Laforêt P, Orngreen MC, Edelweiss E, Brochier G, Bui MT, Silva-Rojas R, Birck C, Lannes B, Romero NB, Vissing J, Laporte J, Böhm J. A New Glycogen Storage Disease Caused by a Dominant PYGM Mutation. Ann Neurol 2020; 88:274-282. [PMID: 32386344 DOI: 10.1002/ana.25771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Glycogen storage diseases (GSDs) are severe human disorders resulting from abnormal glucose metabolism, and all previously described GSDs segregate as autosomal recessive or X-linked traits. In this study, we aimed to molecularly characterize the first family with a dominant GSD. METHODS We describe a dominant GSD family with 13 affected members presenting with adult-onset muscle weakness, and we provide clinical, metabolic, histological, and ultrastructural data. We performed exome sequencing to uncover the causative gene, and functional experiments in the cell model and on recombinant proteins to investigate the pathogenic effect of the identified mutation. RESULTS We identified a heterozygous missense mutation in PYGM segregating with the disease in the family. PYGM codes for myophosphorylase, the enzyme catalyzing the initial step of glycogen breakdown. Enzymatic tests revealed that the PYGM mutation impairs the AMP-independent myophosphorylase activity, whereas the AMP-dependent activity was preserved. Further functional investigations demonstrated an altered conformation and aggregation of mutant myophosphorylase, and the concurrent accumulation of the intermediate filament desmin in the myofibers of the patients. INTERPRETATION Overall, this study describes the first example of a dominant glycogen storage disease in humans, and elucidates the underlying pathomechanisms by deciphering the sequence of events from the PYGM mutation to the accumulation of glycogen in the muscle fibers. ANN NEUROL 2020;88:274-282.
Collapse
Affiliation(s)
- Andoni Echaniz-Laguna
- Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin Bicêtre, France.,French National Reference Center for Rare Neuropathies (NNERF), Le Kremlin Bicêtre, France.,Inserm U1195 & Paris-Saclay University, Le Kremlin Bicêtre, France
| | - Xavière Lornage
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Pascal Laforêt
- Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Garches, France.,Service de Neurologie, U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles-Saint-Quentin-en-Yvelines, Garches, France
| | - Mette C Orngreen
- Copenhagen Neuromuscular Center, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Evelina Edelweiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Guy Brochier
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, Paris, France.,Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mai T Bui
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, Paris, France
| | - Roberto Silva-Rojas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Catherine Birck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France.,Structural Biology & Genomics Platform, IGBMC, Illkirch, France
| | - Béatrice Lannes
- Department of Pathology, Strasbourg University Hospital, Strasbourg, France
| | - Norma B Romero
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, Paris, France.,Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université Sorbonne, UPMC Paris 06 University, Inserm UMRS974, CNRS FRE3617, Center for Research in Myology, GH Pitié-Salpêtrière, Paris, France
| | - John Vissing
- Copenhagen Neuromuscular Center, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| |
Collapse
|
17
|
Kobayashi I, Akioka S, Kobayashi N, Iwata N, Takezaki S, Nakaseko H, Sato S, Nishida Y, Nozawa T, Yamasaki Y, Yamazaki K, Arai S, Nishino I, Mori M. Clinical practice guidance for juvenile dermatomyositis (JDM) 2018-Update. Mod Rheumatol 2020; 30:411-423. [PMID: 31955618 DOI: 10.1080/14397595.2020.1718866] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Juvenile dermatomyositis is the most common type of juvenile idiopathic inflammatory myopathy mainly affecting the skin and proximal muscles. We have published the Japanese version of 'Clinical practice guidance for juvenile dermatomyositis (JDM) 2018 'consisting of a review of articles in the field and evidence-informed consensus-based experts' opinion on the treatment strategy in collaboration with The Pediatric Rheumatology Association of Japan and The Japan College of Rheumatology under the financial support by 'Research on rare and intractable diseases, Health and Labor Sciences Research Grants'. This article is a digest version of the Japanese guidance.
Collapse
Affiliation(s)
- Ichiro Kobayashi
- Center for Pediatric Allergy and Rheumatology, KKR Sapporo Medical Center, Sapporo, Japan
| | - Shinji Akioka
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norimoto Kobayashi
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naomi Iwata
- Department of Infection and Immunology, Aichi Children's Health and Medical Center, Obu, Japan
| | | | - Haruna Nakaseko
- Department of Infection and Immunology, Aichi Children's Health and Medical Center, Obu, Japan
| | - Satoshi Sato
- Division of Infectious Disease and Immunology, Saitama Children's Medical Center, Omiya, Japan
| | - Yutaka Nishida
- Department of Pediatrics, School of Medicine, Gunma University, Maebashi, Japan
| | - Tomo Nozawa
- Department of Pediatrics, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yuichi Yamasaki
- Department of Pediatrics, Kagoshima University Hospital, Kagoshima, Japan
| | - Kazuko Yamazaki
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Satoru Arai
- Department of Dermatology, St. Luke's International Hospital, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masaaki Mori
- Lifetime Clinical Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
18
|
Hazari Y, Bravo-San Pedro JM, Hetz C, Galluzzi L, Kroemer G. Autophagy in hepatic adaptation to stress. J Hepatol 2020; 72:183-196. [PMID: 31849347 DOI: 10.1016/j.jhep.2019.08.026] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/13/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
Autophagy is an evolutionarily ancient process whereby eukaryotic cells eliminate disposable or potentially dangerous cytoplasmic material, to support bioenergetic metabolism and adapt to stress. Accumulating evidence indicates that autophagy operates as a critical quality control mechanism for the maintenance of hepatic homeostasis in both parenchymal (hepatocytes) and non-parenchymal (stellate cells, sinusoidal endothelial cells, Kupffer cells) compartments. In line with this notion, insufficient autophagy has been aetiologically involved in the pathogenesis of multiple liver disorders, including alpha-1-antitrypsin deficiency, Wilson disease, non-alcoholic steatohepatitis, liver fibrosis and hepatocellular carcinoma. Here, we critically discuss the importance of functional autophagy for hepatic physiology, as well as the mechanisms whereby defects in autophagy cause liver disease.
Collapse
Affiliation(s)
- Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience (GERO), Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - José Manuel Bravo-San Pedro
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience (GERO), Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research in Aging, Novato, CA, USA.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Université Paris Descartes/Paris V, Paris, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
19
|
Kolovou G, Cokkinos P, Bilianou H, Kolovou V, Katsiki N, Mavrogeni S. Non-traumatic and non-drug-induced rhabdomyolysis. Arch Med Sci Atheroscler Dis 2019; 4:e252-e263. [PMID: 32368681 PMCID: PMC7191942 DOI: 10.5114/amsad.2019.90152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/10/2019] [Indexed: 01/19/2023] Open
Abstract
Rhabdomyolysis (RM), a fortunately rare disease of the striated muscle cells, is a complication of non-traumatic (congenital (glycogen storage disease, discrete mitochondrial myopathies and various muscular dystrophies) or acquired (alcoholic myopathy, systemic diseases, arterial occlusion, viral illness or bacterial sepsis)) and traumatic conditions. Additionally, RM can occur in some individuals under specific circumstances such as toxic substance use and illicit drug abuse. Lipid-lowering drugs in particular are capable of causing RM. This comprehensive review will focus on non-traumatic and non-drug-induced RM. Moreover, the pathology of RM, its clinical manifestation and biochemical effects, and finally its management will be discussed.
Collapse
Affiliation(s)
- Genovefa Kolovou
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Philip Cokkinos
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | | | - Vana Kolovou
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
- Molecular Immunology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece
| | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology-Metabolism, Diabetes Center, AHEPA University Hospital, Thessaloniki, Greece
| | - Sophie Mavrogeni
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| |
Collapse
|
20
|
Echaniz-Laguna A, Nadjar Y, Béhin A, Biancalana V, Piraud M, Malfatti E, Laforêt P. Phosphoglycerate kinase deficiency: A nationwide multicenter retrospective study. J Inherit Metab Dis 2019; 42:803-808. [PMID: 30887539 DOI: 10.1002/jimd.12087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/14/2019] [Indexed: 11/11/2022]
Abstract
Phosphoglycerate kinase (PGK) deficiency is a rare X-linked metabolic disorder caused by mutations in the PGK1 gene. Patients usually develop various combinations of nonspherocytic hemolytic anemia (NSHA), myopathy, and central nervous system disorders. In this national multicenter observational retrospective study, we recorded all known French patients with PGK deficiency, and 3 unrelated patients were identified. Case 1 was a 32-year-old patient with severe chronic axonal sensorimotor polyneuropathy resembling Charcot-Marie-Tooth (CMT) disease, mental retardation, microcephaly, ophthalmoplegia, pes cavus, and the new c.323G > A PGK1 hemizygous mutation. Case 2 was a 71-year-old patient with recurrent exertional rhabdomyolysis, and a c.943G > A PGK1 hemizygous mutation. Case 3 was a 48-year-old patient with NSHA, retinitis pigmentosa, mental retardation, seizures, stroke, parkinsonism, and a c.491A > T PGK1 hemizygous mutation. This study confirms that PGK deficiency is an extremely rare disorder with a wide phenotypic spectrum, and demonstrates for the first time that PGK deficiency may affect the peripheral nervous system and present as a CMT-like disorder.
Collapse
Affiliation(s)
- Andoni Echaniz-Laguna
- Department of Neurology, APHP, Bicêtre University Hospital, Le Kremlin Bicêtre, France
- French National Reference Center for Rare Neuropathies (NNERF), Le Kremlin Bicêtre, France
- INSERM U1195 & Paris-Sud University, Le Kremlin Bicêtre, France
| | - Yann Nadjar
- Neurology Department, Hôpital Pitié-Salpêtrière, Paris, France
| | - Anthony Béhin
- Neurology Department, Hôpital Pitié-Salpêtrière, Paris, France
| | - Valérie Biancalana
- Laboratoire Diagnostic Génétique, CHR, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France
| | - Monique Piraud
- Laboratoire des Maladies Héréditaires du Métabolisme et dépistage Néonatal, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | | | - Pascal Laforêt
- Neurology Department, Hôpital Raymond Poincaré, Paris, France
| |
Collapse
|
21
|
Jauze L, Monteillet L, Mithieux G, Rajas F, Ronzitti G. Challenges of Gene Therapy for the Treatment of Glycogen Storage Diseases Type I and Type III. Hum Gene Ther 2019; 30:1263-1273. [PMID: 31319709 DOI: 10.1089/hum.2019.102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glycogen storage diseases (GSDs) type I (GSDI) and type III (GSDIII), the most frequent hepatic GSDs, are due to defects in glycogen metabolism, mainly in the liver. In addition to hypoglycemia and liver pathology, renal, myeloid, or muscle complications affect GSDI and GSDIII patients. Currently, patient management is based on dietary treatment preventing severe hypoglycemia and increasing the lifespan of patients. However, most of the patients develop long-term pathologies. In the past years, gene therapy for GSDI has generated proof of concept for hepatic GSDs. This resulted in a recent clinical trial of adeno-associated virus (AAV)-based gene replacement for GSDIa. However, the current limitations of AAV-mediated gene transfer still represent a challenge for successful gene therapy in GSDI and GSDIII. Indeed, transgene loss over time was observed in GSDI liver, possibly due to the degeneration of hepatocytes underlying the physiopathology of both GSDI and GSDIII and leading to hepatic tumor development. Moreover, multitissue targeting requires high vector doses to target nonpermissive tissues such as muscle and kidney. Interestingly, recent pharmacological interventions or dietary regimen aiming at the amelioration of the hepatocyte abnormalities before the administration of gene therapy demonstrated improved efficacy in GSDs. In this review, we describe the advances in gene therapy and the limitations to be overcome to achieve efficient and safe gene transfer in GSDs.
Collapse
Affiliation(s)
- Louisa Jauze
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France.,Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Laure Monteillet
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
22
|
Böl M, Iyer R, Dittmann J, Garcés-Schröder M, Dietzel A. Investigating the passive mechanical behaviour of skeletal muscle fibres: Micromechanical experiments and Bayesian hierarchical modelling. Acta Biomater 2019; 92:277-289. [PMID: 31077887 DOI: 10.1016/j.actbio.2019.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Characterisation of the skeletal muscle's passive properties is a challenging task since its structure is dominated by a highly complex and hierarchical arrangement of fibrous components at different scales. The present work focuses on the micromechanical characterisation of skeletal muscle fibres, which consist of myofibrils, by realising three different deformation states, namely, axial tension, axial compression, and transversal compression. To the best of the authors' knowledge, the present study provides a novel comprehensive data set representing of different deformation states. These data allow for a better understanding of muscle fibre load transfer mechanisms and can be used for meaningful modelling approaches. As the present study shows, axial tension and compression experiments reveal a strong tension-compression asymmetry at fibre level. In comparison to the tissue level, this asymmetric behaviour is more pronounced at the fibre scale, elucidating the load transfer mechanism in muscle tissue and aiding in the development of future modelling strategies. Further, a Bayesian hierarchical modelling approach was used to consider the experimental fluctuations in a parameter identification scheme, leading to more comprehensive parameter distributions that reflect the entire observed experimental uncertainty. STATEMENT OF SIGNIFICANCE: This article examines for the first time the mechanical properties of skeletal muscle fibres under axial tension, axial compression, and transversal compression, leading to a highly comprehensive data set. Moreover, a Bayesian hierarchical modelling concept is presented to identify model parameters in a broad way. The results of the deformation states allow a new and comprehensive understanding of muscle fibres' load transfer mechanisms; one example is the effect of tension-compression asymmetry. On the one hand, the results of this study contribute to the understanding of muscle mechanics and thus to the muscle's functional understanding during daily activity. On the other hand, they are relevant in the fields of skeletal muscle multiscale, constitutive modelling.
Collapse
Affiliation(s)
- Markus Böl
- Institute of Solid Mechanics, Technische Universität Braunschweig, Braunschweig D-38106, Germany.
| | - Rahul Iyer
- Institute of Solid Mechanics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Johannes Dittmann
- Institute of Solid Mechanics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Mayra Garcés-Schröder
- Institute of Micro Technology, Technische Universität Braunschweig, Braunschweig D-38124, Germany
| | - Andreas Dietzel
- Institute of Micro Technology, Technische Universität Braunschweig, Braunschweig D-38124, Germany
| |
Collapse
|
23
|
Muscle diffusion tensor imaging in glycogen storage disease V (McArdle disease). Eur Radiol 2018; 29:3224-3232. [DOI: 10.1007/s00330-018-5885-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/18/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022]
|
24
|
Quintero Salvago AV, Leal Del Ojo Del Ojo JD, Barrios Rodríguez L, Fedriani de Matos JJ, Morgado Muñoz I. Total thyroidectomys in patient with McArdle's syndrome: Anesthetic management. ACTA ACUST UNITED AC 2018; 66:163-166. [PMID: 30509783 DOI: 10.1016/j.redar.2018.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/11/2018] [Accepted: 10/21/2018] [Indexed: 10/27/2022]
Abstract
McArdle disease or type V glycogenosis is a rare metabolic myopathy consisting of muscle loss and weakness. These patients have risks associated with anaesthesia. They can present with hypoglycaemia, rhabdomyolysis, acute renal failure, and electrolyte changes. It has also been associated with a higher incidence of malignant hyperthermia during the anaesthetic procedure. Intermittent compression due to the measurement of non-invasive pressure, postures on the operating table that may cause muscle contractures, or tremor caused by hypothermia or anaesthesia itself, may trigger rhabdomyolysis in these patients. In this article we present our experience in submitting a patient with McArdle's syndrome to general anaesthesia for total thyroidectomy due to multinodular euthyroid goitre.
Collapse
Affiliation(s)
- A V Quintero Salvago
- Servicio de Anestesiología y Reanimación, Hospital de Jerez de la Frontera, Jerez de la Frontera (Cádiz), España.
| | - J D Leal Del Ojo Del Ojo
- Servicio de Anestesiología y Reanimación, Hospital de Jerez de la Frontera, Jerez de la Frontera (Cádiz), España
| | - L Barrios Rodríguez
- Servicio de Anestesiología y Reanimación, Hospital de Jerez de la Frontera, Jerez de la Frontera (Cádiz), España
| | - J J Fedriani de Matos
- Servicio de Anestesiología y Reanimación, Hospital de Jerez de la Frontera, Jerez de la Frontera (Cádiz), España
| | - I Morgado Muñoz
- Servicio de Anestesiología y Reanimación, Hospital de Jerez de la Frontera, Jerez de la Frontera (Cádiz), España
| |
Collapse
|
25
|
Cui X, Qian DW, Jiang S, Shang EX, Zhu ZH, Duan JA. Scutellariae Radix and Coptidis Rhizoma Improve Glucose and Lipid Metabolism in T2DM Rats via Regulation of the Metabolic Profiling and MAPK/PI3K/Akt Signaling Pathway. Int J Mol Sci 2018; 19:E3634. [PMID: 30453687 PMCID: PMC6274950 DOI: 10.3390/ijms19113634] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Aim Scutellariae Radix (SR) and Coptidis Rhizoma (CR) have often been combined to cure type 2 diabetes mellitus (T2DM) in the clinical practice for over thousands of years, but their compatibility mechanism is not clear. Mitogen-activated protein kinase (MAPK) signaling pathway has been suggested to play a critical role during the process of inflammation, insulin resistance, and T2DM. This study was designed to investigate their compatibility effects on T2DM rats and explore the underlying mechanisms by analyzing the metabolic profiling and MAPK/PI3K/Akt signaling pathway. Methods The compatibility effects of SR and CR were evaluated with T2DM rats induced by a high-fat diet (HFD) along with a low dose of streptozocin (STZ). Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was performed to discover potential biomarkers. The levels of pro-inflammatory cytokines; biochemical indexes in serum, and the activities of key enzymes related to glycometabolism in liver were assessed by ELISA kits. qPCR was applied to examine mRNA levels of key targets in MAPK and insulin signaling pathways. Protein expressions of p65; p-p65; phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K); phosphorylated-PI3K (p-PI3K); protein kinase B (Akt); phosphorylated Akt (p-Akt) and glucose transporter 2 (Glut2) in liver were investigated by Western blot analysis. Results Remarkably, hyperglycaemia, dyslipidemia, inflammation, and insulin resistance in T2DM were ameliorated after oral administration of SR and CR, particularly their combined extracts. The effects of SR, CR, low dose of combined extracts (LSC) and high dose of combined extracts (HSC) on pro-inflammatory cytokine transcription in T2DM rats showed that the MAPK pathway might account for the phenomenon with down-regulation of MAPK (P38 mitogen-activated protein kinases (P38), extracellular regulated protein kinases (ERK), and c-Jun N-terminal kinase (JNK)) mRNA, and protein reduction in p-P65. While mRNA levels of key targets such as insulin receptor substrate 1 (IRS1), PI3K, Akt2, and Glut2 in the insulin signaling pathway were notably up-modulated, phosphorylations of PI3K, Akt, and expression of Glut2 were markedly enhanced. Moreover, the increased activities of phosphoenolpyruvate carboxykinase (PEPCK), fructose-1,6-bisphosphatase (FBPase), glucose 6-phosphatase (G6Pase), and glycogen phosphorylase (GP) were highly reduced and the decreased activities of glucokinase (GK), phosphofructokinase (PFK), pyruvate kinase (PK), and glycogen synthase (GS) in liver were notably increased after treatment. Further investigation indicated that the metabolic profiles of plasma and urine were clearly improved in T2DM rats. Fourteen potential biomarkers (nine in plasma and five in urine) were identified. After intervention, these biomarkers returned to normal level to some extent. Conclusion The results showed that SR, CR, and combined extract groups were normalized. The effects of combined extracts were more remarkable than single herb treatment. Additionally, this study also showed that the metabonomics method is a promising tool to unravel how traditional Chinese medicines work.
Collapse
Affiliation(s)
- Xiang Cui
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
26
|
Schiffmann R, Wallace ME, Rinaldi D, Ledoux I, Luton MP, Coleman S, Akman HO, Martin K, Hogrel JY, Blankenship D, Turner J, Mochel F. A double-blind, placebo-controlled trial of triheptanoin in adult polyglucosan body disease and open-label, long-term outcome. J Inherit Metab Dis 2018; 41:877-883. [PMID: 29110179 DOI: 10.1007/s10545-017-0103-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/17/2017] [Accepted: 10/15/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Adult polyglucosan body disease (APBD) is a progressive neurometabolic disorder caused by a deficiency of glycogen branching enzyme. We tested the efficacy of triheptanoin as a therapy for patients with APBD based on the hypothesis that decreased glycogen degradation leads to brain energy deficit. METHODS AND RESULTS This was a two-site, randomized crossover trial of 23 patients (age 35-73 years; 63% men) who received triheptanoin or vegetable oil as placebo. The trial took place over 1 year and was followed by a 4-year open-label phase. Generalized linear mixed models were used to analyze this study. At baseline, using the 6-min walk test, patients could walk a mean of 389 ± 164 m (range 95-672; n = 19), highlighting the great clinical heterogeneity of our cohort. The overall mean difference between patients on triheptanoin versus placebo was 6 m; 95% confidence interval (CI) -11 to 22; p = 0.50. Motion capture gait analysis, gait quality, and stair climbing showed no consistent direction of change. All secondary endpoints were statistically nonsignificant after false discovery rate adjustment. Triheptanoin was safe and generally well tolerated. During the open-label phase of the study, the most affected patients at baseline kept deteriorating while mildly disabled patients remained notably stable up to 4 years. CONCLUSIONS We cannot conclude that triheptanoin was effective in the treatment of APBD over a 6-month period, but we found it had a good safety profile. This study also emphasizes the difficulty of conducting trials in very rare diseases presenting with a wide clinical heterogeneity. ClinicalTrials.gov Identifier: NCT00947960.
Collapse
Affiliation(s)
- Raphael Schiffmann
- Baylor Scott & White Research Institute, Dallas, TX, USA.
- Institute of Metabolic Disease, 3812 Elm Street, Dallas, TX, 75226, USA.
| | - Mary E Wallace
- Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Daisy Rinaldi
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Brain and Spine Institute, Paris, France
| | - Isabelle Ledoux
- Institute of Myology, Neuromuscular Physiology and Evaluation Lab, F-75013, Paris, France
| | - Marie-Pierre Luton
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Brain and Spine Institute, Paris, France
| | - Scott Coleman
- Department of Orthopedics, Baylor University Medical Center, Dallas, TX, USA
| | - H Orhan Akman
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Karine Martin
- Clinical Research Unit, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Jean-Yves Hogrel
- Institute of Myology, Neuromuscular Physiology and Evaluation Lab, F-75013, Paris, France
| | | | - Jacob Turner
- Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Fanny Mochel
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Brain and Spine Institute, Paris, France
- Reference Center for Neurometabolic Diseases, Pitié-Salpêtrière University Hospital and Neurometabolic Research Group, University Pierre and Marie Curie, Paris, France
- Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
27
|
Mendelsohn BA, Bennett NK, Darch MA, Yu K, Nguyen MK, Pucciarelli D, Nelson M, Horlbeck MA, Gilbert LA, Hyun W, Kampmann M, Nakamura JL, Nakamura K. A high-throughput screen of real-time ATP levels in individual cells reveals mechanisms of energy failure. PLoS Biol 2018; 16:e2004624. [PMID: 30148842 PMCID: PMC6110572 DOI: 10.1371/journal.pbio.2004624] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
Insufficient or dysregulated energy metabolism may underlie diverse inherited and degenerative diseases, cancer, and even aging itself. ATP is the central energy carrier in cells, but critical pathways for regulating ATP levels are not systematically understood. We combined a pooled clustered regularly interspaced short palindromic repeats interference (CRISPRi) library enriched for mitochondrial genes, a fluorescent biosensor, and fluorescence-activated cell sorting (FACS) in a high-throughput genetic screen to assay ATP concentrations in live human cells. We identified genes not known to be involved in energy metabolism. Most mitochondrial ribosomal proteins are essential in maintaining ATP levels under respiratory conditions, and impaired respiration predicts poor growth. We also identified genes for which coenzyme Q10 (CoQ10) supplementation rescued ATP deficits caused by knockdown. These included CoQ10 biosynthetic genes associated with human disease and a subset of genes not linked to CoQ10 biosynthesis, indicating that increasing CoQ10 can preserve ATP in specific genetic contexts. This screening paradigm reveals mechanisms of metabolic control and genetic defects responsive to energy-based therapies.
Collapse
Affiliation(s)
- Bryce A. Mendelsohn
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Department of Pediatrics, University of California, San Francisco, California, United States of America
| | - Neal K. Bennett
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Maxwell A. Darch
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Katharine Yu
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Mai K. Nguyen
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Daniela Pucciarelli
- Department of Radiation Oncology, University of California, San Francisco, California, United States of America
| | - Maxine Nelson
- Graduate Program in Biomedical Sciences, University of California, San Francisco, California, United States of America
| | - Max A. Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Luke A. Gilbert
- Department of Urology, University of California, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, United States of America
| | - William Hyun
- Department of Laboratory Medicine, University of California, San Francisco, California, United States of America
| | - Martin Kampmann
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - Jean L. Nakamura
- Department of Radiation Oncology, University of California, San Francisco, California, United States of America
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Graduate Program in Biomedical Sciences, University of California, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, California, United States of America
- Graduate Program in Neuroscience, University of California, San Francisco, California, United States of America
| |
Collapse
|
28
|
Sambuughin N, Mungunsukh O, Ren M, Capacchione JF, Horkayne-Szakaly I, Chuang K, Muldoon SM, Smith JK, O'Connor FG, Deuster PA. Pathogenic and rare deleterious variants in multiple genes suggest oligogenic inheritance in recurrent exertional rhabdomyolysis. Mol Genet Metab Rep 2018; 16:76-81. [PMID: 30094188 PMCID: PMC6072915 DOI: 10.1016/j.ymgmr.2018.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/25/2018] [Indexed: 12/16/2022] Open
Abstract
Exertional rhabdomyolysis is a metabolic event characterized by the release of muscle content into the circulation due to exercise-driven breakdown of skeletal muscle. Recurrent exertional rhabdomyolysis has been associated with metabolic myopathies and mitochondrial disorders, a clinically and genetically heterogeneous group of predominantly autosomal recessive, monogenic conditions. Although genetics factors are well recognized in recurrent rhabdomyolysis, the underlying causes and mechanisms of exercise-driven muscle breakdown remain unknown in a substantial number of cases. We present clinical and genetic study results from seven adult male subjects with recurrent exertional rhabdomyolysis. In all subject, whole exome sequencing identified multiple heterozygous variants in genes associated with monogenic metabolic and/or mitochondrial disorders. These variants consisted of known pathogenic and/or new likely pathogenic variants in combination with other rare deleterious alleles. The presence of heterozygous pathogenic and rare deleterious variants in multiple genes suggests an oligogenic inheritance for exertional rhabdomyolysis etiology. Our data imply that exertional rhabdomyolysis can reflect cumulative effects or synergistic interactions of deleterious variants in multiple genes that are likely to compromise muscle metabolism under the stress of exercise.
Collapse
Affiliation(s)
- Nyamkhishig Sambuughin
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, United States
| | - Ognoon Mungunsukh
- Department of Anesthesiology, Uniformed Services University, Bethesda, MD 20814, United States
| | - Mingqiang Ren
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, United States
| | - John F Capacchione
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN, United States
| | - Iren Horkayne-Szakaly
- Neurology and Ophthalmology, Joint Pathology Center, Defense Health Agency, Silver Spring, MD 20910, United States
| | - Kevin Chuang
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, United States
| | - Sheila M Muldoon
- Department of Anesthesiology, Uniformed Services University, Bethesda, MD 20814, United States
| | - Jonathan K Smith
- Department of Neurology, Walter Read National Military Medical Center, Bethesda, MD 20889, United States
| | - Francis G O'Connor
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, United States
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, United States
| |
Collapse
|
29
|
Pascarella A, Terracciano C, Farina O, Lombardi L, Esposito T, Napolitano F, Franzese G, Panella G, Tuccillo F, la Marca G, Bernardini S, Boffo S, Giordano A, Di Iorio G, Melone MAB, Sampaolo S. Vacuolated PAS-positive lymphocytes as an hallmark of Pompe disease and other myopathies related to impaired autophagy. J Cell Physiol 2018; 233:5829-5837. [PMID: 29215735 DOI: 10.1002/jcp.26365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022]
Abstract
Autosomal recessive Pompe disease is a lysosomal disorder caused by mutations of the acid-α-glucosidase (GAA) gene. Deficiency of GAA enzyme leads to glycogen accumulation and autophagy impairment in cardiac and skeletal muscles, but also in lymphocytes. Since an effective therapy is available, a rapid, sensitive, and specific test is crucial to early identify affected subjects. Number of lymphocytes containing PAS-positive vacuoles was evaluated on blood films from 72 consecutive adult patients with hyperckemia and/or muscle weakness, 13 genetically confirmed late-onset-Pompe-disease (LOPD) and 13 of their offspring. GAA activity, measured on dried blood spot (DBS) in all patients inversely correlated with number of PAS-positive lymphocytes. More than 4 PAS-positive lymphocytes were found in 11 out of the 72 patients (6 new diagnosis of LOPD, 3 different glycogen storage myopathies, 1 glucose-6-phosphate dehydrogenase deficiency, 1 caveolinopathy), in all 13 LOPD patients and in the 13 LOPD offspring. These latter resulted to have all a single GAA mutation but low GAA levels. Immunostaining with the autophagy markers LC3 and p62 confirmed the autophagic nature of lymphocytes vacuoles. ROC curve assessment of PAS-positive lymphocytes disclosed 100% of sensitivity and 94% of specificity in recognizing both compound heterozygous and heterozygous GAA carriers. The other myopathies with more than 4 PAS-positive lymphocytes appeared to be all related to impaired autophagy, which seems to be responsible of PAS-positive vacuolated lymphocytes formation. Quantification of PAS-positive lymphocytes in blood films is useful to identify autophagic vacuolar myopathies and should be routinely used as first level test for Pompe disease.
Collapse
Affiliation(s)
- Angelo Pascarella
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Neurorehabilitation Unit and Research Lab. for Disorder of Consciousness, Maugeri ICS, Telese Terme, Italy
| | - Chiara Terracciano
- Division of Clinical Biochemistry, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Olimpia Farina
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luca Lombardi
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Teresa Esposito
- Molecular Genetics and Genomics Laboratory, Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", Italian National Research Council (CNR), Naples, Italy
- IRCCS INM Neuromed, Pozzilli, Italy
| | - Filomena Napolitano
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppina Franzese
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Panella
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Tuccillo
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giancarlo la Marca
- Department of Experimental and Clinical Biomedical Sciences, University of Florence; Head, Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Offspring's Hospital, Florence, Italy
| | - Sergio Bernardini
- Division of Clinical Biochemistry, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Boffo
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Antonio Giordano
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Giuseppe Di Iorio
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mariarosa A B Melone
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Simone Sampaolo
- 2nd Division of Neurology, Department of Medicine, Surgery, Neurology, Metabolic and Aging Science, Reference Center for Neurological and Neuromuscular Rare Disease & Interuniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
30
|
Walters WD, Garnica AD, Schaefer GB. McArdle Disease Presenting With Muscle Pain in a Teenage Girl: The Role of Whole-Exome Sequencing in Neurogenetic Disorders. Semin Pediatr Neurol 2018; 26:50-51. [PMID: 29961518 DOI: 10.1016/j.spen.2017.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We present the case of a young woman with worsening attacks of muscle pain and rhabdomyolysis beginning at age 14. Initial metabolic testing and electromyography revealed findings of a nonspecific myopathy. Diagnostic options were discussed among the members of a neurogenetics clinic team. Whole-exome sequencing was selected as a first tier test. This testing revealed a known disease causing mutation in the PYGM gene consistent with McArdle disease. We discuss the decision to use whole-exome sequencing in diagnostics and the rationale for making this our choice as a first-level test modality.
Collapse
Affiliation(s)
- William D Walters
- From the Section of Pediatric Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Adolfo D Garnica
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Gerald Bradley Schaefer
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR.
| |
Collapse
|
31
|
Barshir R, Hekselman I, Shemesh N, Sharon M, Novack L, Yeger-Lotem E. Role of duplicate genes in determining the tissue-selectivity of hereditary diseases. PLoS Genet 2018; 14:e1007327. [PMID: 29723191 PMCID: PMC5953478 DOI: 10.1371/journal.pgen.1007327] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/15/2018] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
A longstanding puzzle in human genetics is what limits the clinical manifestation of hundreds of hereditary diseases to certain tissues, while their causal genes are expressed throughout the human body. A general conception is that tissue-selective disease phenotypes emerge when masking factors operate in unaffected tissues, but are specifically absent or insufficient in disease-manifesting tissues. Although this conception has critical impact on the understanding of disease manifestation, it was never challenged in a systematic manner across a variety of hereditary diseases and affected tissues. Here, we address this gap in our understanding via rigorous analysis of the susceptibility of over 30 tissues to 112 tissue-selective hereditary diseases. We focused on the roles of paralogs of causal genes, which are presumably capable of compensating for their aberration. We show for the first time at large-scale via quantitative analysis of omics datasets that, preferentially in the disease-manifesting tissues, paralogs are under-expressed relative to causal genes in more than half of the diseases. This was observed for several susceptible tissues and for causal genes with varying number of paralogs, suggesting that imbalanced expression of paralogs increases tissue susceptibility. While for many diseases this imbalance stemmed from up-regulation of the causal gene in the disease-manifesting tissue relative to other tissues, it was often combined with down-regulation of its paralog. Notably in roughly 20% of the cases, this imbalance stemmed only from significant down-regulation of the paralog. Thus, dosage relationships between paralogs appear as important, yet currently under-appreciated, modifiers of disease manifestation.
Collapse
Affiliation(s)
- Ruth Barshir
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Idan Hekselman
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Netta Shemesh
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Moran Sharon
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lena Novack
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
32
|
A straightforward assay for measuring glycogen levels and RpoS. J Microbiol Methods 2017; 145:93-97. [PMID: 29288674 DOI: 10.1016/j.mimet.2017.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/26/2017] [Accepted: 12/26/2017] [Indexed: 11/21/2022]
Abstract
Cellular glycogen levels reflect the activity of RpoS, an important stress-inducible bacterial sigma factor known to regulate several stress-resistance related genes, such as katE, encoding hydroperoxidase II (HPII), and the glg genes, encoding glycogen synthesis enzymes, in Escherichia coli. In this study, a straightforward assay for measuring glycogen levels and RpoS activity was developed combining the ease and simplicity of qualitative approaches. The assay reagent was a 2% iodine solution (2% iodine/1M NaOH), and the basic principle of this assay is the iodine-glycogen reaction, which produces a reddish brown color that can be measured using a spectrophotometer. A calibration plot using a known amount of glycogen yielded the best linear fit over a range of 10-300μg/assay (R2=0.994). The applicability of the assay for measuring the glycogen level of various samples was assessed using a wild type (WT) E. coli K-12 strain, glycogen- and RpoS-deficient isogenic mutants, and clinical bacterial isolates with or without RpoS activity; the assay generated reproducible results. Additionally, the assay was successfully applied for measuring glycogen levels in human cells. In conclusion, we developed a straightforward and cost-effective assay for measuring glycogen levels, which can be applied for measuring RpoS activity.
Collapse
|
33
|
Dysregulation of autophagy as a common mechanism in lysosomal storage diseases. Essays Biochem 2017; 61:733-749. [PMID: 29233882 PMCID: PMC5869865 DOI: 10.1042/ebc20170055] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022]
Abstract
The lysosome plays a pivotal role between catabolic and anabolic processes as the nexus for signalling pathways responsive to a variety of factors, such as growth, nutrient availability, energetic status and cellular stressors. Lysosomes are also the terminal degradative organelles for autophagy through which macromolecules and damaged cellular components and organelles are degraded. Autophagy acts as a cellular homeostatic pathway that is essential for organismal physiology. Decline in autophagy during ageing or in many diseases, including late-onset forms of neurodegeneration is considered a major contributing factor to the pathology. Multiple lines of evidence indicate that impairment in autophagy is also a central mechanism underlying several lysosomal storage disorders (LSDs). LSDs are a class of rare, inherited disorders whose histopathological hallmark is the accumulation of undegraded materials in the lysosomes due to abnormal lysosomal function. Inefficient degradative capability of the lysosomes has negative impact on the flux through the autophagic pathway, and therefore dysregulated autophagy in LSDs is emerging as a relevant disease mechanism. Pathology in the LSDs is generally early-onset, severe and life-limiting but current therapies are limited or absent; recognizing common autophagy defects in the LSDs raises new possibilities for therapy. In this review, we describe the mechanisms by which LSDs occur, focusing on perturbations in the autophagy pathway and present the latest data supporting the development of novel therapeutic approaches related to the modulation of autophagy.
Collapse
|
34
|
Lilleker JB, Keh YS, Roncaroli F, Sharma R, Roberts M. Metabolic myopathies: a practical approach. Pract Neurol 2017; 18:14-26. [PMID: 29223996 DOI: 10.1136/practneurol-2017-001708] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 12/20/2022]
Abstract
Metabolic myopathies are a diverse group of rare genetic disorders and their associated muscle symptoms may be subtle. Patients may present with indolent myopathic features, exercise intolerance or recurrent rhabdomyolysis. Diagnostic delays are common and clinicians need a high index of suspicion to recognise and differentiate metabolic myopathies from other conditions that present in a similar fashion. Standard laboratory tests may be normal or non-specific, particularly between symptomatic episodes. Targeted enzyme activity measurement and next-generation genetic sequencing are increasingly used. There are now specific enzyme replacement therapies available, and other metabolic strategies and gene therapies are undergoing clinical trials. Here, we discuss our approach to the adult patient with suspected metabolic myopathy. We outline key features in the history and examination and discuss some mimics of metabolic myopathies. We highlight some disorders of glycogen and fatty acid utilisation that present in adulthood and outline current recommendations on management.
Collapse
Affiliation(s)
- James B Lilleker
- Greater Manchester Neurosciences Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK
| | - Yann Shern Keh
- Greater Manchester Neurosciences Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK
| | - Federico Roncaroli
- Greater Manchester Neurosciences Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Reena Sharma
- The Mark Holland Metabolic Unit, Salford Royal NHS Foundation Trust, Salford, UK
| | - Mark Roberts
- Greater Manchester Neurosciences Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK
| |
Collapse
|
35
|
The histone code reader Spin1 controls skeletal muscle development. Cell Death Dis 2017; 8:e3173. [PMID: 29168801 PMCID: PMC5775400 DOI: 10.1038/cddis.2017.468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023]
Abstract
While several studies correlated increased expression of the histone code reader Spin1 with tumor formation or growth, little is known about physiological functions of the protein. We generated Spin1M5 mice with ablation of Spin1 in myoblast precursors using the Myf5-Cre deleter strain. Most Spin1M5 mice die shortly after birth displaying severe sarcomere disorganization and necrosis. Surviving Spin1M5 mice are growth-retarded and exhibit the most prominent defects in soleus, tibialis anterior, and diaphragm muscle. Transcriptome analyses of limb muscle at embryonic day (E) 15.5, E16.5, and at three weeks of age provided evidence for aberrant fetal myogenesis and identified deregulated skeletal muscle (SkM) functional networks. Determination of genome-wide chromatin occupancy in primary myoblast revealed direct Spin1 target genes and suggested that deregulated basic helix-loop-helix transcription factor networks account for developmental defects in Spin1M5 fetuses. Furthermore, correlating histological and transcriptome analyses, we show that aberrant expression of titin-associated proteins, abnormal glycogen metabolism, and neuromuscular junction defects contribute to SkM pathology in Spin1M5 mice. Together, we describe the first example of a histone code reader controlling SkM development in mice, which hints at Spin1 as a potential player in human SkM disease.
Collapse
|
36
|
Kakhlon O. Pharmacological approaches for treating glycogen storage disorders involving polyglucosan body accumulation. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1405804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Or Kakhlon
- Department of Neurology, Hadassah Medical Association, Ein Kerem, Jerusalem, Israel
| |
Collapse
|
37
|
Sjogren's syndrome: New paradigms and areas for future research. Clin Immunol 2017; 182:1-3. [PMID: 28673862 DOI: 10.1016/j.clim.2017.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022]
|
38
|
Stanik J, Skopkova M, Brennerova K, Danis D, Rosolankova M, Salingova A, Bzduch V, Klimes I, Gasperikova D. Congenital hyperinsulinism and glycogenosis-like phenotype due to a novel HNF4A mutation. Diabetes Res Clin Pract 2017; 126:144-150. [PMID: 28242437 DOI: 10.1016/j.diabres.2017.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
Abstract
AIM Congenital hyperinsulinism (CHI) and glycogen storage disease (glycogenosis) are both causing hypoglycemia during infancy, but with different additional clinical features and therapeutic approach. We aimed to identify a genetic cause in a child with an ambiguous phenotype. METHODS AND RESULTS We present a child with hyperinsulinemic hypoglycemia, physiological 3-OH butyrate, increased triglyceride serum levels, increased level of glycogen in erythrocytes, increased liver transaminases, and increased echogenicity on liver ultrasonography. As both parents of the proband were referred as healthy, we raised a clinical suspicion on glycogenosis with recessive inheritance. However, whole exome sequencing revealed no mutation in genes causing glycogenosis, but a novel heterozygous variant LRG_483t1: c.427-1G>A in the HNF4A gene was identified. Aberrant splicing resulting in in-frame deletion c.429_476del, p.(T144_I159del) was confirmed by sequencing of HNF4A transcripts reverse-transcribed from whole blood RNA. The same variant was found in five of eight tested family relatives (one of them already had diabetes, two had prediabetes). With regard to the results of DNA analysis, we added diazoxide to the therapy. Consequently, the frequency and severity of hypoglycemia in the proband decreased. We have also recommended sulfonylurea treatment after diabetes onset in adult mutation carriers. CONCLUSIONS We have identified a novel HNF4A gene mutation in our patient with CHI and glycogenosis-like phenotype. The proband and her family members benefited from the genetic testing by WES method and consequently personalized therapy. Nevertheless, the HNF4A gene testing may be considered in selected CHI cases with glycogenosis-like phenotype prior WES analysis.
Collapse
Affiliation(s)
- Juraj Stanik
- First Department of Pediatrics, Medical Faculty of Comenius University and Children Faculty Hospital, Limbova 1, 833 40 Bratislava, Slovakia; DIABGENE Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center SAS, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Martina Skopkova
- DIABGENE Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center SAS, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Katarina Brennerova
- First Department of Pediatrics, Medical Faculty of Comenius University and Children Faculty Hospital, Limbova 1, 833 40 Bratislava, Slovakia
| | - Daniel Danis
- DIABGENE Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center SAS, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Monika Rosolankova
- Department of Intensive Care in Neonatology, Medical Faculty of Comenius University and Children Faculty Hospital, Limbova 1, 833 40 Bratislava, Slovakia
| | - Anna Salingova
- Department of Laboratory Medicine, Children Faculty Hospital, Limbova 1, 833 40 Bratislava, Slovakia
| | - Vladimir Bzduch
- First Department of Pediatrics, Medical Faculty of Comenius University and Children Faculty Hospital, Limbova 1, 833 40 Bratislava, Slovakia
| | - Iwar Klimes
- DIABGENE Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center SAS, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Daniela Gasperikova
- DIABGENE Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center SAS, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| |
Collapse
|
39
|
Sun Y, Huang Y, Hu G, Zhang X, Ruan Z, Zhao X, Guo C, Tang Z, Li X, You X, Lin H, Zhang Y, Shi Q. Comparative Transcriptomic Study of Muscle Provides New Insights into the Growth Superiority of a Novel Grouper Hybrid. PLoS One 2016; 11:e0168802. [PMID: 28005961 PMCID: PMC5179234 DOI: 10.1371/journal.pone.0168802] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
Grouper (Epinephelus spp.) is a group of fish species with great economic importance in Asian countries. A novel hybrid grouper, generated by us and called the Hulong grouper (Hyb), has better growth performance than its parents, E. fuscoguttatus (Efu, ♀) and E. lanceolatus (Ela, ♂). We previously reported that the GH/IGF (growth hormone/insulin-like growth factor) system in the brain and liver contributed to the superior growth of the Hyb. In this study, using transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR), we analyzed RNA expression levels of comprehensive genes in the muscle of the hybrid and its parents. Our data showed that genes involved in glycolysis and calcium signaling in addition to troponins are up-regulated in the Hyb. The results suggested that the activity of the upstream GH/IGF system in the brain and liver, along with the up-regulated glycolytic genes as well as ryanodine receptors (RyRs) and troponins related to the calcium signaling pathway in muscle, led to enhanced growth in the hybrid grouper. Muscle contraction inducing growth could be the major contributor to the growth superiority in our novel hybrid grouper, which may be a common mechanism for hybrid superiority in fishes.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Guojun Hu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Xiaomeng Zhao
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Chuanyu Guo
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Zhujing Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (Hl); (YZ); (QS)
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (Hl); (YZ); (QS)
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
- Center for Marine Research, School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- * E-mail: (Hl); (YZ); (QS)
| |
Collapse
|